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Abstract 19 

The current study determined the applicability of sequential and orthogonalised-20 

partial least squares (SO-PLS) regression to relate Cabernet Sauvignon grape chemical 21 

composition to the sensory perception of the corresponding wines. Grape samples (n = 25) 22 

were harvested at a similar maturity and vinified identically in 2013. Twelve measures using 23 

various (bio)chemical methods were made on grapes. Wines were evaluated using descriptive 24 

analysis with a trained panel (n = 10) for sensory profiling. Data was analysed globally using 25 

SO-PLS for the entire sensory profiles (SO-PLS2), as well as for single sensory attributes 26 

(SO-PLS1). SO-PLS1 models were superior in validated explained variances than SO-PLS2. 27 

SO-PLS provided a structured approach in the selection of predictor chemical data sets that 28 

best contributed to the correlation of important sensory attributes. This new approach 29 
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presents great potential for application in other explorative metabolomics studies of food and 30 

beverages to address factors such as quality and regional influences. 31 

Keywords: Multi-block data analysis; data orthogonalisation; grape; wine; sensory 32 

 33 

1.0 Introduction 34 

The field of metabolomics analysis is rapidly expanding in the quest to improve the 35 

holistic understanding of food and beverage composition in relation to nutrition, quality, 36 

safety, and authenticity (Wishart, 2008). Given that consumers are an important beneficiary 37 

of any improved knowledge of processes and practices, researchers continue to search for the 38 

compositional factors that contribute to flavour perception of products such as wine, which in 39 

turn influence consumer behaviour. Detailed studies of this nature generate substantial 40 

volumes of multiple data sets, which require suitable methods for data analysis to draw 41 

conclusions about complex natural phenomenon.  42 

Fortunately, the field of chemometrics provides a range of multivariate statistical 43 

methods available for explorative analysis, interpretation and prediction. Chemometric 44 

methods also need to keep pace with the emerging trend involving the collection of multiple 45 

data sets obtained from advanced instrumental technologies with enhanced measurement 46 

resolution (and are therefore very information-rich). However, the large amounts of data that 47 

are generated pose a major challenge in the subsequent analysis to be able to interpret their 48 

meaning (Johnson, Ivanisevic, Benton, & Siuzdak, 2015).  49 

Recent developments in partial least squares (PLS)-based analyses have involved 50 

extensions to multiple input data by using the PLS algorithm, including sequential and 51 

orthogonalised-PLS (SO-PLS) and parallel orthogonalised-PLS (PO-PLS) (Næs, Tomic, 52 

Mevik, & Martens, 2011). These techniques orthogonalise multiple data blocks, which 53 

maintain the integrity of each block and can account for their respective variation to the 54 

overall model. This may represent an advantage over joining multiple data sets together into 55 

one large table (concatenation) for analysis with PLS (multi-block-PLS) (Westerhuis, Kourti, 56 

& MacGregor, 1998). Specifically for the SO-PLS, data blocks of independent variables (X1, 57 

X2, etc.) are sequentially added to the analysis one at a time in succession to determine the 58 

progressive change in explained variance of the global response data (Y) (Næs, Tomic, 59 

Mevik, & Martens, 2011). Such new data analysis methods give a structured approach to the 60 
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analysis of highly complex data, thereby providing the best chance of properly modeling the 61 

phenomenon being studied. 62 

Despite being prime tools for investigating the results of something as complex as 63 

human perception of foodstuffs, multi-block data analyses have been applied in only a few 64 

studies to describe sensory perception and consumer preferences. Perhaps this is mainly due 65 

to absence of such methods in standard commercial data analysis software that provide their 66 

access through graphical user interfaces. Multi-block-PLS analysis was applied to the study 67 

of aroma perception and release in cheeses in an attempt to determine the reasons behind 68 

large inter-individual differences in aroma release (Feron, Ayed, Qannari, Courcoux, Laboure, 69 

& Guichard, 2014). In this case, multiple predictor data sets were pre-processed prior to 70 

concatenation, the PLS algorithm applied, followed by multi-block redundancy analysis. 71 

Without taking the multi-block-PLS approach, mastication parameters as well as bolus 72 

characteristics of cheese would not have been identified as influencing aroma compound 73 

release in the mouth. PO-PLS was compared against conventional PLS for consumer 74 

preference mapping of flavoured water and jams (Måge, Menichelli, & Næs, 2012). Although 75 

the two analyses did not change in the output of the model such as the overall explained 76 

variance, the PO-PLS approach added further information in the contribution of predictor 77 

data blocks to the overall model and the number of components required for each block. 78 

Lastly, SO-PLS was applied to path modeling to determine how consumer demographics, 79 

purchase behaviour, and neophobia influenced each other (Menichelli, Almoy, Tomic, Olsen, 80 

& Naes, 2014). Many other applications of SO-PLS or PO-PLS to food and beverage 81 

research can be envisaged when diverse data sets need to be modelled (e.g., chemical, human 82 

sensory, biochemical), such as the case of working with grape and wine data. 83 

Given the size and economic importance of the global wine industry, understanding 84 

the drivers of grape quality and how this translates into a finished wine that consumers 85 

appreciate is a fundamental requirement for winemakers. Although much research has 86 

elucidated grape chemical compounds that dictate some unique flavour characters in wines, 87 

there is still much to be understood concerning why wine taste the way they do. For instance, 88 

it is unknown why different wines from the same cultivar (i.e., cultivated variety, such as 89 

Cabernet Sauvignon) possess different sensory characteristics, as a result of the complicated 90 

interdependencies that occur between the chemical constituents within the grape berry, 91 

overlaid with the effects of microbial metabolism during winemaking. Chemometric 92 

treatment of data, in particular using multi-block data analysis methods, has the potential to 93 
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provide improved understanding of the grape chemical measures that best contribute to the 94 

variation in wine style as determined from instrumental and/or sensory profiles of the wines.  95 

The objective of this study was to explore the applicability of SO-PLS to model the 96 

sensory characteristics of Cabernet Sauvignon wines as determined by human assessors using 97 

a suite of chemical measurements made on the grapes, and hence to determine the data blocks 98 

that most contribute to the models. In particular, focus will be on strategies for incorporating 99 

blocks of data when the number by far exceeds the standard size of 2-3 input blocks modelled 100 

by the approach. Focus will be on interpretation as well as prediction ability and how to 101 

assess reliability of the interpretations.   102 

 103 

2.0 Materials and methods 104 

2.1 Sampling 105 

To encompass a range of compositional differences, Cabernet Sauvignon grapes were 106 

sampled from different vineyards within the following eight viticultural regions across South 107 

Australia during the 2013 vintage (number of vineyards sampled given in parentheses): 108 

Barossa Valley (2) (BV), Clare Valley (2) (CV), Coonawarra (4) (CWA), Eden Valley (2) 109 

(EV), Langhorne Creek (2) (LC), McLaren Vale (2) (McL), Riverland (9) (RVL), and 110 

Wrattonbully (2) (WBY). This provided a sample set of 25, with the Riverland having more 111 

vineyards sampled due to its comparatively larger sampling area. 112 

In each vineyard site, grape bunches were randomly sampled throughout the vineyard 113 

block and were picked randomly from all areas of the canopy (Calderon-Orellana, Mercenaro, 114 

Shackel, Willits, & Matthews, 2014) to give a total parcel size of 60 kg. Two subsamples of 115 

grape berries (500 g each) were randomly taken from each sample parcel; one subsample was 116 

used for wet chemistry (see supplementary experimental section) and the other was snap 117 

frozen with liquid nitrogen and stored at -80 °C for compositional analysis. The pulp and skin 118 

of frozen grape samples were later separated from the seeds, and the frozen pulp and skin 119 

were homogenized, all the while under liquid nitrogen, in preparation for the various analyses. 120 

The remaining fresh grape parcels were processed into single wines, corresponding to each 121 

grape sample, and vinified identically using a small scale procedure (Niimi, Boss, Jeffery, & 122 

Bastian, 2017). 123 
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2.2 Chemical and sensory analyses 124 

Twelve physical and chemical analyses were made on the grape samples (Table 1). 125 

For brevity, details of each analytical method are described in the Supplemental Information 126 

sections. Many of the methods have been described previously in literature and the reader is 127 

referred to those cited for the following measures of grapes; harvest measures, amino acids, 128 

non-targeted volatile compounds, total phenolics and total tannins, anthocyanins, detailed 129 

tannins, flavonols, and lipoxygenase enzyme activity pathway. Details for the remaining 130 

blocks of data including certain aspects of harvest measures, targeted and bound volatile 131 

compounds, colour, and fatty acid analyses are described in S-1 to S-5. The sensory analysis 132 

procedure was based on previous literature, however specific details pertaining to the current 133 

study are described in S-6. Sensory evaluations were conducted under the approval of The 134 

University of Adelaide's Human Research Ethics Committee (H-2014-057). 135 

2.3 Data Analysis 136 

2.3.1 Data pre-processing 137 

The following pre-processing steps were used in the current study: (I) computing 138 

descriptive statistics for the variables to inspect the distribution of the data and identify 139 

possible severe outlier data points; and (II) analysing the data of each variable (both X- and 140 

Y-blocks) using one-way analysis of variance (ANOVA) to identify variables that 141 

significantly discriminated the wine samples (p < 0.05). Non-significant variables were 142 

removed from further analysis in an attempt to remove noise and ease the burden of 143 

computing the SO-PLS models (described further below); (III) analysis of each block with 144 

principal component analysis (PCA) to get an overview of the systematic variance in each 145 

block and how the variables contributed to the variance as well as visualize any outliers; (IV) 146 

computation of PLS2 models with Y- and one X-block at a time (totalling 12 PLS2 models) 147 

for an understanding of the predictive power of each X-block; (V) X-blocks that yielded 148 

PLS2 models with less than 10% validated explained variance were left out to remove noise 149 

from data. Further, single Y-variables with less than 10% validated explained variance when 150 

modelled using PLS1 with any of the X-blocks were also left out in another attempt to 151 

remove noise from the data.  152 

 Note that initially, all blocks except X01 consisted of 75 rows (for complete 153 

information on the block dimensions see Table 1) consisting of 3 replicates for each of the 25 154 
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measured wines. Prior to analysis as in (III), (IV), (V), and with SO-PLS, averages were 155 

computed across the 3 replicates, such that the number of rows of each block was decreased 156 

to 25. The order of the 25 wine samples was identical for all blocks. Moreover, all blocks 157 

were mean centred prior to analysis in (III), (IV), (V) and SO-PLS. 158 

2.3.2 Analysis of multiple blocks using SO-PLS 159 

The SO-PLS approach used has been generically described previously; for further 160 

information the reader is encouraged to read the following reference (Næs, Tomic, Mevik, & 161 

Martens, 2011). However, as the current paper will present two variants of SO-PLS, the 162 

distinction between single Y-variable SO-PLS and global SO-PLS (which analyses the entire 163 

Y-variables table) will be referred hereinafter as SO-PLS1 and SO-PLS2, respectively, 164 

following the conventional naming of the two PLS methods (i.e., PLS1 and PLS2).  165 

 A progressive model optimization approach was chosen, where X-blocks were added 166 

sequentially to the SO-PLS model (Menichelli, Almoy, Tomic, Olsen, & Naes, 2014) until 167 

there was no further reduction in root mean square error of cross validation (RMSECV) for 168 

Y-block. This is less likely to lead to over-fitting of the data, than finding the most optimal 169 

combination of X-blocks by model parameters using the global modeling approach 170 

(Menichelli, Almoy, Tomic, Olsen, & Naes, 2014). The reason for this is that the more 171 

possibilities there are, the higher the likelihood of obtaining a good result by chance. The 172 

progressive model optimization approach is described in detail below.  173 

 As a first step, the Y-block was fitted to each of the available X-blocks by computing 174 

one PLS2 model for each X-block. The models then were compared by means of lowest 175 

RMSECV for block Y and the appropriate number of components. The X-block with the 176 

most optimal parameters was selected to be the first X-block for subsequent SO-PLS2 models 177 

that will be computed in the following steps. The appropriate number of components found 178 

for the most optimal X-block at this point was set and held constant for the SO-PLS2 models. 179 

 As a second step, SO-PLS2 models with two X-blocks were calibrated. In each of 180 

these SO-PLS2 models the first X block and its number of components were fixed (as found 181 

in step 1 above) and the second X-block was one of the remaining X-blocks after step 1. This 182 

step determined the second X-block that most decreased RMSECV in Y-block, where the 2 183 

block SO-PLS2 model with the lowest RMSECV was considered the most optimal model. 184 

The optimal number of components associated with the best second X-block as well as the 185 
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improvement in validated explained variance were also determined. Thus, the combination of 186 

decreased RMSECV, number of components, and the improved validated explained variance 187 

from the initial PLS2 were used as indicators that the 2 block SO-PLS2 model was better at 188 

describing the variation in block Y.  189 

 Upon determining an improved model with 2 block SO-PLS2 model, the number of 190 

components for the second block was set and held constant, as with the first X block. The 191 

process was repeated by adding a third X-block from the remaining X-blocks, making a 3 192 

block SO-PLS2 model (still the number of components is fixed in the first two). For the data 193 

set below, the third block did not improve predictions and therefore only two blocks were 194 

considered throughout the study. It should be noted that although the present approach is 195 

more conservative than other selection strategies, prediction ability measures should be 196 

validated further with data from harvests of following years.  197 

 Once the final model was identified, the explained variance of Y was computed after 198 

the sequential addition of each X-block to show their progressive contribution to the total 199 

explained variance in Y. Moreover, cross validation-ANOVA (CV-ANOVA) (Indahl & Naes, 200 

1998) was used to test whether incorporating the X-blocks is statistically significant. This 201 

method is based on comparing squared cross-validated residuals for different models using 202 

paired t-tests. More specifically, the cross-validated residuals are calculated for zero, one and 203 

two blocks in the model. One-block residual is compared with zero-block (using only the 204 

mean of Y as an estimate) residual and two-block residual with one-block residual. When 205 

more than two output variables are used, the sum of the cross-validated residuals is used in 206 

the t-test.   207 

 As the last step of the SO-PLS2 procedure, Y was predicted from the optimal model 208 

and subsequently analysed using principal components of prediction (PCP) (Langsrud & Næs, 209 

2003). PCP implies that a PCA is first run for the predicted Y-values before these predicted 210 

Y-values are related to all the X-variables using regression analysis. The X-blocks are then 211 

standardized, put together in one block and then regressed onto the principal components of 212 

predicted Y. Scores and loading plots for both Y and combinations of X-blocks were then 213 

plotted for interpretation of the results. 214 

 The above progressive SO-PLS2 modeling procedure was further performed with 215 

SO-PLS1, where one Y-variable was modelled at a time with the purpose to investigate 216 

which variables in the X-blocks were responsible for high or low intensities of that specific 217 
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Y-variable, in this case a particular sensory attribute. As above with SO-PLS2 this approach 218 

was used to reduce the heavy computational burden as much as possible, as well as reducing 219 

chances of serious overfitting, as described above.  220 

 All analyses were performed using the Python programming language (Python 221 

version 3.5) utilizing the Python packages numpy (Peréz & Granger, 2007), IPython, 222 

(Oliphant, 2007), pandas (McKinney, 2010), and statsmodels (Seabold & Perktold, 2010). 223 

The Python implementation of SO-PLS was coded in-house. 224 

 225 

3.0 RESULTS AND DISCUSSION. 226 

3.1 Data pre-processing checks 227 

 Data were initially checked with descriptive statistics to determine the distribution of 228 

data in all blocks and from it, unusual distributions were not detected. Each data block was 229 

analysed using one-way ANOVA. Data blocks X02, X04, X05, X09, X11, and Y contained non-230 

significant variables and were further reduced to 24, 26, 51, 9, 15, and 16, respectively (see 231 

Table 1 for initial number of variables). The number of variables in the remaining data blocks 232 

were unchanged, as differences across samples within each block were significant for all the 233 

variables (one-way ANOVA, p<0.05). After removal of non-significant variables all data 234 

blocks were analysed using PCA and systematic variation was investigated using scores and 235 

loadings plots (not shown). From this approach outliers were not detected in any of the blocks 236 

analysed. 237 

3.2 Global model of multiple Y-variables using SO-PLS2 238 

 Data was initially analysed with PLS2 (see point IV in the data check and 239 

preparation described above) prior to SO-PLS2 modelling. Individual PLS2 models were 240 

determined for every X-Y block combination and found that two out of twelve individual X-241 

blocks gave low predictive power below 10% validated explained variance (4.1% for X03 and 242 

a collapsed model with negative validated explained variance for X12). The remaining ten X-243 

blocks were therefore used for subsequent SO-PLS2 modelling.  244 

 To determine how the chemical measures from the series of ten X-blocks related to 245 

the Y-block (descriptive sensory analysis), the data was modelled using SO-PLS2. With so 246 

many X-blocks at hand and no intuitive ordering thereof, one could have computed a vast 247 
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number of SO-PLS models, considering that models could be based on: (I) different 248 

combinations of only two X-blocks up to as many as ten X-blocks and (II) different order of 249 

X-blocks. The simplest SO-PLS model would consist of only the Y-block and any two X-250 

blocks in any order, i.e. models with both X01 and X02, X01 and X04, X01 and X05 and so on 251 

(note that block X03 was left out due to low predictive power). This alone results in 
  

      
 252 

   

       
    different SO-PLS models with r = 2 X-blocks out of n = 10 X-blocks to choose 253 

from. Addition of blocks, so r = 3 X-blocks or 4 X-blocks, rapidly increases the number of 254 

models to additional 720 and 5040, respectively. This clearly illustrates that the vast number 255 

of models to be computed would go beyond the practicalities of time and computational 256 

power, as well as in addition an enormous chance of overfitting. Given this situation, the 257 

strategy of progressive modeling approach was used for selection and ordering of the X-258 

blocks to find a more robust SO-PLS model to describe the variation in the Y-block, in an 259 

efficient manner.  260 

 The most optimal 2 block SO-PLS2 model consisted of blocks X06 (CIELab colour 261 

measures using 1 component) followed by orthogonalisation of X02 (amino acids using 2 262 

components) with respect to the one component from X06 (Fig 1.). This resulted in an 263 

RMSECV of 1.103, and calibrated and validated explained variances of 59.1 % and 43.2 %, 264 

respectively. Additional orthogonalisation of a third X block to compute 3 block SO-PLS2 265 

models did not improve the model further based on RMSECV, number of components, and 266 

increased validated explained variance criteria, thus data will only be interpreted up to 2 267 

block SO-PLS2.  268 

 The CV-ANOVA gave p-values equal to 0.06 and 0.17 for the inclusion of X06 and 269 

X02, respectively. This may indicate that although there is a clear improvement in RMSECV 270 

in both cases they are not strictly significant. Not knowing the power of the CV-ANOVA test, 271 

this result only tells us that one should be careful and not over-interpret the findings as 272 

reported below.  273 

 The projection of scores from the most optimal 2 block SO-PLS2 model can be 274 

visualized on the principal components of prediction (PCP) plots (Figure 2). The explained 275 

variance in the PCP plots show that the first and second PCs accounted for 75.2 % and 276 

18.8 % of the variation, respectively, in Y-block that was predicted from the 2 block SO-277 

PLS2 model with X06 and X02 using 1 and 2 components, respectively.  278 
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 The projection of scores showed relatively close groupings of samples by harvest 279 

origin; RVL samples were mostly grouped in the area of both negative PC 1 and 2. 280 

Specifically, the eight RVL samples, the EV samples and BV2 projected negatively along PC 281 

1 had little association with the majority of the Y loadings (Fig 2). The CWA, LC, McL, BV1, 282 

and CV1 samples were projected on positive PC 1, and were characterized by higher values 283 

for many of the sensory attribute loadings, as well as three variables from X06 from colour 284 

measures; hue angle, Chroma, A* (Chroma and A* overlapped with each other), and amino 285 

acids from X02; methionine, isoleucine and γ-aminobutyric acid (GABA) (Fig 2). Although it 286 

seems that the RVL samples were negatively projected on PC 1 of the scores plot with many 287 

of the Y and X loadings, the samples had high values of two variables from the CIELab 288 

measures (L* and b* that denote for lightness and yellowness, respectively). The RVL region 289 

is known for their hot weather and high growing degree days, which can hinder production of 290 

anthocyanin and phenolic compounds. The consequence is an influence on wine colour 291 

(Ojeda, Andary, Kraeva, Carbonneau, & Deloire, 2002), which was also reflected in the 2 292 

block SO-PLS2 model. The amino acids are known to contribute to wine flavour indirectly 293 

by their metabolism by microorganisms and hence the resultant secondary metabolites 294 

(Styger, Prior, & Bauer, 2011a, 2011b). These results show that the SO-PLS method provides 295 

a strategy to select the X blocks used for modeling and some important ways of visualizing 296 

the results.  297 

 3.3 Modeling of single Y-variables using SO-PLS1 298 

 The SO-PLS2 was taken to further detailed models for single Y-variables using SO-299 

PLS1 to determine the chemical data blocks that explain the differences in specific wine 300 

sensory attributes, particularly those that are anecdotally known to be important for wine 301 

quality. The SO-PLS1 procedure in block selection was performed in the same manner as 302 

described above for SO-PLS2 models. Optimal combinations of data blocks and number of 303 

components for each block were first determined for each single Y-variable with PLS1 prior 304 

to SO-PLS1. Comparative model parameters were determined for the number of components, 305 

RMSECV, and explained variances for calibration and validation (Table 2). Overall, all 306 

models were determined with up to four components per data block when modelled with SO-307 

PLS1, the same limit that was set as SO-PLS2 modelling to prevent overfitting of the data. To 308 

place the focus on SO-PLS1 applicability, only the sensory attributes (Y-variables) modelled 309 

with two or more X-blocks are reported. Four Y-variables were modelled with only one X 310 

block (PLS1), which were attributes hue, dark fruit and savoury aromas, and alcohol 311 
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mouthfeel. Orthogonal addition of a second X-block did not improve the SO-PLS1 models 312 

for these three attributes, therefore these models are not reported. As such, a total of 12 Y-313 

variables were modelled using SO-PLS1: these included sensory attributes (number in 314 

brackets) associated with colour (1), aroma (2), taste (1), flavour (4), mouthfeel (3), and 315 

aftertaste (1) (Table 2).   316 

 The Y-variable modelled with the highest validated explained variance was savoury 317 

flavour (F_Savoury, Table 2) (a negative contributor to red wine quality) (Johnson, Hasted, 318 

Ristic, & Bastian, 2013). This attribute was modelled with both bound (X05) and non-targeted 319 

volatile (X04) compound measures, suggesting that the perception of this sensory attribute 320 

was driven by grape-derived volatile compounds. The RMSECV values obtained with SO-321 

PLS1 were consistently lower than the SO-PLS2 model (with the exception of depth of 322 

colour), indicating that SO-PLS1 was more effective in describing the systematic variance in 323 

the single Y-variables. This is because SO-PLS2, must compromise to fit X blocks to a suite 324 

of Y-variables, whereas SO-PLS1 finds the optimal fit of X blocks to only one Y-variable. 325 

There are no official cut-off limits with RMSECV values, meaning that the researcher must 326 

choose what is acceptable based on the context of the data. The general rule, however, is that 327 

lower RMSECV values are more desirable because they denote lower error margins related to 328 

the means of the original input data, leading to better prediction accuracy. This must however 329 

be balanced with the relative increases in explained variances from the addition of more 330 

components and should there be little reduction in RMSECV, it is advisable to use simpler 331 

and robust models with lower components.  332 

The model for savoury flavour was interpreted by plotting separately the two PLS 333 

models from the two steps in SO-PLS1 (Fig 3). Plotting of the first X block showed regional 334 

separation of samples, a useful piece of information to demonstrate the chemical differences 335 

by provenance that impact their sensory perception in wines. In particular, the samples from 336 

LC and CWA were distinguished by higher relative intensities of both savoury flavours and 337 

bound volatile compounds (2,6-dimethoxyphenol, an actinidole, 4-vinylphenol, guaiacol, 338 

methyl vanillate, and benzyl alcohol, Fig 3A). The orthogonalised second X block 339 

comprising non-targeted volatiles captured additional explained variance. In this instance, 340 

McL2, CV2, and CWA2 were projected in the same direction as savoury flavour, along with 341 

β-damascenone (a potent grape-derived volatile that enhances fruity aromas and suppresses 342 

herbaceous ones), (Pineau, Barbe, Van Leeuwen, & Dubourdieu, 2007) benzaldehyde and to 343 

a certain extent, 1-butanol. Meanwhile, RVL3 and RVL6–8, and LC2 had lower levels of 344 
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savoury flavour, along with low concentrations of benzaldehyde and β-damascenone (Fig 3B). 345 

These samples had higher concentrations of (Z)-2-penten-1-ol, 2-methylbutanal, 3-346 

methylbutanal, and benzeneacetaldehyde. The advantages of SO-PLS1, specific Y-variables 347 

can be predicted with multiple X-blocks that are orthogonalised with each other.  348 

The 2 block SO-PLS1 models were extended to 3 block SO-PLS1 modeling. Further 349 

variance could not be captured beyond two X blocks with meaningful improvement in 350 

validated explained variance. This was seen as either improvement being minor in validated 351 

explained variance or requirement of a high number of components, leading to over-fitting. 352 

Therefore, at this point the modeling procedure was ended.  353 

3.4 Prospective of SO-PLS method in metabolomics research and considerations 354 

The SO-PLS2 modeling was able to incorporate two blocks from a total of 12 blocks. 355 

The remaining ten X-blocks did not contain further additional systematic variation that would 356 

lead to higher explained variances, and thus more comprehensive models. It may be that 357 

modeling was limited because of several factors; the large biological transformation in the 358 

sample matrix between grapes (X data) and wine (Y data), the nature of the measurements 359 

(with X data being chemical and Y data being perceptual, elaborated below), and perhaps that 360 

there were unknown relevant metabolites that were not measured. In spite of this, the results 361 

reveal the great potential of the multi-block data analysis approach, in this case by using 362 

diverse grape compositional data sets (determined instrumentally) to predict wine sensory 363 

properties (as perceived by humans), thereby having profound implications for pre-364 

determining wine sensory characteristics (thus quality and style attributes) “in the vineyard”. 365 

The SO-PLS approach could conceivably apply to other research fields, whether food and 366 

beverage or biomedical. The current study has shown that it is possible to use up to two X-367 

blocks in SO-PLS1 models to describe a large part of the variation in single Y variables using 368 

progressive model optimization, a conservative modelling approach that reduces the chances 369 

of over-fitting.   370 

The modeling approach taken with SO-PLS in the current study used a maximum of 371 

four components for one X data block. More components can be used, thereby potentially 372 

increase the validated explained variance in Y while further reducing the RMSECV, but with 373 

a caveat of being wary of over-fitting the model. It is thus important for the data analyst to 374 

choose the appropriate number of components suitable for the data type used in the model. 375 

Unlike spectroscopic data, where the number of components can be high (Næs, Tomic, 376 
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Afseth, Segtnan, & Måge, 2013), the inherent noise associated with sensory measurements 377 

(unavoidable inter-panellist variation) calls for a conservative approach that uses fewer 378 

components in the models. The exact number may depend on the data type, however the 379 

maximum number of components used in this study is most likely suitable to model other 380 

sensory data, depending on the degree of increase in explained variance of the model with 381 

each component.  382 

 Overall, the foremost advantage of SO-PLS is the ability to systematically select X 383 

data blocks for analysis of the RMSECV decrease as a function of component combinations, 384 

particularly when using many X data blocks. This allows for the selection of the model with 385 

the largest increases in explained variances. SO-PLS1 provided substantially increased 386 

explained variances for some of the attributes compared to SO-PLS2, which most likely 387 

stems from the enhanced ability to match the best fitting X data blocks to each single Y-388 

variables rather than to a whole Y data set. In our case, future steps involve applying the SO-389 

PLS1 method to multiple grape data sets to explore their correlations with sensory perception 390 

of wines across multiple vintages, and to determine the consistency in the contribution of 391 

grape measures to the modeling of wine sensory attributes. The SO-PLS method has great 392 

potential for application in any field that requires prediction of Y data from multiple X blocks, 393 

irrespective of research field. 394 

 Several limitations are worth considering from the current study. The first is in 395 

measurements used for modeling and may include collection of the chemical data, although a 396 

good degree of accuracy can be expected from modern analytical instrumentation. It is 397 

mainly the perceptual data, having inherent variation due to the nature of using human 398 

assessors, such that a certain margin of error in the models is unavoidable thus making 399 

predictions extremely challenging. Secondly the choice of the data blocks used in the 400 

modeling requires scrutiny from the data analyst to decide whether the optimal X-blocks in 401 

the models make sense in the context of the research field. For example, the attribute 402 

astringency was best predicted by X06 and X08, which is sensible given that these were data 403 

sets for colour and anthocyanins, respectively. Pigments contributing to red wine colour 404 

(including anthocyanins) are among a range of polyphenolic compounds extracted from red 405 

grapes during winemaking that are known to contribute directly to astringency (Brossaud, 406 

Cheynier, & Noble, 2001). Should unrelated data blocks give optimal models for astringency, 407 

say X04 and X05 (non-targeted and bound volatile compounds, respectively), a direct 408 

relationship would be difficult to explain and likely be correlative than causative. Making 409 
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these judgements for models of attributes that have not previously been related to chemical 410 

predictors on the other hand will be challenging. Lastly, despite the samples being vinified 411 

identically, there will always be unavoidable variations arising from the vinification 412 

procedure. This will inevitably be captured as unexplained variance and reflected in the SO-413 

PLS models.  414 

It must be emphasized that the methodology (and results) presented here can be prone 415 

to overfitting or over-optimism due to a number of reasons, the most important being the 416 

relatively few samples available for building the calibration model as compared to the 417 

number of variables and choices/selections that are made. Another reason could be that there 418 

is a certain tendency of grouping according to wine region and therefore, all sub-models in 419 

the full cross-validation are tested on samples, which are similar to at least one sample in the 420 

training set. The fact that the least predictive Y-variables are eliminated, could also have a 421 

slight impact. All this means that the prediction results reported should be validated by new 422 

data. This also holds for the interpretation. The conclusion of this is that the present study 423 

should be considered a feasibility study with some clear indication of how estimation and 424 

model fitting can be done and what types of results that can be obtained.      425 

 426 

4.0 Conclusions 427 

 In the age of big data and using the power of metabolomics, improved methods for 428 

modeling diverse datasets and complex phenomenon are still required to reveal underlying 429 

relationships that can be overlooked with typical modeling approaches. Thus SO-PLS 430 

methodologies were investigated to link grape compositional measures with wine sensory 431 

traits determined by human sensory assessment. Modeling of the data with SO-PLS2 showed 432 

overall that two X-blocks could be modelled to fit the entire sensory profile of the wines. 433 

Further modeling of single Y-variables using SO-PLS1 resulted in lower cross validation 434 

error and higher explained variances. Conducting SO-PLS1 with X-data blocks 435 

orthogonalised to maintain their data integrity enhanced the modeling of sensory data for 436 

single Y-variables. SO-PLS1 was able to determine components that were optimal for each 437 

X-data block, which together led to models that better represented the data with higher 438 

explained variances than SO-PLS2. The use of SO-PLS provides a strategy for researchers to 439 

tackle the issue of analysing and screening multiple data sets to achieve optimal modeling 440 

with only important data blocks. The present work has demonstrated the value of the SO-PLS 441 
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analysis method in wine analysis and it is expected that this data analysis approach would 442 

greatly assist in the advancement of metabolomics research more generally.  443 
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Table 1. Data blocks assigned for data analysis based on the measurements performed and 

analysis method used for each Cabernet Sauvignon grape sample (n = 25) arising from 

different vineyards and regions (with references and cross-reference to Supporting 

Information for additional details of the methods, where applicable). 

Data 

block*  

Measurement Data 

Dimensions
†
 

Analysis method Method Reference and 

Supplementary 

Experimental Section 

X01 Harvest measures 25 × 6 
Weight, TSS

‡
, pH, 

TA
# 

(Böttcher, Boss, & Davies, 

2012), S-1 

X02 Amino acids 75 × 25 HPLC 

(Boss, Pearce, Zhao, 

Nicholson, Dennis, & Jeffery, 

2015) 

X03 
Targeted volatile 

compounds 
75 × 12 GC-MS S-2 

X04 

Non-targeted 

volatile 

compounds 

75 × 27 GC-MS (Kalua & Boss, 2009) 

X05 
Bound volatile 

compounds 
75 × 62 GC-MS S-3 

X06 Color 75 × 5 CIELab tristimulus S-4 

X07 
Total phenolics 

and tannins 
75 × 3 

UV 

spectrophotometry 

(Iland, Bruner, Edwards, 

Caloghiris, & Willkes, 2013; 

Mercurio, Dambergs, 

Herderich, & Smith, 2007; 

Sarneckis, Dambergs, Jones, 

Mercurio, Herderich, & 

Smith, 2006)  

X08 Anthocyanins 75 × 11 HPLC (Downey & Rochfort, 2008) 

X09 Tannins 75 × 11 HPLC (Hanlin & Downey, 2009) 

X10 Flavonols 75 × 7 HPLC (Downey & Rochfort, 2008) 

X11 Fatty acids 75 × 31 GC-MS S-5 

X12 

Lipoxygenase 

pathway enzyme 

activities  

75 × 3 Spectrophotometric 

(Bonnet & Croljzet, 1977; 

Tesnière & Verriès, 2000; 

Vick, 1991) 

  

Y Sensory profiles 75 × 28 Descriptive analysis 
(Niimi, Boss, Jeffery, & 

Table(s)



Bastian, 2017), S-6 

*X block measurements were made on grapes and the Y block measurement was made on wines. 
† 

X01 consists of 25 samples as the inputs were averaged prior to analysis, whereas the remaining X blocks included triplicates of 25 samples, giving a total of 75. 
‡
TSS is total soluble solids. 

#
Titratable acidity. 

 

 

Table 2. Most optimal 2X block SO-PLS1 models determined for Y-variables (sensory 

attributes pertaining to wine quality). 

Y-Variable
a
 1

st 
X 2

nd 
X Comp

b
 RMSECV Cal (%)

c
 Val (%)

d
 

F_Savory X05 X04 3_2 0.492 95.0 69.1 

C_Depth X07 X10 2_2 1.920 78.8 68.6 

A_Overall X10 X06 2_4 0.433 81.5 66.3 

AT_Phenolic Length X06 X02 1_3 0.551 81.6 64.6 

MF_Tannin quality X06 X09 1_3 0.647 77.5 64.1 

T_Acid X04 X11 3_4 0.475 94.5 63.4 

MF_Astringency X06 X08 1_1 0.938 64.9 56.5 

A_Dried fruit X06 X02 1_3 0.714 74.2 51.1 

F_Pepper X01 X02 2_2 0.562 76.3 50.1 

F_Dried fruit X10 X06 2_3 0.707 69.1 50.1 

F_Dark fruit X06 X11 1_1 0.948 58.6 44.2 

MF_Body X07 X02 2_2 0.661 65.9 42.8 
a
C_ - color, A_ - aroma, T_ - taste, F_ - flavor, MF_ - mouthfeel, AT_ - aftertaste.

 

b
Component values in SO-PLS1 (e.g. 3_4) denotes for number of components in first and second block, respectively 

c
Cal – calibrated explained variance 

d
Val – validated explained variance 

 

 



 

Fig 1. Måge plot showing reduction in RMSECV as a function of total number of model 

components for 2 block SO-PLS2 with X06 and X02. The numbers above points with 

underscores denote for the number of components for each data set, i.e., components for 1
st
 

and 2
nd

 data blocks. In this particular case, using one component for X06 and two components 

for X02 (hence _1_2) led to the lowest RMSECV. 

 

 

Fig 2. The PCP scores plot (left) and the X and Y correlation loadings plot (right) on the first 

two principal components, obtained from 2 block SO-PLS2 modeling of Y-block with X06 

(CIELab) followed by X02 (amino acids) chemical data blocks. Variables in blue on the 

correlation loadings plot denote for Y loadings (sensory attributes) and those in green and red 

denote for X loadings belonging to X06 and X02 blocks, respectively. Numbers corresponding 

to each X and Y loadings are provided in supplementary information (Table S-4). The outer 

and inner ellipse on the correlations loadings plot indicate 100 % and 50 % of explained 

variance, respectively. Sample symbols denote for the following: BV-Barossa Valley, CV-

Clare Valley, CWA-Coonawarra, EV-Eden Valley, LC-Langhorne Creek, McL-McLaren 

Vale, RVL-Riverland, and WBY-Wrattonbully. 
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Fig 3. PLS scores and loadings plots for savory flavor attribute using 2 block SO-PLS1, 

showing (A) scores (top) and loadings (bottom) plots model with the first block X05 (left 

plots) (bound volatiles, S-7), and the second block X04 (non-targeted volatiles, Table S-5) 

after orthogonalization with respect to the 3 components from X05 (right plots). The outer and 

inner ellipse on the correlations loadings plot indicate 100% and 50% of explained variance, 

respectively. Sample symbols denote for the following: BV-Barossa Valley, CV-Clare Valley, 

CWA-Coonawarra, EV-Eden Valley, LC-Langhorne Creek, McL-McLaren Vale, RVL-

Riverland, and WBY-Wrattonbully. 
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