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Abstract
The apo-form of the 24.4 kDa AA9 family lytic polysaccharide monooxygenase TaLPMO9A from Thermoascus aurantiacus 
has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N 
chemical shift assignments, as well as an analysis of the secondary structure of the protein based on the secondary chemical 
shifts.
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Biological context

Lytic polysaccharide monooxygenases (LPMOs) are cop-
per-dependent enzymes that cleave polysaccharides (Vaaje-
Kolstad et al. 2010, 2017; Quinlan et al. 2011; Meier et al. 
2018). LPMOs are classified in the Auxiliary Activity fami-
lies AA9, AA10, AA11, AA13, AA14 and AA15 (Levasseur 
et al. 2013; Hemsworth et al. 2014; Vu et al. 2014b; Coutu-
rier et al. 2018; Sabbadin et al. 2018) in the Carbohydrate-
Active enzyme (CAZy; http://www.cazy.org) database. The 
discovery of LPMOs in 2010 (Vaaje-Kolstad et al. 2010) has 
led to extensive research related to their structure, function 
and diversity (Vaaje-Kolstad et al. 2017; Meier et al. 2018). 
Because LPMO action increases the susceptibility of recal-
citrant substrates such as cellulose and chitin to the action of 
classical glycoside hydrolases (GHs), LPMOs have become 

an important ingredient in commercial enzyme cocktails for 
industrial biomass conversion (Hu et al. 2014; Müller et al. 
2015). To create additional insight into LPMO structure 
and dynamics, and to study substrate binding, several NMR 
investigations have been conducted (Aachmann et al. 2011, 
2012; Courtade et al. 2015, 2016a, b, 2017).

To date, most of the approximately 50 LPMOs that have 
been characterized are fungal LPMOs belonging to the AA9 
family. Fungal LPMOs act on various polysaccharides, 
including cellulose (Forsberg et al. 2011; Quinlan et al. 
2011) xyloglucan and other (1,4)-linked β-glucans (Agger 
et al. 2014; Bennati-Granier et al. 2015), starch (Vu et al. 
2014b; Lo Leggio et al. 2015) and xylan (Frommhagen 
et al. 2015; Couturier et al. 2018). The regioselectivity of 
cellulose-active LPMOs varies: they hydroxylate the C1 
and/or the C4 in the susceptible glycosidic bond (Quinlan 
et al. 2011; Isaksen et al. 2014; Vu et al. 2014a). Structural 
characterization of the active site of LPMOs has shown that 
the copper ion in the active site is coordinated by a highly 
conserved “histidine brace” formed by three nitrogen ligands 
provided by the N-terminal amino group and the side-chains 
of the N-terminal histidine (Nδ1; His1) and a more distal 
histidine (Nε2) (Quinlan et al. 2011).

In early work on LPMOs, an AA9 from Thermoascus 
aurantiacus (TaLPMO9A, previously known as TaGH61A) 
received much attention, and functional data indicate that 
its inclusion in cellulolytic enzyme cocktails is highly ben-
eficial for overall processing efficiency (Müller et al. 2015; 
Chylenski et al. 2017). Thus, this enzyme is an interesting 
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candidate for future investigations. The X-ray diffraction 
structure (PDB ID: 3ZUD) of TaLPMO9A has been pub-
lished (Quinlan et  al. 2011). The structure displays the 
typical fibronectin type III LPMO fold composed of two 
β-sheets (one 3-stranded and one 4-stranded) from which 
several loops protrude. The NMR assignment data presented 
here will allow future structural and functional studies on the 
apo-form of TaLPMO9A, including studies on enzyme-sub-
strate interactions that are not feasible through X-ray crys-
tallography (Aachmann et al. 2012; Courtade et al. 2016b).

Methods and experiments

The NMR assignment was performed on the apo-form of 
the recombinantly expressed TaLPMO9A. TaLPMO9A 
was cloned in Pichia pastoris as described before (Chylen-
ski et al. 2017), and production of the isotopically labeled 
TaLPMO9A was done following previously published pro-
tocol (Pickford and O’Leary 2004). In summary, P. pastoris 
harboring the Ta-LPMO9A gene inserted into the pPink-
GAP vector (Várnai et al. 2014) was grown in 50 mL of 
13C, 15N-labeled buffered minimal glucose medium (13C, 
15N-BMD), composed of 0.34% (w/v) yeast nitrogen base 
without amino acids or ammonium sulfate (Becton, Dick-
inson & Company, MD, USA), 0.5% (w/v) 13C-labeled glu-
cose (Synthose Inc, Ontario, Canada), 1% (w/v) 15N-labeled 
ammonium sulfate (Sigma-Aldrich, MO, USA), 4 × 10−5 % 
(w/v) biotin (Sigma-Aldrich, MO, USA) in 100 mM potas-
sium phosphate buffer pH 6.0, in a 250-mL shake flask at 
29 °C and 200 rpm for 24 h. Subsequently, the culture was 
used to inoculate 450 mL 13C, 15N-BMD medium in 2 L 
shake flasks followed by incubation at 29 °C and 200 rpm for 
48 h. After the first 24 h, the medium was re-supplemented 
with 1% (w/v) 13C-labeled glucose. The culture was centri-
fuged at 7000×g for 15 min at 4 °C to remove the cells. The 
supernatant was dialyzed against 50 mM Bis-Tris buffer, 
pH 6.5, and concentrated to 100 mL using a VivaFlow 50 
tangential crossflow concentrator (MWCO 10 kDa, Sarto-
rius Stedim Biotech GmbH, Goettingen, Germany). Ammo-
nium sulfate was added to the concentrated supernatant 
to a final concentration of 1.42 M prior to loading onto a 
5-mL HiTrap Phenyl FF column (GE Healthcare, Uppsala, 
Sweden), equilibrated with 50 mM Bis-Tris buffer (pH 6.5) 
containing 1.42 M ammonium sulfate, using a flow rate of 
1 mL min−1. Proteins were eluted using a 25 mL linear gra-
dient from 1.42 to 0 M ammonium sulfate in 50 mM Bis-Tris 
buffer (pH 6.5). Fractions containing the pure protein were 
identified using SDS-PAGE and subsequently pooled, con-
centrated and buffer exchanged to 50 mM Bis-Tris buffer, pH 
6.5, using Amicon Ultra centrifugal filters (MWCO 3 kDa, 
Merck Millipore, NJ, USA). The apo-form of TaLPMO9A 
was obtained by incubating the protein sample with 10 mM 

Na-EDTA for 45 min at room temperature, followed by 
buffer exchange to 25 mM ammonium acetate buffer, pH 
6.5, using Amicon Ultra centrifugal filters (MWCO 3 kDa, 
Merck Millipore, NJ, USA).

The NMR spectra were recorded at 25 °C on a Bruker 
Ascend 800 MHz spectrometer Avance III HD equipped 
with a 5 mm Z-gradient CP-TCI (H/C/N) cryoprobe at the 
NV-NMR-Center/Norwegian NMR Platform in Trondheim, 
Norway. 1H shifts were referenced internally to the water 
signal, while 13C and 15N chemical shifts were referenced 
indirectly to water, based on the absolute frequency ratios 
(Zhang et al. 2003). Sequence-specific backbone and side-
chain assignments of TaLPMO9A were accomplished using 
15N-HSQC, 13C-aliphatic HSQC, 13C-aromatic HSQC, 
HNCO, HN(CA)CO, HNCA, CBCA(CO)NH, HBHA(CO)
NH, HC(C)H-TOCSY, 15N-edited NOESY–HSQC, and 
13C-edited aliphatic and aromatic NOESY–HSQC spectra. 
The NMR data was recorded and processed with Bruker 
TopSpin version 3.5 and spectral analysis was performed 
using CARA version 1.5.5 (Keller 2004). Secondary struc-
ture elements were analyzed using the web-based version of 
the TALOS-N software (http://spin.niddk​.nih.gov/bax/softw​
are/TALOS​-N/) (Shen and Bax 2013) using the 13C and 15N 
chemical shifts. Secondary structure propensity was also 
analyzed using secondary structure propensities (SSP from 
chemical shifts) (Marsh et al. 2006).

Assignment and data deposition

We report here the assignment of the backbone and side-
chain resonances of TaLPMO9A (HN, N, Cα, C′ > 95%; 
aliphatic side-chains > 79%). The 15N-HSQC spectrum, 
together with the assignment of the resonances is shown 
in Fig. 1. Because of fast exchange, the N-terminal amino 
group of His1 could not be found, whereas other nuclei of 
this residue (Cε1/Hε1) were assigned. His1 in apo-LPMOs 
has been shown to have higher conformational flexibility 
than in metal-loaded LPMOs (Aachmann et al. 2012), and, 
as a consequence of this, its side-chain signals are observed 
as narrow, intense peaks. Additional evidence supporting 
the assignment of His1 was thus obtained by analysis of 
the aromatic region of the 13C-HSQC spectrum. Indeed, the 
most intense peak matched the assignment (obtained primar-
ily using the 13C-edited NOESY spectrum) of the side-chain 
(Cε1/Hε1) of His1. Furthermore, addition of 0.6 mM Cu(II)
SO4 caused the signals assigned to His1 and His86 to van-
ish, due to the paramagnetic relaxation enhancement brought 
about by the presence of paramagnetic Cu2+ less than 10 Å 
away from the coordinating histidines (Bertini and Pierattelli 
2004). Exchangeable side-chain protons were not assigned, 
nor were the amide side-chain protons of Asn and Gln. For 
the aromatic side-chains, assignment of the side-chain Cε1/
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Hε1 histidine pairs was prioritized and successful, whereas 
other aromatic side-chains were not assigned. The chemical 
shift data has been deposited in the Biological Magnetic 
Resonance Data Bank (BMRB) under the accession code 
27,411.

Analysis of the secondary structure elements of TaLP-
MO9A indicated the presence of 8–9 β-strands (Fig. 2) and 
three helical stretches. The length and position of most the 
secondary structure elements are in good agreement with 
those observed in the X-ray crystal diffraction structure of 

Fig. 11   H, 15N HSQC spectrum of 13C, 15N-labeled apo-TaLPMO9A (0.2 mM) from T. auranticus in (90:10) H2O:D2O in 25 mM ammonium 
acetate buffer, pH 6.5, at 298 K. Residue types and numbers are indicated

Fig. 2   Secondary structure 
propensity of TaLPMO9A 
analyzed by TALOS-N (grey) 
and ΔδCα − ΔδCβ secondary 
chemical shifts (SSP approach; 
teal) together with the second-
ary structure elements from 
the X-ray crystal diffraction 
structure of TaLPMO9A (PDB 
ID: 3ZUD; black). Positive val-
ues indicate helical propensity 
and negative values indicate 
β-strand propensity
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TaLPMO9A (PDB ID: 3ZUD) (Quinlan et al. 2011). A few 
helical structures (res 21–25, 45–57 and 100–108), which 
are present in the crystal structure, were not identified by 
TALOS-N, whereas the SSP approach showed a slight heli-
cal propensity for those regions. The extended stretch of 
residues 215–228, was identified as such by both TALOS-N 
and SSP (Fig. 2) in good agreement with the X-ray crys-
tal diffraction structure of TaLPMO9A. Interestingly, this 
stretch is not assigned as a β-strands element even though it 
would appear to be antiparallel to the β-strand comprising 
residues 110–121.
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