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Abstract. We study generalized nonlinear functional differential equations arising in
various applications, for instance in the control theory, or if there is a need to incorpo-
rate impulsive and/or delay effects into the underlying system. The main result of the
paper provides a general existence and uniqueness theorem for such equations, and we
also give many illustrative examples. The proofs are based on the theory of generalized
Volterra operators in the spaces of continuous and discontinuous functions.
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1 Introduction

We introduce a broad class of functional differential equations driven by a general measure
(in the paper we call these equations generalized for brevity). The class includes ordinary,
delay, impulsive, difference equations and their combinations as well as important types of
equations with distributed control and equations with discontinuous noise (e.g. of Poisson
type). We illustrate the general theory with several examples. However, we do not intend to
present an exhaustive theory of the equations included in the examples treating them rather
as auxiliary to the main framework. That is why the list of references related to the particular
classes of equations considered below [1–3, 10, 12, 13] is by far not complete. We cite therefore
only very few papers and refer the reader to the references in these and other papers for more
information.

The analysis framework is organized in a way that has become customary in the contem-
porary theory of functional differential equations (see e.g. [4] and the references therein). An
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essential feature of this construction is to consider the initial (prehistory) function as a part
of the equation itself, which in particular, gives an opportunity to include equations with
unbounded delays and avoid “nasty” functional spaces.

To be able to establish the well-posedness of the initial value problem, we formulate and
prove a fixed point theorem for generalized Volterra operators in Lp- spaces with respect to
an arbitrary measure, thus extending similar results proved in the series of papers [5, 15, 16].
The fixed point theorem of the present paper can also be used in many other applications.

We start with a brief description of the functional spaces which we need to define a gen-
eralized functional differential equation.

Let µ̃ be a σ-additive, finite measure defined on the family B of all Borel subsets of the in-
terval [0, T], and let µ be its standard extension, i.e. a σ-additive, finite and complete measure
which is defined on the minimal σ-algebra L containing B and all subsets of measure zero
and which satisfies µ(E) = µ̃(E) for any E ∈ B. Any set from L will alternatively be called
µ-measurable.

As usual, we say that a function y : [0, T] → R is µ-measurable if it satisfies the following
condition: for any Borel subset B ⊂ R the set y−1(B) ∈ L. The restriction of µ to the familiy of
all µ-measurable subsets of an arbitrary set S ⊂ [0, T], S ∈ L, will again be denoted by µ. The
Lebesgue integral of a µ-measurable function y defined on S will be denoted by

∫
S y(s) µ(ds).

If µ = mes is the Lebesgue measure, then we will write
∫

S y(s) ds. The measure µ⊗ ν stands
below for the product of two measures µ and ν. The indicator (the characteristic function) 1S
of a set S is given by

1S(t) ≡
{

1 if t ∈ S,

0 if t /∈ S.

The space Lp(S, Rn, µ), 1 ≤ p < ∞ consists of all functions y : S → Rn (more exactly, of
equivalence classes), which are p-integrable with respect to (w.r.t.) the measure µ; the standard
norm in this space is given by ‖y‖Lp =

(∫
S |y(s)|

p µ(ds)
)1/p. The space L∞(S, Rn, µ) contains

all µ-bounded (i.e. bounded up to a set of measure zero), µ-measurable functions y : S→ Rn,
the norm being defined ‖y‖L∞ = ess supt∈ S |y(t)|. In the case S = [0, T] we will use the shorter
notation Lp ≡ Lp([0, T], Rn, µ) for any 1 ≤ p ≤ ∞.

Let us now define the space Wp
1 ≡ Wp

1 ([−0, T] , Rn, µ), 1 ≤ p ≤ ∞. It contains all µ-
measurable functions y : [0, T] → Rn which are absolutely continuous w.r.t. the measure µ

and whose “derivative”, w.r.t. µ belongs to Lp :

x ∈Wp
1 ⇐⇒ ∃ y ∈ Lp ∃ α ∈ Rn so that ∀ t ∈ [0, T] x(t) = α +

∫
[0,t]

y(s)µ(ds). (1.1)

For notational convenience, we will assume that the functions from Wp
1 have an auxiliary

value at −0, which we will treat as the left-hand limit at 0. That is why we introduced the
“interval” [−0, T] in the notation of Wp

1 . From (1.1) we conclude that the functions x ∈ Wp
1

are cadlag, (see e.g. [7]) i.e. they are right-continuous and have left-hand limits at any point
t ∈ [0, T] including t = 0. The definition (1.1) also implies that the value of the jump of a
function x ∈Wp

1 is equal to

x(t)− x(t− 0) = y(t)µ{t} (1.2)

for any t ∈ [0, T]. In particular, x ∈ Wp
1 is continuous at t ∈ [0, T] if µ({t}) = 0 and for

continuity of x at a point t of positive measure we have to require that y(t) = 0.
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The definition (1.1) determines a one-to-one mapping x 7→ (α, y) between the spaces Wp
1

and Rn × Lp, and in our notation we may also write α = x(−0). The mapping x 7→ y from
(1.1) produces “differentiation” operator δµ which can be used to indroduce a norm in Wp

1 :

‖x‖Wp
1
= |x(−0)|Rn + ‖δµx‖Lp .

With this definition, the spaces Wp
1 and Rn× Lp become isometric. In the particular case of the

Lebesgue measure µ = mes, we obtain the usual differentiation of an absolutely continuous
function x: δmesx = ẋ. In this case we also may write x(−0) = x(0) arriving at the standard
space Wp

1 ([0, T] , Rn, mes) of absolutely continuous functions [4].
The main target of the paper is the following generalized nonlinear differential equation:

dx(t) = (Fx)(t) µ(dt), t ∈ [0, T], (1.3)

where F : Wp
1 → Lp is a given (nonlinear) operator and x ∈ Wp

1 is an unknown function
(solution) that should satisfy the initial condition

x(−0) = α. (1.4)

The central result of the paper describes the conditions providing existence and uniqueness
of solutions of the initial value problem (1.3)–(1.4).

Using the introduced notation of the “derivative” of a function w.r.t. the measure µ we can
rewrite the equation (1.3) as

(δµx)(t) = (Fx)(t), t ∈ [0, T]. (1.5)

Applying the isomorphism between the spaces Wp
1 and Rn × Lp described in (1.1) yields the

following integral equation in the space Wp
1 :

x(t)− x(−0) =
∫
[0,t]

(Fx)(s) µ(ds), t ∈ [0, T]. (1.6)

Equivalently, we can rewrite (1.5) in the form of an integral equation w.r.t. y = δµx in the space
Lp:

y(t) =
(

F
(

x(−0) +
∫
[0,·]

y(s) µ(ds)
))

(t), t ∈ [0, T]. (1.7)

Both representations of the main equation (1.5) will be used below.
Normally, the continuity assumption is required in existence and uniqueness theorems:

(1.1) The operator F : Wp
1 → Lp is continuous.

However, we will in many cases only assume that the operator F has the following Volterra-
type property adjusted to arbitrary measures: for any t ∈ [0, T] such that µ([0, t]) > 0, the
equality x(s) = x̂(s), s ∈ [−0, t) implies the equality (Fx)(s) = (Fx̂)(s) s ∈ [0, t]. In particular,
if µ({0}) > 0, then the Volterra operator F produces the same value (Fx)(0) for any x ∈
Wp

1 ([−0, T] , Rn, µ) with the same auxiliary value (1.4).

Remark 1.1. At the points, where µ({t}) = 0, we can assume, without loss of generality, that
in the definition of the Volterra property the intervals are equal, i.e. both are either [0, t] or
[0, t). However, in the case µ({t}) > 0, it is essential that the intervals differ, i.e. that the image
of a function completely depends on the values of the function at strictly preceding times.
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A method of studying existence and uniqueness we propose in this paper goes back to
the theory of generalized Volterra operators originally suggested by the second author, see
e.g. [15]). We will apply this theory either to equation (1.6) or to equation (1.7). We stress
that these results do not require continuity of the operator F. We also remark that some
examples described in Section 2 are non-Volterra. These examples are only meant to illustrate
the general algorithm of how to represent various equations with deviated argument in the
standard form (1.3) (or (1.5)). This algorithm is an essential part of the theory of functional
differential equations known as Azbelev’s theory, see e.g. [4] and the references therein.

We also note that the existence and uniqueness in the case when F in (1.3) is an affine
operator (more precisely, (Fx)(t) =

∫
[0,t) Q(t, s)dx(s) + f (t)) was studied in [10].

To be able to proceed with further analysis, we need some auxiliary results about the
introduced functional spaces and mappings in these spaces.

First of all, we will often use the following “integration by parts formula”:∫
[t1,t2)

u(s− 0) dv(s) = u(t2 − 0)v(t2 − 0)− u(t1 − 0)v(t1 − 0)−
∫
[t1,t2)

v(s + 0) du(s), (1.8)

which holds for arbitrary functions u, v : [0, T] → Rn of bounded variation and any points
0 ≤ t1 < t2 ≤ T.

Without loss of generality, we may assume that all functions of finite variation (in partic-
ular, functions belonging to Wp

1 ) are cadlag. Therefore, we can always replace v(s + 0) with
v(s) in formula (1.8).

The following result is well-known (see e.g. [6]).

Proposition 1.2. Let S be a µ-measurable subset of the interval [0, T]. The linear integral operator
(Qy)(t) ≡

∫
SQ(t, s) y(s) µ(ds) is bounded as an operator from Lp(S, Rn, µ) to Lq(S, Rn, µ) (1 ≤

p, q < ∞) if the kernel Q : S× S→ Rn×n is a µ
⊗

µ-measurable and satisfies the following condition:

(1.2) For µ-almost all t ∈ S it is required that Q(t, ·) ∈ Lp′(S, Rn×n, µ), where

p′ =

{
p/(p− 1) if p > 1,

∞ if p = 1,

and the function ϑ, given as ϑ(t) ≡ ‖Q(t, ·)‖Lp′ , belongs to the space Lq(S, R, µ).

Note that condition (1.2) is fulfilled if for almost all (t, s) ∈ S× S the kernel Q satisfies the
inequality |Q(t, s)|Rn×n ≤ ϕ(t) for some ϕ ∈ Lq(S, R, µ).

Proposition 1.3. The superposition operator (Nu)(t) ≡ f (t, u(t)) is continuous as an operator from
Lq(S, Rl , µ) to Lp(S, Rn, µ) (1 ≤ p, q < ∞) if f : S×Rl → Rn is a Carathéodory function satisfying
| f (t, x)| pRn ≤ a(t) + b|x| qRl for almost all t ∈ S and all u ∈ Rl , where b ≥ 0 and a ∈ Lp(S, R, µ).

2 Some examples of the equation (1.3)

In this section we review the notions of a difference equation and its solutions as finite collec-
tions of vectors and describe the concept of a functional differential equation and its absolutely
continuous solutions, which was suggested and developed by the participants of the Perm
Seminar in Russia led by Prof. N. V. Azbelev [4]. Let us also remark that a constantly growing
interest to hybrid systems has initiated analysis of objects combining functional differential
and difference equations [11].
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2.1 Functional differential equations

The example below is a functional differential equation (see e.g. [4])

ẋ(t) = (F̃x)(t), t ∈ [0, T], (2.1)

where F̃ : Wp
1 ([0, T], Rn, mes) → Lp([0, T], Rn, mes) is a (nonlinear) operator, mes is the

Lebesgue measure, 1 ≤ p < ∞. In the results presented in the monograph [4] equation
(2.1) is assumed to satisfy the following condition.

(2.1) The operator F̃ : Wp
1 ([0, T], Rn, mes)→ Lp([0, T], Rn, mes) is continuous.

In Section 3 we describe more specific examples of equation (2.1). All of them include the
Volterra property on F̃, which is not necessarily fulfilled in (2.1).

2.2 Nonlinear difference equations

By this we mean the following system of equations:

∆xi ≡ xi − xi−1 = fi(x−1, x0, x1, . . . , xm), i = 0, 1, . . . , m, (2.2)

where x0, . . . , xm ∈ Rn are unknown vectors and x−1 = α is the initial condition. It is assumed
that the functions fi : R(m+2)n → Rn are continuous.

In this case, the measure µ of a set S ⊂ [0, m] is equal to the number of integers contained
in S. Now we put

x(−0) = x−1; x(t) = xi−1 for t ∈ [i− 1, i), i = 1, . . . , m; x(m) = xm.

Then “the derivative” of x at t = 0, 1, . . . , m is given as

(δµx)(i) = xi − xi−1 = ∆xi ;

while its values (δµx)(t) where t ∈ (i− 1, i), i = 1, . . . , m may be defined arbitrarily or may
remain undefined, as µ((i− 1, i)) = 0. Indeed, for any t ∈ [i− 1, i) we have

x(t) = x(−0) +
i−1

∑
j=0

∆xi = x(−0) +
∫
[0,t]

(δµx)(s) µ(ds),

and similarly for t = m:

x(m) = x(−0) +
m

∑
j=0

∆xi = x(−0) +
∫
[0,m]

(δµx)(s) µ(ds).

Let also (Fx)(i) ≡ fi(x−1, x0, x1, . . . , xm), i = 0, 1, . . . , m, again defining the values (Fx)(t)
on the set (i− 1, i) arbitrarily. By this definition, the operator F acts from Wp

1 ([−0, m], Rn, µ)

to Lp([0, m], Rn, µ) for any 1 ≤ p ≤ ∞, and equation (2.2) becomes the functional differential
equation (1.5).

Note that for the measure just defined we have Lp([0, m], Rn, µ) ' R(m+1)n (m + 1 jumps at
the points t = 0, 1, . . . , m) and Wp

1 ([−0, m], Rn, µ) ' R(m+2)n (m constants on the sets [i− 1, i),
i = 1, . . . , m, plus the values at end points x(−0) = x−1, x(m) = xm).
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3 Examples with Volterra operators

In this section we assume that the operator F in (1.3) is Volterra.

3.1 Linear nonhomogeneous equation with the unknown function in the
differential

This equation, which was studied in [10], is given by

dx(t) =
(∫

[0,t)
Q(t, s)dx(s) + B(t)x(−0) + g(t)

)
µ(dt), t ∈ [0, T], (3.1)

or, equivalently, by

(δµx)(t) =
∫
[0,t)
Q(t, s)(δµx)(s)µ(ds) + B(t)x(−0) + g(t), t ∈ [0, T]. (3.2)

The assumptions we put on the equation (1.3) are as follows.

(3.1a) g : [0, T]→ Rn is a µ-measurable function belonging to the space Lp([0, T], Rn, µ);

(3.1b) Q(t, s) is a n× n-matrix with the entries that are µ⊗ µ−measurable functions defined
for t ∈ [0, T], s ∈ [0, t). In some cases we find it convenient to extend the function
Q(t, s) to the set [0, T]× [0, T] assuming that Q(t, s) = 0 for the corresponding (t, s).

(3.1c) For µ-almost all t ∈ [0, T] the function Q(t, ·) belongs to the space Lp′(S(t), Rn×n, µ),
where S(t) = [0, t) ,

p′ =

{
p/(p− 1) if p > 1,

∞ if p = 1,

and the function ϑ, defined by ϑ(t) ≡ ‖Q(t, ·)‖Lp′ (S(t),Rn×n,µ), belongs to the space
Lq([0, T], R, µ).

(3.1d) The function B : [0, T]→ Rn×n is µ-measurable and belongs to Lp([0, T], Rn×n, µ).

In [10] it is shown that under the assumptions (3.1a)–(3.1d) equation (3.1) with the initial
condition (1.4) has a unique solution x ∈ Wp

1 ([−0, T] , Rn, µ) for any α ∈ Rn. The proof
suggested in [10] is based on the standard iteration procedure.

Specific examples of the equation (3.1) can be found in [10]. Below we generalize these
examples to the nonlinear case.

3.2 Nonlinear differential equations with delay

In this subsection we demonstrate how delay equations can be written in the standard form
(2.1). Note that we consider only the case of distributed delays. Some more involved examples
can be found in [4].

Let

ẋ(t) = f
(

t,
∫
(−∞,t)

dsR(t, s)x(s)
)

, t ∈ [0, T]. (3.3)

It is assumed that this equation is supplied with the “prehistory” condition:

x(s) = ψ(s), s < 0. (3.4)
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Following [4] we will now include this condition into the equation (3.3) in such a way that the
initial condition (1.4) remains unchanged.

We separate conditions for s < 0 and s = 0, in particular, for the following reason: since
ψ is often assumed to belong to a space consisting of measurable functions, the functional
ψ(·) 7−→ ψ(0) may have no sense. On the other hand, if ψ is continuous and the solutions
of (3.3) are supposed to be continuous for all t ∈ (−∞, T], as well, then we can assume that
ψ(0) = α. Let us however stress that even in this continuous case separating the conditions
for s < 0 and s = 0 may be technically useful (see e.g. [4]).

We now list the assumptions on R(t, s) and f (t, u), which we need to be able to rewrite
(3.3) in the form (2.1). Let us choose two real numbers p, q ∈ [1, ∞) and a natural number m.

(3.2a) The entries of mn × n-matrix function R(·, ·) are Lebesgue measurable on [0, T] ×
(−∞, T].

(3.2b) For any t ∈ [0, T] the function R(t, ·) is of bounded variation.

(3.2c) Vars∈[0,T]R(·, s) ∈ Lq([0, T], R, mes).

(3.2d)
∫
(−∞,0) dsR(·, s)ψ(s) ∈ Lq([0, T], R, mes).

(3.2e) The function f : [0, T]×Rmn → Rn is Carathéodory (i.e. f (·, u) is Lebesgue measurable
for each u ∈ Rmn and f (t, ·) is continuous for mes-almost all t ∈ [0, T]) and for some
a ∈ L1([0, T], R, mes) and b ≥ 0 satisfies | f (t, u)| pRn ≤ a(t) + b|u| qRmn (t ∈ [0, T] and
u ∈ Rmn).

For instance, the equation

ẋ(t) = f
(
t, x(h1(t)), . . . , x(hm(t))

)
, t ∈ [0, T]; x(s) = ψ(s), s < 0, (3.5)

with the delay condition h(t) ≤ t, t ∈ [0, T], can be rewritten in the form (3.3) if we put

R(t, s) =
(

1(−∞,h1(t)](s) · I, . . . , 1(−∞,hm(t)](s) · I
)T

, I =


1 0 . . . 0
0 1 . . . 0
. . . . . .
0 0 . . . 1


n×n

.

Evidently, R(·, ·) satisfies the assumptions (3.2a)–(3.2d) for any q ≥ 1 if hi(·) is Lebesgue
measurable.

To represent the system (3.3)–(3.4) in the form (1.3) we put

Q(t, s) = −R(t, s) + 1[0,t)(s) · R(t, t− 0), t ∈ [0, T] , s ∈ (−∞, T]

f̃ (t, u) = f
(

t, u +
∫
(−∞,0)

dsR(t, s)ψ(s)
)

, t ∈ [0, T] .

Then Q(t, t− 0) = 0, Q(t,−0) = −R(t,−0), and using the integration by parts formula (1.8)
we obtain∫

[0,t)
Q(t, s)dx(s) =

∫
[0,t)
Q(t, s + 0)dx(s)

= Q(t, t− 0)x(t− 0)−Q(t,−0)x(−0)−
∫
[0,t)

dsQ(t, s)x(s− 0)

= R(t,−0)x(0)−
∫
[0,t)

dsQ(t, s)x(s− 0)

= R(t,−0)x(0) +
∫
[0,t)

dsR(t, s)x(s), t ∈ [0, T] .
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Minding ∫
[0,t)
Q(t, s)dx(s) =

∫
[0,t)
Q(t, s)ẋ(s)ds, t ∈ (0, T],

we see that (3.3)–(3.4) become
ẋ = (N ◦Q) x,

where (Q x)(t) ≡ −R(t,−0) x(0) +
∫
[0,t)Q(t, s) ẋ(s)ds and (Nu)(t) ≡ f̃ (t, u(t)), t ∈ (0, T].

Propositions 1.2–1.3 and the assumptions (3.2a)–(3.2e) ensure that the operator F̃ ≡ N ◦Q
continuously acts from Wp

1 ([0, T], Rn, mes) to Lp([0, T], Rn, mes). This operator is Volterra.

3.3 Linear difference equations with delay

We describe a particular case of the difference equation (2.2) which can also be represented in
the form (3.1) or (3.2).

Let

∆x0 = g0, ∆xi =
i−1

∑
j=0

Aijxj + gi, i = 1, . . . , m, (3.6)

where we assume that Aij are n × n−matrices and g0, gi are n−vectors, i = 1, . . . , m, j =

0, . . . , m− 1. Using the equality xj = x−1 + ∑
j
p=0 ∆xp we rewrite equation (3.6) as follows:

i−1

∑
j=0

Aijxj =
i−1

∑
j=0

Aijx−1 +
i−1

∑
j=0

Aij

j

∑
p=0

∆xp =
i−1

∑
j=0

Aijx−1 +
i−1

∑
j=0

i−1

∑
p=j

Aip∆xj.

Then we define Qij = ∑i−1
p=j Aip, and represent equation (3.6) as

∆x0 = g0, ∆xi =
i−1

∑
j=0
Qij∆xj +Qi 0x−1 + gi, i = 1, . . . , m.

As in Subsection 2.2, the measure µ of a set S ⊂ [0, m] is now equal to the number of
integers contained in S. The µ⊗ µ-measurable function is defined as Q : [0, m]× [0, m]→ Rn,
Q(i, j) = Qij for integers, while the values of Q(t, s) at the points (t, s), where at least one
component is not an integer, are not needed. Then we define the µ-measurable function
g : [0, m]→ Rn by setting g(i) = gi and observing that for t ∈ (i− 1, i), i = 1, . . . , m the values
g(t) may be disregarded. Finally, we choose an arbitrary 1 ≤ p ≤ ∞ and define the function
x ∈Wp

1 ([−0, m], Rn, µ) to equal

x(−0) = x−1; x(t) = xi−1 for all t ∈ [i− 1, i), i = 1, . . . , m; x(m) = xm.

“The derivative” (δµx)(i) = xi − xi−1 = ∆xi, of this function can be defined arbitrarily (or
remain undefined) for any t ∈ (i− 1, i), i = 1, . . . , m.

Thus, equation (3.6) becomes

(δµx)(t) =
∫
[0,t)
Q(t, s)(δµx)(s)µ(dt) +Q(t, 0)x(−0) + g(t), t ∈ [0, m],

and we obtain the representation (3.2).
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3.4 Impulsive differential equations with delay

We return to the functional differential equation (2.1), but in this subsection we assume that
a countable (in particularly, finite) set T ⊂ (0, T] is given and at any time τ ∈ T the solution
can make a jump ∆x(τ) ≡ x(τ)− x(τ − 0).

To formalize the notion of such an impulsive functional differential equation we sup-
pose that to any τ ∈ T a positive number M(τ) is assigned in such a way that the series
∑τ∈T M(τ) converges. Then we are able to define a finite measure µ on [0, T] by putting

µ ≡ mes + µT , µT ≡ ∑
τ∈T

ντM(τ), (3.7)

where ντ is the Dirac measure at τ. In other words, the measure µ(S) of a set S ∈ L is equal
to the sum of its Lebesgue measure mes(S) and ∑τ∈T ∩SM(τ).

Below we consider an impulsive functional differential equation under the following as-
sumptions.

The behavior of the solution x(·) outside T is governed by equation (2.1) with the nonlin-
ear operator F̃ : Wp

1 ([−0, T], Rn, µ) → Lp([0, T], Rn, mes), p ∈ [1, ∞), satisfying the following
condition.

(3.4a) The operator F̃ is Volterra, i.e. for any t ∈ (0, T] and any x, x̂ ∈ Wp
1 ([−0, T], Rn, µ) ,

for which x(s) = x̂(s) (s ∈ [−0, t)), the equality (F̃x)(s) = (F̃x̂)(s) is satisfied almost
everywhere on [0, t] w.r.t. the Lebesgue measure mes.

Further, we assume that the value of the jump ∆x(τ) at time τ ∈ T may only depend
on the values of the solution x(t) for t ∈ [0, τ). More precisely, we impose the following
requirement on the jumps:

∆x(τ) = Υ(τ, x), τ ∈ T , (3.8)

where the vector functional (possibly nonlinear) Υ : T ×Wp
1 ([−0, T], Rn, µ)→ Rn satisfies the

following assumptions.

(3.4b) For any τ ∈ T and arbitrary x, x̂ ∈ Wp
1 ([−0, T], Rn, µ) , satisfying x(s) = x̂(s) for all

s ∈ [−0, τ), one has Υ(τ, x) = Υ(τ, x̂).

(3.4c) For any x ∈ Wp
1 ([−0, T], Rn, µ) one has Υ(·, x)/M(·) ∈ Lp([0, T], Rn, µT ), or equiva-

lently,
∫
[0,T]

∣∣Υ(τ, x)/M(τ)
∣∣ p
Rn µT (dτ) = ∑

τ∈T

∣∣Υ(τ, x)
∣∣ p
RnM(τ)1−p < ∞.

Let us verify that under the assumptions (3.4a)–(3.4c) the system (2.1),(3.8) can be repre-
sented in the general form (1.3).

To see it, we put

(Fx)(t) =

{
(F̃x)(t) if t ∈ [0, T]− T ,

Υ(t, x)/M(t) if t ∈ T .
(3.9)

From (3.4c) it follows that the operator F acts from Wp
1 ([−0, T], Rn, µ) to Lp([0, T], Rn, µ), and

it is Volterra due to the assumptions (3.4a), (3.4b).
We claim further that the operator F : Wp

1 → Lp (defined by (3.9)) becomes continuous if
the following conditions are fulfilled.

(3.4d) The operator F̃ : Wp
1 ([−0, T], Rn, µ)→ Lp([0, T], Rn, mes) is continuous.
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(3.4e) The mapping x ∈ Wp
1 ([−0, T], Rn, µ) 7→ Υ(·, x)/M(·) ∈ Lp([0, T], Rn, µT ) is continu-

ous.

To prove it, we choose any convergent sequence xn → x in the space Wp
1 ([−0, T], Rn, µ).

Then

‖Fxn − Fx‖ p
Lp =

∫
[0,T]
|(Fxn)(t)− (Fx)(t)| pRn µ(dt)

=
∫
[0,T]
|(F̃xn)(t)− (F̃x)(t)| pRn dt+∑

τ∈T

∣∣Υ(τ, xn)/M(τ)− Υ(τ, x)/M(τ)
∣∣ p
RnM(τ).

It remains to observe that
∫
[0,T] |(F̃xn)(t)− (F̃x)(t)| pRn dt→ 0 due to (3.4d), while (3.4e) implies

∑
τ∈T

∣∣Υ(τ, xn)/M(τ)− Υ(τ, x)/M(τ)
∣∣ p
RnM(τ)→ 0.

Let us now look closer at the affine case. In this case, the equation (2.1) converts into

ẋ(t) =
∫
(−∞,t)

dsR(t, s)x(s) + g̃(t), t ∈ [0, T]− T , x(s) = ψ(s), s < 0. (3.10)

We observe as well that defining the measure µ by the formula (3.7) yields the following
“derivative” of a function x which is absolutely continuous w.r.t. this measure:

(δµx)(t) =

{
ẋ(t) if t ∈ [0, T]− T ,

∆x(t)/M(t) if t ∈ T .

Therefore, an arbitrary affine and bounded vector functional Υ : T ×Wp
1 ([−0, T], Rn, µ)→ Rn,

which is affine and bounded w.r.t. the second variable, becomes

Υ(τ, x) =
∫
[0,τ]
W(τ, s)ẋ(s)ds + ∑

σ∈T ,σ<τ

W(τ, σ)∆x(σ) + ω(τ)x(−0) + ω0(τ) (3.11)

if the following three assumptions are fulfilled.

(3.4f) For any τ ∈ T the n×n-matrix functionW(τ, ·) belongs to Lp′(S(τ), Rn×n, mes), where
S(τ) = [0, τ],

p′ =

{
p/(p− 1) if p > 1,

∞ if p = 1,

and the function ϑ, defined by

ϑ(τ) = ‖W(τ, ·)‖Lp′ (S(τ),Rn×n,mes)/M(τ),

belongs to Lp([0, T], Rn, µT ), i.e.

∑
τ∈T

(
M(τ)(1−p)/p‖W(τ, ·)‖Lp′ (S(τ), Rn×n, mes)

)p
< ∞.

(3.4g) For any τ ∈ T the n× n-matrix function W(τ, ·) ∈ Lp′(S(τ), Rn×n, µT ), where p′ and
S(τ) are defined above, and v ∈ Lp([0, T], Rn, µT ), where the function v is defined by

v(τ) = ‖W(τ, ·)‖Lp′ (S(τ),Rn×n,µT )
/M(τ);

in other words,

∑
τ∈T

(
M(τ)(1−p)/p∥∥W(τ, ·)

∥∥
Lp′ (S(τ),Rn×n, µT )

)p
< ∞.
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(3.4h) For the n × n-matrix ω(τ) and the n-dimensional vector ω0(τ) the following holds
true:

∑
τ∈T
M(τ)|ω(τ)| pRn×n < ∞, ∑

τ∈T
M(τ)|ω0(τ)| pRn < ∞.

Thanks to the assumptions (3.1a) (put on the function g̃), (3.2a)–(3.2d) (where m = 1,
q = p), (3.4f)–(3.4h) the system (3.10)–(3.11) is equivalent to equation (3.2). In order to prove
this fact, we put

Q(t, s) =


−R(t, s) + 1[0,t)(s) · R(t, t− 0) if t, s ∈ (0, T]− T ,

W(t, s) if t ∈ T , s ∈ (0, T]− T ,

W(t, s) if t, s ∈ T ;

B(t) =

{
R(t,−0) if t ∈ (0, T]− T ,

ω(t) if t ∈ T ;

g(t) =

{
g̃(t) +

∫
(−∞,0) dsR(t, s)ψ(s) if t ∈ (0, T]− T ,

ω0(t) if t ∈ T ,

and substitute these functions to the right-hand side (Fx)(t) ≡
∫
[0,t)Q(t, s)(δµx)(s)µ(ds) +

B(t)x(−0) + g(t) of equation (3.2).
For an arbitrary t ∈ (0, T]− T the integration by parts formula (1.8) and the observations

Q(t, t− 0) = 0 and x(s− 0) = x(s) for almost all s ∈ [0, T] yield

(Fx)(t) =
∫
[0,t)
Q(t, s)dx(s) + R(t,−0)x(−0) + g̃(t) +

∫
(−∞,0)

dsR(t, s)ψ(s)

= Q(t, t− 0)x(t− 0)−Q(t,−0)x(−0)

−
∫
[0,t)

dsQ(t, s)x(s− 0) + R(t,−0)x(−0) + g̃(t) +
∫
(−∞,0)

dsR(t, s)ψ(s)

=
∫
[0,t)

dsR(t, s)x(s) +
∫
(−∞,0)

dsR(t, s)ψ(s) + g̃(t) =
∫
(−∞,t)

dsR(t, s)x(s) + g̃(t).

Thus, for t ∈ (0, T] − T equation (3.2) with the functions Q(t, s), B(t), g(t) coincide with
equation (3.10).

For τ ∈ T we have

(Fx)(τ) =
1

M(τ)

(∫
[0,τ)
Q(τ, s)dx(s) + ω(τ)x(−0) + ω0(τ)

)
=

1
M(τ)

(∫
[0,τ)−T

W(τ, s)dx(s) +
∫
[0,τ)∩T

W(τ, s)dx(s) + ω(τ)x(−0) + ω0(τ)

)
=

1
M(τ)

(∫
[0,τ]
W(τ, s)ẋ(s)ds + ∑

σ∈T ,σ<τ

W(τ, σ)∆x(σ) + ω(τ)x(−0) + ω0(τ)

)
,

and we arrive at (3.11).

4 Existence and uniqueness of solutions

In this section we consider the general equation (1.3) with the initial condition (1.4).
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4.1 Volterra operators in the space Lp([0, T], Rn, µ)

In the sequel we will always assume that the (nonlinear) operator F : Wp
1 ([−0, T] , Rn, µ) →

Lp([0, T] , Rn, µ) is Volterra. The operators considered in Section 3 have this property, including
the operator defined by (3.9) if the assumptions (3.4a), (3.4b) are fulfilled. We just remark that,
unlike the usual derivative, “the differentiation” δµ : Wp

1 ([−0, T] , Rn, µ) → Lp([0, T], Rn, µ) is
not Volterra if the interval [0, T] has points of positive measure.

Definition 4.1. If there exists a number ξ ∈ (0, T) and a function uξ : [−0, ξ) → Rn satisfying
the initial condition (1.4), the extension u : [−0, T]→ Rn,

u(t) =

{
uξ(t) if t ∈ [−0, ξ),

uξ(ξ − 0) if t ∈ [ξ, T]

of which belongs to the space Wp
1 ([−0, T] , Rn, µ) and which µ-almost everywhere on [0, ξ) sat-

isfies equation (1.3), then the initial value problem (1.3), (1.4) is called locally solvable, and the
function uξ is called its local solution defined on [−0, ξ) . The function u ∈Wp

1 ([−0, T] , Rn, µ),
satisfying the condition (1.4) and equation (1.3) on the entire [0, T], is called a global solution.
The function uη : [−0, η) → Rn, whose restriction uξ to any subinterval [−0, ξ) ⊂ [−0, η),
0 < ξ < η, is a local solution, and limξ→η−0

∫
[0,ξ) |(δµuξ)(s)| ds = ∞, is called an unextend-

able solution. A solution (local, global and unextendable) uη is called an extension of a local
solution uξ if η > ξ and uη(t) = uξ(t) for t ∈ [−0, ξ).

Let us make use of the representation (1.7) of the functional differential equation (1.3)
and rewrite the initial value problem for this equation with the initial condition (1.4) as an
equation in the space Lp([0, t] , Rn, µ)

y(t) =
(

F
(

α +
∫
[0, · ]

y(s) µ(ds)
)) (

t
)
, t ∈ [0, T]. (4.1)

This is an equation w.r.t. y = δµx. Given x ∈ Wp
1 ([−0, T] , Rn, µ), the norm of the restriction of

the image y = Fx : [0, T]→ Rn to the subinterval [0, t), calculated in the space Lp([0, t) , Rn, µ),
is, in general, a discontinuous function of t. This is due to the fact that the measure µ is not
assumed to be absolutely continuous w.r.t. the Lebesgue measure. This fact explains why a
straightforward application of the classical Volterra theory and its known generalizations to
equation (1.7) is impossible. Below we apply an idea of a generalized Volterra property which
was suggested in the paper [15].

Let B be a normed space. Suppose that to any γ ∈ [0, 1] we assign an equivalence relation
υ(γ) for the elements of the space B. Assume further that the family V = { υ(γ) | γ ∈ [0, 1] }
satisfies the following conditions:

υ(0) = B2; υ(1) = { (x, x) x ∈ B }; γ > η ⇒ υ(γ) ⊂ υ(η).

Finally, we assume that the relations υ(γ) ∈ V are closed under addition and multiplication
by scalars, i.e. that for every γ ∈ (0, 1) and any x, x̂, y, ŷ ∈ B, λ we have

(x, x̂) ∈ υ(γ), (y, ŷ) ∈ υ(γ) ⇒ (x + y, x̂ + ŷ) ∈ υ(γ), (λx, λx̂) ∈ υ(γ).

Definition 4.2. We say that an operator Φ : B→ B is Volterra w.r.t. the family V of equivalence
relations (satisfying the above conditions) if for every γ ∈ (0, 1) and any x, y ∈ B the equality
(x, y) ∈ υ(γ) implies the equality (Φx, Φy) ∈ υ(γ).
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As an example, let us consider the following family V of equivalence relations υ(γ) in the
space Lp([0, T] , Rn, µ) : we write (y, ŷ) ∈ υ(γ), 0 < γ < 1 if y(s) = ŷ(s) for almost all (w.r.t. µ)
s ∈ [0, ξ(γ)), where

ξ(γ) = sup{ t | µ([0, t)) ≤ γ ·M }, M = µ([0, T))

(the set [0, 0) is considered to be empty, so that µ[0, 0) = 0). Evidently, any Volterra operator
in the space Lp([0, T] , Rn, µ) is also Volterra w.r.t. the just defined family V. In particular, the
following operator generated by the equation (1.7) is Volterra w.r.t. V:

Φ : Lp([0, T] , Rn, µ)→ Lp([0, T] , Rn, µ), Φy = F

(
α +

∫[
0, (·)
) y(s) µ(ds)

)
. (4.2)

Lemma 4.3. For every γ ∈ (0, 1) one has the estimates µ( [0, ξ(γ)) ) ≤ γ ·M, µ( [0, ξ(γ)] ) ≥ γ ·M.

Proof. Let µ( [0, ξ(γ)) ) = γ · M + ε, ε > 0. Due to [14, pp. 86–87] there exists a positive δ

such that µ( [ ξ(γ) − δ, ξ(γ) ) ) < ε. Thus, µ( [0, ξ(γ) − δ) ) > γ · M, which contradicts the
definitions of ξ(γ). The second estimate can be proved similarly.

4.2 The initial value problem for the general equation

Theorem 4.4. Let the Volterra operator F : Wp
1 ([−0, T] , Rn, µ) → Lp([0, T] , Rn, µ) satisfy the

condition

(4.2a) there are ∆ > 0, q < 1 such that for any ξ1, ξ2 satisfying 0 ≤ ξ1 < ξ2 ≤ T, µ
(
(ξ1, ξ2)

)
< ∆

and arbitrary x, x̂ ∈ Wp
1 ([−0, T] , Rn, µ), satisfying the initial condition (1.4) the following

holds true: if for all t ∈ [−0, ξ1] one has x(t) = x̂(t), then(∫
(ξ1, ξ2)

∣∣ (Fx)(s)− (Fx̂)(s)
∣∣ p
Rn µ(ds)

)1/p
≤ q‖x− x̂‖Wp

1
.

In this case the initial value problem (1.3), (1.4) has a unique global solution, and any of its local
solutions is the restriction of the global one.

Proof. The proof consists of verifying the conditions of Corollary from Theorem 4 proved in
the paper [15, p. 448] for the operator (4.2). These conditions describe the property which in
this paper is called “local contraction” and which guarantee unique solvability of the equation
(4.1) and hence of the initial value problem (1.3), (1.4).

Denote γ0 = µ({0})
M . If γ0 = 0, then for any δ, 0 < δ < ∆

M the interval
[
0, ξ(δ)

)
is not

empty, as µ(
[
0, ξ(δ)

]
) ≥ δM > 0 = µ({0}), see Lemma 4.3. The isomorphism of the spaces

Wp
1 and Lp ×Rn allows for using (4.2a) for y, ŷ ∈ Lp([0, T] , Rn, µ). Thus,(∫

[0, ξ(δ))

∣∣ (Φy)(s)− (Φŷ)(s)
∣∣pµ(ds)

)1/p

=

(∫
(0, ξ(δ))

∣∣ (Φy)(s)− (Φŷ)(s)
∣∣pµ(ds)

)1/p

≤ q‖y− ŷ‖Lp .

If γ0 > 0, then for any δ, 0 < δ ≤ γ0 the interval
[
0, ξ(δ)

)
is empty and hence(∫

[0, ξ(δ))

∣∣ (Φy)(s)− (Φŷ)(s)
∣∣pµ(ds)

)1/p

= 0 ≤ q‖y− ŷ‖Lp
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for all y, ŷ ∈ Lp([0, T] , Rn, µ).
Let us choose an arbitrary γ∈ [0, 1) and any υ(γ)-equivalent elements y, ŷ∈ Lp([0, T], Rn, µ),

which means that y(t) = ŷ(t) for almost all (w.r.t. µ) t ∈ [0, ξ(γ)). Due to the Volterra prop-
erty of the operator Φ we obtain (Φx)(t) = (Φx̂)(t) for almost all (w.r.t. µ) t ∈ [0, ξ(γ)].
According to Lemma 4.3, µ( (ξ(γ), ξ(γ + δ)) ) ≤ δ · M, so that for any δ < ∆

M and all
y, ŷ ∈ Lp([0, T] , Rn, µ) we have(∫

[0, ξ(γ+δ))

∣∣ (Φy)(s)− (Φŷ)(s)
∣∣pµ(ds)

)1/p

=

(∫
(ξ(γ), ξ(γ+δ))

∣∣ (Φy)(s)− (Φŷ)(s)
∣∣pµ(ds)

)1/p

≤ q‖y− ŷ‖Lp .

We have verified the properties of the operator Φ which guarantee the unique solvability
of the equation (4.1).

Remark 4.5. The operators F and (4.2) in the above theorem do not need to be continuous. An
example of a local contraction in the space Lp([0, T] , Rn, mes) which is nowhere continuous,
can be found in [16].

4.3 The initial value problem for impulsive equations

In this subsection we apply Theorem 4.4 to the impulsive system (2.1), (3.8). Assuming that
the conditions (3.4a)–(3.4c) are fulfilled and defining the measure µ on [0, T] by (3.7) we can
reduce the system (2.1),(3.8) to equation (1.3) with the operator F : Wp

1 ([−0, T] , Rn, µ) →
Lp([0, T] , Rn, µ) given by (3.9). Under these assumptions the operator is Volterra (see Subsec-
tion 3.4).

Theorem 4.6. Let the Volterra operator F̃ : Wp
1 ([−0, T], Rn, µ) → Lp([0, T], Rn, mes) satisfy the

condition

(4.3a) there are ∆F̃ > 0, qF̃ such that for any ξ1, ξ2 satisfying 0 ≤ ξ1 < ξ2 ≤ T, µ
(
(ξ1, ξ2)

)
< ∆F̃

and arbitrary x, x̂ ∈ Wp
1 ([−0, T] , Rn, µ) satisfying the initial condition (1.4), the following

holds true: if for all t ∈ [−0, ξ1] one has x(t) = x̂(t), then(∫
(ξ1, ξ2)

∣∣ (F̃x)(s)− (F̃x̂)(s)
∣∣ p
Rn ds

)1/p
≤ qF̃‖x− x̂‖Wp

1
.

Let, in addition, the vector functional Υ : T ×Wp
1 ([−0, T], Rn, µ)→ Rn have the property

(4.3b) there exist a subset T ⊂ T , for which T − T is finite, and the numbers ∆Υ > 0, qΥ such
that for any ξ1, ξ2 satisfying 0 ≤ ξ1 < ξ2 ≤ T, µ

(
(ξ1, ξ2)

)
< ∆Υ and arbitrary x, x̂ ∈

Wp
1 ([−0, T] , Rn, µ), satisfying the condition (1.4), the following holds true: if for all t ∈

[−0, ξ1] one has x(t) = x̂(t), then(
∑

τ∈T∩(ξ1, ξ2)

∣∣Υ(τ, x)− Υ(τ, x̂)
∣∣pM(τ)1−p

)1/p

≤ qΥ‖x− x̂‖Wp
1
.

If now qF̃ + qΥ < 1, then the initial value problem (2.1), (3.8), (1.4) has a unique global solution, and
any of its local solutions is a restriction of the global one.
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Proof. Letting τ1, τ2, . . . , τm be all the elements of T − T, we define

∆ = min
{

∆F̃, ∆Υ,M(τ1), . . . ,M(τm)
}

.

For any ξ1, ξ2 such that µ( (ξ1, ξ2) ) < ∆ and for all x, x̂ ∈ Wp
1 ([−0, T] , Rn, µ) satisfying (1.4)

and the equality x(t) = x̂(t), t ∈ [0, ξ1] the assumptions (4.3a), (4.3b) and the formula (3.9) for
the operator F : Wp

1 ([−0, T], Rn, µ)→ Lp([0, T], Rn, µ) yield(∫
(ξ1, ξ2)

∣∣ (Fx)(s)− (Fx̂)(s)
∣∣pµ(ds)

)1/p

≤
(∫

(ξ1, ξ2)

∣∣ (F̃x)(s)− (F̃x̂)(s)
∣∣pds

)1/p
+

(
∑

τ∈T ∩(ξ1, ξ2)

∣∣Υ(τ, x)− Υ(τ, x̂)
∣∣pM(τ)1−p

)1/p

≤ (qF̃ + qΥ)‖x− x̂‖Wp
1
.

In the last inequality we utilized the fact that the interval (ξ1, ξ2) does not contain points
τi, 1 ≤ i ≤ m, because µ({τi}) > µ( (ξ1, ξ2) ). Thus, we have proved that the operator F :
Wp

1 ([−0, T], Rn, µ)→ Lp([0, T], Rn, µ) satisfies the assumption (4.2a). Now, due to Theorem 4.4
the initial value problem (1.4), (2.1), (3.8) has a unique global solution.

4.4 Local solutions of the initial value problem for the generalized functional
differential equation

Solvability of the initial value problem (1.3), (1.4) can also be obtained when the operator F
does not satisfy the assumptions of Theorem 4.4, but is completely continuous (i.e. continuous
and compact) instead.

Theorem 4.7. Let the Volterra operator F : Wp
1 ([−0, T], Rn, µ) → Lp([0, T], Rn, µ) be completely

continuous. Then the initial value problem (1.3), (1.4) has a local solution and any local solution is
part of either some global solution or some unextendable solution.

Proof. We will prove solvability of the equation (4.1), which is equivalent to the initial value
problem (1.3), (1.4). We will use the assumptions that Φ : Lp([0, T] , Rn, µ) → Lp([0, T] , Rn, µ)

defined by (4.2) is Volterra and completely continuous. Due to the latter property, for any
ε > 0, r > 0 there exists a positive ∆ = ∆(ε, r) such that the following condition holds true:

(4.4a) for every y ∈ Lp([0, T] , Rn, µ), ‖y‖Lp ≤ r and each µ-measurable subset S ⊂ [0, T],
µ(S) < ∆(ε, r) we have

∫
S
|(Φy)(s)|p µ(ds) < εp .

Let ∆̃ be the least upper bound for all possible numbers ∆ satisfying the above property.
Observe that the condition (4.4a) is also fulfilled for any subset S ⊂ [0, T] satisfying µ(S) <

∆̃(ε, r).
The solution will be constructed successively extending its domain step by step.

Step 1. If µ({0}) > 0, then the Volterra property of the operator Φ implies that the value
(Φy)(0) will be the same for all y ∈ Lp([0, T] , Rn, µ). Put

H0 =

{
(Φ0)(0) if µ({0}) > 0,

0 if µ({0}) = 0.
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This vector coincides with the value of the solution z(t) at t = 0 in the case when µ({0}) > 0.
Let r1 = |H0|

(
µ({0})

)1/p
+ 1, ε = 1, define ∆1 = ∆̃(r1, ε) to be the least upper bound of all

numbers ∆(r1, ε) satisfying (4.4a) and put γ0 = µ({0})
M , γ1 = γ0 +

∆1
2M . Minding ξ(γ0) = 0 and

setting ξ(γ1) = ξ1 we obtain, due to Lemma 4.3, two estimates µ
(
(0, ξ1)

)
≤ ∆1

2 , µ
(
(0, ξ1]

)
≥

∆1
2 .

By B1 we denote the subset of the space Lp([0, ξ1) , Rn, µ) coinciding with the entire ball

{y : ‖y‖Lp([0,ξ1),Rn,µ) ≤ r1}

if µ({0}) = 0, and with the part of this ball containing all functions with the property y(0) =
H0 if µ({0}) > 0. This set is closed and convex. Define now the following operators:

Πξ1 : Lp([0, T] , Rn, µ)→ Lp([0, ξ1) , Rn, µ), (Πξ1 y)(t) = y(t), t ∈ [0, ξ1);

Pξ1 : Lp([0, ξ1) , Rn, µ)→ Lp([0, T] , Rn, µ), (Pξ1 y)(t) =

{
y(t) if t ∈ [0, ξ1),

0 if t ∈ [ξ1, T].

Then the operator Πξ1 ΦPξ1 acting in the space Lp([0, ξ1) , Rn, µ) is completely continuous with
B1 ⊂ Lp([0, ξ1) , Rn, µ) being its invariant subset. Therefore, the equation Πξ1 ΦPξ1 yξ1 = yξ1

has a solution in B1, which we denote by zξ1 . This function is a local solution of equation (4.1).

Step 2. The function ΦPξ1 zξ1 : [0, T]→ Rn is an extension of the local solution zξ1 : [0, ξ1)→ Rn

and due to the Volterra property of the operator Φ satisfies equation (4.1) on the interval [0, ξ1].
Choosing r2 =

(∫
[0,ξ1]
|(ΦPξ1 zξ1)(s)|pds

)1/p
+ 1, ε = 1 we denote by ∆2 = ∆̃(r2, ε) the least

upper bound of the values ∆(r2, ε), for which (4.4a) holds true. Let γ2 = γ1 +
∆2
2M , ξ2 = ξ(γ2).

From Lemma 4.3 we then obtain µ
(
(ξ1, ξ2)

)
≤ ∆2

2 , µ
(
(ξ1, ξ2]

)
≥ ∆2

2 .
Now we define a subset B2 of the space Lp([0, ξ2) , Rn, µ) containing all functions y :

[0, ξ2) → Rn such that ‖y‖Lp([0,ξ2),Rn,µ) ≤ r2 and y(t) = (ΦPξ1 zξ1)(t) on [0, ξ1]. This subset is
closed and convex. Define also

Πξ2 : Lp([0, T] , Rn, µ)→ Lp([0, ξ2) , Rn, µ), (Πξ2 y)(t) = y(t), t ∈ [0, ξ2);

Pξ2 : Lp([0, ξ2) , Rn, µ)→ Lp([0, T] , Rn, µ), (Pξ2 y)(t) =

{
y(t) if t ∈ [0, ξ2),

0 if t ∈ [ξ2, T].

The operator Πξ2 ΦPξ2 : Lp([0, ξ2) , Rn, µ)→ Lp([0, ξ2) , Rn, µ) is completely continuous and B2

is invariant w.r.t. this operator. Therefore, the equation Πξ2 ΦPξ2 yξ2 = yξ2 has a solution in the
space Lp([0, ξ2) , Rn, µ), which we denote by zξ2 . This is a local solution of equation (4.1), with
zξ1 being its restriction.

Further steps are performed similarly. Let us show that the final result of the described
procedure consisting of countably or finitely many (if ξn = T for some n) steps yields a global
or an unextendable solution. Indeed, we would otherwise obtain numbers $, T̂, for which
ξi ≤ T̂ < T and ‖zξi‖Lp([0,ξ2),Rn,µ) ≤ $. after any step. But in this case we would obtain the
estimate ∆̃(ri, ε) ≥ ∆̃($, ε) for any i. Therefore µ

(
(ξi−1, ξi]

)
≥ ∆̃($, ε), which contradicts the

assumption that µ is a finite measure on [0, T].

4.5 Local solutions of the initial value problem for impulsive equations

Theorem 4.7 gives us an opportunity to prove one more result on solvability of the impulsive
system (2.1), (3.8).
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Theorem 4.8. Let the Volterra operator F̃ : Wp
1 ([−0, T], Rn, µ) → Lp([0, T], Rn, mes) be completely

continuous and let the functional Υ : T ×Wp
1 ([−0, T], Rn, µ) → Rn satisfy the assumptions (3.4b),

(3.4e) and the condition

(4.4b) there is a function ϕ : T ×R → R, such that for any r > 0 and all x ∈ Wp
1 ([−0, T], Rn, µ),

‖x‖Wp
1
≤ r one has ∣∣Υ(τ, x)

∣∣
Rn ≤ ϕ(τ, r),

and, in addition, for any r > 0 the following estimate holds true:

∑
τ∈T

(
M(τ)

)1−p(
ϕ(τ, r)

)p
< ∞.

Then the initial value problem (1.4), (2.1), (3.8) has a local solution, and any local solution of this
problem is part of either some global or some unextendable solution.

Proof. From (4.4b) we immediately obtain (3.4c). As we demonstrated in Subsection 3.4, the
operator F : Lp([0, T] , Rn, µ)→ Lp([0, T] , Rn, µ) defined by (3.9) is continuous and Volterra.

We show now that for any r > 0 the image FUr of the ball Ur ⊂ Wp
1 ([−0, T], Rn, µ) of

radius r is contained in a compact subset of the space Lp([0, T] , Rn, µ), i.e. it is relatively
compact. To do this, we make use of the following simple statement: Let S be an arbitrary µ-
measurable subset of the interval [0, T] and G ⊂ Lp([0, T] , Rn, µ). Then G is relatively compact
if and only if the subsets G|S ⊂ Lp(S, Rn, µ), G|S ⊂ Lp(S, Rn, µ) of the restrictions of G to
S and S = [0, T] − S, respectively, are both relatively compact. Indeed, if G is a finite ε-net
of G, then the restrictions G|S, G|S of functions from G constitute finite ε-nets for the sets
G|S, G|S , respectively. Conversely, the set of functions obtained by “gluing” together each of
the functions from a finite ε/2-net for G|S with each of the functions from a finite ε/2-net for
G|S produces a finite ε-net for the set G.

We apply now this observation to G = FUr assuming that S = T .
From the assumptions of the theorem we deduce that F̃Ur is relatively compact in the

space Lp([0, T] , Rn, mes). By the definition of the operator F, the set FUr|T ⊂ Lp(T , Rn, µ), is
relatively compact, too, where T = [0, T]− T .

We prove now that the set FUr|T is, in fact, relatively compact in the space Lp(T , Rn, µ) =

Lp(T , Rn, µT ). To do this, we observe that the space Lp(T , Rn, µT ) is isometric to the space
lp(Rn) of countable sequences ζ = {ζi}, ζi ∈ Rn, i = 1, 2, . . . , satisfying ∑∞

i=1,
∣∣ζi
∣∣ p
Rn < ∞,

the norm being given by the formula ‖ζ‖lp =
(
∑∞

i=1
∣∣ζi
∣∣ p
Rn

)1/p. More precisely, this isometry

is defined as the mapping which assigns the sequence
{(
M(τi)

)1/py(τi)
}

belonging to the
space lp(Rn) to an arbitrary y ∈ Lp(T , Rn, µT ). Any y ∈ FUr|T can be represented as y(τ) =
Υ(τ, x)/M(τ), τ ∈ T , where ‖x‖Wp

1
≤ r. Hence for any natural number i0 we obtain

∞

∑
i=i0

∣∣(M(τi)
)1/py(τi)

∣∣ p
Rn =

∞

∑
i=i0

(
M(τi)

)1−p∣∣Υ(τi, x)
∣∣ p
Rn ≤

∞

∑
i=i0

(
M(τi)

)1−p(
ϕ(τi, r)

)p.

From this, the assumption (4.4b) and the compactness criterion in the space lp(Rn) (see e.g.
[9, p. 32]) we conclude that the subset FUr|T is relatively compact in Lp(T , Rn, µ).

Example 4.9. Let T = {τi}, where the sequence {τi} ⊂ (0, 1) is strictly decreasing and τi → 0.
Consider the impulsive system

ẋ(t) = 0, t ∈ [0, 1]; x(τi + 0) = x(τi) +

√
|x(τi)|

2i . (4.3)
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Let us fix an arbitrary convergent series ∑iM(τi) with positive terms and define the measure
µ by (3.7). As µ({0}) = 0, then µ-absolutely continuous function t 7→ x(t) is also continuous
at t = 0, i.e. x(−0) = x(0). Therefore we may disregard the auxiliary point −0 which results
in the domain [0, 1].

The operator F̃ : Wp
1 ([0, 1], R, µ) → Lp([0, 1], R, mes) is simply zero in this case, so that it

trivially satisfies the assumptions of Theorem 4.6 and Theorem 4.8 for any p.
The functional

Υ(τi, x) =

√
|x(τi)|

2i ,

which determines the size of the jumps, can be considered acting from T ×W1
1 ([0, 1], R, µ) to

R, and it also satisfies the assumptions (3.4b), (3.4c), (3.4e) for p = 1. This gives us opportunity
to search for solutions in the space W1

1 ([0, 1], R, µ). Moreover, the functional Υ satisfies the
estimate

Υ(τi, x) ≤
√

r
2i ,

‖x‖W1
1
≤ r. Thus, all the assumptions of Theorem 4.8 are fulfilled, so that any initial value

x(0) = α gives rise to a solution for any real α.
However, the functional Υ does not satisfy the requirement (4.3b) of Theorem 4.6 ensuring

uniqueness of the solutions. In the example the initial condition α = 0 does produce two
solutions: the zero solution and this one: x(t) = 1

2i , t ∈ (τi+1, τi], i = 1, 2, . . .
Unlike (4.3), the initial value problem

ẋ(t) = 0, t ∈ [0, 1]; x(τi + 0) = x(τi) +
|x(τi)|

2i ; x(0) = α (4.4)

satisfies all the assumptions of Theorem 4.6. Therefore the problem (4.4) has a unique solution
in the space W1

1 ([0, 1], R, µ). For instance, the only solution for α = 0 is the zero function.

5 Outlook

The central results of the present paper can be used to a further development of the the-
ory of functional differential equations with an arbitrary driven measure, in the spirit of the
monograph [4]. This development might include boundary value problems, stability analysis,
control theory, difference equations, stochastic functional differential and difference equations
driven by Poisson-type noises etc. Some preliminary results can e.g. be found in the papers
[2, 3, 8, 10, 11, 13].
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