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Abstract

Electrophysiological measurements provide a relatively easy method of probing the
brain at the scale of networks. One example of such measurements is the extracellu-
lar potential that can be obtained by inserting microelectrodes directly into neural
tissue. The low frequency part of this signal is called the local field potential (LFP),
and despite having a solid understanding of the underlying physical principles deter-
mining these electric potentials, the enormous complexity of neural networks makes
the interpretation of the signal difficult. Little is known about exactly what infor-
mation can be extracted from it.

Convolutional neural networks, a form of machine learning using deep feed-
forward artificial neural networks, have been successfully applied to a wide array
of tasks, most notably image recognition tasks and natural language processing. In
this project, we apply convolutional neural networks to simulated local field poten-
tials. We use a newly developed hybrid scheme to simulate the LFP generated by a
spiking point-neuron network model. To explore what information the LFP signals
contain, we address the following question: Can a convolutional neural network be
trained to make predictions about the parameters of a spiking point-neuron network
by using only the LFP it generates?

We use a relatively simple model consisting of one excitatory population and
one inhibitory population, and systematically vary three parameters: the excitatory
synaptic strength, the relative inhibitory synaptic strength and the amount of ex-
ternal input. We then simulate the LFPs generated by this model network, and use
them to train convolutional neural networks to make predictions about the values of
each parameter. We find that for this network, it is indeed possible to make fairly
accurate predictions about the network parameters by using only the LFP it gen-
erates. These results demonstrate that our approach shows promise for extracting
non-trivial information from brain signals, and therefore has the potential to play
an important role in taking full advantage of these signals in the future.
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Sammendrag

Elektrofysiologiske målinger gir en forholdsvis enkel måte å måle aktiviteten til
nettverk av nevroner i hjernen. Et eksempel p̊a en slike m̊alinger er det ekstracel-
lulære potensialet som kan måles ved å sette elektriske elektroder direkte i hjernevev.
Den lavfrekvente delen av dette kalles lokale feltpotensialer (LFP), og selv om vi
har en solid forst̊aelse av de underliggende fysiske prinsippene bak de lokale felt-
potensialene, gjør kompleksiteten til nevrale nettverk at det vanskelig å tolke dem,
og man vet lite om hva slags informasjon de inneholder.

Konvolusjonelle nevrale nettverk er en form for maskinlæring som har blitt mye
brukt til blant annet bildegjenkjenning og prosessering av naturlige spr̊ak. I dette
prosjektet blir konvolusjonelle nevrale nettverk anvendt p̊a simulerte lokale felt-
potensialer. En nylig utviklet hybridmetode for å simulere de lokale feltpotensialene
som blir generert av nettverker av punktnevroner blir benyttet, og følgende spørsm̊al
blir belyst: Kan konvolusjonelle nevrale nettverk bli trent opp til å ansl̊a verdien til
spesifikke parametere til et nettverk av punktnevroner?

Vi benytter en relativt enkel modell som best̊ar av en eksitatorisk populasjon og
en inhibitorisk populasjon, og varierer tre parametere: den eksitatoriske synaptiske
styrken, den relative inhibitoriske synaptiske styrken og mengden ekstern input.
LFP-ene fra dette nettverket med de ulike parameterverdiene blir simulert, og blir
brukt til å trene opp det konvolusjonelle nevrale nettverket til å ansl̊a parameter-
verdiene. Det viser seg at det konvolusjonelle nevrale nettverket er i stand til å
ansl̊a alle tre verdiene med ganske stor treffsikkerhet. Disse resultatene antyder at
metoden er i stand til å hente ut informasjon fra hjernesignaler, og har potensial til
å spille en viktig rolle i å dra full nytte av dem i fremtiden.
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Chapter 1

Introduction

The human brain is composed of roughly 86 billion neurons [1]. Each neuron is
connected to thousands or tens of thousands of others [2], to which it can send
and receive signals. The nature of signalling between individual neurons is well
understood, but how information is processed in the vast network that is the brain,
or how higher features of the mind arise, such as thought and consciousness, is still
largely unknown.

Neocortex, a part of the outermost layer of the mammalian brain, is where
higher-order functions of the brain take place, such as sensory perception, cogni-
tion and motor control [3]. Vertically, it has six layers, labelled I to VI from the
outside inward, and is functionally partitioned across its surface. The most basic
organization of the cortex is believed to be minicolumns, a vertical chain comprising
roughly 100 neurons in primates [4]. Minicolumns form cortical columns, or mod-
ules, by short-range horizontal connections. These vary between 300 and 600 µm
in all species, regardless of the size of the brain [4], suggesting a very fundamental
structure that can be thought of as a functional unit.

Investigating the details of cortical networks experimentally is difficult. The large
number of cells they are composed of make it very challenging to physically exam-
ine them, necessitating more indirect methods of investigation. The most widely
used are measurements of electric potentials, which can be done at multiple levels:
Electroencephalography (EEG) measures the potential on the scalp, electrocorticog-
raphy (ECoG) measures the potential on the brain surface, and by inserting micro-
electrodes directly into the brain, the potential can be measured in the extracellular
medium [5]. Figure 1.1 shows an illustration of the scale of these measurements.
Recordings such as these have been carried out for many decades, but a true un-
derstanding of what information they carry is still lacking. The recorded potentials
arise from electric transmembrane currents generated by the signalling of neurons,
and although we have a solid understanding of the physics involved at the single cell
scale, the complexity of large networks has made their connection to the measurable
electric potentials difficult to establish [6].

Since EEG and ECoG measure potentials far from their source and contain
contributions from many different areas of the brain, their resolution will be limited
and they will contain less information about local networks [5]. Extracellular record-
ings within the brain, however, will mainly consist of contributions from its closer
surroundings, making it a better source of information on more detailed network ac-
tivity. The extracellular potential can be split into two parts: the multi-unit activity

1



MEG

Cortex

Scalp

White matter

10 - 12 mm

2 - 3 mm

5 - 10 mm

CSF

Skull

ECoG

2 - 3 mm

LFP/MUA

EEG

Figure 1.1: An illustration of electrophysiological measurements at different levels.
The distance of the recording position will affect the recording in multiple ways.
The farther away from the current sources, the weaker the signals become, and it
contains contributions from a larger number of neurons. The LFP/MUA is the most
local extracellular measurement of activity. Courtesy of Torbjørn V. Ness.

(MUA) and the local field potential (LFP). MUA is the high frequency part of the
signal (> 500 Hz), and reflects the firing of neurons in the immediate vicinity of the
electrodes [7]. However, the signal decays rapidly with distance [8], so while it can
say much about the activity of individual neurons close to the recording electrode, it
is of limited use when investigating larger networks. The LFP is the low frequency
part (≤ 500 Hz), and reflects the synaptic input and processing in a greater area
[7]. The LFP will have sizeable contributions from neurons hundreds of micrometers
away [9, 10], and reflects the activity of a much larger network, on the scale of tens
of thousands of neurons [7]. This potentially makes it a good source of information
on local cortical circuitry, but the large number of neurons making contributions
also makes it very difficult to interpret, and little is known about exactly what sort
of information it carries.

Convolutional neural networks (CNN) [11] are a type of deep feed-forward artifi-
cial neural networks, a form of machine learning that has been successfully applied
to a wide array of tasks, most notably image recognition tasks [12] and natural lan-
guage processing [13]. In this project, we apply convolutional neural networks to
simulated LFPs. To investigate what information can be obtained from the LFP,
we ask the following question: can a convolutional network be trained to make pre-
dictions about the parameters of a spiking point-neuron network by using only the
LFP it generates?

A relatively simple point neuron network model is used, consisting of two popu-
lations, one excitatory population of 10,000 neurons, and one inhibitory population
of 2,500 neurons. We focus on three parameters of the network: J , the excitatory
synaptic strength, g, the relative inhibitory synaptic strength, and η, the amount of
external input. These are key parameters in determining the activity of the network
[14]. Using the newly developed hybridLFPy tool [15], the LFPs generated by this
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INTRODUCTION

model network is simulated for 8 different values of each parameter, giving a total
of 512 unique parameter combinations. These LFPs are then used to train convolu-
tional neural networks to make predictions about the value of each parameter. We
find that for this model network, it is indeed possible to fairly accurately predict
the values of each parameter.
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Chapter 2

Theory

This chapter gives some biological background on neurons, before describing the
formalism used to model the activity of our network, the theory used to make
the forward calculations of the LFP, and an introduction to convolutional neural
networks.

2.1 Neurons and communication

Neurons come in many different shapes and sizes. With few exceptions, they have
three distinct parts: the soma, the axon, and the dendrites. The soma is the ”’heart’”
of the neuron, and contains the nucleus and most of the other organelles. Long,
cable-like extensions project out from the soma: axons and dendrites. It is through
these projections the neuron communicates with others. For communication to
happen, a signal must pass the cell membranes of both neurons. This happens
through special interfaces called synapses, from the axon on the presynaptic neuron
to a dendrite on the postsynaptic neuron. Figure 2.1 shows an illustration of a
neuron and contact points with other neurons.

Cell membranes consist of a lipid bilayer about 5 nm thick [16], where phos-
pholipids are oriented with their charged head-groups pointing outward into the
intracellular and extracellular medium, and their lipid tails pointing inward, meet-
ing each other at the centre. While ions move freely in both the intracellular and
extracellular medium, the highly resistive membrane makes it almost completely
impermeable to ions and acts as a capacitor, being able to store charge that is
transported across the membrane. Special ion pumps set up an electrochemical
gradient across the membrane. Sodium, chloride and calcium is pumped from the
intracellular to the extracellular space, while potassium is pumped in the opposite
direction. Protein channels are embedded in the membrane that can let specific
ions through. Some channels are open all the time, while others only open when
activated by either a neurotransmitter or a voltage threshold. When the channels
are open, the electrochemical gradient will drive a current through the channels,
either inward or outward depending on which channels are open [16].

There are two main types of synapses: chemical and electrical. Through electrical
synapses, an electrical signal is passively transmitted from one neuron to the other
through gap junctions, small structures creating a hole in the membranes, connecting
the cytoplasm of the two neurons allowing small molecules and ions to pass [17].
Chemical synapses are more complex. When a presynaptic neuron fires an action
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Neurons and communication

Figure 2.1: Illustration of a neuron. Signals can be sent to other neurons through
the axon, and signals can be received from other neurons through the dendrite. The
cell body, or soma, contains the nucleus and is the site of most metabolic activity.
Adapted from Blausen.com staff (2014). ”Medical gallery of Blausen Medical 2014”.
WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436

potential, all of the synapses on its axon are activated. When a chemical synapse is
activated, neurotransmitters are released from vesicles inside the axon terminal into
the synaptic cleft, where they interact with and open ion channels on the membrane
of the postsynaptic neuron. If the neurotransmitters open channels that carry a
positive inward current, an excitatory postsynaptic potential (EPSP) occurs in the
dendrite, depolarizing the postsynaptic neuron. If channels that carry a positive
outward current are opened, an inhibitory postsynaptic potential (IPSP) occurs,
polarizing the cell. The strenghts of the postsynapic potentials vary from synapse
to synapse, and can change with time, called synaptic plasticity. This is believed to
be the mechanism by which we can learn and form memories [18]. Figure 2.2 shows
an illustration of a synapse.

The postsynaptic potentials are propagated through the dendrite, with some of
it leaking through channels in the membrane. Since the neuron receives input from
many synapses at different locations and times, the membrane potential is the spatial
and temporal summation of all the postsynaptic potentials the dendrite receives. All
incoming signals to a neuron is processed in this manner in the dendrite, and will
ultimately decide when the neuron is going to fire. If the neuron receives enough
excitatory input to drive the potential in the soma above a certain threshold, the
neuron will fire, creating an action potential that is actively propagated through the
axon, activating its synapses in an all-or-none manner.

6
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Figure 2.2: Schematic of a chemical synapse. When an action potential reaches
a synapse, neurotransmitters stored in vesicles are released into the synaptic cleft,
where they interact with receptors opening ion channels on the dendrite, allow-
ing ions to flow through. The neurotransmitters are subsequently transported
back into the neurons, allowing the ion channels to close and are ready to re-
peat the process. By Thomas Splettstoesser (www.scistyle.com) [CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

2.2 Point neuron networks

There are several different frameworks for simulating the activity of a neuronal
network. From highly detailed neuron models calculating all transmembrane and
intracellular currents in detailed morphologies, to very simple rate-based models
where the entire neuron is modelled by only its firing rate. In this project, leaky
integrate-and-fire (LIF) point neurons are used to model the activity of the network.
These are simplified neuron models which do not take into account the spatial com-
plexities of the neurons, but rather assumes that the neuron is confined to a single
point. Although simplified, these point neurons still display interesting dynamics
and are able to capture many important features of neuronal networks [14]. The
mathematical formalism used is described here.

Formalism

The subthreshold dynamics of the LIF neurons obey the differential equation

τm
dV (t)

dt
= −V (t) +RmI(t) (2.1)

where τm is the membrane time constant, V the membrane potential, Rm the mem-
brane resistance and I the input current [14].

When the membrane potential reaches a threshold θ, the neuron fires and its
potential is clamped to the reset potential Vr for the refractory period tref .

There are NE excitatory neuron and NI inhibitory neurons, and each of them
receive local input from CE = εNE excitatory neurons and CI = εNI inhibitory
neurons, i.e. from a share ε of both populations. Every neuron also receives ex-
ternal excitatory poisson distributed input with a rate νext. The input currents are
modelled as delta functions, causing an instantaneous change in the the membrane
potential with an amplitude J . Figure 2.3 shows an example of a single postsynaptic
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potential for an excitatory spike. For neuron i,

RmIi(t) = τm
∑
j

Jij
∑
k

δ(t− tkj − td) (2.2)

where the first sum is over all the presynaptic neurons j, including the external ones,
and the second sum is over the spike times of those neurons.

Figure 2.3: A single excita-
tory postsynaptic potential from
a spike with J = 1 mV and τm =
20 ms

Jij is the voltage amplitude of the postsynaptic
potential, δ is the Dirac delta function, tkj are the
times at which neuron j fires, and td is the delay
period.. For excitatory synapses, including the
ones receiving external input, Jij = J > 0, and
for inhibitory synapses Jij = −gJ , where g is
the parameter determining the relative strength
of the inhibitory synapses compared to the exci-
tatory synapses [14].

The external poisson rate νext will be given
in terms of a new parameter

η = νext/νthr, where νthr = θ/(JCEτm), the min-
imum constant rate input that would drive the
membrane potential to firing threshold; i.e. if
the external input was constant over time with
an η of 1, the membrane potential would con-

verge to θ as t → ∞. Note however that with random poisson distributed input,
the neurons will still occasionally fire when η < 1.

2.2.1 The Brunel network

Networks with the same formalism as described above has been mathematically
analysed by Brunel (2000) [14]. In his article, he analysed the activity generated
from this network mathematically, and was able to derive the particular activity
states that arise by varying different parameters of the network, including g, η and
J .

Figure 2.4 shows a phase diagram for the network derived from the mathematical
analysis by Brunel, adapted from Figure 2 in Brunel (2000) [14]. Four different ac-
tivity states arise by varying η and g. Two characteristics of the activity are defined,
synchrony and regularity. Synchrony is in this context defined as a time dependent
global firing rate, and regularity is defined as a coefficient of variation (CV) of the
inter-spike intervals close to zero in the individual neurons. The four different activ-
ity states are synchronous regular, fast and slow oscillating synchronous irregular,
and asynchronous irregular.

Examples of the activity from each of these states are shown in Figure 2.5. The
synchrony of each synchronous state is driven by different factors. Brunel found
that the fast oscillating synchrony for high η and high g was driven by the negative
feedback loop caused by the strong inhibitory neurons. When the network activity
rises due to the external input, the inhibitory neurons cause a decrease in activity
again at a time proportional to td, which again causes an increase in activity at

8
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Figure 2.4: Phase diagram showing the boundaries of four different network activity
states depending on parameters g and η. J is 0.1 mV, and the synaptic delay 1.5 ms.
The four different states are synchronous regular, synchronous irregular with fast
oscillations, synchronous irregular with slow oscillations and asynchronous irregular,
denoted by SR, SI and AI. Aapted from Figure 2 in Brunel (2000) [14].

a time proportional to 2td, driving a rapid cycle of high activity followed by low
activity. This can be seen in the top right panel of Figure 2.5.

The slow oscillating synchronous activity at η ≈ 1 and g > 4 is driven by
the external input keeping the neurons close to their firing threshold, making the
network very sensitive to any fluctuations in activity. They can be rapidly excited,
before the strong inhibitory neurons kills the activity again, causing the network to
oscillate between being in a state of quiescence and state of activity. This can be
seen in the lower left panel of Figure 2.5.

Lastly, when g < 4, the network will be in an excitation dominated regime, since
there are four times as many excitatory neurons as inhibitory neurons. A very high
frequency oscillation appears, controlled by the refractory and delay period, and the
neurons fire at very regular intervals.

Note that due to finite size effects, the transitions between the states are not
sharp, and there are clearly some oscillations in the activity in the asynchronous
state, as can be seen in the lower right panel of Figure 2.5, but it is clearly less
synchronous than in the other three panels. Instead, there is a gradual transition
from one state to the other [14]. The phase diagram in Figure 2.4 is assuming J to
have a value of 0.1 mV, and will not be equal for other values of J .

In this project, we have chosen to focus on the transition from the synchronous
regular regime to the asynchronous regular, in the area 4 ≤ g ≤ 5.4, 1.6 ≤ η ≤ 3.0
and 0.06 ≤ J ≤ 0.2.

2.3 LFP generation and the hybrid scheme

2.3.1 The origin of local field potentials

The local field potential is generated by transmembrane current [6], acting as current
sources and current sinks in the extracellular medium. Within the framework of

9
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Figure 2.5: Four different network states, from simulations with 10,000 excitatory
neurons and 2,500 inhibitory neurons. J = 1, and the the synaptic delay is 1.5. A
raster is shown on top and full spike histograms below, with bins of 0.1 ms. Top left
shows the excitation dominated asynchronous regular regime, where close to half of
the neurons fire simultaneously in regular intervals. In the bottom right panel, g
is increased to 5, and the activity becomes asynchronous irregular. Top right and
bottom left shows the synchronous irregular states, fast and slow respectively. This
figure shows the same as figure 8 in [14], but is recreated with own data.

volume conduction theory [5, 19], the electric potential generated by such current
sources and sinks can be derived.

In a uniform medium of inifinite extent, the current from a point source would
flow uniformly in all radial directions. Since the current is conserved, the current
density at a distance r would be

J =
I(t)

4πr2
ar , (2.3)

where J is the current density vector, I(t) is the magnitude of the point current
source and ar is the radial unit vector [19]. Assuming the medium is linear, isotropic,
homogeneous, ohmic and frequency-independent, the current density J is related to
the electric field E by Ohm’s law,

J = σE , (2.4)

10
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where σ is the conductivity of the medium, a constant real scalar [19, 20, 7]. Us-
ing the quasi-static approximation of Maxwell’s equations, i.e. neglecting the time
derivatives, the electric field E is related to the scalar potential φ by

E = −∇φ . (2.5)

Applying equations 2.4 and 2.5 to Equation 2.3 yields

I

4πr2
ar = −σ∇φ . (2.6)

Due to the symmetry of the system, φ can only change radially, so integrating along
ar we end up with a formula for the potential a distance r away from the current
source [19],

φ(r) =
I

4πσr
. (2.7)

If many different currents are injected at different points, the potential adds linearly
as [5, 19]

φ(r, t) =
∑
n

1

4πσ

In(t)

|r− rn|
, (2.8)

where In(t) is the point source at position rn.
The assumptions made above will generally hold for the extracellular medium of

the cerebral cortex [7, 20, 21], and this is the framework used to make the forward
calculations of the local field potential.

2.3.2 Forward modeling of the LFP

Calculating the LFP generated by a neuron requires two steps: first, all transmem-
brane currents in the neuron must be calculated in a morphologically detailed neuron
model. These transmembrane currents can then be treated as current sources and
current sinks in the extracellular medium, and can be used to calculate the LFP
[20, 7].

To model the transmembrane currents, multicompartment neuron models are
used, where the neurons are divided into compartments small enough that the po-
tential can be assumed to be constant within the entire compartment [16]. The
dendrites are divided into cylindrical compartments, while the soma is modelled as
a single sphere. The compartments can be modelled as an RC circuit, shown in
Figure 2.6. The cell membrane, separating the intracellular space from the extra-
cellular space, acts as a resistor in parallel with a capacitor. The passive membrane
current is determined by the membrane resistance Rn and the membrane potential
Vn −E, where En is the equilibrium potential. Note that a passive cable formalism
[15] is used, where En is constant, and the entire system is linear. En can there-
fore be set to 0 mV and be ignored. The extracellular space is assumed to have
an infinitely large conductivity, leading to a constant potential in the extracellular
space. In the intracellular space, however, there is a finite conductivity between
each compartment, leading to different membrane voltages throughout the neuron,
and axial currents flowing between compartments.

Kirchhoff’s current law states that the net current entering a node in the cir-
cuit must equal 0, and the following equation governing the development of the
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Figure 2.6: The equivalent RC-circuit of multicompartment models. In compart-
ment n, Rn is the membrane resistance, Cn is the membrane capacitance, En is
the equilibrium potential, In is the transmembrane current, Vn is the membrane
potential and gn,n+1 is the axial conductance between compartments n and n+ 1.

compartment potentials can be derived [16, 20]

gn,n+1(Vn+1 − Vn)− gn−1,n(Vn − Vn−1) = Cn
dVn
dt

+
∑
j

Ijn , (2.9)

where gn,n+1 is the conductance between compartments n and n+1, proportional to
the cross section between the compartments.

∑
j I

j
n is the transmembrane currents

through the j channels in compartment n, in this case encompassing synaptic input
and leak currents. The left-hand side represents the intracellular axial currents
to the neighbouring compartments. The first term on the right hand side is the
capacitive current, while the second term is the currents due to other membrane
processes such as passive leak currents and synaptic input.

Current-based synapses are used in this project, meaning that the synapse input
current is of a fixed shape, independent of the compartment potential. Since a
passive neuron model is used, this makes the entire system linear.

Once the transmembrane currents are calculated, they can be used to predict the
LFP. Since the dendritic compartments are cylindrical, instead of the point source
formula in Equation 2.8, a line-source equation is used to calculate the LFP from
the dendritic transmembrane currents [20]. The currents through the membrane
are assumed to be spread out evenly in each section and a line-source current is
used for each compartment. By integrating eq. 2.4 along the center-line axis of the
compartment the equation [20]

φ(r, t) =
1

4πσ

∑
n

In(t)

∫
drn
|r− rn|

=
1

4πσ

∑
n

In(t)
1

∆sn
log

∣∣∣∣∣
√
h2n + ρ2n − hn√
l2n + ρ2n − ln

∣∣∣∣∣ ,
(2.10)

is obtained, where ∆sn is the length of compartment n, ρn is the distance perpen-
dicular to the compartment, hn is the longitudinal distance from the start of the
compartment, and ln = ∆sn + hn is the longitudinal distance from the end of the
compartment. The soma is assumed to be spherical, and a point source is used to
calculate its LFP contribution, leading to the full equation for a single neuron [20]

φ(r, t) =
1

4πσ

(
I0(t)

|r− r0|
+

N∑
n=1

In(t)
1

∆sn
log

∣∣∣∣∣
√
h2n + ρ2n − hn√
l2n + ρ2n − ln

∣∣∣∣∣
)

(2.11)
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where the first term is the point-source contribution from the soma, and the remain-
ing sum is the line-source contributions from all dendritic compartments.

2.3.3 LFP generated by point-neuron network

Point neurons are not spatially extended and cannot be directly used in the forward
modelling of the LFP described above. Instead, the hybrid scheme developed by
Hagen et al. (2016) [15] is used, where the spikes of the point neuron network are
mapped onto morphologically detailed neurons in a consistent manner. A one-to-
one mapping is made from point neurons to morphological neurons, and for each
connection in the point neuron network, a corresponding synapse is placed in a
compartment on its morphological counterpart. The synapses are placed in random
compartments with a probability weighted by the compartments surface area, within
given depth boundaries. Current-based synapses are again used, but the delta-
function shaped synapses used in the point neuron network cannot be used when
calculating the LFP, since they produce an infinitely large current. Instead, alpha-
function shaped synapses are used, described by the function

I(t) = JCte1−t/τs , (2.12)

where τs is the synaptic time constant, J the synaptic strength, and C a constant.
Due to the linearity of the system, scaling C will scale the resulting LFP by the
same proportion, and is ultimately irrelevant for the purpose of this project.

Alpha-function shaped synaptic currents could also have been used in the point-
neuron network model, but delta-function shaped currents are used instead because
it was used by Brunel in his analysis [14], so in order to make use of his results, the
same is used here. Alpha synapses with very small synaptic time constants would
have produced similarly shaped postsynaptic potentials to delta synapses, but in
order to get a more realistic low-pass filtering effect, a higher synaptic time constant
was used when calculating the dendritic currents, so this discrepancy was chosen
over better self-consistency.

The neuron somas are randomly placed within a cylinder of given dimensions,
and are randomly rotated around specified axes. For each spike in the point-neuron
network, the corresponding synapses on the postsynaptic morphological neurons are
activated after the delay period, and the currents are calculated as described in the
previous section. The transmembrane currents are then used to calculate the LFP.

A more detailed description of the hybrid modelling scheme is given by Hagen
et al. (2016) [15].

2.3.4 LFP prediction by population activity

Instead of explicitly simulating all the dendritic currents, which is a computationally
intensive task, Hagen et al. (2016) [15] found that it is also possible to make a good
approximation the LFP by the instantaneous population firing rates. Due to the
current-based synapse and passive dendritic currents, every synapse creates a unique
contribution to the LFP which does not change with time. The LFP generated by
the firing of a single point neuron i can be found by the convolution∑

k

Ki(t) ∗ δ(t− tki ) , (2.13)
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where Ki is some kernel specific for neuron i and tki are its spike times. The kernel Ki

would depend on which neurons it is connected to, their morphologies and parameter
values. Finding the kernel can be done by simply calculating the LFP generated by
the spike. Doing this for all neurons in a network by summing over all neurons,∑

i

∑
k

Ki(t) ∗ δ(t− tki ) (2.14)

would produce equal results to calculating the LFP as described above. However,
finding and using all the individual kernels would still be a laborious process. In-
stead of a kernel specific for each neuron, one could use the average kernel for each
population,

1

N

N∑
i=0

Ki(t) (2.15)

that could be convolved with the instantaneous population firing rate to predict an
approximate LFP. This kernel would encompass the full connectivity pattern, neuron
placements, morphologies and parameters. Using the population firing rate means
that the information on exactly which neurons are firing is lost, but it turns out that
the approximation is still very good. This kernel can be found in an analogous way
to the single neuron kernel, by calculating the LFP created by all the the neurons
of the population firing simultaneously. Due to the random connectivity, the exact
neuron positioning within the cylinder does not affect the kernel much, and it will
create a good approximation regardless of the seeds used to place synapses, neurons
and to set rotations.

2.4 Artificial neural networks

In the field of machine learning, artificial neural networks consist of nodes or neu-
rons, connected to each other in some fashion. These connections represent a single
multiplication operation. One of the simplest types of network is one consisting only
of fully connected layers.

Node i in layer k, nki , receives input from all nodes in the previous layer, and
outputs to all nodes in the following layer. The activation of the node is aki =
σ(
∑

j a
k−1
j wkji + bki ), where ak−1j is the activation of node j in layer k − 1, wkji is the

weight of the connection between node j in layer k − 1 and node i in layer k, and
bki is the bias of node i in layer k. The weights and biases are the parameters of the
network. σ is some nonlinear activation function. Figure 2.7 shows an example of
the connectivity in a small dense network. From the point of view of a single node, it
collects the activations from all nodes in the previous layer, multiplies each of them
by their specific weight, adds them together, adds its bias on top, and finally applies
the activation function on the resulting number. This nodes activation is the output
of the activation function, and will be collected by all nodes in the following layer
in the same manner. An arbitrary number of layers and nodes can be connected in
this manner, and the final layers is called the output layer, whose size will depend
on what the network is trying to learn.

In supervised learning, a network such as this would receive some input where
the desired output is known. As an example, if a network were to be trained to
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Figure 2.7: A small, fully connected network. Each node takes as input the activa-
tions of all nodes in the previous layer, multiplied by it, and broadcasts its activation
to all nodes in the subsequent layer. Figure taken from Michael A. Nielsen, ”Neural
Networks and Deep Learning”, Determination Press, 2015.

recognize cats in images, labeled training data would consist of images that may or
may not contain cats and a label specifying whether or not cats are actually present
in the image. The label could for instance be 1 if a cat is present, and 0 if not. This
allows you to define a loss function to determine how well the network is performing.
One example of such a function could be the mean squared difference between the
labels and outputs for all images in the dataset,

L(θ) =
1

N

N∑
n=0

(y(xn, θ)− y′n)2 (2.16)

where θ are the parameters, xn the input image, y(xn, θ) the network output and
y′n its label. The key to training a network such as this is an algorithm called
backpropagation, which computes the partial derivatives of the loss function with
respect to all parameters in the network, i.e. its gradient. By making a small
adjustment to the weights and biases in the opposite direction of the gradient, the
loss function should decrease, and the output should be closer to the label [22].

Typical datasets used to train neural networks contain thousands or tens of thou-
sands of images and labels, and ideally the weights should be changed as to minimize
the loss function for all of them. However, doing so would be very computationally
expensive. What is done instead is to randomly partition the datasets into mini-
batches, or simply batches, and using the gradient of the loss function over single
batches instead of the full dataset. The size of the batches are typically on the
order of one or a few hundreds. This is called stochastic gradient descent. For each
pass over the dataset, new random batches are created so the network is trained on
different combinations each time.

2.4.1 Convolutional neural networks

The problem with fully connected networks is the huge number of parameters, mak-
ing it unfeasible to create deep networks consisting of multiple hidden layers. An-
other type of networks, convolutional neural networks, greatly reduces the amount
of parameters, and don’t have this issue [11]. CNNs typically consist of convolu-
tional layers, normalization layers, max pooling layers and fully connected layers.
The workings and function of each layer will be briefly explained here.

In convolutional layers, filters, also called kernels, are slided across the input,
and the scalar product is calculated at each position. The width and height of the
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filters are chosen, but they always include all input channels. The strides, or step
size, that are taken as the filters move is also chosen, and if it is larger than one, the
input will be downscaled. If the strides prevent the filters to reach the boundaries
without ’overshooting’, zero-padding is used to allow them to reach the end. Zero-
padding can also be used to prevent downscaling due to the filters themselves, by
allowing them to start and end ’outside’ the image. A single bias is added to all
of the scalar products from a single filter, and an activation function, usually the
rectified linear unit (ReLU)

f(x) =

{
x, if x > 0

0, otherwise

is applied. The resulting output is called a feature map. Each filter produces its
own feature map, so the number of filter determines how many feature maps are
created. The feature maps from one layer is considered the channels in the next.
The trainable parameters of convolutional layers are the filters themselves. For a
more detailed introduction to convolutional layers, see, e.g. [22].

Batch normalization [23] is a technique used to help the training process. The
idea of batch normalization is to normalize the input to a layer so that its mean is 0
and variance 1, and is typically used after every or every few layers in the network.
It consists of the following steps [23]:

µB ←
1

m

m∑
i=1

xi and σ2
B ←

1

m

m∑
i=1

(xi − µB)2

x̂i ←
xi − µB√
σ2

B + ε

yi ← γx̂i + β ≡ BNγ,β(xi)

where µB is the batch mean and σ2
B the batch variance over dimensions dependent

on the type of layer. xi is example i ofm in the batch, and x̂i the normalized example,
ε is some small number for numerical stability. The first steps consist of finding the
batch mean and batch variance, over dimensions depending on the preceding layer,
explained below. The mean and variance is used to normalize the input, and the final
step consists of multiplying by and adding two trainable parameters. The reason
for this final step is to give the network the choice of undoing the normalization.
Forcing the activities to have certain statistics would also put constraints on what
the network can learn. By adding the final operation, the batch normalization layer
could perform the identity function if needed, by setting γ = σB and β = µB.

Before fully connected layers, the mean and variance is taken over the batch
dimension, so that each neuron receives normalized input. After convolutional layers,
however, we want to preserve the convolution property that every activity in the
same feature map is normalized in the same way. Therefore, the normalization is
done over all locations, and one pair of parameters γ and β is trained per feature
map. When training the network, the batch mean and variance is used to normalize.
During inference, however, these are not available. Instead, a moving average of the
batch means and variances is taken during training, providing a global mean and
average that are used for normalization when doing inference.
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Max pooling layers move a window of given size across each feature map and
outputs the largest value within the window at each step. This serves to down-
sample the input and make it more translationally invariant. If a particular feature
is detected its filter will output a high number to the feature map, and by max
pooling only the highest number from the feature map in each max pooling window
will be passed on to the next layer, making its exact position less important.

There are multiple techniques to avoid overfitting the model to the training data,
i.e., called regularization, including weight decay [24], which adds the L1-norm or
L2-norm of the weights as an additional term to the loss function, dropout [25],
which randomly removes a share of the neurons in a fully connected layer during the
training stages, and batch normalization also provides some degree of regularization
[23].

These are the basic building blocks of the convolutional neural networks. There
are no exact rules for determining the best architecture for a particular task, and they
are usually determined by trial and error. There are, however, some features shared
by most architectures. The first part of the network consists of convolutional layers,
followed by batch normalization layers and max pooling layers every so often. Batch
normalization can be applied after every layer or every few layers, and max pooling
is typically less frequently, especially in deeper networks, to avoid too much loss
of information. After these layers usually follows one or two fully connected layers
before the output layer. The exact architectures used in this project is described in
the next section.
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Chapter 3

Methods

3.1 Point neuron activity

The network studied in this project is a two-population network consisting of one
excitatory population of 10,000 neurons, one inhibitory population of 2,500 neurons.
Each neuron also receives excitatory input from some external population, modelled
as poisson processes. The simulations follow the formalism described in section
2.1.2, and was carried out using the NEST simulator v. 2.12.0 [26]. All parameters
used, with a short description, are given in table 3.1.

A total of eight different values were used for each of the parameters η, g and J ,
giving of 512 combinations. 12 simulations were run for 2001 ms for each parameter
combination with different seeds. The spiking histograms for each population were
saved to be used for predicting the LFP. An additional simulation was run for
each parameter combination for 3000 ms, where the spikes were saved for analysis
purposes. The simulations were performed on Stallo, a high performance computing
cluster consisting of 2.80 Ghz Intel Xeon E5 2680 CPUs.

3.2 LFP approximation by population activity

The kernels used for predicting the LFP by population activity were created by the
method described in 2.1.3.

Figure 3.1 shows a schematic of the column and neuron morphologies. There
are two layers, an upper one in which half of the excitatory synapses are placed
on the excitatory neurons, and a lower layer where the other half of the excitatory
synapses are placed on the excitatory neurons, and all inhibitory synapses are placed.
The inhibitory neurons have synapses placed only in the lower layer. The neuron
somas are placed randomly within the bounds of −450 µm < z < −350 µm and
r < 564 µm, and are not placed closer than 1 µm to other somas. The excitatory
neurons are rotated randomly about their apical axis, and the inhibitory neurons
are rotated randomly about all axes. The electrode is placed vertically down the
middle of the column, with six contacts, starting at z = 0 µm, separated equally by
100 µm.

A short simulation of 400 ms was run, where all excitatory neurons fire at t =
100 ms, and all inhibitory neurons fire at t = 300 ms. The kernels for the excitatory
population is the recorded LFP between t = 0 ms and t = 200 ms, divided by 10,000,
the number of excitatory neurons, and the kernels for the inhibitory populations is
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Table 3.1: Point neuron simulation parameters

Neuron parameters
Parameter Value Description

τm 20 ms membrane time constant
Cm 1 pF/µm2 specific membrane capacitance
Vr 10 mV reset potential
EL 0 mV resting potential
θ 20 mV spike threshold
τref 2 ms refraction period
td 1.5 ms synaptic delay
J 0.06, 0.08, .., 0.2 mV excitatory synaptic strength
g 4.0, 4.2, .., 5.4 relative inhibitory strength
η 1.6, 1.8, .., 3.0 relative external input
CE 1000 number of incoming excitatory connections
CI 250 number of incoming inhibitory connections

Connection rules

Connection rule fixed indegree
Self-connections yes
Multiple connections allowed yes

Simulation parameters

Simulation time 2001 ms
Simulation time step 0.1 ms
Integration method exact
Initial membrane potentials uniformly distributed between 0 and θ
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Figure 3.1: The cylinders show the upper and lower layers, as well as the lateral
bounds for soma placements. Vertically, the somas are confined between z = −350
and z = −450, and not the layer boundaries. The black dots are the six locations
at which the LFP is recorded, starting at z = 0 µm, equally separated by 100 µm,
ending at -500 µm The neuron on the left shows the inhibitory morphology, and the
neuron on the right shows the excitatory morphology.
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Table 3.2: Hybrid model parameters

Parameter Value Description

Neuron parameters

Rm 20000 Ω/mm2 membrane resistance
Cm 1 µF/cm2 specific membrane capacitance
Vinit 0 mV initial membrane potential
Ra 150 Ωcm axial resistance
λf 100 Hz frequency of AC length constant for d lambda rule
r 564 µm population radius
h 100 µm soma layer thickness
EL 0 mV resting potential

Electrode parameters

σ 0.3 Sm−1 extracellular conductivity
Ncontacts 6 number of electrode contacts
de 100 µm distance between contacts
re 5 µm electrode radius

the recorded LFP between t = 200 ms and t = 400 ms, divided by 2,500, the number
of inhibitory neurons. Although both the activity and LFP simulation is run with
a time resolution of 0.1 ms, the LFP signal is down-sampled to 1000 Hz. These
kernels are used to make the LFP prediction for all the point network simulations
by convolving it with their spike histograms with time bins of 1 ms.

3.3 Convolutional neural network

The LFPs generated were cut into lengths of 300 ms with overlaps of 150 ms to
increase the amount of training data. The first 150 ms of each signal was cut to avoid
any abnormalities occuring at the start of the simulations. Each simulation created
11 LFPs. Two unique simulations for each parameter combination were separated
from the rest to serve as test data, and another was separated as validation data.
A total of 50688 unique training signals were created, and 11264 test signals, and
5632 validation signals.

The architecture of the network is described in figure 3.2. For all convolutional
layers, the ReLU activation function is used, and is immediately followed by batch
normalization, as described in section 2.4. The convolutions are same-padded, and
only the max pools alter the output lengths. In the fully connected layers except
the output layer, batch normalization is performed on the input, and the ReLU
activation function is used. The output layer consists of 8 neurons, one for each
parameter value, where one-hot encoding of the label is used. L2-regularization
is performed on all weights in the network, and dropout on the first of the fully
connected layers.

One network was trained to for each of the parameters, i.e. three networks were
trained to make the full classification of all three parameters. The cross-entropy loss
function was used, and different optimizers were tried.

The training was done using TensorFlow v1.6 with cuDNN v7.1 on a single
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NVIDIA GeForce GTX 1070. The CNN training and evaluation scripts, along with
the simulation scripts can be found at the following github: github.com/janskaar

3.4 Statistical methods

To analyse and compare the activities of the point-neuron network across the entire
parameterspace, some key statistics have to be extracted from each simulation. The
regularity of firing of a neuron is measured by the coefficient of variation (CV) of
its inter-spike intervals. The CV is defined as the ratio of the standard deviation to
the mean. A neuron firing at the exact same intervals has a CV of 0. The pairwise
correlations of spike timings are also measured by the Pearson correlation coefficient,
which calculated for all pairwise spiketrains of 500 randomly chosen neurons, with a
bin size of 3 ms. The mean firing rate of all neurons in the network is also measured.

To analyse the simulated LFPs, the power spectral density is calculated. Since
12 simulations of the LFP are run per parameter combination, the average PSD
over all simulations for the particular parameter combination is calculated. Welch’s
method is used, with segments of length 256 and overlaps of 50% on the LFP of
each simulation, before they are averaged.
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Figure 3.2: Architecture of the convolutional neural network. On the left side, the
number and order of convolutional blocks, max pooling layers and fully connected
blocks. The numbers to the right of the convolutional blocks are the filter sizes,
strides, and output channels. The number to the right of the fully connected blocks
are the number of neurons, and the numbers to the right of the max pooling layers
are the size and strides. On the right, the details of each block is shown. The
convolutional layers are followed by ReLU activations, and batch normalization,
while the fully connected layers are preceded by batch normlization, and followed
by ReLU activation. Dropout is applied only on the first fully connected layer.
Matmul + bias represents the weight multiplication and addition of biases in the
fully connected layer, as explained in the previous chapter.
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Chapter 4

Results

4.1 Point network activity

To give an idea of what the network activity looks like, three rasters and full spike
histograms are shown in Figure 4.1, from simulations in different areas of our pa-
rameter space. The rasters are from 50 neurons randomly chosen regardless of
population. Recall that both population have the same number of synapses coming
from each population, so their activity will on average be the same.

The upper raster is from a simulation with the lowest values of g and J , where
the neurons fire with high regularity and there is a strong oscillation of the global
activity. It is this low-J regime that is closest to the synchronous regular state,
although it is quite far from completely the synchronous regular regime, which can
be observed by comparing it to the top left panel in Figure 2.5.

The middle raster is from a simulation where all parameter values are larger.
One can observe that the regularity has largely disappeared, and the synchrony
has decreased, although there is some degree of oscillating global activity, as there
always will be in finite sized networks. It is clearly further into the asynchronous
irregular regime. The activity is still quite high, as η has increased, but it’s still
lower than in the one in the first panel, due to the larger g and J . The lower raster
is from a simulation with the highest values of g and J , giving much sparser firing.

Figure 4.2 shows the mean firing rates and CVs over the entire parameter space.
Each heat map shows the η-g-plane for a single value of J . The firing rates generally
decrease as g increases, and as η decreases. This is of course to be expected, since
a higher η means more external excitatory input, and a higher g means stronger
inhibitory input. The effect of g on the firing rate is more marked for higher values
of J , causing a more rapid decline than for lower values of J . Apart from on
the g = 4 line, the activity also decreases with J . This might seem puzzling,
as J increases both the excitatory and inhibitory input by the same proportion,
but can be explained by considering the absolute amount of current entering the
neurons from local connections, JI + 4J = (4 − g)J . Although the ratio between
excitatory and inhibitory input is determined only by g, their absolute difference
is also determined by J , except for when g = 4. When g > 4, increasing J also
increases the amount of inhibition in the network. Below the line g = 4, it would
have the opposite effect, increasing the amount of excitation.

While the effect of J on the firing rate is relatively modest compared to the effect
of g, its effect on the CV is large. A low value of J leads to very regular firing, and a
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Figure 4.1: Rasters and firing histograms from three simulations with different pa-
rameter combinations. Each raster contains spikes from 50 randomly chosen neurons
regardless of population. The raster time resolution is 0.1 ms and the histogram time
resolution is 1 ms.
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Figure 4.2: CVs and firing rates for all parameter combinations. Each heat map
shows the η-g-plane for the value of J indicated above. The left pane shows the mean
firing rates averaged over all neurons in the network, and the right pane shows the
mean CV averaged over all neurons in the network.

high value leads to irregular firing. The effect can be observed in Figure 4.1. Recall
the definition of η = νextJCEτm/θ. For a constant value of η, if J increases, the
external firing rate νext must decrease by the same proportion. The incoming spikes
from the external population are modelled as a poisson process, where the number
of spikes in a given interval is poisson distributed. Since current based synapses are
used, a fixed amount of charge enters the neuron every time a synapse receives input.
The total amount of charge entering the neuron in some time interval will therefore
be XJ , where X is the poisson distributed number of incoming spikes in the interval
and J is the synaptic strength. Consider what happens to the variance of the input
current as J is scaled by some factor α. The mean external firing rate will decrease
by the same factor, ν2 = ν1/α, and the variances will be Var(X2) = Var(X1)/α.
The ratio of the variances of the incoming currents will therefore be

Var(αJX1)

Var(JX2)
=
α2J2Var(X1)

J2Var(X2)
=
α2Var(X1)

αVar(X1)
= α .

i.e. although the mean external input current stays the same, its variance increases
linearly with J .

Figure 4.3 shows the mean pairwise Pearson correlation coefficients of the spike
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trains from 500 randomly chosen neurons. The pairwise correlations are generally
very small, but there is still a clear tendency for them to decrease with g as the
network enters the asynchronous irregular state. Not shown in the figure is the
standard deviations, which are roughly 0.035 everywhere except at the lowest value
of J and g, where it is double that.

Figure 4.3: Mean Pearson correlation coefficients for all pairwise spiketrains of 500
randomly chosen neurons regardless of population, with a bin size of 3 ms.
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4.2 LFP approximation by population activity

The kernels for predicting the LFP from the population activity were produced
as described in section 2.2. They are shown in the bottom right panel in Figure
4.4. Each kernel represent the average contribution to the LFP by a single spike
of its population. Due to the linearity of the current based synapses and passive
dendrites, scaling the synaptic strengths will scale the LFP by the same proportion,
i.e. scale the respective kernels by the same proportion. The kernels in the figure
are shown with g = 4 and J = 0.1 mV. As g increases, the inhibitory kernels will
become larger compared with the excitatory ones. Note however also that since
the excitatory population is four times larger than the inhibitory population, so the
effect of the excitatory population on the LFP is larger than what the kernels might
suggest.

Figure 4.4: The bottom right part of the figure shows the kernels used for the
population activity approximation to the LFP. The inhibitory kernels are shown in
blue, and the excitatory kernels in orange. The top part shows both the excitatory
and inhibitory population activity for a single simulation, and the bottom left part
shows the approximated LFP in orange superimposed on the fully simulated LFP
in black.

The figure also shows the approximated LFP from as single simulation in orange
superimposed on the fully simulated one in black. Apart from some very slight de-
viations, the approximation for this particular simulation is near perfect. The spike
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histograms with which the kernels are convolved with are shown on the top. The
oscillation in the population activities are clearly visible in the LFP. The approxi-
mation is far better for this network than what it was for the 8-population network
analysed by Hagen et al. [15]. This could be due to the higher spatial complex-
ity of their network and sparser firing leading to contributions that are not as well
approximated by some population average.

Since the neurons of each population have the same average input, and therefore
also roughly the same population activity, the inhibitory and excitatory kernels can
be combined to a single kernel per channel encompassing the activity of both pop-
ulation. Scaling the parameter g will have slightly different effects on the channels.
Since scaling g will only affect the inhibitory kernels, whose contribution to each
channel relative to the excitatory contribution varies for each channel, scaling g will
have larger effects on some channels than others.

Figure 4.5: The shapes of the com-
bined kernels of both populations for
two values of g, weighted by the re-
spective population sizes are plotted
for each channel. The y-axes is equal
row-wise, illustrating the different ef-
fect g has on the ch. 4 and ch. 5.

Figure 4.5 shows the combined kernels,
weighted by their respective population
sizes, for the lowest and highest values of g.
As can be seen, g has little effect on chan-
nels 1-3 and 6, but on channel 4 and 5 the
effect is more noticeable. Note that channel
4 is the only one where the inhibitory kernel
has the opposite effect of the excitatory one,
where increasing g decreases the amplitude
of the combined kernel. Of course, the im-
pact it has on the population activity will be
much larger than the one it has directly on
the LFP calculations.

The population approximation to the
LFP for this network is not equally good
for all parameter values. Figure 4.6 shows
three plots of the LFP generated by the full
simulation and the population activity ap-
proximation for three different lower values
of g. When the network becomes almost
fully synchronous, as it is when g = 3.2,
a high frequency component in the approx-
imation appears that is not present in the
fully simulated LFP. This is due to the fact
that there are some very small contributions
still present at the time delay at which the
kernels are cut, which add up when almost
all the neurons fire simultaneously. This is
irrelevant for the parameter ranges we are
interested in. The two lower plots also show
some deviations in the approximated LFP,
but qualitatively they are more or less the
same.
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Figure 4.6: The population activity approximation of the ch. 5 LFP for three
different simulations with increasing values of g. The orange lines show the approx-
imations and the black lines are the fully simulated LFPs. The other parameters
for these simulations are J = 0.1 mV and η = 2.0.

4.3 Parameter effects on LFP

To first give an idea of what the LFP signals looks like, Figure 4.7 shows three exam-
ples in the time domain. The upper one is from the synchronous regime, oscillating
rapidly with the global activity. The two lower ones are both from different parts
of the asynchronous regime, lacking any single dominating frequency.

The dimensionality of the parameter space and resulting LFPs make their vi-
sualization across parameters difficult. With three changing parameters and two-
dimensional LFP signals, ideal figures would require five dimensions. Instead, to
make things manageable, a single channel of the LFPs through a line in the param-
eter space are plotted to try to elucidate the effects each parameter has on the LFP,
with the other two kept constant at low, intermediate and high values. The LFPs
are shown in the frequency domain, and is averaged over all simulations done with
each parameter combination. Channel 5 is chosen, as it is the one with the largest
contributions from both the inhibitory and excitatory population.

In Figure 4.8 the PSD of all 8 LFPs arising from the varying values of g are plot-
ted for low, intermediate and high values of η and J , indicated at the top and right
hand side. The shade of gray indicates the value of g, with darker shades meaning
higher values. This gives an idea of the diversity of the LFPs generated by these pa-
rameters, and the effect each parameter has on the LFP. For low values of J , shown
in the leftmost column, the LFPs have a clear peak frequency, corresponding to the
global oscillation of activity, which shifts toward lower frequencies as g increases.
These are the ones closest to the synchronous regular state. As η increases, the
peaks shift toward higher frequencies. These are all the same effects we saw in the
network activities in Figure 4.2, and for low values of J , the LFP is dominated by
the frequency of the synchronous global activity. These peak frequencies gradually
disappear as J increases. As the value of J increases, the effect of η also decreases,
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Figure 4.7: Three example LFPs from ch. 5 generated with different parameters.
The parameter values are the same as the ones used in figure 4.1.

and for high values of J , the LFPs look very similar regardless of the value of η.
The additional effect J has on the LFP is to increase the amplitude of the lower
frequencies. This is a very marked effect, and for the three values shown here, they
do not even overlap.

The parameters g and J change the resulting LFP in a more fundamental manner
that η does. There are two reasons for this. Firstly, for the parameter g and J change
the activity of the network in a more fundamental sense, in that they both facilitate
the transition from the synchronous regular state to the asynchronous irregular state,
as opposed to η, which mainly shifts the peak frequencies where they are present.
Secondly, J and g have a direct effect on the generation of the LFP itself, in that
they both directly affect the synaptic currents determining the LFPs, whereas η
can only affect the LFP through the network activity. Recall that when mapping
the population activities to the LFP, increasing J will scale all kernels by the same
proportion, directly increasing the amplitudes of the LFP. As shown above in figure
4.5 changing g, however, will only scale the inhibitory kernels, which gives slightly
different effects on each channel. The effect is quite small, however, and for channel
5 it should only slightly increase the amplitude of the LFP, so generally the direct
effects of g on the calculation of the LFP is small compared to the effect it has
through the network activity.
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Figure 4.8: Each subplot shows the PSD of channel 5 of the LFPs for all 8 values
of g, with fixed values of η and J incidated at the top and on the right. The value
of g is indicated by the shade of gray, with darker meaning a higher value.
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4.4 Training convolutional neural networks

Figure 4.9: Classification training curves where the loss function smoothly converges
to a local minimum. Orange lines are accuracies, measured as LFPs correctly binned
to their parameter values. Blue lines are test and validation losses, and red lines
are training losses. One step constitutes weight updates after a single batch. The
Adam optimizer with the default parameters is used here, and a fixed learning rate
of 10−4. For the network classifying by value of η, a dropout of 0.6 was applied, but
for the other two networks, dropout was not applied.

First, to give a better idea of the problem the network is faced with, consider
Figure 4.8 again. For each parameter value, the network is trying to correctly bin all
64 possible parameter combinations containing that specific parameter values, while
excluding all others. As an example, the leftmost column shows the PSDs of 24 of
the 64 LFPs the network trained to classify J-values has to recognize as being in
the same category, while all LFPs in the other two columns must be excluded. Note
that these are very smooth curves, as they are the average LFPs over 12 different
simulations, where each PSD has been obtained by Welch’s method, resulting in
much less noise than what the network is faced with. It will nevertheless serve as a
guide to understanding the classification task.

Various network architectures were tried, and the one used for the training pre-
sented here is shown in Figure 3.2. A thorough and systematic architecture search
was not performed due to limited resources, but it was generally found that with
eight convolutional layers the network performed well, and simply adding more lay-
ers did not improve performance. Four max pooling layers with a window of 2 kept
the input size to the fully connected layers at 18 per filter, allowing for relatively
large batch sizes and number of filters without exceeding the memory limits. Dif-
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ferent optimizers and weight initializations were also tried, leading to quite different
results. Some difficulties were had avoiding getting trapped in local minimas. Typ-
ically, when the loss was minimized in an smooth fashion, as can be seen in Figure
??, the network slowly converged to a local minimum. That particular training was
done with the Adam optimizer, with the default parameter values, a learning rate
of 10−4 without decay, and a batch size of 400. In contrast to this, the best per-
formance was generally achieved during training in which the loss fluctuated a lot.
An example of this is seen in Figure 4.10. Both weight initializations and optimizer
parameters had a large effect on the stability.

Figure 4.10: Training curves of the best achieved results. The network is the same
as in figure 4.9, but with a different optimizer and initialization.

The best results were gained with a mini-batch stochastic gradient descent op-
timizer with Nesterov momentum [27]. With a momentum of 0.9, batch size of
400 and an exponentially decreasing learning rate, starting at 10−5, decreasing by
a factor 0.9 every 200 steps, i.e. slightly more often than every other epoch. The
training curves can be seen in Figure 4.10. A strongly oscillating loss and accuracies
can be observed, particularly for g and J , but they quickly reach a much higher
accuracy and lower loss than the more stable counterpart in Figure 4.9, achieving
an accuracy of around 75% for η predictions, and an accuracy of around 90% for g
and J , at slightly more than 4,000 and 2,000 steps respectively. Overfitting is still
present in the network classifying η values, but for g and J , there is no overfitting.
This indicates that there is likely much room for improvements in the tuning of the
optimizer and in the initialization of the network. Particularly, a more fine-grained
hyperparameter search would likely have been fruitful. It could also be the case that
the loss function is highly chaotic around the area giving the best results, and other
architectures would be better suited, for instance introducing skip connections [28],
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which typically gives a much smoother loss function [29], although it’s difficult to
see why this should be necessary with a relatively shallow network such as the one
used here. It could also be that a smaller network ultimately could have provided
better results with better tuned hyperparameters and initializations.

4.4.1 Classification accuracies

The accuracies shown in Figure 4.9 and 4.10 is the mean over the entire test dataset.
Figure 4.11 shows the accuracies of all three networks as a function of each pa-
rameter. In other words, the upper plot shows the accuracies of η predictions

Figure 4.11: For each of the three net-
works classifying η, g and J , the accu-
racies are plotted as functions of the
three parameters.

as a function of the η, g and J .

The parameter η is overall the most dif-
ficult to classify. Since η doesn’t change the
network activity in a fundamental way in the
ranges of parameters used here, this is per-
haps to be expected. For η predictions, the
network performs far better in classifying
the lower values than the higher. A similar
effect can be seen in the network classifying
g and J , where each network performs best
at low values of the parameter it is trying to
classify, and a sudden jump in performance
for the very highest value. The η predictions
are also more accurate for higher values of g,
but it doesn’t depend much on the value of
J , so it’s difficult to say why this should be,
as both g and J play an important role in
determining the activity state.

The difficulty of classifying the different
parameters are dependent on different as-
pects of the LFP. While value of J has a
clear effect on the accuracy of classifying g
and J , it doesn’t affect the predictions of
η much. The accuracy of η predictions are
strongly dependent on both η and g, while
the accuracy of J predictions are mostly de-
pendent on the value of J .

Generally, the difficulty of classification
doesn’t seem to be much dependent on
where the network is on the synchronous

regular-asynchronous irregular axis, as the networks doesn’t show a clear tendency
to perform better or worse for increasing values of both g and J , but rather some
other factors seem to determine the difficulty. The accuracies broken down by each
parameter combination can be seen in Figure 4.12.

When the network makes a prediction error, it almost always predicts one of the
immediately neighbouring values. Specifically, for g, out of the 1183 erroneous clas-
sifications made, all but two were classified as being in an immediately neighbouring
bin. For η, the corresponding numbers were 124 out of 2699, and for J , 4 out of
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Figure 4.12: Prediction accuracies broken down by each parameter combination.
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1328. Unsurprisingly, the most difficult task is separating the most closely related
LFPs.
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4.4.2 Inspecting the first filters

Trying to figure out how a convolutional neural network works is no easy task. In
the deeper layers, the filters are looking for features in the features detected in the
previous layers, so inspecting them directly doesn’t give much intuition. In the very
first layer, the filters can be directly inspected to get an idea of what features they
pick up. The upper part of Figure 4.13 shows channel 3 from 121 out of the 256
filters in the very first layer in the network classifying values of g. In other words,
these are some of the kernels that are cross-correlated with channel 3 of the input
LFP.

It is immediately clear that there are a variety of different frequencies present
in the filters, and it seems that different filters pick up different frequencies. Some
of the filters seem to pick up a single frequency where others pick up combinations
of frequencies. Many of them look similar, which could suggest that there are
redundancies and perhaps the number of filters could be reduced, but the different
input channels are not taken into account.

The bottom part of the figure shows the all 6 channels of 10 filters. Since the
frequency content of the channels are largely the same, one would perhaps expect the
channels of single filters in the first layer to be similarly shaped, but this looks largely
not to be the case. What could perhaps be the case instead is that the channels of
the first filters act as logical gates, enabling a single filter to determine the presence
of certain features and absence of others. If the filter channels did indeed have the
same shape, the different channels wouldn’t provide much new information, but it
is ultimately difficult to say by inspecting the filters alone.
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Figure 4.13: The upper part shows channel 3 of 121 of the 256 filters in the first
convolutional layer. The lower part shows all 6 channels from 10 of the filters.
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Chapter 5

Discussion

The aim of this project has been to explore the possibilities of utilizing convolu-
tional neural networks on local field potentials, or brain signals in general. To this
end, we constructed a simple point neuron network for which we simulated the LFP
generated by its activity for different values of some key parameters of the network.
The task of extracting parameter values of a spiking point-neuron network by using
the LFP was chosen as a starting point to test the applicability convolutional neu-
ral networks on this type of signal. The simplicity of the model network allows a
thorough understanding of the link between the parameters of the network and the
resulting network activity and LFP. The CNN was able to quite accurately classify
the LFPs based on their parameter values. Each CNN was trained to classify a sin-
gle parameter having eight possible values, regardless of the value of the other two
parameters. The network classifying the parameter η achieved an accuracy of 75%,
while the networks classifying g and J achieved an accuracy of 90%. This implies
that for this particular network, the LFP contains very specific information about
these parameters. There are, however, many parameters of the network that we did
not vary, for instance the synaptic time delay and synaptic time constant, and for the
three parameters we did vary, they were still constant for all neurons in the network.
If more parameters were varied, a more diverse set of LFPs would be generated, and
would make the classification task much more difficult, so the results achieved here
is specific to this particular network and parameters used. Nevertheless, the results
imply that convolutional neural networks are able to extract information from the
LFP signals, which indicates that they can potentially play an important role in
interpreting this type of signals.

The model used in this project was a simple one, and has served as a proof of
concept showing that for this network, very specific information about the spiking
network is conserved in the LFP, and that convolutional neural networks are able
to extract that information. A more thorough analysis of the features used by the
convolutional neural networks to make the classifications could provide additional
information about the nature of the signature of the parameters on the LFP. Par-
ticularly, an analysis of the activations in the network when presented with different
LFPs could be done. This could potentially allow a mapping between each par-
ticular parameter value and the subset of filters its resulting LFP activates, giving
insight into what particular features of the LFP are actually used to make the clas-
sifications, and give an idea of how the parameter values are ’encoded’ in the LFP,
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so to speak.

The work done in this project has laid some groundwork for further investigations
of utilizing deep learning on brain signals, and a natural extension of the work done
here would be to apply the same methods on larger, more realistic network models,
such as the one used by Hagen et al. (2016), which encompasses an entire cortical
column, and shows much more realistic firing statistics and LFPs [15]. An extension
of the approach taken here to more realistic network models such as that one could
potentially give insights on the LFPs generated by real cortical networks.
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