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Abstract 

Background: Parentage assignment is usually based on a limited number of unlinked, independent genomic 
markers (microsatellites, low-density single nucleotide polymorphisms (SNPs), etc.). Classical methods for parentage 
assignment are exclusion-based (i.e. based on loci that violate Mendelian inheritance) or likelihood-based, assuming 
independent inheritance of loci. For true parent–offspring relations, genotyping errors cause apparent violations of 
Mendelian inheritance. Thus, the maximum proportion of such violations must be determined, which is complicated 
by variable call- and genotype error rates among loci and individuals. Recently, genotyping using high-density SNP 
chips has become available at lower cost and is increasingly used in genetics research and breeding programs. How-
ever, dense SNPs are not independently inherited, violating the assumptions of the likelihood-based methods. Hence, 
parentage assignment usually assumes a maximum proportion of exclusions, or applies likelihood-based methods 
on a smaller subset of independent markers. Our aim was to develop a fast and accurate trio parentage assignment 
method for dense SNP data without prior genotyping error- or call rate knowledge among loci and individuals. This 
genomic relationship likelihood (GRL) method infers parentage by using genomic relationships, which are typically 
used in genomic prediction models.

Results: Using 50 simulated datasets with 53,427 to 55,517 SNPs, genotyping error rates of 1–3% and call rates 
of ~ 80 to 98%, GRL was found to be fast and highly (~ 99%) accurate for parentage assignment. An iterative approach 
was developed for training using the evaluation data, giving similar accuracy. For comparison, we used the Colony2 
software that assigns parentage and sibship simultaneously to increase the power of the likelihood-based method 
and found that it has considerably lower accuracy than GRL. We also compared GRL with an exclusion-based method 
in which one of the parameters was estimated using GRL assignments.This method was slightly more accurate than 
GRL.

Conclusions: We show that GRL is a fast and accurate method of parentage assignment that can use dense, non-
independent SNPs, with variable call rates and unknown genotyping error rates. By offering an alternative way of 
assigning parents, GRL is also suitable for estimating the expected proportion of inconsistent parent–offspring geno-
types for exclusion-based models.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the field of animal genetics, low-density single nucleo-
tide polymorphisms (SNPs), microsatellites, and ampli-
fied fragment length polymorphisms (AFLP) have long 
been the preferred types of genomic data for parent-
age assignment due to their low cost [1–3]. In prac-
tice, the foundation of parentage assignment rests on 

exclusion- and likelihood-based methods [4]. Exclu-
sion-based methods rely on their ability to exclude false 
parent–offspring combinations when the offspring’s can-
didate parents’ genotypes violate Mendel’s laws. These 
methods are often used due to their ease of interpreta-
tion, but the number of expected exclusions depends 
on allele frequencies in the population and on genotype 
call rates and error rates [5]. Exclusion-based methods 
also require more loci than likelihood-based methods 
since only genotypes with Mendelian inconsistencies 
are used [6]. Likelihood-based methods often calculate 
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the likelihood ratio (LR) of the genotype of the offspring, 
which is the probability of the offspring’s genotype given 
the genotypes of the candidate parents, relative to the 
probability of observing the genotype in the population 
by chance. The LR statistic effectively gives more weight 
to rare alleles. Different loci are typically assumed inde-
pendent, such that total LR is multiplied over all loci. 
Likelihood-based methods have higher power than 
exclusion-based methods, but their interpretation is 
more complicated. Both likelihood- and exclusion-based 
models usually assume known and homogenous geno-
type error rates and independent loci, and do not account 
for variation in genotype call rates [5, 7, 8], which are all 
important assumptions when working with high-density 
SNP data. For dense SNP chip data, the assumption of 
independent inheritance among loci is not realistic (i.e., 
alleles are inherited on large DNA segments), which may 
lead to inflated LR values when using conventional likeli-
hood-based methods.

Parentage can also be assigned and tested by using 
realized genomic relationships. The interrelationship 
between parents governs the expected inbreeding in off-
spring, as well as parent–offspring relationships. Real-
ized genomic relationships assess the average genomic 
similarity across loci and do not assume independ-
ence of the loci. Increasing the number of markers in 
the calculations, increases the precision of the genomic 
relationships. Our aim was to study whether genomic 
relationships can be used to perform computationally 
fast and accurate parentage testing with high-density 
SNP data.

Methods
Residual genomic relationships
Estimates of genomic relationships require large numbers 
of loci [9], and their expectation is proportional to the 
genetic covariance between individuals. The proposed 
method for parentage testing is developed for trio par-
entage testing, i.e. using a single offspring and two paren-
tal candidates. The method uses genomic relationships 
estimated by VanRaden’s first method [10], in which the 
genomic relationship between two individuals is calcu-
lated as follows:

where rij is the genomic relationship between individu-
als i and j , mit and mjt are the genotypes (coded 0, 1 or 
2 for the alternative homozygous, the heterozygous, and 
the homozygous reference genotypes, respectively) for 

(1)rij =
∑c

t=1 (mit − 2pt)
(

mjt − 2pt
)

2
∑c

t=1 pt(1− pt)
,

individuals i and j at locus t , pt is the allele frequency in 
the population at locus t , and c is the number of loci (i.e. 
SNPs). Genomic relationships can be calculated even for 
extremely dense genomic data (even up to full sequence), 
and do not assume independence of the loci. Figure  1 
shows the relationships in a trio consisting of an offspring 
and two (candidate) parents.

We used Eq. (1) to estimate the genomic interrelation-
ships between parents and offspring, i.e., the relationship 
of the offspring with itself ( rO,O ), relationships of the two 
parent candidates with themselves ( rP1,P1 and rP2,P2 ), rela-
tionships of the offspring with both parent candidates 
( rO,P1 and rO,P2 ), and relationships between the parent 
candidates ( rP1,P2 ), see Fig. 1.

Expected genomic relationships of an offspring with its 
true parents (TP) are [11]:

In other words, the relationship of an offspring with a 
parent is the average of the genomic relationship of the 
parent with itself and the relationship between the two 
parents. The expected relationship of the offspring with 
itself is [12]:

E
(

rO,P1|TP
)

= 0.5
(

rP1,P1 + rP1,P2
)

,

E
(

rO,P2|TP
)

= 0.5
(

rP2,P2 + rP1,P2
)

.

Fig. 1 A trio of offspring (O), first parent (P1) and second parent (P2). 
The variables near the arrows indicate genetic relationships between 
individuals, while the variables over P1 and P2, and below O, are the 
individuals’ genetic relationships to themselves, respectively. Sexes 
are included in the figure but are not used by the GRL method
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where 0.5rP1,P2 is the expected inbreeding coefficient of 
the offspring. Three residual relationships are defined 
as differences between actual and expected genomic 
relationships:

Inbreeding is accounted for when using the above 
residuals, as well as the direction of the relationships. For 
example, using the offspring as a candidate parent, and/
or using a true parent as the offspring, will result in large 
residuals, i.e., realized relationships that deviate substan-
tially from the expectations of a true parent–offspring 
trio.

Genomic relationship likelihood (GRL)
The above residual relationships are used to calculate a 
genomic relationship log-likelihood using a multivariate 
normal density function, assuming:

where e =





eO,P1

eO,P2

eO,O



 and µ =





µ1

µ2

µ3



 is a vector of the 

overall means for the residuals for true parent–offspring 
trios. In the absence of genotyping errors, the residuals 
are expected to be approximately normally distributed 
around zero ( e ∼ N (0,�) , see [Additional file  1: Figure 
S1]. The central limit theorem states that the sum of 
many independently and identically distributed variates 
will be approximately normally distributed. The variates 
in Eq. (1) may be considered as originating from a com-
mon (albeit unknown) distribution, but not all are inde-
pendent (i.e., the effective number of loci is lower than 
the actual number of loci). Still, given a substantial num-
ber of loci distributed over the entire genome (i.e., most 
of the loci are indeed independent), genomic relation-
ships (summed over all variates) are still likely to 
approach a normal distribution (see [13], Theorem 27.4). 
Plotting the residual relationships for true parent–off-
spring trios revealed that they were approximately nor-
mally distributed [see Additional file 1: Figures S1, S2 and 
S3].

Since genotyping errors can occur in real data (and the 
expected residual relationship may thus deviate from 0), 
parameters of the distribution of residual relationships 

E
(

rO,O|TP
)

= 1+ 0.5rP1,P2,

eO,P1 = rO,P1 − E
(

rO,P1|TP
)

,

eO,P2 = rO,P2 − E
(

rO,P2|TP
)

,

eO,O = rO,O − E
(

rO,O|TP
)

.

e ∼ N (µ,�),

were estimated using an iterative method (see Section 
“Estimation of model parameters” below). Matrix � is the 
3 × 3 (co)variance matrix of the three residual variates in 
true parent–offspring trios and was also estimated using 
the iterative method. The genomic relationship likelihood 
(GRL) was defined as:

which is proportional to the natural logarithm of a mul-
tivariate normal density function. Based on (iteratively 
assigned) parent–offspring trios, a threshold for accepta-
ble GRL values can be defined. In this study, we assumed 
that a parent–offspring trio had to have a GRL value that 
was within the highest 99% of the known parent–off-
spring GRL values, thus accepting a false negative rate of 
1%.

Difference between the top two trios ( �GRL)
To reduce the false positive rate and increase the true 
negative rate, the value of �GRL was also assessed based 
on:

where GRL1 (GRL2) is the (second) highest GRL value 
achieved for an offspring across all candidate parent–off-
spring trios. This is analogous to the Δ statistic used in 
Marshall et al. [7], with more details in Appendix 1.

In datasets where both parents of an offspring are 
present and no other relatives are available, �GRL will 
typically be very high, since no other realistic trio exists. 
When other close relatives of the offspring are included 
among the candidate parents, �GRL may be lower due 
the potential existence of multiple “likely” false par-
ent candidates, e.g. uncles, aunts, grandparents, siblings 
or descendants of the offspring. High relatedness to the 
offspring alone is not sufficient to obtain a high value for 
GRL2 since the method accounts for interrelationships of 
the whole trio. For example, if the parent candidates con-
sist of one true parent and one full-sib of the offspring, 
interrelationships of the trio will typically be inconsistent 
because of the high relationship between the two paren-
tal candidates, although the relationships of the offspring 
with itself and with the parent candidates may be “nor-
mal” (these should be elevated if the relationship among 
the two parent candidates is high). In cases where a par-
ent is missing but many other close relatives of the off-
spring are present, GRL1 can, in rare cases, exceed the 
threshold for GRL1-values, but then �GRL will typically 
be low, since multiple highly-related candidate parents 
are present. Thus, thresholds for assignment must be set 
for both GRL1 and �GRL.

GRL = −
1

2
(e− µ)′�−1(e− µ),

�GRL = GRL1 − GRL2,
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Estimation of model parameters
Estimation of the GRL-parameters, i.e. µ , � and the GRL 
threshold, is undertaken with an iterative method which 
is briefly described below. The �GRL threshold was set to 
6.9, which implies that the best parent pair should be at 
least 1000 (= e6.9) times more likely than the second-best 
parent pair. See Section  2 in Additional file  2: for more 
details.

Step 1: allele dropping
Random matings between individuals from the dataset 
are performed in silico to produce simulated offspring. 
For simplicity, all loci are assumed to be inherited inde-
pendently. The simulated trios are then used to obtain 
initial estimates of the GRL parameters. A smaller subset 
of the loci may be used in this step.

Step 2: assignment iteration
Trios are initially assigned using the GRL method based 
on the parameters estimated in Step 1. The method relies 
on the presence of true trios (albeit unknown) in the 
data. Parameters µ and � are then re-estimated using the 
newly assigned trios from evaluation data, and then used 
as the basis of the next assignment iteration. Iteration 
stops when the number of assignments is smaller than in 
the previous iteration. Thus, the GRL training procedure 
iteratively assigns trios while (re-)estimating the GRL-
parameters until no more trios can be assigned. See Sec-
tion 1 in Additional file 2: for more information about the 
training procedure.The parameter estimates obtained in 
the second-to-last iteration are considered optimal. To 
limit the number of plausible trios to test, only individu-
als with a relationship larger than 0.25 with an offspring 
were considered as potential parents, i.e. rO,P1 > 0.25 and 
rO,P2 > 0.25 . The GRL threshold is not re-estimated in 
this step.

When pre-defined parameter estimates are used, the 
assignment process starts without estimating parame-
ters. This is equivalent to running only the second-to-last 
iteration of Step 2.

Simulation study
A simulation study was conducted to investigate the 
strengths and weaknesses of the GRL method. QMSim 
[14] was used to produce simulated datasets. The ini-
tial size of the historical population was set to 500 and 
remained constant for 5000 generations to achieve muta-
tion/drift equilibrium. In generation 5001, the population 
size was reduced to 300, of which 100 were males and 
200 were females. Twenty chromosomes were simulated, 
each 1 Morgan long, and the number of SNPs was set 
such that approximately 54,000 SNPs (53,427 to 55,517) 

with a minor allele frequency higher than 0.05 existed 
in the population. The SNP mutation rate was set to 
0.00003, assuming a recurrent mutation model (i.e. only 
two possible alleles exist). After the historical population, 
a recent population was simulated over five generations, 
with 1000 individuals per generation (5000 individuals 
in total). These were produced by random mating of 100 
sires and 200 dams per generation, with one sire mated 
with two dams and each mating resulting in five recorded 
offspring. Of these, the last two generations were used in 
the parentage assignment tests. Fifty repetitions of the 
QMSim simulations were performed to produce 50 data-
sets. Genotype errors (1 and 3%) and call rates (80–100%) 
were added using a custom script written in the Python 
programming language, allowing both erroneous and 
missing genotypes among individuals, see Section  2 in 
Additional file 2: for more information.

The GRL method was programmed in the C++ pro-
gramming language that emphasizes parallel processing. 
The program was run in a Linux cluster environment 
using multiple CPU. Tests were run using the training 
procedure on all (evaluation) datasets. In addition, pre-
estimated parameters were obtained from some of the 
runs with training. The datasets were not divided into 
offspring and parents, and thus all true offspring and 
parents had the potential to be assigned parents both 
correctly (offspring only) and incorrectly (parents and 
offspring).

There are three possible outcomes of the assignment 
process: (1) ‘Correct’, meaning correct assignment of true 
parents to the unknown offspring (parents must be pre-
sent), (2) ‘Incorrect’, meaning wrong candidate parents 
were assigned and (3) ‘No-assign’, meaning no assign-
ment was made. These were quantified for each analysis.

Comparison with a conventional likelihood‑based method
To compare GRL with other methods, we analyzed five 
of the simulated datasets, arbitrarily chosen from all 50 
datasets, by using the Colony2 software V2.0.6.3 [15]. 
Colony2 uses a likelihood-based method that jointly 
assigns both sibship and parentage based on a simulated 
annealing process [16, 17]. This increases the assignment 
power compared to methods that use a single unknown 
individual (the offspring) and one or two candidate par-
ents. Colony2 was run using a 1% genotype error (true 
and assumed). In addition, the following settings were 
chosen: (1) do not update allele frequencies, (2) assume 
no inbreeding, (3) no sibship scaling, (4) no sibship prior, 
(5) short run length, (6) use the pairwise likelihood score 
(PLS) and (7) allelic dropout rate set to zero for all mark-
ers. The ‘ParentPairs’-file produced by Colony2 was used 
to check accuracy of assignments. Any assignments for 
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which mother, father or both were missing, or for which 
the assignment probability reported by Colony2 was less 
than 0.5, were categorized as a “No-assign”. Suggested 
parent pairs with at least one incorrect parent were cat-
egorized as “Incorrect” assignments and pairs with both 
parent candidates correct were categorized as “Correct” 
assignments.

Comparison with an exclusion‑based method: the binomial 
exclusion method
We developed an exclusion-based method in which one 
of the parameters was estimated using GRL-assigned 
trios using custom scripts written in the R programming 
language. Exclusion ratios (ER) for the GRL-assigned 
trios were calculated as the ratio of the number of exclu-
sions for a trio and the number of loci for which all three 
individuals in the trio had called genotypes. We used a 
binomial distribution as a basis for the new assignments, 
i.e. E ∼ Bin(n, p) , where E is the number of trio exclu-
sions, n (number of trials) is the number of calls for the 
trio, and p (success probability) is the median ER from 
the GRL assigned trios.

To limit the number of trios for binomial exclusion 
assignment, we used the same parent–offspring genomic 
relationship threshold that we used for the GRL assign-
ments, i.e. rO,P1 > 0.25 and rO,P2 > 0.25 . Assignment was 
done in a similar manner as with GRL, using both a con-
fidence cutoff and a �-score. For more information, see 
Section 3 in Additional file 2:. We refer to this method as 
the binomial exclusion method (BEM) in the text.

Results
Assignment results using Colony2 are shown in Fig.  2, 
and the analogous GRL- and BEM results are shown in 
Figs. 3 and 4. The most noticeable differences in results 
between GRL- and BEM are shown in Figs. 5 and 6. Here, 
both methods used training estimates from a dataset 
with a 3% genotype error, while the true error was 1%. 
Results that were similar between GRL and BEM are 
shown in Figures S4, S5, S6, S7, S8, S9, S10 and S11 [see 
Additional file 3: Figures S4, S5, S6, S7, S8, S9, S10 and 
S11]. In Figures S4 (GRL) and S5 (BEM), parameters were 
pre-estimated at a 3% genotype error (true and assumed). 
Figures  S6 (GRL) and S7 (BEM) show the results for a 
true error of 3% and an assumed error of 1%. Figures S8 
(GRL) and S9 (BEM) show the results for training with 
a 1% error rate, and Figures  S10 (GRL) and S11 (BEM) 
for training with a 3% error rate. Total results over all 
datasets are shown in Table  S1 [see Additional file  4: 
Table S1].

The Colony2 software was tested using a 1% true 
genotype error rate (assumed and true). When parents 
are available, Colony2 had a correct assignment rate of 

22.4%, a no-assign rate of 75.4% and an incorrect assign-
ment rate of 2.2%. For individuals without parents, the 
incorrect assignment rate climbed to 14.7% and the (cor-
rect) no-assign rate climbs to 85.3% (see Fig. 2).

Figures  3 and 4 show the comparison between GRL 
and BEM when parameter estimates from an arbitrar-
ily chosen dataset were used. When parents were avail-
able in the dataset and the genotype error rate (true 
and assumed) was 1%, using GRL resulted in 99.5% of 
the individuals being correctly assigned both parents 
(Fig.  3), while 99.9% were assigned correctly with the 
(GRL-trained) BEM (Fig. 4). In both cases, no individuals 
with parents in the dataset were assigned incorrect par-
ent pairs. When parents were not available, the incorrect 
assignment rate for GRL climbed to 0.01% for both 1% 
and 3% genotype error rates (Fig. 3 and Additional file 3: 
Figure S4).

The most notable difference in results between GRL 
and BEM was found for a true genotype error rate of 
1% when parameter estimates were from a dataset with 
a 3% error rate (Figs. 5 and 6). Here, GRL did not assign 
any trios. However, BEM assigned all trios correctly 
when parents were available, but incorrectly assigned 
1.0% of the trios when parents were not available. 
When the true and assumed genotype error rates were 
reversed (i.e. a true error rate of 3% and an incorrectly 
assumed error rate of 1%), neither method assigned any 

Fig. 2 Assignment results from Colony2 for individuals with (left 
panel) and without (right panel) available parents in the dataset. 
Results from five simulated datasets are averaged. The true and 
assumed genotype error rate was 1% for all datasets
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trios, while the GRL method incorrectly assigned 0.02% 
trios, both when parents were available and when they 
were missing [see Additional file 3: Figures S6 and S7] 
and [see Additional file 4: Table S1].

An alternative to assuming a set of predefined param-
eters is to estimate these by using the evaluation data 
directly. Averaged results for each dataset are shown 
in Figures  S8 and S9 [see Additional file  3: Figures  S8 
and S9] (1% genotype error) and in Figures S10 and S11 
[see Additional file  3: Figures  S10 and S11] (3% geno-
type error). These results are very similar to the results 
shown in Figs.  3 and 4 (1% true and assumed error 
rates), and Figures S4 and S5 [see Additional file 3: Fig-
ures S4 and S5] (3% true and assumed error rates).

Discussion
Parentage assignment is mostly performed using likeli-
hood-based models with microsatellites [2, 7], low-den-
sity SNPs [1] or exclusion-based models [18]. However, 
assignments methods often impose idealized assump-
tions, such as known age, generation and gender of all 
individuals, a limited number of known parental can-
didates, independent markers, little or no inbreeding, 
no stratification of the population or sample, no biased 

sampling of individuals, Hardy–Weinberg equilibrium 
(HWE) and little or no variation in genotype error or call 
rates within and between samples. For GRL and BEM, 
we perfomed assignments with unknown age, genera-
tion and gender, with no assumption as to independence 
of markers, HWE, inbreeding, family size or family com-
position, and with dense (SNP) markers, closely related 
individuals and varying genotype error and call rate. 
Colony2 assumes HWE, independent markers and no 
inbreeding.

GRL
Residual relationships were approximately normally dis-
tributed even when genotype errors were present [see 
Additional file  1: Figures  S2 and S3], but with different 
expectations compared to genomic data without geno-
type errors [see Additional file 1: Figure S1].

It did not appear to be a problem that the parent and 
offspring generations were unknown when using GRL 
and BEM. High accuracies were achieved, although indi-
viduals had numerous close relatives that were eligible as 
parent candidates, such as the true parents, full- and half-
sibs, own offspring, uncles/aunts and nieces/nephews. 
Similar results were obtained when the genotype error was 
increased to 3%, which was used to show that the GRL and 
BEM work even when the genotype error rate has quite 
extreme values. These properties may be useful for popula-
tions with large sibling groups, such as in fish, poultry or 
pigs, when generations cannot be clearly differentiated, or 
when the genotype error or call rates vary a lot.

A strength of the GRL training procedure is that no ref-
erence dataset with known pedigree is required for train-
ing and that the training is only partly done by simulation 
(allele-dropping). As long as there is a sufficient number 
of true (but unknown) trios present for assignment, the 
training can proceed. The method requires a pre-defined 
�GRL threshold (i.e. the minimum acceptable value). 
The �GRL is (the log of ) the odds for correct assign-
ment, given that the correct trio is among the two best 
trios (this is nearly always the case if true parents are pre-
sent). In this study, the threshold was set to 6.9, i.e., the 
best trio should be at least  e6.9 = 1000 times more likely 
than the second-best trio. Relaxing this assumption will 
increase both the true and false positive assignment rates 
of the model, while setting a stricter threshold will have 
the opposite effect.

In some cases, the iterative training method may fail 
because the initial iteration results in no assignments. 
This may be caused by two factors: (1) the number of loci 
used in the allele-dropping simulation step may be set 
too high (giving too idealized parent–offspring relation-
ships compared with evaluation data), or (2) there are no 

Fig. 3 Assignment results using GRL at a 1% genotype error rate 
(true and assumed) for individuals with (left panel) and without (right 
panel) available parents in the dataset. Results from 50 simulated 
datasets are averaged. Parameters were pre-estimated using one 
arbitrarily chosen dataset with a 1% genotype error
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true trios present in the evaluation dataset. If reducing 
the number of SNPs used in the allele-dropping step does 
not start the iteration process, the latter may be the case. 
During training, there is no need to estimate or assume a 
genotype error rate with the GRL method, as long as the 
training procedure is done using the evaluation dataset.

Exclusion using parent–offspring duos (i.e. offspring 
and a single candidate parent) or trios is a relatively sim-
ple method for parentage assignment, by identifying 
incorrect parents by genotypes that violate the laws of 
Mendelian inheritance (“exclusion genotypes”). The GRL 
method is a fundamentally different approach and can be 
used to estimate exclusion-based parameters in true par-
ent–offspring trios (assigned by GRL). Assignment of a 
single parent to an offspring is also possible using a simi-
lar method as for trios, but this was not explored in this 
study. The training-based GRL has the advantage that it 
requires no prior assumption with respect to genotype 
error rate or expected number of exclusions.

Binomial exclusion method
Estimation of the p-parameter for the BEM was 
done using trios that were assigned using GRL. An 

alternative to using GRL-assignments is using a train-
ing dataset with genotyped trios and known pedigree. 
Such a training dataset would need to have a similar 
genotype error rate as the evaluation dataset since hav-
ing a discrepancy between the true and assumed geno-
type error rate could lead to decreased accuracy [see 
Additional file 4: Table S1]. Since pedigree information 
is not always reliable, we prefer to use GRL assignments 
(preferably using a relatively big dataset) for parameter 
estimation.

Comparing GRL and the binomial exclusion method 
with Colony2
The GRL and BEM resulted in much more accurate 
assignments of parents than Colony2. Parameters for 
Colony2 were chosen to minimize running time, so 
assignment accuracy may be improved by adjusting the 
parameters, but at the expense of time and/or comput-
ing resources required to perform the analysis. Colony2 
incorrectly assumes that marker loci are independently 
distributed, while GRL and BEM do not. This is likely the 
main reason for the poor results obtained with Colony2 
on these relatively dense marker datasets.

Comparing GRL with the binomial exclusion method
Using BEM resulted in a slightly higher accuracy than 
GRL when the genotype error assumption was correct, or 
when GRL-parameters were estimated using the evalua-
tion data (Figs.  3 and 4) and [see Additional file  3: Fig-
ures  S4, S5, S8 and S9]. However, when pre-estimated 
model parameters are used, assuming a too high geno-
type error rate will lead to some false assignments with 
BEM (Fig. 6), and assignment failure for the GRL method 
(Fig. 5). Thus, GRL can be used when it is crucial to mini-
mize the false-positive rate. Assuming a too low genotype 
error rate resulted in both methods failing to correctly 
assign any trios, but GRL had a small fraction (0.016%) 
of false assignments while BEM did not [see Additional 
file 4: Table S1]. Although the success parameter (p, see 
Methods) of BEM was estimated using already GRL-
assigned trios, the results indicate that the two methods 
are somewhat complementary and can be used together 
to increase overall assignment accuracy.

When the assumed genotype error rate was correct 
(Figs. 3 and 4) and [see Additional file 3: Figures S4 and 
S5] or when the evaluation dataset was used to estimate 
parameters [see Additional file 3: Figures S8, S9, S10 and 
S11], nearly all the individuals were assigned correctly 
and there were hardly any false assignments with either 
method. Thus, parameters should be estimated using the 
available data whenever possible, which should be the 
case in most situations.

Fig. 4 Assignment results using BEM at a 1% genotype error rate 
(true and assumed) for individuals with (left panel) and without (right 
panel) available parents in the dataset. Results from 50 simulated 
datasets are averaged. Parameters were pre-estimated using the 
GRL-assignments from one arbitrarily chosen dataset with a 1% 
genotype error
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Using GRL with clones or duplicated DNA
A possible novel use for the GRL method is analysis of 
genomic data that contain possibly duplicated genomes 
(e.g., by sampling of clones in plants or monozygotic 
twins in animals, or by duplicated sampling of DNA 
from the same individual). Using traditional likeli-
hood-based or exclusion-based methods, duplicated 
samples/clones should be removed prior to the analy-
sis, as these may be assigned as their own parents. For 
the GRL method, duplication of offspring genotypes is 
not a problem since GRL looks at patterns in parent–
offspring relationships rather than the likelihood of 
each single genotype. For example, if clones of a non-
inbred offspring are inserted as one or both putative 
parents, the GRL method would expect the offspring 
to be highly inbred, which will not match the observed 
relationship of the offspring with itself, and thus yields 
a low GRL value. However, duplication of parental gen-
otypes will inevitably lead to assignment failure, since 
two or more trios will appear equally likely.

Conclusions
The GRL method is a promising trio parentage assign-
ment method which is well suited to perform parentage 
assignment with high accuracy on high-density SNP 

datasets. GRL can be applied with success on data-
sets with high and/or unknown genotype error rates, 
highly dependent marker loci, closely-related individu-
als, inbreeding and in some cases clones. Estimation of 
the GRL parameters can be done without having a pre-
existing reference dataset with known parent–offspring 
trio combinations. In addition, GRL can be used for 
training of exclusion-based methods.

Fig. 5 Assignment results using GRL for a 1% true genotyping error 
rate but using parameter estimates from a dataset with 3% genotype 
errors. Individuals with (left panel) and without (right panel) available 
parents are present in the dataset. Results from 50 simulated datasets 
are averaged

Fig. 6 Assignment results using BEM for a 1% true genotyping error 
rate but using parameter estimates using GRL-assignments from a 
dataset with 3% genotype errors. Individuals with (left panel) and 
without (right panel) available parents are present in the dataset. 
Results from 50 simulated datasets are averaged

Additional files

Additonal file 1: Figures S1, S2 and S3. Residual relationships plotted 
for all true trios from the 50 datasets. This file contains three figures 
(Figures S1, S2 and S3). Residual densities for offspring to itself (top panel), 
offspring to real mother (mid panel) and offspring to real father (bottom 
panel) are shown as a continuous line in all Figs. 50,000 values were 
sampled from the normal distribution using the means and variances of 
the residuals as parameters, shown as a dashed line in each panel. Figure 
S1 shows results in which there is no genotype error or call rate variance, 
Figure S2 in which there is 1% genotype error and a ~ 80 to 100% call rate 
and Figure S3 in which there is a 3% genotype error and a ~ 80 to 100% 
call rate.

Additonal file 2. Supplementary material. This file contains three sections 
with extended information about the GRL training procedure, call rate 
and genotype error simulation, and the binomial exclusion method (BEM), 
respectively.

https://doi.org/10.1186/s12711-018-0397-7
https://doi.org/10.1186/s12711-018-0397-7
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Appendix
Mathematical foundation for the GRL method
In this article, only the hypothesis of true parents is 
used for the GRL method:

We assume x ∼ N (µ,�) where x is the vector of 
residual genomic relationships, i.e. it holds the residual 
values for trio assignments. We define x1 as being the 
most probable trio, while x2 is the second most prob-
able trio, that is P(x1|H1) ≥ P(x2|H1).

The difference �GRL = GRL1 −GRL2 , where GRL1 
and GRL2 refer to the best and the second best trio 
candidates, respectively, can be shown to be identical 
to the natural logarithm of the probability of observing 
x1 given H1 divided by the probability of observing x2 
given H1 . Since x is assumed to be normally distributed, 
the multivariate normal probability density function 
used is:

where x is the 3 × 1 vector of genomic residuals, µ is 3x1 
vector of expected residuals and � is the 3x3 covariance 
matrix. If we define L1L2 = f (x1|H1)

f (x2|H1)
 (i.e. how many times 

more likely is x1 given H1 compared to x2 given H1 ), we 
find that:

If we take the natural logarithm of this ratio we get:

The above formula shows that �GRL has a logarithmic 
point probability ratio expectation. We can compare this 

H1 : Both candidate parents are the true parents of the child.

f (x|H1) =
1

√

(2π)3|Σ |
e−

1
2 (x−µ)′Σ−1(x−µ),

f (x1|H1)

f (x2|H1)
=

1√
(2π)3|�|

e−
1

2
(x1−µ)′�−1(x1−µ)

1√
(2π)3|�|

e−
1

2
(x2−µ)′�−1(x2−µ)

=
e−

1

2
(x1−µ)′�−1(x1−µ)

e−
1

2
(x2−µ)′�−1(x2−µ)

.

ln

[

f (x1|H1)

f (x2|H1)

]

= ln

[

e−
1

2
(x1−µ)′�−1(x1−µ)

e−
1

2
(x2−µ)′�−1(x2−µ)

]

= ln

(

e−
1

2
(x1−µ)′Σ−1(x1−µ)

)

− ln

(

e−
1

2
(x2−µ)′Σ−1(x2−µ)

)

= −
1

2
(x1 − µ)′�−1(x1 − µ)

−−
(

−
1

2
(x2 − µ)′�−1(x2 − µ)

)

= GRL1 −GRL2 = �GRL.

Additonal file 3: Figures S4, S5, S6, S7, S8, S9, S10 and S11. Assign-
ment results using GRL or BEM for individuals with (left panel) and without 
(right panel) available parents in the dataset. This file contains eight 
figures in which assignment results from 50 simulated datasets are aver-
aged. Parameters were pre-estimated using one arbitrarily chosen dataset 
in Figures S4, S5, S6 and S7, while training was performed on each evalua-
tion dataset in Figures S8, S9, S10 and S11. Figures S4, S6, S8 and S10 show 
results using GRL, while Figures S5, S7, S9 and S11 show results using BEM. 
Figures S4 and S5 show results when there is a 3% genotype error (true 
and assumed), Figures S6 and S7 have pre-esimated parameters from a 
dataset with a 1% genotype error, while the (true) evaluation genotype 
error is 3%. Figures S8, S9, S10 and S11 use training on each evaluation 
dataset, both at 1% (Figures S8 and S9) and 3% (Figures S10 and S11) 
genotype errors. In all figures, the call rates are ~ 80 to 100%.

Additonal file 4: Table S1. Summary table of total number of correct, 
incorrect and non-assigned trios with or without parents and genotype 
errors for all 50 datasets. Genotype error: either 1% or 3%, and with 
assumption of genotype error in parenthesis (only applicable for models 
that are pre-trained). Available parents: all individuals with parents avail-
able for assignment in the dataset (Yes) or where all parents are missing 
(No). Correct: Number of correctly assigned individuals over all 50 datasets 
(only applicable when parents are available). Incorrect: Number of incor-
rectly assigned individuals over all 50 datasets. No-assign: Number of 
individuals that could not be assigned parents over all 50 datasets.

https://doi.org/10.1186/s12711-018-0397-7
https://doi.org/10.1186/s12711-018-0397-7
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to the �Marshall test statistic which is defined as in [7], 
that is:

where H2 is defined as:

LOD1 is defined to be the LOD-score of the most likely 
trio, while  LOD2 is the second most likely trio. Then:

Both P(data|H1) and P(data|H2) can be written as 
follows:

where Pt
(

gC |gF , gM ,H1

)

 is the probability of observ-
ing the offspring genotype given the father and mother 
genotypes under H1 at locus t, Pt

(

gF
)

 is the probability 
of observing the father genotype at locus t , Pt

(

gM
)

 is the 
probability of observing the mother genotype at locus t , 
Pt
(

gC |H2

)

 is the probability of observing the offspring 
genotype under H2 at locus t and c is the number of loci. 
Since LR = P(data|H1)

P(data|H2)
 , we can simplify LR to be:

Since LR1 is the likelihood ratio of the most likely trio 
and LR2 is the likelihood ratio of the second most likely trio 
(defined above), we can write LR1 and LR2 as:

and

LOD = ln(LR) = ln

(

P(data|H1)

P(data|H2)

)

,

H2 : Two random individuals are the true parents of the child.

�Marshall = LOD1 − LOD2 = ln (LR1)− ln(LR2).
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c
∏
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,

LR =
P(data|H1)
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=

c
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P(data1|H1)
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c
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gC |gF1 , gM1 ,H1
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c
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(
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where gF1 and gM1 are the genotypes of the father and 
mother in the most likely trio at locus t , respectively, and 
gF2 and gM2 are the genotypes of the father and mother at 
locus t in the second most likely trio, respectively. Since 
the same offspring is used in both trios, gC is the same for 
both LR1 and LR2 for locus t.

Inserting LR1 and LR2 into the �Marshall-formula above 
we get:

where the explanation for gC , gF1 , gM1
 , gF2 , gM2

 is the same 
as above, while gC , gF1 , gM1 , gF2 and gM2 are the genotypes 
for the offspring (or child), for most probable father and 
mother and for the second most probable father and 
mother, respectively, over all loci in vector-notation. The 
�Marshall method only uses the probability of observing 
the child genotypes given that F1 and M1 , or F2 and M2 
are the true parents. The fact that the information in the 
H1 hypothesis is not used makes the �Marshall method 
similar to �GRL , we see this when the two method defini-
tions are compared:

Both methods produce an estimated logarithmic ratio 
of the probability that C is the child of the two most prob-
able parent candidates versus the probability that C is the 
child of the two second most probable parent candidates, 
hence the results produced by the two methods can be 
considered analogous.

�Marshall = ln(LR1)− ln(LR2) = ln
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,

GRLmethod : �GRL = ln

[

f (x1|H1)

f (x2|H1)

]

,

Marshall method : �Marshall = ln

(

P
(

gC |gF1 , gM1 ,H1

)

P
(

gC |gF2 , gM2 ,H1

)

)
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