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Abstract:

Binary stated choices between traveller’'s current travel mode and a not-yet-
existing mode mighbe used to build a forecasting model with all (current and
future) travel alternatives. One challenge with this approach is the identification of
the most appropriate inter-alternative error structure of the forecasting model.

By critically assessing the practise of translating estimated group scale parameters
into nest parameters, we illustrate the inherent limitations of such binary choice

data. To overcome some of the problems, we use information from both stated
and revealed choice data and propose a model with a cross-nested logit
specification, which is estimated on the pooled data set.
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1. Introduction

A large-scée study on the feasibility and social benefits of -speed rail (HSR
in Norway was recentlgarried out (Jernbaneverket 2012). The estimaied m
potential of HSR is naturally a crucial elemein this quest,as the predicte
ridership has a direct effect on expected revenues, user benefits and gree
gas reductionsThe demand forecasting mod(Atkins 2012) wa based on

stated choice (SC) studyhererespondents facecustomized surveys based

their currentmode choice(revealed choice, RC)The survey included binal
choice experiments (ClBetweerthe respondents’ current madand a new HSI
alternative (Figure 1 shovesschematic illustratior A similar approach waused
in an independentmarket study conducted by the Insti of Transpor
Economics, T@I (Fligednd Halse2012).

RC (choice between current
travel modes in real life)

SC (choice between current
travel mode and HSR in survey)

Figure 1 Decision structure in recent Norwegian F-studieg(RC: revealed
choice; SC: stated choice)

The main advantagef binary CE (instead of CE with a full choice se$) the
simplification of therespondent's choice t: In a travel mode choiantext, Cl
often entailsa rather high degree of complexbecause of the largeumber of
attributes typically requed to characterise ec alternative. Lowering theverall
number of attributessilikely to increase responds’ ability to choose betwee
alternatives (Caussadet al 2005). In a pivot design, whemespondents al
typically instructed taecall the last trip they made, it is quitetural to discari
the ejected travel alternatives letti the respondent focus on the curréawel
mode and the hypothetical new alterna

However, while it is desirable to redu the respondd's choice set from &
experimental design point of w (in our case: providing personal specifc cha
sets consisting of respond's current mode and HSRj)ne would like to build

forecasting model that allonconsidering the whole future choice set avidch
applies to all future decision mak, independent of their chosen modétattime
the CE surveys were conducted. Thisapplies, in particular, toHSR
implementation scenaridhal usually involve long-term predictions.h@nges ir
many level-of-service (LgSrvariables of, potentially, all travel modase possible
not only because of the long time hori, but also becausea HSR
implementation is likely to ffect the competitive structerof the whole trave
market. Therefore, it seemsduly restrictive to limit choice sets atalconditicn
model parameterf®r choicepredictions in the forecastingear (e.g. in 2024, th
earliest possible yeaior a HSR-implementation in Norway) oourrent RC



choices(datafrom year 2010 inour case).Consequently, anodelwith a generic
choice set and utility functions, independentof the original self-selection of
travellers to travel modes is necessatry.

Of course, aimindor a generic forecasting model based on binary stated choices
(with only one alternative, HSR, being part of every respondent’s choice set) is not
optimal, as it does not allow considering directly how current car users, say, react
to the LoS of other current modes (air, bus and traditional train). When specifying
transport specific coefficients in the utility function, one needs to assume that, for
example,the currentcar user's marginal utility (MU) of in-vehicle-time (IVT) by

car is representative of everyone's MU for IVT by car. Challenges in finding an
appropriate deterministic utility function are nbgwever, the focus of this paper;
moreover, we will assume- unless specified differently - that we can find
deterministicutility functions(up to a scale parameter}hat fit all user groups
(defined on the basis current mode choice) "equally well".

For estimation,the different binary choice datasetsare typically mergedand a

mode choice modelwith a commonset of coefficientsfor HSR is estimatedin

this procedure, different scale parameters (so cglledp scaleparameters), that

are inversely proportional to the error variances associated with each experiment,
ought to be estimated toaccountfor the fact that they might actually differ
(Louviereet al 2000).

While the group scaleparametersfacilitate the estimation of a common
deterministic utility function basedon user-specifichinary choices, it is not
obvioushow theseparametersnay be carriedoverto aforecastingmodelwith a

full choice set. In particular, setting up anestedlogit (NL) model by naively
treating group scale parameters as structural (nest) parameters, as done by Atkins
(2012) in the official assessmenstudy for HSR in Norway, involves several

pitfalls:

(i) The group scaleparameteronly reflect the relative utility scalein choices
betweenthe different binary choice tasks (i.e. HSR versusone of the current
modes) but not the utility scale difference between existing travel modes. In most
cases, this means thiae scale at the upper level of the nesting structure and the
correlation structure among current modes has to be assumedimplicitly (see
sections 3.1. and 3.3); we will discuss how RC data between current modes might
be utilized here (see section 4).

(iif) The group scale parametersdo not only reflect “similarity” of transport
modes, (i.e. the degreeto which two or more alternativesshare unobserved
featureswhich isthe classicalinterpretationof nestparametersseeOrtiuzarand
Willumsen, 2011, section 7.4.2). They might also include other error sources — in
particular unobserved taste heterogeneity — that are associated with characteristics
of the user groups rather than of the modes. We will discuss this in more detail in
section 3.2., and using an empirical example,we will also show that results
change after accounting for unobservedtaste heterogeneitywith random
coefficients models (section 3.4.).



(i) In many instances a NL model might not be flexible enough to account for the
correlation structure suggested by the various group scale parameters. We propose
the cross-nested logit (CNL) model as a more flexible structure for this purpose.

As the paperis mostly concernedwith error variancedifferences(utility scale
differences) between various user groups, travel modes and datasets,it is
important to stress that the error term is, as usual, conditioned by the specification
of the deterministicpart of utility (i.e. the selectionof explanatoryvariablesand

their functional form). For instance, when talking about correlation (or
“similarity”) of travel modes,we arealwaysrelating tothosepartsof the utility
function that are not accountedfor by the explanatory variables. Indeed,
correlation patterns in the error term are nothing desirable in itself and one would
ideally strive for a multinomiallogit (MNL) modelby including all thevariables

that might explain correlationamongtravel alternatives.However, this is often

not possiblein practise (some variablesare unobservablepthers are just too
expensiveto collect). Thus,a questionoften askedto the researcherefersto the

most appropriate correlation (nesting) structure in the forecasting model.

The main contribution of this paper is an in-depth discussion about the most
appropriate (alternative specific) correlation structure in a case where the
deterministiccomponentof the utility functions and the scale parametersare
estimated from (user group specific) binary SC data. While obviously the
(relative) size of the scale parameters will depend on the ckgstamatiautility
function, most of the discussion in this paper can be made at a general level
without being specific aboutgarticular systematiatility function.

2. Alternative Modd Forms

2.1. Multinomial logit (MNL) model

We describea standarddiscretechoicesetup wheretravellern choosedetween
different transport modes i belonging to a (personal specific) choice set
C,, according to the followig choice rule:

(2) Uin =€in€ €in > Ujn= €jne €y eorallj € C,.

where the deterministic component of will;, is a functon of attributes< and a
setof parameterg to be estimatedjn a MNL model, the randomterns ¢;, are

assumedo distributelID-Gumbelwith mean zerand varianceivenby: ¢* = %%
where 4 > 0 is the scale parameter of the distribution. With this, the MNL model
choice probabilities are given by (McFadden 1974, Ortazar and Willumsen, 2011,
Chapter 7):

Vin
(2) Pin = PT(Vin + &in > an + Ejn) =

Wi
Yjecpe M



The IID-assumption in guation (2) implies proportional substitution patter
across alternativess the utility of any two alternatives is uncorreli. Note that
the scale factod cannot be estimated separately from the paramgin the
deerministic component of utilii, so it has to be normaliz€dee the discussic
on identifiaility by Walker 20(1).

2.2. Heter oskedastic logit (HL) model

The analyst might wish to allo for different error variances for ciffere
subgroups in the datkor this,the scale factor (which is inversely propotiona
the error variancejan be assumed be non-generic allowing for differegtoup
scale parametersy,_;in this casethe choice probabilities of this HLmodel

become:

YgnVin
3) P; =eg—vémvjnf0ralliEan

Yjecg,®

Note that not all group scale parameters can be estimated simultaneous
identification, one of thenmas to be fixed (typically at the value 1). Tagm®up
scale parameters affdtie resulting choice probabiliti asillustrated in Figure2.
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Figure 2 lllustration of effect of group scale parameter on choice probeb

! Note that this model is not icentical the “heteroscedastic extreme value model” (BI845),
which is called “Heteroskedastic git” by Train (2009, page 92), dke error variance of eac
alternative varies. In the Hinodel described he, the error variance varies for evesybgroup bu
is the same for all alternatives rsubgroup.



If the group scale parameters are different in value, the lID-assumption only
applies within the subgroup but is relaxed for a joint sample that combines choice
data from different user groups.

2.3. Nested logit (NL) model

In a NL model, alternatives are allocated into non-overlapping nestfhat
contain alternatives =1, ..., J. NL models (Williams 1977; Daly and Zachary
1978) can also be derived from the family of GEV-models (McFadden 1978).
Using GEV-notation, the choice probability for the NL model is given as:

o
(]m, etmVinyhm
(4) Py, = = I

VinyBm
Zm=1(2}211 ellm ]n)um

eMmVin

(21211 eMman)

wherey,, are scale parameters applied to the alternatives inmeafe refer to

them asnestor structural parameters. Similar to the group scale paramejgrs

(but arising from a different perspective), the nest parameters are inversely related
to the corresponding error variance. A restriction of NL model is that nests cannot
overlap, that is, each alternative can only enter one nest.

The overall scale of utilityy, here interpreted as the scale for the choice between
nests, is an arbitrary positive nhumber and only the i&ﬂ'mas a behavioural

interpretation. It can be shown (e.g. Bhat 1997) that the correlation between the
utilities of two alternativesandj is given by:

(5) Corr(U, U;) = ( 1— (ﬁ)z ) d;;

where d;; is one when andj belong to nest and zero otherwise.

A low error variance in nesnh (i.e. u,, relatively larger than) implies a large
correlation among utilities between the nested alternatives. For GEV-conditions to
hold, we needq.,, = u > 0. This implies that the utility of the nested alternatives
must be positively correlated. This has to be taken into account when setting up a
nested structureThe choice probability in (4) has a nice two-fold interpretation

as the product of the probability of choosing between nests (choice at the ‘upper
level’) and the probability of choosing between alternatives in the chosen nest
(choice at the ‘lower level’).



2.4. Cross-nested logit (CNL) models

A GEV-model that allows alternatives to enter several nests is the CNL (Williams
1977; Vovsha 1997; Bierlaire 2006) Choice probabilities in the CNL model are
given by (Abbeet al 2007, page 797)

1
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Bierlaire (2006, page 293) also derives the following conditions to be met by a
CNL model:

l.ypy=2pu>0 forallm=1, ....M

2.0y, =0forallj=1,...,Im=1,...,. M

3.3M=1%m >0 forallj=1, ..., J.

Following Train (2009), we refer to theparameters aallocation parameters

The NL-model is a special case of CNL-model wherexgllare zero except for
the nestm the alternative is included in. The exact correlation structure of CNL
models (Abbeet al. 2007) is much more involved than that for the NL (5). The
following is an approximation proposed by Papola (2004):

1 1
@) Corr(Uy, Uy) ~ Eihoy Cim2am? (1 - G )

Equation (7) underlines the fact that the allocation parameters affect the
correlation structure of the model. Equations (6) and (7) can be thought of as

2 Equation (6) is the resulting choice probability for the most general formulation of the CNL, but
simpler formulations are available (Ben-Akiva and Bierlaire 1999; Wen and Koppelman 2001).
BIOGEME 1.8 (and later versions) use the CNL model version in equation (6).

® For interpretation and parameter identification, the condfi#n, ajm = 1 should be imposed.

Then, the allocation parameters are readily interpreted as the portion of an alternative that enters
each nest. However, the relationship betwegp and p,, is not obvious. Intuitively, a high
correlation between nested alternatives (high should go along with a relative high portion of a
particular alternative being associated with that nest. However, we are not aware of suggestions for
possible functional relationship betwesg, andp,,.

* See equation (20) in Able al (2007, page 800) for the exact formula of correlation between
two alternatives in a CNL.



‘weighted averages’ of (4)ral (5) respectively, where averages are makeer
nests and the allocation parameters represent weights.

3. Derivinga NL Model from a HC Model on Binary SC Data

In this sectionwe will critically assesghe procedureof translating grougpscale
parameter®btainedfrom an estimatedHL modelinto nestparameter®f a NL
forecasting model; this approach was applied by Atkins (2012a) in the Norwegian
HSR assessmenrdtudy, so the discussiorhaspracticalrelevanceln this context

the group scaleparameterstem from the different subsetsof travellers(using
various travel modesin practice) being subject to different SC experiments
(asking them to choose between their current mode and HSR, see Figure 1).

We assume that no RC data is available to replicate the situation in Atkins (2012)
that only used SC data in their estimation model. In section 4 we will discuss the
use of RC data as a supplement.

3.1. Mathematical conditions

As mentionedabove,group scaleparametersy, ) andnestparametergyu,,) are
both inversely proportionalto their related errolariancesThe differencelies in

which error varianceis considered.Group scale parametergelate to the error
variancein choicesbetween(non-nestedplternativesof a particularusergroup.

Nest parametersijnstead,relate to the choice between alternatives one nest
(independent of the user type). An interesting question is under which conditions
the two types of scale parameters may be equal and have the same behavioural
implications. To answer this, we examine unddrat conditions the resulting
choice probabilitiesR;,) in (4) and (3) would be equivalent; that is, unaéich
conditionsa NL model can be written asa HL model with scale parameters

related to groups with (possibly) different choice sets.

This is showm formally in Box 1.

u
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Box 1: Mathematical conditions for NL model equalling a HL model wigh-us
group specific choice sets



This implies that the estimated group scale paramejersould only be used as

nest parameters (in a mathematical sense) if alternatives were nested according to
the group-specific choice sets (condition 1) and if the choice between nests was
deterministic (condition IIl). This puts hard/impractical restrictions to the
methodological correctness of a naive translation and, indeed, strong assumptions
are required in practical approaches (see section 3.3.).

The fundamental reason for the immediate mathematical incompatibility between
group scale and nest parameters goes back to the fact that the former are user
group specific while the latter are travel mode specific. This point is essential also
for the interpretation of scale parameters discussed in the next section.

3.2. Source and inter pretation of scale parameters

The inverse proportionality of the scale parameters to the error variances implies
that the (classical) sources of the error term in discrete choice models (Manski
1973, Ortizar and Willumsen 2011), that is, unobserved attributes, taste
heterogeneity, measurement errors and use of instrumental/proxy variables, are
the possible main sources of the utility scale parameters.

We recall that the NL and HL models are both more flexible than the MNL model
as they relax the IID assumption of the error terms (which is often a restrictive
assumption in practise). The relaxation of the IID assumption by the NL model is
based upon the fact that the error term of the utility functions of different travel
modes are correlated. Travel modes with (significant) positive correlation should
be candidates to be nested together. The idea is to account for non-proportional
substitution patterns caused by the correlated error terms. The typical
interpretation is that travel modes that are closer substitutes (those nested
together) share unobserved attributes (Williams 1977). Relaxing the 11D
assumption and accounting for the patterns of unobserved attributes can be
important, as illustrated by the well-known blue bus/red bus paradox (Mayberry
1973, Ortlzar and Willumsen, page 214).

The relaxation of the IID assumption in the HL model stems instead from
different error variances associated with different subsets of the data. Various
reasons for error variances (and thereby scale parameters) to differ are possible.
An obvious candidate is the potentially variable impact of unobserved attributes
between travel modes involved in the different choice sets. Common sense
suggests, for example, that HSR should share more unobserved attributes with the
traditional train than with car, in which case the binary choices between train and
HSR are less affected by those unobserved factors. On the other hand, the choice
between HSR and car is likely to be affected by several unobserved attributes that
differ between the modes (i.e. the varying utility associated with having a car
available at the point of destination), making the overall impact of the error term
more important.

For example, if the unobserved, and varying, “need to have a car at destination”
has greater importance, the superior ("observed") LoS of HSR might not impact
the choice probabilities between car and HSR that much. Thus, a relatively low



group scale parameterfor the car user group should be expected.From this
perspectivat seemseasonabldo useinformation aboutgroup parameteiscales
to derive a NL forecasting model

However, the scale parameters for the different binary choices might also be high
when the taste heterogeneity of users withinsitegroupis relatively low. Taste
heterogeneityis, to a large degree, unobservedas it involves unobserved
factors/preferenceselating to the users. The difference with the unobserved
attributesdiscussedn the previousparagraphis that the latter are travel mode
specificwhile tasteheterogeneitys person-specifior user-groupspecific). Car
users,for instance,might have less homogenousgpreferencesf the (observed)

LoS than trainusers(e.g. the subjectiveValue of Time might vary moreamong

car drivers than among train users). From this perspective, the error variance in
the car/HSR choices might béyher than in the train/HSR choices. If (user group
specific) tasteheterogeneitys the predominansourceof the error variance the
estimated scale parameters are not suitable to represent (travel mode specific) nest
parameters; the translation of "variance" into "correlation" would not be sound in
this case.

3.3. Validity of Practical Approaches

In this section we discuss the validity of (and the necessary assumptions required
for) practicalapproacheso constructa hierarchicalforecastingmodel basedon

binary SC data. Striving for such amodel (insteadof applying a simple MNL

model ignoring the different sizesof group scaleparameters)acknowledgeshe

fact that there might be indeed non-proportionalsubstitution patternsbetween

travel modes worth accounting for when predicting choice probabilities.

The mathematicatonditions(section3.1.) require makingsomeassumptionsA

HL model as in equation(3), doesnot include the respondent'schoice'about

which user group s/he belongs to (this is predefined by the researcher based on the
non-modelled RC). Thus, the scale in choices between current modes is
unobservedln the absenceof further information, it is necessary t@assumehe

relative scale at the upper level of that hierarchical forecasting model. The choice
is restrictedby the fact that the scaleat the upperlevel in a NL or CNL model
cannotbe largerthanthe scaleat the lower level. A sensiblechoice,resultingin

the least complexmplicit structure,is to assumehatthe scaleat the upperlevel

equals the lowest estimated group scale parameter yielding a degenerate nest with

® Another potential source of group scale variability are the different degrees of measurement
errors in the subsamples. Arguably this is not an issue in CE where attribute values are directly
coded as they are presented in the respondent's screen. The use of proxy variables can also be a
source for different scale parameters. This applies when a specified proxy variable is a precise
representation of the actual variable for the binary choices of one user group, but an imprecise one
for the choices of another user group. We will not discuss this further here but maintain the
assumption made at the introduction, that the specification of the deterministic utility function
could be done "equally well" for all user groups.
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the current travel mode characteristic for the user group with the lowest group
scale parameter.

Based on the discussion in section 3.2, it is evident that we have to make sure that
the group scale parameters do represent different substitution patterns of transport
modes. For now we assume that taste heterogeneity could be controlled for in the
systematicutility function and that measurement errors and proxy variables are
not an issue. Witlthese assumptions, different error variances in subsamples can
indeedbe interpretedas representinglifferent substitutionpatterns(correlation)
acrosstravel modesand HSR should be nestedwith the currenttravel mode(s)
associated with the highest group scale parameter(s). If two (or more) group scale
parametersare different from each other, the different degreesof correlation
between HSR and the corresponding transport modes should be taken into account
with a CNL specification.

To make things more specific, Table 1 discusses four potential cases of estimated
group scaleparameters. Thgroup scaleparametefor car-userss fixed to unity

in theseexamples.If all estimatedgroup scale parameterswere close (and
insignificantly different) to unity (i.e. casel in Table 1), a MNL would be
obtained.

Table 1: Possible nesting structures suggested bymscale parameters (SC
data only)

Casel Case? Case 3 Case 4

Estimated group car-usersl ; car-users=l ; car-usersl ; car-usersl ;
scale parameter train-users: 1; train-users: 1; train-users: 3; train-users: 2;
in SC “current air-user=l; air-user=3; air-user=3; air-user=3;
mode vs. HSR"

Proposed nest 1 - car Car car
Proposed nest 2 - train train, air, HSR train, HSR
Proposed nesi - air, HSF - air, HSF
Proposec MNL NL NL CNL

structure of
forecasting
model*

*Under the assumption that the overall scale (aufber level) is one.

As much of the discussion provided here is (implicitly) about the reasonability of
translating “variance” into “covariance”, it is useful to take a closer look at the
covariance structure associated with the estimation and forecasting model. Let
andy denote the following vectors:

11



Ucar—user,car

Utrain—user,train Ucar

8 r_ Uair—user,air r_ Utrain
(8) X=1vu ’ |l U

car—user,HSR air

Utrain—user,HSR UHSR

Uair—user,HSR

Then, Cov x'x) is the covariance matrix consistent with the HL model, while Cov
(y'y) would be the covariance structure for the proposed forecasting model. For
case 1 we would need to translate:

10 0 0 0 O
/0 1 0 0 O 0\ 1 0 0 O
1y _®j0 0 1.0 0 0, A ™[0 1 0 0
(9) Cov(x'x) = 00010 0 into Cov (y'y) = — <0 0 1 0)
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1

While beinglogical, the validity of this translationrestson the aforementioned
assumptiongegardingthe size of the upperlevel scaleparameterwhich in this

case implies that the scale in choices between current modes is assumed to
be equal to the scale in choices between single current modes and HSR,
which happens to be the same. If there is only SC survey data, the correctness
of this assumption is not testable (without additional data on choice
between all alternatives) due to the inherent missing information in binary
choice data with only one common travel mode.

In case 2, if the group scale parameter for air-users was estimated as significantly
higherthanthosefor the remaininggroups,this would indicatethat air and HSR

are closersubstitutesanda NL structurewith air and HSR in one nestandtwo
degenerataestsfor car andtrain could be proposed.In that casethe following
translation would apply:

10 0 oo O
0 1 10 0 0 8 1 0 0 0
210 0 (/)2 0 0 (o0 1 0 0
W) Tlo o ¢ 10 0 Mo o 1 (1-1/3)?
o0 o o1 0 / 0 0 (1-1/3)? 1
00 o o0 o0 (Y2

Thus, the variance in the binary choices between air and HSR for current air users
would be used to set the covariance between air and HSR for the full forecasting
model (via equation 5). This is only valid if the group scale parameters can really
be interpreted as accounting for different degrees of similarity (related to
unobserved attributes) regarding the transport modes (see the discussion above).
Given the above assumption pf= 1, the group scale parameter estimated as

12



equal to three can be directly used as the structural parameter in the nest
containing air and HSR.

In case 3, if the scale parameter for train-users is estimated as significantly greater
than one and insignificantly different from the air-user scale parameter, train, air
and HSR might be nested together. Similar to the second case, the following
correlation structure in the forecasting model would be proposed:

an

/1 10 0 0 0 0
20 0 0 1 0 0 0
ak ( /03) (1/3)? 0 0 0 1. m[o 1 (1-1/3)* (1-1/3)?
Blo o 1 0 0 |Mmolo (1-1/3)? 1 (1-1/3)?
0 9 o 0 d/pr 0 0 (1-1/3* (1-1/3) 1
0 o o 0 o /2

Note, that the correlation between the train and air alternatives is derived from the
correlation between train and HSR, and air and HSR (assuming that taste
heterogeneity is controlled for). This is not obvious and cannot be assessed
without choice data between train and air (see the discussion in section 4).

Finally, in case 4, if the train-user scale is greater than one but significantly lower
than the air-users scale, the only valid option would be to allow for HSR entering
one nest with train and another nest with air. In that case a CNL model would be
required and the following correlation structure would be desirable

(12)

1 0 0 o 0
0 /2 0 0 0 \ 1 0 0 0
1o o /% 0 A O 1 0 (1-1/2)?
6lo o 1 0o | 60 0 1 (1-1/3)?

0 0 0 0 0 0 (1-1/2)2 (1-1/3)2 1

0 0 0 0
Note that it may be difficult, in application, to find a CNL model that implies this
correlation structure, as the choice of allocation parameters in conjunction with
the nest parameters is a non-trivial task. This suggests estimating a CNL model
from the data rather than to try to infer one such model from a HL model (see
section 4).

3.4. Empirical lllustration on Own SC Data

This subsection provides some estimation results that supplement the theoretical
discussion of the previous sections. We use data from an independent SC study
conducted by the Institute of Transport economics (T@I) in 2010 (Halse 2012,

6 Apart from a CNL model, a fully general mixed logit (ML) model (Train 2009), might be an
alternative and provide an even better way to handle this issue at the expense of more complex
estimation, interpretation and application.

" As for case 3, the correlation assumed for train and air is somewhat arbitrary. It might be
reasonable to allow for correlation between air and train as well, but this cannot be directly derived
from the given binary data alone.

13



Fligel and Halse 2012a). Similar to the official assessment study (Jernbarnverket
2012, Atkins 2012), the SC consisted of binary choices and were pivoted on
observed RC data (Figure 1). In fact, the RC stem from an on-side, pen-and-pencil
study that asked travellers to provide general information about their current mode
choice in the main long distance corridors in Nofvéyenstadli and Gjerdaker
2011). In the last item, travellers were asked to leave their e-mail address to
receive a web-based survey concentrating on high-speed rail.

In the SC-survey, each respondent had to make 14 choices between its current
mode of transport (as observed in the on-side study) and a hypothetical HSR. The
attributes characterizing the transport modes were: total travel costs, in-vehicle
travel time, travel time to station/airport (‘access time’), travel time from
station/airport (‘egress time’), frequency (number of departures per day) and the
share of the ride spent in tunnels (‘tunnel share’). In the first eight choice tasks
('CE1), the attributes of the current mode were kept fixed to their reported values,
while they varied within certain percentage changes in the last six choice tasks
('CEZ2") (see details in Halse 2012). CE2 included also an opt-out option (‘neither
of the two alternatives'), which was, however, seldom chosen and not considered
in the models of this paper.

A sample of 893 respondents completed the online SC-study (about 33% of the
invited respondents). We focus here on the subsample of leisure trips for which
607 respondents were considered. The general choice behaviour of the subsample
is summarised in Table 3.

Table 3: Sample size of user groups and general choice behaviour (leisure trips)

User group | Group Group Percent of SC choices | Percent of respondents
as defined size RC size SC* (%) always choosing only one
by the RC mode in SC ("Non-
choices Traders") (%)
Final Final Current HSR Opt- Current  HSR Switch
sample sample mode out mode between
Car 3833 320 61.6 37.7 06 31.3 13.8 55.0
Air 920 76 34.5 64.7 0.8 13 31.6 67.1
Train 2867 176 40.8 57.2 20 6.3 18.2 75.6
Bus 480 35 41.0 58.5 0.6 0.0 17.1 82.9

*Compared to a representative dataset (Denstadli and Gjerdaker 2011), we have under-sampled current air
users somewhat and over-sampled current car and train-users. External weights were used during estimation.
Car drivers are least likely to choose HSR in the SC data and a considerable share
of car-users (31.3%) choose car over H8Rach of the 14 SGituations. This
indicates that unobserved factors may have affected many of the choices between
car and HSR.

Table 4 providesestimationresultsfor HL modelson pooleddataof different
binary SC. As a first benchmark,we include a model where all group scale
parametersare fixed to one; in this casethe HL model collapsesto an MNL

8 Oslo-Trondheim, Oslo-Bergen and Stavanger-Bergen. For the SC-study, only the former two
corridors were considered.
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model. The difference between SC_HL_1 and SC_HL_2 is that the latter has
random coefficients (normally distributed over decision makers) related to the
most important level-of-service (LoS) attributes: in-vehicle time, access/egress
time, travel cost and (the inverse) of the frequency measured as the number of
departures per day. All models were estimated with BIOGEME (Bierlaire 2003,
2008).

Table 4: MNL and HL models on SC data

Model Index SC_MNL SC_HL_1 SC_HL_2 (random
coefficients¥*)
Coefficient Value Rob.t- Value Rob.t- Value Rob. t-
stat (0) stat (0) stat (0)
Travel cost (NOK) -0.00283 -10.45 -0.00189 -6.69 -0.00963 -6.08
sigma cost 0.00551 4.19
Interaction: Dummy "missing -0.00709 -3.1 -0.00476 -3.85 -0.00778 -1.27
income" - travel cost
Interaction: Dummy "did not 0.00155 2.87 0.00105 2.92 0.0051 10.32
pay" - travel cost
In-vehicle* (min) -0.0023 -2.41 -0.00176 -2.98 -0.0155 -5.64
sigma in-vehicle time 0.0119 8.95
Access + egress time** -0.00169 -0.99 -0.00235 -2.29 -0.00842 -4.82
(min)
sigma acc+eg time 0.034 2.75
Dummy (travel time <6h) 0.496 3.06 0.229 2.11 0.145 1.03
1/frequency -1.15 -3.09 -0.474 -2.68 -2.75 -4.34
sigma 1/ frequency 4.37 5.75
Tunnel share (%) -0.00232 -0.47 -0.00251 -0.9 -0.0175 -2.74
ASC-HSR 0.248 0.86 0.184 0.95 0.724 1.53
ASC-Car 0 fixed 0 fixed 0 fixed
ASC-Air -0.819 -2.92 -0.511 -2.98 -1.42 -1.73
ASC-Train -0.111 -0.5 0.00269 0.02 0.218 0.37
ASC-Bus 0.3 0.96 0.374 2.08 0.331 0.63
Group scale parameters Value Rob.T-  Value Rob. T- Value Rob. T-
stat (1) stat (1) stat (1)
Car-users 1 fixed 1 fixed 1 fixed
Air-users 1 fixed 1.88 1.89 2.51 2.25
Train-users 1 fixed 2.74 3.43 1.75 1.81
Bus-users 1 fixed 4.35 2.66 2.42 1.77
No. of parameters 12 15 19
No. of observations 8402 8402 8402
No. of respondents 607 607 607
Null-LL -5822.44 -5822.44 -5822.44
Final-LL -4677.25 -4572.47 -2612.68
Adjusted rho-square 0.195 0.215 0.548

*Using 500 Halton draws
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Comparing first the MNL model with the HL model, we see that the latter has a
considerably better final log-likelihood statistic indicating that the inclusion of the
group scale parameters improved the estimation on the joint SC data set.

As none of the estimated group scale parameters was below one, the lowest group
scale parameter (e.g. the highest error variance) is related to the choices between
car and HSR. This seems to fit well with the intuition that car and HSR share the
least unobserved attributes with each other (see the discussion above).
Surprisingly, the highest group scale parameter appears to be the one
corresponding to the SC choices of bus-users. A naive interpretation of this result
would indicate that bus and HSR are the closest substitutes and that this should be
considered in a forecasting model by nesting bus and HSR in the nest associated
with the highest structural parameter. However, from the discussion in 3.2 we
should recall that different degrees of unobserved taste heterogeneity in the
different subsamples (user groups) should be considered as well.

The estimation results for the random coefficients model (SC_HL_2) show
controlling for taste heterogeneity among decision makers lead to considerable
changes in the estimated group scale parameters. For example, the group scale
parameters for bus and train users are reduced while that for air users is increased.
All group scale parameters are not significantly different from two. In the context

of finding a plausible structure for a forecasting model, this may suggest a NL
model with a (degenerate) nest for the car alternative and a single nest including

all public transport options (Figure 3).

; public
h level =1
choice upper level (mu=1) Car

[ |
I | | 1 I
choice lower level . .
Train Air HSR Car
(mu_nestPT =2, mu_nestcar=1)

Figure 3: A possible nesting structure for a forecasting model as suggested from
SC

While being intuitive and more plausible than what might have been suggested
from the results that do not control for unobserved taste heterogeneity, this
derivation still rests on two strong implicit assumptions required as a consequence
of the missing data issue in the binary stated choices: (i) that the scale between
both nests (car and "public transport”) equals the scale in the binary choice
between car and HSR and (ii) that the correlation in the choices between the
current public transport modes (bus, train and air) is derived from the scale in the
binary choice between these modes and HSR.
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4. Using Additional RC Data among Current Travel Modes

4.1. Motivation

The typical motivation for additional RC data and the joint SC-RC paradigm is
the need to ground the SC models in reality (Louvétral. 2000). We will not
discuss here the "classical" method of rescaling the SC scale by the RC scale,
which became popular after the seminal work of Taka Morikawa (Morikawa
1989; Ben-Akiva and Morikawa 1990) and which is relevant for any kind of SC
data (both binary and multinomial). In our context, RC data may provide some of
the missing information inherent in binary SC data. In what follows, the focus will
be on the correlation structure among current travel modes, which is not
"observable" using binary SC data alone.

As RC data involves more than two alternatives in the respondents’ choice sets, it
is possible and meaningful to estimate hierarchical logit models (NL or CNL) on
the RC data. The correlation obtained in a RC model can provide information
needed to define plausible correlation structures in the full forecasting model.
That is, if estimations on our RC model indicate a nesting structure with one
degenerate car nest and another nest including all public transport alternatives (air,
train and bus), then the proposed structure from our SC-data in Figure 2 would get
empiricalsupport.

4.2. Empirical illustration with RC and SC/RC models

Our RC data includes all relevant travellers in the on-side study (see section 3.4)
independent of whether they left or not an e-mail address or whether they were
included in the SC study (see sample size in Table 2). Based on the reported
geographical information of the trips’ start and ending locations, we imported
zonal level-of-service data for the related O-D pairs from the Norwegian National
Travel Model (Hamret al. 2002).

We tested all possible nesting structures for the four alternatives in the RC dataset
(car, bus, train and air), including the same explanatory variables as in the SC data
in Table 3°. Somewhat surprisingly, the structure shown in Figure 4 had clearly
the best fit to our RC data.

An alternative NL model, where air is nested together with bus and train did
perform considerably worst (see Table Al in the appendix for estimation results).
Hence, our RC data did not provide immediate support for the correlation
structure suggested from the SC-data alone (Figure 3), as air seems to be more
highly correlated with car than with bus or train.

® The LoS data contain representative values for the relevant zone pairs and are, in some instances,
not updated, such that the RC data must be considered as rather imprecise.

9 The tunnel attribute was not available from zonal data and was therefore omitted in the RC
dataset. Full choice sets were assumed for all decision makers except for the fact that car was only
available to respondents that reported owning a car.
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RC data only Travel by

Upper level (mu=1)
Lower level
. Train
(mu_car/air=1.41, Car Air m -

mu_bus/train=1.46)
Figure 4: Nesting structure indicated from RC data alone

Combining the information from the RC and SC datasets, the nesting structure

Travel by

shown in Figure 5 might be proposed.

L
L 1

Air/HSR Bus/Train/HSR

pr—m— }

Figure 5: A possible nesiy structure for a forecastg model suggesderom the
information in SC and RC

e

Lower level Car Air

This structuretakesinto accountthe correlation patternsbetweenthe current
modes as indicated in the RC model and the information from the SC model that
HSR is a closer substitute to public transport modes than tarbarnest air/HSR

is included (separated from the nest of other public transport modes) to
acknowledge the indication from our RC data that the utility for air is not
correlated with the utility from bus and tralBoth HSR and air enter two nests,
thus a CNL model seems to be required.

Two CNL modelswith the implicit structurein Figure5 wereestimatedon the
pooled RC/SC data to infer the underlying parametersvalues (Table 5). The
models assumegeneric coefficientsin RC and SC*.. CNL_1 usesonly fixed
coefficient while CNL_2 replicates the specification of model SC_HL 2,
assuming normal distributed coefficients for the most important LoS-varigbles.

We can use (7) @ approximate the inter-alternative variance-covariance xnfri
the two model versiort§ as shown in Box 2.

Table 5: Cross-nested logit models on pooled RC/SC data

11 This is a restrictive assumption and, indeed, seems not to hold for our data as indicated by a
likelihood ratio tests (Ortlzar and Willumsen 20171, p. 325). We suspect that the main reason for

this is the different measure of attributes in RC and SC; however, it could also be that preferences
change when the HSR gets available in the choice sets (see also footnote 13 in section 5).

2 The estimated parameter for nest bus/train/HSR is not significant different from one which

might lead to the suggestion to collapse this nest. However, the value is high, indicating that the
related correlation might be important (despite the result not being very reliable).

13 The actual correlation structure in estimation model CNL_2 may also be affected by the random
terms underlying the normal distributed error terms.

18



Model Index CNL_1 CNL_2%*

Coefficient Value t-stat (0) Value t-stat (0)
Travel cost (NOK) -0.00264 -31.95 -0.00684 -37.66
sigma cost 0.00308 O***
Interaction: Dummy "missing income" - travel cost -0.00061 -6.25 -0.00061 -2.04
Interaction: Dummy "did not pay" - travel cost 0.001 7.49 0.0029 13.02
In-vehicle* (min) -0.00094 -5.25 -0.00822 -13.87
sigma in-vehicle time 0.0128 15.84
Access + egress time** (min) -0.00533 -18.93 -0.0276 -19.13
sigma acc+eg time 0.0193 21.48
Dummy (travel time <6h) 0.389 11.25 0.188 2.16
1/frequency -0.298 -5.74 -4.9 -7.51
sigma 1/ frequency 6.63 8.81
Tunnel share (%) -0.00404 -2.84 -0.0181 -6.79
ASC-HSR (SC) 0.945 12.23 2.76 13.86
ASC-Air (SC) -0.372 -4.44 0.0144 0.09
ASC-Train (SC) 0.204 3.14 1.94 8.49
ASC-Bus (SC) 0.363 4.09 2.41 4.89
ASC-Air (RC) 0.947 10.35 0.41 1.53
ASC-Train (RC) -0.0641 -1.61 1.66 9
ASC-Bus (RC) -0.193 -3.54 0.307 1.52
Structural parameters Value T-stat (1) Value T-stat (1)
Car/Air 1.8 5.3 7.84 12
Air/HSR 1.57 1.4 6.99 2.35
Bus/train/HSR 4,57 10.61 5.88 0.94
Allocation parameters* Value T-stat (1) Value T-stat (1)
Air to nest Car/Air 0.845 -2.18 0.232 -16.53
Air to nest Air/HSR 0.155 -11.83 0.768 -4.99
HSR to nest Air/HSR 0.527 -12.91 0.595 -6.19
HSR to nest Bus/train/HSR 0.473 -14.36 0.405 -9.09
No. of parameters 22 26
No. of observations 16852 16852
No. of respondents 9057 9057
Null-LL -16868.4 -16868.4
Final-LL -11099.5 -9310.01
Adjusted rho-square 0.341 0.447

* The remaining allocation parameters were fixed to 0 or 1 according to Figure 5.

** We used 500 Halton draws.

*** Seemingly some numerical issues were present in the estimation of this standard deviation.




Ucar
Ubus
y’ = | Utrain |
\ Uair /
Unsr
1 0 0 064 0
nz/ 0 1 095 0 0.65\l
CoviN-t (y'y) = —| 0 095 1 0 0.65
6 \0.64 0 0 1 017 /
0 065 065 017 1
1 0 0 047 0
HZ/ 0 1 097 0 0.62\l
CoviNL-2 (y'y) = —| 0 097 1 0 062
6 \0.47 0 0 1 066 /
0 062 062 066 1

Box 2: Correlation pattern suggested by CNL models

The main difference between CNL_1 and CNL_2 is that the latter model (i.e. that
controls for unobserved taste heterogeneity) suggests a higher correlation between
HSR and air (this corresponds to the comparison between models SC_HL_1 and
SC_HL_2 in Table 4). The indicated correlation has approximately the same
magnitude as the correlation between HSR, train and bus; something that seems
plausible.

It has to be underlined that covariance structure cannot be transformed to other
scenarios. They are particular to our data (both RC and SC) and to the

specification of our model (i.e. the predefined structure of the CNL model and the

chosen deterministic utility function).

With the combined RC/SC modelling, the relative scale between the upper and
lower levels is estimated from the data and does not need to be assumed as in the
method of translating group scale parameters (from binary SC data) to structural
parameters (section 3).

5. Discussion

Modelling the choice of a new alternative (in this case HSR) is a non-trivial task.
One important reason for this goes back to the limited data access to revealed
choice (RC) data for new travel modes making the collection of stated choice
(SC) data a necessity. The papers by Cherchi and Orttzar (2006; 2011) and Yanez
et al (2010) have addressed important challenges in the combined analysis of RC
and (multinomial) SC data. They discuss how to fit alternative specific constants,
to account for taste heterogeneity and to define inter-alternative error structures
respectively, and have attempted to provide guidelines on how to cope with these
challenges in practice. Our paper acknowledges that analyst's judgment is needed
to determine the best way to fit models to SC data for real world forecasting of
new alternatives in specific application scenarios. This applies in particular to
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situations where the new travel alternative is likely to change the competitive
structure of the travel market, as is arguable the case for HSR in Norway.

To the extent that introducing a HSR has the potential to change the correlation
structure among current modes, it is not guaranteed that information about the
current correlation structure among existing travel modes - as indicated by a RC
model - has guaranteed validity for future travel decision making

Despite these caveats it would have been interesting to compare the correlation
structure in RC and SC models more rigorously. However, a direct comparison as
done by Yafezt al (2010) based on multinonial SC data, is not possible with
binary SC data, with only one alternative (the new travel mode) being common to
all subgroups. Therefore, identifying the most appropriate inter-alternative
correlation structure for a forecasting model (i.e. preferring the nesting structure
of Figure 5 from those in figures 3 and 4) is somewhat arbitrary and subject to the
assumption that the translation from "variance" into "correlation” related to the SC
data on HSR is reasonable.

Given the shortcomings of SC binary choice data as discussed in this paper, it
seems indispensable to consider having at least three alternatives in choice
experiments, even though this is likely to increase the complexity of the choice
tasks. Good practise is found in Yanet al (2010) where each SP-respondent
had to consider four transport modes: the current mode, the new HSR and two
other transport modes that were added to the choice experiment on a random
basis.
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Appendix

Table 5: Multinomial and Nested logit model on revealed choice data

Model Index RC_MNL RC_NL_1 RC_NL_2
Coefficient Value Rob. T-  Value T-stat Value Rob. T-
stat (0) 0) stat (0)
Travel cost (NOK) -0.0064 -19.17 -0.0064 -22.04 -0.00526 -14.24
Interaction: Dummy "missing  -3.03E-06 -0.01  -3.03E-06 -0.02 0.000271 1.38
income" - travel cost
Interaction: Dummy "did not 0.000943 2.3 0.000943 2.23  0.000817 2.21
pay" - travel cost
In-vehicle* (min) -0.00087 -1.42 -0.00087 -1.21 -0.00066 -1.27
Access + egress time** -0.00678 -6.99 -0.00678 -7.45 -0.00694 -7.63
(min)
Dummy (travel time <6h) 1.18 7.37 1.18 6.78 1.04 7.19
1/frequency -0.591 -2.48 -0.591 -2.51 -0.655 -3.02
ASC-Car 0 fixed 0 fixed 0 fixed
ASC-Air 2.54 8.88 2.54 8.58 1.87 6.86
ASC-Train -0.486 -3.26 -0.486 -3.34 -0.503 -3.73
ASC-Bus -1.35 -7.46 -1.35 -6.52 -1.21 -7.53
Value Rob. T-  Value T-stat Value Rob. T-
stat (1) Q) stat (1)
Nest car/air 1 fixed 1.41 17.44
Nest train/bus 1 fixed 1.46 7.05
Nest car 1 fixed
Nest air/train/bus 1.00 0.89
No. of parameters 10 11 12
No. of observations 5406 5406 5406
No. of respondents 5406 5406 5406
Null-LL -5767.51 -5767.51 -5767.51
Final-LL -2360.81 -2360.81 -2337.68
Adjusted rho-square 0.589 0.589 0.593
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