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Abstract 

In Analysis of variance Simultaneous Component Analysis (ASCA), permutation 

testing is the standard way of assessing uncertainty of effect level estimates. This 

article introduces an analytical solution to the assessment of uncertainty through 

classical multivariate regression theory. We visualize the uncertainty as ellipsoids, 

contrasting these to data ellipsoids. This is further extended to multiple testing of 

effect level differences. Confirmatory and intuitive results are observed when 

applying the theory to previously published data and simulations. 
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1. Introduction 

In modern science, analysing designed experiments with a multivariate output has 

become a major issue1–3. The reason for this is the easy availability of instruments 

and measurement techniques that provide large amounts of data. Standard and 

well-established methods from classical statistics (multivariate analysis of variance, 

MANOVA, see e.g. 4) can be useful in this context for assessing significance, but they 

provide little additional information for interpretation and they break down with 

high-dimensional data. Since modern instruments in most cases provide highly 

collinear data and one of the main interests lies in understanding how the different 

design factors influence the multivariate response, a number of methods have been 

developed for gaining improved insight.  

  

The simplest of these methods is  PC-ANOVA5,6 based on just using principal 

components analysis (PCA) of the output vectors and then relating the first few 

principal components to the design variables. This is a simple approach and has the 

advantage that it can use all the tools available for analysis of variance (ANOVA), like 

multiple comparisons, random effects, split plot structures etc. A possible drawback 

of the method is that in cases where the different design factors generate very 

different multivariate structures, the joint PCA solution will contain very many 

principal components. Also, PCA is blind to the design and so may find principal 

components that are of less relevance to the experiment. 

 

A refinement of the PC-ANOVA is the 50/50 ANOVA put forward by 7. In addition to 

formal tests of significance, the method also provides an explicit way of selecting the 
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number of principal component and which design factors to finally incorporate in 

the model. However, the method suffers from the same drawbacks as the PC-

ANOVA.  

 

A third possibility is the ASCA method8 which reverses the use of PCA and ANOVA 

as compared to the PC-ANOVA above. First, a regular ANOVA is used for each of the 

output variables and the coefficients for each variable and design factor are 

calculated using the standard restriction of setting the sum of the parameters for 

each design factors equal to 0. Then the coefficients for each factor are submitted to 

a separate PCA for each factor. The method has been extended for more detailed 

analysis of the interactions in PARAFASCA9 and for unbalanced data10.  Comparisons 

of ASCA and PCA-ANOVA can be found in 11,12,1. ASCA fits into a general framework 

for high-dimensional fixed effect ANOVA which also contains other methods 13.  

 

Whereas the ASCA method has been developed as a high-dimensional fixed effect 

ANOVA visualization tool, it would be useful to also include statistical inference. A 

first attempt was made by including permutation testing14 and by back-projecting 

the residuals on the loadings of the ASCA model12. None of these approaches, 

however, give a full and rigorous inference of the estimated multivariate effects.  

 

The focus of the present paper is to develop a more general statistical inference 

procedure in the form of confidence ellipsoids with corresponding visualization that 

can be used for balanced designs. The method is based on standard distribution 

theory from multivariate regression. Focus here will be on establishing a closer link 
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between standard linear model theory4 and ASCA8, with the hope that it is easier to 

generalise than the methods proposed earlier12,14. The method will be explained and 

illustrated with three examples: one from sensory science, one from spectroscopy 

and one simulation. This new approach gives a visual presentation of the differences 

between the levels of each factor in the design.  

 

Notation 

a  – a scalar (lower-case, italic letter) 

𝐗  – a matrix (capital, bold letter) 

𝐱𝑖,∗ ,  𝐱∗,𝑗  – a single row or column in 𝐗, respectively 

𝐗𝑔  – a subset of columns/rows in 𝐗 corresponding to a design factor 

𝐗𝑡  – the transpose of 𝐗 

 

2. Standard ANOVA and the need for multivariate extensions 

 

Analysis of variance (ANOVA) is one of the most used and well established 

methods in statistics. It was developed for determining the effect of various 

factors, typically varied according to an experimental design, on a response 

variable. The model used is  

 

     𝐲 = 𝟏𝑏0 +  𝐗1𝐛1+. . . +𝐗𝑔𝐛𝑔+. . . +𝐗𝐺𝐛𝐺 + 𝐞      (1) 

 

where y (nxp) is the vector of responses, the 𝐗𝑔 (nxqg) represents the design 

matrix for design factor g, 𝐛𝑔 (qgxp) is the vector of model coefficients for design 
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factor g, and e is the random error, i.e. the response variation not explained by the 

linear model. Typically, one is interested in determining which of the factors have a 

significant effect on the response and also to determine how large the effect is. Of 

special importance is to estimate the differences of effect sizes between the 

different levels/values for the significant factors. Is for instance a detected 

significant effect due to the differences between level 1 and level 2 only or between 

all levels?  

 

For determining significance of a factor, one will typically use F-tests, with 

corresponding p-values, that compare a measure (a sum of squares) for the 

differences between the levels with a measure of the random error.  Confidence 

intervals for important aspects like effect levels also come out naturally from the 

methodology.  A number of extensions of the basic methodology that incorporate 

random effects and different error structures have been developed.  

 

In modern science, it has become more and more common to measure many Y-

variables instead of only one, ending up with a model of the form 

 

𝐘 = 𝟏𝐛0 +  𝐗1𝐁1+. . . +𝐗𝑔𝐁𝑔+. . . +𝐗𝐺𝐁𝐺 + 𝐄  (2) 

 

where  Y (nxp) is the matrix of all responses, the 𝐗𝑚 (nxqm) is the same as above, 

𝐁𝑔 (qgxp) is the matrix of model coefficients for design factor g, and E is the error. 

Here, qg is the number of effect levels minus one, as in the univariate case. The 
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rows of E have mean equal to 0 and covariance matrix equal to . Both main effect 

factors and interactions are allowed. 

 

One can of course analyse each Y-column separately, but that is cumbersome and 

time-consuming and also in many cases rather meaningless. The estimates of the 

factor effects are the same with this strategy, but the inference will not take into 

account the remaining Y-columns. In for instance spectroscopy, each single 

wavelength is of minor interest. In addition, the correlation structure between all 

variable is lost if analysed individually. The standard multivariate ANOVA 

(MANOVA) is an early attempt for solving this, but due to high collinearity among 

responses and often few samples, this method can often not be used.  ASCA is a 

method which attempts to handle these problems.  

 

 

3. The standard ASCA method  

Conceptually, ASCA is an exploratory subspace analysis of multivariate least squares 

means (LS-means). The basis is a fixed, balanced multivariate ANOVA (model (2) 

above) with no complicating additions like repeated measures, covariates or 

random effects.  

 

The first step of ASCA is to calculate the LS-means in the traditional way for each of 

the design factors (here represented by 𝐗𝑔) following Equation 2. The sum-to-zero 

coding (column centred dummy coding of design with last column of each level 

removed) of the design matrices is in practice used in order to obtain unique 
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estimates of the coefficients, but this is not needed for the uniqueness of the LS-

means. The LS-means are computed for one factor at the time using estimated 

coefficients 𝟏𝐛0 + 𝐗𝑔�̂�𝑔.  

 

The next step of ASCA is to centre the LS means for each factor and perform a PCA 

on the results. Note that the intercept part of the LS means is then essentially 

eliminated. Since the PCA is performed on LS-means without individual variation, 

the rank is limited to the number of levels minus one for the main effects and 

corresponding products of factor ranks for interactions. For instance, a 𝐗𝑔�̂�𝑔 based 

on a three level factor will be completely exhausted after two principal components 

have been extracted. For factors with two, three, and possibly four (3D plot) levels, 

this means that score plots will only show the LS-means with a change of basis, not 

a truncated space. Note that the explained variances reported in the PCA plots below 

are related only to the actual factor effect matrix and not to the explained variance 

of the response.   

 

Data ellipses are commonly used in ASCA to emphasize variation patterns in the 

factor levels in score plots. However, these ellipses are so called data ellipses15, 

which only capture the observed variation in the displayed score dimensions. A 1 −

𝛼 data ellipsoid is created using a unit circle, the mean �̅�𝑔,𝑟 and sample covariance 

matrices 𝐒𝑔,𝑟 of the r-th level of the g-th design factor, and a scaling constant 𝑐 =

𝑝(𝑛 − 1)/(𝑛 − 𝑝)𝐹1−𝛼,𝑝,𝑛−𝑝. The unit circle is scaled and rotated by c and 𝐒𝑔,𝑟
1/2 (the 

Cholesky decomposition of 𝐒𝑔,𝑟) and translated to be centred in �̅�𝑔,𝑟. 
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Another attempt to assessing uncertainty  that is put forward is based on 

permutation testing14. One of the drawbacks with this method is that, while 

permutation test provide “exact” estimates for main effects, they are only 

approximate for interactions, and in the latter case, their implementation is not 

straightforward.  

 

The suggested ellipses in this manuscript will be based on the underlying 

multivariate ANOVA model, thus capturing the uncertainty in the modelling. In 

contrast to the data ellipsoids, the model ellipsoids will grow and shrink with the 

number of samples and the covariance of the design factors.  

 

 

4. New method based on confidence ellipsoids 

In this paper, a new approach is proposed which is based on using standard results 

from multivariate regression combined with T2 confidence ellipsoids to assess 

uncertainty of the points in the ASCA plots. In more detail, the confidence ellipses 

are first developed for the whole vector of predicted responses before we present 

corresponding results when the ellipses are projected down onto the most 

dominating directions in the space.  

 

As with all ANOVA based methods, assuming balanced data makes the theory 

simpler. This is also the case for ASCA, and as such this assumption underlies the 

basic ASCA and its implementation in this work. One of the reasons why imbalance 
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makes modelling more complex is that the dummy coded factor level matrix tends 

to give covariance between levels and factors that are otherwise orthogonal. We will 

therefore here concentrate on balanced data, but the aim is to develop a structure 

that can be extended to more complex cases. 

 

The standard dummy design matrices for the different factors in ANOVA are 

singular, and the easiest way of establishing the methodology presented is to work 

with a reparametrization of full rank. In this paper we choose the “sum-to-zero” 

parametrization (also known as sum coding or deviation coding16) as this ensures 

orthogonal factors in the design matrix in the balanced case. This implies that one 

column from each of the design matrices is eliminated and the corresponding rows 

are set to -1.  Note that the choice of parametrisation has no effect on the predicted 

results. However, a non-centred design would lead to more complex LS-means 

calculations and different regression coefficients. We refer to the appendix for 

further detail on the coding problem and how it is solved in this paper. 

 

4.1. Confidence ellipses for LS-means in original space.  

We will here first take a general approach where we show how to create confidence 

ellipses for LS means for a full model. Then we discuss how to use these results for 

each of the design factors and their interactions separately and for points in PCA 

reduced space.   

 

4.1.1. Confidence ellipsoids for LS means  

The model considered first is the full multivariate regression model: 
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𝐘 = 𝐗𝐁 + 𝐄 (n x p),       (3) 

 

The matrix E is assumed normally distributed with mean 0 and covariance matrix 

equal to , B is the matrix of regression coefficients and X full rank. The first column 

of X is a vector of 1’s in order to accommodate the intercept. The covariance 

matrix 𝐶𝑜𝑣(𝐞𝒊,∗) = 𝚺, where 𝐞𝒊,∗ corresponds to a row in E, is here assumed to have 

full rank for 𝚺 and to be independent of the remaining rows in E. The regression 

coefficient matrix can be written as:  

𝐁 =

(

 
 

𝑏11 𝑏12
.

.
.

𝑏𝑞1 𝑏𝑞𝑝)

 
 
= (𝐛∗,1, . . . , 𝐛∗,𝑝), i.e. p responses and q columns in X. 

 

Note that the q here is equal to 1 + q1 + ... + qg + ... +qG as defined for equation (1). 

The covariance matrix between �̂�∗,𝑘 and �̂�∗,𝑙 (two columns/responses, in �̂�) is equal 

to  

 

𝑐𝑜𝑣(�̂�∗,𝑘, �̂�∗,𝑙) = 𝐸(�̂�∗,𝑘 − 𝐛∗,𝑘)(�̂�∗,𝑙 − 𝐛∗,𝑙)
𝑡 = σ𝑘𝑙(𝐗

𝐭𝐗)−1  (4) 

 

(see Theorem 6.2.3. in Mardia et al.4), where σ𝑘𝑙  is an element of the covariance 

matrix 𝚺. Then, the covariance between the two linear functions 𝐱𝑡�̂�∗,𝑘 and 𝐱𝑡�̂�∗,𝑙 is 

equal to  
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𝐸(𝐱𝑡(�̂�∗,𝑘 − 𝐛∗,𝑘)(�̂�∗,𝑙 − 𝐛∗,𝑙)
𝑡𝐱) = 𝐱𝑡σ𝑘𝑙(𝐗

𝐭𝐗)−1𝐱.      (5) 

 

If xt is the column vector corresponding to row i in X, i.e. equal to 𝐱𝑖,∗, the two linear 

functions 𝐱𝑡�̂�∗,𝑘 and 𝐱𝑡�̂�∗,𝑙  represent estimates of for row i in XB for the columns 

(responses) k and l.  

 

Equation (4) shows the covariance for two linear functions representing two 

different responses. Putting this together for all responses, the covariance matrix of 

the whole vector  𝐱𝑖,∗
𝑡 �̂� , i.e. all the elements in the row, is then equal to 𝑎𝑖𝚺 

where  𝑎𝑖 = 𝐱𝑖,∗
′ (𝐗′𝐗)−1𝐱𝑖,∗ . Normality and unbiasedness follow as usual in linear 

functions. The distribution of 𝐱𝑖,∗
𝑡 �̂�/√𝑎𝑖 is then multivariate normal with a 

covariance matrix equal to 𝚺.  

 

According to Theorem 6.2.3 in Mardia et al.4 𝑛�̂� is Wishart distributed,  𝑾𝑝(Σ, 𝑛 − 𝑞) 

where �̂� =
1

𝑛
�̂�𝑡�̂�. Theorem 3.5.1 in Mardia et al.4 then immediately gives us that  

 

(𝑛−𝑞)

𝑛
(𝐱𝑖,∗
𝑡 �̂�/√𝑎𝑖 − 𝐱𝑖,∗

𝑡 𝐁/√𝑎𝑖)Σ̂
−1(𝐱𝑖,∗

𝑡 �̂�/√𝑎𝑖 − 𝐱𝑖,∗
𝑡 𝐁/√𝑎𝑖)

𝑡    (6) 

 

is Hotelling’s T2 distributed with parameters p and (n-q). Alternatively, we can 

write the ellipsoid function with coefficient 1 − 𝛼 for 𝐱𝑖,∗
𝑡 𝐁 as: 

 

(𝑛−𝑞)

𝑛𝑎𝑖
(𝐱𝑖,∗
𝑡 �̂� − 𝐱𝑖,∗

𝑡 𝐁)Σ̂−1(𝐱𝑖,∗
𝑡 �̂� − 𝐱𝑖,∗

𝑡 𝐁)
𝑡
= 𝑇1−𝛼,𝑝,𝑛−𝑞

2               (7). 
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4.2. Confidence ellipsoids for LS means in projected space  

The next step is to extend this to linear functions of rows in 𝐗𝐁, i.e. 𝐱𝑖,∗
𝑡 𝐁𝐋𝑡 where L 

has dimension (dxp). Below we will only consider L as linear functions defined by 

the principal component projects, but the following results are general. In this paper 

d (the number of principal components) is typically set to either 2 or 3. The 

covariance of 𝐱𝑖,∗
𝑡 𝐁𝐋𝑡/√𝑎𝑖 is, by the results above, equal to 𝐋𝚺𝐋𝑡. Since 𝑛�̂� is Wishart 

distributed, the distribution of the transformed covariance 𝑛𝐋�̂�𝐋𝑡  matrix is still 

Wishart distributed (Theorem 3.4.1 in Mardia et al.4), i.e. 𝑛𝐋�̂�𝐋𝑡~𝑊𝑑(𝐋𝚺𝐋
𝑡, 𝑛 − 𝑞). 

The same arguments as above lead to the following confidence ellipsoids for the 

linear functions 𝐱𝑖,∗
𝑡 𝐁𝐋𝑡: 

 

(𝑛−𝑞)

𝑛𝑎𝑖
(𝐱𝑖,∗
𝑡 �̂�𝐋𝑡 − 𝐱𝑖,∗

𝑡 𝐁𝐋𝑡)(𝐋�̂�𝐋𝑡)
−𝟏
(𝐱𝑖,∗
𝑡 �̂�𝐋𝑡 − 𝐱𝑖,∗

𝑡 𝐁𝐋𝑡)
𝑡
= 𝑇1−𝛼,𝑑,𝑛−𝑞

2 .  (8) 

 

In this paper, The L will be the loadings matrix corresponding to principal 

components of the rows in XB. We will consider the PCA projection as a fixed linear 

transform meaning that our results are conditioned on the actual PCA projection. 

 

4.3. Confidence ellipsoids for each experimental factor  

If we go back to model (1), the different X-blocks represent either main effects 

matrices or interaction matrices obtained by multiplication as described in the 

Appendix. The number of columns in 𝐗𝑔 is equal to qg. For the balanced case each of 

the blocks are estimated and treated independently. This means that the same 

theory as described in Section 3.1 and 3.2 above holds for each of the blocks with 
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the corresponding adjustment of the factor 𝑎𝑖 (all values are set to zero in 𝐱𝑖, except 

those that represent the block) calculated for the block of interest only. In other 

words, one can calculate confidence ellipsoids for rows in  𝐗𝑔𝐁𝑔  using the same 

equation as presented in equation (8) setting q equal to qg. The principal 

components used for projection are calculated for each block separately, which 

means that the L is different for each block. 

 

4.4. Implementation 

Drawing of the model ellipsoids follows the same pattern as drawing data ellipsoids. 

The pooled covariance matrix is exchanged with the scaled, projected model 

covariance matrix 𝐋�̂�𝐋𝑡𝑛𝑎𝑖/(𝑛 − 𝑞), where 𝐋 is a matrix of loadings for the current 

factor/interaction with dimension (dxp). d is 2 or 3 in the case of ellipsoids. In the 

balanced case with the chosen design coding 𝑎𝑖 = 𝑞𝑔 𝑛⁄ . This is also the leverage of 

the i-th design point (diagonal element of the hat matrix17, 𝐗(𝐗𝐭𝐗)−1𝐗𝐭), where 𝑞𝑔  

is the number of columns in the selected factor/interaction design block. The scaling 

constant c ensures 1 − 𝛼 coverage. 

 

We translate from Hotelling’s T2 distribution to the F-distribution for simple table 

lookups 𝑇2(𝑝,𝑚) = {𝑚𝑝/(𝑚 − 𝑝 + 1}𝐹𝑝,𝑚−𝑝+1 . In our case 𝑚 = 𝑛 − 𝑞𝑔  and 𝑝 = 𝑑, 

which means we must scale our ellipsoids with  

                      𝑐 = √
(𝑛−𝑞𝑔)𝑑

𝑛−𝑞𝑔−𝑑+1
ℱ(1 − 𝛼, 𝑑, 𝑛 − 𝑞𝑔 − 𝑑 + 1),                                 (9) 

to obtain the desired level of confidence. 
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4.5.  Pairwise comparisons of effect levels means 

A direct consequence of the model ellipsoids is the possibility of performing 

pairwise comparisons of effect levels. As with pairwise testing in ANOVA, all 

pairwise, standardized distances between effect levels are computed using a 

Mahalanobis distance with the appropriately scaled projected covariance matrix. 

The only modification of the method in equation (7) is that now the 𝐱𝑖,∗
𝑡 𝐁 is replaced 

by the linear combination  (𝐱𝑟,∗
𝑡 − 𝐱𝑠,∗

𝑡 )𝐁. Significance is then judged according to 

whether the ellipse, with the appropriate significance level, covers 0 or not. When 

this is done for all combinations, a compact letter display of effect level differences 

can be created as shown in the example below. Compensation for multiple 

comparisons can for instance be performed by Bonferroni adjustment of the 

significance level. 

 

4.6. Relations to other methods – extensions 

In multivariate statistical process control (MSPC) similar ideas are used. In MSPC 

multiple process measurements collected under Normal Operating Conditions 

(NOC) are subjected to a PCA. The scores of that model are subsequently used to 

build a T2 statistic in this reduced space, called a D-statistics, and control limits are 

derived from that18,19. Often in the visualization of MSPC models, ellipsoids are 

shown reflecting these control limits.  

 

Several aspects of multivariate regression have not been discussed in this work. For 

instance, the effect of imbalancedness is an issue that needs to be tackled to ensure 

meaningful ellipsoids. Here the problem is that using an unbalanced design will lead 
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to non-orthogonal effects which will again affect the ellipsoids. If the ellipsoids are 

to be interpreted as exact, this may be problematic, while as an explorative tool, 

slight imbalancedness may be disregarded. The type of sums-of-squares is 

important in imbalanced analyses, e.g. using Type I (sequential) or Type III 

(disregarding marginality). This topic is beyond the scope of this article and is 

therefore left for a later study.  

 

 

5. Examples. 

5.1. Example 1. Candies 

The sensory data20 contains assessments of 11 different candies by 5 assessors that 

have judged 9 sensory attributes: transparency, acidity, sweet taste, raspberry 

flavour, sugar coated texture (tested with a spoon), biting strength in the mouth, 

hardness, elasticity in the mouth, stick to teeth in the mouth. All assessments have 

been performed three times. The model has two factors: the assessors and the 

candies, while the sensory attributes are responses. We also include the interaction 

between assessors and candies, as in the original publication. 

 

Looking at Figure 1, we observe that the assessor ellipsoids mostly overlap to a large 

extent. This is a good sign, showing that the assessor panel is quite well calibrated. 

An exception is the lower right assessor having almost no overlap with any of the 

other assessors. If we take into account the loadings of Figure 2, we see that the 

attributes acid and sweet are furthest away from the origin and thus hardest to give 
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exactly the same assessment across assessors. The assessors contribute with 4.4% 

of the total variation of the ASCA model. 

 

Moving on to the candies, there are two candies that are very well separated from 

the remaining three, which overlap both in the first and second principal component 

directions. The first principal component is dominated by physical characteristics, 

while the second (smaller) principal component is dominated by taste 

characteristics. In total, the candy components contribute 74.5% of the model 

variation. The interaction seems chaotic, revealing no interesting patterns of 

variation and only contributes with 7.7% of the model variation (not shown). 

 

If we perform permutation testing on this model using 10000 permutations we get 

𝑃 < 1 10000⁄  for both main effects and 𝑃 =  1 for the interaction. This is in line 

with our observations as there is at least one level of each main effect that 

significantly differs from the others, while there is large overlap between all levels 

of the interaction. 
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Figure 1 Sensory data score plots for the main effects with confidence ellipsoids. From inner to outer ellipsoid, 

these represent 40%, 68%, and 95% of the variation of the data or model factor levels, respectively. 
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Figure 2 Sensory data loading plots displaying sensory attributes for the candy assessments. Some of the major 

contributors show similar patterns in the loadings, except the 180 degrees switch along the first axis. 

Applying pairwise comparisons of means to the assessor effect in two dimensions, 

we obtain the compact letter displays (CLD) shown in Figure 3 together with a map 

of the assessors. This gives us a condensed view of which assessors can be seen as 

different or not as the latter share a letter in the CLD. For instance, when using 

Bonferroni correction assessors G is different from all the rest, while assessor A 

cannot be distinguished statistically from assessors I, F, C, H, or K. The former is true 

since assessor G has a unique grouping letter. The latter is true since assessor A 

shares group ‘b’ with assessors I, C, F and H, and group ‘c’ with assessors K, C, F and 

H. Here the insert-absorb algorithm 21 for CLDs is used. 
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Assessor 
E 

I 

K 

A 

C 

F 

H 

J 

B 

D 

G 

Uncorrected 
a 

 b 

  c 

  cde 

  cd 

 b  e 

   d 

     f 

      g 

      g 

       h 

Bonferroni  
a 

ab 

  c 

 bc 

 bc 

 bc e 

 bcd 

   de 

   d 

   d 

     f  

Figure 3 Sensory data compact letter display for mean assessor effects and map of the assessor level means 

corresponding to Figure 1 with Bonferroni corrected grouping indicated.  

 

5.2. Example 2, Egg-pasta 

The spectral data 22 contains NIR measurements (3112 wavelengths) of 540 egg-

pasta samples. Three factors have been varied in the recipes: temperature (3), time 

(3) and concentration of egg (6). The model contains all main effects and second 

order interactions. 

 

As can be seen in Figure 4, most of the levels in the main effects have non-

overlapping model ellipsoids. The model ellipsoids are significantly smaller than the 

data ellipsoids because of the large number of replicates. 
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Figure 4 Spectral data score plots for the main effects with confidence ellipsoids. From inner to outer ellipsoid, 

these represent 40%, 68%, and 95% of the variation of the data or model factor levels, respectively. 
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In the original article all main effects were found to be significant using permutation 

testing, which confirms our findings. If we plot the ellipsoids in three dimensions, 

also the concentration effects can be separated in Figure 5. Also the results for the 

interactions are in concordance with some overlap between the levels of the 

temperature:concentration interaction, full overlap for time:concentration and least 

overlap for temperature:time. We refer to the original article for plots of 

interactions and loadings. 

 

 

Figure 5 Spectral data score plots for the main effects with three dimensional confidence ellipsoids. Ellipsoids 

represent 95% of the variation of the data or model factor levels, respectively. 

 

5.3. Simulated data 

We have conducted several simulations with various numbers of effects and effect 

levels, with few responses and spectral like responses. The simulations allow us to 

explore the effects of changing the numbers of replicates and the amount of noise in 

each group in a controlled manner. A typical example is to simulate multinormally 

distributed variation around fixed factor levels. Repeated simulations are 
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performed with many repetitions while systematically varying the scaling of the 

multinormal distributions and the number of replicates. 

 

An example of such simulations is shown in Figure 6 where standard binormal noise 

is added to observations around fixed factor level means in two dimensions. Two 

factors of four and five levels are simulated and analysed by ASCA, but only the first 

factor is plotted to show the effect of varying the number of replicates, N=2/N=8, 

and the variance scaling, σ2=1/σ2=4. The observations in the left-hand subfigures 

are copied four times in the right-hand subfigures to produce exactly the same 

covariance structures with increased number of samples. 
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Figure 6 Simulated data score plots for the main effect with model based confidence ellipsoids. From inner to 

outer ellipsoid, these represent 40%, 68%, and 95% of the variation of the model factor levels, respectively. ‘N’ is 

the number of replicates per factor level combination, and ‘σ2’ is the variance scaling of the standard binormal 

distributions around the level means. 

 

From these sets of simulations, we always observe that increasing the number of 

replicates with a factor of v causes the area of the ellipsoids to shrink with a factor 

of approximately √𝑣𝑑 , where d is the number of dimensions. This means that when 

replicates increase from 2 to 8 per factor combination, v=4 and the areas of the two-
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dimensional ellipsoids shrink with a factor of  √42 = 4 . The shrinkage factor is 

slightly inflated when only a few replicates is the basis, while quickly converging to 

√𝑣𝑑  when the number of replicates increases.  The effect of increasing the variance 

of the noise around of the effect levels scales exactly inversely to the number of 

replicates. 

 

6. Discussion 

In the work presented in this article, we have introduced an analytical solution to 

the estimation of uncertainty of design factor levels in ASCA. It is based on classical, 

linear multivariate regression theory and is therefore generalizable, e.g. to 

unbalanced data and more complex models. In contrast to resampling based 

uncertainty estimations, our approach handles interactions of any order correctly. 

We consider the PCA of the LS-means fixed, and thus the ellipsoids are conditional 

on the basis spanned by the PCA. This is similar to the way effective degrees of 

freedom in ridge regression are conditional on the ridge parameter23. 

 

In the examples we have chosen to apply the model ellipsoids to previously 

published data for relevant comparison and to simulated data to illustrate the 

properties of the theory when the number of samples and variance is changed. Our 

results concur with the published results, but also add more interpretation 

possibilities because of the focus on effect levels rather than only on whole effects. 

The simulations show that the ellipsoids scale in an intuitive way when the number 

of samples and the noise levels are changed. 
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With an analytical framework, pairwise comparisons of means can easily be 

performed. As shown in the sensory example, this can help in getting an overview 

of the effect levels, i.e. the assessors. Groups of similarly performing assessors can 

easily be pinpointed and outliers be detected. 
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Appendix. 

We will us a simple example based on two factors with 3 and 2 levels respectively 

(balanced), to illustrate the coding problem and how it is approached in this paper. 

 

[
 
 
 
 
 
1 1
1 2
2 1
2 2
3 1
3 2]

 
 
 
 
 

𝐷𝑢𝑚𝑚𝑦
𝑐𝑜𝑑𝑒

⇒     

[
 
 
 
 
 
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 
|

|

1 0
0 1
1 0
0 1
1 0
0 1]

 
 
 
 
 

𝐷𝑟𝑜𝑝
𝑙𝑎𝑠𝑡 𝑙𝑒𝑣𝑒𝑙

𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔

𝑟𝑜𝑤𝑠

⇒           

[
 
 
 
 
 
1 0
1 0
0 1
0 1
−1 −1
−1 −1

 
|

|

1
−1
1
−1
1
−1]
 
 
 
 
 

. 

 

To the left, actual levels, then dummy, before centred dummy with last columns 

eliminated (sum-to-zero coding).   

 

Interactions are obtained by column-wise multiplications which gives us (the two 

last are interactions): 

 

[
 
 
 
 
 
1 0
1 0
0 1
0 1
−1 −1
−1 −1

 
|

|

1
−1
1
−1
1
−1

 
|

|

1 0
−1 0
0 1
0 −1
−1 −1
1 1]

 
 
 
 
 

. 
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The columns are orthogonal between the three blocks, main effects, and 

interactions, but not within each effect. This means that the effects can be handled 

independently. Calling the above mentioned matrix X, we can compute X’X to be: 

[
 
 
 
 
4 2 0 0 0
2 4 0 0 0
0 0 6 0 0
0 0 0 4 2
0 0 0 2 4]

 
 
 
 

. 

 

This is also illustrated in Figure 7. The block diagonal form also ensures a block 

diagonal inverse, (X’X)-1 for any number of levels or orders of interactions: 

[
 
 
 
 
1 3⁄ −1 6⁄ 0 0 0
−1 6⁄ 1 3⁄ 0 0 0

0 0 1 6⁄ 0 0
0 0 0 1 3⁄ −1 6⁄

0 0 0 −1 6⁄ 1 3⁄ ]
 
 
 
 

. 

 

 

Figure 7 Block structure of X’X when using the desired dummy coding for a design having main effects of 4, 3, and 

2 levels, respectively, plus 2nd and 3rd order interactions. 


