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Abstract. The purpose of the paper is to study stability properties of the

generalized stochastic pantograph equation, the main feature of which is the
presence of unbounded delay functions. This makes the stability analysis rather

different from the classical one. Our approach consists in linking different

kinds of stochastic Lyapunov stability to specially chosen functional spaces.
To prove stability, we check that the solutions of the equation belong to a

suitable space of stochastic processes, instead of searching for an appropriate

Lyapunov functional. This gives us possibilities to study moment stability, sta-
bility with probability 1 and many other stability properties in an efficient way.

We show by examples how this approach works in practice, putting emphasis

on delay-independent stability conditions for the generalized stochastic panto-
graph equation. The framework can be applied to any stochastic functional

differential equation with finite dimensional initial conditions.

1. Introduction

In this paper we study Lyapunov stability of the stochastic pantograph equation
(see e.g. [4], [21], [23]):

(1) dx(t) =

Ax(t) +

m0∑
j=0

Aj0x(gj0t)

 dt+

m−1∑
l=1

ml∑
j=0

Ajlx(gjlt)dBl(t),

where 0 < gjl < 1, and its generalizations (see the equation (5) in Section 4). A very
good and comprehensive description of the role of the classical pantograph equation
and its stochastic counterpart, including historical comments, can be found in the
paper [21]. Let us only mention that generalizations of the pantograph equations
have also attracted attention of many mathematicians, see e.g. [5], [7], [8], [11],
[15], [17], [20], [22] and the references therein.

Stability analysis of the equations (1) and (5) has a special feature: the delay is
unbounded, so that many methods, including those based on Lyapunov-Krasovskii
functionals, are inapplicable. One uses therefore various special techniques, which
can e.g. be found in the papers [1], [2] (the stochastic case) and [7] (the deterministic
case). These techniques help to produce verifiable stability criteria, mostly in the
case of the classic pantograph equation (1).

Our approach goes back to the framework developed in the monographs [16]
(for linear differential equations in Banach spaces) and [3] (for linear deterministic
functional differential equations), where Lyapunov stability is replaced by input-to-
state stability, i.e. the property of the equation where its solutions belong to certain
linear topological spaces and continuously depend (in the corresponding topology)
on the initial data. In the stochastic case this approach is outlined in [12]. On the
other hand, the equations (1) and (5) possess a very specific property: their initial
conditions are finite dimensional, i.e. identical to the ones for ordinary differential
equations. This considerably simplifies the analysis of the input-to-state stability, as
all linear finite dimensional operators are bounded, and we only need to prove that
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all solutions of the equation belong to a certain topological space. For brevity, we
will call this property M -stability keeping in mind that this is, in fact, a particular
case of the input-to-state stability for linear equations with finite dimensional spaces
of initial data.

The idea of how to verify the property of input-to-state stability for linear de-
terministic functional differential equations goes back to the papers of N.V.Azbelev
and his students (see [3] and the references therein) who call their technique the
W -method. It is somewhat similar to Lyapunov’s direct method. But instead of
seeking a Lyapunov function(al) one aims to find a suitable reference equation which
possesses the prescribed asymptotic property and which then is used to regularize
the original equation. Like Lyapunov’s method, the W -method also provides neces-
sary and sufficient stability conditions. The W -method proven to be rather efficient
for many classes of delay equations, especially those where searching for Lyapunov
functionals seems to be difficult. Equations with infinite delays can serve as a
prominent example of such a class.

In [9], the method was for the first time applied to linear stochastic functional
differential equations and developed further by the authors in the series of publica-
tions (see the review article [12]). The first efficient stability conditions for stochastic
differential equations with unbounded delays, obtained by the W -method, were pre-
sented in the paper [11]. In the present paper we develop this approach further by
concentrating on specific stochastic equations with unbounded delays and finite di-
mensional initial conditions: the pantograph equation (1) and its generalization (5).
In the examples below (see Section 4) we only use the simplest reference equation
ẋ + αx = g, where α > 0 is a parameter, variation of which ensures best possible
stability conditions. More sophisticated reference equations (e.g. those including
delays) can be found in other publications of the authors.

The paper is organized as follows.
In Section 2 we introduce some notation and define the general linear stochastic

functional differential equation, which is used in Section 3 in the definitions of dif-
ferent kinds of stochastic stability. In this section we also offer a precise definition
of M -stability for different spaces of stochastic processes. The central result of Sec-
tion 3 describes relationship between stochastic Lyapunov stability and M -stability,
where we relate specially defined spaces of stochastic processes to different kinds of
stochastic Lyapunov stability.

Let us remark that the role of the definitions and results presented in Section
3 goes far beyond the applications to the stability analysis of the generalized sto-
chastic pantograph equation. Having in mind these future applications, we chose to
formulate and prove the results of Section 3 for the case of the general functional
differential equation (2). In addition to the equation (5), the equation (2) covers
integro-differential equations arising e.g. in electrical circuit analysis [13].

Section 4 contains applications to the stability analysis of the generalized sto-
chastic pantograph equation (5), but we stress that most results are also new for
the stochastic pantograph equation (1). This includes e.g. conditions of p-stability
for p 6= 2, stability with probability 1 and stability conditions in the vector case.

Finally, Section 5 contains a short overview of the main results of the paper as
well as some suggestions on further applications of the developed method.

2. Notation and Preliminaries

Let (Ω,F, (Ft)t≥0, P ) be a stochastic basis (see e.g. [14]), where Ω is a set of
elementary probability events, F is a σ-algebra of all events on Ω, (Ft)t≥0 is a right
continuous family of σ-subalgebras of F, P is a probability measure on F; all the
above σ-algebras are assumed to be complete with respect to (w.r.t. in what follows)
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the measure P , i.e. they contain all subsets of zero measure; the symbol E stands
for the expectation related to the probability measure P .

In the sequel, we use an arbitrary yet fixed norm |.| in Rn, the real-valued index
p satisfying the assumption 0 ≤ p ≤ ∞ and a continuous positive function γ(t)
defined for all t ≥ 0.

By Z = (z1, ..., zm)T we denote an m-dimensional semimartingale (see e.g. [14]),
while B = (B1, ...,Bm)T stands for the standard Brownian motion (the Wiener
process), the particular case of Z.

The general linear stochastic functional differential equation is defined as follows
(see e.g. [12]):

(2) dx(t) = (V x)(t)dZ(t) (t ≥ 0),

and the initial condition reads in this case as

(3) x(0) = x0 ∈ Rn.

Here V is a k-linear Volterra operator (see below), which is defined in certain linear
spaces of vector-valued stochastic processes.

By the k-linearity of the operator V we mean the property

V (α1x1 + α2x2) = α1V x1 + α2V x2,

which holds for all F0-measurable, bounded and scalar random values α1, α2 and
all stochastic processes x1, x2 belonging to the domain of the operator V .

According to the paper [9] the following classes of linear stochastic equations can
be rewritten in the form (2):

a). Systems of linear ordinary (i.e. non-delay) stochastic differential equations
driven by an arbitrary semimartingale (in particular, systems of ordinary Itô equa-
tions);

b). Systems of linear stochastic differential equations with discrete delays driven
by a semimartingale (in particular, systems of Itô equations with discrete delays);

c). Systems of linear stochastic differential equations with distributed delays
driven by a semimartingale (in particular, systems of Itô equations with distributed
delays);

d). Systems of linear stochastic integro-differential equations driven by a semi-
martingale (in particular, systems of Itô integro-differential equations).

e) Systems of linear stochastic functional difference equations driven by a semi-
martingale (in particular, systems of Itô functional difference equations).

Of course, the stochastic pantograph equation (1) and its generalization (5) are
also particular cases of the general functional differential equation (2).

3. Lyapunov Stability and M-stability

In this section we study different kinds of stochastic Lyapunov stability of the
zero solution of the linear equation (2) with respect to the initial data (3). Let us
start with the precise definitions.

Definition 3.1. The zero solution of the equation (2) is called

(1) weakly stable in probability if for any ε > 0, δ > 0 there is η(ε, δ) > 0 such
that P{ω ∈ Ω : |x(t, x0)| > ε} < δ for all |x0| < η and t ≥ 0;

(2) asymptotically weakly stable in probability if it is weakly stable in probability
and if, in addition, for any ε > 0 and all x0 ∈ Rn one has P{ω ∈ Ω :
|x(t, x0)| > ε} → 0 as t→ +∞;

(3) stable in probability if for any ε, δ > 0 there is η(ε, δ) > 0 such that P{ω ∈
Ω : sup

t≥0
|x(t, x0)| > ε} < δ for all |x0| < η;
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(4) asymptotically stable in probability if it is stable in probability and if, in
addition, for any ε > 0 and all x0 ∈ Rn one has P{ω ∈ Ω : |x(t, x0)| >
ε} → 0 as t→ +∞;

(5) p-stable if for any ε > 0 there is η(ε) > 0 such that |x0| < η implies
E|x(t, x0)|p ≤ ε for all t ≥ 0;

(6) asymptotically p-stable if it is p-stable and, in addition, lim
t→+∞

E|x(t, x0)|p =

0 for all x0 ∈ Rn;
(7) exponentially p-stable if there exist positive constants K, β such that the

inequality E|x(t, x0)|p ≤ K|x0|p exp{−βt} holds true for all t ≥ 0 and all
x0 ∈ Rn;

(8) stable with probability 1 if sup
t≥0
|x(t, xν)| → 0 with probability 1 whenever

|xν | → 0 as ν → +∞;
(9) asymptotically stable with probability 1 if it is stable with probability 1 and

if, in addition, |x(t, x0)| → 0 as t→ +∞ for all x0 ∈ Rn;
(10) strongly stable with probability 1 if for any ε > 0 there exists η(ε) > 0 such

that P{ω ∈ Ω : sup
t≥0
|x(t, x0)| ≤ ε} = 1 whenever |x0| < η;

(11) strongly asymptotically stable with probability 1 if it is strongly stable with
probability 1 and if, in addition, for any ε > 0 x(t, x0) tends to 0 with
probability 1 as t→ +∞ for all x0 ∈ Rn.

Remark 3.2. The initial condition x0 can also be random. In this case the norm of
x0 should be adjusted accordingly.

For brevity, we will also write ”the equation (2) is stable” in a certain sense
instead of ”the zero solution of the equation (2) is stable” in this sense.

In the sequel the following linear spaces of stochastic processes will be used:
— Ln(Z) consists of all predictable n×m-matrix stochastic processes on [0,+∞),

the rows of which are locally integrable w.r.t. the semimartingale Z (see e.g. [14]);
— Dn consists of all n-dimensional stochastic processes on [0,+∞), which can

be represented as

x(t) = x(0) +

t∫
0

H(s)dZ(s),

where x(0) ∈ Rn, H ∈ Ln(Z).
The spaces below (”M -spaces”) are crucial for studying the stochastic Lyapunov

stabilities listed above.

Mγ
0 = {x : x ∈ Dn such that for any δ > 0 there is K > 0, for which sup

t≥0
P{ω :

ω ∈ Ω, |γ(t)x(t)| > K} < δ};

M̂γ
0 = {x : x ∈ Dn such that for any δ > 0 there is K > 0, for which P{ω : ω ∈

Ω, sup
t≥0
|γ(t)x(t)| > K} < δ};

Mγ
p = {x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p <∞} (0 < p <∞);

M̂γ
p = {x : x ∈ Dn, E sup

t≥0
|γ(t)x(t)|p <∞} (0 < p <∞);

Mγ
∞ = M̂γ

∞ = {x : x ∈ Dn, ess sup
(t,ω)∈[0,+∞[×Ω

|γ(t)x(t)| <∞};

For γ(t) = 1 (t ≥ 0) we also put M1
p = Mp and M̂1

p = M̂p (0 ≤ p ≤ ∞).
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Let B be a linear subspace of the space Ln(Z) equipped with some norm ‖.‖B .
For a given positive and continuous function γ(t) (t ∈ [0,∞)) we define Bγ =
{f : f ∈ B, γf ∈ B}. The latter space becomes a linear normed space if we put

‖f‖Bγ := ‖γf‖B . By this, the linear spaces Mγ
p , M̂γ

p become normed spaces if
1 ≤ p ≤ ∞.

Remark 3.3. The above spaces can also be described as follows. Let L∞(X) be the
space consisting of all essentially bounded functions g : [0,∞) → X, while Lp(Y )
be the space of measurable (p = 0), p-integrable (0 < p <∞), essentially bounded
(p = ∞) functions h : Ω → Y , where X and Y are arbitrary separable Banach

spaces. Then it is easy to see that Mγ
p = L∞(Lp(R

n)) and M̂γ
p = Lp(L∞(Rn)) for

all 0 ≤ p ≤ ∞ and an arbitrary positive and continuous function γ : [0,∞) → R.
This means that the above list of the M -spaces covers all possible combinations
of Lebesgue spaces with respect to the variable ω ∈ Ω and spaces of essentially
bounded functions with respect to the variable t ∈ [0,∞). As we will see, this list
covers also all types of stochastic Lyapunov stability described in the definition 3.1.

Below we use the following assumptions on a continuous positive function γ(t),
t ∈ [0,∞):

Property γ1: the function γ satisfies the conditions γ(t)≥ σ (t ∈ [0,+∞)), σ > 0
and lim

t→+∞
γ(t) = +∞.

Property γ2: γ(t) = exp{βt} for some β > 0.

Definition 3.4. Let x(., x0) be the solution of the initial value problem (2-3) defined
on [0,∞) and S be a certain subspace of the space Dn. We say that the equation
(2) is S-stable if x(., x0) ∈ S for any x0 ∈ Rn.

Our first theorem describes relationships between the different kinds of the sto-
chastic Lyapunov stability and the associated S-stabilities for the equation (2).

Theorem 3.5. The following statements describe relationship between stochastic
stability properties of the equation (2) and the M -spaces.

(1) weak stability in probability is equivalent to the M0-stability;
(2) weak asymptotic stability in probability is equivalent to the Mγ

0 -stability for
some γ satisfying Property γ1;

(3) stability in probability is equivalent to the M̂0-stability;
(4) if 0 < p <∞, then p-stability is equivalent to the Mp-stability;
(5) if 0 < p < ∞, then asymptotic p-stability is equivalent to the Mγ

p -stability
for some γ satisfying Property γ1;

(6) if 0 < p < ∞, then exponential p-stability is equivalent to the Mγ
p -stability

for some γ satisfying Property γ2;
(7) stability with probability 1 is equivalent to the M̂0-stability;
(8) strong stability with probability 1 is equivalent to the M∞-stability;

Proof. We consider all cases separately.
(1) ⇐). Choosing arbitrary positive numbers ε and δ and minding that x(t, x0) =
X(t)x0 for all x0 ∈ Rn and all t ≥ 0, we first find K(δ) > 0 such that sup

t≥0
P{ω ∈

Ω : ‖X(t)‖ > K(δ)} < δ. Letting η = ε
K(δ) we observe that |x0| < η implies

sup
t≥0

P{ω ∈ Ω : |x(t, x0)| > ε} < δ for all x0, |x0| < η, which is equivalent to weak

stability in probability.
⇒). Assume that the zero solution of (2) is weakly stable in probability. Using the
notation from the previous part of the proof, we assume, in addition, that there
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exists x0 ∈ Rn such that x(., x0) does not belong to M0. Hence there is δ0 > 0 such
that for any ε > 0

P{ω ∈ Ω : |x(t(ε), x0)| > ε} > δ0

for at least one t(ε) > 0. In such a case, the solution x̂(t) ≡ η′x(t, x0)/|x0|, where
0 < η′ < η) satisfies the estimate P{ω ∈ Ω : |x(t(ε))| > ε} > δ0, although |x0| < η,
which contradicts the assumption.
(2) ⇐). The weak stability in probability follows from the observation that Mγ

0 is
topologically imbedded into M0. Let us now take arbitrary x0 ∈ Rn, ε > 0, δ > 0.
As x(., x0) ∈Mγ

0 , there exists K > 0, for which

sup
t≥0

P{ω ∈ Ω : |γ(t)x(t, x0)| > K} < δ.

Now, choosing T > 0 satisfying Kγ−1(t) < ε for all t ≥ T we obtain

sup
t≥T

P{ω ∈ Ω : |x(t, x0)| > ε} ≤ sup
t≥T

P{ω ∈ Ω : |γ(t)x(t, x0)| > K} < δ,

which implies weak asymptotic stability.
⇒). From the weak asymptotic stability in probability and the representation
x(t, x0) = X(t)x0 for all x0 ∈ Rn, we deduce that the function γ̄(t) = E(‖X(t)‖ ∧
1) → 0 as t → ∞, as E(|x − y| ∧ 1) is the metric in the space L0. Then the
function γ(t) = 1

γ̄(t) satisfies Property γ1 with σ = 1. Now, we take an arbitrary

x0 ∈ Rn, |x0| ≤ 1 and define K = 2Cδ−1 where C = sup
t≥0

γ̄(t). Let also choose

T > 0 satisfying the estimate P{ω ∈ Ω : ‖X(t)‖ > 1} < δ
2 for all t ≥ T . Then we

obtain
P{ω ∈ Ω : |x(t, x0)| > K} ≤ P{ω ∈ Ω : ‖X(t)‖ > K}
≤ P{ω ∈ Ω : ‖X(t)‖ > 1}+ P{ω ∈ Ω : ‖X(t)‖ ∧ 1 > K}

≤ δ
2 + δ

2CE(‖X(t)‖ ∧ 1) = δ
2 + δ

2C γ̄(t) < δ

for all t ≥ T . This yields sup
t≥T

P{ω : ω ∈ Ω, |γ(t)x(t)| > K} < δ}, which is sufficient

to conclude that x(., x0) ∈ Mγ
0 , as x(., x0) is continuous with probability 1 and

hence bounded in probability on the interval [0, T ].
(3) ⇐). This proof is similar to the one for case (1), where we only need to replace
sup
t≥0

P{ω ∈ Ω : ‖X(t)‖ > K(δ)} and sup
t≥0

P{ω ∈ Ω : |x(t, x0)| > ε} by P{ω ∈ Ω :

sup
t≥0
‖X(t)‖ > K(δ)} and P{ω ∈ Ω : sup

t≥0
|x(t, x0)| > ε}, respectively.

⇒). Assume that there exists x0 ∈ Rn such that x(., x0) does not belong to M̂0.
Hence there is δ0 > 0 such that for any natural number ν > 0

P{ω ∈ Ω : sup
t≥0
|x(t, x0)| > ν} > δ0.

Then the solutions xν(t) = x(t, x0ν
−1) satisfy P{ω ∈ Ω : sup

t≥0
|xν(t)| > 1} > δ0,

although the sequence xnu(0) = x0ν
−1 tends to 0. This contradicts the property of

stability in probability.
(4) ⇐). Let ek, k = 1, ..., n be the standard basis in Rn, the latter being equipped

with the norm |b| =
n∑
k=1

|bk| (all norms are equivalent). Due to p-stability we have

sup
t≥0

E|x(t, ek)|p ≤ K for some K > 0 and any k = 1, ..., n. Using the associated

matrix norm ‖[a1, ..., an]‖ = max
1≤k≤n

|ak|, where ak ∈ Rn, yields sup
t≥0

E||X(t)||p ≤ K.

For any ε > 0 we now define η = (ε/K)1/p
obtaining

sup
t≥0

E|x(t, x0)|p ≤ sup
t≥0

E‖X(t)‖p|x0|p ≤ Kpηp = ε

for any |x0| < η, which completes the proof of p-stability.
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⇒). Assume, on the contrary, that for some x0 ∈ Rn the solution x(., x0) does not
belong to the space Mp. Hence for any natural number ν there exists tν such that
E|x(tν)|p > νp. As xν(0) = x0ν

−1 can be arbitrarily small in the norm, while
E|xν(tν)|p > 1, this contradicts the property of p-stability.
(5)⇐). As the space Mγ

p is imbedded in Mp, the p-stability is trivial. On the other
hand, for any x0 ∈ Rn there exists a positive numberK such that sup

t≥0
Eγ(t)|x(t, x0)|p ≤

K. Therefore sup
t≥0

E|x(t, x0)|p ≤ γ−1(t)→ 0 as t→∞ by Property γ1.

⇒). Using the same norm as in part (5), we obtain E‖X(t)‖p → 0 as t→∞, so that
sup
t≥T

E‖X(t)‖p < 1 for some T > 0. Choosing γ̄(t) = E(‖X(t)‖p ∧ 1) and putting

γ(t) = 1/γ̄(t) (which satisfies Property γ1 with σ = 1), we obtain

sup
t≥T

E(γ(t)|x(t, x0)|p) ≤ sup
t≥T

E(γ(t)‖X(t)‖p)|x0|p = |x0|p.

As sup
0≤t≤T

E(γ(t)|x(t, x0)|p) is bounded due to continuity of the solutions, we deduce

that sup
t≥T

E(γ(t)|x(t, x0)|p) <∞, so that x(., x0) ∈Mγ
p for any x0 ∈ Rn.

(6) ⇐). Assume that γ(t) = exp{βt}. Using the norm from (5), we conclude that
sup
t≥0

γ(t)E|x(t, ek)|p ≤ K for all standard basis vectors ek. This yields sup
t≥0

γ(t)E‖X(t)‖p ≤

K and thus

E|x(t, x0)|p ≤ E‖X(t)‖p|x0)|p ≤ K|x0|p exp{−βt}.

⇒). If E|x(t, x0)|p ≤ K|x0|p exp{−βt} for all t > 0 and x0 ∈ Rn, then sup
t≥0

γ(t)E|x(t, x0)|p ≤

K|x0|p is finite, so that x(., x0) ∈Mγ
p for any x0 ∈ Rn.

(7) ⇐). We use again the norm from (5). According to the assumptions, for any
δ > 0 there is K = K(δ) > 0, for which P{ω ∈ Ω : sup

t≥0
|x(t, ek)| > K} < δ

n for all

standard basis vectors ek. Let Ωk(δ) contain all ω ∈ Ω where sup
t≥0
|x(t, ek)| ≤ K and

Ω(δ) =
⋂

1≤k≤n
Ωk(δ). Evidently, PΩ(δ) ≥ 1− δ. As ‖X(t)‖ = |x(t, ek)| for some ek

(dependent on t and ω), we have that sup
t≥0
‖X(t)‖ ≤ K(δ) for all ω ∈ Ω(δ). This

means that sup
t≥0
‖X(t)‖ is almost surely finite.

Taking now an arbitrary sequence xν ∈ Rn going to 0 as ν → ∞, we conclude
that

sup
t≥0
|x(t, xν)| ≤ sup

t≥0
‖X(t)‖|xν |

tends to 0 almost surely. This completes the proof of this part.
⇒). Given x0 ∈ Rn, the stability with probability 1 implies that the sequence
sup
t≥0
|x(t, x0n

−1) converges to zero almost surely as n → ∞. Thus, this sequence

converges in probability, and therefore, for any δ > 0 there exists a number N =
N(δ) such that P{ω ∈ Ω : sup

t≥0
|x(t, x0/n) ≥ 1} < δ for all n ≥ N . Choosing

K(δ) = N(δ) we see that P{ω ∈ Ω : sup
t≥0
|x(t, x0) ≥ K} < δ, so that x(., x0) ∈ M̂0.

(8) ⇐). Utilizing the norm from part (5) and the definition of the space M∞, we
can write that for some sufficiently large K, the estimates sup

t≥0
|x(t, ek)| ≤ K} hold

for all standard basis vectors ek, k = 1, ..., n and all ω ∈ Ωk, where PΩk = 1.
Therefore, on the set Ω̂ =

⋂
1≤k≤n

Ωk of full measure we have

sup
t≥0
‖X(t)‖ ≤ sup

t≥0
max

1≤k≤n
|x(t, ek)| = max

1≤k≤n
sup
t≥0
|x(t, ek)| ≤ K.
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Hence, given δ > 0 we set η = δ/K and obtain

P{ω : ω ∈ Ω, sup
t≥0
|x(t, x0)|} ≤ P{ω : ω ∈ Ω, sup

t≥0
‖X(t)‖|x0|} ≤ δ

as long as x0 ∈ Rn, |x0| < η. By this, we verified strong stability with probability
1.
⇒). Assume that there exists a solution x(., x0) that does not belong to the space
M∞. This means that there exists δ0 > 0 such that for any natural number ν
P{ω : ω ∈ Ω, sup

t≥0
|x(t, x0)| ≤ ν} ≤ 1 − ε0. Defining xν(t) = x(t, x0ν

−1) we see

that P{ω : ω ∈ Ω, sup
t≥0
|xnu(t)| ≤ 1} ≤ 1− ε0, although xν(0) = x0ν

−1 goes to 0 as

ν →∞. This contradicts the property of strong stability with probability 1.
�

Remark 3.6. Note that the M -stabilities listed in Theorem 3.5 imply the respective
stability properties not only w.r.t. the initial values x0 ∈ Rn, but also w.r.t. the
random initial values, provided that the increments of the semimartingale Z are
independent of the initial σ-algebra F0. This is e.g. the case if the family (Ft)t≥0

is generated by the Brownian motion. This comment applies to all results proven
below.

Lemma 3.7. Let p, q ∈ [0,∞], and γ, κ be continuous functions defined on [0,∞)
and satisfying Property γ1. Then the following inclusions are topological embed-
dings:

(1) Mγ
p ⊂Mγ

q and M̂γ
p ⊂ M̂γ

q if p ≥ q;
(2) Mγ

p ⊂ Mκ
p and M̂γ

p ⊂ M̂κ
p if γ(t) ≥ κ(t) for t ≥ t0 (t0 ≥ 0 is some real

number);

(3) M̂γ
p ⊂Mγ

p .

Proof. The first statement simply follows from the standard relationship between
Lebesgue spaces generated by finite measure sets. The second and the third state-
ments are a direct consequence of the definitions of the spaces Mγ

p and M̂γ
p and

the inequality sup
t≥0

E|y(t)| ≤ E sup
t≥0
|y(t)|, which holds for any measurable stochastic

process y(t). �

Theorem 3.8. The following is valid for the stochastic functional differential equa-
tion (2):

(1) if 0 < q < p <∞, then p-stability (resp. asymptotic, exponential p-stability)
implies q-stability (resp. asymptotic, exponential q-stability);

(2) if 0 < p < ∞, then p-stability (resp. asymptotic p-stability) implies weak
stability in probability (resp. weak asymptotic stability in probability);

(3) stability in probability (resp. asymptotic stability in probability) implies weak
stability with probability 1 (resp. weak asymptotic stability with probability
1).

(4) stability in probability is equivalent to stability with probability 1.

Proof. The first and the second part follow directly from the first statement of
Lemma 3.7 combined with statements 4-6 and 1-2, 4-5 of Theorem 3.5, respectively.
The third part follows from the second statement of Lemma 3.7 combined with
statements 1-4 of Theorem 3.5. To prove the last part first we observe that state-
ments 3 and 8 of of Theorem 3.5 contains the same space Mγ

0 , so that stability in
probability and stability with probability 1 are equivalent for the equation (2). �

In the next theorem, we describe more relations between different kinds of the
stochastic Lyapunov stability. Some of these results are used in the examples below.
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Theorem 3.9. Let p ∈ [0,∞]. Then

(1) M̂p-stability implies stability with probability 1.

(2) M̂γ
p -stability with γ satisfying Property γ1 implies asymptotic stability with

probability 1.
(3) M̂γ

∞-stability with γ satisfying Property γ1 implies strong asymptotic sta-
bility with probability 1.

Proof. (1). This follows from statement (7) of Theorem 3.5 and the inclusion M̂p ⊂
M̂0.
(2). Due to the first statement of the theorem and the inclusion M̂γ

p ⊂ M̂γ
0 we

obtain the property of stability with probability 1. To prove asymptotic stability
with probability 1, we proceed as in the proof of statement (7) of Theorem 3.5
adding γ(t) to x(t, x0) and X(t), which gives almost everywhere boundedness of
the random function ξ = ξ(ω) = sup

t≥0
γ(t)‖X(t)‖. Therefore

γ(t)|x(t, x0)| ≤ sup
t≥0

γ(t)‖X(t)‖|x0| = ξ|x0|,

so that

|x(t, x0)| ≤ ξ|x0|
γ(t)

→ 0 almost everywhere as t→∞.

(3). As M̂γ
∞ ⊂ M̂∞, we readily obtain strong asymptotic stability with probability

1 from the last statement of Theorem 3.5. Adding γ(t) to x(t, x0) and X(t) and
following the proof of this statement yield the estimate sup

t≥0
γ(t)‖X(t)‖ ≤ K for

some (non random) constant K. Hence

γ(t)|x(t, x0)| ≤ sup
t≥0

γ(t)‖X(t)‖|x0| ≤ K|x0|,

and |x(t, x0)| ≤ K|x0|
γ(t) → 0 with probability 1 as t→∞. �

4. Delay-independent Stability Conditions for the Generalized
Pantograph Equation Driven by the Brownian Motion

Delay-independent stability is also called absolute stability (see e.g. [19]). This
property is important if the delay functions are unknown or difficult to determine.

It is well-known (see e.g. [23]) that using Itô’s formula usually results in a
delay-dependent stability condition for stochastic pantograph equations. Below we
present an alternative method which is based on the theory developed in Section 3.

We start with the analysis of p-stability, where we use the integral form of the
Marcinkiewicz-Zygmund inequality

(4) E

∣∣∣∣∣∣
t∫

0

ζ(s)dB(s)

∣∣∣∣∣∣
2p

≤ ρ2p
p E

 t∫
0

|ζ(s)|2ds

p

,

which holds true for any predictable stochastic process ζ(s) (0 ≤ s ≤ t), any t > 0
and the scalar standard Brownian motion B(s). The constant ρp depends on the
number p (0 < p <∞), only. In 1988 D.L. Burkholder proved (see for example [6],
[18]) that the constant ρp = 2p− 1 in the Marcinkiewicz-Zygmund inequality (4) is
best possible for all for p ≥ 1.

Consider the following equation

(5) dx(t) =

Ax(t) +

m0∑
j=0

Aj0x(hj0(t))

 dt+

m−1∑
l=1

ml∑
j=0

Ajlx(hjl(t))dBl(t) (t ≥ 0).
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For all 0 ≤ l ≤ m− 1, 0 ≤ j ≤ ml, the n× n-matrices A,Ajl contain constant, real
entries, the standard Wiener processes Bl(t) are independent, and the functions hjl
are Borel measurable functions satisfying 0 ≤ hjl(t) ≤ t on [0,∞).

In the next theorem we put Al =
ml∑
j=0

‖Ajl‖ for all l = 0, ...,m − 1, where ‖.‖ is

the matrix norm induced by the chosen vector norm |.|.

Theorem 4.1. Let p satisfy the inequality 1 ≤ p <∞. Assume that there exists a
positive number α such that

(6) ‖A+ αIn‖+A0 + ρp
√
α/2

m−1∑
l=1

Al < α,

where In is the n× n identity matrix. Then the equation (5) is 2p-stable.

Proof. We apply the forth statement from Theorem 3.5. To show that the solutions
x(t) of the equation (5) belong to the space M2p for all x(0) ∈ Rn, we replace this
equation by en equivalent integral equation

(7)

x(t) = e−αtx(0) +
t∫

0

e−α(t−s)

[
(A+ αIn)x(s) +

m0∑
j=0

Aj0x(hj0(s))

]
ds

+
m−1∑
l=1

ml∑
j=0

t∫
0

e−α(t−s)Ajlx(hjl(s))dBl(s) (t ≥ 0).

Using the Marcinkiewicz-Zygmund inequality (4) we obtain(
sup
t≥0

E|x(t)|2p
)1/2p

≤ |x(0)|+

(
sup
t≥0

E

∣∣∣∣ t∫
0

e−α(t−s)(A+ αIn)x(s)ds

∣∣∣∣2p
)1/2p

+
m0∑
j=0

(
sup
t≥0

E

∣∣∣∣ t∫
0

e−α(t−s)Aj0x(hj0(s))ds

∣∣∣∣2p
)1/2p

+
m−1∑
l=1

ml∑
j=0

(
sup
t≥0

E

∣∣∣∣ t∫
0

e−α(t−s)Ajlx(hjl(s))dBl(s)

∣∣∣∣2p
)1/2p

≤ |x(0)|+ α−1‖A+ αIn‖
(

sup
t≥0

E|x(t)|2p
)1/2p

+α−1
j=m0∑
j=0

‖Aj0‖
(

sup
t≥0

E|x(hj0(t))|2p
)1/2p

+ρp
m−1∑
l=1

j=ml∑
j=0

(
sup
t≥0

E

(
t∫

0

e−2α(t−s)‖Ajl‖2|x(hjl(s))|2ds
)p)1/2p

≤ |x(0)|+K

(
sup
t≥0

E|x(t)|2p
)1/2p

,

where K = α−1‖A+αIn‖+α−1A0 +ρp(2α)−1/2
m−1∑
l=1

Al. In the estimates above we

used the assumptions 0 ≤ hjl(t) ≤ t for all t ≥ 0, 0 ≤ j ≤ ml, 0 ≤ l ≤ m− 1. Due
to (6), the constant K is less than 1, so that(

sup
t≥0

E|x(t)|2p
)1/2p

≤ (1−K)−1|x(0)|.

Therefore x ∈M2p for all x(0) ∈ Rn. �

Consider the generalized scalar pantograph equation

(8) dx = [ax(t) + bx(h(t)]dt+ [cx(t) + dx(g(t))]dB(t) (t ≥ 0),
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where a, b, c, d er real constants, h(t), g(t) (t ≥ 0) er Borel measurable functions
satisfying 0 ≤ h(t) ≤ t, 0 ≤ g(t) ≤ t (t ≥ 0), and B(t) is the standard scalar
Brownian motion.

Corollary 4.2. Let ξ0 be the (only) positive root of the quadratic polynomial P (ξ) =

ξ2 −Kξ − |b|, where K = ρp
|c|+|d|√

2
. If a < −ξ2

0 , then the equation (8) is 2p-stable.

Proof. Inequality (6) reads in this case as follows:

|a+ α|+ |b|+K
√
α < α.

Assuming that a < −ξ2
0 and putting α = ξ2

0 > −a > 0 we observe that

α− |a+ α| − |b| −K
√
α = ξ2 − |b| −Kξ > 0,

as ξ >
√
−a > ξ0. �

Let us compare Corollary 4.2 with the following well-known result (see [4] or
[21]): the equation (8) with the linear delays h(t) = g(t) = kt (0 < k < 1) is
2-stable if 2a+ 2|b+ cd|+ c2 + d2 < 0.

In the case when b = 0, this result and Corollary 4.2 give the same condition:

a < − (|c|+|d|)2
2

If c = 0, then the result from [4] gives, in fact, a better stability condition in the

case of linear delays: a < −d
2

2 − |b| vs. a < −d
2

4 − |b| −
d√
2

√
−d28 + |b|, but our

result covers more general delays and the case of p-stability for p 6= 2.
Now we briefly describe explicit stability conditions for one particular case of the

vector equation (5).

Corollary 4.3. Let the matrix A have only real eigenvalues λi (1 ≤ i ≤ n) and Ajl
be scalar matrices:

Ajl = diag [ajl, ..., ajl] (0 ≤ l ≤ m− 1; 1 ≤ j ≤ ml).

Then the equation (5) is 2p-stable if λi < −ξ2
0 (1 ≤ i ≤ n), where ξ0 is the only

positive root of the quadratic polynomial

Pi(ξ) = ξ2 −Kξ − a0

and

K =
ρp√

2

√√√√m−1∑
l=1

ml∑
j=0

‖ajl‖.

Proof. Let us choose α = ξ2
0 . To verify the condition (6) of Theorem 4.1 we first

observe that for any positive ε > 0 there exists a basis in Rn, in which the Euclidean
matrix norm ‖.‖ satisfies ‖A+αIn‖ < |λ+α|+ ε, where λ is the largest eigenvalue
of the matrix A. At the same time, the Euclidean norms of the scalar matrices Ajl
(0 ≤ l ≤ m− 1; 1 ≤ j ≤ ml) are independent of the choice of the basis. Denoting

Al =

ml∑
j=0

‖ajl‖

for all l = 0, ...,m − 1 we obtain, exactly in the same manner as in the proof of
Corollary 4.2, that

‖A+ αIn‖+A0 + ρp
√
α/2

m−1∑
l=1

Al < |λ+ α|+ ε+A0 +K
√
α < α

for sufficiently small ε. �
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In the next theorem, where we study stability with probability 1, we use the
Doob inequality

E sup
t≥0

∣∣∣∣∣∣
t∫

0

ζ(s)dB(s)

∣∣∣∣∣∣
2

≤ 4E

sup
t≥0

t∫
0

|ζ(s)|2ds


where B is the scalar standard Brownian motion, ζ is an arbitrary predictable
stochastic process on [0,∞).

Theorem 4.4. Assume that there exists a positive number α such that

(9) ‖A+ αIn‖+A0 +
√

2α

m−1∑
l=1

Al < α,

where In is the n×n identity matrix. Then the equation (5) is stable with probability
1.

Proof. We want to apply the first statement from Theorem 3.9 by checking that
the solutions x(t) of the equation (5) belong to the space M̂2 for all x(0) ∈ Rn.
This is done exactly in the same way as in the proof of Theorem 4.1 provided that

the norm

(
sup
t≥0

E|x(t)|2p
)1/2p

is replaced by the norm

(
E sup
t≥0
|x(t)|2p

)1/2p

and the

Doob inequality is used instead of the Marcinkiewicz-Zygmund inequality. �

5. Conclusions and Outlook

In the paper we described and justified a new framework for stability analysis of
stochastic functional differential equations in the case when initial data are finite
dimensional. In particular, this framework covers the generalized stochastic panto-
graph equation. The main feature of our analysis consists in replacing Lyapunov
stabilities with input-to-state stabilities by choosing appropriate spaces of stochas-
tic processes. It is shown that this approach is applicable to all known kinds of
stochastic Lyapunov stability.

We demonstrated the efficiency of this idea by applying it to the generalized
stochastic pantograph equation, where the emphasis was put on delay-independent
stability conditions. In particular, we studied 2p-stability (p ≥ 1) and stability with
probability 1.

The future development of the suggested framework may include the following
topics:

(1) Stability analysis of the stochastic pantograph equations may be extended
to the case of non-constant coefficients. In this case, Theorem 3.5 and other
results of Section 3 could still be applied.

(2) More attention should be paid to the vector case. In particular, coefficient-
based stability conditions may be derived from Theorems 4.1 and 4.4 to get
more general stability tests than those offered in Section 4.

(3) Asymptotic p-stability and asymptotic stability with probability 1, are only
described in terms of M -stability, but not in the form of specific stability
conditions, so that further analysis of these asymptotic properties should
be continued.

(4) The stochastic pantograph equation driven by an arbitrary semimartingale
can also be studied using the techniques developed in Section 3.

(5) The main results of Section 3 stretch far beyond the generalized pantograph
equation. As it is mentioned in Section 2, wide classes of stochastic func-
tional differential equations can be represented as the equation (2). The
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technique developed in this paper can be e.g. directly applied to integro-
differential equations, where

(V x)(t) =

(∫
(0,t)

dsR1(t, s)x(s), ...,

∫
(0,t)

dsRm(t, s)x(s)

)
,

Ri are vector functions defined on {(t, s) : t ∈ [0,∞), 0 < s ≤ t} for
i = 1, ...,m. But this analysis is beyond the scope of the present paper.

(6) Stochastic hereditary equations with more general initial conditions x(s) =
ϕ(s), s ≤ 0 can easily be transformed into the equation (2) as well (see e.g.
[12]). However, a possible generalization of the main results of Section 3
will not be straightforward, as in this case, one will, in addition, need to
prove boundedness of the infinite dimensional linear operators assigning ϕ
to the associated solution x(t).
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