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I 
 

Abstract 
 

Changing demand for different agricultural products causes shifts in land use. Until recently, 

food production was the main agricultural practice for most countries. Today, producing non-

food crops, exclusively is on the rise. This growth, along with increasing per-capita food 

consumption, will require large increases in crop production. However, agricultural productive 

land is scarce and increase in demand are modified by the yield increase. This thesis aims to 

explore links between production of staple crops and demand for non-food crops and discusses 

if higher yield enhances or reduces total agricultural area.  

Following a presentation on the literature is a discussion on theories of land use, introducing 

von Thünen’s theory of land rent. Considering this theory, I present the debate on the impacts 

of higher agricultural productivity, known as the Borlaug hypothesis vs. the Jevons paradox. 

To dig deeper into on our research question, a dataset based on the UN Food and Agricultural 

Organization database and the World Bank Databank was constructed. Previous information on 

the distribution and performance of specific crops have only been available through remote 

sensing. However, a new detailed dataset, where the distribution of crops’ area of usage is taken 

into consideration, improves the analysis environmental impacts and trends in agricultural land 

use.  

In this thesis, descriptive statistics and regressions analysis indicates two major findings. First, 

expansion of agricultural area from 1992-2016 has mainly been caused by increase in feed crop 

area, however staple crops area has also been a large contributor, especially in low/ middle-

income countries. Further, feed-, fuel- and non-food crops has experienced the largest relative 

growth, indicating the direction of trends in agricultural production. Second, higher staple-crop 

yield reduces crop area, as suggested by the Borlaug hypothesis, while higher feed -and fuel 

crop yield increases crop area, as suggested by the Jevons paradox.  
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Sammendrag 
 

Endringer i etterspørselen for jordbruksprodukter fører til endringer i arealbruk. Frem til nylig 

var matproduksjon den viktigste landbrukspraksisen i de fleste land. I dag er det imidlertid en 

tendens til å produsere avlinger utelukkende for markedet. Denne veksten, sammen med 

økende matforbruk per person, krever stor vekst i avlinger. Egnet landbruk areal er imidlertid 

en mangelvare, og effekten av økt etterspørsel er modifisert av produktiviteten i landbruket. 

Denne oppgaven analyserer sammenhenger mellom produksjon av de viktigste avlingene og 

etterspørsel etter avlinger produsert utelukkende for markedet, og diskuterer om høyere 

jordbruksproduktivitet øker eller reduserer totalt landbruksareal.  

Etter en presentasjon på litteraturen presenteres landbruksteorier som kombinerer von 

Thünen’s teori om grunnrente. I lys av denne teorien presenterer jeg debatten om virkningen 

av høyere jordbruksproduktivitet, kjent som Borlaug-hypotesen vs. Jevons paradoks. For å 

gjennomføre detaljerte analyser ble det laget et datasett basert på data fra FNs Mat og 

Landbruksorganisasjon (FAO) og Verdensbanken. Tidligere studier på distribusjonen og 

produktiviteten av spesifikke avlinger har kun vært tilgjengelig gjennom fjernmåling. Et nytt 

og detaljert datasett, hvor bruksområdene til avlingene er tatt i betrakting, har derfor blitt 

ekstrahert for å forbedre kvaliteten og mulighetene til å analysere miljøpåvirkningene og 

endringer i landbruket.  

Analysen gir to hovedfunn. For det første er utvidelsen av landbruksarealet fra 1992-2016 

hovedsakelig forårsaket av økning i produksjon av dyrefôr, i tillegg til basis-matvarer, spesielt 

i lav- og mellominntektsland. Videre har dyrefôr, biodrivstoff, og ikke matvarer opplevd den 

største prosentvise veksten i jordbruksareal. For det andre vil høyere produktivitet for basis-

matvarer redusere jordbruksarealet, som foreslått i Borlaug-hypotesen, mens høyere 

produktivitet for fôr- og biodrivstoff gir økt jordbruksareal, som foreslått av Jevons paradoks.  
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1 Introduction  
 

1.1 Background 

Changing demand for different agricultural products causes shifts in land use. Until recently, 

food production was the main agricultural practice in most countries. Today, however, 

producing crops for non-food use is on the rise. In 2016, only 55 % of food crops calories ended 

up directly on our tables, whereas 36 % were used as livestock feed and 14 % ended up as 

biofuel or other cash products (Foley, 2016). Changing demand and new market opportunities 

create large land use changes and an expansion of non-food crops.  

Is this a matter of concern? Economic development theorists have suggested that to enhance 

economic growth, countries should develop strategies in favor of non-food products at the 

expense of food production. This is because demand for non-food products increases with more 

wealth, relative to demand for food products (Engel’s law) (Baffes and Etienne, 2014). 

However, expanding agricultural land create other concerns, causing deforestation and carbon 

emissions. While producing to feed its own population may dominate climate in policy making, 

these concerns are strongest for cash crops (Wiggins et al., 2015).  

The link between demand and area change is modified in two ways. First, increased demand is 

modified by the basic price mechanisms: higher demand partially increases production, and 

partially the price, with the final production increase being determined by the demand and 

supply elasticities. Second, area change is modified by change in land productivity (=yield), 

given by the identity: production = yield * area (FAO, 2017, Ray et al., 2013, Ewers et al., 2009). 

Prior to the 20th century and the Green Revolution, almost all increase in food production was 

obtained by bringing new land into production. But agricultural land is scarce and our ability to 

supply food, feed and fuel, while maintaining environmental services depends on our 

cultivation practices. Two different outcomes of yield-enhancing policies are suggested: 

agricultural expansion and deforestation is reduced, or agricultural encroachment is stimulated. 

Although it is intuitive that intensification to increase production on existing cropland is the 

best way of reducing agricultural encroachment, this is not necessarily accepted scientifically 

(Byerlee et al., 2014). While investments in staple food crops has resulted in net-land saving of 

20-30 million hectares (Evenson and Rosegrant, 2003, Stevenson et al., 2013), extensification 

of feed -and fuel crops, at the expense of pastures and natural vegetation, has been major drivers 

of agricultural expansion and environmental degradation (Nepstad and Stickler, 2008).  



 
 

2 
 

1.2 Problem statement and hypothesis 

 
This thesis aims to answer the following three research questions: 

1. What are the trends of area changes for non-food crops and staple crops?  

2. Does higher yield of staple crops and non-food crops enhance or reduce total 

agricultural area? 

We will compare and study developments of five crop groups to identify linkages between 

agricultural area and productivity. Based on FAO classifications and Ewers et al. (2009), the 

five crop groups are as follows:  

1. Staple crops (barley, maize, sorghum, rice, wheat, cassava, potato, soybean, taro, yam, 

banana, plantain) 

2. Non-staple food crops (coffee, sugar cane, sugar beet, tea, cocoa, sweet potato, 

cottonseed, tomatoes, watermelon, onions, apples, cucumbers, grapes, oranges, green 

bean, chickpea, lentil, cow pea, pigeon pea, brassica, millet, sunflower seed, coconut, 

groundnut, olives)  

3. Feed crops (rye, oats, green maize)   

4. Fuel crops (rapeseed, palm oil) 

5. Non-food crops (rubber, jute, tobacco)  

(FAOSTAT, 2018a, Ewers et al., 2009) 

We use detailed data of agricultural production for the period 1992-2016 for ten of the largest 

producing countries of staple crops. The study was inspired by Ramankutty et al. (2008) and 

Monfreda et al. (2008), who studied geographical distribution of agricultural lands and 

introduced the importance of assessing the consequences of agricultural expansion and 

intensification. Higher yield is commonly believed to reduce expansion of agricultural area. 

Considering this, we are also particularly interested to see if higher yield of staple crops and 

non-food crops has different impacts on total agricultural area. Studying the effects of increased 

agricultural productivity was inspired by Angelsen (2017) and Byerlee (2013), who introduced 

the debate between the Jevons paradox and the Borlaug hypothesis. Angelsen and Kaimowitz 

(2001) finds that there are examples of both expanding agricultural areas caused by increased 

agricultural productivity, and vice-versa. 
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Hence, the following hypotheses are put forward: 

 H1: The increase in total agricultural area is driven by fuel and non-food crop, not staples. 

 H2: The yield area relationship differs between crop types. (H2.1) For staple food, higher 

yield results in lower crop area; (H2.2) for non-food and fuel crops, higher yield results in 

larger crop area. 

 

1.3 Structure 
 

The thesis has six chapters. Following this general introduction, Chapter 2 present the 

justification of the research topic. Chapter 3 reviews the literature and theoretical framework to 

explain why the production of certain types of crops are becoming more popular than others, 

and the different outcomes of higher agricultural productivity. Chapter 4 introduces the data 

and variables used, before the methods are presented. Chapter 5 presents and discusses the 

results of the analysis. Limitations of the analysis are briefly discussed at the end of this chapter, 

before we end with a conclusion and a summary.  
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2 Background to topic 

 

This chapter will present the necessary background knowledge for this thesis. First, I give a 

general background on the role of agriculture in economic development and the historical 

perspectives on agricultural production. Second, I discuss briefly the distinction between staple 

crops and crops grown for sale to return profit - hereafter referred to as “cash crops”, as well as 

why farmers may prefer one over the other.  

 

2.1 The role of agriculture in economic development 

The majority of people living in rural areas in poor countries depend on agriculture for their 

livelihood, directly or indirectly, yet information on distribution of specific crops are limited 

(Anderson et al., 2014, World Bank, 2008). To study resource management and land 

degradation scientists has been using remote sensing analysis, i.e., obtaining information on 

crops typically aircrafts or satellites (NOAA, 2017). Supporters of remote sensing analysis 

argue that, while subnational statistics provide limited information on cropland trends, remote 

sensing has proved capable of providing reliable data on a timely basis to a fraction of the cost 

of traditional methods of collecting data  (Nellis et al., 2009, Anderson et al., 2014). However, 

critics say that remote sensing products are ill suited for many applications due to insufficient 

resolution and lack of dependable and consistent remote sensing systems (Nellis et al., 2009). 

Nevertheless, to examine agricultural trends, recent studies have incorporated data from remote 

sensing with available information from statistical surveys1 (Fischer et al., 2012, Leff et al., 

2004, Monfreda et al., 2008, Portmann et al., 2010, You et al., 2014, Ramankutty et al., 2008) 

Besides providing food, agriculture also offer business opportunities through high-value 

products in both domestic and international markets. Thanks to market liberalization and 

technological change, agriculture has become a major cause of economic growth and poverty 

reduction for many countries. For example in China, rapid growth in agriculture has caused 

rural poverty to drop 45% in a few years (World Bank, 2008). Additionally, traditional crops 

have recently obtained greater attention through expanded areas of usage, such as feed-maize 

exports and sugar cane for biofuels (De la Torre Ugarte, 2006).  

                                                           
1 Presentation of empirical studies using remote sensing in Appendix D 



 
 

6 
 

However, agriculture has not always been considered an engine of growth (Tiffin and Irz, 

2006). In 1857, Ernst Engel observed that poor families spent a greater proportion of their total 

expenditure on food, rather than manufactured goods. He concluded therefore that the wealthier 

the nation, the smaller the proportion of food to total expenditure. This became known as 

Engel’s Law, caused by less than unitary income elasticity of food commodities (Figure 2.1) 

(Laitner, 2000, Baffes and Etienne, 2014).  

 

Figure 2.1:  Engels law (Kraft, 2018). 

Engel’s observations formed several competing views attempting to explain and forecast the 

long-term behavior of the terms-of-trade (ToT) faced by developing countries. The most 

important view argued, “ToT will follow a downward path because income growth leads to 

smaller demand increases in primary commodities than manufacture products” (Baffes and 

Etienne, 2014, p. 2), an outcome which is consistent with Engel’s law. Several decades later, 

the American economist Charles Kindleberger argued, “the ToT move against agricultural and 

raw material countries as the world’s standard of living increases and as Engels’s law of 

consumption operates. The elasticity of demand for wheat, cotton, sugar, coffee, and bananas 

is low with respect for income” (Kindleberger, 1943, p. 349). Countries should therefore switch 

from production of food crops to products with higher income elasticity, such as biofuels, to 

promote economic growth. Kindleberger statements were later empirically tested by Raul 

Prebisch and Hans Singer and is expressed as the “Prebisch-Singer thesis”. The thesis states 

that over time, the ToT would turn against countries who exported primary goods and imported 

manufactures (Eicher and Staatz, 1998). Countries should therefore base their development 

strategies on import substitution of manufactured goods rather than promotion of agricultural 

exports, as economic growth provided by agriculture and other primary exports is very limited 

(Cuddington et al., 2002, Eicher and Staatz, 1998).  

An alternative to this approach is the urban-industrial impact model, better known as the 

location model. The location model was first formulated in Germany by J.H. von Thünen to 
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explain geographic variations in the location and production of agricultural commodities in an 

industrializing economy2. It suggests that industrial development simulate agricultural 

development by increasing demand for farm products, higher product prices, land values, and 

rates of land use (Eicher and Staatz, 1998). Later it was used to explain the performance of 

factor and product markets linking agriculture and non-agriculture sectors in regions of rapid 

urban-industrial development (Ruttan and Hayami, 1972).  

In the 1960s, led by the “Father of the Green Revolution”, Norman Borlaug, the perception of 

agriculture as a tool for development changed. Through new technologies, based on fertilizer-

responsive grain cultivars and high-yielding varieties of crops, the agricultural sector was able 

to provide employment for the growing rural labor force, while simultaneously, provide wages 

to expand the industrial labor force. Hence, it became possible to achieve both employment and 

economical profits from the agricultural sector (Eicher and Staatz, 1998). However, with rising 

resource scarcity and worries of environmental loss, concerns about the present agricultural 

practices advanced. Land is scarce and staple crop yields are not growing fast enough to provide 

food for a growing population. Hence, our ability to supply the growing demand for food, feed 

and fuel, while maintaining the current landscape of environmental services lies on our ability 

to produce more on less land. Only through more efficient production of staple crops, cash crops 

and non-food crops, are countries going to be able to feed its population while making economic 

progress (World Bank, 2008).  

 

2.2 Staple crops and cash crops  

Production of staple crops is not up to speed to satisfy the rapidly growing population (FAO, 

2017, Harvey, 2013, Ray et al., 2013). Staple crops are food that is eaten regularly, even daily, 

and in such quantities that it constitutes the dominant part of a population’s diet. Most people 

in the world live on a diet based on at least one or more of the following crops: rice, wheat, 

maize, barley, sorghum, cassava, potato, taro, yam, banana, plantain and soybeans. Together, 

these crops provide close to 90 % of world’s food energy intake, whereas more than 50 % of 

these comes from only three “mega-crops”: rice, wheat and maize (IDRC, 2010, O'Connor, 

2014). To satisfy the rapidly growing population, and changes in per capita consumption and 

diets, global staple crop production needs to double by 2050. However, a study shows that the 

three “mega-crops” only increases by 0.9 % to 1.6 % a year, far below what is needed to meet 

                                                           
2 Discussed further in Chapter 3 
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projected demands for 2050. Yield improvements are insufficient to keep up with the (project) 

demand increase (Ray et al., 2013).  

The food sector is less competitive on the international market than non-food crops. Even with 

globalization, much of the staple crop sector remains largely non-tradable, producing mainly 

for the domestic market (Figure 2.2) (World Bank, 2008). A World Bank (2008) report, 

“Agriculture for development”, argues that staple crops such as cassava, yams and sorghum are 

rarely traded on the international market due to low international prices and trade barriers such 

as formal trade barriers, poor infrastructure, high transportation - and marketing costs and trade 

policies favoring cash crops. This is especially the case for rural areas and land-locked 

countries, where the is more isolated from the global markets, and exports often unprofitable. 

Because food prices are inelastic, production is price sensitive and therefore less tempting for 

entering the international market (World Bank, 2008).  

 

Figure 2.2: Distribution of domestically and internationally consumed staple food crops and cash crops. 
On the x-axis, ”consumed at home” represents staple crops and “marketed” represents cash crops. 
Source: (Achterbosch et al., 2014, p. 19). 

Thus, the poverty-reducing effect of producing staple crops depend on the net marketing 

position of the poor and the price elasticity of food demand. In countries where staple crops 

constitute the majority of crop production and is non-tradable, gains in staple crop production 

increases aggregate food supply and reduces food price. Consequently, wages of unskilled 

workers as well as prices of inputs are kept low, making the non-food tradable sector, such as 

biofuel, more competitive. However, increasing staple crop productivity usually reduces overall 

poverty as more than half of poor rural households are net food buyers (World Bank, 2008, 

CEPR, 2010). 
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The term “cash crops” is defined as crops grown for sale in an agricultural market, and can be 

linked to a process of agricultural commercialization (Achterbosch et al., 2014, p. 7). It implies 

strengthened market orientation in farming where food-crops and non-food crops are primarily 

produced for selling at the domestic or international market, including major export crops such 

as, cocoa, rubber, palm oil, tea and tobacco (Barbier, 1989). In earlier times, cash crops 

constituted a small part of farm’s total yield, while today, producing the majority of crops for 

sale is trending in developed countries (World Bank, 2008). Cash crops are favored for their 

potential contribution to growth, employment and trade balance, and can provide the basis of 

industrial development through intersectoral linkages. On the other hand, cash crops have also 

been criticized for additional drawbacks in terms of crop dependency and food security, 

especially in relation to the “food-first” movement. In contrast to staple crop producers, 

however, cash crops producers are benefiting from globalization because of larger markets and 

increased competition (World Bank, 2008). Recently, high energy prices and desire to mitigate 

climate change has generated new markets for agriculture in terms of production of biofuel. 

However, in the long run, cash crops have been associated with secular incline in the terms of 

trade, i.e., improving comparative advantage. This argument is used to suggest that resources 

should be transferred out of agriculture and into manufacturing (Prebisch-Singer thesis) 

(Maxwell and Fernando, 1989).  
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3 Literature Review and Theoretical Framework  

 

The most relevant theory and theoretical framework on agricultural area and yield trends will 

be presented in this chapter, based on Angelsen (2007), Angelsen and Kaimowitz (2001), Alcott 

(2005), Borlaug (2007), Byerlee et al. (2014), and McNally et al. (2014). First, the von Thünen 

theory of land rent is presented. This part also discusses whether increased agricultural 

productivity enhances forest preservation or encourages agricultural encroachment. This is 

known as the Borlaug hypothesis vs. the Jevons paradox. Second, I present theories on the 

political economy of land use, looking at how political factors, rather than market factors, 

influences changes in land use. 

3.1 Theories of land use 

The challenge of meeting the growing food demand in a world of limited suitable land and 

degrading environment have raised questions of land use changes and awareness of a 

controversy between increased yield and increased area of production (Ray et al., 2013, 

Edgerton, 2009). According to the von Thünen model, land is allocated to the use which yields 

the highest rent, where rent is determined by location. Hence, shifts in land use become a 

question of changes in rent of forests vs. rent of agriculture.  

The economics of land use argues that land is allocated to the use with the highest land rent 

(surplus or profit). Several factors such as crops prices, input costs, technologies, etc., 

determines the rent of alternative land. Many of these depending directly or independently on 

location of land (Angelsen, 2007). In his 1826 seminal work, The Isolated State, Johann von 

Thünen examined how land rent, as determined by distance to commercial center (the city), 

shapes land uses. He asked, “Under these conditions what kind of agriculture will develop and 

how will the distance to the city affect the use of land if this is chosen with the utmost 

rationality?”. Where the “utmost rationality” assumption implies that land with highest yield is 

chosen first (Angelsen, 2007, Von Thünen, 1966). To model how land rents can stimulate 

returns to alternative land uses, in a context where agriculture is well integrated in markets, we 

assume two kinds of land-use: agriculture and forest (Stevenson et al., 2011).  

 

 

 



11 
 

Agricultural rent 

Land rent from agricultural activities (�) is modeled as a function of distance (�) from the 

market as follows: 

(1)  �� = ���� ��� ��� ���, 

where (��) is the price at which the products are sold in a central market, (��) is the agricultural 

production per hectare (yield), the labor (��) and capital (��) required per hectare is fixed, with 

inputs including wages (�) and annual costs of capital (�). The fixed input, wage, implies that 

labor can move freely in and out of the agricultural sector. Transportation costs is the sum of 

the costs per kilometer (��) and the distance from the central market (�) (Angelsen, 2010). As 

distance to market increases, agricultural rent decreases, and the agricultural frontier is where 

�� = 0, that is, where agricultural expansion is no longer profitable. The frontier is thus defined 

by � = (���� ��� ���)/��), and is presented below (Figure 3.1).  

Ignoring forest rent, deforestation takes place up to distance A, depending on agricultural prices, 

road quality and off-farm employment opportunities (Angelsen and Kaimowitz, 1999). Higher 

output prices and better technology that increases yield or reduces costs, as well as better road 

quality and shortage of off-farm employments, are drivers of agricultural expansion and 

deforestation. Hence, the agricultural rent curve moves to the right. Higher wages, reflecting 

the costs of hiring labor or the use of family labor work in the opposite direction. (Angelsen, 

2010). 

 

Figure 3.1: Agricultural- and forest rents and forest rent capture. Source: Angelsen (2010) 
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As displayed in Figure 3.1, higher forest rent and lower agricultural rent lead to less forest 

being put under agricultural use. To reduce agricultural rent, three agricultural policies are 

possible (Angelsen, 2010). First, referred to as the “improved Gabonese recipe” for forest 

conservation, heavy taxation on agricultural exports, neglect of rural roads and limited 

support for smallholders were central to reduce agricultural rent and preserve forest. Second, 

an important extension of the simple von Thünen model is to differentiate between extensive 

and intensive agriculture, where “intensive” is understood as improved productive inputs. 

Hence, encouraging higher supply from intensive agricultural can been be considered a forest 

conservation policy because it will pull labor from the extensive sector and thereby reduce 

extensive agriculture rent. However, the outcome is not guaranteed in cases where the 

dominant crop in the intensive sector is internationally traded and if improved technology in 

the intensive sector halter the labor pull effect.  Third, where tenure is endogenous and 

property rights are weak, deforestation becomes a strategy to declare ownership, and forest is 

cleared prematurely to establish property rights. Hence, establishing clear property rights that 

reduces agricultural rents are proven to be important for forest conservation (Angelsen, 2010). 

 

Forest rent 

Forest rent aims to reflect the value of products and services generated by standing forests. 

There are three main types of forest rent: first, private forest products, such as timer and a large 

number of nontimber forest products (NTFP) (extractive forest rent), second, local public 

goods, such as water catchment and pollination services (protective forest rent); and third, 

carbon sequestration and storage and biodiversity maintenance (protective forest rent) 

(Angelsen, 2010). Forest rent can be written as 

(2)  �� = (���� ��� ��� ���) + ���� + ���� 

The extractive rent increases when prices of timber and NTFP (��) is high, technological 

progress (��, ��, ��); and lower costs of labor (�), capital (�), and transportation (��). In 

contrast, protective rent increases when prices of local (��) and global (��) public goods is 

high, and will therefore lead to less forest being turned over to agricultural use (Angelsen, 

2010). Historically, forest scarcity path has been linked to higher extractive forest rent, 

however, in the future it could be driven by protective forest rent (Angelsen, 2010). Because 

forest is a public good in nature, increase in protective forest rent does not impact 
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deforestation unless land users can capture some share of it. This can be done by internalizing 

the externalities by moving land use decisions to a higher scale and creating a market for 

public goods. One key factor is the difference between managed forests and open access 

forests. For managed forests, there are certain costs in terms of defining and enforcing 

property rights. Beyond a certain distance, the rent becomes lower than the costs and open 

access takes over (Angelsen, 2007). Hence, it would be easier for agriculture to expand into 

open access forests, as there are no managed forests to act as buffers. However, such outcome 

depends on how that rent is being captured.  

Protected areas, institutional mechanisms and payment mechanisms enable land users to 

capture higher share of the local and global benefits provided by forests (Angelsen, 2010). 

Large tropical forests are characterized by weak, unclear property rights, making them open 

access in reality. Hence, land users have no incentives to include forest rent in their decisions. 

In Figure 3.1, if private properties are established, we move from point A to point B. At this 

point, some forest rent is captured by users and more forest is conserved. A popular argument 

for reducing deforestation is by establishing individual property rights. However, this will not 

solve the problem of local and global goods. Establishing clear and secure individual- or 

community level property (point C, Figure 3.1) is therefore necessary for the establishment of 

systems for payments for environmental services (PES) and global forest rent capturing system 

(point D. Figure 3.1). This will encourage more sustainable management than open access with 

positive effects on degradation. Lastly, various types of protected areas (PAs) have significantly 

reduced deforestation. Successful PAs are expected to have similar effects on agricultural yield 

as policies of property rights, however because there is less assurance that the least productive 

land is saved for agriculture, PAs lead to high land use rents, but can also lead to higher loss of 

agricultural production per hectare forest saved (Angelsen, 2010).  

 

Basic model with two sectors 

Now, consider a market where both intensive and extensive agriculture sector (land use) 

produces the same product. The technological change in the intensive sector increases market 

supply. How will that affect the land rent of the extensive sector, and thereby the agricultural 

frontier and deforestation? (Angelsen, 2007). The answer can be found by considering the 

inverse price elasticity of demand. Let �� be the output from the intensive sector, and �� be the 

output from the extensive one (and � = �� + �� ). Hence, 
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Except for the extreme cases of demand being perfectly elastic, an increase in supply in the 

intensive sector (��), due to change in technology, will result in a drop in the price, and thereby 

a contraction of the extensive sector. The magnitude of price reduction, however, depends on 

the market’s demand elasticity (e) and share of intensive factor in overall production �
��

�
�. If 

�
��

�
� is high and (e) is low, this becomes in line with Norman Borlaug, the “father of the Green 

Revolution”, and his arguments of increasing yield as a tool for land sparing, sometimes 

referred to as the Borlaug hypothesis.  

 

Borlaug Hypothesis 

Historically, cropland expansion has been the major source of growth in agricultural 

productions. Due to technological improvements, yield-increase, rather than area expansion, 

has allowed for the increase of world food demand to be met without increasing existing 

cropland (Byerlee et al., 2014). Norman Borlaug argued that increasing productivity of 

agriculture is the best farmland can do to control deforestation and reduce demand for new 

farmland. When debating critics of the Green revolution, he stated “If the global cereal yields 

of 1950 still prevailed in 2000, we would have needed nearly 1.2 billion more hectares of the 

same quality, instead of the 660 million hectares used, to achieve 2000’s global harvest. 

Moreover, had environmentally fragile land been brought into agricultural production, the soil 

erosion, loss of forests and grasslands, reduction in biodiversity, and extinction of wildlife 

species would have been disastrous” (Borlaug, 2007, p. 359). Hence, increases in yield are 

saving new agricultural land and ecosystems from exploitation by maintaining natural areas 

(Stevenson et al., 2011).  

To assess Borlaug’s arguments, Angelsen (2010) uses a simple identity, known as the global 

food equation (GFE) which links population and food consumption per capita with agricultural 

yield and land area: 

(4)  ��� �
����

���
� ≡ �

����

�� ����
� �� ���� 

The equation states that, without an increase in yield, agricultural area must expand to feed a 

growing population and meet growing food consumption. Hence, GFE has been used to argue 

for the Borlaug hypothesis (Angelsen and Kaimowitz, 2001). Using this equation, Balford and 
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co-authors estimated that agricultural land in developing countries will increase by 2-49% 

between 2000 and 2050, depending on assumptions of population growth. (Balmford et al., 

2005). However, it is important to clarify that the estimates of land saving do not consider 

effects of prices. In cases where yield does not increase, food prices would have increased and 

altering the agricultural expansion. Additionally, the GFE does not create any direct link 

between agricultural areas and forest areas, nor does it account for trade between countries and 

the fact that much of agricultural production is non-food crops. By further decomposing GFE, 

Angelsen (2010) develops a national deforestation equation (NDE):  

(5)  ��� �
���� ����

���
� ≡ �

���� ����

���� ����
� �

���� ����

�� ����
� �

�� ����

�� ����
� �

�� ����

������
� ������  

Or 

(6)  ������������� ≈ ��� ����� +  ���� ���� ��� ������

                                                   ���������� ����� (�������)  ���� � ���

                                                    �� �����  �
��

������ �����
� 

 

Agricultural yield is one of many factors affecting deforestation, and changes in yield have an 

indirect effect on these factors. First, international trade of agricultural products has 

increasingly become a larger part of a country’s economy. Higher yields in developing countries 

have boosted their competitiveness and raised self-sufficiency (Francois et al., 2005). Second, 

with increasing popularity of crops being produced for non-food purposes, such as biofuel, a 

lower share of agricultural output is being consumed as food, and deforestation enhanced for 

farmers to produce for profits.  Third, land is not only being exploited for forest, cropland and 

pasture. Large areas of fallow, savannah, bush and other land categories are available for 

agricultural expansion. For example, Waggoner and Ausubel (2001) finds that changes in 

cropland and forest area remained uncorrelated between 1900 and 1995. Hence,  (ag. / forest) 

ratio is not stable. Other potential impacts of increased agricultural yield include the price effect 

on food consumption per capita and increased population because of increased food 

consumption (Malthusian effect). (Angelsen, 2010). Angelsen (2010) concludes that the GFE 

and NDE are useful in producing a consistent accounting network but are potentially dangerous 

as policy analysis as they ignore how yield change influences other factors through behavioral 

and market changes. 
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Jevons Paradox 

When new innovation improve agricultural productivity or reduce costs for producers compared 

to other land-use practices, agricultural expansion is encouraged (Alcott, 2005, Stevenson et 

al., 2011). Therefore, it exists an apparent paradox that the adoption of technology to prevent 

agricultural expansion, could, under some circumstances, lead to the opposite of what is 

previously suggested. The general principle of the paradox was introduced by William Jevons 

in the context of coal and its relationship to new technologies: “Economy multiplies the value 

and efficiency of our chief material...[and] renders the employment of coal more profitable, and 

thus the present demand for coal is increased. . .. [If] the quantity of coal used in a blast-furnace, 

for instance, be diminished in comparison with the yield, the profits of the trade will increase, 

new capital will be attracted, the price of pig iron will fall, but the demand for it increases and 

eventually the greater number of furnaces will more than make up for the diminished 

consumption of each” (Alcott, 2005, p. 13). 

 In a von Thünen framework, higher yield can lead to agricultural expansion when agricultural 

rent is larger than forest rent. New agricultural technologies that free up labor and reduces costs 

can cause agriculture to become more profitable than forest, and could therefore, under some 

circumstances, lead to area expansion. This paradox is supported by the work by Angelsen and 

Kaimowitz (2001), which incorporates a number of local and national case-studies supporting 

these results.  

 

 Determining land expansion outcomes: 
To sum up, Angelsen and Kaimowitz (2008) suggested three characteristics critical for 

determining land expansion outcomes from increased yield: 

I. Types of technologies:  

Farmers are capital and labor constrained, hence if labor -or capital-intensive 

technologies are implemented, land expansion tend to be constrained. However, farmers 

only tend to adapt such land-saving practices when land has become scarce and most of 

the forest is gone (Kaimowitz and Angelsen, 2008). Thus, even though new 

technologies will increase yield and profitability, it could either increase production at 

the existing land area, or provide incentives to expand crop and pasture areas (Angelsen, 

2017).  
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II. Output markets: 

Demand elasticity in the market and market share of the sector determine the magnitude 

of price effects. When yield increases, food prices decrease, hence, farmers income is 

reduced, but poorer consumers benefit. The price-dampening effect can be limited 

because total market demand is inelastic, or because its market share is low, or both 

(Angelsen, 2017). Further, the land expansion effects are most likely to be greatest in 

regions of small scale farmers with relatively low yields and high land supply elasticities 

(Hertel, 2012).  

 

III. Scale and sector adoption:  

The scale and sector adoption of new technologies is critical for the supply increase and 

price-dampening effects. The Green Revolution is a form of large-scale technological 

progress, which have had both local win-lose situations in forms of local negative 

impacts from decreasing prices of rice, maize and other staple crops, and global win-

win effects in forms of saving major forestlands. However, looking at the labor market 

effects, the Green Revolution may also be linked to deforestation as some sectors are 

becoming less labor-intensive, freeing up labor and increasing profitability of 

investments in forest-clearing initiatives (Ruf, 2001). Land expansion outcomes of 

technological change can therefore be mixed, but to achieve win-win outcome, new 

government policies that can compete with agricultural land expansion must be 

introduced. Though, land expansion must also be considered an option to feed the world, 

though, with high environmental cost to biodiversity and carbon emissions (Ray et al., 

2013) 

Hence, the Borlaug hypothesis – that we must increase agricultural yields to meet growing food 

demand and thereby avoid agricultural encroachment – still holds. However, due to global 

product, capital and labor markets, specific agricultural technologies do not guarantee that 

famers will help conserving the forest. Improved agriculture and better technologies that 

increases agriculture on the forest frontier are highly risky and can impose great concern of 

encroachment. Agricultural policies that are highly labor-intensive and target low-forest areas, 

or crops and production systems at the forest frontier show more promise. Protected areas and 

payment mechanisms that enable users to capture larger shares for land rents can therefore be 

beneficial for forest conservation (Angelsen and Kaimowitz, 2001, Angelsen, 2010). 
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3.2 Political economy of land use rights 

Political economy is concerned with the distribution of power and resources, and focuses on 

the competing interests of actors, networks and institutions. Political economy attempts to go 

beyond understanding economics as means of determining land use at forest-agriculture 

margins, and instead highlight roles of politics and how relations between power and 

resources shape interests and incentives (McNally et al., 2014). When examining the political 

economy with respect to forest and agriculture, the political structures influence the interest of 

actors in the agricultural sector and how forest land is used. It also recognizes that external 

actors influence political decisions and priorities. Policies and regulatory frameworks are 

important factors when determining if forest encroachment may occur. Incentives for people 

to migrate to rural areas through land grants, better infrastructure and subsidies on agricultural 

inputs are some of the political incentives that can lead to forest degradation (McNally et al., 

2014).  

Businesses and political interest in land-based natural resource sectors can be highly 

intertwined as providing access to land for agriculture is a relatively low-cost option to gain 

political support from powerful actors. Gaining political power often depends on delivering 

exclusive benefits that directly support certain actors. Powerful actors within the forestry 

sectors that support deforestation and forest degradation might therefore hamper protective 

policy changes. Hence, forest-dependent people who live in or near forests tend to be 

weakened by outsiders, such as national governments, commercial farmers and minders as 

forests-rights shifts hands (McNally et al., 2014).  

Another example is governments selling agricultural land rights to foreign investors (Rulli et 

al., 2013). The World Bank claims such policies will create opportunities for poor countries 

through expanding agricultural sector, improve infrastructure and provide access to better 

technologies (World Bank, 2010). Verma (2015) and (Weingärtner, 2010) argue that through 

these investments, people’s customary rights are converted into marketable tiles, leaving them 

to the forces of capitalism, as common and collective rights become private property. In fact, 

out of the 42.42 million hectares purchased between 2013 and 2018, only 3.47 million hectares 

were for food production, while 17.45 million hectares are devoted for non-food crops, and 

21.49 million hectares for animal feed and fuel. Hence, in addition to reducing agricultural rent 

through improving infrastructure and access to technologies, food security -and small-scale 

farmers competitiveness is potentially reduced, both in relation to resources availability, and on 

product markets (Weingärtner, 2010).  



19 
 

 

 



 
 

20 
 

4 Data and Methods  

 

This chapter will first present methods of data collection and variables used in this analysis. 

Secondly, I will discuss how different explanatory variables are expected to impact agricultural 

area, before presenting the method used in the analyses. Our main research question is if there 

is a link between higher production of non-food crops and production of staple crops.  

Additionally, we want to explore what effects increased agricultural productivity has on area of 

staple crops, fuel crops and non-food crops.  

4.1 Data used 

The dataset developed contain area and yield data for 45 crops, categorized into five main crop 

groups (staple crops, non-staple food crops, feed crops, fuel crops, non-food crops), over a 25-

year period from 1992-2016, collected from ten countries. We initially wanted to look at 

changes in crop areas from 1961-2017, but data from two of the selected countries were 

inaccessible. The dataset on agricultural production are extracted from a statistical database, 

FAOSTAT, created by the United Nations Food and Agricultural Organization. In addition to 

crops, the dataset includes, forest cover, GDP, unemployment and population. These variables 

are important when considering crop trends and the relationship between economic growth and 

agricultural production. Data on unemployment rate, GDP and population are extracted from 

the World Bank DataBank.  

Crop selection 

Out of 160 crops available in FAOSTAT, 45 crops were selected for this study based on their 

importance for world food consumption and shifts in land use practices. The crops constitute 

87 % of total agricultural production in 2016 (measured in tonnes), and are main contributors 

to shifts in recent land use trends (FAOSTAT, 2018b). Trends in yields and agricultural areas 

for cereals (maize, rice, wheat, barley, sorghum, millet, oats and rye) affect global food security, 

whereas trends for tropical crops (coffee, bananas, palm oil and soy) influence rates of tropical 

deforestation. Particularly interesting is it to explore the effects the different crops has on 

agricultural area and why some of them, recently has become more “widespread” than others.  

Crop classification 

To identify trends in agricultural area and productivity, crops were categorized into five main 

categories : staple crops, non-staple food crops, feed crops, fuel crops and non-food crops, based 

on FAOSTAT (2018a) and Ewers et al. (2009) 
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One of the major challenges of the dataset is the multiple usage areas of crops. For example, 

palm oil is both a staple crop, animal feed and biofuel. To solve this issue, a VIF test for 

multicollinearity was performed in each regression and variables that correlated above a given 

limit were omitted.  

Table 4.1 shows the distribution of each crop (estimated in tones for a single year) divided into 

ten crop classifications and the five crop groups, based on FAO classifications (FAOSTAT, 

2018a). Notice that, even though a crop is characterized as a staple crop, it does not necessarily 

mean the majority of the crop is used for food, but rather that it constitutes the dominant part 

of a population’s diet. Hence, the conventional use might diverge from the actual use of the 

crop. For example, the population in many countries of sub-Saharan Africa, Southeast Asia and 

Latin America subsist on maize as staple food, yet, more than half of maize supplies are used 

as animal feed (Nuss and Tanumihardjo, 2010). 

Ideally, I would have liked to have annual and country-specific data for each of the crops, 

showing the distribution across the five crop categories. Those data are not readily available, 

and this is a major limitation of the data set I use. The implication might be an underestimation 

of some trends. For example, higher demand for biofuel from palm oil may cause a higher share 

of palm oil to be allocated to fuel. This is not captured by the data set.  
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Table 4.1: Distribution of crops between variables (measured in percentage of quantity). 

    Food         

Crop 
category Crop 

Staple 
food 

Non-staple 
food Feed Fuel 

Non-
food Source 

Cereals Barley 15 % - 85 % - - (Akar et al., 2004, OECD, 2008) 

 Maize 10 % - 67 % 23 % - 
(Tenenbaum, 2008, Grujcic et al., 

2018) 

 Sorghum 42 % - 48 % - 10 % (Amido, 2015, Pavelescu, 2011) 

 Rice 90 % - 2 % 8 % - (Nguyen, 2002) 

 Wheat 70 % - 18 % 5 % 7 % (IGC, 2014, Vogel, 2017) 

 Millets - 80% 7 % - 13 % (FAO, 1996) 

 Oats - 30% 70 % - - (FAOSTAT, 2013) 

 Rye - 44% 56 % - - (Rye and Health, 2013) 

Oilbearing Coconuts - 100 % - - -  

crops Soybean 19 % - 75 % 2 % 4 % 
(Islas-Rubio and Higuera-Ciapara, 

2002, WWF, 2018) 

 Groundnut - 75 % 25 % - - (Jimoh et al., 2012) 

 Rapeseed - 10 % 10 % 80 % - (Ufop, 2013) 

 
Sunflower 

seed - 87 % - 13 % -  

 
Palm oil 

fruit - 34 % 4 % 45 % 17 % 
(Tan et al., 2009, Nelsen, 2016, 

Buttler, 2013) 

 Seed cotton - 100 % - - -  

 Olives - 100 % - - -  

Vegetables Green Bean - 100 % - - -  

 Watermelon - 100 % - - -  

 Onion - 100 % - - -  

 Cucumber - 100 % - - -  

 Tomato - 100 % - - -  

 Brassica - 100 % - - -  

 Green maize - - 
100 
% - -  

Roots and Cassava 58 % - 25 % - 17 % (FAO, 2000) 

tubers Potato 100 % - - - -  

 
Sweet 
potato - 100 % - - -  

 Taro 100 % - - - -  

 Yams 100 % - - - -  

Fruits Apples - 100 % - - -  

 Grape - 100 % - - -  

 Orange - 100 % - - -  

 Banana 100% - - - -  

 Plantain 100 %  - - -  

Pulses Chick-pea - 100 % - - -  

 Pigeon pea - 90 % 10 % - - (Mula and Saxena, 2010) 

 Lentils - 100 % - - -  

 Cow pea - 52 % 13 % 35 % - (CGIAR, 2016) 

Stimulant Tea - 100 % - - -  
crops Coffee - 100 % - - -  

 Cocoa - 100 % - - -  
Sugar Sugar cane - 60 % - 40 % - (Lam et al., 2009) 

crops Sugar beet - 100 % - - - (FAO, 2017) 

Fibers Jute - - - - 100 %  
Other Tobacco - - - - 100 %  

 Rubber - - - - 100 %  
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Country selection 
 
 

 

Figure 4.1: Map of study area 

 

The study is based upon the top ten crop producing countries in the world (measured in area). 

The countries are as follows: (1) China, (2) United States of America, (3) India, (4) Brazil, (5) 

Russian Federation (6) Nigeria, (7) Indonesia, (8) Ukraine, (9) Argentina, (10) France 

(FAOSTAT, 2018b). Although these countries only represent 53,5 % of world total agricultural 

area, they produce the majority of staple crops. However, in recent years, these countries have 

also become major feed and fuel crop producers. Hence, recent agricultural trends are largely 

influence by these countries, which makes them important to analyze when studying links 

between staple crops and non-food crops (FAOSTAT, 2018b). Because we want to discover 

impacts on staple crops at a global scale, not domestically, we aggregated the data sampled on 

these countries to create the closest estimate. Ideally, more countries should be included, but 

due to time and data constraints, the study was limited to the countries listed above.  

To examine geographical trends in agricultural production, the countries can be divided into 

three classifications, based on stages of development: developed countries (United States, 

Russia, Ukraine, France), middle-income countries (China, Brazil, Argentina) and poor/ low 

middle-income countries (India, Nigeria, Indonesia). Part of the motivation is to examine if the 



 
 

24 
 

Prebisch-Singer hypothesis, including whether rich countries mainly produces non-food crops 

for profits, whereas poorer countries mainly produce food crops. 

 

4.2 Data collected and choice of variables 

Summary statistics of variables used in this thesis are provided in Table 4.2. The table also 

contains information units of measurement of variables as well as how the different variables 

are expected to affect agricultural area. Below the table is a presentation of the relevance of the 

variables and a justification of their expected signs.  

Table 4.2: Summary statistics for the dataset including expected signs with agricultural area as 
dependent variables. 

 

 

 

 

 

 

Variable name Description Unit Mean Std. Dev. Min Max
Expected effect on tot. 

agricultural area

TotalSCait Total staple crop area Hectare (ha) 2.67e+07 2.30e+07 3797564 8.38e+07 Dependent variable (H2.1)

TotalFeedait Total feed crop area Hectare (ha) 1.91e+07 1.46e+07 3404262 5.47e+07 Dependent variable (H2.2)

TotalFuelait Total fuel crop area Hectare (ha) 7399862 8009310 623416.6 3.06e+07 Dependent variable (H2.2)

TotalNFait Total non-food crop area Hectare (ha) 967941 1090542 0 3845429 Dependent variable (H2.2)

TotalSCyit Total staple crop yield Tones/ha 4.554227 1.916633 .7548507 9.022795 -

TotalNSCyit
Total non-staple crop 

yield
Tones/ha 10.17396 9.841919 1.156265 44.11067 -

TotalFeedyit Total feed crop yield Tones/ha 3.272358 1.898057 .8175378 7.692615 +

TotalFuelyit Total fuel crop yield Tones/ha 7.590296 6.993058 .6877608 32.72535 +

TotalNFyit
Total non-food crop 

yield
Tones/ha 1.460954 .7241201 0 5 +

forestit Total forest area Hectare (ha) 205866.2 254473.3 6993 815135.6 ±

Unemit Unemployment rate Percent (%) 7.6672 3.196215 2.8 19.6 +

gdpit U.S. dollar ($) 10733.62 14379.59 153.6467 57638.16 ±

popit Total population 3.52e+08 4.38e+08 3.37e+07 1.38e+09 +

Gross domestic product 

per capita
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Variables 

Agricultural areas 

Agricultural areas consists of four crop categories: ����������,    ������������, 

  ������������ and ����������. For Hypothesis 2, we ask if higher yield of staple crops and 

non-food crops enhance or reduce total agricultural area. Here, staple-, feed-. Fuel-, and non-

food crop area act as dependent variable as we want to verify if increased yield encourages land 

saving or agricultural encroachment, depending on crop group.  

Forest area 

Total forest area, called ��������, is an independent variable. It is defined as “land spanning 

more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 %, 

or trees able to reach these thresholds in situ. It does not, however, include land that is 

predominantly under agriculture or urban land use” (FAOSTAT, 2018b). Total forest variable 

area has a missing observation value equal to zero because multiple countries has unreported 

number for the year 2016. To deal with this issue, I used the average of the two last years as an 

estimate for 2016.  

The expected sign for total forest area is unknown because large forest area is suggestive of 

having a large area for agricultural expansion, suggesting a positive link. On the other hand, 

because an increase in forest area reduces the total agricultural area (Benhin, 2006). Keep in 

mind that �������� does not include land that is under agricultural use, including agroforestry.  

Yield 

Yields (����������, �����������, ������������, ������������ and ����������) are the 

main independent variables in our study. Crop yield was calculated for all countries from 1992 

– 2016 as the total crop production of the 42 crops divided by the sum of area (ha) under those 

crops in time � and country �. We refer to this throughout the paper as yield. To correct for 

market fluctuations, a factor of crop prices has been included in the calculation of yield.  

To aggregate across crops (e.g., to create yield for staple crops), one must use weights for the 

different crops. On option is to just use tones, but this obscures the fact that some crops are 

more valuable per kg than others. And, a yield increase can occur by shifting to more valuable 

crops. Using value is therefore a better alternative, but this can also be misleading if one uses 

annual prices: a price increase can then be confused with a productivity increase. Better 

methods, which we used, is therefore to calculate average prices for the period, and use these 
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as weights for all years in the aggregation. The prices were calculated from prices collected at 

(Index Mundi, 2018) in time period 1992 – 2017.  

Staple crops are compared to price of rice (which has the weight of 1), non-staple food with the 

price of cocoa, fuel crops with the price of palm oil, and non-food crops with the price of cotton. 

There was no available data on prices for crops defined as feed crops, hence, the price of palm 

oil was used here as well.  

The expected sign of yields is both negative and positive because it depends whether or not the 

changes in agricultural proactive, which drive the yield change, free up labor or capital for other 

kinds of agricultural practices. Hence, we expect that an increase in yield can both increase and 

decrease agricultural area, depending on crop group (Alcott, 2005, Borlaug, 2007). 

Unemployment rate 

Unemployment, called ������, refers to the share of the labor force in country � that is without 

work, but available for, and seeking employment. Unemployment rate data is obtained from the 

World Bank DataBank and is measured as a percentage of total labor force (modeled ILO 

estimate) (World Bank, 2018b).  

Because agriculture is a labor-intensive industry in many of the countries studied, we expect 

������ to have a positive impact on agricultural area. This is because we expect an increase in 

unemployment rate to increase agricultural area as more cheap labor is available for agricultural 

production (Roser, 2018).   

GDP  

GDP per capita, called �����, is the gross domestic product divided by midyear population of 

each country. It is measured in current US$ and is the sum of gross value added by all resident 

produced in the economy plus any product taxes and minus any subsidies not included in the 

value of the product (World Bank, 2018a). The economic role of agricultural seems more 

important in developing countries than in developed countries and can therefore have major 

impact on development of agricultural practices and trends in agricultural areas. GDP is an 

independent variable, however the expected effects are uncertain. Because higher GDP 

advocate new technology that improves yield, it can either reduce or enhance agricultural 

expansion, depending on crop group. Further, GDP growth may also increase demand for 

agricultural products, and thereby lead to more land expansion (Sali, 2012). Hence, the overall 

expected effect of GDP growth is uncertain. 
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Population 

Population, called �����, includes all residence in a country regardless of legal status or 

citizenship. It is used as an independent variable because increase in human population 

influences exploitation of natural resources and social infrastructure greatly.   

We expect population to have a positive sign because an increase in population is expected to 

enhance agricultural encroachment: population growth increases the demand for agricultural 

products, and more labor is available, and more people compete for the same resources (land) 

(Angelsen, 1999).  

 

4.3 Adopted model for the study 

To answer our research questions, we first created four separate regression models, appropriate 

to each of the different assumptions in Hypothesis 2. This is called the original model. Secondly, 

based on the results from the original model, we ended up with our main model. The process 

of how the model was chosen is discussed in this subsection. 

Original models 

To test which functional form were appropriate for our model, both linear functional form (lin-

lin model) and log transformed functional form (log-log model) was tested. Based on the 

different diagnostic tests addressing issues of serial correlation, heteroskedasticity, 

misspecification and normality, descriptive statistics is suitable for Hypothesis 1, while 

regression analysis with log-log specification is preferable for Hypothesis 2. The estimated 

coefficients for Hypothesis 2 is interpreted as elasticities. (Wooldridge, 2015, Benoit, 2011).  

The models are given as follows:  

Model 1: Panel data for Hypothesis 2.1 

log(����������)

= �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ���ln (�����) + �� + ��� 
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Model 1: Panel data for Hypothesis 2.2 with fuel crop area as dependent variable 

log(������������)

= �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ���ln (�����) + �� + ��� 

Model 1: Panel data for Hypothesis 2.2 with feed crop area as dependent variable 

log(������������)

= �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ���ln (�����) + �� + ��� 

 

Model 1: Panel data for Hypothesis 2.2 with non-staple food crop area as dependent 

variable 

log(����������)

= �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ���ln (�����) + �� + ��� 

 

Where �� (� = 1…n) is a variable capturing all unobserved, time-constant factors that affect ��� 

for each entity (n entity-specific intercepts). ��� is the error term, often called idiosyncratic error 

term, or time-varying error as representing unobserved factors that varies across subjects and 

time (Wooldridge, 2015). The unobserved effect also captures geographical features, such as 

the location of agricultural areas and historical factors where countries may have different 

agricultural areas and yield for historical reasons.  

There are differences of variables across countries and between countries, which is subscripted 

by � where �=1,…,N. The subscript � represents time periods where � = 1,…,T. Variables that 

subscript � are time-invariant and depend only on the country specific effects, while variables 

that subscript � are time-variant and varies across countries in specific period of time. Variables 

who denote both � and �, varies across countries and across time, hence they are indexed with 

the subscript ��. In regard to our model, all the variables vary across time and across countries 

due to different stages of development and geographical locations (Wooldridge, 2015). 
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Main model 

The main model was obtained by differencing the original pooled OLS model. It is a simple 

model, which is similar to single cross-sectional equation, but where each variable is 

differenced with respect to time. This is explained further in the next sub-chapter (4.5). We 

tested the model with different compositions of explanatory variables, and by studying the 

differences in the functional form of the estimated coefficients, p-values and R-squared, we 

ended up at our main model. The analysis in this model follows the same log-log transformation 

as the original model, however because of issues with our functional form, we need for 

differentiate across time. Additionally, first differences estimator also eliminates �� from the 

model. Hence, the main models are given as follows, where “��.” indicates the first-difference 

model (Wooldridge, 2014, p. 373): 

Model 1: Panel data for Hypothesis 2.1 

log(����������)

= �� + �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ��� 

 

Model 1: Panel data for Hypothesis 2.2 

log(������������)

= �� + �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ��� 

 

Model 1: Panel data for Hypothesis 2.2 

log(������������)

= �� + �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ��� 
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Model 1: Panel data for Hypothesis 2.3 

log(����������)

= �� + �� + �� ln(����������) + �� ln(�����������) + �� ln(������������)

+ �� ln(������������) + �� ln(��������) + �� ln(��������) + �� ln(�����)

+ �� ln(������) + ��(�������) + ��� 

 

Keep in mind that statistical results are an inherit property of the data used in the study resulting 

from reporting errors and inconsistencies in reporting systems3.  The errors can be positive or 

negative with a mean zero, explaining some of the unexpected results in the correlation matrix.  

The time trend (�����) is not included in the main model. This indictor variable was not 

significant and could not capture any of the effects on agricultural area that the other variables 

could. Thus, to avoid multicollinearity, the time trend variable was excluded from main model. 

 

4.4 Data and estimation issues 

Four central data and estimation issues are identified: firstly, the data was obtained by random 

sampling because we are analyzing the top ten crop producing countries within these time 

periods. The probability of being included in this sample within these periods were not equal 

for all countries as the selection was based on area of agricultural production. However, because 

most of world’s staple crops are produced in these countries, we believe that our sample is 

representative for the population.  

Secondly, our model might suffer from endogeneity as some variables were not included in the 

study due to lack of information. Thus, variables considered important for the study might be 

omitted, and we might have a problem with omitted variable bias (Wooldridge, 2015, p. 799) 

However, because we do not always have the knowledge on variables influencing the dependent 

variables when data is not available or accessible, in practice there will always be one or more 

relevant variables omitted. To include all relevant variables may therefore be impossible, but 

as many variables as possible should be included. 

Thirdly, large problems with imperfect data exists. According to Rudel et al. (2009), researchers 

has yet to examine actual historical episodes where agricultural intensification has restrained 

agricultural expansion on large areas because precise data on the global extent of abandoned 

                                                           
3 Yield trend with area noise displayed in Appendix C.1 
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cropland do not exists. As mentioned in Chapter 3.1, satellite images can detect the presence or 

absence of forests but has difficulties of distinguishing idled land from active crop land on 

global scale. Agricultural statistics collected from FAO provide a way to investigate at a global 

scale, however countries use different methods in compiling data they report, hence large 

measurement errors, or noise, may exist when addressing impacts of land use changes. 

Nonetheless, it is the only global data available  (Rudel et al., 2009). 

Fourthly, our dataset might suffer from multicollinearity. Because crop variables have multiple 

areas of usage, food, feed and fuel, variation in one independent variable can cause variation in 

another. Hence, there is a correlation between our independent variables.  

 

4.5 Methodology 

The econometric model specification is based on models for panel data and involves regressing 

crop area against yield for the years 1992-2016. The data is pooled over 25 years (T) with ten 

countries (N) as the panel of the data. The panel data is strongly balanced, meaning that 

information on all the variables for all time periods exists. However, there are more time periods 

than countries, i.e. the number of subjects is less than the number of time periods, which restricts 

regression possibilities. 

For panel data, four regression models are tested: the pooled model, the fixed effects model, 

the random effects model and the first-difference model. It is informative to compare them with 

each other to help us determine the nature of the biases caused by leaving unobserved effect, 

��, entirely in the error term (as the pooled model), partly in the error term (as the random 

effects model), or independently of the error term (as the fixed effects model and first 

differencing model). However, it is important to remember that, even if �� is entirely 

uncorrelated with the explanatory variables in all periods of time, the standard errors and test 

statistics of the pooled model is usually invalid as it tend to ignore serial correlation in the 

composite error, ��� =  �� + ��� (Wooldridge, 2015).  

Because ordinary least squares (OLS) disregards much of the useful information in the time-

periods, we can use the same information in a pooled OLS (POLS) procedure. POLS is an “OLS 

estimation with independently pooled cross sections, panel data, or cluster samples, where the 

observations are pooled across time (or groups) as well as across the cross-sectional units” 

(Wooldridge, 2015, p. 800). Except for being linear in parameters and data to be obtained by 

random sampling, the POLS assume all coefficients area equal. Additionally, the estimator 
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disregards any systematic observed heterogeneity between observations from different 

populations. This observation seem strict as it is unlikely that all the observations from one 

population is generated the same way (Wooldridge, 2015). For example, changes in agricultural 

area in Brazil is mostly likely not behaving similar as changes in agricultural area in Ukraine. 

For the POLS estimator to be consistent, we assume population orthogonality, i.e. �(���) = 0, 

which requires weak exogeneity ���(���, ���) = 0, ∀�, �, where ��� = �� + ��� and  ��� is our 

explanatory variables. If the true model is pooled and the regressors are uncorrelated with the 

error terms, the pooled OLS regressor is consistent. However, POLS specify constant 

coefficients and is therefore the most restrictive panel data model. If there is unobserved 

heterogeneity, i.e. some unobserved factors affect the dependent variable, and correlated with 

some observed regressor, the POLS become inconsistent with all regressors, while other panel 

data models are still consistent. Thus, POLS is not very common in literature. Fixed Effects 

(FE), on the other hand, can be estimated if we believe that ���  is correlated with the ��s (the 

time-varying explanatory variables) (Wooldridge, 2015) 

Because this study considers periods of 25 years and ten different countries, the analysis of this 

study must include both regional and temporal scale variation. Econometrically, these 

variations are tested running the model as a two-way FE estimator. The model is estimated as 

a panel considering time and place in a fixed effects model: 

(9)  ��� = ����� + �� + ���     � = 1,….,n,  t = 1,….,T 

Where �� (� = 1…n) is the unknown intercept for each entity (n entity-specific intercepts). To 

begin analyzing our panel data it must satisfy four assumptions. The first three assumption are 

equal to POLS assumptions, however, assumption (FE.4) implies strict exogeneity, i.e.  

(10)  �(���|��, ��) = 0, � = 1,… , �. 

(Wooldridge, 2015, p. 459).   

When using FE, we assume that something within the individual may influence or bias the 

predictor or outcome variables, which we need to control for. FE remove the effect of those 

time-invariant characteristics, ��, so we can assess the net effect of the predictors on the 

outcome variable. (Torres-Reyna, 2007). In other words, FE can absorb unobserved time 

invariant determinants of the dependent variable. Instead, time dummies can be included in the 

regressor ��. The disadvantage of the estimator is that it removes all variables that are time-

invariant. Thus, it cannot yield any estimate of time-invariant variables on the dependent 
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variable. The Random Effect (RE) estimator, on the other hand, allows us to estimate time-

invariant variables on the dependent variable. It assumes that ��� is uncorrelated with 

explanatory variable and if the assumption of ���(���, ���) = 0 is true, the estimated standard 

errors are smaller than under FE. However, if we cannot consider the observations to be random 

draws from a large population, for example if we have data on countries – it makes sense to 

assume that �� as parameters to estimate, in which case we should use fixed effects.  

For small datasets, an alternative to the FE is the First Differencing (FD) estimator. The FD 

achieves the same goal: eliminating �� from the model, and is similar to single cross-sectional 

equation, but where each variable is differenced over time. 

The first differencing model is  

(11)  ��� = �� + �� ��� + ��� 

(Wooldridge, 2015) 

In addition to the POLS assumptions and strict exogeneity, FD assumes that “each explanatory 

variable change over time for at least some units, and there is no exact linear relationship among 

regressors in the population, i.e.” 

(12)  �����( �� �) = � 

(Wooldridge, 2015) 

The most important of these is that ��� must be uncorrelated with ���. This assumption holds 

if the idiosyncratic error at each time �, ��� is uncorrelated with the explanatory variable in both 

time periods. Hence, it rules out cases where future explanatory variables react to current 

changes in the idiosyncratic error, as must be the case if ���� is a lagged dependent variable 

(Wooldridge, 2015). 

Compared to the FE estimators, the FD estimators is numerically equivalent for T = 2. However, 

when T ≥ 3, the FE and FD are not the same. For large N and small T, the choice depends on 

the relative efficiency of the estimators and is determined by serial correlation in the 

idiosyncratic errors, ���. When the ��� is serially uncorrelated, FE is more efficient than FD, 

hence, in literature FE is generally more common than the FD estimator. Nevertheless, we must 

remember that this assumption can be false, and that in many applications, we can expect 

unobserved factors that change over time to be serially correlated.  On the other hand, when T 

is large, and N is small, as in this thesis, we must show caution in using fixed estimators. 
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Although distributional results hold under FE assumptions, inference can be sensitive to 

violations. Thus, inference with FE is potentially more sensitive to non-normality, measurement 

error, heteroskedasticity, and serial correlation in the idiosyncratic errors. Hence, as the FD 

model has the advantage of turning an integrated time series process into a weakly dependent 

process, it is less sensitive to violations of assumptions and thus, a more appropriate estimator 

(Wooldridge, 2015, p. 447).  

Nevertheless, differencing is not free of difficulties either. If one or more of the explanatory 

variables is subject to measurement error, especially the classical errors-in-variables model, the 

FD estimator can be a worse option than pooled OLS. Additionally, the model causes potential 

problems when key explanatory variables do not vary much over time (Wooldridge, 2015). 

However, in the process of choosing an estimator, the main factor to evaluate is the number of 

T and N in the dataset. Because the dataset contains large T and small N, POLS with FD 

becomes the preferred estimator compared to panel data. (Wooldridge, 2015). 

 

Statistical tests 

Until now, we have reviewed the most relevant econometric models for panel data, POLS, FE, 

RE and FD, and ended up favoring FD because of the benefits when a dataset contains large T 

and small N. In our regression analysis, I therefore had to test whether both POLS and FD are 

consistent and thus appropriate estimators.  As mentioned in the previous sub-chapter, we 

generate the variables for Hypotheses 2 into log-log variables before comparing the models. 

There are four reasons for this: First, to improve model fit. For instance, if the residuals are not 

normally distributed, then taking the log of a skewed variable may improve the fit by altering 

the scale and making the variable more "normally" distributed. This is especially important for 

our model where crop production in large countries may diverge the direction of the analysis. 

Second, better interpretation. If you log both your dependent (Y) and independent (X) variables, 

the regression coefficients (beta) will be elasticities and interpretation would go as follows: a 

1% increase in X would lead to a ceteris paribus beta percentage increase in Y (on average). 

Third, taking the log of the dependent and/or independent variables may eliminate the 

heteroskedasticity. Forth, transforms a non-linear model into a linear model (Wooldridge, 

2015).  
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To find the best linear regression model, I compare three POLS models with different standard 

errors: ordinary POLS with normal standard errors, POLS with robust standard errors and POLS 

with cluster robust standard errors. First, I control if the ordinary POLS with standard errors 

satisfy the assumptions by running tests of heteroskedasticity, multicollinearity, normality and 

functional form. An issue with POLS with ordinary standard errors is the vulnerability for 

heteroskedasticity and serial correlation. Hence, it is often less preferred than both robust 

standard errors and cluster robust standard errors. POLS with ordinary (robust) standard errors 

is presumed appropriate for this thesis because errors for a given individual, and country, are 

almost certainly positively correlated over time. Hence, if the functional form of ordinary POLS 

is rejected, cluster robust standard errors is the preferred estimator as it corrects for clusters 

(panel) and is robust against any type of heteroskedasticity and serial correlation (Wooldridge, 

2015). 

Next, we need to test for individual effects using first –order autoregression, written AR(1). 

This model tests if we can predict current year by using previous measurements. The last 

regression in the POLS analysis is an f-test for individual effects/ serial correlation. If individual 

effects exist, then the clusters are correlated over time. One solution is to omit these effects, 

however as they will go into the error term, issues of endogeneity may occur (Williams, 2015). 

Thus, if strong evidence of individual effects/ serial correlation exists, there is still something 

in our model that POLS did not solve, and which needs to be explored by adding the FD 

estimator.  

 

 

 

 

 

 

 

 

 



 
 

36 
 

 

 



37 
 

5 Results and Discussion 

 

This section contains four main parts. The first part presents descriptive statistics for ten 

selected countries and compare national agricultural area trends. This section tests Hypothesis 

1 and the trends between crop groups and total agricultural area. Hence, it also gives a better 

understanding of the results of the following test and in the discussion. The second part reviews 

price trends between 1992 and 2017. The third part presents the econometric results, followed 

by a discussion on the correlations between yield and agricultural area. Lastly, I point to 

limitations of the analysis and suggest further work.  

 

5.1 Descriptive statistics 
 

The lines Figure 5.1 represent the total production area (ha) of each crop group divided into the 

selected countries. The same trends are presented in numbers in Table 5.1. The aim is to give 

overview of the trends of each crop group over the last 25 years.  

Figure 5.1: Change in are by crops (in hectare) 
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One should note that the trend lines are linked (correlated) because 18 out of 43 crops have 

multiple areas of usage. Thus, an increase in area of one crop group, may result in increased 

area of any of the other variables. This is a weakness in the method used and is discussed further 

in Chapter 5.6.  

In many of the countries, non-staple food, feed and fuel has had the largest expansion of 

agricultural area between 1992 and 2016. This is especially the case for China, United States, 

Brazil, Indonesia and Argentina where crops such as barley, maize, soybeans, rapeseed, and 

palm oil are important cash crops. On the other hand, for the same countries, staple crops and 

non-food crops have decreased or remained the same throughout this period. Hence, several 
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countries seem to have shifted production from food crops to non-food crops (or at least area). 

However, Indonesia, Nigeria and India – the three low income countries in our sample - are still 

experiencing growth in staple-crop production.  

Table 5.1: Domestic land use changes in the selected countries between 1992 and 2016, measured in 
hectare (ha). The numbers in prentices shows percentage changes of agricultural area. 

 

In Table 5.1, the trends presented in Figure 5.1 becomes clearer. As total aggregate agricultural 

areas have increased 17 % between 1992 and 2016, most of the increase has large been for feed 

crops (26 %) and fuel crops (24 %), whereas staple crops area only increased by 11 %. The “% 

of total change” gives the share of the changes in total area caused by the different crop groups. 

Most notably is feed crops which represent 41 % of total agricultural area increase from 1992 

to 2016, while staple crops represent 28 %. In connection with the column on the right, “Total”, 

we see that, 11% increase in staple crops area from 1992 – 2016 represents 28% increase on 

total agricultural area. Hence, between 1992 and 2016, 28% of the crop area growth is 

represented by staple crops, while feed crop area and fuel crop area has had the highest growth 

rate in the same period. This is because staple crops represent 40 % of total area crops, hence 

changes in the staple agricultural sector generates a significant absolute change in total crop 

area.  

 

 

 

 

China United States India Brazil Russia Nigeria Indonesia Ukraine Argentina France Total

Ag. Land 1992 132 853 402 97 973 833 143 601 762 47 283 865 65 423 771 79 262 682 25 527 117 17 435 940 17 131 141 12 113 911 638 607 423

Ag. Land 2016 148 347 369 99 651 871 158 740 345 71 232 433 55 690 675 105 709 838 38 917 378 23 993 733 34 508 181 12 448 652 749 240 476

Tot. Increase (ha) 15 493 968 1 678 038 15 138 583 23 948 569 -9 733 096 26 447 156 13 390 261 6 557 793 17 377 040 334 741 110 633 053 110 633 053

Tot. Increase (%) (12%) (2%) (11%) (51%) (-15%) (-15%) (52,%) (38%) (101%) (31%) (17%)

Change in land area (ha) from 1992 to 2016

Staple crop -1 856 048 -4 292 929 6 067 382 2 181 531 330 964 21 250 461 2 473 637 108 849 3 896 403 302 916 30 463 167

(-3%) (-15%) (10%) (21%) (1%) (35%) (21%) (2%) (78%) (7%) (11%) (28%)

Non-staple crop 7 161 075 -1 242 108 2 453 679 2 000 766 -1 839 543 2 002 612 5 555 999 1 923 408 -1 007 347 -535 176 16 473 364

(57%) (-14%) (6%) (21%) (-15%) (24%) (122%) (45%) (-27%) (-21%) (15%) (15%)

Feed crop 8 539 157 6 240 478 4 990 296 18 500 532 -9 988 474 2 432 088 -460 020 2 816 859 13 617 520 -2 316 46 686 120

(27%) (13%) (22%) (102%) (-35%) (29%) (-10%) (51%) (194%) (0%) (26%) (41%)

Fuel crop 2 339 736 1 662 550 1 435 328 1 126 668 1 767 377 664 780 4 108 063 1 716 844 897 486 574 816 16 293 647

(8%) (19%) (11%) (13%) (83%) (27%) (178%) (202%) (66%) (42%) (24%) (15%)

Non-food crop -689 952 -689 952 191 897 139 072 -3 420 97 215 1 712 582 -8 166 -27 021 -5 499 716 756

(-26%) (-26%) (13%) (36%) (-100%) (34%) (80%) (95%) (-38%) (-62%) (7%) (1%)

% of total 

change
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Hypothesis 1 states that the increase in total agricultural area is driven by non-food and fuel 

crops, not staples. As just observed, this is partly confirmed by our descriptive statistics.  

To further explore when and where production of different crop categories has changed from 

1992-2016. Figures 5.2, 5.3, and 5.4, and Table 5.2, the countries were divided into 

geographical categories; developed countries (USA, Russia, Ukraine, France), middle-income 

countries (China, Brazil, Argentina) and poor/ low middle-income countries (India, Nigeria, 

Indonesia). The reason for this is to visualize if the Prebisch-Singer hypothesis holds, i.e. if rich 

countries mainly produces non-food crops for profits, whereas poorer countries mainly produce 

food crops.  

a)             b) 

     

Figure 5.2: Change of crop area between the different geographical categories from 1992-2016, 
measured in percent (a) and in millions of hectare (b). 

In Figure 5.2, Table a) shows that the largest production area of staple crop –and non-staple 

crop production has occurred in the selected poor/ low middle-income countries. In fact, the 

total agricultural area of food production in the selected poor/ low middle-income countries is 

larger than total agricultural area for all crop groups in the selected developed countries, and 

almost equally as much as total agricultural area of all crop groups in the selected middle-

income countries. The distribution of crop group production has been similar between the 

selected developed– and middle-income countries, however developed countries seem to 

produce more feed, while middle-income countries produce more fuel (biofuel in Brazil). The 

table on the right shows the same results, however, crop area is measured in percentage of total 

agricultural area in each of the geographical categories. For the selected poor/ low middle-

income countries, 75 % of agricultural area has been cultivated for staple –and non-staple food 

crops, whereas for developed and middle-income countries, less than 50 % of agricultural area 

has been cultivated for food crops. Hence, for richer countries it seems that feed and fuel has 

been the focus of production the last 25 years.  

Developed Middle income Poor/ low middle income

TotalNFa 5 102 137 63 514 714 125 471 016

TotalFuela 384 626 150 966 242 492 498 632 408

TotalFeeda 1 987 536 329 1 668 237 967 953 524 274

TotalNSCa 618 719 281 782 463 164 1 603 327 143

TotalSCa 1 457 248 063 1 823 490 549 3 390 742 708
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Table 5.2 shows numerically changes in agricultural area from 1992 – 2016 in the different 

geographical categories. It shows that the largest area transformation has occurred in middle-

income countries (46 %), where feed and non-staple food crops has experienced the largest 

increase. The selected poor/low middle-income countries have experienced major 

transformations for all crop groups, where largest increases have happened in the fuel and non-

food sectors. The selected developed countries, which according to Figure 5.2 has produced the 

most feed crops (measured in ha) the past 25 years has experienced an overall decrease in area 

of production. The same trend is seen for non-staple food crops. 

Table 5.2: Changes in agricultural areas from 1992 – 2016 divided by geographical categories. 

 

Furthermore, disregarding geographical location, Figure 5.2 displays changes in agricultural 

areas measured in millions of hectare and percentage change.  

a)             b) 

  

Figure 5.3: Changes in agricultural areas measured in millions of hectare (a) and percentage change (b). 

Developed Middle-income Poor/ low middle-income
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Ag. Land 2016 189 924 683 243 573 536 303 367 561
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Tot. Increase (%) -0,3 % 23 % 22 %

Change in land area from 1992 - 2016

Staple crop -3 550 200 434 333 29 791 480

(6 %) (1 %) (22 %)

Non-staple crop -1 693 420 11 085 248 10 012 290

(-6 %) (42 %) (18 %)

Feed crop -933 453 29 856 547 6 962 364

-1 % (55 %) (19 %)

Fuel crop 5 721 586 5 183 247 6 208 171

(43 %) (14 %) (35 %)

Non-food crop -205 175 -559 046 2 001 694

(61 %) (-18 %) (51 %)
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Regarding Hypothesis 1, the graphs shows that, even though the larges changes has happened 

in the non-food sectors (Figure 5.3b), staple crops and non-staple food crops areas has increased 

more than fuel –and non-food crops (Figure 5.3a). Further, the largest increase, per hectare, is 

feed crops, which has increased by 18 % since 1992. Hence, because staple crops have 

experienced the second largest increase in agricultural area from 1992-2016, we can reject our 

hypothesis, i.e., non-food– and fuel crops, not staple crops, drive the increase in total 

agricultural area. However, analyzing Figure 5.2b, non-food crops has had the largest relative 

increase during the same period, indicating the direction of current agricultural trends.  

Furthermore, it is interesting to explore the more specific time periods in which agricultural 

trends changes. I split the 1992-2016 period into five periods. Figure 5.4 shows that total 

agricultural area decreased slightly between 1996 and 2016, before the agricultural area 

increased back to estimates for 1992-96. The largest decrease occurred for feed crops, which 

might be because of increased yield. During the same period, both middle-income –and poor/ 

low middle-income countries experiences a large drop in agricultural area production after 

2011, which can be explained by more productive agricultural production. 

    

 

Figure 5.4: Change in crop group areas over three time periods. Countries are divided into developed 
countries (a), middle-income countries (b) and poor/ low middle-income countries (c). 
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 Food price trends 1988 – 2017 
 

Throughout history, high food prices have been of high concern, especially among poor 

households. Since 2000, the world has experienced two major food crises, where high food 

prices have caused social unrest (2008 and 2010) (Bellemare, 2015). These events are clearly 

seen in the FAO Food Price Index (FPI), marking the importance of stable food markets. The 

FAO FPI is a measure of the international prices of food and consists of the average of five 

commodity group price indices (Cereal, Vegetable oil, Dairy, Meat and Sugar), weighted with 

the average export shares of each of the groups  (FAO, 2018). 

 

Figure 5.5: FAO Food Price Index. Source: (FAO, 2018)  

 

This next section consists of figures 5.6, 5.7 and 5.8 and illustrates price trends for the different 

crops from 1988-2017 (Index Mundi, 2018).  

 

Figure 5.6: Price trends for staple crops, 1988-2017 (current US$). Source: (Index Mundi, 2018) 
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In figure 5.6, barley, wheat and sorghum are relatively clustered together throughout the entire 

period. Soybean and rice are on average higher priced and experienced a price hike between 

2009 and 2014. Banana is the most valuable staple crop and has had an increasing price trend 

since 2004. 

 

Figure 5.7: Price trends for fuel crops, 1988-2017 (current US$). Source: (Index Mundi, 2018) 

In figure 5.7, prices of rapeseed and palm oil has similar price trend throughout the entire period. 

For illustration, crude oil (West Texas Intermediate) prices per ton is included. It shows that 

crude oil has similar trend as rapeseed and palm oil with price hikes in 2008 and 2011, and price 

dumps in 2009 in 2015-2016.  

 

Figure 5.8: Price trends for non-food crops, 1988-2017 (current US$). Source: (Index Mundi, 2018) 

Figure 5.8 shows that cotton and rubber have similar price trends throughout the entire period, 

with rubber being the most valuable of the two. Additionally, prices of non-food crops have 

similar trends as fuel crops with price hike in 2011 and price dump in 2016. These prices can 

explain farmer’s choice of crops as well as country’s agricultural policies. 
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5.2 Econometric results 
 

 Selecting the regression model 
This section contains the econometric results for Hypothesis 2. 

o H2: The yield area relationship differs between crop types. For staple food, higher yield 

results in lower crop area; for non-food and fuel crops, higher yield results in larger crop 

area  

The hypothesis is split into four sub-hypotheses, where staple-crops (SC), fuel crops, feed crops 

and non-food crops (NF) are estimated in separate regression models.  

 

Looking at various factors influencing our dependent variables, I began analyzing data by 

running a POLS regression with ordinary –and robust standard errors on both the original and 

main model. This will confirm whether POLS is consistent, especially with respect to standard 

errors. Because heteroskedasticity and serial correlation are main concerns for using panel data, 

robust standard errors are often applied as a remedy since they are robust to these concerns 

(Wooldridge, 2015). Another alternative is to use cluster-robust standard errors, however, 

because of few clusters (10), it would lead low statistical power and is therefore excluded from 

the analysis. To test whether robust standard errors were necessary, I ran the White’s test for 

heteroskedasticity and Wooldridge test for autocorrelation for POLS with ordinary standard 

errors, with the assumption that normally distributed errors has been relaxed.  

The null hypotheses of were rejected at significance level of 0.05, indicating that the POLS 

model suffers from heteroskedasticity and serial correlation. The tests were therefore repeated 

with robust standard errors. However, the same hypotheses were rejected, indicating that robust 

standard errors did not help to solve these issues. 

Because individual effects/serial correlation is identified in all the POLS estimates, we need 

test if panel data estimators are more suitable for the analysis. To test for this, I ran the Breusch-

Pagan test for random effects. The Breusch and Pagan Lagrangian multiplier test reject that 

���(�) = 0, which indicate that ���(�) > 0. There is evidence of substantial individual 

heterogeneity. Hence, POLS is not an appropriate model. To test for model fit, the Ramsey 

RESET test for functional misspecification was generated, where P > 0,05 is considered a strong 

model and 0.05 > p > 0.001 is considered a weak model. The Ramsey for POLS rejected any 

evidence of linearity (P<0.001), i.e., the model does not properly account for the relationship 

between the dependent and explanatory variables. Hence, a panel data estimator might be a 
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better option. For robustness, two additional regressions were generated. First, since 

autocorrelation in the genuine errors seems to be present, POLS with an AR(1) disturbance and 

years as dummy variables was tested. Using an F-test, years as dummy variables were not 

significant, and POLS with an AR(1) disturbance were not considered for further testing, other 

than comparison between the ordinary and main model. Second, I added lagged variables to the 

robust standard errors model, however, adding a lagged value did not improve the model.  

Further, to check for multicollinearity, i.e., control for correlation between the independent 

variables, we ran a VIF test. I observed some multicollinearity between population, fuel crop 

area and non-staple crops, however the mean multicollinearity is below the acceptable limit 

(VIF < 10), hence with these variables in mind, we can continue with the analysis. The analysis 

of POLS is shown in Appendix B.2 (Table B.2.1) 

In this sub-section, we have tested if POLS with either ordinary, robust, AR(1) or lagged robust 

standard errors is appropriate for our model. Because of issues with heteroskedasticity, serial 

correlation and functional form, we concluded that other regression models must be carried out. 

Recalling from chapter 4.5 that RE and FE are inappropriate models for our analysis, it is 

suggested to obtain the First Difference model with quadratic terms (Wooldridge, 2015, p. 279). 

The discussions in the next chapters are therefore mainly based on the FD model.  

 Testing the models 

Hypothesis 2.1 aimed to explore the correlations between change in �. ����� and staple crop 

area �. �����. The DF_ord and DF_r generated similar results with no serial correlation, and 

strong evidence of homoskedasticity and linearity. The DF_lr provided a slightly better fit of 

the data than the latter, i.e. higher �� and smaller rmse, but, the regression suffers from serial 

correlation and is therefore excluded. I also tested for individual effects using an AR(1) test and 

added a dummy variable for each year. The F-test generated p-value > 0.05, hence, years from 

1993 to 2016 does not have significant impact on the dependent variable, and we exclude years 

as dummy variables from further analysis. Comparing the results from DF_ord and DF_r, 

variables are equally significant, however, DF_r has a stronger functional form, which indicates 

a better model. Hence, further discussions of Hypothesis 2.1 will focus on results generated by 

FD_r.  

In the second regression, with �. ������ as dependent variable, tests for heteroskedasticity 

and serial correlation was rejected DF_ord and DF_r. The DF_lr does not suffer from serial 

correlation and provided a slightly higher ��, however many observations were dropped, which 
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is unfavorable as we originally do not have many observations. The F-test rejected any time-

specific effects, while the Ramsey RESET test estimated a solid functional form for all 

correlations. However, DF_r presents higher values, indicating a better model. Hence, further 

discussions will focus on results generated by FD_r 

Hypothesis 2.2 aimed to explore the correlation between non-food crop areas and non-food crop 

yields. Hence, three separate regressions with  �. �������, �. ������� and �. ����� as 

dependent variables were performed, respectively. 

With �. ������� as dependent variable, tests of heteroskedasticity and serial correlation were 

rejected for FD_ord and FD_r and accepted for FD_lr with one lag. The VIF test showed a 

mean multicollinearity below the recommended limit (VIF > 10), i.e. low level of correlation 

between independent variables. Hence, results generated by DF_lr was used in our analysis.  

In the fourth regression, using �. ������� as dependent variable, none of the models generated 

a strong functional form, and rejected tests of heteroskedasticity and serial correlation. 

Additionally, the VIF test showed a mean multicollinearity below the recommended limit. To 

solve for issues heteroskedasticity or serial correlation, removing control variables was 

attempted, without providing a better model. Keeping in mind that we have issues of 

heteroskedasticity and serial correlation, results generated by the DF_r model was used for our 

analysis as it provided the strongest model (p > 0.001). Further, the �� is below 0.20, which 

means that the explanatory variables only explains up to 20% of changes in the dependent 

variable. Hence the covariates do a poor job explaining and/ or predicting the response values. 

In the fifth regression, with �. ����� as dependent variable, the tests for functional form/ 

misspecification indicated an unfit model (p = 0.000), i.e., the combination of explanatory 

variables does not have any power in explaining the response variable. Tests of 

heteroskedasticity and serial correlation also indicated larger issues with the regression model, 

even after attempting to remove control variables. Nevertheless, the model generated 

statistically significant negative results for �. ����� and �. �����, and significant positive 

results for �. ������� and �. ������. 
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 Model results 
This sub-chapter is divided into three parts, each presenting the econometric results of the 

hypotheses, as well as comparing expected and actual signs. 

Hypothesis 2 

Hypothesis 2 states that the yield area relationship differs between crop types. For staple food, 

higher yield results in lower crop area; for non-food and fuel crops, higher yield results in 

larger crop area. 

 

Table 5.3 presents the results of the FD regression for Hypothesis 2, and is divided into two 

parts, H2.1 and H2.2. The dependent variable for H2.1 is �. ����� and �. ������, while 

�. �������, �. �������, �. �����, and �. ������� are dependent variables for H2.2, in 

separate regressions. The main independent variables for the hypothesis were �. �����, 

�. ������,  ��������, ��������, and ������, whereas the remaining variables were used 

as control variables. The VIF test of multicollinearity obtained adequate mean correlation 

between the independent variables (<10) for both H2.1 and H2.2. Hence, I continued with our 

variables and ran the tests for first differences DF_ord, DF_r and DF_lr.  

For H2.1, I hypothesized that an increase in staple crop yield reduces staple crop area. In Table 

5.3, �. �����, �. lnNSCy, �. �������, and �. �������� are highly significant. Staple crop yield 

is negatively correlated, while non-staple food crop- and feed crop yield, and forest area is 

positively correlated. In Chapter 4.3 we predicted the sign of staple crop yield to be negative, 

signs of fuel and feed crop yield to be positive and forest to be unknown. 

According to Table 5.3, when staple crop yield increases with one %, staple crop area decreases 

by 0.43 %. Staple crop area is expected to increase with 0.13 %, and 0.28 %, when non-food 

staple crop- and feed crop yield increases with one tones/ha, respectively. In relation to theory 

(Chapter 3), the Borlaug hypothesis vs. the Jevons paradox discussion, these results are in line 

with both Borlaug and Jevons argued, i.e. improved productivity reduces and enhances 

agricultural expansion. 

For non-staple food crops, �. �����, �. ������ and �. ����� are positively statistical 

significant. The table indicates that  an increase in non-staple food crop yield with one % 

decreases crop area by 0.32 %, which is in line with our hypothesis. However, an increase in 

staple crop yield has the opposite effect, namely an increase in non-staple food crop area by 

0.31 %. The reason for this might be because many non-staple food crops are also feed and fuel 
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crops, such as sugar cane, which might change the expected signs. Although, there is a high 

significance and the effect is consistent with results from regressing staple crops. 

 

Table 5.3: Estimation results for Hypothesis 2.1 and 2.2, with staple crop -, fuel crop -, feed crop -, and 
non-food crop area as dependent variables. 

 

 

Hypothesis H2.1 H2.2 H2.2 H2.2 H2.2

Dep. Variable SCa NSCa Feeda Fuela NFa

Variable name FD_r FD_r FD_r FD_lr FD_lr

D.lnSCy -0.434*** 0.305*** -0.0193 -0.0515 -0.455

(0.0984) (0.0878) (0.0924) (0.117) (0.275)

D.lnNSCy 0.125* -0.315*** 0.156** -0.0251 -0.104

(0.0525) (0.0898) (0.0589) (0.0788) (0.287)

D.lnFeedy 0.281*** -0.0230 0.143* 0.0988 0.665*

(0.0702) (0.0629) (0.0695) (0.0747) (0.295)

D.lnFuely -0.0212 0.0892 -0.0239 0.212* -0.371

(0.0610) (0.0688) (0.0665) (0.0901) (0.287)

D.lnNFy -0.00345 -0.000445 0.00530 0.00252 -0.635***

(0.0155) (0.0108) (0.0205) (0.0121) (0.129)

D.lnforest 0.0179* -0.00420 -0.0348*** 0.0178* 0.0399

(0.00843) (0.00935) (0.00790) (0.00890) (0.0321)

D.lnpop 0.472 0.283 0.178 -0.981 8.247*

(0.569) (0.582) (0.628) (0.703) (3.225)

D.lnUnem -0.0261 -0.0583 -0.0807** -0.0705 -0.134

(0.0286) (0.0421) (0.0300) (0.0362) (0.100)

D.lngdp 0.0280 0.0708* 0.0146 0.0641 -0.333*

(0.0286) (0.0303) (0.0317) (0.0347) (0.142)

L.u -1.95e-09 -6.80e-08

(1.68e-09) (6.25e-08)

_cons -0.00180 -0.00247 0.00369 0.0207* -0.101*

(0.00736) (0.00833) (0.00829) (0.0104) (0.0487)

N 237 237 237 237 237

0.244 0.204 0.187 0.194 0.385

adj. R-sq 0.214 0.173 0.155 0.159 0.357

rmse 0.0618 0.0691 0.0618 0.0713 0.291

Notes: * p<0.05, ** p<0.01, *** p<0.001; p-values in parenthesis
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In Table 5.4, �. ������� is weakly positive significant. We hypothesize that higher fuel crop 

yield, increases fuel crop area, and ran the regression with the same control variables as in 

hypothesis 2.1. The regression results in Table 5.4 shows that one % increase in fuel crop, 

increases fuel crop area with 0.21 %. This result correspond with findings in (Angelsen and 

Kaimowitz, 2001) and are in line with the Jevons paradox.  

In contrast to our expectations, �. �������� is weakly positive significant (p-value < 0.05) with 

fuel crop area. An increase in forest area with one % increases fuel crop area 0.02 %. We 

expected that an increase in forest area would either lead to decrease in fuel crop area because 

they are expected to be contrasting variables or leave more forest area available for extraction. 

However, from our results we observe the opposite, i.e. that an increase in forest area also 

increases fuel crop area. As explained in Chapter 4.4, one of the major issues with data from 

FAO is that there might be noise in the data as countries use different methods in compiling 

data (they report). Increase in cultivation of biofuel crops like palm oil might therefore be 

counted as increase in forest cover, even though FAO has specified that no agroforests are 

included in the dataset.  

According to Table 5.4, an increase in GDP increases fuel crop area, while an increase in 

population decreases fuel crop area. The reasons might be that as wealth increases, the country 

focuses production on non-food crops, i.e., in accordance with Prebisch-Singer hypothesis. 

Another possible interpretation is that, as fuel crops also provides food and feed, hence, an 

increase in GDP per capita corresponds with increased consumption of food, feed and fuel, 

which results in increased agricultural area. However, the variables are not significant due to 

low correlation between GDP, population and fuel crop area4, hence the control variables do 

not have much explanatory power. Further, it is important to remember that our analysis suffers 

from heteroskedasticity and serial correlation. The �� is 0.19 and rmse is 0.071, which tells us 

that our explanatory variables only explain 19,4 % of variances in our model, with low model 

fit.  

I hypothesized that an increase in feed crop yield, increases feed crop area. Table 5.2 indicates 

that �. ������� and �. ������ is positive statistically significant, while �. �������� and 

�. ������ is negative and statistically significant. Thus, when feed crop yield increases with 

one %, feed crop area increases with 0.14 %. These results correspond with our findings in the 

latter hypothesis, namely the Jevons paradox. The second significant variable, non-food crops 

                                                           
4 Correlation matrix for hypothesis 2 in Appendix C B.1 (Table B.1.2),   
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yield, unexpectedly increases feed crop area with 0.016 % per yield percentage increase. This 

might be due to collinearity, i.e., crops that are qualified as feed crops are also large food crops. 

Hence, an increase in feed crop area will also increase non-staple food crop area. Furthermore, 

as expected, forest area is negatively and significant correlated with feed crop area. This can 

also confirm some of hypothesis two where we ask which crops that impacts forest cover. The 

regression shows that when forest cover increases with one %, feed crop area decreases with 

0.03 %. From the last significant variable, unemployment rate, suggests that feed crop area 

decreases if unemployment increases with one %. This might be the result because, as 

agriculture is a labor-intensive sector, increase in unemployment means that the sector is 

becoming more productive. And as we can observe from the results, increase in feed crop yield 

also increases feed crop area. Once again, we must keep in mind the issues of heteroskedasticy, 

serial correlation and multicollinearity when evaluating the results. The adjusted �� is 0.187 

and rmse is 0.0618, which tells us that our explanatory variables only explain 18.7 % of 

variances in our model, with low model fit. 

If non-food crop yield increases with one %, non-food crop area decreases with 0.635 %. This 

is in accordance with Borlaug hypothesis and in contrast to Hypothesis 2.2. Further, an increase 

in feed yield corresponds with increase in non-food crop area, indicating that we might have 

some collinearity in our mode. However, because the model suffers from misspecification, the 

results cannot be concluded upon. The reason for the weak functional form might be that 

because the non-food crop group is the smallest of all the crop groups. Hence, its explanatory 

power might be absorbed by other crop groups, and variables important for the model is omitted 

or measurement errors. 

One of the main issues in the regression analysis was misspecified functional forms, i.e., 

unreliable models due to non-linearity. To solve this, it often makes sense to add squared 

variables, which captures diminishing or increasing effects on the dependent variable. If the 

squared variables are significant, they can be added to the model (Wooldridge 2015, p.279). 

Because issues of functional form were detected in the hypothesis, we regressed them a 

second time adding squared variables to area and yield variables in POLS with FD. This is 

because area and yield are nonlinear, i.e. the independent variables are expected to 

increase/decrease with dependent variable until a certain point before they change direction. 

Hence, the quadratic function solves the issues of non-linearity and lets us calculate tipping 

points in area and yield production. Including quadratic variables in our regression analysis 

provided a stronger model (functional form and ��), as expected, and more statistically 
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significant variables. However, larger issues with heteroscedasticity and serial correlation 

were also detected5. This might be because quadratic terms can be symptomatic of other 

functional form problems, such as using the level of a variable when the logarithm is more 

appropriate, or vice versa. Additionally, even though squaring variables can solve issues with 

functional form, the interpretation is very complicated and requires calculating maximum and 

minimum values to find turning point. Therefore, the method was not included as a main 

model for regressions in this thesis.  

 

5.3 Discussion  

Changing demand for different agricultural products causes shifts in land use and new markets 

within the agricultural sector has increased pressure on production areas. However, one process 

could reduce this pressure, at least in part, by increasing agricultural yields rather than 

expanding crop land. In Chapter 3, we introduced theories in relation to these questions. 

Norman Borlaug argued that improved agricultural practices decrease agricultural area, while 

William Jevons argued the opposite. The findings from the current analysis may improve our 

knowledge about how changes in yield in practice influences agricultural areas and correlations 

between crop groups. It may also give better knowledge about the extent of which forest cover 

changes with agricultural land use trend, as well as the impacts of changes in unemployment 

rate, GDP per capita and population growth.  

Growth in agricultural output has previously been obtained by bringing new land in to 

production. Today, new technologies have made it possible to increase output without 

necessarily increasing area of production, but in practice, this is not always the case.  

In our regression analysis, we observed the effects of increased yield on crop area for the 

different crop groups. The results show that the land-sparing effects of increased crop yield was 

uneven. Increasing yield in staple crops has strong positive land-sparring effects, reducing 

staple crop area by -0.43 % per one % increase in yield. The reason for this may be that market 

prices of food crops, agricultural rents, are low compared feed, fuel, forest and other market 

commodities. Hence, the additional benefits of increasing staple crop area may not exist, 

according to our analysis. Besides market effects, these patterns might also occur because of 

political factors, that favor feed- and fuel crops with low yield, at the expense of food 

                                                           
5 Regression results and a short discussion in Appendix A 
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production. Thus, the results in our regression, where staple crop area decreases as yield 

increases, may also be explained by political policy decisions, and not exclusively by more 

productive land use. Nonetheless, we can confirm the Borlaug hypothesis with high significance 

regarding staple crops, i.e., increasing staple crop yield do not trigger area expansion. Further, 

increasing feed crop- and non-food staple crop yield, and forest area increases staple crop area 

with statistical confidence. Hence, when non-staple crops become more productive, more 

agricultural land becomes available for staple crop production.  

From H2.2, increase in feed crop yield by 1 % increases feed crop area with 0.67 %. Besides 

normal market mechanisms, there might be government policies favoring production of feed 

crops, especially for exports. According to Table 5.2, it is the developed countries who are the 

main producers of feed crops, hence, according to Prebisch-Singer thesis, wealthier countries 

has focused production on non-food crops rather than food crops.  

The same reasoning is valid for fuel crop yield, where, as fuel crop production becomes more 

productive, fuel crop area significantly increases by 0.22 %. The effects of higher feed crop 

yield and food crop yield on staple crop area are in line with the theory of Jevons paradox and 

some of the findings of Angelsen and Kaimowitz (2001). It is also interesting to notice that 

GDP per capita has is positively correlated with feed and fuel crop. Hence, the regression 

analysis suggests that when wealth increases, agricultural area expands. However, the variables 

are not statistically significant and might be impacted by endogeneity and multicollinearity, and 

one should be careful when making any conclusions. The last regression for H2.2, testing for 

non-food crop area indicated that increased productivity significantly reduces area by 0.64 %. 

This result contradicts the hypothesis and supports Borlaug hypothesis. Additionally, the non-

food crop area significantly decreases as GDP per capita increases. Hence, we can accept 

Hypothesis 2, that higher yield of staple crops reduces total agricultural area, while higher 

yield for feed-, fuel- and non-food crops enhance total agricultural area, with high statistical 

confidence for staple-, feed-, and fuel crops, while it must be rejected for non-food crops.  

To sum up, prior to the 1900s, the most common pattern in agricultural land use change 

involved simultaneous increases in agricultural yields and cultivated areas (Rudel et al., 2009). 

However, improved technologies have made it possible to increase output without increasing 

area. The regressions for H2.1 shows that higher staple crop yield reduces area for staple crops, 

with high statistical confidence. On the other hand, the regressions in H2.2 showed that increase 

in feed crop- and fuel crop yield enhances negative land sparing effects due to higher market 

prices from increasing demand due to change in diets and high energy prices. According to the 
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Prebisch-Singer hypothesis, countries should focus their production on non-food goods instead 

of non-food crops to enhance economic growth. The regression shows there might also be some 

political incentives to invest in feed and fuel crops. However, as higher yield also enhances 

agricultural expansion for feed -and fuel crops, yield improvements should be incentivized in 

places where fuel and feed crop area are at its maximum stage because it will have the least 

impact on agricultural area expansion. Nevertheless, explained by changes in demand for 

agricultural products, our analysis confirms both the Borlaug hypothesis and the Jevons paradox 

with high significance. 

 

5.4 Limitations of the analysis 

Originally, the dataset included 20 countries over a 55-year period and several control variables, 

but because of missing values, our dataset became unbalanced and we had to settle with ten 

countries over a 25-year period. Narrowing down the dataset also limited our options of 

regression analysis. Hence, computing panel data regression through random effects or fixed 

effects became inappropriate.  

Furthermore, the analysis confirmed the limits mentioned in chapter 4.4 where three estimation 

issues were suggested. First, our dataset is biased, i.e. our dataset was not collected randomly. 

Second, there might be some issues of endogeneity as we might have omitted unknown 

variables that are essential for our study. This issue became evident when we encountered issues 

with our functional form, which could not be fixed by excluding variables from our regression. 

Hence, there might exist some variables in our error term with large explanatory power that 

should have been included in our analysis. And third, there are large measurement errors due 

to methods of data collection by FAO which might have caused area noise in our dataset. Hence, 

some of our variables behaved unexpectedly.  

In the regression, I also encountered some issues with multicollinearity, serial correlation and 

heteroskedasticity. These are major weaknesses of our model and can be explained by the nature 

of our dataset. The variances between our panels were very different as it included both major 

agricultural economies and small ones. Additionally, because of the different usage areas of 

crops included in the analysis, several explanatory variables are dependent on each other. 

Hence, we also had problems with multicollinearity. Even so, the regressions presented in this 

analysis did not have many issues with misspecification and we could continuous with our 

regression, keeping in mind that we have issues with heteroskedasticity and serial correlation. 
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5.5 Further research 

To get a better understanding of driving forces behind agricultural land use changes, more 

countries over longer time periods are suggested. Additionally, more control variables such as 

market supply and demand, agricultural subsidy, daily per capita food consumption (kcal), 

export and import share of crops, prices of all crops for each year, are suggested to solve issues 

of endogeneity, although including all these variables might create new endogeneity ad 

multicollinearity issues. Another possible approach is to divide the population within each 

country in to urban and rural population. As mentioned in Chapter 3, the Prebisch-Singer 

hypothesis suggests that countries should focus production on non-food crops rather than food 

crops to enhance economic growth. By dividing the population in to rural and urban population 

and compare it with changes in GDP per capita, it would be possible to investigate if this 

hypothesis is valid for all countries. It would also explain why some countries are focusing their 

production on feed and fuel crops, rather than food.  

Furthermore, one of the major limitation of this analysis was multicollinearity. It might 

therefore be suggested to either establish clearer differences between crop groups or include 

more crops in the analysis. Although better data by year and country on the allocation of “multi-

functional” crops on the different groups will allow for a more precise analysis.  
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6 Conclusion  

 

Changing demand motivate shifts in agricultural land use. Until recently, food production was 

the main agricultural practice for many countries. Recently, however, new technology has 

opened market opportunities to enhance economic growth through cultivating crops for 

unconventional purposes. By using panel data with a sample of crops from the top ten staple-

crop countries, divided into five crop groups, we studies land use changes in the periods 1992-

2016. We estimated the driving forces mainly by using Pooled OLS with First Differences 

estimator and ran both an original model and main model to find the preferred model. The basic 

premise is that land use changes are driven by non-food and fuel crops, not by staple-crops. The 

first question to ask when assessing trends in the agricultural sector is: What are the trends in 

production of non-food crops and staple crops? Subsequently, the thesis investigates the debate 

of Borlaug hypothesis vs. Jevons paradox, and asked: Does higher yield of staple crops and 

non-food crops enhance or reduce total agricultural area?  

 

The thesis shows that while there is high correlation between production of staple crops and 

non-food crop, descriptive statistics suggests that feed crops are the main contributor of 

agricultural area expansion, which has increased by 18% since 1992. Staple crops have 

experienced the second highest increase in agricultural area during the same period, hence, it is 

also a large contributor to agricultural expansion, especially in poor/ low middle-income 

countries as confirmed by the Prebisch-Singer hypothesis. Further, feed-, fuel- and non-food 

crops has experienced the largest relative growth, indicating the direction of trends in 

agricultural production. 

 

The Borlaug hypothesis and Jevons paradox theories proposes two opposing outcomes of 

increased agricultural yield. To tests for this, we introduced the following hypothesis: 

i. For staple crops: Higher yield reduces crop area (Borlaug hypothesis) 

ii. For non-food crops: Higher yield increases crop area (Jevons paradox) 

The first main finding indicates that increase in staple crop yield reduces staple crop area. This 

is in accordance with the Borlaug hypothesis. Hence, higher staple crop yield does not 

encourage agricultural expansion and deforestation. The second main finding indicates that 

increase in feed- and fuel crops yields increases cultivation area. However, higher non-food 
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crop yield decreases agricultural area. Hence, we can only somewhat confirm the Jevons 

paradox: higher yield of fuel- and feed crops do not enhance land sparring, but instead 

encourage agricultural expansion, while the relationship does not hold for non-food crops. 

Hence, a major implication from the analysis of this thesis is to better distinguish between 

different types of crops in the debate on the impact of yield on crop area expansion. 
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Appendix A: Econometric results and discussion 
 

A.1 Hypothesis 1 
Estimation results for Hypothesis 1 with quadratic variables from the original model and main model. 
Variables are in log-log form and ln(totagarea) is dependent variable. 

 

POLS_ord POLS_r POLS_lr FD_ord FD_r FD_lr

D.lnSCa 0.510*** 0.510*** 0.506*** -1.332*** -1.332*** -1.397***

(0.00731) (0.00805) (0.00614) (0.150) (0.277) (0.273)

D.lnSCa2 0.0516*** 0.0516*** 0.0534***

(0.00459) (0.00868) (0.00857)

D.lnNSCa 0.188*** 0.188*** 0.190*** 0.363 0.363 0.201

(0.0104) (0.00950) (0.00857) (0.193) (0.282) (0.258)

D.lnNSCa2 -0.00739 -0.00739 -0.00245

(0.00617) (0.00890) (0.00813)

D.lnFuela 0.128*** 0.128*** 0.121*** -0.0475 -0.0475 -0.00471

(0.00974) (0.00800) (0.00713) (0.127) (0.121) (0.113)

D.lnFuela2 0.00511 0.00511 0.00357

(0.00434) (0.00410) (0.00383)

D.lnNFa 0.0199*** 0.0199*** 0.0207*** -0.000605 -0.000605 -0.000372

(0.00106) (0.00109) (0.000880) (0.00223) (0.00170) (0.00201)

D.lnNFa2 -0.277 -0.277 -0.258

(0.214) (0.275) (0.257)

D.lnFeeda 0.263*** 0.263*** 0.266*** 0.0191** 0.0191* 0.0187*

(0.00649) (0.00831) (0.00643) (0.00663) (0.00839) (0.00789)

D.lnFeeda2 0.000534* 0.000534** 0.000557**

(0.000226) (0.000180) (0.000186)

D.lnforest 0.0267*** 0.0267*** 0.0274*** 0.808* 0.808* 1.000**

(0.00301) (0.00276) (0.00237) (0.365) (0.404) (0.369)

D.lnforest2 -0.0393* -0.0393* -0.0561**

(0.0178) (0.0197) (0.0179)

D.lnpop -0.120*** -0.120*** -0.118*** 0.0421 0.0421 -0.0787

(0.0118) (0.0109) (0.00915) (0.0668) (0.0613) (0.0674)

D.lnUnem -0.0257* -0.0257 -0.0321** 0.00230 0.00230 0.00273

(0.0115) (0.0131) (0.0108) (0.00384) (0.00437) (0.00421)

D.lngdp -0.00326 -0.00326 -0.00335 0.00520 0.00520 0.00456

(0.00318) (0.00292) (0.00278) (0.00319) (0.00358) (0.00373)

L.u 0.814*** -0.0869

(0.0776) (0.0886)

_cons 1.733*** 1.733*** 1.814*** 0.00111 0.00111 0.00221**

(0.122) (0.131) (0.106) (0.000859) (0.000706) (0.000735)

No. of observations 247 247 237 237 237 227

0.998 0.998 0.998 0.978 0.978 0.981

adj. R-sq 0.997 0.997 0.998 0.977 0.977 0.980

rmse 0.0414 0.0414 0.0347 0.00787 0.00787 0.00732

Notes: * p<0.05, ** p<0.01, *** p<0.001; standard errors in parenthesis

Original model Main model
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Staple crop area (�. �����), feed crop area (�. �������) and total forest area (�. ������) are 

all highly significant in linear and quadratic order. Feed crop area is positively correlated, as 

expected. However, staple crop area in linear condition is negative. It means that an increase in 

staple crop area decreases total agricultural area. This is unexpected, bit might be true due to 

area noise (Chapter 4.3) or changes in production preferences, i.e., feed crop production 

increases more than staple crop production decreases. Hence, the total production increases. 

According to Table 5.2, when staple crop areas increases by one %, total agricultural area 

decreases by -1.33 % until it reaches a certain minimum point where it starts increasing with 

0.05 %. If feed crop increases by one %, total agricultural area increases by 0.02 %. The results 

do not correspond to our hypothesis, which stated that changes in total agricultural area is 

mainly driven by non-food crops and not staple crops. There are several possible reasons for 

these results. The main reason might be that there are external effects affecting total agricultural 

area over time which might have been picked up by other variables.  

To correct for potential endogeneity, the same regression was tested using price variables, 

however because of high collinearity they were excluded. Additionally, when it comes to the 

other area variables (�. ������, �. �������, �. �����), there are reasons to believe they are 

not significant because explanatory power might be captured by the other variables due to high 

correlation between variables.  

Population (�. �����) and Unemployment rate (�. ������) are positively correlated with total 

agricultural area, as expected. However, they are not significant because other variables might 

capture their explanatory power. As previously mentioned, the VIF test indicated 

multicollinearity and is possibly redundant. Both population and unemployment are highly 

correlated (corr > 50%) with many area variables in the dataset6.  

The reason GDP per capita (�. �����) has a positive sign might be because several of the 

countries in the analysis are emerging economies. Hence, countries focus a larger share of their 

economy towards developing and expanding agricultural production through areal increase. 

Later, according to Prebisch-Singer hypothesis, as the economy grows, the country begins 

focusing on producing manufacture goods and increase productivity of the agricultural sector. 

However, because we do not have serial correlation nor heteroskedasticity in our analysis, and 

a solid functional form, there are reasons to believe the entirety of our results are conclusive 

                                                           
6 See correlation matrix Appendix B.1, Table B.2.  
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A.1.2 Hypothesis 1: Linear form 

Estimation results for Hypothesis 1 from main model, with TotalSCa(left) and TotalFuela(right) as 
dependent variables. 

          

 

FD_ord FD_r FD_lr

D.TotalNSCa -0.285 -0.285 -0.292

(0.236) (0.384) (0.385)

D.TotalFuela 0.847 0.847* 0.844*

(0.454) (0.332) (0.334)

D.TotalNFa 0.497 0.497 0.497

(1.134) (0.340) (0.351)

D.TotalFeeda 1.050*** 1.050** 1.043**

(0.275) (0.365) (0.373)

D.forest 12.11 12.11* 11.66**

(26.26) (5.107) (4.456)

D.pop 0.00820 0.00820 0.00608

(0.0300) (0.0198) (0.0217)

D.Unem -124766.6 -124766.6 -90219.5

(194210.4) (146262.8) (150552.5)

D.gdp 153.0 153.0 148.0

(313.6) (248.0) (244.5)

L.u 0.0180

(0.0250)

_cons -154838.6 -154838.6 -139194.1

(268213.4) (263448.6) (288021.0)

N 144 144 144

R-sq 0.187 0.187 0.197

adj. R-sq 0.139 0.139 0.143

rmse 2119468.0 2119468.0 2114741.6

Standar errorr in parenteses

* p<0.05, **p<0.01, *** p<0.001

FD_ord FD_r FD_lr

D.TotalSCa 0.0297 0.0297* 0.0238

(0.0159) (0.0140) (0.0122)

D.TotalNSCa 0.0984* 0.0984 0.0946

(0.0437) (0.0546) (0.0588)

D.TotalNFa 0.271 0.271 0.250

(0.211) (0.156) (0.158)

D.TotalFeeda 0.193*** 0.193** 0.218***

(0.0516) (0.0594) (0.0570)

D.forest 1.733 1.733 9.654

(4.919) (1.398) (34.25)

D.pop -0.00228 -0.00228 -0.000510

(0.00561) (0.00723) (0.00793)

D.Unem -7809.3 -7809.3 -10090.1

(36414.1) (22795.6) (22728.4)

D.gdp 85.17 85.17 80.48

(58.31) (52.16) (52.70)

L.u 0.0646

(0.104)

_cons 4937.6 4937.6 9069.1

(50281.5) (42478.4) (51319.2)

N 144 144 138

R-sq 0.243 0.243 0.269

adj. R-sq 0.198 0.198 0.217

rmse 396857.8 396857.8 387435.9

Standar errorr in parenteses

* p<0.05, **p<0.01, *** p<0.001
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A.2 Hypothesis 2 
 Estimation results for Hypothesis 2.1 and 2.2, with staple crop area, fuel crop area and feed crop area 
as dependent variable. Quadratic form is included.  

 

Hypothesis H2.1 H2.2 H2.2

Dep. Variable SCa Fuela Feeda

Variable name FD_r FD_r FD_r

D.lnSCy -0.683*** -0.266 -0.123

(0.188) (0.160) (0.159)

D.lnSCy2 0.150* 0.117 0.0846

(0.0701) (0.0696) (0.0605)

D.lnNSCy 0.118 -0.107 0.165

(0.106) (0.119) (0.114)

D.lnNSCy2 -0.000179 0.0194 -0.00412

(0.0271) (0.0294) (0.0290)

D.lnFeedy 0.271*** 0.0535 0.144*

(0.0644) (0.0778) (0.0728)

D.lnFeedy2 -0.0586 0.0437 -0.0923

(0.0329) (0.0378) (0.0505)

D.lnFuely 0.0512 0.347*** 0.0297

(0.0562) (0.0918) (0.0775)

D.lnFuely2 -0.0860*** -0.157*** -0.0576*

(0.0200) (0.0336) (0.0275)

D.lnNFy 0.00149 0.00638 0.0116

(0.0176) (0.0134) (0.0194)

D.lnNFy2 -0.000968 0.00172 0.00925

(0.0212) (0.0137) (0.0211)

D.lnforest 0.500 3.321

(2.670) (2.397)

D.lnforest2 -0.0226 -0.160

(0.130) (0.117)

D.lnpop 0.815 -0.188 0.386

(0.538) (0.721) (0.609)

D.lnUnem -0.0124 -0.0511 -0.0692*

(0.0281) (0.0319) (0.0278)

D.lngdp 0.0202 0.0637* 0.00538

(0.0273) (0.0302) (0.0284)

_cons -0.00190 0.0174 0.00444

(0.00703) (0.0101) (0.00803)

N 237 237 237

0.340 0.321 0.266

adj. R-sq 0.295 0.275 0.224

rmse 0.0586 0.0662 0.0593

Notes: * p<0.05, ** p<0.01, *** p<0.001; p-values in parenthesis
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For hypothesis 2.1, the DF_ord and DF_r generated similar results with no serial correlation, 

and strong evidence of homoskedasticity and linearity. The DF_lr provided a better fit of the 

data than the latter, i.e. higher �� and smaller rmse, however, the regression suffers from serial 

correlation and is therefore excluded. I also tested for individual effects using an AR(1) test and 

added a dummy variable for each year. The F-test generated p-value > 0.05, hence, years from 

1993 to 2016 does not have significant impact on the dependent variable, and we exclude years 

as dummy variables from further analysis. Comparing the results from DF_ord and DF_r, 

variables are equally significant, however, DF_r has a stronger functional form, which indicates 

a better model. Hence, further discussions of Hypothesis 2.1 will focus on results generated by 

FD_r.  

According to table 5.3, when staple crop yield increases with one %, staple crop area decreases 

by 0.68 %, until a certain minimum point where total agricultural area cannot decrease anymore 

due to higher yield. From the minimum point, an increase of one % in staple crop yield increases 

staple crop area with 0.15%. In relation to theory (Chapter 3), the Borlaug hypothesis vs. the 

Jevons paradox discussion, these results are in line with what Norman Borlaug argued.  

For Hypothesis 2.2, The VIF test showed a mean multicollinearity below the recommended 

limit, however, looking at the variables independently, there were high multicollinearity for 

�. �������� and �. ��������2 (VIF > 10), which can explain some of our results. Because 

forest area was a control variable, we excluded the variable to improve our model. However, 

the functional form became weaker when removing forest area, and we decided to keep forest 

area nonetheless. Moreover, the model suffered from heteroskedasticity and serial correlation. 

To fix this, reducing multicollinearity and removing the remaining control variables 

(unemployment, GDP and population), was tested, but without success. Removing more control 

variables made our model weaker, which means they have some explanatory power for changes 

in staple crops area. Hence, all explanatory variables were kept, and results generated by DF_r 

was used in our analysis. Though, keep in mind that the model suffers from heteroskedasticity 

and serial correlation. 

In the second regression, using �. ������� as dependent variable, none of the models generated 

a strong functional form, and rejected tests of heteroskedasticity or serial correlation. The VIF 

test showed a mean multicollinearity below the recommended limit, however, �. �������� and 

�. ��������2 presented high values multicollinearity (VIF > 10). The variable was omitted, 

and after running the Ramsey RESET test for misspecification, I could confirm a stronger 
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functional form for FD_r. However, removing forest area did not remove issues 

heteroskedasticity or serial correlation, and removing additional control variables made our 

model weaker. Hence, only forest area was omitted, and results generated by the DF_r model 

was used for our analysis. Further, the adjusted �� is below 0.30, which means that the 

explanatory variables only explains up to 30% of changes in the dependent variable. Hence the 

covariates do a poor job explaining and/ or predicting the response values. This might be 

because of size of the dataset  

For H2.2, were fuel crop area (�. �������) is the dependent variable, fuel crop yield 

(�. �������) is highly positive significant in linear and highly negative significant in quadratic. 

We hypothesize that higher fuel crop yield, increases fuel crop area and ran the regression with 

the same control variables as in hypothesis two. These results correspond with findings in 

(Angelsen and Kaimowitz, 2001) and are in line with the Jevons paradox. In contrast to our 

expectations, GDP per capita (�. �����) is weakly positive significant (p-value < 0.05) with 

fuel crop area. An increase in GDP per capita with one % increases fuel crop area with 0.06%. 

We expected that increase in GDP per capita led to more advanced agriculture, higher yield and 

reduced agricultural area, in accordance with the Borlaug hypothesis. However, from our results 

we observe the opposite, i.e. that increase in GDP per capita results in increased fuel crop yield, 

and in accordance with Jevons paradox, increase in fuel crop area. Another possible 

interpretation is that, as fuel crops also provides food and feed, an increase in GDP per capita 

corresponds with increased consumption of food, feed and fuel, which results in increased 

agricultural area. Further, fuel crop yield in linear and quadratic form have low correlation with 

control variables, potentially explaining why none of the other variables are significant. There 

are also some unexpected signs in the regression analysis, particularly forest area and 

population. According to the regression, an increase in forest area increases fuel crop area, 

while an increase in population decreases fuel crop area. This can be explained the low 

correlation between forest, population and fuel crop area7. Further, it is important to remember 

that our analysis suffers from heteroskedasticity and serial correlation. The adjusted �� is 0.275 

and rmse is 0.0662, which tells us that our explanatory variables only explain 27,5 % of 

variances in our model, with low model fit.  

For H2.2 where feed crop area (�. �������) is the dependent variable, I hypothesized that an 

increase in feed crop yield, increases feed crop area. To improve the model’s functional form, 

                                                           
7 Correlation matrix for hypothesis 2 in Appendix C B.1 (Table B.1.2),   
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forest area was omitted due to high VIF value. Consequently, the model fit improved and I 

observed weak positive correlation of feed crop yield (�. �������) in the quadratic, and weakly 

negative correlation for fuel crop yield (�. �������) and unemployment rate (�. ������). 

Table 5.2 indicates that, one % increase in feed crop yield, increases feed crop area with 0,05 

% until it reaches a certain maximum point, where eventually, increase in feed crop yield, 

reduces feed crop area at a certain rate. These results correspond with our findings in the latter 

hypothesis, namely the Jevons paradox. The second significant variable, fuel crop yield in 

quadratic, present similar results as changes in feed crop yield, i.e. feed crop area increases in 

line with fuel crop area, until reaches a certain limit, when one % increase in fuel crop area 

generate a 0.05 % decrease in feed crop area. From the last significant variable, unemployment 

rate, suggests that feed crop area decreases with 0.07 % if unemployment increases with one 

%. This might be the result because, as agriculture is a labor-intensive sector, increase in 

unemployment means that the sector is becoming more productive. And as we can observe from 

the results, increase in feed crop yield also increases feed crop area. Once again, we must keep 

in mind the issues of heteroskedasticy, serial correlation and multicollinearity when evaluating 

the results. The adjusted �� is 0.266 and rmse is 0.0593, which tells us that our explanatory 

variables only explain 26.6 % of variances in our model, with low model fit. 

Lastly, a third regression with �. ����� as dependent variable was tested, however, after 

repeating the processes of the latter hypotheses, the functional form still indicated a weak 

model. All the variables were insignificant. Reasons might be that because the non-food crop 

group is the smallest of all the crop groups, hence the explanatory power might be absorbed by 

other variables. We will therefore not include it further in our analysis.  
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A.3 Hypothesis 3 
Table A.3.1 Estimation results for Hypothesis 3 from the main model with ln(forest) as dependent 
variable. Quadratic form is included. 

 

Variable name FD_ord FD_r FD_lr

D.lnSCa 0.572 1.681 0.572

(0.460) (1.478) (0.460)

D.lnSCa2 -0.0182 -0.0424 -0.0182

(0.0145) (0.0376) (0.0145)

D.lnNSCa -0.187 -2.254 -0.187

(0.306) (2.132) (0.306)

D.lnNSCa2 0.00602 0.0725 0.00602

(0.00994) (0.0686) (0.00994)

D.lnFuela -0.105 0.751 -0.105

(0.189) (1.235) (0.189)

D.lnFuela2 0.00379 -0.0245 0.00379

(0.00642) (0.0403) (0.00642)

D.lnNFa 0.00153 -0.0102 0.00153

(0.00179) (0.0147) (0.00179)

D.lnNFa2 -0.000445 0.00126 -0.000445

(0.000265) (0.00203) (0.000265)

D.lnFeeda -0.100 -6.392 -0.100

(0.380) (6.196) (0.380)

D.lnFeeda2 0.00351 0.184 0.00351

(0.0115) (0.178) (0.0115)

D.lnUnem 0.00145 0.0511 0.00145

(0.0109) (0.0577) (0.0109)

D.lngdp -0.000723 0.0635 -0.000723

(0.00760) (0.0664) (0.00760)

L3.u 0.00426 0.00426

(0.00707) (0.00707)

_cons -0.00418*** -0.0162 -0.00418***

(0.00111) (0.0121) (0.00111)

N 207 237 207

R-sq 0.047 0.052 0.047

adj. R-sq -0.018 0.001 -0.018

rmse 0.0139 0.148 0.0139

Notes: * p<0.05, ** p<0.01, *** p<0.001; standard errors in parentecis
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Table A.3.2 Estimation results for Hypothesis 3 from the main model with forest as dependent variable. 
Ten countries included in regression.  

 

 

Table A.3.1 presents the results of the first difference regression for Hypothesis 3, with log of 

forest area (�. �������) as dependent variable. Using the same control variables as the 

previous hypothesis, the VIF test of multicollinearity showed a small mean correlation between 

the independent variables. However, population (�. �����) was omitted to improve model fit 

as the VIF value was above recommended limit. In Hypothesis 3, we aimed to explore if 

expansion of any of the main crop categories lead to forest loss. In Table 5.4 none of the 

ord r lr3

D.lnSCa ‐0.0240 0.335 ‐0.0240

(0.0158) (0.358) (0.0158)

D.lnNSCa ‐0.000869 0.0233 ‐0.000869

(0.0110) (0.0451) (0.0110)

D.lnFuela 0.00511 0.0227 0.00511

(0.0110) (0.0603) (0.0110)

D.lnNFa ‐0.00217 0.000434 ‐0.00217

(0.00147) (0.00633) (0.00147)

D.lnFeeda 0.00369 ‐0.443 0.00369

(0.0145) (0.438) (0.0145)

D.lnUnem ‐0.00216 0.0639 ‐0.00216

(0.00794) (0.0670) (0.00794)

D.lngdp ‐0.00401 0.0731 ‐0.00401

(0.00713) (0.0757) (0.00713)

L3.u 0.00849 0.00849

(0.00918) (0.00918)

_cons ‐0.00366*** ‐0.0151 ‐0.00366***

(0.00102) (0.0112) (0.00102)

N 227 237 227

R‐sq 0.022 0.040 0.022

adj. R‐sq ‐0.014 0.011 ‐0.014

rmse 0.0136 0.148 0.0136

Standard errors in parentheses

* p<0.05, **p<0.01, *** p<0.001
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variables are of statistical significance. Reasons are that the model has strong evidence against 

linearity and evidence of heteroskedasticity. When interpreting �� (< 0.06) and mrse (>0.14), 

it becomes clear that this is a weak model we cannot make any conclusions from. It was 

attempted to omit and include other variables, as well as time lags, however the model did not 

improve. Correspondingly, the actual signs of variables deviated from our expectations. There 

appeared to be negative impacts of increases in non-staple food crop area, non-food crop area 

and feed crop area on forest, as expected, while staple crop area and fuel crop area have a 

positive correlation.  
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Appendix B: STATA results 
 

B.1 Correlation matrix 
 

Table B.1. 1: Correlation matrix for variables in a linear form. Total agricultural area as dependent 
variable. 

 
 
 

Table B.1. 2: Correlation matrix with first differences for Hypothesis 1. Log of total agricultural area as 
dependent variable. 

 

 

Table B.1. 3:  Correlation matrix with first differences for Hypothesis 2. Log of staple crops area as 
dependent variable. 

 

 

totagarea TotalSCa TotalNSCa TotalFeeda TotalFuela TotalNFa TotalSCy TotalNSCy TotalFeedy TotalFuely TotalNFy forest Unem gdp pop Year

totagarea 1.0000

TotalSCa 0.9029 1.0000

TotalNSCa 0.8106 0.7604 1.0000

TotalFeeda 0.6791 0.3676 0.3035 1.0000

TotalFuela 0.8003 0.6090 0.5055 0.6325 1.0000

TotalNFa 0.4708 0.3282 0.3407 0.3702 0.5184 1.0000

TotalSCy ‐0.0554 ‐0.2377 ‐0.0282 ‐0.0314 0.3897 0.4714 1.0000

TotalNSCy ‐0.1132 ‐0.2633 ‐0.2903 0.1596 0.2398 ‐0.0525 0.5371 1.0000

TotalFeedy 0.1147 ‐0.0603 ‐0.2173 0.5315 0.1333 0.5684 0.1699 0.3103 1.0000

TotalFuely 0.0461 ‐0.1123 0.1399 0.0543 0.2189 0.4886 0.5842 0.0472 0.1454 1.0000

TotalNFy 0.1431 ‐0.1018 0.0887 0.4174 0.2412 0.0279 0.2086 0.5896 0.3149 0.0872 1.0000

forest 0.0372 ‐0.1247 ‐0.0697 0.3580 0.0472 ‐0.1134 ‐0.0929 ‐0.0274 ‐0.0449 0.0430 0.0015 1.0000

Unem ‐0.6656 ‐0.6558 ‐0.5376 ‐0.3763 ‐0.4942 ‐0.4743 ‐0.0450 0.1092 ‐0.1549 0.0593 0.0628 0.0636 1.0000

gdp ‐0.0814 ‐0.2621 ‐0.3011 0.4159 ‐0.0365 0.0298 0.0874 0.6914 0.7125 ‐0.1067 0.6223 0.0396 0.0406 1.0000

pop 0.8830 0.7599 0.7772 0.4894 0.9070 0.5216 0.2896 0.0513 ‐0.0377 0.1490 0.1834 ‐0.0712 ‐0.5970 ‐0.1873 1.0000

Year 0.0737 0.0391 0.0406 0.1024 0.0693 0.0486 0.2018 0.1337 0.1630 0.1868 0.1107 ‐0.0044 ‐0.1589 0.2281 0.0626 1.0000

lnAgArea lnSCa lnSCa2 lnNSCa lnNSCa2 lnFuela lnFuela2 lnNFa lnFeeda lnFeeda2 lnNFa2 lnforest lnfore~2 lnpop lnUnem lngdp

lnAgArea 1.0000

lnSCa 0.9421 1.0000

lnSCa2 0.9387 0.9997 1.0000

lnNSCa 0.8873 0.8688 0.8675 1.0000

lnNSCa2 0.8812 0.8640 0.8633 0.9994 1.0000

lnFuela 0.8305 0.6848 0.6828 0.7447 0.7422 1.0000

lnFuela2 0.8276 0.6832 0.6815 0.7418 0.7395 0.9996 1.0000

lnNFa 0.5502 0.4810 0.4801 0.4666 0.4649 0.6161 0.6134 1.0000

lnFeeda 0.8006 0.5915 0.5845 0.5686 0.5620 0.7323 0.7316 0.3281 1.0000

lnFeeda2 0.7991 0.5886 0.5816 0.5648 0.5582 0.7371 0.7364 0.3360 0.9998 1.0000

lnNFa2 0.6318 0.5607 0.5578 0.5536 0.5498 0.6994 0.6950 0.9769 0.3825 0.3908 1.0000

lnforest 0.4506 0.2533 0.2380 0.3587 0.3447 0.5345 0.5272 0.1542 0.6267 0.6299 0.2581 1.0000

lnforest2 0.4366 0.2416 0.2262 0.3431 0.3284 0.5104 0.5030 0.1161 0.6214 0.6242 0.2195 0.9986 1.0000

lnpop 0.8889 0.8381 0.8362 0.8899 0.8882 0.9073 0.9083 0.6113 0.6262 0.6294 0.7085 0.4922 0.4677 1.0000

lnUnem ‐0.6905 ‐0.7349 ‐0.7369 ‐0.6815 ‐0.6845 ‐0.5943 ‐0.5964 ‐0.3938 ‐0.4030 ‐0.4058 ‐0.4820 ‐0.1167 ‐0.0964 ‐0.7363 1.0000

lngdp ‐0.2269 ‐0.3899 ‐0.3913 ‐0.4758 ‐0.4743 0.0384 0.0366 ‐0.1381 0.1962 0.2081 ‐0.1370 0.2308 0.2344 ‐0.2347 0.2372 1.0000

lnSCa lnFeeda lnFuela lnNFa lnSCy lnSCy2 lnNSCy lnNSCy2 lnFeedy lnFeedy2 lnFuely lnFuely2 lnNFy lnNFy2 lnforest lnfore~2 lnpop lnUnem lngdp

lnSCa 1.0000

lnFeeda 0.5915 1.0000

lnFuela 0.6848 0.7323 1.0000

lnNFa 0.4810 0.3281 0.6161 1.0000

lnSCy ‐0.3219 ‐0.0866 0.3197 0.1319 1.0000

lnSCy2 ‐0.2548 ‐0.1888 0.3239 0.2062 0.9541 1.0000

lnNSCy ‐0.4014 0.1149 0.1976 ‐0.0908 0.6853 0.6227 1.0000

lnNSCy2 ‐0.3334 0.0496 0.1769 ‐0.0603 0.5765 0.5639 0.9634 1.0000

lnFeedy 0.0239 0.1220 0.2680 0.5239 0.2190 0.2818 0.3938 0.4212 1.0000

lnFeedy2 0.0952 0.2897 0.2583 0.3804 0.1306 0.1065 0.3165 0.2926 0.8535 1.0000

lnFuely 0.0375 0.0943 0.5119 0.6856 0.4858 0.5279 0.1933 0.1797 0.4130 0.1492 1.0000

lnFuely2 ‐0.0756 0.0092 0.3878 0.5420 0.5761 0.6118 0.1476 0.0756 0.2222 0.0442 0.8819 1.0000

lnNFy ‐0.1860 0.3587 0.3352 0.0690 0.4289 0.2916 0.6360 0.5897 0.2309 0.2484 0.3583 0.1865 1.0000

lnNFy2 0.0851 0.0661 ‐0.0251 ‐0.1647 ‐0.2391 ‐0.2345 0.1303 0.2206 0.1770 0.1587 ‐0.0872 ‐0.2784 0.0509 1.0000

lnforest 0.2533 0.6267 0.5345 0.1542 0.2277 0.1397 0.2427 0.1133 0.1254 0.2725 0.2598 0.3610 0.2466 ‐0.0337 1.0000

lnforest2 0.2416 0.6214 0.5104 0.1161 0.2103 0.1216 0.2426 0.1136 0.1069 0.2604 0.2233 0.3359 0.2285 ‐0.0252 0.9986 1.0000

lnpop 0.8381 0.6262 0.9073 0.6113 0.2061 0.2196 ‐0.0466 ‐0.0575 0.1175 0.1793 0.3652 0.3009 0.1095 ‐0.0743 0.4922 0.4677 1.0000

lnUnem ‐0.7349 ‐0.4030 ‐0.5943 ‐0.3938 ‐0.0269 ‐0.0553 0.1509 0.1214 ‐0.0848 ‐0.1551 ‐0.0899 0.0276 0.0230 ‐0.0742 ‐0.1167 ‐0.0964 ‐0.7363 1.0000

lngdp ‐0.3899 0.1962 0.0384 ‐0.1381 0.2902 0.2078 0.7659 0.7413 0.5475 0.5173 0.1356 ‐0.0067 0.6238 0.3352 0.2308 0.2344 ‐0.2347 0.2372 1.0000
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B.2 POLS 
 

Table B2.1: H2.1 – Staple 
crop     

Tests H0:   

    
White's test Homoscedasticity exist Reject 

 Chi2 = 14.02 

 Prob > chi2 = 0.000 

    
Wooldridge test No first-order autocorrelation Reject 

 F (1,            9)  33.912 

 Prob > F = 0.0003 

    
Ramsey RESET test Linearity exist Reject 

 Chi2 = 13.09 

 Prob > chi2 = 0.0000 

 

Table B2.1: H2.1 – Non-staple 
food crop     

Tests H0:   

    
White's test Homoscedasticity exist Reject 

 Chi2 = 14.02 

 Prob > chi2 = 0.000 

    
Wooldridge test No first-order autocorrelation Reject 

 F (1,            9)  33.912 

 Prob > F = 0.0003 

    
Ramsey RESET test Linearity exist Reject 

 Chi2 = 13.09 

 Prob > chi2 = 0.0000 

 

 

Table B2.2: H2.2 – Fuel crop     

Tests H0:   

    
White's test Homoscedasticity exist Reject 

 Chi2 = 173.17 

 Prob > chi2 = 0.000 

    
Wooldridge test No first-order autocorrelation Reject 

 F (1,            9)  101.509 

 Prob > F = 0.0003 

    
Ramsey RESET test Linearity exist Reject 

 Chi2 = 37.20 

 Prob > chi2 = 0.0000 
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Table B2.3: H2.2 – Feed crop     

Tests H0:   

    
White's test Homoscedasticity exist Reject 

 Chi2 = 216.80 

 Prob > chi2 = 0.000 

    
Wooldridge test No first-order autocorrelation Reject 

 F (1,            9)  33.912 

 Prob > F = 0.0003 

    
Ramsey RESET test Linearity exist Reject 

 Chi2 = 73.13 

 Prob > chi2 = 0.0000 

 

Table B2.4: H2.2 – Non-fuel 
crop     

Tests H0:   

    
White's test Homoscedasticity exist Reject 

 Chi2 = 8.70 

 Prob > chi2 = 0.000 

    
Wooldridge test No first-order autocorrelation Reject 

 F (1,            9)  33.912 

 Prob > F = 0.0003 

    
Ramsey RESET test Linearity exist Reject 

 Chi2 = 285.32 

 Prob > chi2 = 0.0000 

 

 

B.3 Ramsey RESET test: First-Difference 
 

Table B3.1: H2.1 – staple crop 

Ramsey Reset test using power of the fitted values of D.lnSCa 

H0: linearity exists      

 F(3,  223)=  3.15     
   Prob > F=  0.0259       

 

 

 

 



77 
 

Table B3.1: H2.1 – Non-staple food crop 

Ramsey Reset test using power of the fitted values of D.lnNSCa 

H0: linearity exists      

 F(3,  224)=  1.78     
   Prob > F=  0.1526       

 

Table B3.2: H2.2 – Fuel crop 

Ramsey Reset test using power of the fitted values of D.lnFuela 

H0: linearity exists      

 F(3,  223)=  1.92     
   Prob > F=  0,1272       

 

Table B3.3: H2.2 – non-food crop 

Ramsey Reset test using power of the fitted values of D.lnNFa 

H0: linearity exists      

 F(3,  223)=  9.62     
   Prob > F=  0.0000       

 

Table B3.4: H2.2 – Feed crop 

Ramsey Reset test using power of the fitted values of D.lnFeeda 

H0: linearity exists      

 F(3,  218)=  3.90     
   Prob > F=  0.0096       

 

B.4 VIF 
Table B4.1: VIF test for multicollinearity of independent variables for Hypothesis 2.
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Appendix C: Excel 
 

 

Figure C.1.1: Trends in yield due to area noise. Example from fuel crops yield in Brazil. 
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Appendix D: Empirical evidence 
 

Four major global cropping systems are found to be relevant for crop trend analysis: 1) M3, 2) 

MIRCA2000, 3) SPAM, and 4) GAEZ. 

1) M3 dataset (Monfreda, Ramankutty, and Foley’s 2008 Cropping System Model): 

 The M3 dataset provides the most complete coverage of crops (175 crops) for both 

harvested area and yield (Monfreda et al., 2008). It uses remote sensing products to 

construct a dataset for cropland and pasture circa 2000 and apply minimal modeling 

from subnational statistics of yield and harvested area to ease interpretation and limit 

complex assumptions. 

 

2) “Dataset of Monthly Irrigated and Rainfed Crop Areas (MIRCA) around Year 2000” 

(Portmann, Siebert and Döll 2010): 

 This dataset uses M3 as a starting point and relies on its input data on the spatial 

allocation of the total area and average yield (Portmann et al., 2010). MIRCA is mainly 

derived from census data and crop calendars from literature and aims to maximize 

consistency with subnational statistics collected by national institutions and by the FAO. 

(Siebert et al., 2010). Further, it downscales 26 crops and two aggregate categories of 

“other annual” and other “perennial” crops, which are divided into rainfed and irrigated 

production areas (Anderson et al., 2014). Siebert and co-authors (2010) explained that 

“Data derived by remote sensing were not used to produce the MIRCA2000 inventory, 

but to develop the datasets on global cropland and area equipped for irrigation” (Siebert 

et al., 2010). MIRCA therefore presents unique sets of information on irrigation, crop-

specific irrigated water use, crop calendar and copping intensities.  Hence, the largest 

differences between the M3 and MIRCA is reflected in the different downscaling 

methodologies and the different subnational data collections (Portmann et al., 2010). 

 

3) “Spatial Production Allocation Model (SPAM)” (You, Wood, Wood-Sichra and Wu 

2014): 

 Relies on a different collection of subnational statistical data than that of MIRCA, 

focusing on covering developing countries. SPAM covers the fewest crops, just 20, but 

downscales the area and yield for each crop into high-input irrigated, high-input rainfed, 

and low-input rainfed production systems (You et al., 2014). Additionally, in different 
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from previously mentioned datasets, SPAM also relies on additional variables such as 

crop prices, population density and specific biophysical suitability  to distribute 

subnational statistics (Anderson et al., 2014).  

 

4) “Global Agroecological Zones Cropping System Model (GAEZ)” (Fisher et. a., 2012): 

 Develops a different cropland analysis than the production systems mentioned above, 

which are all based on Ramankutty and co-authors (2008), and relies instead on an 

“extensive analysis of crop-specific agroclimatic and edaphic suitability” (Anderson et 

al., 2014). GAEZ include additional variables such as population density, biophysical 

suitability and market access as means of distributing subnational statistics (Fischer et 

al., 2012) 



 

 

 


