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Abstract

The alternative prey hypothesis predicts that the interaction between generalist predators

and their main prey is a major driver of population dynamics of alternative prey species. In

Fennoscandia, changes in climate and human land use are assumed to alter the dynamics

of cyclic small rodents (main prey) and lead to increased densities and range expansion of

an important generalist predator, the red fox Vulpes vulpes. In order to better understand

the role of these potential changes in community structure on an alternative prey species,

willow ptarmigan Lagopus lagopus, we analyzed nine years of population census data from

SE Norway to investigate how community interactions affected their population dynamics.

The ptarmigan populations showed no declining trend during the study period, and annual

variations corresponded with marked periodic small rodent peaks and declines. Population

growth and breeding success were highly correlated, and both demographic variables were

influenced by an interaction between red fox and small rodents. Red foxes affected ptarmi-

gan negatively only when small rodent abundance was low, which is in accordance with the

alternative prey hypothesis. Our results confirm the important role of red fox predation in

ptarmigan dynamics, and indicate that if small rodent cycles are disrupted, this may lead to

decline in ptarmigan and other alternative prey species due to elevated predation pressure.

Introduction

During the last decades of faunal range shifts, population declines and changes in community

structures and interactions have been attributed to climate warming in Scandinavia [1]. Con-

cern has been raised about range expansions of typical “southern species” (e.g. red fox, Euro-

pean brown hare- Lepus europaeus, European badger Meles meles), range contractions and

decline of “northern species” (e.g. willow ptarmigan, rock ptarmigan Lagopus muta, mountain

hare Lepus timidus, arctic fox Vulpes lagopus) and disruption of small mammal population

cycles [1–6]. Particularly strong impacts of climate change are expected in mountainous
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habitats, partially due to an above average temperature increase in higher altitudes [7, 8] and

an inevitable contraction of habitat area following an elevated altitudinal treeline. It is, how-

ever, difficult to disentangle the relative effects of climate change and other environmental

stressors (e.g. changes in human land use). An example of this is the red fox, whose increase in

density and range expansion in Scandinavia has been attributed to several forms of anthropo-

genic influence, including climate change, mesopredator release, ungulate overabundance,

human land use, and altered human hunting pressure [9–12]. Irrespective of the cause, the

expansion of red foxes towards higher altitudes may entail direct negative impacts on moun-

tain wildlife communities through increased competition and predation [13, 14]. Furthermore,

more complex negative effects may arise as a consequence of predator-mediated indirect inter-

actions among prey species [15, 16], for instance, “apparent competition” may arise when two

or more prey species suffer from the presence of the others via shared predators, resulting in a

negative reciprocal impact on population growth. In “apparent amensalism”, one of the prey

species is negatively affected by a shared predator, but not the other [17].

Further increase in mammalian generalist predators in the Scandinavian mountains are

expected in the future due to rising temperatures [1], along with disturbances in the dynamics

of small rodents due to altered winter conditions [18, 19]. In order to predict the potential con-

sequences of environmental changes on mountain wildlife communities we need to enhance

our current knowledge of the direct and indirect community interactions. Hence, in this

paper, we analyzed nine years of population census data to investigate whether the population

growth of a declining alternative prey species, the willow ptarmigan, is related to an interaction

between red foxes and their main prey, small rodents.

The alternative prey hypothesis was presented as an explanation of the synchronous popu-

lation cycles of small rodents and other small herbivores [20–22]. That is: generalist predators

synchronize herbivore prey dynamics through prey switching during the crash phase of their

main prey, with less influence on alternative prey species at high main prey densities [20].

Numerous studies support the hypothesis [23–27], and some of the strongest evidence stem

from studies of mammalian generalist predators, mainly red fox and pine marten, boreal forest

grouse (capercaillie and black grouse) and mountain hares. Angelstam et al. [20] found sup-

port for APH-based predictions, i.e. that red fox shifted diet when vole abundances declined,

and inverse correlations between vole abundance and the mortality rates of black grouse and

mountain hares. In addition, predator removal experiments conducted by Marcström et al.

[28] showed that the synchrony between vole abundance and grouse breeding success van-

ished once red foxes and pine martens were removed. Somewhat similar patterns were

observed in another experiment, where supplemental feeding of generalist predators during

vole decline prevented a reduction in forest grouse chick production [25].

Regarding willow ptarmigan population dynamics, the general impact of predation and its

relationship with rodent cycling has been disputed. Kausrud et al. [19] observed a strong link

between the collapse of small rodent cycles during the 1990s and climate change mediated by

altered snow conditions during winter. Parallel changes in the dynamics of ptarmigan and

other bird communities were attributed to “shared predators being an important part of the

cyclic and synchronous behavior of the system”. Later, Selås et al. [29] stated that “increased

predation on eggs and chicks as the causal link between climate change and grouse density as

proposed by Kausrud et al. [19] may be incorrect”. Selås et al. [29] argued that although preda-

tion may enhance cycle amplitudes in grouse, fluctuations in food plant quality is a major

influential factor generating synchronized dynamics in rodents and grouse. They argued that

in years following high seed production in bilberry (Vaccinium myrtillus)—a main food plant

of ptarmigan in summer—the nutritional quality of this plant for herbivores is enhanced due

to reduced chemical defenses. They inferred that warm summers during the bilberry masting
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year and the year before would restore the level of chemical deterrents quickly and therefore

affect grouse reproductive output negatively. Partly contrasting this, a long-term populations

study of boreal forest grouse documented that breeding success increased significantly along a

29-year long trend of warmer spring temperatures [30]. Still, other factors and mechanisms

have been proposed as important drivers of grouse dynamics and population trends. Over a

4-year study period, Henden et al. [31] did not observe an anticipated positive response in a

willow ptarmigan population during one rodent peak. Based on this, and observed effects on

ptarmigan habitat occupancy patterns, Henden et al. [31] concluded that factors other than

changing rodent population dynamics may be responsible for the declining trend in Scandina-

vian ptarmigan. Then again, Kvasnes et al. [32] observed a pronounced large-scale spatiotem-

poral synchrony in ptarmigan recruitment that corresponded with variation in rodent

abundance. However, an effect of spring/summer climate (North Atlantic Oscillation, NAO-

index, in May, June and July) had a stronger effect on recruitment of ptarmigan than rodents.

Based on these results, Kvasnes et al. [32] concluded that the link between rodent and ptarmi-

gan dynamics had been weakened following the collapse of rodent cycles during the 1990s,

and that climate changes lead to desynchronization.

Interpretations and conclusions concerning the ptarmigan-rodent-predator relationship

has been weakened by a lack of information of one of the main actors in the system; the preda-

tors. The fact that no studies of ptarmigan population dynamics have yet included predator

abundance as a predictor variable is an obvious limitation in our knowledge of how the system

works. In our study, we combined census data on ptarmigan, rodents and red fox to examine

spatiotemporal patterns in ptarmigan population growth. We addressed the APH-hypothesis

and evaluated its relevance for ptarmigan dynamics by testing the following prediction: that

ptarmigan population growth depends on an interacting effect of abundances of rodents and

mammalian generalist predators. According to APH, predation impact from generalist preda-

tors should be limited during periods of high availability of main prey, and thus, we expect

that ptarmigan growth is determined by an interaction between rodents and predators.

Material and methods

Study area and focal species

Our study was carried out in Hedmark County (27 400 km2, 61˚ N 11˚ E), southeastern Nor-

way (Fig 1), in the boreal zone [33]. The southern part of the county is less mountainous and

consists of a mosaic of farmland and commercially managed conifer forests, whereas frag-

mented alpine areas are in the northern part, covering approximately 19% [34] (Fig 1). Suitable

habitat for ptarmigan at and above the altitudinal treeline is characterized by presence of wil-

lows (Salix spp.), dwarf birch (Betula nana) and ericaceous shrubs. The treeline is situated at

elevations of approximately 800–1000 m, and the highest mountain peak (“Rondslottet”) is

2178 meters above sea level. The climate is classified as semi-continental with mean tempera-

tures of -13 ˚C in January and 13 ˚C in July in the northern parts of the study area [35]. Poten-

tial mammalian predators present in the study area are the red fox, pine marten (Martes
martes), stoat (Mustela erminea), least weasel (Mustela nivalis) and wolverine (Gulo gulo).

Common avian predators are hooded crow (Corvus cornix), raven (C. corax), rough-legged

buzzard (Buteo lagopus), gyrfalcon (Falco rusticolus) and golden eagle (Anquila chrysaetos).
Prevailing small rodent species are Norwegian lemmings (Lemmus lemmus), tundra voles

(Microtus oeconomus) and bank voles (Myodes glareolus).
The red fox is a medium sized and widely distributed carnivore with a broad diet including

voles, hares, grouse and ungulates [36, 37]. Small rodents constitute the main food of foxes

during peak years, but when rodents are scarce, foxes typically scavenge on carcasses [12, 37].

The alternative prey hypothesis and willow ptarmigan
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The male foxes move extensively during the mating period (January to February), and are

often found far outside their own territory, probably attracted by females in oestrus, [38]. Kau-

hala [39] observed an average litter size of 5.1 pups, while in a scarce rodent year, Lindström

[40] found a litter size of 3.4. Juvenile foxes disperse in autumn and winter from an age of ca 6

months, and male foxes move further than females [41, 42]. Foxes have in general smaller

home ranges and disperse over shorter distances at high population densities than foxes living

at lower densities [41–43].

Willow ptarmigan, a medium-sized grouse, is distributed in alpine tundra habitats across

the northern hemisphere [44]. Males defend a breeding territory in spring [45] and within

these territories 8–12 eggs are hatched by the end of June [46, 47]. Willow ptarmigan usually

pair monogamously and Wittenberger [48] showed more male parental care among willow

ptarmigan than cocks of any other grouse species. Brood break-up take place from late Sep-

tember [49].

The most pronounced biomass cycle in the boreal forest ecosystem of Scandinavia is the

regular 3–4 year cycles of vole populations. Hence, voles are often considered a main driving

force governing the dynamics of this system, and their population cycles may have marked

effects on their predators with potentially cascading effects on other trophic levels [24]. Vole

cycles are correlated with several other components of the system such as seeds, berries,

Fig 1. Overview of locations of ptarmigan survey areas and predator snow tracking transect centroids within the

county of Hedmark, southeast Norway.

https://doi.org/10.1371/journal.pone.0197289.g001
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specialist predators and small game (grouse and hare; see e.g. [3, 50–53]). The dynamics of

small rodents in Scandinavia changed during the mid 1980ies and onwards, as fluctuations

became more dampened and irregular [5]. However, the cycles seem to have reappeared in

many areas during the last decade [54, 55].

Census data

Line transect surveys of willow ptarmigan were conducted in early August 2005–2014 by the use

of pointing bird dogs. During this period, an average of six annual counts (SD = 2.6) were con-

ducted in 48 different survey areas. The size of the survey areas averaged 56.0 km2 (SD = 61.1),

and in each area, an average of 15.4 (SD = 10.9) transect lines (�x ¼ 3:2km � 1:1SD) with a

total length of 47.1 km (SD = 34.5) per survey area were monitored. The dog handlers noted

all observations of willow ptarmigan (i.e. group size and location), and whether or not small

rodents had been observed along the transect lines.

We estimated predator track frequencies along 2.95 km (SD = 0.5) long snow tracking

transect lines in January in the period 2006 to 2014 (Fig 1). The transect lines were part of a

nationwide monitoring program for Eurasian lynx (Lynx lynx) and were based on voluntarily

work from members of the Hedmark Chapter of the Norwegian Association of Hunters and

Anglers. All tracks crossing the transect lines were recorded, including red fox. The transect

line density was 3–4 lines per 100 km2 [56]. Of a total of 621 different lines, 281 to 484 lines

were surveyed annually during favorable snow conditions, i.e. 2–5 days after snowfall.

Statistical analysis

For each survey area and year, we calculated a density index for willow ptarmigan by dividing

the total number of flushed birds by the total length of the surveyed transect lines (i.e. birds

per km of survey). Willow ptarmigan population growth rates (r) were defined as the loga-

rithm of the density index in year t divided by density index in year t-1 (r = ln(Nt/Nt-1)). As

indices of breeding success, we used the number of juvenile ptarmigan among all counted

birds per survey area. The surveys were conducted prior to brood break-up, and thus, single

birds or pairs were most likely adults that had lost eggs or chicks. The numbers of juveniles per

brood was estimated by subtracting two adults from each group of birds. For each survey area

and year, we calculated small rodent density indices by dividing the number of transect lines

where rodents had been observed with the total number of surveyed transect lines. Although

the line transects varied in length; transects with rodent observations were on average 56 m

shorter than transects with no observations, we observed no effect of this variation on the

probability of detecting small rodents (t = 0.59, p = 0.557).

From the snow tracking transects, we calculated track frequency indices for red fox by

dividing the number of tracks per km with the number of days since last snowfall. Because the

predator sampling took place some distance from the ptarmigan areas, we used the inverse-

distance weighting (IDW) method for spatial interpolation of predator tracks. This gave pre-

dicted index values for red fox per survey area and year. The basic assumption for this method

is that the value of a non-sampled location is the average of known values within neighboring

surveyed points, inversely weighted with the distances between sampled and non-sampled

locations. All variables were assessed by the use of ArcGIS [57].

We analyzed the growth rate using a linear mixed effect model (LME), and breeding suc-

cess using a generalized linear mixed-effect model (GLMM) from the lme4 package [58].

Willow ptarmigan growth rate and breeding success were used as dependent variables and

track indices of red fox and small rodent indices as explanatory variables. All independent

variables were from year t, i.e. from January for red fox and August in the same year for
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rodents. Hence, the survey data included in the models were collected 6–7 months apart.

Despite the different timing of the surveys, we argue that the data were valid for testing APH

predictions: Red fox have been shown to affect forest grouse mainly through predation of

eggs and chicks, i.e. during May-June [20, 21, 28, 59, 60]. Our red fox density index data

were collected prior to their reproduction period, and probably corresponded quite well with

the relative distribution of predators during the following spring. If red fox had been sur-

veyed after reproduction, the data would probably reflect spatial differences in red fox breed-

ing success rather than relative abundances and predation impact during the most critical

period for ptarmigan. Following this argument, the optimal timing of the rodent surveys

would be spring rather than late summer. We did not have access to spring data, and our

only alternative would be using rodent data from the preceding august survey. However, due

to the very high and unpredictable winter mortality in Scandinavian small rodents [18, 61–

63], we considered that survey data from August the same year served as a better proxy to

spring densities. Willow ptarmigan survey area was set in the models as a random term. We

used the same sets of models to analyze variation in breeding success and growth rates

(Table 1). The data was analyzed using R [64]. We selected the most parsimonious model

using Akaike Information Criterion (AIC) values and Akaike weights [65]. The best models

had the lowest AIC—and the highest AIC weight values.

Results

The ptarmigan population density index varied markedly between years and between areas

(Fig 2). During the study period, three clear peaks occurred: in 2007 (8.0 per km, SD = 5.9),

2011 (7.0 per km, SD = 5.3) and 2014 (4.7 per km, SD = 3.2). The lowest average densities were

observed in 2009 (2.8 per km, SD = 1.6) and 2012 (2.9 per km, SD = 2.7). Population growth

rates were strongly and positively correlated with breeding success (R2 = 0.42) (Fig 3a and 3b).

The rodent abundance indices (Fig 3c) exhibited high amplitudes that were synchronous

with ptarmigan density: i.e. markedly low densities in 2009 (0.02, SD = 0.1) and 2012 (0.01,

SD = 0.02), and peaks in 2011 (0.80, SD = 0.2) and 2014 (0.65, SD = 0.3), see (Fig 3). The red

fox index varied less among years (Fig 3d).

For both ptarmigan population growth and breeding success, the best models included the

interaction between rodent and red fox abundance, as expected (Tables 1 and 2). As shown in

Fig 4, the negative impact of red fox on ptarmigan appeared when small rodent densities were

low. During years of high rodent density, breeding success and population growth of ptarmi-

gan were high, presumably because the impact of red fox was low. Markedly higher AIC-values

were obtained from models with only one predictor variable (Table 1).

Table 1. Akaike information criterion (AIC), ΔAIC and AICw selection summary of four models examining the contribution of the following explanatory variables

to willow ptarmigan growth rate and breeding success: Effects of rodent abundance (ROD) and red fox density index (RF).

Growth rate Breeding success

Model Explanatory variables AIC ΔAIC W AIC ΔAIC W

M1 RODxRF 586.1 0 0.97 2381.7 0 1.00

M2 ROD+RF 593.5 7.4 0.02 2393.6 11.9 0.08

M3 ROD 602.7 16.6 <0.01 2417.5 35.8 <0.01

M4 RF 626.6 40.5 <0.01 2524.9 143.2 <0.01

M0 NULL 635.5 49.4 <0.01 2559.8 178.1 <0.01

Data were collected in Hedmark county, SE Norway in 2006–2014. The most parsimonious model (M1) is marked with bold font.

https://doi.org/10.1371/journal.pone.0197289.t001

The alternative prey hypothesis and willow ptarmigan

PLOS ONE | https://doi.org/10.1371/journal.pone.0197289 June 6, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0197289.t001
https://doi.org/10.1371/journal.pone.0197289


Discussion

In our study, population growth and breeding success of willow ptarmigan were highly corre-

lated, and both variables were influenced by an interaction between the red fox (a generalist

predator) and small rodents. This similarity emphasizes the close relationship between varia-

tion in population growth and recruitment rates. This is a typical feature of the so called high

reproductive species, whose low annual survival, high fecundity and early maturity produces

high population fluctuations that are typically determined by variation in recruitment [66].

Few ptarmigan fail to produce a clutch [67], and therefore recruitment rates in autumn are

mainly determined by nest losses and juvenile survival [68–71]. Our results indicate that pre-

dation from mammalian generalists—especially red fox—is a significant influence in this

stage, and this is in accordance with previous research on willow ptarmigan in North America

[70].

In Fennoscandia, data on nest losses and chick survival in willow ptarmigan are somewhat

limited, but some evidence suggests that predation is highly variable and partially caused by

mammals [69, 72–75]. The role of predation on forest grouse (capercaillie and black grouse) is

better known, and mammalian generalists are identified as the main threat to eggs and chicks

in previous studies [20, 60, 76–79]. Furthermore, a stronger impact on recruitment rates than

on adult survival of forest grouse was demonstrated in two generalist predator removal experi-

ments in Scandinavia [28, 80]. Our study demonstrates that mammalian generalist predators

may exert a comparable impact on willow ptarmigan. Still, somewhat different patterns of pre-

dation impact could be expected between prey species in alpine- and woodland habitats due to

differences in carnivore community composition. Regarding predators, the most pronounced

difference is the relatively lower abundances of mammals versus birds in alpine areas, and

thus, mammalian predator impact on ptarmigan could be lower than for forest grouse [72, 81,

82]. However, several studies suggest that mammalian predator influence is increasing in

Fig 2. Temporal patterns of willow ptarmigan population density indices (number of birds observed per km ± 2SE error bars) obtained from 48

survey areas in Hedmark county, SE Norway.

https://doi.org/10.1371/journal.pone.0197289.g002
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Fig 3. a, b, c and d. Temporal patterns of willow ptarmigan (WP) breeding success, population growth (r = ln (λ)),

rodent abundance and red fox abundance indices obtained from 48 survey areas in Hedmark county, SE Norway. Each

column contains the extreme of the lower whisker, the lower quartile, the median (black line), the upper quartile and the

extreme of the upper whisker for each year. Breeding success was expressed as the proportion of grouse chicks, i.e. the

number of chicks divided by the total number of bird observations. Rodent abundance indices were calculated for each

survey area by dividing the number of ptarmigan transect lines where rodents had been observed with the total number of

surveyed transect lines (i.e. max = 1.0 and min = 0.0). We used the inverse-distance weighting (IDW) method for spatial

The alternative prey hypothesis and willow ptarmigan
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Scandinavian mountains [9]. In particular, the red fox has received attention due to its increas-

ingly negative impact on the arctic fox [10, 14]. The particular importance of red fox predation

was demonstrated by the marked population increase in several small game species during an

epizootic of sarcoptic mange that significantly reduced red fox abundance during the 1970ies

and 1980ies [77, 83]. Although the red fox is a typical generalist predator, previous studies

have shown a marked influence of fluctuations in main prey, voles, on their population

dynamics [2, 84]. Nevertheless, the dynamics of red foxes did not seem strongly influenced

by vole fluctuations in our study (Fig 3). We believe the apparent lack of correlation may

interpolation of red fox tracks based on data from 621 snow tracking transect lines that were distributed throughout the

county (see Fig 1). Outliers are exluded from the box plot.

https://doi.org/10.1371/journal.pone.0197289.g003

Table 2. Parameter estimates explaining population growth and breeding success in willow ptarmigan.

Growth rate Breeding success

Predictor variable Estimate SE t-value Estimate SE z-value

Intercept 0.24 0.10 2.34 -0.31 0.02 -16.37

ROD -0.03 0.25 -0.14 0.04 0.03 1.45

RF -0.92 0.20 -4.60 -0.22 0.03 -6.28

RODxRF 1.54 0.50 3.10 0.24 0.06 3.73

Parameter estimates from the best model explaining population growth and breeding success in willow ptarmigan in Hedmark county, Norway, 2006–2014 (see

Table 1).

https://doi.org/10.1371/journal.pone.0197289.t002

Fig 4. Predicted values from a model of growth rate (r) of willow ptarmigan observed in August transect counts (see Table 2). Explanatory

variables were indices of red fox (tracks per km transect lines/days since last snowfall) and rodent abundance. The lines depict predicted growth rates

given rodent indices (RODind) from 0–1, and red fox indices from 0–1.6.

https://doi.org/10.1371/journal.pone.0197289.g004
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be caused by a stabilizing effect of an increased availability of ungulate carrion. Ungulate den-

sities have increased markedly in Scandinavia during the last decades, and several studies sug-

gest this is an important resource for red foxes during periods of low prey availability [12, 37,

51, 85].

According to our analyses, red fox had a negative effect on ptarmigan growth rates and

breeding success only when rodent abundances were low. This is in accordance with APH, as

the predators are assumed to exert little influence on alternative prey species, e.g. ptarmigan,

when the main prey densities are high. The APH predicts that a change in predation impact

on alternative prey is mainly caused by a functional response of the predators. In our case, it is

difficult to disentangle the relative effect of a functional or a numerical response based on the

generalist predator snow tracking index, as the number of crossing tracks on transects is a

product of the number of individuals present (numerical) and their individual travel distances

(functional). Hence, the index may therefore better reflect the total response of the predators.

Nevertheless, our analyses suggest that the functional component of the predator response

plays an important role in their impact on ptarmigan, as the best models show an interaction

between red fox and small rodent abundance on ptarmigan growth. The positive relationship

between red fox and ptarmigan at high rodent densities, and the negative association at low

rodent densities, would probably not occur unless there was a diet shift among the predators.

Conclusions

In this paper, we have shown a clear relationship between the breeding success and growth rate

of willow ptarmigan and its dependency on the interaction between the abundance of small

rodents and a mammalian generalist predator; the red fox. Our results suggest that willow ptar-

migan are sensitive to potential changes in the cyclic dynamics of small rodents and increase in

predator abundance and that further decline in ptarmigan and other alternative prey species

may occur if rodent cycles become dampened in the future. Still, although we have demon-

strated linkages among a generalist predator and its main and alternative prey, more research

is needed to document and quantify predation impact, the relative importance of different

predator species, and the potentially interactive effects of predation and other influential fac-

tors. Furthermore, the relative influence of climate change versus other types of human influ-

ence on community dynamics in mountain ecosystems warrants further attention.
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