
 

Master’s Thesis 2018    30 ECTS  

Faculty of Science and Technology 

Associate Professor Ingunn Burud 

 

 

Assessment of Models Predicting 

the Maximum Surface Temperature 

in an Urban Setting Using 

VIS/NIR/IR Imaging from UAVs 

 

Marija Vukovic 

Environmental Physics and Renewable Energy 

Faculty of Science and Technology 



Acknowledgment

With this thesis I complete my master degree in Envi-
ronmental Physics and Renewable Energy at the Nor-
wegian University of Life Sciences (NMBU). The the-
sis is a result of the research activity of a group
from NMBU and the Norwegian University of Sci-
ence and Technology (NTNU) studying urban sur-
faces.

I would like to thank my supervisor, Ingunn Burud,
for introducing me to the field of image analysis. It
has been a pleasure to learn from her both on a pro-
fessional and personal level. Her patience and willing-
ness to help me gain a better understanding of the sub-
ject and for always being there despite her busy sched-
ule are highly appreciated. I am also grateful to her
for including me in her research activities with the rest
of the team both at the university and internation-
ally.

My gratitude goes to my co-supervisor, Thomas Kringlebotn Thiis. It has
been a rewarding experience to listen to his insightful and interesting per-
spective on research problems. I would like to thank him for his help and
support during the laboratory work with thermal cameras.

My appreciation also goes to Niki Gaitani, a member of the team from
NTNU, for finding time to give me useful input.

Further, I would like to thank Arne Auen Grimenes and Jorge Mario
Marchetti from NMBU for advice and support which were greatly appre-
ciated during my whole study period at the university.

Last but not least, I would like to thank my parents, my sister and my
partner who have not only believed and supported me unconditionally dur-
ing these past months, but have been the reason why this thesis has come
into being only three years after the enrolment at the university.
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Summary

Investigating surface temperature of the materials in urban settings is an
important way of analyzing how urban heat islands can be mitigated. The
present thesis investigates models for prediction of the maximum surface
temperature of urban materials in Ymittos, Athens, based on image analysis
of data collected in VIS, NIR and IR spectrum with a UAV in spring 2016
and summer 2017. The main aim of the thesis is to assess the potential
and limitations of three models in predicting daily maximum surface tem-
perature: model of apparent thermal inertia, linear regression of maximum
surface temperature as a function of material’s absorptivity and parametriza-
tion of maximum surface temperature. The model of apparent thermal iner-
tia captures temperature differences based on moisture, but more research is
necessary to conclude how well it performs on dry surfaces. Linear regression
model and parametrization of maximum surface temperature give promising
results. Furthermore, it has been shown with statistical methods that as-
phalt, marble, vegetation and concrete can be identified based on five bands:
red, blue, green, NIR and NDVI. Since two different IR cameras were used
in Athens in 2016 and 2017, Optris 640 and Flir V ue Pro, the study is also
based on the data collected in laboratory experiments which makes it possi-
ble to compare their performance. It has been shown that the former is more
reliable and accurate. Correction factor for the latter has been obtained.
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Abbreviations

ATI Apparent thermal inertia

DSM Digital Surface Model

FFC Flat Field Correction

NDVI Normalized Difference Vegetation Index

NIR Near infra-red

IR Infra-red

RGB Red, green, blue

TI Thermal inertia

TIR Thermal infra-red

UAV Unmanned Aerial Vehicle

UHI Urban Heat Island

VIS Visible
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1. Introduction

Global warming and climate change as well as warmer cities and technolog-
ical achievements have lead to an increased focus on the subject of urban
heat islands (UHI) [1]. UHI is a phenomenon describing the higher rate of
warming in the cities compared to the average global warming [2]. In other
words, the cities have considerably higher temperature as opposed to the
non-urbanized surroundings [1], [3]. It is caused by urban structures that
absorb more radiation, heat added by human activities, traffic, industry and
buildings. UHI in combination with ever more occurring heat waves results
in decrease in human comfort, and in extreme scenarios, human mortality [2].

Considering this background, it is not surprising that ”urban heat island
studies probably still represent the majority of urban climate studies cur-
rently undertaken” [4]. Studying urban climatology implies that special em-
phasis needs to be given to the surface temperature [3]. Surface temperature
affects, among others, the energy balance of the surface and energy exchanges
affecting the comfort of city dwellers. It also affects the air temperature of
the lowest layers of the urban atmosphere [3]. It is precisely these modifica-
tions in urban surfaces and atmosphere that lead to warmer thermal climate
e.g. UHI [3].

As opposed to earlier ground observations, new methods of studying UHI
have emerged based on thermal remote sensing technology using satellites
and aircraft platforms [3]. The present study, however, is based on remote
sensing with Unmanned Aerial Vehicle (UAV) used as sensor platform for
small imaging sensors. This enables flexibility and, at the same time, obtain-
ing images at a very high spatial resolution [5].

The present study uses high resolution images in visible (VIS), near infra-
red (NIR) and infra-red (IR) bands collected with a UAV during two study
trips to a suburb of Athens, Municipality of Ymittos, in April 2016 and June
2017. The study is also based on the data collected in the laboratory. Due
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to the fact that two different IR cameras were used in 2016 and 2017, Optris
640 and Flir V ue Pro, laboratory experiments have been performed during
which the cameras were tested.

The analysis of the collected data focuses on three areas. The aim of the
first part of the analysis is to compare and assess the performance of the two
cameras as well as to draw conclusions about the possible implications on
the images collected. The second part of the analysis assesses different un-
supervised and supervised classification methods of the materials using the
RGB and NIR images. The goal of this part of the study is to assess the
classification methods with respect to the present investigation.

The results of the data analysis mentioned above is used in the third and
main part of the thesis, the aim of which is to study the temperature of the
surface materials in the urban setting. Here the focus is on three concepts
and methods such as thermal inertia (TI), apparent thermal inertia (ATI)
and parametrization of the maximum surface temperature. The aim is to as-
sess how and whether it is possible to predict the maximum diurnal surface
temperature of the urban materials as well as to acquire a better understand-
ing of how the surface temperature of the materials behaves with respect to
the mentioned parameters. It falls outside the scope of this thesis to evaluate
how good every particular material is in order to contribute to UHI mitiga-
tion. The goal is directed towards investigating different parameters which
can model the maximum surface temperature.

Parts of this work were presented in the article ”Urban Surfaces Studied
by VIS/NIR/IR imaging from UAV - Possibilities and Limitations” on the
Sixth International Conference on Remote Sensing and Geoinformation of
Environment, which took place on Cyprus 26-29 March 2018. The article is
attached in Appendix A and will be referred to in the thesis.

2



2. Theory

The present chapter elaborates on the theoretical foundation which the fol-
lowing analysis is built upon. Firstly, the concept of electromagnetic spec-
trum is elaborated with emphasis on VIS, NIR and IR spectral regions. Sec-
ondly, the concepts of thermal inertia (TI) and apparent thermal inertia
(ATI) as material properties are presented.

2.1 Electromagnetic radiation

The theory of radiation is founded on the postulate that ”accelerated charges
or changing electric currents give rise to electric and magnetic fields” [6] which
transport energy and travel at the speed of light. They are called electro-
magnetic radiation or electromagnetic waves. Matter emits energy this way
due to alternations in atomic or molecular electronic configurations. The
postulate was layed by James Clark Maxwell in 1864 [6].

The transport of energy by electromagnetic waves is viewed in the light of
quantum theory as proposed in 1900 by Max Planck [6]. It is considered
to be the ”propagation of a collection of discrete packets of energy called
photons or quanta” [6]. The energy carried by a photon is given by

e = h
c

λ
(1)

where h is Planck’s constant (6.63 ·10−34Js), c is the speed of light (3.00 ·108

ms−1) and λ is the wavelength of the electromagnetic wave. The electromag-
netic radiation spectrum comprises of a range of wavelengths ”from less than
10−10 µm for cosmic rays to more than 1010 µm for electrical power waves”
[6]. Waves with different wavelengths behave differently [6].
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The spectrum of electromagnetic radiation originates in the Sun’s nuclear
reactions. It is first transmitted through space and then the atmosphere as
it approaches the Earth’s surface. In the interaction with the Earth’s surface,
the radiation can either be reflected or absorbed. Absorbed radiation is later
re-radiated again as thermal energy [7]. Reflected radiation and thermal ra-
diation are the very basis of the investigation undertaken in this thesis. In
the following sub-chapters different parts of the electromagnetic spectrum
defined by different wavelengths will be elaborated more closely: VIS, NIR
and IR regions.

2.1.1 Reflected radiation - VIS and NIR regions

Isaac Newton, who was the first to investigate the optical properties of the
visible region, found that it consists of three segments which are today known
as blue, green and red. They correspond to the range of wavelengths 0.4-0.5
µm, 0.5-0.6 µm and 0.6-0.7 µm respectively. The color of an object that the
human eye sees is defined by the color of the light that it reflects [7].

The region of the electromagnetic spectrum closest to the red part of the
visible region is near infra-red (NIR) region. It comprises wavelengths in the
range 0.72-1.30 µm [7], [8], [9]. From the optical point of view, radiation
from this part of the spectrum up to 1.0 µm behaves analogously to the radi-
ation in the visible region. This is why remote sensing equipment detecting
radiation in NIR region up to 1.0 µm is designed similarly to the equipment
detecting the visible radiation. Above that wavelength another type of de-
tectors is necessary for the short infra-red region (SWIR) [7], (Ingunn Burud,
private communication).

2.1.2 Thermal radiation - IR region

The portion of the electromagnetic spectrum which is not reflected but rather
emitted is defined as the far infra-red (IR) region [7]. This type of electro-
magnetic radiation originating from ”energy transitions of molecules, atoms
and electrons of a substance” [6] is called thermal radiation and it is related
to heat transfer. Transfer of energy in the form of heat by radiation is the
fastest of the three ways of heat transfer since it takes place at the speed of
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light. It can take place in vacuum and does not need presence of a material
medium such as the case is with the other two heat transfer mechanism -
conduction and convection [6].

A physical definition of the thermal infra-red (TIR) domain of the elec-
tromagnetic spectrum does not exist. It is defined differently by different
authors [10], [8]. Definitions of thermal radiation that can be found include
”the entire visible and infra-red (IR) radiation as well as a portion of the
ultraviolet (UV) radiation [6]”. It can be found in the literature that the
TIR region comprises wavelengths from 7.0-1000 µm [7]. There is a broad
agreement that TIR deals with emitted radiation as opposed to VIS and NIR
domains that deal with reflected radiation [10], [8]. In the following analysis
the definition used for the TIR region will be the latter one.

Accounting for the theory of radiation in the TIR region means accounting
for the concept of blackbody radiation and thus Planck’s law. Fundamental
physics teaches that ”every object at any given absolute temperature above 0
K emits thermal radiation” [11]. The object’s temperature is the parameter
solely responsible for the amount of the radiant power emitted by it. This
aspect has lead to the term thermal radiation mentioned above [11].

In order to be able to analyze an object radiating energy, it is necessary
to introduce the concept of blackbody e.g. ”perfect emitter and absorber of
radiation” [6]. It means that the surface of such an object emits the max-
imum possible amount of energy at a certain temperature and wavelength
[6]. This amount of energy, referred to as spectral exitance [11] or spectral
blackbody emissive power [6], radiated at the body’s temperature T [K] for
specific wavelengths λ [µm] is given by the famous Planck’s law

Ebλ(T )dλ =
2πhc2

λ5

1

e
hc
λkT − 1

dλ (2)

where Ebλ [Wm−2µm−1] is the spectral black body emissive power, h is
Planck’s constant (6.63 · 10−34Js), c is the speed of light (3.00 · 108 ms−1)
and k is Boltzmann constant (1.38 · 10−23JK−1) [11].

By integrating Planck’s law from zero to infinity one can represent the emis-
sive power of a black body Eb(T ) [Wm−2] for the whole spectrum by the
means of Stefan-Boltzmann law [11]
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Eb(T ) =

∫ ∞
0

Eλ(T )dλ = σT 4 (3)

where σ is Stefan-Boltzmann constant (5.67 · 10−8Wm−2K−4) and T [K] is
the temperature of the black body. However, for the TIR imaging one detects
only the radiation from the TIR spectrum and not the whole spectrum [11].

So far, the radiation theory from a surface defined as black body has been
presented. However, such surfaces are ”idealizations and no real object can
emit this maximum thermal radiation at a given temperature” [11]. The
radiation of a real body is given by scaling the radiation of a black body
by a factor ε called emissivity. The definition of emissivity is ”the ratio of
the radiation emitted by the surface at a given temperature to the radiation
emitted by a blackbody at the same temperature” [6]. Emissivity is therefore
a value in the range 0 0 ε 0 1 [11].

Emissivity is a function of the wavelength, the direction of the emitted radi-
ation as well as of the surface temperature [6]. It is given by

ε(λ, θ, φ, T ) =
E(λ, θ, φ, T )

Eb(λ, T )
(4)

where E(λ, θ, φ, T ) is the emissive power of the real body, λ is a specified
wavelength at which the radiation is emitted for the real body and black
body, θ and φ are directions in which the radiation is emitted and T [K]
is the temperature of the real body and black body [6]. Averaging over all
directions and wavelengths, one comes to equation

ε(T ) =
E(T )

Eb(T )
(5)

which is called the total hemispherical emissivity. Thus, in the light of com-
plexity that arises due to spectral and directional dependence of emissivity,
one usually uses the total hemispherical emissivity (also referred to as aver-
age emissivity). In order to do that one assumes that the object in question
can be approximated as a gray and diffuse body. The properties of a diffuse
surface are independent of direction, while the properties of a gray surface
are independent of wavelength. Emissivity thus becomes a constant value at
a given temperature T [6].
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Another approximation that the present analysis is founded on is that the
materials and objects analyzed are opaque to thermal radiation. This means
that radiation is considered to be surface phenomenon and that it is emitted
and absorbed within the first few microns of the surface. Materials that this
applies to are most materials encountered in the every day life such as metals,
wood and rocks [6].

Another way to describe opaque materials is to say that they do not transmit
radiation. The physical property of transmittance τ , a fraction of radiation
transmitted through a surface, is in this case considered to be zero. When
radiation strikes a surface, it can also be absorbed or reflected. The fraction
of radiation absorbed is referred to as absorptivity α and the fraction re-
flected as reflectivity ρ [6]. Due to conservation of energy it is required that

α + ρ+ τ = 1 (6)

meaning that incident radiation on a surface can either be absorbed, reflected
or transmitted [6]. This equation can be rewritten according to Kirchhoff’s
law stating that for an object ”the emittance at a given wavelength is equal
to its absorbance at the same wavelength” [10]

α = ε. (7)

As mentioned earlier, opaque surfaces do not transmit radiation and in their
case Eq. 6 can be written as [10]

ε+ ρ = 1. (8)

Variations of Eq. 6 depending on what kind of absorbent, transmissive and
reflective properties an object in question has, will be used in the following
elaboration of the atmospheric effects.
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2.1.3 Atmospheric effects in the TIR region

Theoretical background of thermal radiation elaborated in the last sub-
chapter has paved the way into aspects of thermal imaging that need to
be taken into account when retrieving the correct kinetic temperature of the
imaged object. In order to understand them it is necessary to look into the
operational aspects of a thermal camera.

The total radiation, Q [Wm−2], received by a thermal camera is a sum of
contributions from three radiation sources expressed in a following way

Q = Qobj +Qrefl +Qatm (9)

where Qobj is the radiation emitted from the target object, Qref is the ra-
diation from the surroundings reflected of the target object and Qatm is the
radiation from the atmosphere [12]. Using Stefan-Boltzmann’s law, radiation
emitted from the object, Qobj, is expressed as

Qobj = εobjτatmσT
4
obj (10)

where εobj is the emittance of the object, τatm is the transmittance of the
atmosphere, σ is Stefan-Boltzmann constant and Tobj is the objects temper-
ature [12]. Accordingly, radiation from the surroundings reflected by the
target object, Qref , is given by

Qref = ρobjτatmσT
4
refl (11)

where ρobj is objects reflectivity and Tref is the temperature of the surround-
ings reflected by the object [12]. Using Eq. 8 it is possible to rewrite Eq. 11
as

Qref = (1− εobj)τatmσT 4
refl. (12)

In the same way the radiation emitted from the atmosphere, Qatm, is ex-
pressed as
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Qatm = εatmσT
4
atm (13)

where εatm is the emittance and Tatm is the temperature of the atmosphere.
Assuming that ρatm = 0 and using Eq. 6, Eq. 13 can be rewritten [12] as

Qatm = (1− τatm)σT 4
atm (14)

Solving for object’s temperature Tobj, Eq. 9 can be written as

Tobj =
4

√
Q− (1− εobj)τatmσT 4

refl − (1− τatm)σT 4
atm

εobjτatmσ
. (15)

In order to perform the necessary corrections according to Eq. 15, the pa-
rameters that need to be set up in the camera are objects emissivity εobj,
atmospheric transmittance τatm, reflected temperature Trefl and atmospheric
temperature Tatm [13]. Since the atmospheric transmittance τatm is very close
to one [12], the influence of the atmosphere is considered neglectable for ther-
mal infrared imaging (8-14 µm) with UAV [14]. Object’s emissivity, εobj, and
the reflected temperature from the surroundings, Trefl, have a considerable
influence on the temperature measurement. The correction of reflected tem-
perature Trefl when obtaining the kinetic temperature of the measured object
is particulary important when the measured object has low emissivity and
thus, according to Eq. 8, high reflectance [12]. As it will be shown in subse-
quent chapters, the emissivity values of the materials studied in this analysis
are close to 1. Thus the correction of the reflection temperature Trefl will be
neglected.

Elaborating on the importance of emissivity correction is in order before
concluding the subject of atmospheric effects on thermal radiation images.
Emissivity correction is necessary because, as mentioned earlier, real mate-
rials have emissivity below one. The measured radiance temperature, Trad
of an object, is thus lower than the real kinetic (surface) temperature, Tkin
[10]. Combining Eq. 3 and the definition of emissivity [10], this relationship
can be written as

Trad = ε1/4Tkin. (16)
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This means that, due to different emissivity values, temperature sensed with
thermal camera, radiance temperature, can differ significantly even if objects
have the same kinetic temperature. Therefore, in order to retrieve correct
kinetic temperature of an object, an image needs to be corrected for emis-
sivity [10].

2.2 Surface property: Thermal inertia (TI)

and apparent thermal inertia (ATI)

The following section will lay the theoretical background for the concepts of
thermal inertia (TI) and apparent thermal inertia (ATI). In Section 2.2.1,
which deals with TI, it is necessary to carry through a detailed overview of
the literature in order to arrive at the mathematical equation used later on
in the analysis. Section 2.2.2 will elaborate on the concept of ATI.

2.2.1 Different approaches to thermal inertia (TI)

Thermal inertia P [Jm−2K−1s−
1
2 ] is defined as

P =
√
kρc (17)

where k [Wm−1K−1] is thermal conductivity, ρ [kg m−3] is density and c
[Jkg−1K−1] is heat capacity.

An investigation of this research field shows that the concept of TI has been
used in a wide range of research subjects in the last decades. It has been
applied in, among other things, deducing soil heat flux, monitoring soil mois-
ture, analyzing UHIs, studying lithology and producing geological maps [15].
A more detailed look into the literature on TI from these fields of study
reveals that there is more than one approach to the mathematical Eq. 17.
In fact, two approaches have been identified which appear to interpret the
concept of TI in opposite ways.

According to one approach, TI is defined as a measure of the thermal response
of a material to temperature changes [16], [17], [18], e.g. as a ”resistance of
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an object to its heating for 1 K” [19]. In the words of Tramutoli, it ”rep-
resents the measure of the material resistance to the temperature changes
imposed by the outside, meaning that, for a given incoming heat flux, the
variation of [material’s] temperature is inversely proportional to its thermal
inertia” [20]. Schieldge et al refer to thermal inertia as ”a scalar quantity
that provides a measure of a material’s ability to resist a change in temper-
ature [21]. High temperature indicates low resistance, low thermal inertia,
and low temperature indicates high resistance to heating, high thermal in-
ertia. Studying thermal inertia implies studying these temperature changes
occurring diurnally [19].

It was mentioned in the introduction that the concept of UHI implies that the
cities have higher rate of warming and thus higher temperature than the sur-
rounding areas. According to the approach to TI described above, one would
expect that the studies of TI conducted on UHIs would claim lower values
of TI in the cities compared to the rural areas. This is, however, not the case.

The study of urban climatology as of 1970’s focuses on the surface energy
balance which in its simplest form, neglecting other terms such as the an-
thropogenic heat flux, can be written as

Q∗ = QH +QE +QG (18)

where Q∗ is the net radiation, QH is the sensible heat flux, QE is the latent
heat flux and QG is the ground heat flux [4], [22], [23]. As Roth states, the
”formation of the UHI is related to the energy balance of the urban area”
[23]. The latent heat flux or evapotranspiration QE is reduced in the cities
and because of this, incoming heat is transformed into sensible heat flux QH

and ground heat flux QG.

Sensible heat flux QH and ground heat flux QG result in a warmer envi-
ronment in the cities due to urban materials which are dense and have a
relatively high heat capacity [23]. They also have ”the ability to efficiently
accept and retain heat during daytime for periods longer than that of natural
surfaces and release it at night” [23]. This aspect is exactly what the inter-
pretation of TI comprises of in this approach. The term thermal admittance
is sometimes used interchangeably with TI and it is referred to as the ”abil-
ity to store and release heat” [24]. Urban materials are thus said to have
high thermal admittance while rural areas are said to have low thermal ad-
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mittance [23], [24]. In the words of Ryu et al ”the large thermal inertia of
impervious materials means a high capability to store heat, which is closely
related to the low moisture availability of impervious materials as well as the
thermal properties such as heat capacity and thermal conductivity” [25].

The background of the latter definition of TI which is based on the sur-
face energy balance is not to say that the first approach to TI is not based
on the same premises. Also studies which base their approach on the first
definition of TI use the surface energy balance as the starting point [21],
[26]. The main difference between these two approaches, however, seems to
be originating from the focus of their studies and the parameters affecting
the analysis. The first definition describes the TI as a function of the diurnal
temperature difference and in that way seeks to, for example, identify geo-
logic materials [21] or assess the amount of soil moisture [20], [27], [28], [29].
The second approach seems to build the model of TI on more parameters.
These are latent heat flux QE as mentioned earlier, but also canopy geom-
etry and thermal properties (Niki Gaitani, private communication). Thus
in this approach, urban surfaces are assessed through the lenses of the low
latent heat flux QE and high ground heat flux QG e.g. higher absorbance
of heat. The rural areas, however, are assessed through lower ground heat
flux QG and higher latent heat flux QE e.g. better ability to release heat [23].

The first approach can also be found in connection to the study of UHIs
[26]. Qin studies pavement surface temperature with the goal of mitigat-
ing UHI [26] since ”[p]redicting the variation of the surface temperature of
a pavement is [...] important for estimating the pavement performance and
the urban thermal environment” [26]. But, in accordance to the comparison
between the two approaches given above, Qin neglects latent heat flux QE

and assumes that the surfaces are dry. Looking at the ground heat flux QG

through the energy balance equation and the heat equation, the theoretical
model relating thermal inertia P and maximum surface temperature Tsmax
has been derived [26], [30], [31] as

Tsmax = γ
(1− α)I0

P
√
ω

+ T0 (19)

where γ is the percentage of the absorption to the thermal conduction, α is
the albedo, I0 [Wm−2] is the daily zenith solar irradiation, ω = 2π/24 · 3600
[s−1] is the angular frequency and T0 is a regressed constant [30].
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This thesis will be focusing on the first approach to thermal inertia by using
Eq. 19. The attempt will be made to use linear regression of this model to
relate the TI of the materials in Ymittos to the development of their maxi-
mum surface temperature. The same way Qin neglects the latent heat flux
QE in deducing Eq. 19, the data used for linear regression will be from sunny
surfaces assuming they do not contain moisture.

2.2.2 Apparent thermal inertia (ATI)

Due to the fact that remote sensing methods are generally not adequate in
acquiring information about parameters thermal conductivity k, density ρ,
and heat capacity c [20], an approach has been developed to determine ap-
parent thermal inertia, ATI [K−1]. According to Kahle, the mathematical
expression for ATI does not take into account topographic and atmospheric
effects [32]. This approach has been employed in many studies in order to
find soil moisture estimation by using satellite images [18], [19], [20], [27],
[28], [29], [33], [34].

Apparent thermal inertia is given by

ATI =
S(1− α)

∆T
(20)

where S is the solar correction factor, α is the albedo and ∆T is the diurnal
temperature difference e.g. difference between the lowest nighttime temper-
ature and the highest daytime temperature [16]. The solar correction factor
S is given by

S = sin(φ) sin(δ)(1−tan2(φ) tan2(δ))1/2+cos(φ) cos(δ) arccos(− tan(φ) tan(δ))
(21)

where φ [rad] is the latitude and δ [rad] is the solar declination given by

δ = 0.006918− 0.399912 cos(Γ) + 0.070257 sin(Γ)− 0.006758 cos(2Γ)+

0.000907 sin(2Γ)− 0.002697 cos(3Γ) + 0.00148 sin(3Γ). (22)
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The argument Γ [rad] is the day angle given by

Γ =
2π(nd − 1)

365.25
(23)

where nd is the day of the year [28].

Albedo α is defined as ”the ratio of the reflected solar radiation to the inci-
dent solar radiation at the surface” [35]. It is given by

α =

∫ λ2
λ1

∫ 2π

0
Kup cos θdωdλ∫ λ2

λ1

∫ 2π

0
Kdown cos θdωdλ

(24)

where λ1 and λ2 is the range of wavelengths appropriate to the context of
use, Kup and Kdown [Wm−2] is reflected and incident radiant intensity, θ is
zenith angle, ω is solid angle. Average albedo is found by averaging over the
daylight hours [36]. Albedo is thus a value between 0 and 1 meaning no and
perfect reflectivity respectively [35].

The concept of ATI is ”a measure of the temperature increase caused by
the proportion of radiant energy that is absorbed by the Earth’s surface”
[28]. The solar correction factor S normalizes for variations in solar flux with
latitude and solar declination over space and time [28]. The term (1 − α)
represents ”the quantity of heat absorbed by the surface” [20].
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3. Methodology

This chapter accounts for the data collection (Section 3.1) and data process-
ing (Section 3.2).

3.1 Data collection

The first part of this section (3.1.1) describes how the data collection was
carried out by remote sensing using a UAV in Athens in 2016 and 2017. The
second part (3.1.2) deals with data collection in the laboratory during which
the two IR cameras used in Athens were tested.

3.1.1 Remote sensing in Athens

Municipality of Ymittos is a suburb of Athens, Greece. It occupies an area
of 2.35 square kilometers, has a population of 33 628 inhabitants according
to official census of 2011 and is situated 2.5 km southeast from the center of
Athens. The climate here is typical for the Mediterranean region with dry
and hot summers [5], [37], [38]. The study area is affected by UHI [5] and
rehabilitation measures were undertaken in the period 2012-2014 in order to
counteract it [37], [38].

The area of the study is shown in Fig. 3.1. It is important to mention
that some of the images used in the data analysis will not exactly display
the study area shown in Fig. 3.1. This is particularly the case for images
obtained in 2016. There are two reasons for this. The first one is that the
area mapped in 2016 was much smaller to begin with and thus cropping
of those images that had to be carried through was performed on already
smaller area. Secondly, as already mentioned, another camera was used in
2017 as opposed to 2016 which had a different lens.

The interest of the study are the materials numbered in Fig. 3.1. They
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are numbered in the following way: 1) asphalt with cool coating, 2a) and
2b) old conventional asphalt, 3) new conventional asphalt, 4) marble and 5)
concrete [37]. Additionally, vegetation will also be addressed in the analysis,
even though the focus will be on the materials numbered here. All the roofs
are masked out because they are not the object of the present analysis. The
roofs differ considerably from each other and it is not possible to know what
kind of materials each roof consists of. The roofs will thus be masked in
every displayed image.

Figure 3.1: The study area in the Municipality of Ymittos, Athens, with the indi-
cation of where the different materials addressed in this study are: 1) asphalt with
cool coating, 2a) and 2b) old conventional asphalt, 3) new conventional asphalt, 4)
marble, 5) concrete [37].

The first study trip was conducted between 11 and 15 April 2016. The sec-
ond study trip, with the aim of validating the data collected in 2016, was
conducted between 19 and 21 June 2017. Table 3.1 illustrates on which days
and at what times of the day the data used in this thesis was collected.
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Table 3.1: Summery over the dates and times of the day when the data used in
this thesis was collected in Athens.

Day Morning Midday Afternoon Evening
12 April 2016 06:30 am 12:30 pm
19 June 2017 05:30 am 01:30 pm 05:30 pm 09:30 pm

10:30 am
20 June 2017 05:30 am 01:30 pm 10:30 pm
21 June 2017 01:30 pm

Both years, an RGB camera and a CanonSX2 80 RGB camera, where the
blue channel was replaced by Maxmax.com with the NIR channel, were
mounted on the UAV of type DJIPhantom 4. The time resolution was 2
seconds for the both cameras. A predetermined pattern was followed dur-
ing the flight at about 100 m above the ground [5], [37]. In April 2016 IR
camera Optris 640s, hereafter referred to as Optris, was mounted separately
on the UAV and the same route was followed. The time resolution with the
IR camera was 1 second. The spatial resolution was 2-3 cm. In June 2017
the same set-up was used with the same procedure apart from the IR cam-
era which was for practical reasons replaced with FLIR V ue Pro camera,
hereafter referred to as FLIR, with a 9 mm lens. The spatial resolution was
5-6 cm. In addition to the data collected with the UAV, measurements of
weather conditions were carried out both years. Air temperature and the
relative humidity were recorded continuously during the days when data was
collected. The information about hourly radiation was obtained from the
local weather station. A white plate reflecting 60% of the solar radiation was
recorded with the RGB and NIR cameras for later light calibration [5], [37],
[38].

3.1.2 Laboratory experiments

Since the two different IR cameras were used in order to collect the data
about the study area in 2016 and 2017, it was necessary to compare and as-
sess their performance. Laboratory experiments with the FLIR and Optris
were carried out in different settings while measuring the temperature of dif-
ferent objects as illustrated in Fig. 3.2, 3.3 and 3.4. The idea was to test the
cameras’ performance against a reference temperature in different ambient
conditions while recording the temperature of different objects.
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Image 3.2 shows the experimental set-up of Experiment 1 during which the
temperature of a plate was measured with a temperature sensor and both
IR cameras in the laboratory setting at the ambient temperature of 20◦C.
The FLIR camera, indicated with letter F, is connected to the drone on the
left side of the image and Optris, labelled with O, is visible in the middle
of the image. The green cable of the temperature sensor, S, was connected
to the plate, P, of approximately constant temperature. The measurements
obtained by the sensor were used as reference temperature. Recordings, R,
made by Optris are shown on the computer screen on the right side of the
image. Recordings by the sensor were also conducted on the computer, while
the temperature measurements by the FLIR camera were done on a disk
inside the camera. The temperature with both cameras was recorded at the
same time every 30 seconds for approximately 3 hours.

Figure 3.2: The set-up of Experiment 1 in which temperature of the plate was
measured at the ambient temperature of 20◦C.

After having carried out the experiment described above, the exactly same
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set-up was used to test the cameras’ performance at a different ambient tem-
perature, 0◦C, in Experiment 2. This is illustrated in Fig. 3.3. The same
labels as in Fig. 3.2 are used to describe the equipment. The temperature
sensor was also attached to the plate in this experiment, but it is not visible.

Figure 3.3: The set-up of Experiment 2 in which the temperature of the plate was
measured at the ambient temperature of 0◦C.

After the analysis of the data collected in the two experiments it became
clear that more tests were necessary on objects with different temperatures.
The most practical way to do that was to preheat a cup with boiling water
and to cool down another cup outside in the snow for about 15 minutes.
Approximately simultaneously as the first cup was filled with freshly boiled
water, the second cup was filled with snow and brought inside. Experiment 3
was again conducted at room temperature at 20◦C together with both cups
and the same black plate as shown in Fig. 3.4. The two cups are labelled HC
for hot cup and CC for cold cup. Due to heating and cooling of the two cups
at room temperature, their temperature was changing and thus the exper-
iment lasted only for 15 minutes. The measurements with the IR cameras
were also this time recorded every 30 seconds.
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The difference between this experiment and the two previous was the lack of
possibility to connect the sensor to all three objects due to practical reasons.
As it will be shown in Chapter 4, the two first experiments showed very little
deviation in the measurements recorded with Optris and the sensor. Thus
the sensor remained connected to the plate as indicated in Fig. 3.4 and the
measurements of the Optris camera were considered accurate enough to be
used as reference temperature for both cups.

Figure 3.4: The set-up of Experiment 3 in which temperature of a hot cup, plate
and a cold cup was measured at the ambient temperature of 20◦C.

An overview of the experimental equipment, the objects measured and the
camera parameters in the three experiments is shown in Table 3.2. Columns
2 and 3 show which measuring device measured which object. Columns 4 and
5 indicate how the parameters described in Section 2.1.3, ambient tempera-
ture Tambient, atmospheric temperature Tatm, emissivity ε and transmittance
τ , were set in the two cameras. The purpose with these experiments was not
to correct the measurements for emissivity or reflectance by the surrounding
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objects. The goal was to compare the two cameras operating in the same
conditions and with the same parameters.

Table 3.2: Overview of the three experiments with respect to the measuring devices
used, the objects measured as well as the parameters set in the two cameras.

Experiment Device Object Tambient/ ε τ
Tatm
[◦C]

1) Sensor plate
Fig. 3.2 FLIR plate 20 1 1

Optris plate 20 1 1
2) Sensor plate

Fig. 3.3 FLIR plate 0 1 1
Optris plate 0 1 1

3) Sensor plate
Fig. 3.4 FLIR hot cup, plate, cold cup 20 1 1

Optris hot cup, plate, cold cup 20 1 1

3.2 Data processing

This section describes how the data was processed. Section 3.2.1 will describe
how the laboratory data from the IR cameras was processed in order for it
to be used in the processing of the IR images from Athens. Section 3.2.2
describes the processing of the data collected in Athens.

3.2.1 Processing of laboratory data

The images from the laboratory taken by both cameras were analyzed in
Python. Temperature curves were obtained for every object measured in
every experiment. As the results in Section 4.1 will show, FLIR camera is
not accurate enough. The data from the three experiments was then used
to create a regression model which would make it possible to retrieve correct
temperature values from the FLIR images collected in Athens in 2017.

Temperature values are used in Celsius scale throughout this thesis. The
pixel values obtained from Optris during the laboratory experiments as well
as in Athens in 2016 are given in [◦C] using TIF-format. However, using
the same format, FLIR values needed to be converted in order to obtain
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temperature values [◦C]. The conversion formula is given by

T = pv · cf − 273.15 (25)

where T [◦C] is temperature of the object, cf is the conversion factor and
pv is the pixel value. The conversion factor cf is a constant with the value
0.04 (FLIR technical support, private communication). The regression model
used to retrieve temperature values for FLIR camera has lead to the adjust-
ment of the conversion factor of cf = 0.04. This will be dealt with in detail
in Section 4.1 and 5.1.

Before concluding the methodology on the laboratory data, an aspect of
the FLIR camera, which needs to be mentioned, is Flat Field Correction
(FFC). FFC is ”a process whereby off set terms are updated to improve im-
age quality. This is done by presenting a uniform temperature (a flat field)
to every detector element” [39]. The effect of FFC is that temperature read-
ings from the same object will be somewhat different on an image taken just
before and the other taken just after FFC (FLIR technical support, private
communication). FFC has a time and a temperature component. Current
settings are 4 minutes and 0.5 degrees (FLIR technical support, private com-
munication). The temperature component will also be addressed in Chapter
4.

3.2.2 Processing of data collected in Athens

This section refers to the data processing steps based on the flowchart in
Fig. 3.5, which is a further developed version of Fig. 3 in [5]. The descrip-
tions here refer only to the processing of the data from June 2017. The data
from April 2016 had been processed beforehand. The flowchart illustrates
three starting points. The first one is based on RGB and NIR images, the
second on IR images and the last one on the Digital Surface Model (DSM).
It will be referred to Fig. 3.5 throughout the sections here. Section 3.2.2.1
accounts for how the RGB, NIR and IR maps were created in Pix4D out of
the images taken with the UAV, while Section 3.2.2.2 deals with light calibra-
tion of the RGB and NIR maps. In Section 3.2.2.3 material classification is
addressed. The last sections, 3.2.2.4, 3.2.2.5 and 3.2.2.6, describe how the ir-
radiation, temperature and ATI maps were created and how linear regression
and parametrization based on the temperature maps were performed.
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3.2.2.1 Processing in Pix4D

The processing of the RGB, NIR and IR images collected in Athens started
in Pix4D, a software with which one, among other things, obtains georefer-
enced maps from drone imagery [40]. First, it was necessary to georeference
the images. The RGB and NIR cameras had build-in GPS loggers, but the
IR camera did not. The GPS logger from the RGB camera was used to geo-
reference the IR images.

Creating maps in Pix4D is based on orthorectification. This implies combin-
ing the images and correcting their perspective distortions [41]. The images
need to have at least 60% overlap in order for the software to find key points
and match them [42]. Several attempts based on trial and failure method
were made in order to produce satisfactory results. Firstly, the adequate pro-
cessing method had to be chosen based on the quality of the alignment of the
images combined into a map. Another challenge in the case of IR images was
the considerable differences in intensity values up to several degrees caused
by FFC. These images were not used for processing.

Firstly, Pix4D creates a DSM. Each pixel in a DSM contains altitude infor-
mation [43]. Based on it, orthomosaic and reflectance maps can be created
which are 2D maps corrected for camera perspective. When creating them,
each pixel value of the original images is weighted and averaged [44]. If the
input images are multispectral or thermal, the reflectance maps are produced
rather than orthomosaic maps. In this case one reflectance map is produced
for each band [45].

Thus orthomosaic maps were obtained for the RGB and NIR images and
reflectance maps for the thermal IR images. All together several RGB and
NIR maps and nine IR maps from each drone flying session in June 2017
were created. One of the RGB and NIR maps was chosen for the analysis
from the middle of the day with as little shadow as possible. Also one DSM
map was used in the data analysis together with 10 IR maps, one from 12
April 2016 and nine from June 2017. The IR and DSM maps are 32 bits
images, while the RGB and NIR maps are 8 bits images. The study area
displayed with an RGB, NIR, DSM and IR map is shown in Fig. 3.6. The
role of these maps in the data analysis procedure is shown in the flowchart
in Fig. 3.5.
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(a) RGB (b) NIR

(c) IR (d) DSM

Figure 3.6: RGB, NIR, IR and DSM maps of the study area created in Pix4D.

3.2.2.2 Light calibration and albedo

As the flowchart in Fig. 3.5 indicates, the RGB and NIR maps had to be
calibrated for light conditions. The correction of RGB and NIR maps was
performed using an RGB and a NIR image of a white plate whose reflection
was known, as illustrated in Fig. 3.7. The correction factor for a particular
channel, cchannel, (red, green, blue or NIR) was calculated using

cchannel =
ρmarblechannel
ρwhitechannel

· 0.60 (26)
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(a) RGB (b) NIR

Figure 3.7: RGB and NIR images of a white plate with known reflection on marble.

where ρmarblechannel is the average of pixel values for marble for a particular
channel from the corresponding image in 3.7, ρwhitechannel is the average of
pixel values for the white plate in that same channel and the value 0.60 is
the known reflection of the white plate. With the correction factor cchannel
for every channel found in this way, the red, green, blue and NIR channels
in the maps from Pix4D were corrected for light conditions.

The red, green, blue and NIR channels corrected for light effects were used
to calculate the map of albedo α as indicated in flowchart in Fig. 3.5 based
on

α = 0.17b− 0.13g + 0.33r + 0.54nir (27)

where b, g, r and nir is the reflectivity in the blue, green, red and NIR bands
respectively. This method of calculating albedo is derived from remotely
sensed reflectance [46]. The underlying assumption of this formula is that
the surface is assumed to reflect equally in all directions (isotropically) [37].

3.2.2.3 Emissivity correction and material classification with NDVI
threshold, PCA, k-means and MLC

Identification of materials labelled with numbers 1-5 in Fig. 3.1 was per-
formed with different techniques: Normalized Difference Vegetation Index
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(NDVI), Principal Component Analysis (PCA), k-means clustering and Max-
imum Likelihood Classification (MLC). The aim has been to assess their per-
formance on the data collected in June 2017.

PCA was first performed on a stack comprised of nine IR maps obtained
from the flying series in June 2017. PCA is an unsupervised classification
algorithm with which dimensionality reduction on a data set is performed
[47]. PCA performed on a stack containing several bands transforms it into
a stack with uncorrelated features [48]. The result is a new data set of un-
correlated variables which displays information about the largest variation
in the original data set [47]. Performing PCA on a stack of IR maps makes
it possible to detect where the largest variation in temperature is.

The NDVI map was created with the red and NIR channels from the RGB
and NIR maps. The formula for NDVI is given by

NDV I =
nir − r
nir + r

(28)

where nir and r are the reflectivities in the red and NIR bands respectively.
Different types of matter such as vegetation, soil, snow, rocks and water re-
flect differently in the visible and NIR spectra. This fact is used in the NDVI
index to obtain values in the range [-1, 1] which can for example be used to
study and monitor agricultural production. Values close to 1 are indicative
of healthy plants because they reflect strongly in the NIR band, while values
around 0 are indicative of rocks and soil [49].

This type of information contained in an NDVI map was used, as flowchart
in Fig. 3.5 indicates, for emissivity correction of the IR maps using Eq.
16. Using the NDVI-threshold method [50], pixels with a particular range of
NDVI values representing materials in the study area were assigned a cer-
tain emissivity value in the corresponding emissivity map. Measurements of
the emissivity values in the study area were carried through in earlier stud-
ies giving emissivity of 0.95 for asphalt and marble and 0.97 for vegetation.
Emissivity for concrete is not given [38]. As opposed to Eq. 5 in Section
2.1.2, emissivity is here considered to be constant despite the temperature.

The NDVI image and the corrected red, blue, green and NIR channels were
stacked into a 3D matrix in order to make use of as many available channels
as possible. This stack was used to see where the biggest variation in re-
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flectivity could be detected by performing PCA. Material classification was
performed with k-means and MLC with the aim to classify different materials
in the study area based on the variation in reflectivity. For this the Semi-
Automatic Classification Plugin (SCP) from the open-source system QGIS
was used. This is indicated in Fig. 3.5.

K-means algorithm ”is a technique that allows us to find groups of similar
objects, objects that are more related to each other than to objects in other
groups” [51]. It regroups pixels into clusters by recomputing the position of
clusters’ centroids (centers). This continues until the pixels belonging to a
cluster are at a minimum distance to its centroid [51], [48]. MLC, however,
is a type of supervised classification which was carried out based on region
growing algorithm as an image segmentation method. Pixels with spectral
distance below a certain threshold value were selected as a region of interest
[52] (Appendix A). When training the data set, knowledge of the different
materials in the study area, the RGB image from Fig. 3.6a and the results
of PCA and k-means clustering were used as orientation. Several attempts
were made with different number of classes. The result shown in Chapter 4
contains 10 classes.

3.2.2.4 Solar irradiation maps

Having an insight into the weather conditions would enable a better under-
standing of the surface temperature maps. The air temperature, the relative
humidity and the direct daily irradiation were obtained as described earlier.
At the same time, it was important to have the information about the in-
coming direct and diffuse solar irradiation not only on hourly basis for the
whole day, but also pixel for pixel. In that way it would be possible to iden-
tify the parts of the study area that received a lot of incoming radiation and
those that were predominantly in the shadow. This was necessary in order
to conduct linear regression with respect to Eq. 19 and for parametrization
of the maximum surface temperature.

The goal was achieved by using the DSM map as shown on the right side of
the flowchart in Fig. 3.5. The first step was to run the DSM map through the
UMEP plug-in [53] in QGIS in order to produce binary shadow maps having
values 0 in the shadow and 1 in the sunlit areas as indicated in Fig. 3.8. The
shadow maps were created for all four days (12 April and 19-21 June) with a
resolution of one hour from the sunrise at 06:00 am until the hour of interest.
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Secondly, maps of direct solar irradiation for every hour and every day were
also created having only one constant value for the whole map. These direct
solar irradiation maps were then corrected for the shadows by multiplying
them with the shadow map for the same hour.

Figure 3.8: Method for creating maps of accumulated solar irradiation.

In addition, information about diffuse solar irradiation was obtained for
Athens through the Clear Sky Model [54]. The next step was to create maps
of diffuse solar irradiation by assigning the diffuse solar irradiation value for
every hour to the shadowed areas. This meant that there were at the end two
maps for each hour of each day up until the hour of interest: one with direct
solar irradiation corrected for shadows and one with diffuse solar irradiation
created from the shadow maps. At the end, the maps of direct and diffuse
solar irradiation were added for every day to give one map of accumulated
solar irradiation in each pixel up until the hour of interest.
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3.2.2.5 Temperature, TI and ATI maps

IR reflectance maps obtained from Pix4D were first corrected with respect to
the conversion factor cf which was the result of the laboratory experiments
of the FLIR camera as described in Section 3.2.1. After that the emissivity
correction was done on the IR maps as described in Section 3.2.2.3. Thus the
temperature maps for the nine flying sessions in June 2017 could be obtained.

They were further used to calculate the diurnal temperature difference ∆T
maps, which are the maps of the temperature difference between the highest
and the lowest temperatures of the day. The highest and the lowest temper-
atures of the day were recorded at 06:30 am and 12:30 pm in 2016 and 05:30
am and 01:30 pm in 2017. As shown in Fig. 3.5, based on the ∆T maps
and the albedo maps, the map of ATI values could be generated for a day of
interest. In addition, the map of accumulated solar irradiation was created
as described above and normalized. By multiplying the ATI map for each
day by the map of normalized solar irradiation for that same day, the ATI
maps were corrected for solar irradiation and shadow. Differences between
ATI images obtained in this way indicate that they are caused by other fac-
tors than solar irradiation. ATI maps will be used to analyze differences in
temperature on a daily bases as well as material-wise differences considering
the five material groups labelled in image 3.1.

The nine temperature maps from June 2017 were also used to illustrate how
the temperature of the materials developed from early morning on 19 June
until midday of 21 June. For that it was necessary to choose areas on the
maps which received as much sunlight as possible during a day. Maps of ac-
cumulated irradiation until 05:00 pm were used to identify those areas. Since
it was difficult to accomplish that for all five materials, it was possible to find
one place for asphalt and marble which did not seem to be under shadow
until 05:00 pm. Concrete did get some shadow until afternoon. Therefore,
this part of the analysis will be based on three groups: asphalt, concrete and
marble.

This procedure provided the basis for linear regression of the maximum sur-
face temperature as a function of absorptivity according to Eq. 19. Linear
regression was based on three temperature points obtained per material for
concrete, asphalt and marble. They were obtained from temperature maps
from 20 and 21 June at 01:30 pm as well as from 12 April at 12:30 pm. The
temperatures from the middle of the day are the highest surface temper-
atures obtainable from the data. The temperature measurements from 19
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June were not used here. This model assumes that there is no latent heat
flux QE as mentioned in Section 2.2.1. It will be shown in Section 5.3.1 that
the surface on 19 June was still moist and that latent heat flux QE is not
possible to neglect that day.

3.2.2.6 Parametrization of the maximum surface temperature Tsmax

An attempt has also been made to understand the diurnal development of
the surface temperature based on the model by Bogren et al [55] and Lind-
berg et al [56], [57]. The model for estimating the temperature on sun-
exposed surfaces is based on ”linear relationship between maximum solar
elevation and maximum difference between Ta and Ts during clear day con-
ditions Tdiffmax” [56]. The variable Ta represents the air temperature, Ts the
surface temperature and Tdiffmax is the maximum difference between them
which occurs when Ts is at its maximum [56], [57]. This linear relationship
model parametrizes the surface temperature according to

Tdiffmax = ηx+ b (29)

where x is the maximum solar elevation on a particular day while η and b are
the regression constants. Such parameterization makes it possible to describe
the surface temperature Ts on a clear day as a sinusoidal function [56]. Its
”amplitude is taken from the linear relationship [...] and the period for a
certain day of the year is established based on the time between sunrise of
the day of interest” [56] and the time when the maximum difference between
Ts and Ta occurs [56]. The sinusoidal equation is written in the following
way (Lindberg, private communication)

Ts = Ta + ηx sin

(
(tdec − btdecmaxc)− tsunrise

24
tmax

24
− tsunrise

24

· π
2

)
+ b (30)

where tdec is the decimal time, btdecmaxc is the largest integer of tdec, tsunrise
and tmax are the time of the sunrise and the time of the highest surface tem-
perature respectively.

Equation 30 has been used to derive sinusoidal curves for asphalt, concrete
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and marble based on the measurements obtained in June 2017. This im-
plies using a trial and error technique to draw sinusoidal curves which fit
the measurement points from that day because regression constants η and
b are unknown. The regression constant b was set to -3 (Lindberg, private
communication) and kept at that value while η was adjusted. The aim is
to obtain η and thus Eq. 29 for all three materials. Lindberg et al provide
parameterization equation for asphalt [56], [57] which will be used in order
to compare the parametrization equation obtained for that material.

The measurement points will be used only from 20 June 2017 because that is
when the weather conditions were favorable, e.g. as sunny as possible. Also in
this part of the analysis it is important to choose sunlit areas. Therefore the
focus will be on three groups of materials due to earlier mentioned difficulties
in finding spots on the images without shadow. The solar elevation x on 20
June in Athens was found to be 75.44◦ [54]. Sunrise in Athens is at 06:00 am
in June and the highest surface temperature was assumed to be around 03:00
pm. The reason for that is Fig. 4.21 shown in Section 4.3.3 which indicates
that the maximum surface temperature of the materials probably occurred
somewhere between 01:30 pm and 05:00 pm. Qin also points out that the
maximum pavement surface temperature appears a couple of hours after the
solar noon [26]. Solar noon is around 01:30 pm in Athens [58].
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4. Results

The results in this chapter are presented in three main parts. Section 4.1
presents results concerning the laboratory experiments on FLIR and Optris
cameras. Section 4.2 deals with the attempt to differentiate and identify ma-
terials based on the NDVI map, a stack of IR maps and a stack of blue, green,
red, NIR and NDVI channels. Section 4.3 presents the surface temperature
maps and the results of three approaches to predicting surface temperature:
ATI, linear regression based on Eq. 19 and parametrization of the maximum
surface temperature based on Eq. 30.

4.1 Laboratory experiments on FLIR V ue Pro

and Optris 640

Section 4.1.1 displays the results from the laboratory experiments. In Section
4.1.2 these results are used to obtain a regression model for the conversion
factor cf .

4.1.1 Comparison between FLIR V ue Pro and Optris

640

The results of Experiments 1 and 2, the set-up of which is illustrated in Fig.
3.2 and 3.3, are shown in Fig. 4.1. The temperature measured by FLIR,
Optris and the sensor connected to the black plate (reference temperature)
are indicated by the blue, orange and green lines respectively. These two
experiments show that the measurements by Optris are reliable compared to
the temperature sensor. However, FLIR has a considerable offset compared
to the reference temperature. The offset depends on the temperature of the
object measured. The systematic error for the FLIR is +/- 5◦C, while the
error for Optris is +/- 2◦C.
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(a) Experiment 1 (b) Experiment 2

Figure 4.1: Temperature measurements of a black plate with FLIR and Optris at
Tambient = 20◦C (Experiment 1) and Tambient = 0◦C (Experiment 2).

Due to the results indicating that FLIR offset depends on the temperature
recorded, further measurements were conducted. The results of Experiment
3 with three objects having different temperatures, a hot cup, the black plate
and a cold cup, are shown in Fig. 4.2a, 4.2b and 4.2c respectively. Measure-
ments by the FLIR are shown with the blue line, Optris with the orange
line and the sensor with the green line. In Fig. 4.2d the measurements by
both cameras from Fig. 4.2a, 4.2b and 4.2c are shown together. The two top
lines indicate the temperature of the hot cup (HC) measured by FLIR and
Optris while the two middle and bottom lines indicate the temperature of
the black plate (P) and of the cold cup (CC) respectively. It is confirmed in
Fig. 4.2d that the difference between the measurements of the two cameras
increases with lower temperature of the object measured.
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(a) Hot cup (b) Black plate

(c) Cold cup (d) All three objects

Figure 4.2: Temperature measurements from Experiment 3 in which the temper-
atures of a hot object, black plate and a cold object are displayed separately and
together.

Numerical values have been drawn out from Fig. 4.1a, 4.1b and 4.2b for
further analysis in Table 4.1. These are the values from the measurements of
constant temperature of the black plate which will illustrate the tendencies
in the measurements by FLIR and Optris cameras. An overview of the
maximum, mean and minimum temperature Tmax, Tm, Tmin, are shown in
columns 3, 4 and 5. The differences between the mean temperature of each
camera and the sensor, ∆Tm, are shown in column 6. The last column of
the table displays the biggest fluctuation Fmax for each camera, meaning the
biggest temperature rise or drop.
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Table 4.1: Overview of the numerical values recorded from Fig. 4.1a, 4.1b and
4.2b.

Experiment Device Tmax Tm Tmin |∆Tm| Fmax
[◦C] [◦C] [◦C] [◦C] [◦C]

1 Sensor 21.7 21.4 21.1
Fig. 4.1a Optris 22.8 22.4 21.9 1.0 0.290

FLIR 18.3 17.7 17.1 3.7 1.19

2 Sensor -0.299 -0.647 -0.819
Fig. 4.1b Optris -0.470 -0.800 -1.17 0.153 0.270

FLIR -10.7 -11.7 -13.5 11.1 1.50

3 Sensor 18.9 18.7 18.4
Fig. 4.2b Optris 19.6 19.3 19.1 0.6 0.180

FLIR 15.8 15.0 14.4 3.7 1.00

4.1.2 The new conversion factor cf

The results so far show that cf is hardly a constant. It is legitimate to think
that the ambient temperature also affects the measurement difference be-
tween the two cameras. That is why the results from the three mentioned
lab experiments were used to deduce an expression for the conversion factor
cf given the pixel values of the FLIR camera. Using Eq. 25 together with
temperature measurements of Optris as reference points and pixel values pv
of FLIR, conversion factor cf was calculated for every measurement point.
Conversion factor cf calculated in such way is shown in Fig. 4.3 as the func-
tion of the pixel values pv for FLIR with R2 = 0.996. The labels next to the
cloud of measurement points indicate the objects, plate (P), hot cup (HC),
cold cup (CC), from Experiments 1, 2 and 3. All the measurement points
were fitted by the curve of a fifth degree polynomial given by

cf = −8.476 · 10−19 · p5
v + 3.295 · 10−14 · p4

v − 5.114 · 10−10 · p3
v

+ 3.960 · 10−6 · p2
v − 0.015 · pv + 23.7. (31)
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Figure 4.3: The conversion factor cf described as a function of pixel values pv of
the FLIR camera.

The residual plot of the polynomial regression is shown in Fig. 4.4. Fig.
4.5 shows the temperature difference between the reference temperature, in
this case Optris, and the fitted values of FLIR as a function of the FLIR
pixel values. The same labels are used in these two figures as in Fig. 4.3 to
indicate which object and which experiment is represented by which cloud
of points.
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Figure 4.4: Residual plot for the data points shown in Fig. 4.3.

Figure 4.5: Difference between temperature measured by Optris and FLIR after
fitting with the fifth degree polynomial.

Fig. 4.6 shows plots of temperature measurements with both cameras of every
object from every experiment before and after fitting of FLIR measurements.
The green line indicates the FLIR temperature after it was fitted with the
fifth degree polynomial. Otherwise the data in the plots is the same for
Optris and FLIR before fitting as presented in Fig. 4.1a, 4.1b, 4.2a, 4.2b,
4.2c.
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(a) P (2): Black plate, Experiment 2 (b) CC (3): Cold cup, Experiment 3

(c) P (3): Black plate, Experiment 3 (d) P (1): Black plate, Experiment 1

(e) HC (3): Hot cup, Experiment 3

Figure 4.6: FLIR temperature obtained by the conversion factor cf = 0.04 given by
the producer (blue line), Optris temperature (orange line) and FLIR temperature
after fitting with the conversion factor cf given by the fifth degree polynomial (green
line).
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4.2 Emissivity correction and material clas-

sification with NDVI threshold, PCA, k-

means and MLC

The result showing the score image of the first principal component performed
on the stack of nine IR maps is displayed in Fig. 4.7. Only the first principal
component is displayed here because this is where the relevant variation in
temperature in different materials is visible. The image is also displayed with
the same labels for the different materials shown in Fig. 3.1. Considering the
fact that ”PCA is often used to bring out strong patterns in dataset” [37],
Fig. 4.7 ”reveals the dominant patterns of the surface temperature variations
during the day” [37]. Different colors indicate that few patterns with surface
temperature variations have been detected: vegetation in green, asphalt (1,
2b and 3) in yellow, asphalt (2a) and concrete (5) in light orange and marble
(4) in dark orange.

Figure 4.7: Score image of the first principal component of a PCA performed on
the stack of nine IR images from June 2017.

The NDVI map used for obtaining the emissivity map is displayed in Fig.
4.8. As it can be observed, the difference between NDVI values for asphalt,
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marble and concrete are very small having values between 0.1 and 0.2. The
biggest difference on the map is visible for vegetation having values of above
0.4 as opposed to the impervious materials. Due to the fact that it is diffi-
cult to differentiate between impervious materials based on the small range of
NDVI values from 0.1-0.2, an emissivity map was obtained with two classes
as illustrated in Fig. 4.9, one for vegetation and one for impervious materials.
The yellow color has the value 0.97 and the purple color the value 0.95. This
map was used with Eq. 16 in order to obtain the correct kinetic temperature
of the IR images.

Figure 4.8: Map of the NDVI values.
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Figure 4.9: Map of two emissivity values: 0.95 (purple) for impervious materials
and 0.97 (yellow) for vegetation.

The PCA, k-means and MLC were performed on the reflectance stack con-
taining blue, green, red, NIR and NDVI bands, as flowchart in Fig. 3.5
indicates. These statistical methods generated three maps displayed in Fig.
4.10 and 4.11. The labels indicating the types of materials from Fig. 3.1
are shown on these images as well. Fig. 4.10 shows the results of PCA and
k-means. Fig. 4.10a shows the score image of the first principal compo-
nent, while Fig. 4.10b shows the result of k-means classification in which
the data was grouped in eight classes. Color differences on both images
make it possible to identify vegetation, marble and asphalt. In Fig. 4.10a
there is no difference between the three different types of asphalt and con-
crete. However, image 4.10b differentiates between two types of asphalt, new
conventional and asphalt with cool coating on the one hand, and the old
conventional asphalt and concrete on the other hand.
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(a) The score image of the first principal component.

(b) K-means clustering with eight clusters.

Figure 4.10: Results of PCA and k-means clustering performed on a stack of five
bands: blue, green, red, NIR and NDVI.
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Fig. 4.11 shows the result of an attempt of supervised classification with
MLC with ten classes. Also here it is possible to identify marble, vegetation,
asphalt and some more classes as opposed to the two preceding methods such
as soil (black), water (dark blue) and tiles for the blind (turquoise). As op-
posed to the unsupervised classification, MLC seems to identify three types
of asphalt, but not correctly compared to Fig. 3.1.

An overview of the color patterns is shown in Table 4.2 which summerizes
the colors indicating asphalt, marble, concrete and vegetation visible in Fig.
4.7, 4.8, 4.10a, 4.10b and 4.11.

Figure 4.11: MLC with classes old asphalt(grey), asphalt with cool coating (brown),
new conventional asphalt (dark grey), marble (blue), tiles for the blind (turquoise),
dark blue (water), trees type 1 (green), trees type 2 (orange), grass (light green),
soil (black).
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Table 4.2: Color patterns for the five groups of materials in the study area: 1)
asphalt with cool coating, 2a), 2b) old conventional asphalt, 3) new conventional
asphalt, 4) marble, 5) concrete and vegetation

Material NDVI PCA PCA k-means MLC
IR reflectance

1
3
2a
2b
5
4

Vegetation

4.3 The maximum surface temperature Tsmax

This section presents the results of three different methods for predicting
surface temperature Ts. First of all, results based on ATI will be described
in Section 4.3.2. Secondly, linear regression based on Eq. 19 is used to pre-
dict the maximum surface temperature and to assess it with respect to TI
and albedo. This will be presented in Section 4.3.3. Finally, Section 4.3.4
presents the results with respect to parametrization of the maximum surface
temperature. Since analyzing these methods is based on weather conditions
and irradiation, this section will start with presenting the results of air tem-
perature, relative humidity and irradiation measurements for 12 April 2016
and 19-21 June 2017 in Section 4.3.1.

4.3.1 Weather conditions and solar irradiation

Incoming direct solar irradiation obtained from a weather station in Athens
with hourly resolution for all four days is shown in Fig. 4.12. The plot shows
clearly that the highest values were measured on 20 June 2017 (green line)
and lowest on 12 April 2016 (blue line).
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Figure 4.12: Incoming direct solar irradiation on 12 April and 19-20 June.

The procedure of creating irradiation maps based on the values displayed in
Fig. 4.12 was described in Section 3.2.2.4. Fig. 4.13 shows the accumulated
direct and diffuse irradiation [Wh/m2] over the study area until 01:00 pm for
12 April and 19-21 June in Fig. 4.13a and Fig. 4.13b-4.13d respectively. The
maps reflect the amount of accumulated irradiation for every day. The map
for 20 June is the lightest due to highest values of accumulated irradiation
and the one for 12 April is the darkest due to lowest values. The error in
measurements of direct irradiation from the weather station is not known.
The model used to predict diffuse irradiation per hour has an error of 10%
[54]. Considering error propagation, this is not a considerable value because
the highest values of diffuse irradiation predicated by [54] are approximately
100 W/m2. The error in Fig. 4.13 due to diffuse irradiation is thus around
1.0 %.
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(a) 12 April (b) 19 June

(c) 20 June (d) 21 June

Figure 4.13: Accumulated incoming direct and diffuse irradiation [Wh/m2] over
the study area.

Air temperature [◦C] and humidity [%] are shown in Fig. 4.14 for the three
days particularly relevant for the later analysis, 12 April, 19 June and 20
June. The plots are made based on the measurements conducted in the study
area. The systematic error in the measurements is 3.0% for the humidity and
0.5◦C for the air temperature [59] as indicated in the plots. They show that
the highest temperature was measured on 20 June and the lowest on 12 April.
Humidity was relatively low on all three days.
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(a) 12 April.

(b) 19 June.

(c) 20 June.

Figure 4.14: Air temperature and relative humidity for 12 April 2016, 19 June
2017 and 20 June 2017.
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Furthermore, the maximum air temperature [◦C] and rainfall [mm] in April
2016 and June 2017 prior to days when data collection was conducted are
shown in Fig. 4.15. According to data displayed in Fig. 4.15a [58], the air
temperature was above 20◦C in Athens for several days prior to 12 April,
more precisely as of 3 April 2016. There was no rain in Athens prior to 12
April as the figure indicates. Image 4.15b shows weather conditions, maxi-
mum air temperature [◦C] and rain fall [mm], in the middle of June 2017 for
the days around 19-21 June when the measurements were conducted. The
data was obtained from a weather station and so the error in the measure-
ments is not known.

(a) Air temperature [◦C] in April 2016. (b) Air temperature [◦C] and rainfall [mm]
for the days around 19-20 June 2017.

Figure 4.15: Weather data for April 2016 and middle of June 2017 showing air
temperature, rainfall and humidity.

4.3.2 Temperature, albedo and ATI maps

Maps of surface temperature from April 2016 are shown in Fig. 4.16 for
the temperature range [10, 55] ◦C. Image 4.16a shows a temperature map
from the early morning of 12 April, while 4.16b displays temperature around
12:30 pm on the same day. The uncertainty in the two maps is +/- 2◦C.
After the conversion of pixel values with the factor cf from Section 4.1 and
emissivity correction described in Section 4.2, temperature maps from 2017
were obtained as illustrated in Fig. 4.17. Every row in Fig. 4.17 contains
maps from one of the three days, 19 June, 20 June and 21 June. Every flying
session, morning (05:30 am and 10:30 am), midday (01:30 pm), afternoon
(05:00 pm) and evening (09:30 pm and 10:30 pm) are displayed column-wise.

49



The uncertainty in the maps will be assessed as a result of evaluation of the
Optris and FLIR cameras.

(a) 12 April, 06:30 am (b) 12 April, 12:30 pm

Figure 4.16: Temperature maps [◦C] from 12 April 2016.

The maps in Fig. 4.16 and 4.17 from the middle of the day show that the
asphalt with cool coating and the new conventional asphalt, labelled 1 and 3
in Fig. 3.1, have the highest temperature. Temperature of old conventional
asphalt and concrete, labelled 2a, 2b and 5, appear to be lower, while marble,
labelled 4, has the lowest temperature of the impervious materials. In all the
images in Fig. 4.16 and 4.17 it is visible that vegetation has considerably
lower temperature than the impervious materials. It should also be noted
that Fig. 4.17d shows higher temperature than Fig. 4.17c.
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With the temperature maps for each day as shown above, it was possible to
obtain three maps for 12 April, 19 June and 20 June showing the difference
between the maximum measured and minimum measured temperature ∆T
(Appendix A). These are displayed in Fig. 4.18a, 4.18b and 4.18c respectively
for the temperature range [10, 40] ◦C. The uncertainty in the map 4.18a is
+/-4.0◦C, while the uncertainty in maps 4.18b and 4.18c will be assessed as
a result of evaluation of the Optris and FLIR cameras. All three maps show
similar patterns in the distribution of ∆T according to the material-wise dis-
tribution of the surface temperature Ts described with respect to Fig. 4.16
and 4.17.

(a) 12 April (b) 19 June (c) 20 June

Figure 4.18: Maps illustrating the diurnal temperature difference e.g. the difference
in maximum and minimum measured temperature ∆T [◦C] on 12 April, 19 June
and 20 June.

According to Eq. 20, it is necessary to firstly obtain albedo values α in or-
der to obtain the ATI maps. Fig. 4.19 shows two albedo maps. The map
displayed in 4.19a was obtained from RGB and NIR images taken in April
2016 and 4.19b was obtained from images taken in June 2017 (Appendix
A). Both of them show a range of albedo values from 0.00 to 0.40. The un-
certainty in the albedo values calculated according to Eq. 27 is determined
with respect to ground measurements [46]. However, necessary ground data
measurements lack from both 2016 and 2017. The error introduced will be
dependent on the camera [37].
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(a) April 2016 (b) June 2017

Figure 4.19: Albedo maps obtained with blue, green, red and NIR channels accord-
ing to Eq. 27.

Based on the images in Fig. 4.18 and 4.19 as well as Eq. 20, ATI maps for
the three days, 12 April, 19 June and 20 June, could be obtained (Appendix
A). Using the normalized images from Fig. 4.13, the ATI maps [K−1] could
be scaled with respect to solar irradiation. Thus they were corrected for
irradiation effects and shadows as displayed in Fig. 4.20. In this way the
variation between maps in Fig. 4.20 can be interpreted due to other effects
than differences in irradiation due to shadows. The uncertainty in the ATI
maps and a more detailed analysis will be given in the next chapter.

(a) 12 April (b) 19 June (c) 20 June

Figure 4.20: Normalised ATI maps [K−1] with respect to solar irradiation.
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4.3.3 The model based on thermal inertia (TI)

An attempt has been made in Fig. 4.21 to illustrate the development of sur-
face temperature of asphalt (green line), marble (orange line) and concrete
(blue line) over the period of three days in June. Every of the nine points
on Fig. 4.21 is the average temperature value for that particular material
from a spot where the material received the most irradiation and where there
was as little shadow as possible. It is visible that asphalt and concrete have
the highest temperature followed by marble. The black line indicates the
incoming solar irradiation [W/m2] as shown also in Fig. 4.12 with one hour
resolution during those three days.

There are several interesting aspects about Fig. 4.21. It is visible on the
blue line that the attempt of finding concrete without shadow until 05:00 pm
on 19 June was not entirely successful as was anticipated during data process-
ing. From the temperature development on 19 June it is also visible that the
temperature measured at 01:30 pm is not the maximum daily temperature
of the materials. The temperature of sunlit areas probably peaks somewhere
between 01:00 pm and 05:00 pm. The figure also shows that the maximum
temperature is lagging behind the daily maximum solar irradiation.

Figure 4.21: Development of surface temperature for asphalt, concrete and marble
from 19 June till 21 June.

It is visible from Fig. 4.21 that the highest surface temperature Tsmax, which
is possible to obtain, comes from the measurements from midday. It is dis-
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played in Fig. 4.22 as a function of absorptivity according to Eq. 19. Fig.
4.22 illustrates the linear regression curves for the three materials where the
maximum surface temperature Tsmax is shown as the function of the absorbed
solar irradiation, (1−α)I0, for γ = 1. The slope of the curves thus represents
the term 1

P
√
ω

[K/W/m2]. Linear regression for γ = 1 means that the value
of thermal inertia P is given for the case when all the incoming radiation
that is absorbed by the material is not conducted through it.

Figure 4.22: Linear regression of Tsmax as a function of albedo and the peak of
incoming solar irradiation for γ = 1.

Using the slope of the curves, the values of thermal inertia P are calculated
and listed in Table 4.3 for asphalt, marble and concrete.

Table 4.3: Overview of the thermal inertia P values obtained from the slope ( 1
P
√
ω

)

of the linear regression curves in Fig. 4.22.

Material P [J m−2 K−1 s−1/2]
Asphalt 1 219
Marble 1 606

Concrete 2 072
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4.3.4 Parametrization of the maximum surface tem-
perature Tsmax

According to the method described in Section 3.2.2.6, sinusoidal curves could
be obtained for asphalt, concrete and marble. They are shown in the follow-
ing figure, Fig. 4.23. The green curve in Fig. 4.23a is based on parametriza-
tion by Lindberg et al [57]. The orange curves are based on the trial and
error method described in Section 3.2.2.6. The value of η was varied while b
was kept constant until the sinusoidal curves were fitted as well as possible
to the three measurement points from 20 June. The values for η and b were
then used to obtain the parametrization equation written on every of the
three figures in Fig. 4.23. The values of η obtained for asphalt, concrete and
marble are 0.37, 0.31 and 0.24 respectively.
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5. Discussion

This chapter presents an analysis of the results as displayed in Chapter 4.
To begin with, Section 5.1 will focus on the analysis of the laboratory re-
sults. Section 5.2 assesses the different classification methods of materials
from the study area. The attention is turned towards the subject of sur-
face temperature and more concretely, ATI, linear regression of Eq. 19 and
parametrization of the surface temperature in Section 5.3.

5.1 Laboratory experiments on FLIR V ue Pro

and Optris 640

Current section analysis results presented in Section 4.1. Section 5.1.1 as-
sesses both cameras based on the results from the laboratory experiments.
Section 5.1.2 elaborates on the meaning of the new conversion factor cf for
the processing of the images collected in June 2017.

5.1.1 Comparison between FLIR V ue Pro and Optris
640

Looking at Fig. 4.1a and 4.1b, it is possible to detect two obvious differences
between the FLIR and Optris cameras: the difference between their mean
measured temperatures Tm and the reference temperature and the difference
between the sudden change in temperature measured by each camera (fluc-
tuations). The deviations of the mean temperatures Tm from the reference
temperature as well as the fluctuations are also visible in Fig. 4.2b. The
fluctuations between the maximum and the minimum temperatures of each
cameras are, however, not that pronounced in Fig. 4.2a and 4.2c. An expla-
nation for that could be the rapid change in temperature of the cold and hot
objects compensating for the fluctuations in measurements, which are visible
when the object has a constant temperature (black plate). This is why only
Fig. 4.1a, 4.1b and 4.2b were chosen for this part of the analysis.
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It is visible from Table 4.1 that the mean temperature Tm in Fig. 4.1a mea-
sured by Optris deviated by 1.0◦C from the reference temperature, while
the mean temperature of FLIR deviated by 3.7◦C. In Fig. 4.1b, the devi-
ation in mean temperature is 0.153 ◦C for Optris and 11.1 ◦C for FLIR.
Lastly, in Fig. 4.2b, the differences between the mean temperature of the
two cameras with respect to sensor’s temperature are 0.6◦C for Optris and
3.7◦C for FLIR. The deviations for FLIR in Fig. 4.1a and 4.2b fall within
the uncertainty of +/- 5◦C, but the deviation in Fig. 4.1b is more than two
times as big as the uncertainty given by the producer.

These findings are in accordance with the findings by Optris GmbH. They
conducted tests on the two cameras by measuring the temperature of solar
panels with the cameras attached to a drone. The temperature of the pan-
els was 18.0◦C. Several measurement points were registered. Optris camera
was more accurate. The deviations between the reference temperature and
the temperature measured by FLIR was between 1.5-3.2◦C. The deviations
between Optris and the reference temperature were 0.8-1.1◦C. FLIR mea-
surements were below the reference temperature (Optris GmbH, private com-
munication) as is the case with measurements conducted in the laboratory
experiments described here.

Looking at the last column in Table 4.1, the differences between the two
cameras are again substantial. Temperature measured by Optris fluctu-
ated at the most 0.29 ◦C, while fluctuations recorded by FLIR are between
1.00 ◦C and 1.50 ◦C. Considering the FFC elaborated in Section 3.2.1, the
temperature-wise fluctuations are higher than the FFC which is 0.5◦C ac-
cording to the settings.

The analysis so far has shown that FLIR measurements deviate from the
reference temperature. These deviations do not fall within its systematic er-
ror e.g. they are greater than +/-5◦C. The deviations are dependent on the
temperature of the object. As opposed to FLIR, Optris is considerably re-
liable when compared to sensor’s reference temperature. Its deviations from
the reference temperature are 1.0◦C or less. The fluctuations in the measure-
ments by Optris are also considerably lower. This is why Optris was used
as reference temperature in Experiment 3 and in finding the new conversion
factor cf in Fig. 4.3.
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5.1.2 Effects of the regressed conversion factor cf on
the data from Athens

It is interesting to see what influence the regressed conversion factor cf has
on the fluctuations and how well it corrects the temperature of each object
in the measurement series used here.

Fig. 4.5 illustrates that the temperature difference between the measure-
ments conducted by Optris and fitted FLIR values are between -1.00◦C and
+1.50◦C. This is also illustrated in Fig. 4.6. At the same time, Fig. 4.6
captures what has happened with the fluctuations after fitting. It is visible
in the figures in the upper row, Fig. 4.6a and 4.6b, that the fluctuations
have been straightened up considerably at the same time as the new FLIR
temperature fits the Optris temperature very well. This is particularly the
case for Fig. 4.6a. The fluctuations in the middle row, e.g. in Fig. 4.6c and
4.6d, do not seem to be straightened at all, just moved to the level of the
temperature measured by Optris. In the case of the hot object, Fig. 4.6e,
there were no fluctuations in the first place and the green line seems to fit
nicely with the Optris line displayed in orange.

The reason for these observations can be found in how the points around
the line for the fifth degree polynomial are distributed in Fig. 4.3. It is
visible in Fig. 4.3 that the points in the upper left corner labelled P (2) are
distributed nicely along the line. The line seems to go along the middle value
of the points and in that way the curve fitting removes the fluctuations visible
in Fig. 4.1b. This is partly the case for the group of dots further down the
line marked with CC(3). The cloud of points labelled P (1&3) in the middle
of Fig. 4.3 shows, however, that the points are scattered far below and far
above the line. The fifth degree polynomial line goes across the cloud of
points and gives a constant conversion factor cf for all the points no matter
how far below or above the line they are. With a constant conversion factor,
all the FLIR measurements are replicated to the same spots with the same
fluctuations further up on the y-axis as indicated in Fig. 4.6c and 4.6d. Last
but not least, it seems that the line of the fifth degree polynomial is passing
through the average of the points labelled HC(3) to the far right.

Another way to see how well the regression fits the data is by looking at
the residual plot in Fig. 4.4. The cloud labaled P (2) seems to be randomly
scattered around the zero line. The same goes more or less for all the clouds
apart from P (1&3). There is a pattern visible in this part of the residual
plot which does not capture the variation in the data. The fact that this
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is a problematic data cloud for the regression curve coincides well with the
observations in Fig. 4.6c and 4.6d, which show that the FLIR measurements
are poorly fitted.

An evaluation of these observations with respect to the correction of the im-
ages collected in Athens in June 2017 is in order. The temperature differences
noted by inspection of some of the images of the same objects before they
were processed in Pix4D were up to 5.0◦C. As mentioned in Section 3.2.2.1,
such images were removed before processing in Pix4D since the overlap of
the images from June 2017 is 70-80%. However, the method of removing
the images by inspection is not very reliable. Based on the analysis of the
conversion factor and the possibility that not all images were removed before
processing, it is possible that the fluctuations of the FLIR measurements
have remained in the images covering the same objects. This is the case for
the pixel values which give an approximately constant conversion factor cf ,
e.g. in the range 7000-7500. It was also noted in Section 3.2.2.1 that Pix4D
software weights and averages each pixel value of the original images when
creating maps. There is therefore a reason to think that Pix4D straightens
these fluctuations to a certain extent. Apart from the fluctuations, FLIR
temperature seems to have been transformed to the reference temperature
with the fifth degree polynomial quite well.

Nevertheless, more measurements in the lab and particularly with the drone,
with which the camera would operate under airflow, are necessary. A con-
crete improvement with the measurements done so far would be to leave the
hot object and the cold object to gradually cool down and warm up in order
for the measurement points to be more spread out. This would have lead
to a better regression and a more accurate conversion factor for FLIR pixel
values. Also more test data with the known temperature on which the cur-
rent conversion factor cf could be tested is necessary.
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5.2 Material classification with NDVI thresh-

old, PCA, k-means and MLC

The results in Section 4.2 indicate that NDVI-threshold as well as PCA, k-
means and MLC performed on the IR stack and the stack of five channels
of reflectance maps show somewhat different potential to identify different
materials.

Table 4.2, column 2, shows color distribution from the NDVI image in Fig.
4.8. It is visible that there is no clear difference between the classes of the
five impervious materials. They have the same colors or a mixture of two
colors. This indicates that the different materials have the same ranges of
NDVI-values and that there are different ranges of values mixed in the areas
with the same type of material. The only clear difference visible on the NDVI
map is between the impervious materials and vegetation.

The color distribution from the score image of the first principal compo-
nent of the PCA performed on the IR stack, Fig. 4.7, is shown in column
3. Based on temperature variations recorded there, it can be said that the
temperature variation of vegetation, marble, asphalt and asphalt/concrete
can be identified. The analysis cannot separate the temperature change in
concrete from the old conventional asphalt in 2a. The temperature variation
in the old conventional asphalt (2a and 2b) is not clearly distinguished since
these two spots are marked with two different colors. At the same time, the
temperature variation in asphalt with cool coating (1) and new conventional
asphalt (3) seem to be the same. Thus, the variation in the asphalt does not
entirely correspond to the numbers marked in Fig. 3.1.

The score image of the first principal component of the reflectance stack
shown in Fig. 4.10a, summarized in column 4, displays similar results as the
NDVI map. Vegetation is clearly visible with blue color and marble with
light green. However, there do not seem to be any clear differences between
spots marked with numbers 1, 2a, 2b, 3 and 5. Looking at the image 4.10a,
one could argue that the color at spots 2a and 5 is somewhat lighter than
the color in spots 2b and 3. However, those differences are hard to detect.

On the other hand, color patterns from Fig. 4.10b, summarized in column
5, are similar as in column 3. K-means clustering has managed to differ-
entiate between vegetation, marble, asphalt and asphalt/concrete. K-means
has clustered old conventional asphalt (2a) together with concrete (5) as op-
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posed to asphalt with cool coating (1), new conventional asphalt (3) and old
conventional asphalt (2b). This resembles the tendencies in column 3 where
PCA has detected variations in temperature according to the same division.

The attempt of supervised classification on the stack of five bands in Fig.
4.11, summarized in column 6, displays results comparable to the classifica-
tion results discussed above. Marble and vegetation are clearly distinctive.
There are three types of asphalt visible, but again they are not entirely in ac-
cordance with the known information about asphalt. It seems that the light
grey color is indicative of the old conventional asphalt (2a and 2b), while
parts of the streets with the cool coating (1) and new conventional asphalt
(3) are both marked with dark grey and brown. Attempts have been made
to classify concrete as a separate class, but without success. The difference
between this classification method and the unsupervised classification meth-
ods mentioned above is that more classes have been identified such as soil
(black), water (dark blue), tiles for the blind (turquoise), grass (light green)
and two types of trees (orange and dark green). However, the types of trees
identified here as two classes cannot be validated.

There are two similarities visible in all five columns: vegetation is clearly
identified and concrete is not identified as separate class in any of them.
Apart from this, it can be said that the variations detected with PCA on
the IR stack, k-means clustering and MLC on the reflectance stack, columns
3, 5, 6 in Table 4.2, give largely similar results as opposed to the NDVI
classification and PCA performed on the reflectance stack, columns 2 and 4.
The results in columns 2 and 4 do not show differences between impervious
materials, which the results in columns 3, 5 and 6 indicate. The achieve-
ments and, at the same time, limitations in columns 3, 5 and 6 are that all
three classification methods characterized new conventional asphalt, asphalt
with cool coating and old conventional asphalt (2b) on the one hand, and old
conventional asphalt (2a) and concrete on the other hand. Inspecting Fig.
3.6a and 3.6b, it is visible that old conventional asphalt has lighter color.
The asphalt in the area is affected by ”weathering effects and degradation
of the streets due to the high traffic” [38]. Old conventional asphalt in po-
sition 2a and concrete in position 5 seem to have the same color e.g. same
reflectance. It can therefore be deduced that the classification is affected by
the degradation of the urban surfaces.

The above discussed results imply that the classification methods could be
used in constructing more detailed emissivity maps than the one constructed
in Fig. 4.9 based only on the NDVI map. As noted in Section 4.2, the NDVI
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map in Fig. 4.8 does not show any differences between marble, concrete and
the three asphalt types. This limitation is in accordance with the NDVI maps
created during an earlier investigation of the study area [37]. It is also con-
firmed by Oltra-Carro et al stating that ”the NDVI threshold method does
not appear to be capable to distinguish between different artificial surfaces”
[50]. A more detailed identification is possible with k-means clustering and
MLC on a reflectance stack of five bands as well as with PCA on IR stack.
This could result in more emissivity classes and a more precise emissivity
correction.

5.3 The maximum surface temperature Tsmax

This section analyses the results of Section 4.3. First of all, the potential
of ATI will be analyzed in obtaining predictions of surface temperature in
Section 5.3.1. Secondly, Eq. 19 is analyzed for its possibilities in predicting
maximum surface temperature with respect to TI and albedo in Section 5.3.2.
Finally, parametrization of the maximum surface temperature Tsmax will be
discussed in Section 5.3.3.

5.3.1 The model of apparent thermal inertia (ATI)

The following section analyses the ATI maps in Fig. 4.20. The first part of
the analysis focuses on the ATI maps with respect to the weather conditions.
The second part assess the maps with respect to the five material types and
the third part draws the conclusion on this model.

5.3.1.1 Comparison of the temperature and ATI maps based on
the weather conditions

As mentioned in Section 4.3.1, both Fig. 4.12 and 4.13 show that the study
area experienced the highest irradiation on 20 June, lower on 19 June and
the lowest on 12 April. The air temperatures measured on 12 April and
20 June in Fig. 4.14 and 4.15 reflect the amount of incoming irradiation
on these two days. The measured air temperature is the lowest 12 April
and the highest 20 June. From Fig. 4.15 it is visible that there was no
rain in April prior to 12 April and that there were considerable rainfalls in
the middle of June 2017 as late as one day before the data collection started.
It is thus expected that the ground in the study area was still wet on 19 June.
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Contrasting Fig. 4.14 and Fig. 4.15, there seems to be discrepancy in them
with respect to the measured maximum air temperature on 12 April, 19 June
and 20 June. The temperatures shown in Fig. 4.15 are considerably lower
than the maximum air temperature shown in Fig. 4.14. The reason for that
could be in the sources of the air temperature data. The values displayed in
Fig. 4.14 were collected in the study area. The values shown in Fig. 4.15
show average values obtained from a weather station and from an online
weather service [58]. In that sense Fig. 4.14 might show a more realistic
picture of the study area.

Surface temperature Ts, diurnal temperature difference ∆T and ATI maps re-
flect the observed tendencies in irradiation and air temperature. Even though
the irradiation on 12 April was the lowest out of four days, the surface tem-
perature Ts in the middle of the day on 12 April, Fig. 4.16b, reached 50◦C the
same way as on 20 June, Fig. 4.17g. Because of high surface temperatures
during these two days, Fig. 4.18a and 4.18c show high temperature difference
∆T . The explanation for these observations for 12 April might thus not be
in the irradiation for that particular day but in the sunny weather conditions
with air temperature above 20◦C since 3 April. It is plausible to think that
the impervious surfaces experienced constant warming under continuous so-
lar irradiation for days prior to 12 April. The weather tendencies prior to
19 June are also reflected in Fig. 4.17a-4.17e and 4.18b. Even though Fig.
4.13 shows that irradiation on 19 June was higher than on 12 April, several
days with rainfall prior to 19 June are reflected in relatively low temperature
differences on that day. Correspondingly, due to relationship of inverse pro-
portionality, ATI maps as a whole in Fig. 4.20a and 4.20c have lower values
compared to the values in Fig. 4.20b.

The accuracy of these maps has to be assessed in the light of the results
discussed in Section 5.1. Figure 4.6 indicates that FLIR temperature in the
maps is corrected to the reference level measured by Optris camera, but at
the same time it seems that the fluctuations remain to a certain extent. At
the same time, as discussed in reference to Fig. 4.5, it does not seem that the
fluctuations go beyond 1.5◦C, which is within the uncertainty of the Optris
camera. That is why the uncertainty of +/- 2◦C will be considered valid
for the images of surface temperature Ts from 2017 in the same way as for
those taken in 2016. The uncertainty in the diurnal temperature difference
∆T maps is +/- 4◦C. The quantitative values of error in ATI maps will be
addressed in Section 5.3.1.2.
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Similarity between all three ATI maps in Fig. 4.20 is manifested in the
ATI-values of vegetation being higher than the values of impervious materi-
als. This is to be expected since the variation in daily temperature difference
is considerably smaller for vegetation compared to impervious materials. ATI
is, however, sensitive to measurements in regions with lower diurnal temper-
ature difference [28] because of propagation of errors through

δATI

|ATI|
=
δα

|α|
+
δ∆T

|∆T |
(32)

where δATI is the uncertainty on apparent thermal inertia, δα is uncertainty
on albedo and δ∆T is uncertainty on diurnal temperature difference. It is
visible from Eq. 32 that a higher uncertainty in ATI is given by smaller diur-
nal temperature differences ∆T [28] as well as smaller albedo. Based on this,
it can be argued that the ATI map from 19 June also has higher uncertainty
than the maps from 12 April and 20 June.

According to Price, ”apparent thermal inertia should not be used in regions
having variability in surface moisture” [60]. However, as it was mentioned in
Chapter 2, ATI has been widely used in the recent years analyzing surfaces
with variable moisture with the aim of determining water content in soil.
The reason is that ”ATI represents the temporal and spatial variability of
soil and canopy moisture” [20], [29]. ATI values reflect the moisture content
because they exhibit lower diurnal temperature fluctuation. An increasing
soil moisture content of the surface leads to a proportional increase in TI and
reduction in fluctuations of the daily surface temperature [29].

Moisture, however, is not a scope of present study. It is also not a param-
eter of weather conditions of a particular day which could help in assessing
the surface temperature in the long term. It reflects the effects of weather
conditions from the days prior to 19 June which remained in the study area.
Thus, the map from 19 June will not be taken in the further analysis when
assessing the values of ATI for the different materials under dry conditions.

5.3.1.2 Material-wise comparison of the ATI maps of dry surfaces

It is considered here as plausible to assume that the materials dried until 20
June with the whole day of dry weather on 19 June. It was also discussed
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earlier that the weather prior to 12 April was stable, dry and sunny. Thus,
it is assumed that ATI maps from 12 April and 20 June are showing dry
surfaces. Together with the maps of diurnal temperature difference ∆T and
the albedo maps, they will be analyzed with respect to the different materials
as labelled in Fig. 3.1.

Inspecting the maps material-wise, Fig. 4.18a and 4.18c show that the new
conventional asphalt and asphalt with cool coating have the highest tem-
perature differences, followed by old conventional asphalt and concrete and
finally marble. This material-wise variation in temperature was also cap-
tured in the score image of the first principal component in Fig. 4.7. Thus
it can be said that the variations in temperature of the impervious materials
can be broadly divided into these three groups. The overview of the diur-
nal temperature differences ∆T and its relative error is listed in Table 5.1.
The temperature is decreasing from the top to the bottom of the table and
increasing from left to right.

Table 5.1: Overview of the ∆T values for different materials as shown in Fig.
4.18.

Material 12 April 12 April 20 June 20 June
∆T [◦C] δ∆T

|∆T | [%] ∆T [◦C] δ∆T
|∆T | [%]

Asphalt with cool coating (1) 25-33 12-16 33-35 11-12
New conventional asphalt (3) 29-33 12-14 33-35 11-12

Old conventional asphalt (2a, 2b) 25-30 13-16 27-32 12-15
Concrete (5) 27-30 13-15 27-28 14-15
Marble (4) 18-22 18-22 24-28 14-17

The same type of overview has been made for albedo values in Table 5.2
based on the observations made in Fig. 4.19. As mentioned earlier, the error
in the albedo maps is not possible to assess so Table 5.2 does not contain
that information. Values from the two albedo images show that the albedo
from 2016 is generally somewhat lower than the albedo recorded in 2017 for
all three types of asphalt and concrete. The values for marble are somewhat
larger. It is difficult to assess what the reason for that is partly because there
is no available information about the error in the albedo maps.

However, this difference between albedo values between 4.19a and 4.19b is
plausible for conventional asphalt whose albedo is very low in the beginning,
but increases with time due to weathering, ageing and exposure [35], [36],
[37], [38], [61]. Figure 4.19b is created based on images taken one year after
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the images taken for Fig. 4.19a. It is thus possible that these effects are
visible in position 2a, 2b and 3. On the contrary, the albedo of concrete and
asphalt with cool coating is high in the beginning and decreases with time
due to same reasons [37], [38], [62], [63]. It is therefore not plausible that the
albedo in the map from 2017 should be higher in positions 1 and 5.

Assessing the albedo values from top to bottom, e.g. from lowest to high-
est values, and comparing them with values in Table 5.1, it is visible that
the biggest differences in diurnal temperature occur in the places where the
albedo values are the lowest. Thus, the biggest absorption of solar irradi-
ation happens in asphalt with cool coating and new conventional asphalt
followed by the old conventional asphalt, concrete and marble. This is in
accordance with studies showing that maximum surface temperature Tsmax
increases with absorptivity (1− α) [26], [64], [65].

Table 5.2: Overview of the albedo α values for different materials as shown in Fig.
4.19.

Material 12 April 20 June
α α

Asphalt with cool coating (1) 0.16-0.19 0.22-0.26
New conventional asphalt (3) 0.17-0.21 0.24-0.27

Old conventional asphalt (2a, 2b) 0.21-0.25 0.27-0.31
Concrete (5) 0.28-0.31 0.31-0.32
Marble (4) 0.35-0.43 0.35-0.19

Figure 5.1 shows the same ATI maps from 12 April and 20 June from Fig.
4.20 with increased contrast [0.03, 0.06] [K−1] so that the variations in the
study area are more pronounced. The ATI values for vegetation are beyond
0.06 [K−1] and this is the reason why the color shows saturation on the im-
ages. An overview of the values from these two maps is displayed in Table
5.3. Since the information about error in the albedo maps is lacking, the
relative error listed in Table 5.1 applies also to ATI. Even though it does
not provide the complete picture about how large the error is, it gives an
impression of the order of magnitude of the error which can be expected in
the ATI maps.
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(a) 12 April (b) 20 June

Figure 5.1: Increased contrast on the normalised ATI maps [K−1] with respect to
solar irradiation for 12 April and 20 June.

Table 5.3: Overview of the ATI values for different materials as shown in Fig.
5.1.

Material 12 April 20 June
ATI [K−1] ATI [K−1]

Asphalt with cool coating (1) 0.030-0.035 0.027-0.033
New conventional asphalt (3) 0.036-0.038 0.031-0.033

Old conventional asphalt (2a, 2b) 0.037-0.042 0.030-0.038
Concrete (5) 0.034-0.036 0.036-0.038
Marble (4) 0.039-0.045 0.033-0.037

Due to the inverse proportional relationship between diurnal temperature
difference ∆T and ATI one might, by looking at Eq. 20, expect that the
values in the ATI-maps in Fig. 4.20 would be exactly the inverse from the
values in the ∆T -maps [66]. However, this ”is a rather simplistic observation
because there are some subtle deviations for specific features due to albedo
variations” [66]. Thus, the albedo variations shown in Fig. 4.19 can give
an explanation why the ATI values of all the impervious materials do not
reflect the same material-wise patterns in the diurnal temperature difference
∆T maps. The only visible difference on the material level in Fig. 5.1a and
5.1b is marble’s higher ATI values compared to asphalt’s. Marble is colored
green and blue compared to asphalt which is at certain places colored pur-
ple. Marble has the highest albedo and the lowest ∆T , while it is exactly the
opposite for asphalt. It is also important to mention that marble has higher
thermal conductivity than asphalt. The difference in temperature between
them can be an effect of conductivity as well [37], [67].
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Nevertheless, even though the inverse proportionality is not entirely reflected
in each material on the ATI maps due to albedo values, the two ATI maps
and Table 5.3 show that the values on 20 June are somewhat lower than on
12 April across all the materials. The colors dominating the ATI map from
12 June are green and blue. The ATI map from 20 June is predominantly
blue and purple. The same tendency is recorded in Table 5.1 showing some-
what higher values of ∆T on 20 June as opposed to 12 April.

5.3.1.3 The ATI model

The analysis so far has confirmed prior studies according to which the ATI
model captures temperature differences between dry and moist surfaces.
When modelling surface temperature, it is necessary to bear in mind this
parameter. The relation between the maps is in this case different as op-
posed to relation between the maps of dry surfaces (Appendix A).

ATI maps also seem to capture the difference in the diurnal temperature vari-
ations between dry surfaces. However, no clear indications about material-
wise differences have been noted. There could be two reasons for that. One
reason is the relatively high error in ATI maps due to error propagation. It
was listed in Table 5.1 that the error in ∆T maps varies between 11-22%.
The error in the ATI maps is at least that high. Another reason could be the
differences observed in the two albedo maps in Fig. 4.19a and 4.19b. A more
detailed analysis of the background for the differences of the albedo maps
would be necessary. Keeping albedo values constant in combination with a
bigger number of ATI maps, meaning data collection performed over several
days, might give a possibility to understand the surface temperature devel-
opment of a particular material from day to day based on the ATI model.

5.3.2 The model based on thermal inertia (TI)

Fig. 4.21 shows that it is neither possible to conclude when the phase shift
of the temperature curves compared to the incoming irradiation takes place,
nor when the maximum surface temperature occurs for the different mate-
rials. Nevertheless, an attempt has been made using the approximation to
the maximum surface temperature from midday measurements to obtain a
linear regression model based on Eq. 19. Fig. 4.22 shows successfully that
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the maximum surface temperature Tsmax is a linear function of materials’
absorptivity (1 − α)I0. This is confirmed by earlier studies [26], [64], [65],
as mentioned in the last section. The measurement points of the material
which has the highest temperature (asphalt) is placed furthest to the right
indicating that the absorption is the greatest. The temperature of the mate-
rial which has the lowest temperature (marble) also has the lowest absorption.

The slopes of the functions show that the relationship between the maxi-
mum surface temperature Tsmax and the reciprocal thermal inertia P is linear
[26]. The slopes contain the information about the thermal inertia P and
thus about the thermal resistance of the material as shown in Table 4.3. A
steeper slope indicates a higher increase in the maximum daily surface tem-
perature of a material per watt per square meter of absorbed power which
again indicates a lower resistance to heating. The material with the steepest
slope and lowest TI is asphalt, followed by marble and lastly concrete. This
indicates that concrete’s maximum diurnal temperature increases less than
marble’s per amount absorbed energy. Even though it is difficult to validate
the values for TI obtained here because urban materials have a wide range
of different values (Niki Gaitani, private communication), it appears at least
that values for asphalt and concrete might be in the correct order of magni-
tude. The value for TI of asphalt found in the literature is 1 205 J m−2 K−1

s−1/2 which is in very good accordance with the value obtained here. The
value for concrete is 1 785 J m−2 K−1 s−1/2 [24].

In addition to the absorptivity and the slope, the maximum surface tem-
perature of a material seems to be highly influenced by the regression con-
stant crossing the y-axis. The regression constants in all three cases have
considerable values: -24.3 K for asphalt, -7.24 K for marble and +6.16 K for
concrete. The regression constant can be interpreted as the temperature of
the material when there is no absorptivity. Looking at the variables on the
x-axis this could be the case either when the material has perfect reflection
or when there is no solar irradiation. For the data here it could be inter-
preted as the predicted starting temperature of a particular material before
the sunrise. Even though the numbers are not realistic particularly for the
time of the year when the measurements were conducted, the relative differ-
ences between the numbers could be indicative of the starting temperature
of the materials. There are indications in the data from April and June that
marble’s temperature in the morning is lower than concrete’s temperature.

As mentioned above, Fig. 4.22 is indicative of albedo’s important role in
the tendencies observed among the three materials as far as maximum sur-
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face temperature is concerned. It is understood that due to low albedo, e.g.
high absorptivity, a material will always absorb more than a material with
high albedo, also when solar radiation is lower. Looking at Fig. 4.22, the de-
cline in irradiation has to be considerable in order for the maximum surface
temperature of asphalt to fall considerably. This observation is supported
by Taha who claims that ”[t]he contribution of lower albedos to heat islands
can be significant” [36]. At the same time, Qin argues that ”increasing the
thermal inertia is less effective to develop cool pavements than increasing the
albedo” [26]. Figure 4.22 seems to confirm this particularly with respect to
concrete and marble. The slopes of the described curves indicate how much
the temperature will rise given an amount of absorbed energy. However, it
is the albedo which governs how much energy will be absorbed at all. In the
words of Tramutoli et al ”[t]he quantity of heat absorbed by the surface [...]
determines an increase of the surface temperature and the amount of such
increase (∆T ), depends on thermal inertia” [20].

In order to use the presented curves as predictors of the maximum surface
temperature, validation studies are necessary to further confirm or contradict
the dynamics described here. The observations here indicate that marble has
a higher TI than concrete and that its temperature thus might increase more
given the same irradiation. On the other hand, marble is the material which
has the highest conductivity of the three materials examined [37], [67]. Fur-
ther investigation could also bring this variable into the scope of analysis.
More investigation is also necessary because the maximum temperature used
here approximates the highest daily temperature. Measurements carried out
with higher time resolution are therefore necessary to find as accurately as
possible when the maximum daily temperature occurs. Measurements over
several days should also be conducted in order to obtain more points for a
more accurate regression. Furthermore, a bigger insight into the error prop-
agation in the method calculating the albedo is also necessary.

5.3.3 Parametrization of the maximum surface tem-
perature Tsmax

Parametrizing surface temperature with maximum solar elevation and tem-
perature difference between the surface Ts and air temperature Ta seems to
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give plausible sinusoidal curves with respect to the measurement points from
20 June.

The author is not familiar with any parametrization attempts of concrete
and marble and therefore it is not possible to compare the parametrization
formulas obtained in Fig. 4.23b and 4.23c. Comparing the values for η ob-
tained for concrete and marble is indicative of their maximum temperatures.
Value of η for concrete is higher than for marble confirming the fact that
concrete’s maximum daily temperature was higher than marble’s.

However, parametrization expression derived by Lindberg et al [57] can be
compared with the result of the trial and error method performed here. The
two parametrization expressions deviate from one another in two respects.
The first difference is the amplitude which is given by the variable η. The
value 0.58 seems to give a too high amplitude for the sinus curve with re-
spect to the measurement points. Secondly, the green curve seems to have a
smaller period compared to the orange one. The reason for this is the value
b. It seems therefore that the points are better fitted with a curve which has
a larger period, a larger variable for b, and smaller amplitude, e.g. smaller η.

The reasons why the parametrization suggested by Lindberg et al [57] does
not seem to fit the measurement points so well could be simply because the
asphalt used to pave the streets in Athens is not the same as the one which
temperature measurements were carried out on in [57]. There is no infor-
mation about the composition of the two types of asphalt. Furthermore,
the parametrization model does not take into account neither the TI nor
the albedo. It would be interesting to know these material characteristics
with respect to the two asphalt types. This knowledge might affect or give
explanation about values η and b. Another limitation with the presented
analysis is that the time of the day when the maximum surface temperature
occurs on the materials is not known from the data gathered in June 2017.
This goes for both asphalt, concrete and marble. Apart from the necessity
to collect more information about the materials parametrized, the method of
predicting surface temperature using the maximum solar elevation and the
air temperature seems to show potential. In addition, validation and fur-
ther investigation is necessary to confirm or contradict the discussed results.
Measurements of the surface temperature and air temperature should be con-
ducted over a longer period of time in order to validate the parametrization
expressions for the three materials.
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5.4 Overview

Analysis concerning FLIR and Optris cameras showed that the conversion
factor cf calculated was successful in eliminating the deviation of the mea-
surements by the FLIR camera with respect to the reference temperature.
However, test data is needed to confirm that this is the case for data not
used in the model. The conversion factor cf was also successful in elimi-
nating fluctuations to a certain extent depending on the temperature of the
object. The fluctuations when measuring temperature of objects similar to
the one of the black plate, around 20◦C, will most likely not be removed.
The pixel values in the maps produced in Pix4D are already averaged by the
software, so in that way fluctuations from one image to another of the same
object might have been eliminated to a certain extent. More measurements
are necessary both in the laboratory and with the cameras connected to the
drone in order to have data from a wider range of situations and conditions
which would give a more accurate conversion factor cf .

Section 5.2 dealt with the analysis of the classification methods by PCA,
k-means and MLC of the materials in the study area based on the stack of
thermal maps and a stack of reflectance maps. Even though the classifica-
tion methods did not manage to separate all five material groups from each
other, they showed greater potential in recognizing classes than the threshold
method based on the NDVI map. Thus, the achievement of these methods
is that they could be used to obtain a more detailed and accurate emissivity
maps with more classes for a more accurate temperature correction of IR
maps.

In Section 5.3.1.1 it was confirmed that ATI maps can be used as an in-
dication of surface moisture. Moisture as additional parameter would then
have to be taken into consideration when predicting surface temperature.
ATI maps also seem to capture the overall differences in the diurnal temper-
ature on dry surfaces. However, it is difficult to get clear indications about
differences on material level. It is important to bear in mind that the error
in the ATI maps is relatively high, also without taking into consideration
the error from the albedo maps as was the case in this thesis. More ATI
maps based on data collection performed over several days might give better
indications of the relationships between them.

Section 5.3.2 identifies linear regression based on Eq. 19 as method that
shows potential for predicting maximum surface temperature given the albedo
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and the daily maximum solar irradiation. The linearly regressed curves for
asphalt, concrete and marble show the important role of albedo for the sur-
face temperature which is also confirmed in the literature. Albedo seems to
govern how much heat will be absorbed and thus the increase in tempera-
ture. The slope of the regressed curves, e.g. TI, gives an indication of the
amount of such increase. A validation of the dynamics observed in Fig. 4.22
should be conducted. This is also necessary because the maximum surface
temperature of the materials is not known.

Section 5.3.3 concludes that parametrization of asphalt, concrete and marble
shows potential. However, measurements of the surface temperature and air
temperature should be conducted over a longer period of time in order to
validate the parametrization expressions found by trial and error method.
Comparison of the parametrization obtained for asphalt with the expression
found by Lindberg et al [57], indicates deviations both in the amplitude and
the period of the sinusoidal curve. The cause of this could simply be the
differences in asphalt in Athens and the one which the measurements were
conducted on in [57]. Ideally, detailed material characteristics should be
known.
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6. Conclusion

The present study sought to analyze and evaluate methods which could be
suitable in predicting developments of the maximum surface temperature of
different materials in Municipality of Ymittos, Athens. The ultimate goal
was to provide a bigger insight into how surface temperature develops. The
reason is that it is the surface temperature in urban materials which greatly
contributes to additional warming of cities, UHI.

The study used remote sensing methods, more concretely high resolution
images in VIS, NIR and IR bands collected with a UAV during two study
trips in April 2016 and June 2017. Since two different IR cameras were used,
it was first necessary to assess their performance. It has been found that
the FLIR camera used in June 2017 is not as reliable as Optris used in
April 2016 due to large measurement offset and considerable fluctuations in
measurement. A conversion factor was found for this offset which partly also
corrects the fluctuations. More test data is needed with known surface tem-
perature. Further investigation is necessary with data collected in different
settings as well as from drones with both cameras for a more accurate con-
version factor.

Data analysis based on remote sensing methods requires that the user is
able to manipulate the images in order to, for example, perform corrections.
Classifying different groups of pixels is an important segment of analysis.
PCA and statistical methods for (un)supervised classification k-means clus-
tering and MLC, were tested on the study area. Their performance showed
potential. They were able to provide better results compared to classification
based on NDVI threshold.

Based on the findings from these two parts of data analysis, it was possi-
ble to obtain maps of apparent thermal inertia from corrected temperature
and albedo maps. Temperature maps were also used for parametrization
of surface temperature as well as for linear regression of surface temperature
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based on materials’ absorptivity. Assessments have been made on these three
methods as to how they can be used in order to predict surface temperature
of different materials. ATI model captures temperature differences based on
moisture very well. At the same time, it gives indications about temperature
differences on dry surfaces. A more detailed analysis with bigger temporal
resolution would be necessary in order to assess the full potential of the ATI
maps in predicting surface temperature. Knowledge of error propagation is
also vital in this respect.

The linear regression model using the albedo and TI is a promising model
which gives interesting insights into surface temperature. Literature confirms
that lower albedo is decisive in decreasing surface temperature of urban ma-
terials. The interplay of albedo and TI here is an interesting subject to study.
This is due to the fact that TI indicates how much the surface temperature
will rise given a particular amount of absorbed irradiation.

Last but not least, parametrization of surface temperature knowing the max-
imum solar elevation and the air temperature shows potential in predicting
maximum surface temperature. Validation studies of the parametrization
expressions found in this study are necessary. In addition, it would be inter-
esting to evaluate and combine the role of albedo and TI with respect to this
methodology.
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