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IV Abstract 

Abstract: 
 

The mutualistic relationship between humans and our gut microbiota is essential in immune 

development. The microbial colonization of the human GI tract starts prenatal and continues 

with facultative and strict anaerobes as we age, due to gut environmental changes and diet. 

The bacteria in the gut microbiota utilize indigestible sugars and synthesize health-beneficial 

substrates, such as the short chain fatty acids (SCFAs). SCFAs are organic acids which act as 

a link between the gut microbiota and the maturation of our immune system. To investigate 

SCFAs’ effect on our health, analysis of aging children might be key to prevent 

immunological disorders developing early life. Therefore, the aim of this study was to 

determine the microbial composition, short chain fatty acids composition and how these 

correlates in children their first year of life.  

 

Fecal samples from 100 mothers and their children were received from the cohort study 

Prevent Atopic Dermatitis and Allergies (PreventADALL). The longitudinal sampling of 

children represented newborns, 3 months, 6 months and 12 months of age. The gut microbiota 

composition was determined by sequencing, while SCFAs composition was detected by gas 

chromatography. 

 

The majority of the microbial composition as the children aged corresponded with earlier 

studies. The SCFAs composition changed significantly as the child aged in correlation with 

the microbial shifts observed. Both microbial and SCFAs composition of the children 

increased in similarity to their mothers as they aged. Clostridium represented 66% of the gut 

microbiota at the age of 12-months with a positive correlation to butyrate. The increased 

proportion of propionate in the same age group was positively correlated to Bacteroidales. 

These positive correlations strengthen recent knowledge of these bacteria being important 

SCFA producers in the gut microbiota. Between 6 and 12 months, the shift from an infant- to 

an adult-like gut microbiota and SCFAs composition might be initiated and influenced by 

weaning and introduction to solid foods. In conclusion, this work lays the foundation for 

further research investigating the immunological effects of SCFAs.   



 
V Sammendrag 

Sammendrag:  
 

Det mutualistiske forholdet mellom mennesker og vår tarmmikrobiota er essensielt for 

immunutvikling. Den mikrobielle koloniseringen av menneskets mage-tarmkanal starter 

prenatal og fortsetter med fakultative og strikt anaerober som et resultat av forandringer i 

tarmmiljøet og diett. Bakteriene i tarmmikrobiotaen bryter ned ufordøyde sukkermolekyler og 

syntetiserer helsefremmende substrater, som kortkjedete fettsyrer. Kortkjedete fettsyrer er 

organiske syrer som virker som et bindeledd mellom tarmmikrobiotaen og utviklingen av vårt 

eget immunforsvar. For å videre undersøke kortkjedete fettsyrers effekt på vår helse, kan 

analyser av barn under oppvekst være en nøkkel for å forhindre utvikling av autoimmune 

sykdommer tidlig i livet. Målet for denne studien er å analysere den mikrobielle 

sammensetningen, kortkjedete fettsyre sammensetningen og hvordan disse korrelerer i barn 

under oppvekst.  

 

Avføringsprøver fra 100 mødre og deres barn ble mottatt fra kohort studien Prevent Atopic 

Dermatitis and Allergies (PreventADALL). Den langsgående prøvetakingen av barn 

representerte nyfødte, 3 måneder, 6 måneder og 12 måneder gamle. Tarmmikrobiota 

sammensetningen ble fastslått ved hjelp av sekvensering, mens den kortkjedete 

fettsyresammensetningen ble funnet ved hjelp av gass kromatografi.  

 

Majoriteten av den mikrobielle sammensetningen under oppvekst korresponderte med 

tidligere studier. Den kortkjedete fettsyre profilen viste signifikante forandringer i korrelasjon 

med de mikrobielle skiftene observert. Både mikrobiell og kortkjedet fettsyre sammensetning 

av barna økte i likhet til deres mødre under oppveksten. Clostridium representerte 66% av 

tarmmikrobiotaen til barna når de var 12-måneder gamle og var positivt korrelert til butyrat. 

Den økte proporsjonen av propionat i 12 måneders gruppen var positivt korrelert til 

Bacteroidales. Disse positive korrelasjonene styrker nylig kunnskap om at disse bakteriene er 

viktige kortkjedete fettsyre produsenter i tarmmikrobiotaen. Mellom 6 og 12 måneder kan 

forandringen fra barne- til voksenliknende mikrobiota og kortkjedete fettsyre sammensetning 

bli initiert og påvirket av brystmelk avvenning og introduksjon til fast føde. Dette arbeidet 

legger til grunne for videre forskning for å bedre forstå de kortkjedete fettsyrenes 

immunologiske effekt under barnets oppvekst.  
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1 1. Introduction 

1. Introduction:  

 

1.1 The Human Gut Microbiota  

The human gut microbiota is located in the gastrointestinal tract (GI) and comprises a large 

diversity of microorganisms, reaching up to 160 bacterial species (Rodríguez, J. M. et al. 

2015). Most of the GI tract contains a sparse number of bacteria, with the exception of the 

colon, where most of the bacteria reside. The gut microbiota acts as a mutualistic relationship 

between bacteria and host and is of great importance for human health (Rodríguez, J. M. et al. 

2015). This relationship affects us from the beginning of our lives, and throughout it. Our gut 

microbiota is constantly changing as we age, but several factors may disrupt the normal 

colonization pattern of the bacteria, which might affect the host’s health throughout their 

lives.  

 

The absorption of nutrients takes place in our GI tract, in proximity to the gut microbiota. The 

gut microbiota impacts our metabolism by degrading and producing substrates from 

indigestible sugars such as cellulose and xylans found in plants (LeBlanc, J. G. et al. 2017; 

Anand, P. A. A. et al. 2010). During the fermentation process, the bacteria produce different 

gases (CO2, H2, and CH4), vitamins and short chain fatty acids (SCFAs) (LeBlanc, J. G. et al. 

2017). SCFAs are readily utilized and help mature our immune system.  

 

Several large projects, such as the Human Microbiome Project (HMP) have analyzed the gut 

microbiota to find a general bacterial composition (Turnbaugh, P. J. et al. 2007). As a result of 

the HMP, projects to determine the gut microbiota of individuals with different diseases soon 

followed. By analyzing sick subjects, such as individuals with type 2-diabetes, they found the 

gut microbiota to differ from the general gut microbiota composition (Woting, A. B. et al. 

2016). This difference in healthy and sick individuals implies that a change in our gut 

microbiota can either be correlated with a disease or be the causative agent for the disease 

itself, although the exact relationship is yet to be determined (Woting, A. B. et al. 2016). To 

better understand these mechanisms, we need to understand the range of factors that influence 

the gut microbiota colonization. 
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The adult gut microbiota consists of facultative and strict anaerobic bacteria. This raised two 

hypotheses on how and when the development of the bacteria takes place (D’Argenio V & 

Salvatore, F. 2015). The first is based on the bacteria being transferred vertically from 

mothers to their children, while the other hypothesis states that the bacteria are acquired from 

the environment (Avershina, E. L. et al. 2016).  

 

The human gut microbiota is dynamic due to the continual pressure from the environment as 

we age. External factors, diets, and antibiotics lay the foundation for the microbial shifts we 

experience (Rodríguez, J. M. et al. 2015). The main factor for the early microbial shift derives 

from internal changes in the gut environment, as a result of bacterial colonization and diet 

(Koenig, J. E. et al. 2011).  

 

1.1.1 Human Gut Microbiota Development Early Life  

 

The microbial colonization of the GI tract has been found to start prenatally. Studies 

supporting a prenatal colonization of the gut microbiota found bacteria in placentas (Satokari 

R. et al., 2008), umbilical cords (Jiménez, E. et al., 2005), amniotic fluid (DiGiulio D. B., et 

al. 2008) and in meconium (Jiménez, E. et al., 2008). In these studies, infants showed to 

harbor a complex community of bacteria. The gut microbiota consisted mostly of Bacilli and 

Firmicutes, with low proportions of Enterococcus and Escherichia (Moles, L. et al. 2013; 

Funkhouser, L. J. & Bordenstein, S. R. 2013). As the children aged to 3 weeks, a bacterial 

shift was discovered, where the Proteobacteria dominated (Moles, L. et al. 2013).  

 

Located in the Proteobacteria phylum, we find Enterobacteriaceae, which are facultative 

anaerobic bacteria (Bøyre, K. 2014). The Enterobacteriaceae starts a selection process for 

strict and facultative anaerobic bacteria by depleting the gut of its oxygen, turning it into an 

anaerobic environment (Matamoros, S. et al. 2013). This environmental change favors the 

development of bacteria that are considered to be health-beneficial, such as Bacteroides, 

Clostridium, and Bifidobacterium. These bacteria rapidly colonize the gut and remain the 

dominant bacteria until breastmilk weaning commences (Matamoros, S. et al. 2013; Bäckhed, 

F. et al. 2015).  
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The increase of Bifidobacterium is due to another selection process connected to the infant’s 

diet. The breastmilk acts as both a pro- and prebiotic for Bifidobacterium. The breastmilk 

harbors the bacteria and possesses complex sugars that Bifidobacterium can degrade 

(Avershina, E. L. et al. 2016; Grönlund, M. M. et al. 2017). As a result, the bacteria thrive in 

the gut during this time, but decreases as the amount of breastmilk is reduced (Bäckhed, F. et 

al. 2015). After weaning has begun and the children have been introduced to solid foods, 

Bifidobacterium decrease, and the gut microbiota starts to increase in similarity to their 

mothers (Bäckhed, F. et al. 2015). However, if the infants are formula fed, the child’s gut 

microbiota is dominated by the Enterobacteriaceae family, as seen in Figure 1.1 (Matamoros, 

S. et al. 2013).  

 

When analyzing sequencing data from bacteria, Operational Taxonomic Units (OTUs) are 

used. OTUs are based on similarities between DNA strands of bacteria. If two bacteria 

possess a 16S rRNA gene that is 97% or more equal, they are said to be the same OTU. If the 

gene similarity is less than 97%, they are considered two different OTUs, which represents 

two bacterial species. OTU prevalence has been shown to have a larger dissimilarity between 

mother and children up to the age of 1 year compared to mother and 2-year olds (Avershina, 

E. L. et al. 2016). The microbial increase in diversity and evenness of the gut microbiota 

indicate that the children reach an adult-like gut microbiota at the age of 2-3 years 

(Rodríguez, J. M. et al. 2015).  

 

The human gut microbiota is less resilient early in life, and the colonization patterns of 

bacteria are easily disrupted (Lozupone, C. A. et al. 2012). Several factors influence this, such 

as antibiotic treatments early life, mode of delivery and diet (Rodríguez, J. M. et al. 2015; 

Matamoros, S. et al. 2013).  

 

Mode of delivery affects which bacteria colonize the infant based on the surrounding 

environment. If the child is delivered vaginally, the gut microbiota consists of bacteria derived 

from the mother’s vaginal flora (Dominguez-Bello M. G. et al. 2010). However, if the child is 

delivered with Cesarean section, an increase of Staphylococcus, Corynebacterium, 

Propionibacterium and other environmental bacteria dominate the gut microbiota 

(Dominguez-Bello M. G. et al. 2010).   
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A disruption of the gut microbiota colonization may affect the number of substrates produced 

from the fermentation process. As some of those substrates are important for the healthy 

maturation of the immune system, such a disruption may result in an improperly functioning 

immune system (Corrêa-Oliveira R. et al. 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Illustration of two factors influencing gut microbiota colonization during the 

first months of life. The illustration shows the increase of bacteria by diet and delivery mode 

during the early months of life. Increase shown in red is an unwanted increase, while the 

green is a wanted increase in bacteria in the gut microbiota. The Figure is taken and edited 

from Matamoros, S. et al. (2013) Figure 1.  
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1.2 Short Chain Fatty Acids  

 

The human gut microbiota has been compared to a metabolic organ because of its capabilities 

of breaking down indigestible food components and synthesizing other substrates, such as 

SCFAs (Xu, J. & Gordon I. J. 2003). Indigestible carbohydrates consisting of β(1→4) linkage 

bonds cannot be degraded by human enzymes themselves, and this is where the gut 

microbiota’s mutualistic relationship to the host arise (Mathews, C. K. et al. 2013; Anand, P. 

A. A. et al. 2010). The bacteria degrade the indigestible carbohydrates by saccharolytic 

fermentation, resulting in beneficial substrates and SCFAs as the end products (Roy, C. C. et 

al. 2006; Morrison, D. J. & Preston, T. 2016).  

 

Short chain fatty acids (SCFAs), or volatile fatty acids (VFAs), are organic acids consisting of 

one to six carbons (den Besten, G. et al. 2013). The three most common and dominant SCFAs 

produced by the gut microbiota are; acetate (C2), propionate (C3), and butyrate (C4) (den 

Besten, G. et al. 2013). The SCFA composition in adults has been found to have a ratio of 

60:20:20, respectively (Binder, H. J. 2010).  

 

1.2.1 Short Chain Fatty Acid Production in Humans  

 

In the adult gut microbiota, the dominant bacterial phyla Bacteroidetes and Firmicutes are 

well-known SCFA producers (Woting, A. B. et al. 2016; den Besten, G. et al. 2013). The 

Bacteroidetes phylum mainly produces acetate and propionate (Macfarlane S, Macfarlane G. 

T. 2007). Firmicutes contains butyrate producers such as Clostridium, in addition to some 

propionate producers (Macfarlane S, Macfarlane G. T. 2007).   

 

The production of butyrate is divided into two main pathways; the butyryl-CoA pathway and 

butyryl-CoA:acetate CoA-transferase pathway (Flint, H. J. et al. 2014). The most utilized 

pathway of the two is the butyryl-CoA:acetate CoA-transferase pathway (Louis, P. et al. 

2010).  

 

There are three major propionate formation pathways; The succinate pathway, acrylate 

pathway and the propanediol pathway (Reichardt, N. et al. 2014). The succinate pathway is 

the one used by both Bacteroidetes and Firmicutes (Flint, H. J. et al 2014).  
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For acetate there are two main production pathways in the gut microbiota; the Wood-

Ljungdahl pathway (Miller, T. L. & Wolin, M. J. 1996), and the result of carbohydrate 

fermentation (Ríos-Covián, D. et al. 2016).  

 

1.2.2 SCFAs’ Effect in Humans 

 

The gut microbiota’s production of SCFA metabolites acts as a link between the microbiota 

and our immune system (Corrêa-Oliveira R. et al. 2016). The several SCFAs produced by our 

gut microbiota is utilized differently in the host.  

 

Butyrate is partially used as an energy source for the epithelial colonic cells known as 

colonocytes (Corrêa-Oliveira R. et al. 2016). It has been demonstrated that 70% of the energy 

obtained by the colonocytes derives from butyrate, and studies have shown that it is the 

preferred energy source when affinities to butyrate were compared with glutamine, glucose, 

acetate, and propionate (Roy, C. C. et al. 2006). This makes butyrate an important SCFA for 

humans (LeBlanc, J. G. et al. 2017). In addition to being an energy source for the colonocytes, 

butyrate has been found to possess the properties of inhibiting colon carcinoma cell growth, 

produce growth arrest, help with cell apoptosis and differentiation, and it might play an 

important role in preventing colon cancer (Velázquez M. et al. 2000; Roy C. C. et al. 2006). 

 

Acetate mainly enters the peripheral circulation, where it is metabolized (Wong, J. M. W. et 

al. 2006). The acetate may inhibit and suppress accumulation of body fat and liver lipids, and 

if it is absorbed in the colon, an increase of cholesterol synthesis follows (Kondo, T. et al. 

2009; Wong, J. M. W. et al. 2006).  
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The majority of propionate is taken up by the liver, where it is metabolized with residual 

butyrate and used in the gluconeogenesis (Wong, J. M. W. et al. 2010). Propionate has been 

shown to lower fatty acid content and might improve tissue insulin sensitivity, which is 

considered beneficial for obese individuals, or individuals with diabetes type 2 (Al-Lahham, 

S. H. et al. 2010). The propionate is also a gluconeogenerator, and counteracts the cholesterol 

synthesis from acetate, resulting in decreased cholesterol (Wong, J. M. W. et al. 2006). 

Substrates capable of decreasing the acetate:propionate ratio may decrease the chances of 

cardiovascular diseases (Wong, J. M. W. et al. 2006).  

 

SCFAs have been found to help mature our immune system and have a positive impact on its 

development (Corrêa-Oliveira R. et al. 2016). An example of the mutualistic relationship 

between the gut microbiota and host is that the major SCFAs help increase the expression of 

antimicrobial peptides, which is secreted to an external surface by the epithelial cells (Corrêa-

Oliveira R. et al. 2016). The bacteria which normally inhabit our gut microbiota have been 

shown to possess a higher tolerance for antimicrobial peptides, giving them an advantage of 

survival compared to the pathogenic microorganisms trying to colonize (Cullen, T. W. et al. 

2015). 

 

SCFAs have also been found to modulate the production of mediators such as IL-18, which is 

a proinflammatory cytokine that repairs and maintains epithelial cell integrity (Dinarello, C. 

A. 1999; Corrêa-Oliveira R. et al. 2016). Immune cell differentiation, recruitment, and 

activation are all affected by the SCFAs, as illustrated in Figure 1.2 (Corrêa-Oliveira R. et al. 

2016).  
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Figure 1.2. Illustration on how SCFA affects our immune system. The illustration shows 

how SCFAs produced by microbiota gives the colonocytes their energy, the production of 

antimicrobial peptides, recruitment, activation and differentiation of our immune cells. The 

illustration is made and taken from Corrêa-Oliveira R. et al. (2006) Figure 2.  

 

 

To analyze the composition and production of SCFAs in humans, fecal samples are often used 

as they are easily accessible. The most used techniques for this are high performance liquid 

chromatography (HPLC), nuclear magnetic resonance (NMR), capillary electrophoresis (CE) 

and gas chromatography (GC), the latter being the most commonly used technique (Primec, 

M. et al. 2017).  
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1.3 Gas Chromatograph for Short Chain Fatty Acids Analysis 

 

The principle of gas chromatography is to separate several compounds into individual ones by 

using a mobile and stationary phase (Grob, R.L & Barry, E. F, 2004; Linde A. G., GC, 2018). 

By separating the mixture into individual compounds, they can be quantitatively or 

qualitatively measured (Linde, A. G., GC, 2018).  

 

The prepared sample is injected into the gas chromatograph and evaporates in the injector. 

The components of the mixture will then be separated based on physiochemical properties 

through a column, before the compounds reach a detector that detects their qualitative and 

quantitative properties (Linde, A. G., GC, 2018). This is then analyzed by a computer.  

 

The compounds are separated based on their molecular weight, melting point, column 

material, column temperature and carrier gas (Linde, A. G., GC, 2018). All these factors 

ensure that different compounds reach the detector with different retention times, which is 

then used to identify the compounds in the mixture. Low molecular compounds reach the 

detector first, such as acetate (C2), followed by propionate (C3) (Linde, A. G., FID, 2018).  

 

There are several individual parts that might affect the result of a GC run. The liner serves an 

important function, where the sample which is injected pass from a liquid phase to a gaseous 

phase, and further evaporates into the GC column. Several types of liners can be used, and the 

liner should be chosen based on the sample material (Morgan, P. 2012). After evaporation, the 

sample is carried through the GC column by a carrier gas (Linde, A. G. GC 2018).  
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Several gases can be used as a carrier gas if they meet the requirement of being inert, meaning 

they don’t react with the molecules in the sample nor react with the stationary phase (the 

column) (Linde, A. G., GC. 2018). The most commonly used carrier gases are hydrogen, 

helium, and nitrogen, which all have different properties and react differently when used. The 

samples are then introduced to the column which is covered by a liquid or film that affects the 

gas compounds. The two most used columns are packed and capillary column (Linde, A. G., 

GC. 2018).   

 

When the molecules reach the end of the column, they meet the detector which analyzes the 

individual compounds. The detectors used are often Flame Ionization Detector (FID), 

Thermal Conductivity Detector (TCD) or Electron Capture Detector (ECD) (Linde, A. G., 

GC. 2018).  

 

The FID consists of a hydrogen/air flame with a collector plate, which introduces a flame to 

the passing molecules which then ionizes and can be detected (Linde, A. G., FID. 2018; 

Cambustion, 2018). The FID is often used to detect hydrocarbons (Linde, A. G., FID. 2018).  
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1.4 DNA Extraction, Quantification and Sequencing  

 

1.4.1 DNA Extraction 

DNA extraction is crucial for all the techniques following using DNA. If DNA extraction is 

not sufficient, the samples will not be representative. To obtain the DNA from the bacterial 

cells, the cell walls of the bacteria needs to be disrupted. There are three methods to disrupt 

the cell-walls: chemical, mechanical and enzymatic. These can either be used by themselves, 

or in a combination, depending on the bacteria and sample of interest. The mechanical lysis is 

often obtained by using glass beads with the sample material, and when shook sufficiently the 

glass beads disrupts the cell walls. Chemical lysis is obtained by using chemicals that react 

and disrupts the cell walls, which is also the case with enzymatic disruption, but by using 

enzymes instead of chemicals. The disruption is important to obtain DNA from the samples, 

which in turn is used for sequencing. To be able to sequence, the DNA needs to be amplified, 

which is done by polymerase chain reactions (PCR).  

 

1.4.2 Polymerase Chain Reactions   

Polymerase chain reactions (PCR) are used to study diverse and complex microbial 

communities, such as the gut microbiota. By using PCR based methods, we can avoid the 

problematic issues of cultivating the bacteria. The PCR has become a key technique in 

microbiology and other scientific fields. PCR can be divided into two main techniques: 

quantitative PCR and qualitative PCR.  

 

Qualitative PCR 

The PCR principle is separated into three sections. The first is denaturation of the double 

stranded DNA (dsDNA). This is done by heating up the samples, 95°C is usually sufficient. 

The dsDNA denatures at different temperatures based on its GC content, a high GC content 

makes the DNA more heat stable. The denaturation of the DNA ensures that primers will be 

able to attach themselves to their specific sites on the DNA (Schochetman, G. et al. 1988). 

The second step is the annealing of primers onto to the DNA strands. The primers are single 

stranded oligonucleotides and complementary to the strand of the original DNA 

(Schochetman, G. et al. 1988). The third and last step is the primer extension. The primer 

extension is done by a DNA polymerase that attaches nucleotides behind the primer site, 

making a replica of the chosen DNA region (Schochetman, G. et al. 1988).  
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These 3 steps will then be repeated a given number of times to amplify the specific region 

from the DNA strands. A single DNA strand can be amplified to 1,000,000 DNA fragments 

after 30 cycles (Schochetman, G. et al. 1988). One of the challenges of the PCR-based method 

was finding a suitable DNA polymerase that could perform primer extension at high 

temperatures. Today, the most used DNA polymerase derives from Termophilus aquaticus, a 

bacterium that lives close to hot springs, and is adapted to high temperatures, making its DNA 

polymerase heat-stable (Schochetman, G. et al. 1988). The qualitative PCR is an end-point 

analysis and needs a second step of verification. This step is often agarose gel electrophoresis 

to review the fragment of interest.  

 

Quantitative PCR  

The principle for quantitative PCR is the same as qualitative PCR. The difference between the 

two is that the quantitative PCR analyzes real-time. To measure the DNA fragments in real-

time, different fluorophores are being used. The fluorophores used are often non-specific and 

bind to all dsDNA in a sample. Examples of fluorophores used are SYBR Green I, which is a 

non-specific binding fluorophore and LUX which is a fluorophore-labeled primer. For 

sequence-specific primers; Scorpions can be used (Busing, S.A. 2005). The quantitative PCR 

detects the fluorophore when it reaches a set threshold value. By taking account of the PCR 

efficiency and the number of cycles processed before the threshold value was reached, the 

original amount of DNA fragments can be calculated.  

 

Droplet Digital PCR (ddPCR)  

Droplet digital PCR (ddPCR) is a PCR-based method using end-point analysis to calculate 

absolute concentrations of a given sample. In ddPCR, the target molecules are distributed 

across droplets, where some have the template and other droplets do not (Hindson, B. J. et al. 

2011). By amplifying the template using qualitative PCR with fluorophores, the absolute 

concentration of the sample can be calculated (Hindson, B. J. et al. 2011). 

 

The original sample is mixed with droplet generating oil before being put onto a droplet 

generator which vacuums both the sample and the oil through a single tube (Hindson, B.J. et 

al. 2011). Because the oil is not water soluble, the sample will disperse, creating droplets.  
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The DNA template in the droplets will then be amplified by qualitative PCR with 

fluorophores. After amplification, the droplets containing DNA template binds the 

fluorophore (Hindson, B. J. et al. 2011). The sample can then be analyzed using a ddPCR 

machine, which detects droplets containing fluorophores. This is a digital end-point analysis, 

and the detector either finds a droplet containing the fragment or not, based on fluorophore 

readings. After determining the number of droplets containing fragments, a Poisson model is 

used to determine if the droplets contain one or more fragments and calculate the absolute 

concentration of the fragments in the samples (Hindson, B. J. et al. 2011).  

 

1.4.3 Sequencing Technologies  

Sequencing technology is crucial tools for analyzing complex microbial communities, and 

several techniques have been designed. Even though there have been advancements in the 

technology, some of the oldest techniques are still being used. The real breakthrough in 

sequencing technology started in 1977, when Carl Woese & Fox suggested the use of 

ribosomal RNA genes as molecular markers for bacterial classification. This later developed 

into using 16S rRNA genes, referred to as 16S (Escobar-Zepeda, A. et al. 2015). This unit has 

conserved regions and 9 variable regions. The conserved regions make amplification of 16S 

from different species possible, while the variable regions distinguish the different species. 

This idea combined with PCR technology and Sanger sequencing revolutionized the field.  

 

Sanger sequencing was one of the first methods that could sequence DNA fragments and was 

invented by Sanger in 1977 (Sanger, F. et al. 1977). The Sanger sequencing principle is using 

2’3’-dideoxynucleotides (ddNTP) to stop elongation. By using a combination of all four 

nucleotides as ddNTP, the elongation stops at different incorporations. By using restriction 

enzymes and agarose gel, the nucleotides could be read off the gel based on their length and 

cut-offs (Sanger, F. et al. 1977). This technique is still being used and can sequence up to 96 

sequences per run with an average base pair length of 650 (Escobar-Zepeda, A. et al. 2015).  
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Sanger sequencing became more popular than the first sequencing method from Maxam A. 

M. and Gilbert, W. Their technique used chemicals to break terminally labeled molecules 

partially at each base repetition (Maxam A.M. & Gilbert, W. 1977). The length of the labeled 

fragment would then identify the position of that base (Maxam A.M. & Gilbert, W. 1977). 

This technique could at minimum sequence 100 bases by analyzing the fragments on a 

polyacrylamide gel to read off patterns (Maxam A. M. & Gilbert, W. 1977). After Sanger 

sequencing, a race to create a better sequencing technology started, and the first company to 

make a valid sequencer was Roche, which is referred to as Next Generation Sequencing 

(NGS) or 2nd generation sequencing (Liu, L. et al. 2012). 

 

The most popular sequencing technologies in the 2nd generation sequencing were made by 

Roche and Illumina. The Roche 454 uses a technique referred to as pyrosequencing. 

Pyrosequencing uses a detection of light emission based on pyrophosphate (Liu, L. et al. 

2012). When a nucleotide is incorporated to the DNA strand, pyrophosphate (PPi) is 

generated. The PPi released is equal to the number of incorporated nucleotides and generates 

ATP with the help of enzymes (Liu, L. et al. 2012). The ATP is used to oxidize luciferin to 

oxyluciferin, which emits light. A higher amount of ATP will oxidize more luciferin, resulting 

in more emitted light (Liu, L. et al. 2012). The detector is then able to detect the number of 

nucleotides, and which nucleotide is incorporated (Liu, L. et al. 2012). After Roche, the next 

big contender is Illumina.   

Illumina’s technology is based on sequencing by synthesis (SBS). Illumina uses a flowcell 

consisting of 2 different oligos (Illumina, Inc. 2017). By using two different adapters, and 

attaching them to the fragment of interest, the fragments will be able to attach themselves to 

the oligos (Illumina, Inc. 2017). The adapters contain a primer binding site, barcode and the 

complementary nucleotides to the oligos on the flowcell (Illumina, Inc. 2017). The DNA 

fragment will attach itself to the oligos on both sides, creating a bridge which is amplified, 

called bridge amplification. After the amplification steps, a cluster is created, which derives 

from one DNA fragment. After cluster generation, the SBS starts (Illumina, Inc. 2017). 
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The SBS is based on nucleotides with fluorophores that are being incorporated into their 

complementary base at the DNA strand (Illumina, Inc. 2017). One cluster contains identical 

DNA fragments, so the same nucleotide with the same fluorophore will be incorporated and 

emit one color, which is then detected (Illumina, Inc. 2017). The next nucleotide will then be 

incorporated, emit its color corresponding to the nucleotide until the fragment is sequenced. 

After the first fragment is sequenced, a new bridge amplification follows, and the reverse 

strand is sequenced by the same method. A standard is used with the samples, PhiX. PhiX 

helps to distinguish the different clusters in the flowcell (Illumina, Inc. 2017). Due to 16S’ 

conserved regions, the cluster will emit the same color when sequencing these regions. The 

PhiX have different bases than the conserved region of 16S and helps the detector to 

distinguish clusters emitting the same color (Illumina, Inc. 2017).  

 

The 3rd generation of sequencing technologies is being developed and is expected to soon be 

available. The two most anticipated technologies are the PacBio and Oxford Nanopore 

MinION sequencer. Both technologies promise to obtain longer read lengths than we are 

capable of today, and a decrease per-base cost (Pacific Biosciences of California 2018; 

Mikheyev A. S. & Tin M. M. Y. 2014). The MinION is a handheld device, making it easier to 

be able to sequence outside of the laboratory.  
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1.5 My project:  

 

There has been an emerging interest in studying the gut microbiota because of its effects on 

human health. The short chain fatty acids produced by the gut microbiota might play a key 

role in our immune development. Changes in the normal gut microbiota composition have 

been shown to be correlated with different diseases, and these changes may alter the SCFA 

composition. Earlier research on SCFAs has focused on adults and their health. However, the 

role of SCFAs in the transition from an infant- to an adult like gut microbiota is still not 

known.  

 

To be able to determine the effects of SCFAs in children between an infant and adult-like gut 

microbiota, a short chain fatty acids profile for the children needs to be established. Therefore, 

the main objectives of this master thesis project are:  

 

1. Establish the gut microbiota composition of children between infancy and 12 months of age  

 

2. Establish a SCFAs profile for the same children  

 

3. Correlate the SCFAs profiles to the bacterial profiles  

 

The fecal samples were obtained from a mother-children cohort study, PreventADALL 

(Prevent Atopic Diseases and Allergy) and was analyzed for microbial and SCFAs 

composition by sequencing and gas chromatography. PreventADALL’s aim is to find simple 

and low-cost strategies to prevent allergic diseases during the early stages of life. 

PreventADALL is an international collaboration between research groups, with the main 

coordinators located at the University of Oslo (UiO). PreventADALL started their sampling in 

2015 on woman 18 weeks into pregnancy and thereafter included their children. Urine, blood-

tests, breastmilk, saliva and fecal samples are some of the sampling done for the mother-child 

pairs, in addition to documenting the children’s diet throughout the time period. Sampling of 

the children started at birth and continued in intervals until the age of 36 months (0, 3, 6, 12, 

24 and 36 months). From these, 500 fecal samples were received, representing 100 mothers 

and their children. The samples represented the children’s development from infancy to 12 

months. 
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2. Materials & Methods:  

The fecal samples were diluted 1:10 in DNA shield buffer to prevent degradation of DNA and 

stored at -80°C until use. To profile SCFAs for the age groups, a gas chromatograph was 

used, a Trace 1310 equipped with an autosampler (ThermoFisher Scientific). To analyze the 

gut microbiota, 16S rRNA genes from bacteria in the fecal samples were extracted and 

sequenced using Next Generation Sequencing (NGS), on an Illumina MiSeq. A flowchart 

illustrating the workflow of the master thesis is shown in Figure 2.1   

 

 

Figure 2.1. Flowchart. The flowchart shows the workflow of the project. a) represents sampling by the 

PreventADALL project. b) represents the workflow in this thesis. PreventADALL started collecting biological samples in 

2015 and reached 2400 mother-child pairs in 2017. From the biological samples, fecal material was used for this thesis. 

PreventADALL retrieved biological material from children at 0 (newborn), 3, 6, 12, 24 and 36 months. One hundred samples 

from each age group up to 12 months were analyzed, resulting in 500 samples in total. The samples were prepared for DNA 

sequencing, sequenced on Illumina MiSeq, and analyzed for SCFAs on a Trace1310 gas chromatograph. Post-processing 

includes the use of the QIIME pipeline to process sequences, while statistics were done using R, and Spearmann correlations 

using MatLab.  
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2.1 Sample Preparation:  

 

Fecal samples were thawed on ice, and vortexed to homogenize the samples. The samples 

were then pulse centrifuged at 1200 rpm for 8 seconds, making the extraction easier by 

aggregating bigger fecal particles. From the 1:10 diluted samples, 300µl were used for gut 

microbiota sequencing and 100µl for SCFA profiling.  

 

2.2 Short Chain Fatty Acids Profiling 

 

The 1:10 diluted fecal samples were diluted 1:1 with MilliQ-water, and then a 1:1 ratio of 

internal standard, containing 2% formic acid with 500µM 2-methylvaleric acid. Formic acid 

was used to prevent peak tailing, ghosting of the peaks, and to activate the SCFAs by 

lowering the samples’ pH (Tangerman A & Nagengast F. M. 1996). In addition, formic acid 

contains few C-H groups, leaving it often undetected by gas chromatography (Waksmonski, 

M. 2015). 2-methylvaleric acid was included in the internal standard to obtain absolute 

quantitative concentrations. The diluted samples were centrifuged at 13 000 rpm for 10 

minutes, making a pellet of the bigger particles, leaving the supernatant easily accessible. The 

supernatant was transferred to filter columns with 0.2µM filters (VWR, USA) to filtrate 

smaller particles, and centrifuged at 10 000 rpm for 5 minutes.  

 

The eluate was transferred to 300µl GC vials (VWR, USA) and applied on the gas 

chromatograph. The fecal samples were analyzed on a Trace 1310 equipped with an 

autosampler (TermoFisher Scientific, USA) with ramping temperatures: from 90°C to 150°C 

for 6 minutes, and 150°C to 245°C for 1,9 minutes. Detailed GC specifications can be seen in 

Appendix A. In between every 10 samples a standard was run twice to inspect shifts or 

variabilities of the run. The standard consisted of 300µM acetic acid, 12µM propionic acid, 

8µM isobutyric acid, 12µM butyric acid, 8µM isovaleric acid, 8µM valeric acid, 25µM of the 

internal standard and 1% formic acid. All acids used in the standard were purchased from 

Sigma-Aldrich, Germany.  
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2.3 DNA Purification  

 

2.3.1 Bacterial Lysis 

 

Bacterial DNA extraction was performed by a combination of chemical and mechanical cell 

lysis. Samples were mixed with 3 different sizes of glass beads. To 300µl sample, 0,2g of 

acid-washed glass beads (<106µm, Sigma-Aldrich, Germany), 0,2g acid-washed glass beads 

(425-600µm, Sigma-Aldrich, Germany) and 2x 2.5-3.5mm acid-washed glass beads (Sigma-

Aldrich, Germany) were added. A combination of bead sizes performs better than only one 

size, but DNA shearing is aggravated (Bakken, L. R. & Frostegård, Å. 2006). This 

combination is to ensure a higher diversity and less bias when mechanically disrupting the 

bacterial cells. The samples were processed twice on a FastPrep 96 (MP Biomedicals, USA) 

at 1800 rpm for 40 seconds, and centrifuged at 13 000 rpm for 5 minutes. The centrifugation 

aggregates cell remains and glass beads, removing the residue before further DNA treatment. 

  

The chemical lysis was performed using lysis buffer and Proteinase K. The mechanically 

lysed samples were treated with lysis buffer and proteinase K on a KingFisher Flex Robot. 

The lysis buffer lyses the cells due to the high salt concentration, while Proteinase K digests 

proteins in the samples, such as nucleases which destroys DNA (Thermo Fisher Scientific, 

Proteinase K).  

 

2.3.2 DNA Extraction 

 

Paramagnetic particles were used to extract DNA from the lysed samples. DNA binds to 

paramagnetic particles in a high salt concentration, such as NaI or NaClO4, creating a salt 

bridge between the DNA and the particles (Boom, R. et al. 1990). DNA was extracted on a 

KingFisher Flex Robot, using LGC mag midi kit (LGC Genomics, UK). Ethanol was added to 

the samples and precipitated the DNA. The samples were then washed using washing buffers 

containing salts, binding the DNA to the paramagnetic particles. Water was used to eluate the 

DNA by disrupting the salt bridge between the DNA and paramagnetic particles. DNA was 

then extracted from the eluate. Quantitative tests were later performed to examine the DNA 

extraction.  
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2.3.3 PCR Product Clean-up 

 

Sera-Mag beads were used to remove nucleotides, primers, and polymerases after PCR. 

Clean-up after amplicon PCR was performed on a Biomek 3000 (Beckman Coulter, USA) by 

adding 1x volume of beads to the volume of DNA sample, following AMPure’s protocol. 

Clean-up of the pooled library was performed manually by using 0.1 % Sera-Mag beads, 

following the AMPure protocol. 

 

2.4 Polymerase Chain Reactions 

 

2.4.1 Quantitative PCR  

 

Quantification of bacteria was performed by quantitative PCR using primers targeting the V3 

and V4 regions of 16S rRNA genes (PRK primers). Samples were amplified and quantified on 

a LightCycler480 II with PRK primers (Yu, Y. et al. 2005). The reactions contained: 1x 

HotFirePol EvaGreen qPCR supermix (Solis BioDyne, Germany), 0.2µM PRK Forward & 

Reverse primer and 2µl template DNA. The samples were amplified with the following 

program: 95°C for 15 minutes, followed by 45 cycles of 95°C for 30 seconds, 55°C for 30 

seconds, and 72°C for 45 seconds.  

 

2.4.2 Qualitative PCR  

 

Amplification of bacteria was performed by PCR using PRK primers. DNA template (2µl) 

with 1x HotFirePol Blend Master Mix Ready to Load (Solis BioDyne, Germany), and 0,2 µM 

PRK forward and reverse primer (Yu, Y. et al. 2005) were mixed. The samples were 

amplified using the following program: 95°C for 15 minutes followed by 25 cycles of 95°C 

for 30 seconds, 55°C for 30 seconds, and 72°C for 45 seconds, before a final step at 72°C for 

7 minutes. For the meconium samples, the number of cycles was increased to 30.  
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2.4.3 Index PCR 

 

Index PCR was performed in order to sequence several samples simultaneously, by attaching 

Illumina adapters to 16S rRNA fragments. A combination of 16 different forward primers and 

30 reverse primers was used (Appendix B), making it possible to barcode 480 samples. Each 

reaction consisted of 1x FirePol Master Mix Ready to Load (Solis BioDyne, Germany), 

0.2µM forward & reverse primers, nuclease free-water (VWR, USA) and 1µl DNA. The 

samples were amplified with: 95°C for 5 minutes followed by 10 cycles of 95°C for 30 

seconds, 55°C for 60 seconds, and 72°C for 45 seconds, before a final step of 72°C for 7 

minutes.  

 

2.4.4 Droplet Digital PCR (ddPCR) 

 

Droplet Digital PCR (ddPCR) was used to quantify the amount of DNA in the samples. A 

dilution series from 10-5 to 10-11 was used for quantification. The diluted samples were mixed 

with 1x Super mix for EvaGreen (BioRad, USA), 0.2µM Illumina colony forward & reverse 

primer, 2.4µl DNA template and PCR water. Droplet generation was performed using BioRad 

QX200TM – Droplet Generator, following BioRad’s instructions, and the plate was sealed 

using BioRad PX1TM PCR Plate Sealer. The samples were amplified on PCR using the 

following program: 95°C for 5 minutes followed by 40 cycles of 95°C for 30 seconds, 60°C 

for 30 seconds, and 72°C for 45 seconds. The last two steps took place at 4°C for 5 minutes 

and 90°C for 5 minutes. Following PCR amplification, the amplicons were quantified on 

BioRad QX200TM Droplet Reader. Absolute concentration was calculated by using the 

ddPCR.  

 

2.5 Sequencing  

For Illumina MiSeq sequencing, a pooled 4nM sample was used. The sample was diluted to 

6pM following Illumina’s instructions, except nuclease-free water was used instead of Tris in 

the preparation. A PhiX control was combined with the 6pM sample, resulting in the final 

concentration containing 15% PhiX. The samples were applied to an Illumina MiSeq.  
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2.6 DNA Quantity and Quality Control 

 

2.6.1 Qubit  

Verification of DNA extraction was performed by Qubit measurement, following the 

manufacturer's recommendations.  

 

 

2.6.2 Gel Electrophoresis  

Samples were run on a 1,5% agarose gel at 85 volts for 20 minutes. The gel was visualized 

using Molecular Imager Gel DOCTM XR Imaging Systems, to review PCR products 

qualitatively.  

 

 

2.6.3 Quantification and Normalization 

To quantify and normalize the DNA in all samples, a Cambrex-FLX800 CSE was used. All 

samples were added Qubit reagent, according to Qubits instructions. A standard curve was 

made using the fluorescence data from the lowest to the highest fluorescence value. DNA 

concentrations were calculated based on the standard curve and normalized to a pooled 

library. The samples were normalized and pooled using a Biomek 3000. The maximum 

pipetting volume on the Biomek 3000 was 10µl, resulting in 3 samples not being added in 

their adequate volume. Samples without sufficient DNA were not normalized, to prevent 

diluting the pooled library.  
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2.7 Data Processing  

 

2.7.1 QIIME 

The sequencing file was received as a FASTQ file. To process the sequencing data, the 

QIIME pipeline was used. QIIME started with preprocessing the FASTQ file by 

decompressing it, extracting the barcodes, assembling forward and reverse reads and splitting 

the library into their respective samples (Huang, H. 2014).  From the new file created, OTU 

processing followed. OTU processing checked for chimeras and created OTUs based on the 

sequence similarities between the fragments sequenced. Each OTU represented 97% or higher 

similarity between the sequences. To apply the taxonomy to OTUs, the SILVA database was 

used, which is a quality-controlled database of rRNA sequences from Bacteria, Archaea and 

Eukarya domains (Pruesse, E. et al. 2007). A consensus sequence from each OTU was used in 

the database and the OTUs were assigned their taxonomy. After the OTU processing, alpha 

and beta-diversity indexes were calculated for the samples.  

 

2.7.2 Paired T-Test  

Paired t-tests were performed to analyze if a statistical significance was present between 

SCFAs or bacterial orders between age groups. The paired t-tests were performed using 

Rcommander with a 95% confidence interval. The R version used with packages was R 

version 3.4.3, mixlm version 1.2.3, R commander version 2.4-0 and RcmndrPlugin.NMBU 

version 1.8.8.  

 

2.7.3 Spearmann Correlations 

Spearmann correlations were used to associate bacterial profiles with the different SCFAs. 

The correlation was performed by using the Benjamini-Hochberg method, with a p-value less 

than 0.05. The analysis was performed by Knut Rudi in the MatLab programming 

environment (MathWorks Natick, USA).  
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3. Results: 

3.1 16S rRNA Gene Sequencing  

To avoid DNA contaminants, samples having a Cq-value below 4 to the negative control on 

quantitative PCR were considered having sufficient DNA. From the total of 500 samples, 70 

samples were discarded because of high Cq-values, all belonging to the meconium group. By 

combining gel electrophoresis and a standard curve based on fluorescence values (obtained 

from Cambrex-FLX800 CSE), 29 samples scattered amongst the age groups were found to 

have inadequate amounts of DNA and were discarded, resulting in a total of 401 samples 

before sequencing.  

 

Two sequencing runs were performed, where the first resulted in 180K/mm2 clustering, with 

8,726,156 ssDNA fragments. The second run gained a clustering of 460K/mm2, resulting in 

22,152,156 sequenced ssDNA fragments. A cut-off was set at 5,000 dsDNA fragments per 

sample, resulting in 352 samples with sufficient quality. This was distributed as; meconium 

n=10, 3 months n=79, 6 months n=76, 12 months n=94 and mothers n=93.  

 

3.1.1 Binning of Sequences in OTUs 

Sequences acquired were binned in OTUs by the QIIME pipeline. The total count of OTUs 

was 1061 with a sampling depth of 5,000. The taxonomy assigned to the OTUs derives from 

the QIIME pipeline and is presented in Figure 3.1, showing the abundance of bacterial orders 

in the different age groups.  

 

The difference in means between the bacterial orders was determined by paired t-tests for the 

most dominant bacterial orders within each age group. Enterobacteriales decreased 

significantly (p=0,0049) from meconium to 3 months of age, while Bifidobacteriales 

significantly increased (p=0,0088) for the same age group. The Clostridiales order more than 

doubled in proportion between the age of 6 and 12 months (p=<2*e-16). At the age of 12 

months, the gut microbiota was composed of 66,6% Clostridiales, where Faecalibacterium 

(14%), Gnavus group (8,8%) and Lachnospiricieae’s rectale group (6,9%) were the most 

abundant. Bifidobacteriales significantly decreased (p=<2*e-14) from the age of 6 to 12 

months. Genus and Family level of the bacterial taxonomy is presented in Appendix C, while 

raw data for the OTU table & p-values are presented in Supplementary Tables and Figures. 
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Figure 3.1. Amount of bacterial orders within each age group. The bar chart shows the amount 

of bacterial orders acquired from sequencing with processing by the QIIME pipeline. The bacterial orders are 

divided between the age groups: meconium, 3 months, 6 months, 12 months and mothers. The most dominant 

orders of bacteria are displayed top right, with their respective colors. The asterisks represent their p-value of a 

paired t-test measuring the mean between the groups. One asterisk represents a p-value between 0.05 – 0.005, 

two represents a p-value between 0.0049 to 0.0005, and three asterisks represents p-value <0,00049. Genus and 

Family level of the bacterial taxonomy is presented in Appendix C, while raw data for the OTU table and p-

values are shown in Supplementary Tables and Figures.  
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3.1.2 Alpha-Diversity:  

 

Diversity within each age group was determined by using alpha-diversity indexes. Species 

richness and evenness within each age group were analyzed using the alpha-diversity indexes 

derived from the QIIME pipeline. Observed species, Shannon-Wiener index and inverted 

Simpson's index were calculated and are presented in Figure 3.2 as a), b) and c) respectively.  

 

The lowest amount of species found was 26, belonging to the meconium age group, as shown 

in Figure 3.4 a). The number of unique species observed continually increased as the child 

aged, reaching a total of 72 species for 12 months. The highest amount of observed species 

was found in the mother group, holding 183 species. There was a significant increase in 

observed species for each age group between 3 months and mothers (p=0,015).  

 

The Shannon-Wiener index represents both unique species and their evenness (Shannon, C.E 

& Weaver, W. 1949). The three youngest age groups (Meconium, 3 months and 6 months) all 

had a low Shannon-Wiener index value, representing low microbial diversity with an uneven 

distribution of bacteria, as shown in Figure 3.2 b). As for the 12 months-group, there was a 

significant increase in diversity and evenness from the 6 months-group (p=0,015). Mothers 

had the highest Shannon-Wiener index value, representing the highest diversity and evenness 

amongst the groups. 

 

The inverted Simpsons index in figure 3.2 c) has the same interpretation of the index values as 

the Shannon-Wiener index from 3.2 b). There was a significant increase in evenness and 

microbial diversity between each age group from meconium to mothers, except for 3 and 6 

months (p=0,87), which resemble each other as opposed to in the Shannon-Wiener index. 

Corresponding to the Shannon-Wiener index, mothers show the highest diversity and 

evenness amongst the groups.   

 

To estimate the number of species in the samples based on the observed species found, the 

Chao1 index was used (data not shown). The mean species estimate between all pairs showed 

a statistical significance between the means (p=0,015), except between 3 and 6 months of age 

(p=1). 
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Figure 3.2. Alpha-diversity indexes. The alpha-diversity indexes illustrated are species richness (observed 

species) in a), Shannon-Wiener index in b) and Simpson index in c). The y-axis for a) shows the number of unique species 

observed within the age groups, while for b) it shows Shannon-Wiener index and for c) the inverse Simpson's index. A low 

Shannon-Wiener- & Simpsons-index represents low diversity, with uneven distribution, while a high number represents 

higher diversity with even distribution. The x-axis shows the age groups, with n=number of samples used to determine the 

alpha-diversity index. The asterisk represents a p-value between 0.05-0.005.  
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3.1.3 Beta-Diversity  

 

Diversity between the age groups was determined using Beta-diversity indexes for the 

communities. The beta-diversity indexes presented in Figure 3.3 derives from the QIIME 

pipeline. They are presented as Principal Component Analysis (PCoA) plots in figure 3.5 as a) 

Binary-Jaccard and b) Unweighted Unifrac. Bray-Curtis, Euclidian distance, and Weighted 

Unifrac indexes are presented in Supplementary Table and Figures, S.1.  

 

The Binary-Jaccard index evaluates similarities between age groups by quantifying species to 

the relative sum of unique species within the age group (Jaccard, P. 1908). As seen from 

figure 3.3 a), meconium was scattered, but adjacent to 3 months of age. The 3 months-group 

was clustered between meconium and 6 months-group, while 6 months was in between the 3 

and the 12 months-group. Most children resemble each other more within each age group than 

between age groups. The age groups gradually increased in similarities to their mothers, from 

meconium to 12 months. Figure 3.5 b), Unweighted-Unifrac, show the same gradual increase 

of similarity between the age groups and mothers.  

 

As shown in figure S.1 a), Bray-Curtis (Supplementary Tables and Figures), meconium 

resembles 3 months of age and is located furthest away from the other age groups. The 3 

months and 6 months groups were scattered but intertwined, showing that these age groups 

resembled each other in number of species shared, relative to the total species in the 

communities. Mothers and 12 months of age were clustered on the opposite side from the 

other age groups.  

 

Euclidian distance and Weighted Unifrac did not show any apparent clustering and are 

presented in figure S.1 b) and c) respectively in Supplementary Tables and Figures.   
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Figure 3.3. Beta-diversity indexes. The figure illustrates the beta-diversity indexes, a) Binary-Jaccard 

and b) Unweighted Unifrac. Each age group has their respective color shown top right. The sample sizes used for 

the indexes are shown in parenthesis before their respective colors.  
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3.2 Short Chain Fatty Acids 

3.2.1 SCFAs Profile  

 

The short chain fatty acids profile for each age group was determined using a gas 

chromatograph (Trace 1310). The SCFA distribution within each age group is presented in 

Figure 3.4., where a) shows acetate, propionate, butyrate, and others, while b) shows 

isobutyrate, isovalerate, and valerate.  

 

Acetate was the most dominant SCFA for all the age groups, ranging from 67,42% (12 

months) to 90,11% (3 months) of the total SCFAs found within the groups. There was a 

statistically significant increase in acetate between meconium and 3 months (p=0,004), while 

there was a significant decrease between 6 months and 12 months of age (p=<2*e-16).  

 

Butyrate was virtually non-existent for the meconium group and first appeared in the 3 

months-group. There was a significant increase in butyrate both between the age of 3 months 

and 6 months(p=2*e-8), and 6 months and 12 months (p=<2*e-16). Butyrate rose more than 

fourfold between the age of 6 and 12 months, increasing to 18,87% from 4,13% of the total 

amount of SCFA detected.  

 

Propionate was present throughout the age groups. Propionate significantly increased from 

3,1% to 6,7% between 3 and 6 months (p=7*e-5), and significantly increased from 6,7% to 

11,1% between 6 and 12 months (p=1,8*e-5).  

 

Meconium’s SCFAs profile showed that it was the age group which was the most dissimilar 

to their mothers. When the child aged, the similarities between mother and child increased, 

and 12 months of age was the most closely related in SCFAs in comparison to their mothers.  

 

Meconium had the highest abundance of isobutyrate, isovalerate and valerate compared to the 

total amount of SCFAs within the age group, representing 7,1% of the total SCFA amount 

found. There was a gradual decrease of isobutyrate and isovalerate from meconium to 6 

months of age.  
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Even though the 12-month age group resembled the mothers regarding the dominant SCFAs, 

the less abundant SCFAs represents significant differences of the SCFAs profiles, as seen in 

Figure 3.4 b). The children at 12 months of age had a larger percentage of their total SCFAs 

as isovalerate and valerate than the mother group did, while the mothers had a higher 

abundance of isobutyrate relative to their total amount of SCFAs. The isovalerate was the 

most dominant SCFA for 12 months of age, which corresponded to 5,5% of the total SCFAs 

found.  
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Figure 3.4. Percentage SCFAs grouped by the children’s age. The bar chart shows the amount of 

SCFA in each age group by percent, based on the average total SCFAs. The y-axis shows the percentage of the 

SCFA, while the x-axis represents the different age groups. 6 a) shows acetate, propionate, butyrate and other 

SCFAs.  The SCFAs presented in 6 b) show isobutyrate, isovalerate, and valerate. The SCFAs profiles are based 

on n=100 for all age groups except mothers with n=99. P-values between the groups are based on paired t-tests 

and are shown as asterisks. One asterisk equals a p-value between 0.05 – 0.005, two asterisks represents a p-

value between 0.0049 to 0.0005, while three asterisks represents p-value < 0,00049. A data table showing 

percentage is shown in Supplementary Tables and Figures.  
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3.2.2 SCFAs, Relative to the Bacterial Load 

 

To correlate the SCFAs to the bacteria from the gut microbiota, the amount of SCFAs 

compared to the bacterial load from each sample from the age groups was determined. This 

was done by calculating the average amount (Log10 µM) of SCFAs present per bacteria. 

Figure 3.5 shows the average amount of SCFAs (Log10 µM) present per 103 bacteria.  

 

The highest ratios of SCFAs present per bacteria is found in the meconium age group. Acetate 

was the SCFA with the highest abundance per bacteria from the gut microbiota for all the age 

groups analyzed. Propionate is the 2nd most abundant SCFA in 6 months, while butyrate 

dominates in 12 months. As seen from Figure 3.5, mothers had the lowest ratio between 

SCFAs present and bacterial load.  
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Figure 3.5. SCFAs relative to bacterial load. The illustration shows the average amount of SCFAs 

found per 1000 bacteria for 6 SCFAs. The y-axis shows Log10 SCFA (µM), while x-axis shows the SCFA of 

interest with their respective colors. 3.7 a) shows the dominant SCFAs; acetate, propionate, and butyrate, while 

b) shows isobutyrate, isovalerate, and valerate. The bacterial load for each sample was determined by calculating 

copy numbers of 16S rRNA genes from Cq-values retrieved from quantitative PCR. One bacterium in the 

calculations is based on having 4,2 16S rRNA gene copies (Větrovský, T & Baldrians, P. 2013).  
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3.2.3 Correlation Between Bacterial Orders and SCFAs  

 

Co-occurrence between SCFAs and bacterial orders were analyzed using FDR corrected 

Spearmann correlations. The correlation pattern between SCFAs and bacterial orders is 

illustrated in Figure 3.6. The positive correlation is based on co-occurrence where the 

bacterial order and SCFA are high in quantity, while negative correlation is based on high 

amounts of the bacterial order with low amounts of the SCFA within the age group. 

 

Some SCFAs had the same positive or negative correlation to a bacterial order in the different 

age groups. A positive correlation between propionate and Bacteroidales was found in both 3 

and 12 months of age. Butyrate abundance was positively correlated to the Clostridium order 

for both 6 and 12 months, but Clostridium had a negative correlation to propionate in the 12 

months-group. Butyrate had a negative correlation to both Bifidobacteriales and 

Enterobacteriales at the age of 6 months.  

 

Acetate had a negative correlation to the Enterobacteriales order at the age of 3 months, but a 

positive correlation to the bacterial order at the age of 12 months. Isovalerate had a negative 

correlation to the Enterobacteriales at 3 months.  

 

The only correlation found in the mother group was a negative correlation between valerate 

and Burkholderiales.  

 

 

  

 

 

 

 

 

 



 
37 3. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. SCFA correlation to bacterial orders. The plot shows positive and negative correlations 

between SCFAs and bacterial orders, divided by age groups. Green indicates a positive correlation (from 0,2 to 

0,6), and red indicates a negative correlation (-0,2 to -0,6), while black indicates no correlation. The y-axis 

consists of bacterial orders retrieved from the QIIME pipeline, while the x-axis represents the SCFAs tested. The 

plot is based on n=341 samples, distributed among the groups as 3 months n=79, 6 months n=76, 12 months 

n=94 and mothers n=92. There were too few samples from the meconium group to determine correlations. The 

figure was made by Knut Rudi and edited by me.  
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3.2.4 Reproducibility:  

To determine variations of SCFA concentrations within each sample, a pilot study on 10 fecal 

samples from mothers was performed. The fecal samples were run in triplicates with 2-hour 

intervals between each sample run. The standard deviation for each SCFA is shown in Figure 

3.7.  

 

The variation of n=10 for acetate ranges from 5,5 to 43 µM. For propionate, the variation 

ranges between 2,1 to 22,4 µM. For isobutyrate, the variation is between 0,8 to 6,4 µM, while 

butyrate ranges from 0,8 to 31,2 µM. Isovalerate ranges between 0,7 to 5,4 µM, while valerate 

is between 0,3 to 3,1 µM. The largest variations within a sample with regards to percentage 

variation of the mean concentration is found within propionate and isobutyrate, with one 

sample each having a variation of 173,2% for both.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Reproducibility. Dot plots showing concentration (µM) of the SCFA on the y-axis, and 

sample numbers (1-10) on the x-axis. Variations were calculated by standard deviation from the replicate 

samples and are shown as black lines through the blue dots, representing the range of concentration variation. 
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4. Discussion:  

 

4.1 High Abundance of Enterobacteriaceae in Meconium 

 

In the present study, sequencing revealed that the meconium gut microbiota consisted mostly 

of Enterobacteriaceae and Firmicutes. The Escherichia-Shigella represented 63% of the total 

bacteria detected, as seen in Figure C.1 (Appendix C). Earlier studies of meconium found 

Firmicutes and Bacilli to dominate the gut microbiota, which differs from the findings in the 

present study (Moles, L. et al. 2013). The likely explanation for the high abundance of 

Escherichia-Shigella is the sampling time of meconium combined with a fecal transfer route 

of E. coli.  

 

The child’s first environmental encounter after birth is the perineum and vagina, which has 

been shown to harbor an increased number of E. coli before parturition and most likely acts as 

the first link in the transfer route (Bettelheim, K. et al. 1976). The transfer route has been 

further supported by the detection of high amounts of E. coli in the children’s oral cavity after 

birth (Bettelheim, K. et al. 1974). These findings, combined with the low production of gastric 

acid produced in infants at birth suggests E. coli’s possibility of both entering and colonizing 

the GI tract (Ebers, D. W. et al. 1956; Bettelheim, K. et al. 1976). The meconium samples 

presented in this study varied within the range of first feces and up to 5 days after birth, while 

the majority was sampled within the first 24 hours after birth. The amount of E. coli was 

found to be lowest in the feces obtained right after birth (data not shown). Due to the 

sampling delay after birth, the E. coli would have had the chance to colonize the GI tract.  
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4.2 Meconium’s High Ratio Between SCFAs Relative to Bacterial Load 

 

The SCFAs in meconium were dominated by acetate, which represented 83% of the total 

SCFAs detected. These findings combined with the high abundance of E. coli colonizing the 

gut microbiota might imply that the selection process for facultative and strict anaerobes starts 

readily after birth. The high abundance of Enterobacteriaceae may help deplete the gut for its 

oxygen, and in addition, produce acetate. Correlations between SCFAs and bacterial orders 

were not detected due to insufficient DNA extraction from meconium. Acetate is known to be 

produced by a vast array of enteric bacteria, and the acetate detected in meconium might have 

originated from Enterobacteriaceae, Bacteroidales, Bifidobacterium or Lactobacillus (Louis, 

P., Hold, G. L. & Flint, H. J. 2014; den Besten, G. et al. 2013; Fukuda, S. et al. 2012; 

Pessione E. 2012). 

 

Meconium had the highest ratio between SCFA concentration compared to the bacterial load. 

The high ratio detected might occur because of infant’s short large intestine.  

As the SCFAs are readily absorbed throughout the colon, the surface volume and large 

intestine length might be the factors affecting SCFA absorption (Roy, C. C. et al. 2006).  

The length of the large intestine has a linear increase compared to children’s gestational age 

(Fitzsimmons, J. & Chinn, A. S. TH. 1988). Since the length and surface volume of the 

infants are shorter at birth compared to older children, the high ratio of SCFAs compared to 

bacterial load may be an indication of a lower absorption rate of SCFAs, rather than a high 

production rate from the bacteria present. 
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4.3 Significant Increase of Facultative and Strict Anaerobic Bacteria in 3 months 

 

The gut microbiota at 3 months was revealed to mostly consist of Bifidobacteriales and 

Bacteroidales, with lower proportions of Clostridiales and Enterobacteriales. The increase of 

facultative and strict anaerobic microorganisms early in gut microbiota development has been 

established by earlier studies (Matamoros, S. et al. 2013). The significant increase of 

Bifidobacteriales and Bacteroidales can most likely be explained by Enterobacteriaceae’s 

properties of depleting the gut for its oxygen, making the colon a suitable habitat for 

facultative and strict anaerobic bacteria (Matamoros, S. et al. 2013). The increase of 

Bifidobacterium is probably the result of the diet which affects the gut microbiota 

colonization. Bifidobacterium is well-known to dominate the gut microbiota early in life as a 

result of the breastmilk’s properties, which selects for the bacteria (Fernández, L. et al. 2013; 

Avershina, E. L. et al. 2016).  

 

The gas chromatography revealed that the SCFAs profile was dominated by acetate, followed 

by a low proportion of propionate and butyrate. The increase in propionate was positively 

correlated to Bacteroidales, which might confirm earlier observations of Bacteroidales being 

important propionate producers of the gut microbiota (Liou, A. P. et al. 2013). Butyrate, 

which first appeared in 3-months, did not correlate to a bacterial order within the age group.  

Clostridium is a well-known butyrate producer in the gut microbiota, and the increase of 

butyrate detected might coincide with the significant increase of Clostridium between 

meconium and 3 months of age, although no correlations were found (den Besten, G. et al. 

2013).  
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4.4 The Significant Increase of Clostridium and Propionate in 6 Months  

 

The gut microbiota at the age of 6 months resembled 3 months of age in terms of 

composition, seen for both taxonomy and beta-diversity. The dominant bacterial order still 

consisted of Bifidobacteriales. The main differences were the significant decrease of 

Bacteroidales and the significant increase of Clostridium. Calculations by paired t-tests 

showed a statistically significant increase in both propionate and butyrate between the age 

groups. The increase of propionate did not show any apparent positive or negative 

correlations to bacterial orders in the present study. The Bacteroidales positively correlated to 

propionate in earlier age groups, but not in the 6-month age group, implying that there might 

be other mechanisms maintaining the increased propionate levels. The significant increase 

might be explained by the available substrates in the gut microbiota which alters the 

metabolism of some bacteria.  

 

The presence of Lactobacilliales combined with high uptake of breastmilk makes lactate 

readily available for the bacteria in the gut by cellular respiration or lactic acid fermentation. 

Clostridium catus alter its metabolism based on the presence of lactate. A study discovered 

that C. catus produces both propionate and butyrate, depending on the substrates available 

(Reichardt, N. et al. 2014). C. catus produced propionate in the presence of lactate through the 

acrylate pathway (Reichardt, N. et al. 2014). Similar mechanisms have been detected for 

Roseburia inulinivorans, which produced propionate in the presence of fucose using the 

propanediol pathway, but is generally a butyrate producer (Scott, K. P. et al. 2006). Roseburia 

first appeared in the gut microbiota in the 6-months age group in the present study. These and 

related mechanisms might explain the significant increase of propionate detected between the 

3- and 6-month age group.  

 

The positive correlation found between butyrate and Clostridium in the 6-month age group 

might explain the increase of butyrate. In addition, an increase of known butyrate producers 

such as the Eubacterium (rectale group), Blautia and Ruminococcus might explain the 

increased butyrate proportion.  
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4.5 Correlation Between Propionate and Butyrate to Bacterial Order in 12 Months  

 

The bacterial profile for the 12-month age group revealed that the Clostridiales order was the 

most dominant order, followed by Bacteroidales. The Enterobacteriales and Bifidobacteriales 

decreased significantly between the age of 6 and 12 months. The significant increase of 

Clostridium might be explained by breastmilk weaning and the introduction of solid foods. 

This combination has been shown in earlier studies to increase the amounts of strict 

anaerobes, such as the Clostridium order (Bäckhed, F. et al. 2015).  

 

Whether it’s the introduction of solid food, the cessation of breastfeeding, or a combination of 

the two which promotes the microbial shift is not yet known. The introduction of solid food 

gives availability of new fiber sources and other substrates which selects for Clostridium, 

Ruminococcus, and Faecalibacterium, while ceasing of breastfeeding decreases the 

abundance of Bifidobacterium and Enterobacteriaceae (Laforest-Lapointe I & Arrieta M-C. 

2017). Evidence suggests that the cessation of breastmilk has a larger impact on the selection 

than the introduction of solid food (Bäckhed, F. et al. 2015). The microbial shift was 

associated with the introduction of solid foods, but the shift did not occur until the infants 

stopped breastfeeding, suggesting that breastmilk weaning might be the causation for the 

microbial shift, rather than the introduction of solid foods (Bäckhed, F. et al. 2015).  

 

The Clostridium order significantly increased and was found to have a positive correlation to 

butyrate, while the Bifidobacterium decreased. The increase of butyrate detected might be a 

result of the combination of breastmilk weaning, introduction to solid foods and the decrease 

of Bifidobacterium. In earlier studies, the Bifidobacterium was negatively correlated to 

Clostridium (Wang, M. et al. 2015). The decrease of Bifidobacterium, which most likely is the 

result of the cessation of breastmilk, might allow Clostridium to flourish in the gut microbiota 

(Wang, M. et al. 2015). This series of events might explain the increase of butyrate, which 

corresponded to the increase of Clostridium.  
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In the present study, the Bacteroidales was not affected by the change in diet, and still 

represented one of the most dominant bacterial orders even after weaning had commenced, 

which corresponds to earlier findings (Fallani, M. et al. 2011). The Bacteroidales was found 

to have a positive correlation to propionate detected in the same age group. The high 

proportion of propionate might be explained by how the Bacteroidales order is unaffected by 

the change in diet and can continue their production of propionate. 

 

4.6 Mothers as a Comparative Group 

 

The SCFAs profile and microbial composition of mothers were used to identify if there were 

any similarities between the children as they aged, to their mothers. The findings in the 

present study correspond to earlier experiments where children increase their similarities to 

their mothers as they age, reaching their adult-like gut microbiota at an age of 2-3 years 

(Avershina, E. L. et al. 2016; Rodríguez, J. M. et al. 2015). In the present study, the children 

increase in similarity to their mothers for both microbial diversity and evenness which seem 

to correspond to the SCFAs detected. 

 

4.7 Diversity Between the Age Groups 

 

Alpha- and Beta-diversity was calculated within and between the age groups. The meconium 

was found to be composed of low diversity and evenness. This increased gradually as the 

child aged, becoming more similar to their mothers, which corresponds to earlier findings 

(Avershina, E. et al. 2016).  

 

The clustering pattern seen from Euclidian distance and Weighted Unifrac did not correspond 

to previous findings, and it was therefore decided not to analyze these plots and indexes 

further. No obvious explanation was found for the clustering pattern presented.  
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4.8 Feces as a Proxy for Determination of SCFAs Production 

  

In the present study, fecal material was used to analyze the SCFAs ratio in different age 

groups. Feces as material to study SCFAs production is not supported as a representative 

material and has long been discussed. One likely explanation for this is that the SCFAs found 

in the fecal material represents those that are not absorbed by the colon rather than the amount 

produced by the gut microbiota. Because the SCFAs are readily absorbed throughout the 

colon, less than 5% of the SCFAs produced by the gut microbiota is said to be excreted 

through feces (Nyangale, E. P. et al. 2012). However, because the SCFAs are readily 

absorbed at the same rate throughout the colon, the fecal material can be used to represent the 

ratios of SCFAs (Schmitt, M. G. et al. 1976). New methods for analyzing the production of 

SCFAs from the gut microbiota need to be developed to further investigate how the quantity 

of SCFAs is affected by microbial shifts and diets, and how this may affect the children’s 

health early life.  

 

4.9 Technical Considerations 

 

4.9.1 Strengths of the Present Study 

One of the strengths of the present study is the large sample-size of mother-children cohort 

analyzed. The cohorts all have detailed information regarding their delivery, diets and other 

characteristics throughout their first 3 years of life. Because of the extensive documented 

information, new projects analyzing several factors of the same children is possible and can 

then be linked altogether too see how various factors affect the children early life.  

The longitudinal sampling made it possible to analyze microbial shifts throughout the first 

year of life, and to find correlations to SCFAs detected from the samples.  

 

 

4.9.2 Reproducibility of Gas Chromatography Results  

Three replicates of 10 fecal samples derived from mothers were tested in 2-hour intervals to 

analyze the standard deviation. The standard deviation of the samples had a low variation with 

few outliers. The 2-methylvaleric acid was used as an internal standard, applied in known 

concentrations and used as a factor to be able to determine the absolute concentration of the  

SCFAs in the fecal samples.  
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4.9.3 The Need for an Optimized Protocol for DNA Extraction in Meconium   

 

The low amounts of DNA extracted from the meconium samples might indicate that the DNA 

extraction method was not optimal to use on these samples, or that there is, in general, a low 

abundance of DNA in the meconium. The DNA extraction method used was the same for the 

rest of the age groups, with the only difference being an increase of PCR cycles. This was to 

ensure that samples were treated as equal as possible. By using a more optimized protocol for 

DNA extraction from meconium, the results might have differed. Because of the low 

detection of bacterial DNA extracted from meconium, an optimized protocol needs to be 

established for further analyses. A study compared different DNA extraction kits and their 

efficacy on DNA extraction, and the PM kit was found to be the best kit for this purpose, 

compared to 3 other kits (Stinson, L. F. et al. 2018). Kits like the PM or optimized protocols 

on DNA extraction of meconium samples should be considered for DNA extraction of 

meconium samples.  

 

4.9.4 Unknown Amount of Feces in the Diluted Samples 

 

The fecal samples received from PreventADALL was not weighed, leaving the weight of the 

fecal samples unknown. As a result, the concentration of bacteria and SCFAs could not be 

determined.  
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5. Conclusion and Further Research:  

 

The majority of the microbial compositions within each age group corresponded with earlier 

studies based on gut microbiota composition. The SCFAs profile significantly differed as the 

child aged and corresponded with the microbial shifts observed. Like the gut microbiota, the 

SCFAs profiles in the children increased in similarity to their mothers as they aged. In the 

present study, the positive correlations between SCFAs and their respective bacterial orders 

strengthen recent knowledge of these bacteria being SCFAs producers in the gut microbiota.  

 

The significant increase in propionate and butyrate between the age groups of 6 and 12 

months was positively correlated to Bacteroidales and Clostridium, respectively. The positive 

correlation indicates that a selection of these bacteria can be essential for immune maturation 

early life. Between 6 and 12 months, the shift from an infant- to an adult-like gut microbiota 

and SCFAs composition might be initiated and influenced by weaning and introduction to 

solid foods. In conclusion, this work lays the foundation for further research investigating 

immunological effects connected to the gut microbiota and their SCFAs.  

 

The human gut microbiota serves important functions, and their substrate production deserves 

an increased attention. The importance of SCFAs has been established in adults, and the focus 

should shift towards the gut microbiotas’ SCFAs production early life. Further research on 

this matter may be key to prevent immunological disorders that develop in infants. The 

increased proportion of butyrate and propionate between 6 and 12 months may indicate an 

important period for immune maturation. Determining a set of core-species for SCFAs 

production within this time period, with focus on propionate and butyrate producer, might 

provide insight in maintaining proper immune development early life.
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Supplementary Tables & Figures: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.1. Beta-diversity indexes. Illustration of a) Bray-Curtis, b) Euclidian distance and c) 

Weighted-Unifrac. Each age group is represented by a color, showing top right with sample sizes in parenthesis.   
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Table S.1: Amount of bacterial orders shown in percent. The proportion of bacteria is shown in 

percent within each age group, acquired from the QIIME pipeline. The table shows the number of the dominant 

orders of bacteria retrieved from sequencing.  

 
Age group 

Bacterial order  Meconium: 3 months: 6 months: 12 months: Mothers: 

Enterobacteriales 63,5 % 14,1 % 12,7 % 2,2 % 1,2 % 

Clostridiales 5,7 % 16,2 % 25,7 % 66,6 % 60,1 % 

Bacteroidales 10,2 % 23,5 % 14,3 % 15,8 % 26,7 % 

Bifidobacteriales 5,5 % 33,1 % 34,1 % 7,8 % 2,8 % 

Lactobacilliales 7,2 % 3,2 % 3,6 % 1,7 % 0,8 % 

 

Table S.2. SCFA composition in percent. The table shows the proportion of SCFA in percent for the 

three most dominant SCFA, while the other group includes isovalerate, isobutyrate and valerate.   

 Age group 

SCFA:  Meconium 3 months 6 months 12 months Mother 

Acetate 83,46 % 90,11 % 87,38 % 67,42 % 68,60 % 

Propionate 5,69 % 3,09 % 6,76 % 11,19 % 7,93 % 

Butyrate 0,08 % 1,18 % 4,13 % 18,87 % 16,33 % 

Other 10,77 % 5,62 % 1,72 % 2,52 % 7,13 % 

 

Table S.3. p-values of SCFAs between age groups. The table gives an overview of the different p-

values obtained of a paired t-test between SCFA proportion between the age groups.  

Age  Short chain fatty acid  

Group 1 Group 2 Acetate Propionate Butyrate Isobutyrate Isovalerate Valerate 

Meconium 3 months 0.004189* 0.0256* 0.01463* 0.002413* 1.0e-5* 0.05529 

3 months 6 months 0.1626 7.3e-5* 2.8e-8* 0.04403* 1.0e-5 0.09082 

6 months 12 months < 2.2e-16* 1.8e-5* < 2.2e-16* 0.1563 1.8e-4* 0.7108 

12 months Mothers 0.1319 6.0e-4* 0.03499* 2.2e-6* 5.7e-11* < 2.2e-16* 

*P-value = 95% significance      
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Table S.4. p-values for bacterial orders between age groups. The table gives an overview 

of the different p-values obtained between the age groups* for the dominant bacterial orders.  

Age Bacterial order 

Group 1 Group 2 Enterobacteriales Bacteroidales Bifidobacteriales Clostridiales Lactobacilliales 

Meconium 3 months 0.004814* 0.0727 0.008855* 0.4036 0.4615 

3 months 6 months 0.4566 0.01319* 0.3906 5.3e-4* 0.8806 

6 months 12 months 2.5e-91* 0.4691 2.074e-14* < 2.2e-16* 0.1591 

12 months Mothers 3.7e-4* 1.29e-11* 1.0e-8* 0.003081* 0.05371 

*p-value = 95% significance     
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Appendix A: Gas Chromatograph Specifications 
 

Instrument: Trace 1310 with autosampler (ThemoFisher Scientific)  

 

Injector:  

 Mode: split  

 Temperature: 250°C 

 Carrier gas: Helium  

 Column flow: 2.5 ml/min 

 Split flow: 200 ml/min  

 Purge flow: 3 ml/min  

 Injection volume: 0.2µl  

 Liner: 4mm x 6.3mm x 78.5mm (Catalog# 233115., Restek)  

 Syringe: 10µl syr FN 50 mm C, Ga 23, cone tip (catalog# 365D3741, ThermoFisher 

 Scientific)  

 

 

Column:  

 Stabilwax DA 30m, 0.25mm ID, 0.25µM (Restek) 

 Temperature program: 90°C to 150°C (6 minutes), 150°C to 245°C  (1.9 minutes)  

 Time per sample: 14.9 minutes  

 

Detector:  

 Type: FID 

 Temperature: 275°C 

 Hydrogen: 30 ml/min  

 Air: 300 ml/min  

 Makeup gas: 30 ml/min  

 

Software Analyzer: Chromeleon 7
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Appendix B: Primer sequences  
 

PRK Illumina primer sequences for Index PCR:  

 

PRKi forward (5’-3’): 
1. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagtcaaCCTACGGGRBGCASCAG 

2. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagttccCCTACGGGRBGCASCAG 

3. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgtcaCCTACGGGRBGCASCAG 

4. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctccgtccCCTACGGGRBGCASCAG 

5. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtagagCCTACGGGRBGCASCAG 

6. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtccgcCCTACGGGRBGCASCAG 

7. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtgaaaCCTACGGGRBGCASCAG 

8. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtggccCCTACGGGRBGCASCAG 

9. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtttcgCCTACGGGRBGCASCAG 

10. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcgtacgCCTACGGGRBGCASCAG 

11. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgagtggCCTACGGGRBGCASCAG 

12. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctggtagcCCTACGGGRBGCASCAG 

13. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctactgatCCTACGGGRBGCASCAG 

14. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgagcCCTACGGGRBGCASCAG 

15. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctattcctCCTACGGGRBGCASCAG 

16. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcaaaagCCTACGGGRBGCASCAG 

 

PRKi Reverse (5’ – 3’):  

1. caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

2. caagcagaagacggcatacgagatACATCGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

3. caagcagaagacggcatacgagatGCCTAAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

4. caagcagaagacggcatacgagatTGGTCAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

5. caagcagaagacggcatacgagatCACTCTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

6. caagcagaagacggcatacgagatATTGGCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

7. caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

8. caagcagaagacggcatacgagatTCAAGTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

9. caagcagaagacggcatacgagatCTGATCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

10. caagcagaagacggcatacgagatAAGCTAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

11. caagcagaagacggcatacgagatGTAGCCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

12. caagcagaagacggcatacgagatTACAAGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

13. caagcagaagacggcatacgagatTTGACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

14. caagcagaagacggcatacgagatGGAACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

15. caagcagaagacggcatacgagatTGACATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

16. caagcagaagacggcatacgagatGGACGGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

17. caagcagaagacggcatacgagatCTCTACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

18. caagcagaagacggcatacgagatGCGGACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 
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19. caagcagaagacggcatacgagatTTTCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

20. caagcagaagacggcatacgagatGGCCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

21. caagcagaagacggcatacgagatCGAAACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

22. caagcagaagacggcatacgagatCGTACGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

23. caagcagaagacggcatacgagatCCACTCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

24. caagcagaagacggcatacgagatGCTACCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

25. caagcagaagacggcatacgagatATCAGTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

26. caagcagaagacggcatacgagatGCTCATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

27. caagcagaagacggcatacgagatAGGAATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

28. caagcagaagacggcatacgagatCTTTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

29. caagcagaagacggcatacgagatTAGTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

30. caagcagaagacggcatacgagatCCGGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

 

PRK Primers for amplification of 16S rRNA (5’ – 3’):  

 

Forward: CCTACGGGRBGCASCAG 

Reverse: GGACTACYVGGGTATCTAAT 
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Appendix C: Species Sequenced  

 

 

 

 

 

 

 

 

 

 

 
Figure C.1. Bacterial composition at family level. The bar chart shows the number of bacteria for the 

different age groups at family level. The families are divided by color and are explained in Table C.1.  

 

 

 

 

 



 
64 Gut Microbiota and Short Chain Fatty Acids (SCFAs) Composition the First Year of Life 

Table C.1. Bacterial composition at family level in percent. The table shows the abundance (%) of 

the bacterial families within each age group retrieved from sequencing and processed by the QIIME 

pipeline.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

 


