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Abstract

By combining the Minimal Residual Method and the Primal-Dual
Active Set algorithm, we derive an efficient scheme for solving a class
of PDE-constrained optimization problems with inequality constraints.
The approach studied in this paper addresses box constrains on the
control function, and leads to an iterative scheme in which linear op-
timality systems must be solved in each iteration. We prove that the
spectra of the associate saddle point operators, appearing in each itera-
tion, are well behaved: Almost all the eigenvalues are contained in three
bounded intervals, not containing zero. In fact, for severely ill-posed
problems, the number of eigenvalues outside these three intervals are
of order O(ln(α−1)) as α → 0, where α is the parameter employed in
the Tikhonov regularization. Krylov subspace methods are well known
to handle such systems of algebraic equations very well, and we thus
obtain a fast method for PDE-constrained optimization problems with
box constraints. In contrast to previous papers, our investigation is
not targeted at analyzing a specific model, but instead covers a rather
large class of problems.

Our theoretical findings are illuminated by several numerical ex-
periments. An example covered by our theoretical findings, as well
as cases not fulfilling all the assumptions needed in the analysis, are
presented. Also, in addition to computations only involving synthetic
data, we briefly explore whether these new techniques can be applied
to real world problems. More specifically, the algorithm is tested on a
medical imaging problem with clinical patient data. These tests sug-
gest that the method is fast and reliable.
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1 Introduction

In the field of optimization many researchers have studied the minimiza-
tion of quadratic cost-functionals with constraints given by partial differen-
tial equations. Several books have been written about this subject, see e.g
[3, 5, 7, 15]. By using the Lagrange multiplier technique, one might derive a
system of equations which must be satisfied by the optimal solution. After
suitable discretization, this system, which typically is a saddle-point prob-
lem, can be solved by an all-at-once method. That is, a scheme in which the
primal, dual and optimality conditions are solved in a fully coupled manner.

Such optimality systems are often ill-posed, which leads to bad condition
numbers for the discretized systems, and regularization techniques must
therefore be invoked. Typically, if Tikhonov regularization is employed,
then the spectral condition number of the system is of order O(α−1), where
α > 0 is the regularization parameter. Hence one might expect that, for
small values of α, the number of iterations required to solve the system,
using e.g. Krylov subspace methods, would be large. However, in [11] the
authors prove that the spectrum of the optimality system consists of three
bounded intervals and a very limited number of isolated eigenvalues outside
these three intervals. This result is established for a quite broad class of PDE
constrained optimization problems and imply that the Minimal Residual
Method (MINRES) will handle the associated algebraic systems very well.
In fact, if the problem at hand is severely ill-posed, then the required number
of iterations cannot grow faster than O([ln(α−1)]2) as α→ 0, and in practice
one often observes iterations counts of order O(ln(α−1)).

Many real world problems are not only modeled by PDEs, but also
involve inequality constraints. These are often given in the form of box
constraints on the control function. In this paper we explore whether the
method and analysis presented in [11] can be extended to handle such prob-
lems adequately.

Inequality constraints typically require the use of an iterative method to
solve the overall optimization task. In consequence, since the linear systems
arising in each iteration typically are ill-posed, we need to solve a sequence
of algebraic systems with bad condition numbers.

For some specific state equations, such problems have been solved effi-
ciently, see e.g. [4, 14]. These efficient techniques also combines the cher-
ished PDAS method in [2] with different numerical techniques for solving
saddle-point problems [1]. We will consider such optimization tasks in a
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more abstract and general setting. More precisely, our analysis concerns the
class of problems that can be written on the form

min
(v,u)∈L2(Ωv)×U

{
1

2
‖Tu− d‖2Z +

1

2
α‖v‖2L2(Ωv)

}
, (1)

subject to

Au+Bv = 0, (2)

v(x) ≥ 0 a.e. in Ωv, (3)

where

• L2(Ωv) is the control space,

• U is the state space, 1 ≤ dim(U) ≤ ∞, and

• Z is the observation space, 1 ≤ dim(Z) ≤ ∞.

We assume that U and Z are Hilbert spaces. Further, Ωv ⊂ Rn is the
domain the control function v is defined on, d is the given observation data,
and α > 0 is the regularization parameter. In Section 2 we will state the
assumptions we need on the linear operators A,B and T . Also, there exists
a solution to the problem (1)-(3) under fairly loose assumptions. For α > 0,
the solution is unique, see e.g. [5] for details.

For the problem (1)-(2), without the inequality constraint v(x) ≥ 0, it
was proven in [11] that for a sound discretization of the associated KKT
system αI 0 B∗

0 T ∗T A∗

B A 0


︸ ︷︷ ︸

=Bα

vu
w

 =

 0
T ∗d

0

 , (4)

the eigenvalues of the discretized operator Bhα satisfies

sp(Bhα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (5)

Here, a, b and c are constants, independent of the regularization parameter
α, and N(α) = O(ln(α−1)) for severely ill-posed problems. Krylov subspace
methods handle problems with spectra on the form (5) very well, and, since
we have an indefinite system, the Minimal Residual (MINRES) method [12]
is well suited for solving (4).

Based on this discussion, we can formulate the objectives of this paper
as follows:

• We will combine the PDAS method, presented in [2], with the MINRES
method used in [11] to obtain a standard recipe for solving problems
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of the form (1)-(3). We prove that in each iteration of the PDAS
algorithm we obtain a reduced system with a spectrum on the form
(5), which we then can solve efficiently with the MINRES algorithm.
Our derivation of the reduced systems, arising in the PDAS method,
is heavily inspired by [4, 14]. Moreover, in the numerical experiments
section, we show how to apply Riesz maps as preconditioners to solve
some model problems.

• Real world problems often involve highly unstructured meshes and
noisy data. Our second objective is to undertake a numerical inves-
tigation of such a real world PDE-constrained optimization problem,
known as the inverse problem of electrocardiography (ECG). The aim is
to identify a heart infarct using ECG recordings and PDE-constrained
optimization with box constraints. This problem has an H1-control
function, and is therefore not supported by the analysis of (1)-(3).
Nevertheless, our scheme converged, and seemed to improve the qual-
ity of the solution - compared to the solution without box constraints.

For practical PDE-constrained optimization problems, the condition num-
bers of the discretized KKT systems is known to increase significantly, not
only as the regularization parameter α → 0, but also when the mesh pa-
rameter h > 0 decreases. We will not discuss this generally, but for the
synthetic model problem, we will explain how to handle the h-dependency
by invoking Riesz maps as multigrid preconditioners. We then obtain an
algorithm robust with respect to h and which grows moderately in iteration
numbers as α→ 0.

Remark 1.1. We consider the prototypical inequality constraint v(x) ≥ 0,
since the aim of this paper is to show that the linear systems occurring
in each iteration of the PDAS algorithm can be efficiently solved with the
MINRES method, and the simple constraint v(x) ≥ 0 makes the derivation
and analysis more transparent. To see how to handle the more general box
constraints

vl(x) ≤ v(x) ≤ vu(x),

see e.g. [16, 14]. Also note that the requirement v(x) ≥ 0 occurs in many ap-
plications, e.g., when the control function v measures density, temperature,
mass or pressure.

2 Assumptions

We assume that:

A1 : A : U → U is bounded and linear1

1Assume that the state equation (2) is a PDE. Then, A is typically a mapping from
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A2 : A−1 exists and is bounded.

A3 : B : L2(Ωv)→ U is bounded and linear.

A4 : T : U → Z is bounded and linear.

A5 : The optimization problem (1)-(2) is severely ill-posed for α = 0.

As shown in [11], if the assumptions listed above hold, then for a sound
discretization of the KKT system (4), the eigenvalues of this discretized
system satisfies (5). If (4) is well posed for α = 0, then the numerical solution
of this problem is ”straightforward” and regularization is not needed. We
will focus on the challenging case, i.e. severely ill-posed systems.

3 KKT system

We will now derive the algorithm for solving (1)-(3). The first thing we
need, is the optimality system, which can be obtained from the Lagrangian

L(v, u, w, λ) =
1

2
‖Tu−d‖2Z+

1

2
α‖v‖2L2(Ωv)+(w,Au+Bv)U−(λ, v)L2(Ωv). (6)

The standard optimality theory states that if (v∗, u∗) is a solution of
(1)-(3), then there exist duality functions (w∗, λ∗) such that the Fréchet
derivatives of (6), with respect to v, u and w,〈

∂L
∂v
, φ

〉
= (αv, φ)L2(Ωv) + (Bφ,w)U − (λ, φ)L2(Ωv), ∀φ ∈ L2(Ωv),〈

∂L
∂u

, φ

〉
= (Tu− d, Tφ)Z + (Aφ,w)U , ∀φ ∈ U,〈

∂L
∂w

, φ

〉
= (Au+Bv, φ)U , ∀φ ∈ U,

should all be equal to zero at the optimal point (v∗, u∗, w∗, λ∗). In addition,
the conditions given by

(λv)(x) = 0, (7)

λ(x), v(x) ≥ 0, (8)

should also be satisfied at this optimal point. By writing the Fréchet deriva-
tives on block form, we get the well known KKT systemαI 0 B∗

0 T ∗T A∗

B A 0

vu
w

 =

 λ
T ∗d

0

 , (9)

U onto its dual space U ′, and hence A1 is not fulfilled. This can, nevertheless, easily be
rectified by applying the inverse Riesz map R−1

U : U ′ → U to (2) and thereby obtain the
operator R−1

U A : U → U . In this context, one might consider R−1
U to be a preconditioner.

We will return to this issue in the example sections.
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which we combine with (7)-(8) to obtain the full optimality system. Note
that, since we have a convex problem, a solution (v∗, u∗, w∗, λ∗) of (7)-(9)
will also be a solution of (1)-(3).

4 Primal-dual active set method

To solve our optimization problem, we will follow the primal-dual technique
introduced in [2], and later used in [4] and [14].

Thus, we start by noting that (7)-(8) are equivalent to the condition

λ+ min(0, cv − λ) = 0 ∀c > 0.

This motivates the PDAS algorithm, where we can define the active A and
inactive I sets as follows

A = {x ∈ Ωv : (cv − λ)(x) < 0}, (10)

I = Ωv \ A, (11)

where Ωv is the domain of the control v. We can now formulate the PDAS
method for solving our optimality problem (1)-(3). In the iterative proce-
dure, we need to solve systems on the form (9) at each step, i.e., solveαI 0 B∗

0 T ∗T A∗

B A 0

vkuk
wk

 =

 λkT ∗d
0

 , (12)

together with

λk(x) = 0 on Ik, (13)

vk(x) = 0 on Ak. (14)

Note that the unknowns are vk, uk, wk and λk, and hence there are unknowns
on both sides of equation (12). Here, Ak and Ik are the active and inactive
sets associated with the kth iteration of the PDAS algorithm, see steps 9
and 10 in Algorithm 1.

In [2] it is shown that the primal-dual active set method provides a local
minimum if the active set stays unchanged in two consecutive iterations. We
can now, schematically, present the PDAS algorithm, see Algorithm 1.

Although the algorithm is in place, it is possible to reduce the CPU cost
of solving (12) - (14). The idea is based on the fact that, at each iteration, we
know that the control parameter vk is zero on the active domain (14), and
similarly, we know that the Lagrange multiplier λk is zero on the inactive
domain (13). Hence, it intuitively seems possible to restrict the control vk to
the inactive domain. Similarly, we want to restrict the Lagrange multiplier
λk to the active domain. By restricting these functions, the optimality
system to be solved becomes smaller, in the sense of fewer indices in the
corresponding discretized KKT equations, and hence it will be faster to
solve.
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Algorithm 1 Primal-dual active-set method

1: Choose the initial set A0 of active constraints
2: I0 = Ωv \ A0

3: for k = 0, 1, 2,... do
4: if k > 0 and Ak = Ak−1 then
5: STOP (algorithm converged)
6: else
7: Solve (12) - (14)
8: end if
9: Ak+1 = {x ∈ Ωv : (cvk − λk)(x) < 0}

10: Ik+1 = Ωv \ Ak+1

11: end for

5 Reduced KKT system

We will now first derive a linear system which only involves the restrictions
of vk and λk to the inactive and active domains, respectively. Thereafter,
we analyze whether assumptions A1-A5, see Section 2, are inherited by this
system.

Let q ∈ L2(Ωv) be arbitrary. We may split q ∈ L2(Ωv),

q(x) =

{
qI

k
(x) if x ∈ Ik,

qA
k
(x) if x ∈ Ak.

(15)

where

qI
k

= q|Ik ,
qA

k
= q|Ak .

Let us also introduce the notation

L2(Ik) = {q|Ik : q ∈ L2(Ωv)}, (16)

L2(Ak) = {q|Ak : q ∈ L2(Ωv)},

and note that

qI
k ∈ L2(Ik),

qA
k ∈ L2(Ak).

To derive the reduced KKT system, we need an operator which maps
the restricted function vI

k
of the control vk into the entire control space

L2(Ωv). This operator must map a function defined on the domain Ik into
a function defined on the domain Ωv by employing a zero extension. We will
denote this operator by

EI
k

: L2(Ik)→ L2(Ωv). (17)
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Note that, for any r ∈ L2(Ik),(
EI

k
r
)

(x) = r(x) for all x ∈ Ik, (18)(
EI

k
r
)

(x) = 0 for all x ∈ Ak. (19)

We also need a similar operator EA
k

for the Lagrange multiplier λk.
That is, an operator which maps the restricted version λA

k
of λk into the

full domain Ωv, by a zero extension. Formally, this is defined as

EA
k

: L2(Ak)→ L2(Ωv),

where this mapping satisfies(
EA

k
r
)

(x) = r(x) for all x ∈ Ak, (20)(
EA

k
r
)

(x) = 0 for all x ∈ Ik, (21)

which holds for any r ∈ L2(Ak). From (18)-(19) and (20)-(21), we can define
the inner products of the ”restricted” spaces L2(Ik) and L2(Ak) as

(q, r)L2(Ik) = (EI
k
q, EI

k
r)L2(Ωv), (22)

(q, r)L2(Ak) = (EA
k
q, EA

k
r)L2(Ωv). (23)

By construction, Ik ∩ Ak = ∅, and (19) and (21) therefore imply that

the ranges of EI
k

and EA
k

are orthogonal sets in L2(Ωv),

R
(
EI

k
)
⊥ R

(
EA

k
)
. (24)

Also note that EI
k

and EA
k

are one-to-one, but not onto. Due to (18)-(19)
and (20)-(21), all q ∈ L2(Ωv) satisfy

q = EI
k
qI

k
+ EA

k
qA

k
, (25)

cf. the splitting (15).
Recall that the linear operator B maps the control in L2(Ωv) into the

state space U , see sections 1 and 2. We can now use (25) to conveniently
split this mapping:

Bq = BEI
k
qI

k
+BEA

k
qA

k

= BI
k
qI

k
+BA

k
qA

k
, (26)

where

BI
k

= BEI
k

: L2(Ik)→ U, (27)

BA
k

= BEA
k

: L2(Ak)→ U, (28)

With these operators at hand, we are now able to simplify the optimality
system (12) - (14). We start with formulating the following lemma.
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Lemma 5.1. Let EI
k

and EA
k

be the extension operators introduced in
(18)-(19) and (20)-(21), respectively. Then

(i) q = EI
k
qI

k
+ EA

k
qA

k
for any q ∈ L2(Ωv),

(ii) Bq = BI
k
qI

k
+BA

k
qA

k
for any q ∈ L2(Ωv),

(iii) B∗ = EI
k
[BI

k
]∗ + EA

k
[BA

k
]∗,

where BI
k

and BA
k

are defined in (27) and (28), respectively.

Proof. (i) was established in the derivation leading to (25).

(ii) was established in the derivation leading to (26).

(iii) can be verified has follows. First, (18)-(19) and (20)-(21) imply that,
for any q, r ∈ L2(Ωv),

(qI
k
, rI

k
)L2(Ik) = (q, EI

k
rI

k
)L2(Ωv),

(qA
k
, rA

k
)L2(Ak) = (q, EA

k
rA

k
)L2(Ωv).

Consequently, for arbitrary q ∈ L2(Ωv) and s ∈ U ,

(q,B∗s)L2(Ωv) = (Bq, s)U

= (BI
k
qI

k
+BA

k
qA

k
, s)U

=
(
qI

k
, [BI

k
]∗s
)
L2(Ik)

+
(
qA

k
, [BA

k
]∗s
)
L2(Ak)

=
(
q, EI

k
[BI

k
]∗s
)
L2(Ωv)

+
(
q, EA

k
[BA

k
]∗s
)
L2(Ωv)

=
(
q,
{
EI

k
[BI

k
]∗ + EA

k
[BA

k
]∗
}
s
)
L2(Ωv)

.

Hence, it follows that B∗ = EI
k
[BI

k
]∗+EA

k
[BA

k
]∗, which finishes the

proof.

Assume that vk, uk, wk and λk satisfy (12)-(14), i.e.

αvk +B∗wk = λk, (29)

T ∗Tuk +A∗wk = T ∗d, (30)

Bvk +Auk = 0, (31)

λk = 0 on Ik, (32)

vk = 0 on Ak. (33)
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From properties (i) and (iii) in Lemma 5.1 we find that equation (29) may
be written on the form

αvk +B∗wk = αEI
k
vI

k
+ αEA

k
vA

k
+ EI

k
[BI

k
]∗wk + EA

k
[BA

k
]∗wk

= EI
k
λI

k
+ EA

k
λA

k
= λk.

Since λI
k

= 0 and vA
k

= 0,

αEI
k
vI

k
+ EI

k
[BI

k
]∗wk + EA

k
[BA

k
]∗wk = EA

k
λA

k

or
EI

k
{
αvI

k
+ [BI

k
]∗wk

}
+ EA

k
{

[BA
k
]∗wk − λAk

}
= 0. (34)

But recall that the ranges of EI
k

and EA
k

are orthogonal, cf. (24), and that
these operators are one-to-one. Consequently, we find that (34) can be split
into two equations

αvI
k

+ [BI
k
]∗wk = 0,

[BA
k
]∗wk − λAk = 0,

which implies that (29) can be replaced with these two expressions.
Next, we can use property (ii) in Lemma 5.1 to express equation (31) as

Bvk +Auk = BI
k
vI

k
+BA

k
vA

k
+Auk = 0

or
BI

k
vI

k
+Auk = 0,

where we have used that vA
k

= 0.
The KKT system (29)-(33) can therefore be written on the form

αvI
k

+ [BI
k
]∗wk = 0,

[BA
k
]∗wk − λAk = 0,

T ∗Tuk +A∗wk = T ∗d,

BI
k
vI

k
+Auk = 0,

Proposition 5.2. Assume that vk, uk, wk and λk solve (12)-(14). Then

vI
k

= vk|Ik , uk, wk and λA
k

= λk|Ak satisfyαIIk 0 [BI
k
]∗

0 T ∗T A∗

BI
k

A 0


︸ ︷︷ ︸

=Bkα

vIkuk
wk

 =

 0
T ∗d

0

 , (35)

λA
k

= [BA
k
]∗wk. (36)

With other words, in each iteration of the PDAS method we can solve
the block system (35) and thereafter use the straightforward update (36) for
the Lagrange multiplier.
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6 Spectrum of the reduced KKT system

Assume that assumptions A1-A5 hold, see Section 2. In the introduction
we mentioned that for a sound discretization of (4), associated with (1)-(2),
without the inequality constraint (3), the discrete operator Bhα has a spec-
trum of the form (5). This issue is analyzed in detail in [11]. Krylov subspace
solvers therefore handle (4) very well. We have shown in the derivation lead-
ing to (35) that we get KKT systems very similar to (4) in each iteration of
the PDAS algorithm. One might therefore hope that the MINRES method
also is a fast solver for the reduced system (35). This issue can be investi-
gated by exploring whether the operators appearing in Bkα, defined in (35),
also satisfy assumptions A1-A5. In short, are these properties, assumed to
hold for Bα, inherited by Bkα? If this is the case, then the spectrum of Bkα
also will consist of three bounded intervals with a few isolated eigenvalues,
i.e. be of the form (5), and Krylov solvers will handle (35) well.

We start by pointing out that (35) is the KKT system associated with
the following optimization problem:

min
(vIk ,u)∈L2(Ik)×U

{
1

2
‖Tu− d‖2Z +

1

2
α‖vIk‖2L2(Ik)

}
, (37)

subject to

Au = −BIkvIk = −BEIkvIk , (38)

where L2(Ik), EIk and BI
k

are defined in the previous section.
We note that (37)-(38) is on the same form as (1)-(2), except that B in

(2) has been replaced with BI
k

= BEI
k
. Since the operators A and T are

unchanged in the reduced problem (37)-(38), we immediately conclude that
(35) fulfills assumptions A1, A2, and A4. It remains to explore A3 and
A5.

Note that assumption A3 no longer concerns the operator B, but instead
the operator

BI
k

= BEI
k

: L2(Ik)→ U,

cf. the derivation leading to (27). Thus, we must prove that

EI
k

: L2(Ik)→ L2(Ωv),

see (17)-(19), is a bounded and linear operator. It is obvious that such an
extension operator is linear, and from (18)-(19) and (22) we find that

‖EIkr‖L2(Ωv) = ‖r‖L2(Ik) for any r ∈ L2(Ik),

and therefore

‖EIk‖ = sup
r∈L2(Ik)

‖EIkr‖L2(Ωv)

‖r‖L2(Ik)

= 1. (39)
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Since B is assumed to be bounded and linear, we can conclude that BI
k

is
linear and bounded, i.e. (35) satisfies assumption A3.

Although we assumed that (1)-(3) is ill-posed without regularization
α = 0, see assumption A5 in Section 2, this may not be the case for (37)-
(38) (with α = 0). For example, if the inactive set Ik only contains one
element/index, then (37)-(38) typically will be well-posed even with zero
regularization. Hence, one can in general not assure that A5, assumed to
be satisfied by B0, is inherited by Bk0 . There are two possibilities:

• If, luckily, (37)-(38) is well posed for α = 0, then regularization is not
needed, and the effective numerical solution of this linear system with
the MINRES method follows from standard theory.

• If A5 is inherited by (37)-(38), then A1-A5 are satisfied, and a sound

discretization Bk,hα of Bkα will have eigenvalues satisfying

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (40)

(Of course, the constants in this expression may differ from those
in (5)). From this result, and the Chebyschev polynomial analysis
presented in [11], it follows that the number of MINRES iterations
needed to solve (35) can not grow faster than of order O([ln(α−1)]2)
as α → 0. Moreover, in practical computations one often observes it-
erations counts of order O(ln(α−1)). (The latter issue is also discussed
from a theoretical point of view in [11]).

Definition 6.1 (“Sound discretization”). A ”sound discretization“ of Bkα
means that also the discrete problem should satisfy A1−A4, with operator
norms which are bounded independently of the mesh parameter h. In addi-
tion, a discrete version of A5 should hold, i.e. that the eigenvalues of Bk,h0

satisfy

|λi(Bk,h0 )| ≤ c̃e−C̃i, i = 1, ..., n, (41)

where c̃, C̃ are positive constants.

Remark 6.2. For finite dimensional problems, there obviously always exist
c̃ and C̃ such that (41) holds. Our results are therefore only of relevance for
problems where

c̃e−C̃n

is extremely close to zero. That is, much smaller than typical choices of the
size of the regularization parameter α. The latter will typically be the case
if an ill-posed problem is discretized.

Theorem 6.3. Let Bkα be the operator defined in (35). Assume that as-
sumption A5 is inherited by (37)-(38). Then, for every α > 0 and for a
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sound discretization Bk,hα of Bkα, in the sense of Definition 6.1, the spectrum
of the associated discretized operator obeys

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

Here, a, b, and c are positive constants independent of α and N(α) =
O(ln(α−1)).

Since the operators appearing in Bkα fulfill assumptions A1-A5, the proof
of this theorem is identical to the analysis presented in [11], and therefore
omitted.

We conclude, at least theoretically, that the MINRES algorithm is well
suited for solving the KKT system (35) appearing in each iteration of the
PDAS algorithm applied to the box constrained optimization problem (1)-
(3). We will illuminate these findings below with numerical experiments.

7 Example 1

In our first model problem we define

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(

1

4
,
3

4

)
,

and consider the minimization problem

min
(v,u)∈L2(Ωv)×H1(Ω)

{
1

2
‖Tu− d‖2L2(∂Ω) +

1

2
α‖v‖2L2(Ωv)

}
(42)

subject to

−∆u+ u =

{
−v if x ∈ Ωv,

0 if x ∈ Ω \ Ωv,
(43)

∇u · n = 0 on ∂Ω, (44)

v(x) ≥ 0 a.e. (45)

Here, T denotes the trace operator T : H1(Ω) → L2(∂Ω), which is well
known to bounded and linear, i.e. assumption A4 holds. Note that the
state space U and the observation space Z are

U = H1(Ω), (46)

Z = L2(∂Ω). (47)

We are thus trying to recover the function v ∈ L2(Ωv) from an observation
of u along the boundary ∂Ω of Ω.
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Remark 7.1. We want to derive the optimality system associated with (42)-
(45) and to solve it with Algorithm 1. There are, however, two issues that
must be handled before we can employ the theoretical considerations pre-
sented above:

(a) In the generic state equation (2) we assumed that the operator A is a
mapping from the state space U onto the state space U , i.e. A : U →
U . This differs from standard PDE theory. For example, the weak
form of (43) involves an operator Â mapping H1(Ω) onto its dual space
(H1(Ω))′.

(b) In order to solve the KKT system associated with (42)-(45) numerically,
we must discretize the operators by applying, e.g., the Finite Element
Method (FEM).

Both of these matters can be handled adequately, and we will discuss each
of them in some detail. It is, however, difficult to treat both problems simul-
taneously. Therefore, we address them separately, starting with (a), which
will provide us with a suitable preconditioner for the continuous KKT sys-
tem. Thereafter, we briefly comment the discretization of the preconditioned
optimality system, i.e. issue (b).

7.1 Preconditioner

Let us explore issue (a). As mentioned above, the discussion of this matter
will provide us with a suitable preconditioner for the KKT system arising
in each iteration of the PDAS algorithm applied to solve (42)-(45).

The variational form of (43)-(44) reads: Find u ∈ U = H1(Ω) such that∫
Ω
∇u · ∇ψ + uψ dx = −

∫
Ωv

vψ dx for all ψ ∈ U,

or
〈Âu, ψ〉 = −〈B̂v, ψ〉 for all ψ ∈ U, (48)

where

Â : U → U ′, u→
∫

Ω
∇u · ∇ψ + uψ dx, ψ ∈ U,

B̂ : L2(Ωv)→ U ′, v →
∫

Ωv

vψ dx, ψ ∈ U.

We may write (48) more compactly, i.e.

Âu = −B̂v.

In order to obtain an equation of the form (2), where A : U → U and
B : L2(Ωv) → U , we can simply invoke the inverse R−1

U of the Riesz map
RU : U → U ′, i.e.

R−1
U Âu = −R−1

U B̂v,
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which is on the desired form since

A = R−1
U Â : U → U, (49)

B = R−1
U B̂ : L2(Ωv)→ U. (50)

From standard theory for elliptic PDEs, it follows that A, A−1 and B are
bounded. We thus conclude that assumptions A1, A2 and A3 are satisfied.

Recall that, in each iteration of the PDAS method, we must solve the
system (35). We will now explore the form of this system for the present
model problem. In (35),

BI
k

= BEI
k
,

see the discussion leading to (27). In the present context, we may use (50)
to write this operator on the form

BI
k

= R−1
U B̂EI

k

= R−1
U B̂I

k
, (51)

where we define

B̂I
k

= B̂EI
k
.

Equation (35) also involves the adjoint operators A∗ and [BI
k
]∗ of A and

BI
k
. According to a rather technical argument presented in [11],

A∗ = R−1
U Â′, (52)

[BI
k
]∗ = [RL2(Ik)]

−1[B̂I
k
]′, (53)

where the ”′” notation is used to denote dual operators, and RL2(Ik) is the

Riesz map of L2(Ik) to its dual space, see (16).

From (49), (51), (52) and (53) it follows that the operator Bkα in (35)
can be written on the form

Bkα =

αIIk 0 [BI
k
]∗

0 T ∗T A∗

BI
k

A 0



=

 αII
k

0 [RL2(Ik)]
−1[B̂I

k
]′

0 T ∗T R−1
U Â′

R−1
U B̂I

k
R−1
U Â 0


=

[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U


︸ ︷︷ ︸

=[Rk]−1

αRL2(Ik) 0 [B̂I
k
]′

0 RUT
∗T Â′

B̂I
k

Â 0


︸ ︷︷ ︸

=B̂kα

. (54)

15



We can therefore express
Bkαpk = b,

cf. (35), appearing in each iteration of the PDAS algorithm, as[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U


αRL2(Ik) 0 [B̂I

k
]′

0 RUT
∗T Â′

B̂I
k

Â 0


vIkuk
wk


=

[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U

 0
RUT

∗d
0

 . (55)

Written more compactly, this system reads

[Rk]−1B̂kαpk = [Rk]−1b̂, (56)

where

b̂ = Rkb =

 0
RUT

∗d
0

 ,
pk =

vIkuk
wk

 .
Note that

B̂kα : L2(Ik)× U × U →
(
L2(Ik)× U × U

)′
,

and that

[Rk]−1 :
(
L2(Ik)× U × U

)′
→ L2(Ik)× U × U.

One may therefore regard [Rk]−1 to be a preconditioner for the (continuous)
KKT system arising in each iteration of the PDAS method applied to (42)-
(45), see [9] for further details. Note that the operators Rk, [Rk]−1, B̂kα
and [B̂kα]−1 are bounded. Hence, a proper discretization of these mappings
should yield a discretized approximation of (54) which is well behaved for
any mesh parameter h > 0. This completes the discussion of issue (a).

7.2 Discretization

Let us turn our attention towards the discretization matter mentioned in
(b), i.e. the discretization of (56). Recall that Bkα = [Rk]−1B̂kα only operates
on the inactive part of the control. Expressed with mathematical symbols,

Bkα : L2(Ik)× U × U → L2(Ik)× U × U.
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Hence, in each iteration of the PDAS method one may regard L2(Ik) to be
the control space, while the state space U and the observation space Z are
defined in (46)-(47), respectively.

As mentioned earlier, one may think of the inverse Riesz maps [RL2(Ik)]
−1

and R−1
U , see (54), as preconditioners. Since U = H1(Ω), it follows that, in

a FEM setting,

• RL2(Ik) ”corresponds” to the mass matrix MI
k,Ik

v associated with the

inactive set Ik ⊂ Ωv,

• RU ”corresponds” to the sum of the mass matrix M and the stiffness
matrix S associated with the domain Ω.

Concerning the details of the discretization of the operators in B̂kα, defined
in (54), we refer to [9]. If we use the superscript notation ”Ik” and ” : ” to
denote the inactive indices and all the indices, respectively, the end result is
as follows:

• Â yields the matrix M +S, which is the sum of the mass and stiffness
matrix associated with the domain Ω.

• B̂Ik yields the matrix MI
k,:

v , where Mv is the mass matrix associated
with the sub domain Ωv of Ω.

• RUT ∗T yields the matrix M∂ , which is the mass matrix associated
with the boundary ∂Ω of the domain Ω.

• The functions v, u, w and d yields the corresponding vectors v̄, ū, w̄
and d̄.

Hence, the discretized system associated with (55) readsMIk,Ikv 0 0
0 M + S 0
0 0 M + S

−1 αMI
k,Ik

v 0 MI
k,:

v

0 M∂ M + S

M :,Ik
v M + S 0


︸ ︷︷ ︸

B̄kα

v̄Ikūk
w̄k


︸ ︷︷ ︸
p̄k

=

MIk,Ikv 0 0
0 M + S 0
0 0 M + S

−1  0
M∂ d̄

0


︸ ︷︷ ︸

b̄

.

(57)

We thus use the preconditioner

[R̄k]−1 =

MIk,Ikv 0 0
0 M + S 0
0 0 M + S

−1

. (58)
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We have now handled both issues (a) and (b), and derived a discretized
preconditioned KKT system (57). It remains to discretize the Lagrange
multiplier update (36). Since the procedure for doing this is very similar to
the discussion of the KKT system, we leave the technical details to Appendix
A. The end result is the update

MA
k,Ak

v λ̄A
k

= MA
k,:w̄k, (59)

where “ Ak ” denotes the active indices.
To summarize, in each iteration of the PDAS algorithm we must solve

the preconditioned system (57). The Lagrange multiplier λ̄A
k

is thereafter
computed by solving (59). Finally, the active and inactive sets are updated
according to steps 9 and 10 in Algorithm 1.

7.3 Numerical setup

• All code was written in the framework of cbc.block, which is a FEniCS-
based Python implemented library for block operators. See [8] for a
full description of cbc.block.

• We used the PyTrilinos package to compute an approximation of the
preconditioner (58), using algebraic multigrid (AMG) with a symmet-
ric Gauss-Seidel smoother and three smoothing sweeps. All tables con-
taining iteration counts for the MINRES method were generated with
this approximate inverse Riesz map. On the other hand, the eigenval-
ues of the KKT systems [R̄k]−1B̄kα, see (57)-(58), were computed with
an exact inverse [R̄k]−1 computed in Octave.

• We divided the domain of Ω = (0, 1)× (0, 1) into N ×N squares, and
each of these squares were divided into two triangles.

• The following stopping criterion was used to stop the MINRES itera-
tion process

‖rkn‖
‖rk0‖

=

[
( B̄kαp̄kn − b̄, [R̄k]−1[B̄kαp̄kn − b̄] )

( B̄kαp̄k0 − b̄, [R̄k]−1[B̄kαp̄k0 − b̄] )

]1/2

< ε, (60)

where ε is a small positive parameter. Note that the superindex k is
the iteration index for the ”outer” PDAS method, while the subindex
n is the iteration index for the ”inner” MINRES algorithm at each
step of the PDAS method.

• In the synthetic examples no noise was added to the input data d, see
(1). For the problem involving real world data, however, the input data
was given by clinical recordings and obviously contained a significantly
amount of noise.
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• Synthetic observation data d, used in (42), was produced by setting

v(x) = 3 sin(2πx1), x = (x1, x2) ∈ Ωv, (61)

in (43). Thereafter the boundary value problem (43)-(44) was solved
and d was put equal to u|∂Ω. Note that the control (61) cannot be
recovered by solving the optimality system (42)-(45), due to the in-
equality constraint v(x) ≥ 0. Hence, the problem formulation might
seem peculiar, but as the goal of this example is to study the iteration
numbers for the reduced KKT systems, it is desirable to have active
constraints for all reasonable values of the regularization parameter α.
An experimental investigation suggested the use of a control function
of the form (61) to obtain nonempty active sets for large values of the
regularization parameter α (α ≈ 1).

7.4 Results

We are now ready to proceed to the actual experiments. In the introduction
we mentioned that the KKT system associated with (1)-(2), without box
constraints, has a spectrum of the form (5), as long as assumptions A1-
A5 in Section 2 are fulfilled. Recall that Theorem 6.3 asserts that such
a spectrum will be inherited by each subsystem in the PDAS algorithm,
provided that assumption A5 still holds. Figure 1 shows the spectrum of
such a subsystem. It is definitely on the form (40), and we expect that the
MINRES method will solve the KKT systems efficiently.

Table 1 contains the average number of MINRES iterations required to
solve the reduced KKT systems. That is, the average number of MINRES
iterations needed in each iteration of the PDAS algorithm. In these experi-
ments we used a zero initial guess in every run of the MINRES method, i.e.
p̄k0 = 0, see (60).

In [11] the authors proved that the number of required MINRES itera-
tions cannot grow faster than O([ln(α−1)]2), and also explained why itera-
tions counts of order O([ln(α−1)]) often will occur in practice. Consider the
last row of Table 1, i.e. N = 512. For the stopping criterion ε = 10−6 in
(60), the iteration counts can be relatively well modeled by the formula

32.2− 10.5 log10(α),

where we used the method of least squares to estimate the constants in this
expression. Similarly, for N = 512 and the stopping criterion ε = 10−10, we
can model the work effort rather accurately with the formula

45.0− 20.1 log10(α).

We conclude that the required number of MINRES iteration only grows
(approximately) logarithmically as the regularization parameter α → 0.
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a) b)

Figure 1: The eigenvalues of [R̄k]−1B̄kα in Example 1. Panel a) displays
the eigenvalues of the full system, i.e. no active constraints and Ik = Ωv.
Furthermore, α = 0.0001 and N = 32. Panel b) shows the spectrum of a re-
duced KKT system, with 700 active inequalities. We observe that there are
fewer eigenvalues in the interval [cα, 2α] in panel b), cf. (40)). More specif-
ically, 700 eigenvalues have been ”removed” from this interval in panel b),
compared with panel a). We do not present a plot of the isolated eigenvalues,
i.e. λi ∈ (2α, a), since the full system only has three isolated eigenvalues,
and the reduced system only has one isolated eigenvalue.

Note that the spectral condition number κ(Bk,hα ) of Bk,hα is of order O(α−1),
which is ”confirmed” by Figure 1. The standard theory for Krylov subspace
solvers states that MINRES needs O(κ(Bk,hα )) iterations. Hence, the classi-
cal estimate provides a very pessimistic estimate for the needed workload.

Table 1 contains iteration counts for both ε = 10−6 and ε = 10−10, cf.
the stopping condition (60). We observe that the iteration numbers increase
roughly by a factor of 1.5 if ε is decreased from 10−6 to 10−10. However, we
see no visible difference between the controls v1 and v2 computed with these
two stopping criteria, see Figure 2. In fact, the relative difference between
the solutions depicted in this figure is 2.12∗10−5. In retrospect, we conclude
that the choice ε = 10−10 does not significantly increase the accuracy of
the solution compared to the choice ε = 10−6. Thus, choosing a suitable
stopping criterion is a delicate matter; the criterion must be strict enough
to obtain convergence, but not so hard that many unnecessary iterations are
performed.

We have previously mentioned that the experiments presented in Table
1 were performed using the zero initial guess in every run of the MINRES
method, i.e. p̄k0 = 0. Intuitively, the initial guess p̄k0 = p̄k−1

n might seem
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N\α 1 .1 .01 .001 .0001

32 23 32 38 46 56
64 27 36 42 51 66
128 27 37 42 52 71
256 33 42 48 59 75
512 33 44 52 59 78

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 34 45 55 70 86
64 39 52 64 83 103
128 41 54 67 85 109
256 48 61 75 95 121
512 49 64 80 103 130

(b) Stopping criterion ε = 10−10.

Table 1: The average number of MINRES iterations required to solve the
reduced KKT systems in the PDAS algorithm. The two panels display the
iteration counts for two different choices of ε, see (60). Here, we used the
initial guess p̄k0 = 0 in the MINRES algorithm for iteration k of the PDAS
method.

preferable. That is, we set the initial guess for the MINRES algorithm equal
to the solution from the previous PDAS iteration. In this case, however, (60)
should be adjusted to avoid an unreasonable strict stopping criterion when
p̄k−1
n ≈ p̄∗, where p̄∗ is the exact solution of the discretized PDE constrained

optimization problem. We suggest the following alternative stopping crite-
rion to terminate the MINRES iteration process:

‖rkn‖
‖r0

0‖
=

[
( B̄kαp̄kn − b̄, [R̄k]−1[B̄kαp̄kn − b̄] )

( B̄0
αp̄

0
0 − b̄, [R̄0]−1[B̄0

αp̄
0
0 − b̄] )

]1/2

< ε. (62)

Note that the initial guess p̄k0 = p̄k−1
n and the alternative stopping criterion

(62) will consistently be used together. Similarly, when we employ the initial
guess p̄k0 = 0, the criterion (60) will be used to terminate the iteration
process.

How these two different initial guesses affect the iteration counts, can
be observed by comparing Table 1 with Table 2. In Table 1 we used the
initial guess p̄k0 = 0 in every run of the MINRES method, whereas for the
numbers presented in Table 2 we employed p̄k0 = p̄k−1

n . For large values of
α, we observe a reduction in the iteration counts, but this effect seems to
be less apparent for the smaller values of α. We suspect this to be linked
to our choice of synthetic observation data, d, which was generated by the
control (61). For this observation data d, and small values of α, the solutions
of (42)-(44) and (42)-(45) are very different, i.e. the inequality constraints
have a significant impact. As a result of this difference, the initial guess
p̄k0 = p̄k−1

n is not much better than the zero guess. We will return to this
matter in the next section.
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(a) Stopping criterion ε = 10−6. (b) Stopping criterion ε = 10−10.

Figure 2: The solution of (42)-(45) for two different stopping criteria. In

these examples, N = 256 and α = 0.01. The relative difference
‖v1−v2‖L2(Ω)

‖v1‖L2(Ω)

between these two control functions is 2.12 ∗ 10−5.

8 The inverse problem of electrocardiography

We will now study a real world problem. In the inverse problem of elec-
trocardiography one attempts to identify an ischemic region/infarction by
combining ECG recordings with the, so called, bidomain model 2. Since
the derivation of the bidomain model is not essential for understanding the
optimization problem, we refer to [13] for further details about this model.

The control function v in this application, however, must be addressed
in some detail. In this medical problem, the control v is the transmembrane
potential of the heart, i.e. the potential difference over the cell membrane of
the heart cells. According to biomedical knowledge, we know a priori that
this potential satisfies

v(x) ≈

{
0mV x in healthy tissue,

50mV x in ischemic tissue.
(63)

Our objective is to compute the transmembrane potential v by solving an
optimization problem. Thereafter, we use (63) to determine the ischemic
region, i.e. this region is the sub-domain of the heart where v(x) ≈ 50.

The optimization problem will be related to the form (1)-(3), where we
have the following information:

• The input data d in (1) is a normalized clinical ECG recording.

2Ischemia is a state of reduced blood supply to the heart, usually due to coronary
artery disease. It is a reversible condition, but also a precursor to a full heart attack.
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N\α 1 .1 .01 .001 .0001

32 16 14 36 46 54
64 15 28 36 50 65
128 13 22 31 46 64
256 15 26 35 49 68
512 15 23 36 51 69

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 27 32 51 70 85
64 25 46 58 80 102
128 27 35 60 80 105
256 32 40 62 79 103
512 25 46 64 90 109

(b) Stopping criterion ε = 10−10.

Table 2: The average number of MINRES iterations required to solve the
reduced KKT systems in the PDAS algorithm. The two tables contain the
iteration counts for two different choices of ε, see (62). Here, we used the
initial guess p̄k0 = p̄k−1

n in the MINRES algorithm for iteration k of the PDAS
method.

• The state equation (2) will be the bidomain model3.

• We use (63) to define suitable inequality constraints.

• The control space, however, is no longer an L2-space, but an H1-space.

In detail, the optimization problem can be formulated as follows

min
(v,u)∈H1(ΩH)×H1(ΩB)

{
1

2
‖Tu− d‖2L2(∂ΩB) +

1

2
α‖v‖2H1(ΩH)

}
(64)

subject to ∫
ΩB

∇ψ ·M∇u dx = −
∫

ΩH

∇ψ ·Mi∇v dx, ∀ψ ∈ X, (65)

v(x) ≥ 0, x ∈ ΩH , (66)

where

M(x) ≈

{
Mi(x) +Me(x), x ∈ ΩH ,

Mo(x), x ∈ ΩT .

Remark 8.1. Note that (63) also implies an upper bound for v. This upper
bound, however, is dependent on a number of model parameters and is, for
reasons outside the scope of this article, not as essential as the lower bound.
In addition, our simulations did not provoke any active upper constraints.

In this section we use the following notation:

· v is the transmembrane potential.

3As in Example 1, the bidomain equation involves an operator Â mapping U onto its
dual space U ′. Hence, we need an inverse Riesz map to obtain a minimization problem of
the form (1)-(3).
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Figure 3: A 2D picture of the domains. ΩH represents the heart and is
depicted in gray color. We denote the remaining domain by the torso, ΩT .
The cavities (white areas) inside the heart represent the ventricles.

· u is the extracellular potential.

· draw is the ECG recording, and d = draw − 1
|∂ΩB |

∫
∂ΩB

draw is a
normalization of the data with respect to the boundary integral, see
[10] for details.

· Mi and Me are the intracellular and extracellular conductivity tensors
of the heart, respectively.

· Mo is the extracellular conductivity of the torso.

· ΩH is the domain of the heart.

· ΩT is the domain of the torso.

· ΩB = ΩH ∪ ΩT is the domain of the body.

· U = {q ∈ H1(ΩB) :
∫
∂ΩB

q = 0}. Reasons for using this particular
Hilbert space are discussed in [10].

For a visual representation of the domains ΩH , ΩT and ΩB, see Figure 3.

Remark 8.2. In this example, the control space is no longer L2(Ωv), but
H1(ΩH), which is not covered by the analysis presented in the theoretical
sections. To derive a PDAS algorithm for this H1-framework is, to the
authors knowledge, still an open challenge. Essentially, the problem is that
the inequality conditions can no longer be expressed on the simple explicit
form (7)-(8), but instead involve solving an obstacle problem, see [6] for
further details.
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For a strictly finite dimensional optimization problem, however, a PDAS
algorithm exists. Unfortunately, we can then no longer guarantee that it will
reflect the structure of the associated infinite dimensional problem. Never-
theless, we find it interesting to investigate the problem from a practical point
of view.

Since the discretization of the optimality system associated with (64)-
(66) is almost identical to the discretization of the optimality system in
Example 1, we will first present the results and thereafter return to the
mathematical treatment of (64)-(66).

For the simulations, we have two different sets of patient data, both
recorded at Oslo University Hospital. For each of the two patients, we have
patient specific geometrical models. Figure 4 shows the body mesh associ-
ated with Patient 1. Note that the grid is highly unstructured.

Figure 4: The body mesh associated with Patient 1. The blue color repre-
sents the heart, and the red colors represent the lungs. The mesh consists
of 51, 489 nodes, whereof 33,156 are located in the heart.

8.1 Results

Table 3 and Table 4 contains the iteration counts for Patient 1 and Patient
2, respectively. The numbers are much higher than those reported for the
synthetic example (Example 1), but the growth is still (approximately) log-
arithmic as α → 0. For Patient 1 the iteration counts for k = 0, i.e. the
first PDAS iteration, can be modeled by the formula

2064.6− 1287.6 log10(α).

Similarly, we can model the average workload for Patient 1 by the formula

1225− 798.4 log10(α).
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We would like to stress that, in this example, the relatively high iteration
numbers do not appear to be linked to the fact that our control space is H1,
instead of L2. More precisely, the iteration counts for k = 0, i.e. when
there are no active constraints, are not lower than for k > 0. Other possible
explanations for the high iteration numbers will be discussed in Section 9.

For this real world application, we are not only interested in the iter-
ation counts, but also in the actual time it takes to solve the optimiza-
tion problem. All simulations were performed on a regular laptop with the
Intel R©CoreTMi5-2520M CPU @ 2.50GHz × 4 processor. From Table 3,
we conclude that it lasted between 5 and 13 minutes to solve the inequal-
ity constrained optimization problem for Patient 1. For Patient 2, it took
between 6 and 15 minutes, depending on the choice of α. For the particu-
lar choice of regularization parameter α = 0.1, 664 seconds were required.
The computed control function for this choice of α can be seen in Figure
5. The figure also displays the solution of (64)-(65), i.e. the optimization
problem without the inequality constraint. We see that the introduction of
(66) sharpens the image, and thus provides a more well defined separation
of the ischemic region and the healthy tissue. For the cardiologists, such
a clear distinction is definitely desirable. In fact, one may argue that the
image computed without box constraints is of no practical value.

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1808 2851 3694 3911 4497
1 1127 1480 1967 2281 2426
2 361 741 880 1046 1279

Mean 1099 1691 2180 2413 2734

Wall Time 308s 467s 598s 659s 770s

Table 3: The wall time and the number of MINRES iterations required to
solve the optimization problem for Patient 1. Note that k denotes the PDAS
iteration number. Here, the stopping criterion was ε = 10−6, see (62).

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1879 2977 3224 4080 4717
1 1332 1747 2499 2751 3256
2 608 1032 1403 2005 2233

Mean 1273 1919 2375 2945 3402

Wall Time 362s 538s 664s 794s 909s

Table 4: The wall time and the number of MINRES iterations required to
solve the optimization problem for Patient 2. Note that k denotes the PDAS
iteration number. Here, the stopping criterion was ε = 10−6, see (62).
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k\α 1 10−1/2 10−1 10−3/2 10−2

Mean 1488 2111 2821 3027 3408

Wall Time 400s 586s 761s 810s 902s

Table 5: The wall time and the average number of MINRES iterations
required to solve the optimization problem for Patient 1. These numbers
were generated with the initial guess p̄k0 = 0 in every run of the MINRES
method, and the stopping criterion was ε = 10−6, see (60).

(a) Inverse solution without inequality
constraints.

(b) Inverse solution with inequality con-
straints.

Figure 5: The computed transmembrane potential v for Patient 2. Here,
α = 0.1. Panel a) shows the solution of (64)-(65). Panel b), on the other
hand, displays the solution of the full problem (64)-(66).

Recall that we, in Example 1, discussed the effect of the initial guess
on the performance of the MINRES algorithm. In the present real world
application, we have so far reported results obtained with the initial guess
p̄k0 = p̄k−1

n . For reason of comparison, we also ran simulations with p̄k0 = 0,
see (60). The iteration counts and wall time obtained for these computa-
tions can be found in Table 5. Contrary to what was observed in Example
1, we conclude that the initial guess p̄k0 = p̄k−1

n yields a significant improve-
ment, compared with the ”naive” guess p̄k0 = 0. We save roughly 400− 600
iterations on average. From a computing-time perspective, the reduction is
also significant, with savings in the range of 90 seconds to 3 minutes, i.e.
about a 20% reduction in computing-time.
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8.2 Discretization

We now return to the mathematical aspects of (64)-(66). Note that the
control space V , the state space U and the observation space Z are

V = H1(ΩH),

U =

{
q ∈ H1(ΩB) :

∫
∂ΩB

q = 0

}
,

Z = L2(∂ΩB),

see Figure 3 for an overview of the domains. Hence, we are trying to recover
a function v ∈ H1(ΩH) from an observation d ∈ L2(∂ΩB) of u along the
boundary ∂ΩB of the body ΩB. Notice the form of (63). Since the unknown
control is known, a priori, to be approximately piecewise constant, it seems
natural to put more weight on the derivative of v in the regularization.
Therefore, we use the weighted norm

‖v‖2V = ρ‖v‖2L2(ΩH) + ‖∇v‖2L2(ΩH)

on V , where 0 < ρ � 1. This will be reflected in the block operators
presented below. In our experiments, we have chosen ρ = 10−4.

We start our derivation of the optimality system by considering the state
equation (65). This equation can be written as

〈Âu, ψ〉 = −〈B̂v, ψ〉, ∀ψ ∈ U,

where

Â : U → U ′, u→
∫

ΩB

∇ψ ·M∇u dx, ψ ∈ U,

B̂ : V → U ′, v →
∫

ΩH

∇ψ ·Mi∇v dx, ψ ∈ U.

We can now proceed as in Example 1 and derive a KKT system with a
structure similar to (55). Once more, we refer to [9] for details regarding
the matrix representation of the operators in the KKT system. By letting
“ Ik ” and “ : ” denote the inactive indices and all indices, respectively, the
discretization can roughly be described as follows:

• R
V Ik

yields the sum (ρMH + SH)I
k,Ik of the mass matrix MH and

the stiffness matrix SH associated with the domain Ik ⊂ ΩH .

• RU yields the stiffness matrix SB associated with the domain ΩB. 4

4Recall that U = {q ∈ H1(ΩB) :
∫
∂ΩB

q = 0}, which makes it possible to use the

Poincaré inequality to define the norm ‖ · ‖U on U as ‖q‖U =
∫

ΩB
|∇q|2. It therefore

follows that the Riesz map only yields the stiffness matrix.
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• Â yields the matrix N associated with the operator −∇·M∇u on ΩB.

• B̂ yields the matrix L associated with the operator ∇ ·Mi∇v on ΩH ,
and consequently, B̂I

k
yields the matrix LI

k,:.

• RUT ∗T yields the matrix M∂ , which is the mass matrix associated
with the boundary ∂ΩB of the body ΩB.

Hence, the discretized KKT system will in this case read:(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB

−1 α(ρMH + SH)I
k,Ik 0 LI

k,:

0 M∂ N

L:,Ik N 0

v̄Ikūk
w̄k



=

(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB

−1  0
M∂ d̄

0

 .
We thus use the preconditioner

[R̄k]−1 =

(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB

−1

. (67)

Finally, we update the Lagrange multiplier λ̄A
k

by solving

(ρMH + SH)A
k,Ak λ̄A

k
= LA

k,:w̄k,

where “ Ak ” denotes the active indices. (The derivation of this update is
similar to the one leading to (59).

8.3 A H1(Ωv) control space on a regular grid

We have already discussed that the lack of a continuous PDAS algorithm for
cases involving a H1(Ωv) control space do not seem to affect the performance
of the preconditioner for the inverse ECG problem studied above. Now, we
explore this issue further by considering the optimization problem

min
(v,u)∈H1(Ωv)×H1(Ω)

{
1

2
‖Tu− d‖2L2(∂Ω) +

1

2
α‖v‖2H1(Ωv)

}
(68)

subject to∫
Ω
∇ψ · ∇u dx+

∫
Ω
ψu dx = −

∫
Ωv

∇ψ · ∇v dx, ∀ψ ∈ H1(Ω), (69)

v(x) ≥ 0, x ∈ Ωv. (70)
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The domains Ω and Ωv are defined as follows:

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(

1

4
,
3

4

)
.

We will not present all the computational details, but instead focus on
the iteration numbers for the preconditioned MINRES scheme applied to
the KKT system associated with (68)-(70).

N\k 0 1

64 237 209
128 273 227
256 297 277
512 334 275
1024 390 351

Table 6: The number of MINRES iterations required to solve the optimiza-
tion problem (68)-(70). Note that k denotes the PDAS iteration number.
For k = 0 there are no active constraints, whereas for k = 1 many constrains
are active. Here, the stopping criterion was ε = 10−10, see (62), α = 0.01,
and the initial guess was set to p̄k0 = 0 for each PDAS iteration.

From Table 6 we conclude, at least for this problem, that there are
no practical difficulties with combining our preconditioner with the PDAS
algorithm. On the contrary, we observe a decrease in the number of MINRES
iterations needed for k = 1, compared with the results obtained for k = 0.
Note that, in the first PDAS iteration, i.e. k = 0, there are no active
constraints, whereas for k = 1 many constrains are active. Hence, for this
problem, the lack of a well defined extension operator EI

k
, see (17)-(19),

does not seem to introduce any severe difficulties. Nevertheless, further
theoretical investigations are needed to develop a robust PDAS algorithm
for PDE-constrained optimization problems with H1(Ωv) control spaces.

9 Conclusions

In this article we have analyzed the KKT systems arising in each iteration
of the PDAS algorithm applied to PDE-constrained optimization problems
with box constraints. More specifically, we have investigated whether the
system

Bkαpk = b

can be solved efficiently with the MINRES method. Here, α is the Tikhonov
regularization parameter, and Bkα denotes the indefinite Hermitian operator
arising in each iteration of the PDAS scheme.
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Our main theoretical result shows that the discretized operator Bk,hα ,
associated with Bkα, has a spectrum with a very limited number N(α) of
isolated eigenvalues, whereas the remaining eigenvalues are contained in
three bounded intervals:

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (71)

For severely ill-posed problems N(α) = O(ln(α−1)). Theoretically, we there-
fore conclude that the MINRES algorithm will solve the KKT systems effi-
ciently. Furthermore, since the spectral condition number κ(Bk,hα ) of Bk,hα is
of order O(α−1), and the standard theory for the MINRES method states

that O(κ(Bk,hα )) iterations are required, we conclude that the classical anal-
ysis provides a pessimistic estimate for the needed workload.

In [11] it was established that the spectrum of the KKT system associ-
ated with (1)-(2), without inequality constraints, is on the form (71). From
a technical point of view, the main challenge addressed in this paper was
to prove that this property is inherited by the KKT system arising in each
iteration of the PDAS method.

We presented a number of numerical experiments. In the first synthetic
example, Example 1, we were interested in the growth of the iteration num-
bers with respect to both the regularization parameter α and the mesh
parameter h. For the parameter α, we observed iteration counts almost of
order

O(ln(α−1))

as α → 0. Moreover, tables 1 and 2 show that the algorithm is robust
with respect to the mesh parameter h. Theoretically, the spectral condition
numbers of the KKT systems are bounded independently of any h > 0, and
the slight increase we observed in practice is probably due to computational
issues with the algebraic multigrid scheme.

In Section 8 we presented results for a real world problem. Namely, the
inverse problem of electrocardiography (ECG) in which the unknown source
is an ischemic region in the heart. Also for this problem, iteration counts
approximately of order O(ln(α−1)) were obtained. The numbers were, how-
ever, much higher than the iteration counts encountered in Example 1. This
can be due to a number of reasons: The size of the domain, the unstruc-
tured grid, the noise in the data, or the form of the state equations. All
these issues should be investigated properly in a separate paper.

Neither the inverse ECG problem, nor the synthetic example considered
in Section 8.3, fulfill all the assumptions needed by our theoretical analysis.
More specifically, these examples involve an H1 control space, such that
suitable extension operators, needed by the PDAS scheme, are not readily
available. Nevertheless, our experiments revealed that solving the associated
KKT systems, with many active constraints, did not require more MINRES
iterations than solving unconstrained problems. Also, we obtained a rather
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limited growth in the iteration numbers, as α decreased, for the real world
application. In fact, we solved this problem in roughly 5 to 15 minutes,
depending on the value of regularization parameter α. With optimized pre-
conditioners, code optimization and a stronger CPU, it should be possible to
reduce the computing time to less than 1 minute. For example, by changing
the preconditioner (67) to

[Rk]−1 =

(ρMH + SH)I
k,Ik 0 0

0 N 0
0 0 N

−1

, (72)

we get iteration counts as reported in Table 7. Clearly, substituting the
stiffness matrix SB in (67) with the matrix N , associated with the oper-
ator −∇ · M∇ on ΩB, reduces the iteration counts and computing time
significantly.

k\α 1 10−1/2 10−1 10−3/2 10−2

0 993 1528 2194 2661 3085
1 621 953 1224 1622 1715
2 191 444 693 817 948

Mean 602 975 1370 1700 1916

Wall Time 177s 285s 390s 471s 518s

Table 7: The number of MINRES iterations required to solve the opti-
mization problem for Patient 1. These numbers were generated with the
alternative preconditioner (72). Note that k denotes the PDAS iteration
number. Here, the stopping criterion was ε = 10−6, see (62).

The overall conclusion of this paper is: By combining the MINRES
method and the PDAS algorithm, some PDE constrained optimization prob-
lems arising in real world applications can be solved within reasonable time
limits.
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A

We will discretize the update of the Lagrange multiplier in Example 1, see
the discussion preceding (59). The generic update for this multiplier is given
in (36) as

λA
k

= [BA
k
]∗wk, (73)

where in each iteration of the PDAS method

BA
k

= BEA
k
,

see (28). Furthermore, recall from (50) that

B = R−1
U B̂.

It then follows from (28) that

BA
k

= R−1
U B̂EA

k

= R−1
U B̂A

k
,

where

B̂A
k

= B̂EA
k
.

The update (73) involves the adjoint operator [BA
k
]∗ of BA

k
. According to

a rather technical argument presented in [11],

[BA
k
]∗ = [RL2(Ak)]

−1[B̂A
k
]′,

where the symbol ”′” is used to denote dual operators and RL2(Ak) is the

Riesz map of the space L2(Ak), see (16). Hence, the continuous Lagrangian
update in Example 1 is

λA
k

= [RL2(Ak)]
−1[B̂A

k
]′wk,

or

RL2(Ak)λ
Ak = [B̂A

k
]′wk.

We again refer to [9] for further details about the discretization. Let the
superscript notation ”Ak” and ” : ” denote the active indices and all the
indices, respectively. The discretized update for the Lagrange multiplier
then reads

MA
k,Ak

v λ̄A
k

= MA
k,:w̄k.
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[15] F. Tröltzsch. Optimal Control of Partial Differential Equations: The-
ory, Methods and Applications, volume 112 of Graduate Studies in
Mathematics. American Mathematical Society: Providence, Rhode Is-
land, 2010.

[16] M. Ulbrich and S. Ulbrich. Primal-dual interior-point methods for PDE-
constrained optimization. Mathematical Programming, 117(1-2):435–
485, 2009.

35


