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Abstract. Natural stochasticity can pose challenges in man-

aging the quality of the environment, or hinder understand-

ing of the system structure. It is problematic because un-

favourable stochastic events cancel management efforts and

because a favourable stochastic event may overestimate per-

ceived success. This paper presents a variance-based mod-

elling method that can be used to quantify the extent to which

natural stochasticity can affect the target environment. We

use a case study of a eutrophication assessment of a Norwe-

gian lake, Årungen, using a lake model, MyLake, in order

to present the method, and to investigate how this method

could assist in answering scientific and management ques-

tions. Here we contrasted two effects of nutrient loading

in runoff (partially controllable by policies) and meteorol-

ogy (purely natural stochastic events), illustrated in the case

study, in order to achieve the season-by-season quantifica-

tion of mutually confounding factors of stochastic events.

The results indicate that, for example, variation in runoff vol-

ume was most prevalent during autumn and winter, while

variation in phosphorus inflow was most extensive from late

winter to early spring. Thermal-related properties in the lake

were well predicted by the model, and showed that the time

of thermocline formation varied among years by more than 1

month, from mid-April to mid-May, whereas loading was the

most important factor for phytoplankton biomass and water

transparency. Mild winters and greater inputs of suspended

matter and phosphorus were followed by increased phyto-

plankton biomass and light attenuation. These findings also

suggest that future changes in the global climate may have

important implications for local water management decision-

making. The present method of disentangling mutually con-

founding factors is not limited to lake water quality studies

and may also provide utility in other types of aquatic system

modelling.

1 Introduction

Natural stochasticity sometimes presents challenges in main-

taining the quality of the environment. Such is the case in

the context of reducing nutrient loads for the purpose of im-

proving water quality of downstream environments (Deel-

stra et al., 2010; Skarbøvik and Bechmann, 2010). Natu-

ral variation in weather, for example, may confound costly

abatement efforts by counteracting any positive benefits de-

rived from the abatement itself. In particular, nutrient load-

ing is determined both by hydrology (partially determined

by meteorological forcing on land) and by the management

effort (agriculture- and urban-related nutrient loading). Fur-

thermore, the weather may be directly consequential in lake

processes such as algal growth. With these challenges, it is

paramount to evaluate to what extent confounding variables

can actually make significant differences in lake water qual-

ity. The present study illustrates how a variance-based mod-

elling method is able to disentangle two major factors affect-
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ing a lake, with a test case study of eutrophication recovery

of a Norwegian lake.

The scientific community has learnt that nutrient enrich-

ment of lakes may lead to high phytoplankton mass devel-

opment, low water transparency, and fish mortality due to

oxygen depletion (Smith et al., 1999). There are two main

factors affecting the nutrient loading to lakes: (1) the soil

and land use in the lake catchment, and (2) the hydrology

of the watershed. Phosphorus is generally regarded as the

limiting nutrient for phytoplankton production in freshwater

lakes (Schindler, 1977). Much effort has therefore been given

to reduce phosphorus input to aquatic ecosystems, which

has demonstrably led to reduced phytoplankton production

and increased water transparency in many lakes in Europe

and North America (Jeppesen et al., 2005). On the other

hand, many lakes have revealed delayed or negligible im-

provements in water quality despite reduced nutrient loading

(Jeppesen et al., 2007a).

Year-to-year weather variations have also been recognized

as affecting physical, chemical, and biological processes in

lakes (Bailey-Watts and Kirika, 1999; Blenckner et al., 2007;

Jeppesen et al., 2009, 2007b; Whitehead et al., 2009). An

increase in air temperature has been shown to increase the

water temperature (George et al., 2007) and the stability of

thermal stratification (Straile et al., 2003a), change the phyto-

plankton community towards dominance of species adapted

to warmer water (Weyhenmeyer et al., 2002), and possibly

lead to earlier and higher phytoplankton production (Huber

et al., 2008; Weyhenmeyer et al., 2002). Changes in thermal

conditions and mixing regime can in turn influence the light,

oxygen and nutrient dynamics in lakes, and thereby impact

the phytoplankton primary production and community struc-

ture (Tirok and Gaedke, 2007; Wilhelm and Adrian, 2008).

Precipitation is also deemed an important factor in determin-

ing water transparency, runoff intensity, and suspended mat-

ter discharge (Arheimer et al., 2005; Nõges et al., 2007; Ulén

et al., 2007).

Norway has, generally, a low fraction of arable land (3 %)

and low population density (12 persons km−2), so eutroph-

ication is mainly recognizable in intensive agricultural dis-

tricts at low altitudes. Lake Årungen is situated in a devel-

oped agricultural area in the south-east of Norway, and is

one of the most nutrient-rich lakes in the country. Geologi-

cal studies suggest that the natural phosphorus concentration

of lakes in this area is 7–8 mg m−3 (Borch et al., 2007). Eu-

trophication became a problem in the lake during the 1960s,

with phosphorus concentration exceeding 400 mg m−3 in the

1980s (Løvstad and Krogstad, 1993). Algal blooms, low wa-

ter transparency, malodorous water, reduced fish stocks, and

occasional mass mortality of fish were observed in the lake

in this period (Ensby et al., 1984). Despite investments in

sewage treatment and extensive changes in agricultural prac-

tices since the 1970s to reduce nutrient leaching and erosion

from the catchment, algal growth remains high.

Predicting eutrophication responses to nutrient loading is a

complex task due to the dynamics of a lake’s response to the

stochastic nature of weather, the confounding factor. Here we

used a lake model, MyLake (Saloranta and Andersen, 2007),

based on a system of processes that have been identified as

a primary tool for improving our understanding of recovery

and progression of eutrophication (Mooij et al., 2010). More

precisely, we made combinations of forcing data (meteoro-

logical and nutrient loading inputs) for the model, with (1)

some forcing data from the actual records and (2) others be-

ing the average day-to-day record for the period of 16 years,

repeated 16 times.

This approach interweaves the day-to-day and year-to-

year variability in a systematic manner, and simulation out-

puts based on dissimilar combinations of these “actual” and

“repeated average year” can be analysed once again from the

day-to-day and year-to-year variability. In principle, the ac-

tual data are more variable than the repeated average year. If

a particular forcing variable is significant in affecting the lake

water quality, switching from the actual to repeated average

year reduces the year-to-year variation in lake water quality

variables. More importantly, the current study demonstrates

the use of year-to-year variance for each day of the year,

which is a powerful visual and quantitative tool in detecting

the critical season for a variable.

The separation of two temporarily varied factors affect-

ing the same environmental receptor is not only useful in

lake water quality modelling. For example, agricultural yield

and forestry are affected by weather, soil conditions, dis-

eases, and tilling and fertilization amount and timing. Other

examples may be climate change impacts on the physical

landscape, such as glacial extent or surface water ice cover,

which are affected by stochastic meteorological conditions

and warming forcing, which are mostly anthropogenic but

also of natural origin (e.g. volcanic activities), as well as re-

gional multi-year fluctuation such as the North Atlantic Os-

cillation or El Niño.

The current study primarily aims to evaluate the relative

importance of year-to-year variation in two major factors,

namely meteorological forcing and nutrient loading, which

contribute to the lake’s physical, chemical and biological

conditions. We visually inspect how their respective signif-

icance varies over the season. To this aim, (1) the MyLake

model was first calibrated against the lake data, then (2) var-

ious meteorological and nutrient loading scenarios combin-

ing variation in these two major factors were applied, and

finally (3) year-to-year variation in model outputs was com-

pared among the scenarios.
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2 Material and methods

2.1 Study site

Lake Årungen is a dimictic lake with maximum and aver-

age depths of 13 and 8 m, respectively. The lake is located

in south-east Norway (59◦41′18′′ N, 10◦44′38′′ E; Fig. 1),

25 km south of Oslo, and has a surface area of 1.2 km2. The

catchment area covers 51 km2, where 53 % is agricultural

land, 34 % forestry, 10 % densely populated, and 3 % open

water surfaces. The lake is highly exposed to agricultural

runoff that causes high nutrient and particle loading. Runoff

is mainly through six streams of 1.5 to 5 km length. The

outlet connects the lake to the marine environment as Lake

Årungen enters the Oslofjord through a 3 km long stream.

2.2 Model

MyLake is a one-dimensional lake model, adapted from

MINLAKE (Riley and Stefan, 1988), which simulates daily

changes in physical and chemical dynamics over the depth

gradient (Saloranta and Andersen, 2007). The model simu-

lates ice and snow dynamics in a mechanistic manner and it

has been applied to winter-freezing lakes in Norway and Fin-

land (Kankaala et al., 2006; Lydersen et al., 2003; Saloranta

et al., 2009; Saloranta, 2006; Couture et al., 2014). It was

therefore considered as a suitable model for Lake Årungen.

2.3 Inputs and outputs

MyLake requires inputs of meteorological forcing, runoff

volume and temperature, and fluxes of suspended inorganic

particles and total phosphorus (TP) to model phosphorus and

phytoplankton dynamics in the lake (Table 1). Meteorolog-

ical data for daily air temperature, global radiation, cloud

cover, precipitation, relative humidity, and wind speed were

obtained from the nearby meteorological station located at

the Norwegian University of Life Sciences (59◦39′37′′ N,

10◦46′54′′ E). Direct measurements of daily runoff volume,

runoff water temperature, and fluxes of suspended inorganic

particles and total phosphorus to the study lake, Årungen,

were not available. However these values were estimated us-

ing the Skuterud monitoring station (Fig. 1) with a hydrovol-

umetric weir at which these runoff variables were monitored

(1994–2010), providing accurate flux at this sub-catchment.

In order to account for runoff contributions of different types

of land use in the other sub-catchments, such as agriculture

and urban build-up, we used previously determined scaling

factors that both correct for flow and nutrient contributors

(Askilsrud, 2010). The monitoring station is located at an

inlet stream to Østensjøvann (59◦41′18′′ N, 10◦49′45′′ E), a

small lake of 0.4 km2 which drains into Lake Årungen (Deel-

stra et al., 2007). A separate MyLake model was set up for

Lake Østensjøvann to account for the buffering effects of this

lake in the largest sub-catchment of Lake Årungen. The sim-

ulated water properties of Lake Østensjøvann were combined

Figure 1. Map of catchment draining into (1) Lake Årungen, with

the (2) weather station at Ås, (3) Lake Østensjøvannet and (4) the

Skuterud monitoring station. Runoff data from the Skuterud sub-

catchment (indicated by dark shading) are scaled up according to

land area and usage of the rest of the catchment to estimate the total

loading to Lake Årungen.

with runoff from the other sub-catchments as an estimate of

the total runoff to Lake Årungen.

Six variables (whole-lake average TP pool, mean surface

chlorophyll concentration, light attenuation coefficient, ther-

mocline depth, epilimnion temperature, and ice thickness)

were calculated from unprocessed model outputs (Table 1)

in order to ease interpretation of the statistical analyses for

the scenario experiments described below.

2.4 Model calibration

Water temperature, TP, soluble reactive phosphorus (SRP),

and chlorophyll a concentration from the deepest location in

the lake were used to calibrate the model (Table 1). Vertical

water temperature profiles were continuously logged every

hour at eight depths between 0.7 and 12.6 m by Hobo pendant

temperature loggers (model 64K-UA-002-64; Onset Com-

puter Corporation, Bourne, MA, USA) in the period from

November 2008 to August 2010. Water samples for chemical

and biological analyses were collected with a modified Rut-

tner water sampler at seven depths twice a month or monthly

(n= 49) from January 2008 to September 2010. TP, SRP and

chlorophyll a were determined spectrophotometrically (UV–

VIS spectrophotometer UV-1201, Shimadzu, Kyoto, Japan).

We employed the Markov chain Monte Carlo (MCMC)

method (Andrieu et al., 2003; Saloranta et al., 2009) dur-

ing the calibration procedure. The calibration consisted of

two stages. The first MCMC calibration stage involved three

physical parameters (Table 2) that only affect heat dynamics,

in particular thermocline depth. This first calibration was run

against daily temperature measurements, using 2000 MCMC

steps with the first 1000 for burn-in. The second MCMC cal-

ibration stage involving eight parameters (Table 2) that affect

phosphorus and chlorophyll dynamics, but not temperature,
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Table 1. Input and output data, and observed lake data for the calibration of the MyLake model and statistics for ANOVA and PCA.

MyLake inputs MyLake outputs (selected) Observed lake data

Meteorological dataa,f Calibration purposea Calibration purpose

Air temperature (every 0.5 m by depth) (at 7 depths)

Global radiation Water temperature Water temperaturea

Cloud cover TP concentration TP concentrationb

Precipitation SRP concentration SRP concentrationb

Relative humidity Chlorophyll concentration Chlorophyll a concentrationb

Wind speed

Statistics calculated for PCA

Runoffa,g (volume weighted mean 0–3.0 m)

Flow volume TP content

Water temperature Mean surface chlorophyll

Suspended matter flux Light attenuation coefficient

TP flux Thermocline depth

Mean epilimnion temperaturee

Statistics calculated for PCA Ice thickness

Global radiationc

Cloud coverc

Air temperaturec

Wind speedc

Precipitationc

Flow volumec

Winter air temperatured,h

Summer air temperatured,i

Winter precipitationd,h

Summer precipitationd,i

Suspended matter fluxd

TP fluxd

a Daily data. b Biweekly data. c Annual mean. d Water year basis (October through to September). e Volume weighted above

thermocline depth. f Inferred with data from Ås meteorological station. g Inferred with data from Skuterud monitoring station and

land use. h December through to March, mean. i June through to September, mean.

was run against measurements of TP, SRP, and chlorophyll a

in 30 000 MCMC steps with the first 10 000 for burn-in. For

example, algal growth in the MyLake model is a function of

nutrient concentration, light availability and water tempera-

ture, and amplitude of these factors was controlled by the

parameters. In the present study, runoff was given as exter-

nal input to the model, and water temperature and underwater

light conditions were determined in the first stage of MCMC.

Therefore, for the example of algal growth, the second stage

of MCMC only changed the amplitude of algal growth in

response to these external factors. For these MCMC applica-

tions, convergence was monitored visually. Linear interpola-

tion was used to match model outputs on a 0.5 m vertical grid

to the actual measurement depths. Although it was not used

directly during the MCMC calibration, model goodness of fit

was informally assessed by root mean square error (RMSE).

The medians of the posterior parameter distributions gener-

ated by both stages of the MCMC calibrations were used for

the scenario experiments described in the following.

2.5 The variance-based method for disentangling

confounding factors

The model was run under four scenarios for nutrient load-

ing and weather in order to quantify the respective impacts

of weather variation and loading conditions on phosphorus

and phytoplankton dynamics (Table 3). Precipitation (in the

meteorology group) predominantly influences runoff volume

(in the runoff group). But runoff volume was kept together

with runoff concentrations, as the most important influence

possessed by runoff is the total amount of nutrients, which

we obtain by multiplying concentration by volume. These

scenarios were based on input combination of observed data

(original data, 1994–2010) and synthetic data, where the syn-

thetic data were created by taking the year-to-year mean

(n= 16) of each of the days of year. Synthetic data repeat

the calculated mean year with 365 days 16 times. We re-

moved 29 February from the year-to-year mean calculation,

and 28 February was repeated to account for the 29th day in

leap years.
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Table 2. Parameters involved in calibration based on two-stage Markov chain Monte Carlo (MCMC) application (first stage for three param-

eters using 2000 MCMC steps with 1000 steps for burn-in and second stage for eight parameters using 30 000 MCMC steps with 10 000 for

burn-in). MyLake equation numbers refer to the original model description (Saloranta and Andersen, 2007). Median values were chosen

among the posterior parameter distribution.

Parameter Value Equation Unit Prior distribution

Physical parameters

Open-water vertical diffusion coefficient 7.56× 10−3 Eq. (10) m2 day−1 0.00706× (1.18× (10x )× 10−6)0.56

where x∼N (0, 1)

Wind sheltering coefficient 7.96× 10−2 Eq. (13) – 1− e−0.3×1.18×10x
×10−6

where x∼N (0, 1)

Minimum possible stability frequency 9.31× 10−5 Eq. (10) s−2 1.14× 10−4
× 10x where x∼N (0, 1)

Biological and chemical parameters

PAR saturation level for photosynthesis 2.04× 10−4 Eq. (29) mol quanta 3.00× 10−5
× 10x where x∼N (0, 0.5)

m−2 s−1

Particle resuspension mass transfer coefficient 2.94× 10−5 Sect. 2.7 m day−1, dry 3.63× 10−7
× 10x where x∼N (0, 0.5)

Settling velocity for suspended matter 1.38 Eq. (20) m day−1 0.25× 10x where x∼N (0, 0.5)

Settling velocity for chlorophyll 7.31× 10−2 Eq. (20) m day−1 0.200× 10x where x∼N (0, 0.5)

Specific mortality rate of phytoplankton 1.86× 10−1 Eq. (26) day−1 0.200× 10x where x∼N (0, 0.5)

Max specific growth rate of phytoplankton 1.76 Eq. (27) day−1 1.50× 10x where x∼N (0, 0.5)

Half-saturation inorganic phosphorus 9.99× 102 Eq. (24) mg m−3 2500× 10x where x∼N (0, 0.5)

concentration for Langmuir isotherm

Saturation level for inorganic phosphorus isotherm 4.96× 104 Eq. (24) mg kg−1 8000× 10x where x∼N (0, 0.5)

This approach combines the actual forcing data for some

variables together with average-year data for the other forc-

ing data variables. Comparing such a synthetic scenario

against the scenario using full actual forcing data elucidates

the importance of year-to-year variation in the second set of

variables. For example, scenario C (repeated average-year

runoff) will necessarily have lower year-to-year variation

(n= 16) in output variables compared with scenario A (full

original data) (Table 3); the difference in the scenario input

(i.e. runoff input) accounts for the reduction in the year-to-

year variation in the output variables. By examining which

output variables were most reduced in year-to-year variation

among all output variables, we obtain crucial information on

the importance of runoff forcing data in the output. Thus we

achieved the objective of the present study, namely disentan-

gling the relative importance of year-to-year variation in two

major factors (meteorological and loading inputs). The idea

of mixing actual and average-year forcing data was derived

from the study conducted by Jöhnk et al. (2008), in which the

authors assessed the relative importance of various meteoro-

logical variables (air temperature, cloudiness, wind speed)

in affecting various lake responses such as water tempera-

ture and algal cell counts of three phytoplankton groups. The

present study compares standard deviation of the 16 years

of simulation outputs for each day of the year for six output

variables among several scenarios.

Combining the repeated average input together with ac-

tual stochastic input (such as in scenarios B and C, Table 3)

causes unrealistic input for two reasons. One reason is the

inconsistency among variables on a daily basis. For exam-

Table 3. Model scenarios. The scenarios comprise either original

input data (denoted O), pseudo-repeated average year based on

16 years of input data (denoted R), or a combination of O and R.

Model scenarios A B C D

Model inputs

Weather

Global radiation O R O R

Cloud cover O R O R

Relative humidity O R O R

Wind speed O R O R

Air pressure O R O R

Air temperature O R O R

Precipitation O R O R

Runoff

Flow volume O O R R

Suspended matter flux O O R R

Inflow water temperature O O R R

TP flux O O R R

ple, because runoff is controlled by precipitation, scenario C,

for instance (original weather+ averaged runoff), may suffer

from a potentially undesirable situation on a daily basis, such

as high precipitation with little cloud on a certain day. How-

ever, day-to-day inconsistency, stemming from this unreal-

istic situation, has minimal influence on the lake ecosystem

because (1) runoff and weather have different main roles: as

a source of nutrients and a source of energy, respectively, and
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(2) because lake water is an accumulation of old water from

runoff introduced many days before. The second reason for

a lack of realism is that the intra-variability or within-year

variability that naturally stochastic variables such as mete-

orological inputs should have is lost in the present study’s

design. This can cause problems such as not providing ex-

treme wind events due to averaging, despite such wind events

being crucial for the onset of ice formation, or determina-

tion of the thermocline. Hydrodynamic models are therefore

usually driven by stochastically generated time series (Se-

menov et al., 1998; Schlabing et al., 2014). Alternatively,

most average-looking years could have been chosen, as in

Jöhnk et al. (2008). However, the current study requires the

average to be done on multiple criteria or variables. By ren-

dering a choice of one year as the average year for a certain

variable, it will not necessarily be the average year for all

variables concurrently. To achieve the purpose of reducing

the year-to-year variation and not to be particularly bound by

a selected single year or randomly generated year, repeated

average year was used despite these potential problems. In

the present study, year-to-year variation in outputs of these

four scenarios will be discussed, but not the actual values on

a daily basis, and the results are interpreted with care that

scenario A is the most variable on a year-to-year basis, that

either B or C is the next, and finally that D is the least, al-

though this care does not completely safeguard the results

from unrealistic intra-year variations or inconsistencies.

2.6 Post-simulation methods

All the data and statistical analyses were done using R (ver-

sion 3.1.2, R Core Team, 2014). A two-way analysis of vari-

ance (ANOVA) was run on the 16 years of water-year-based

simulation statistics (water year mean; see Table 1), among

scenarios A, B, C and D (two weather factors by two load-

ing factors; see Table 3). All annual averages are computed

over the period from 1 October to 30 September, commonly

used in Europe to refer to a hydrological year, or a water

year (Otnes and Ræstad, 1978). Since treatment contrasts are

nested within water years, we factored out the between-year

variances to gain a greater power in the statistical tests. Prin-

cipal component analysis (PCA) was used to explore the re-

lationships between meteorological and land-related forcing

and their relevance for the simulated lake response. Four wa-

ter years with extreme PCA scores were selected for studying

contrasting lake responses in closer detail.

3 Results

3.1 Calibration

The simulated water temperature and thermal dynamics of

the lake were in agreement with the lake observed data.

Observed water temperature measurements were well pre-

dicted by simulation and the RMSE was less than 2 ◦C at

all lake depths (Fig. 2). After the water temperature cali-

bration, parameters controlling TP, SRP, and chlorophyll a

were calibrated against observed data for the period from

January 2008 to September 2010. The epilimnion TP, SRP,

and chlorophyll a concentrations were well predicted by the

model, although their prediction was less successful than the

prediction of the water temperature. The TP and SRP were

better predicted by the model in pelagic surface water than

in deep water, whereas the chlorophyll a showed the oppo-

site pattern. In general, the model simulated TP and SRP

well, although both phosphorus forms were overestimated in

early spring and autumn at shallow depths, while underesti-

mated in bottom water. Simulated SRP concentrations were

also somewhat higher than observed in winters. However,

the simulation succeeded in showing a decreasing trend of

lake phosphorus in spring and midsummer, and in mimick-

ing its increase during the autumn mixing of water. Although

the simulated chlorophyll concentrations were lower than the

measured values, the model was able to predict seasonal vari-

ation in phytoplankton primary production and to simulate

high phytoplankton biomasses in the lake epilimnion during

midsummer.

3.2 Variability in forcing data

Inter-annual variation was expressed as the standard devia-

tion in inputs and outputs between the years. All weather

inputs varied between years (Fig. 3), with air temperature

and global radiation having the strongest seasonal pattern in

inter-annual variation (i.e. greater 16-year variation as com-

pared to year-to-year variation on a day-of-year basis). The

inter-annual variation in air temperature was strongest in the

winter period, whereas global radiation varied most during

the summer months. The variation in cloud cover, precipita-

tion and relative humidity was generally similar across sea-

sons. The year-to-year variation for precipitation was par-

ticularly high in December and in the period from July to

September, the latter reflecting extreme precipitation events.

Wind speed varied most in winters.

Runoff input data on water flow and concentrations of

TP and suspended matter all varied seasonally and between

years. The variation in runoff volume was greatest in the pe-

riod from October to May. No clear seasonal pattern in the

degree of variability could be found for suspended matter and

TP fluxes, although the variation in TP influx seemed to peak

in February and March.

3.3 Variability in simulation outputs: disentangled

significance of confounding factors

Differences in year-to-year variation among the scenarios

(Fig. 4) and the annual statistics (Table 4) illustrate the sea-

sonal influence of the external forcing on the thermal regime

and the phosphorus and phytoplankton dynamics in the lake.

There is a large amount of N in Lake Årungen, as N is ap-
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Figure 2. Simulated (line) and observed (circles) lake state variables for water temperature, TP, SRP, and chlorophyll a concentrations at

seven depths. RMSE values are in their respective original units, and they are shown only for presentation purposes and were not used during

the calibration. See text for the details of the calibration procedure.
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Figure 3. Input variability shown as standard deviations on a water year scale (day-by-day, year-to-year variation, n= 16, curves), with the

overall 16 year standard deviations indicated by horizontal lines.
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Table 4. Summary results for six two-factor within-subject ANOVAs (n= 16× 2× 2). Significance of additive and interactive effects of

weather (two levels, original, O or repeated average, R) and loading (two levels, original, O or repeated average, R) inputs on the six selected

model outputs are shown using P value. High P values for interactive effects for all six tests indicate pure additive two-factor model and

test for each factor separately. The variance decomposition shows the relative contributions of each factor and interaction to the total sum of

squares with the between-year error term factored out.

F value P value Variance decomposition

Model outputs W L W×L W L W×L W L W×L

Ice thickness 31.93 0.13 0.34 < 0.000 0.723 0.565 0.413 0.002 0.004

Thermocline depth 0.27 0.91 1.93 0.605 0.346 0.172 0.006 0.019 0.040

Epilimnion temperature 3.19 4.91 0.39 0.081 0.032 0.537 0.060 0.092 0.007

TP content 0.81 1.26 0.02 0.374 0.268 0.888 0.017 0.027 0.000

Surface chlorophyll 0.05 18.76 0.14 0.827 < 0.000 0.713 0.001 0.293 0.002

Light attenuation coefficient 0.78 14.82 0.23 0.382 < 0.000 0.631 0.013 0.244 0.004

plied in surplus in the agricultural fields. Even though there

is some reduction in N during summer, N is excluded as

the limiting nutrient (Romarheim, 2012). The lake responded

differently between years; all simulated outputs, except ice

thickness, showed large variation in the beginning and at the

end of the phytoplankton growing season (Fig. 4). All simu-

lated output variables were influenced by external forcing as

they varied inter-annually for all model scenarios (see vari-

ance decomposition in Table 4). Ice thickness was signifi-

cantly affected by weather (P < 0.001) as both air tempera-

ture and winter precipitation highly contributed to its varia-

tion between years (Table 4; Fig. 4). The variation in ther-

mocline depth in May and October was well revealed by the

model, and seemed to be equally dependent on weather and

loading. The epilimnion temperature during the whole grow-

ing season was largely controlled by weather. The TP content

in the lake was most variable in the period from November to

January, and in April and July. Loading could mostly explain

the inter-annual TP variation in the lake, whereas precipita-

tion contributed to TP variation only in the spring, and air

temperature only during the winter period. Loading was the

overall most important factor in controlling the light atten-

uation coefficient (P < 0.001) and surface chlorophyll con-

centration (P < 0.001). Weather seemed to be important in

controlling chlorophyll and light attenuation in early spring,

whereas loading was the most important factor controlling

the both variables from June to September. The year-to-year

variation in these two variables from June to September in

scenario C was higher than scenario A, despite scenario C

being less variable year-to-year than scenario A in loading.

This might be because scenario C may distribute the autumn

runoff events that are still significant after spreading over the

years, and this might have caused the light-related variables

to be unstable on a day-to-day scale.

The years 1996, 2000, 2006 and 2007 were the four most

extreme years determined on the basis of PCA (Fig. 5). The

year 1996 was characterized by relatively low average an-

nual air temperature, a thin cloud cover and low precipita-

tion, which resulted in low epilimnion water temperature,

short-lasting thermocline, low runoff volume, and TP in the

lake. The year 2007 represents an opposite to 1996 regarding

weather characteristics, resulting in a model simulation with

relatively high average annual air temperature and precipi-

tation. Increased wind speed, decreased air temperature, and

decreased precipitation coincided with increased ice thick-

ness and global radiation, such as in 2003–2006, 2009, and

2010. These weather conditions resulted in lower suspended

inorganic particles and TP in runoff which coincided with

lower surface chlorophyll concentration and light attenua-

tion. The year 2006 was identified to be extreme during this

period, with a cold winter followed by a warm summer. In

contrast, the year 2000 was characterized as a year with less

global radiation, lower summer air temperature, and higher

wind speed, but with higher winter temperature and pre-

cipitation. Such weather conditions pronounced higher TP

and suspended particles in runoff compared with an average

year, resulting in a high surface chlorophyll concentration

and lower water transparency.

The methodological choice of using a repeating average

year (see Sect. 2.5) may have reduced the impact of extreme

weather events but probably caused little difference in the

overall interpretation and conclusion. But the result that the

daily year-to-year variation for either scenario B or C closely

followed scenario A, depending on the modelled variable (TP

content, surface chlorophyll, light attenuation coefficient for

scenario B, and ice thickness, thermocline depth, and epil-

imnion temperature for scenario C), provides confidence that

the conclusions will not change due to the methodological

limitation.

4 Discussion

4.1 Year-to-year variability in lake responses

Year-to-year weather variations, as well as the influence of

catchment land use and hydrology, hinder our understand-
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Figure 4. Output variability shown as standard deviations on a water year scale (day-by-day, year-to-year variation, n= 16) for scenar-

ios A (black solid line or top solid line), B (red dotted line), C (blue dashed line), and D (green solid line or bottom solid line). Consequently,

each panel illustrates 4× 365 standard deviation values, and each standard deviation is based on sample size n= 16. See Table 3 for scenario

configurations.

ing of how individual stressors may affect the lake response

(Blenckner, 2005). Our model experiment, which involved

the input of weather and loading data for 16 years, was able

to outline the respective importance of year-to-year variation

in external forcing on physical, chemical and biological re-

sponse in Lake Årungen. The combination of high forcing

variability and high lake response sensitivity made the inter-

annual variation most dramatically expressed in spring and

autumn.

Air temperature, precipitation, and wind speed are the

principal factors influencing freshwater ecosystems in a

changing climate (Nickus et al., 2010). The lake thermal

regime was to a large extent affected by weather conditions,

particularly by air temperature. The dynamics of winter air

temperatures were an important factor influencing the heat-

ing and mixing processes during spring. A dynamic physical

environment at the beginning of the growing season has con-

siderable influence on the phytoplankton community struc-

ture and its dynamics (Weyhenmeyer et al., 2002). For ex-

ample, increased surface water temperatures in the English

Lake District (George et al., 2007) and incomplete water

mixing in Lake Constance (Straile et al., 2003a) have pre-

viously been associated with mild winters. High inter-annual

variation in winter air temperatures in Lake Årungen was re-

flected in the simulated ice thickness and phenology of ice

formation, with ice forming in December–January and dis-

appearing in March–April. Likewise, in other lake studies,

thinner and shorter ice cover has been related to mild winters

(Nickus et al., 2010). In this study, the timing of thermocline

formation varied among years by more than 1 month, from

mid-April to mid-May. The large year-to-year variation in

thermocline depth and duration could lead to changes in tem-

perature, light, and nutrient condition in the lake, which fur-

ther shape the phytoplankton community and determine its
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total biomass (Padisák et al., 2010; Zohary et al., 2010). For

instance, the early disappearance of diatoms and high devel-

opment of cyanobacteria in European lakes have been related

to winter warming and increased water temperature (Wey-

henmeyer et al., 2002). Furthermore, an increase in water

stability favours the buoyant phytoplankton species such as

bloom-forming cyanobacteria (Reynolds et al., 1983; Winder

and Hunter, 2008).

Year-to-year variation in phosphorus content in the lake

was highly influenced by nutrient loading. This indicates that

the external nutrient supply remains an important source of

phosphorus in the lake. Although changes in nutrient load-

ing have been primarily linked to anthropogenic activities in

the catchment, in particular to practices in agriculture, the

short-term variations in weather and runoff can also influ-

ence the nutrient supply from external sources. Lake Årun-

gen is surrounded by agricultural land, and is especially sen-

sitive to variable weather conditions that promote nutrient

loading from the catchment. More precisely, air temperature

and rainfall frequency and intensity affect the runoff and the

soil erosion pattern, particularly during the winter period.

Increases in winter temperatures simultaneously occurring

with frequent freezing and melting events increase the risk

of erosion, which in turn increases the nutrient loading to the

lake (Bechmann et al., 2005; Jeppesen et al., 2009; Nõges

et al., 2007). Although not statistically demonstrated in the

present study, the indirect impacts of weather conditions on

discharge may still be important in regulating the nutrient

dynamics. Variable winter weather conditions and the tim-

ing of ice-out were the most important causes of year-to-year

variable phosphorus content in the period from November to

January and in April in Lake Årungen. Enhanced phospho-

rus concentrations in streams during winter, and high phos-

phorus loading in early spring, both contribute to the total

lake phosphorus concentration during the following summer

in two Norwegian lakes with agricultural catchments (Bech-

mann et al., 2005). In addition, the variation in summer TP

content could also be the result of between-year variation in

rainfall, especially due to extreme precipitation events as ob-

served for particular days in July. High inter-annual variation

in TP content can consequently result in variable phytoplank-

ton biomass between years.

Phytoplankton biomass and light were significantly af-

fected by loading, although atmospheric forcing also con-

tributed to their inter-annual variation in the lake. The ef-

fect of loading was pronounced during the whole algal grow-

ing season, whereas weather had the strongest effect in

early spring and from mid-August to the end of the grow-

ing season. Thermal stratification is highly dependent on

weather and may further influence water mixing as well

as light and nutrient regimes, which are important in con-

trolling phytoplankton dynamics (Padisák et al., 2010; Zo-

hary et al., 2010). Similar patterns of year-to-year varia-

tion in water temperature, chlorophyll concentration, and

light attenuation indicate a close relationship between these

variables. Higher air temperature promoted higher water
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temperature and higher stability of the thermal stratifica-

tion, which enhanced phytoplankton production of bloom-

forming cyanobacteria (Reynolds et al., 1983; Weyhenmeyer

et al., 2002). Runoff and soil erosion, caused by intense pre-

cipitation and frequent melting of snow and ice during mild

winters, affect eutrophication and water turbidity (Bechmann

et al., 2005; Jeppesen et al., 2009). Thus, light may limit

phytoplankton growth more than nutrients in highly turbid

lakes such as Lake Årungen (Dokulil, 1994). Reduced light

availability may be crucial for the competitive success of

cyanobacteria which are functionally adapted to low-light

conditions (Litchman, 1998). Particularly high dominance

of cyanobacteria has been observed in Lake Årungen after

mild winters followed by low-light conditions in spring (Ro-

marheim et al., unpublished data). Therefore, additional mea-

sures to control soil erosion may need to be implemented in

water management, not only to reduce the supply of nutrients

but also to avoid low water transparency, which may favour

development of potentially toxic cyanobacteria.

4.2 Implications for lake management

According to our PCA, most of the 1990s was categorized

by winters with higher temperatures and more rainfall. The

mild winters were related to a positive North Atlantic Oscil-

lation (NAO) phase which has been shown to strongly influ-

ence physico-chemical and biological responses in western

European lakes (George et al., 2007; Straile et al., 2003b;

Weyhenmeyer et al., 2002). The effect of climate condition

on water ecosystems, however, should be considered indi-

vidually as the lake response is also determined by the lake’s

geographical position, landscape topography, and the lake’s

morphometry and mixing regime (Nickus et al., 2010). Our

model experiment indicated that greater inflow of suspended

matter and phosphorus to Lake Årungen is expected after

mild winters with high precipitation. Consequently, higher

chlorophyll concentrations and greater light attenuation were

predicted after mild and wet winters such as in the year of

2000. Mild winters potentially counteract measures aimed

to reduce external nutrient supply and control phytoplank-

ton production in cold temperate lakes. However, cold win-

ters were associated with a thicker ice layer, less inflow of

suspended matter and phosphorus, and low chlorophyll and

light attenuation. This was consistent with the observed in-

crease in water transparency and reduction of phytoplankton

biomass, particularly of cyanobacteria, in Lake Årungen af-

ter the cold winter of 2010 (Romarheim et al., unpublished

data). Special attention must therefore be given to manage-

ment practices, which should minimize the use of fertilizers

and reduce the risk of nutrient runoff and soil erosion, espe-

cially in areas that drain directly into the lake. Higher annual

air temperature coincided with a warmer epilimnion, a shal-

lower thermocline, and extended summer stratification, such

as for the year 2007. In addition, high annual precipitation

and runoff volume, particularly in summer, coincided with

warmer years.

Globally, all years in the period from 1995 to 2006, with

the exception of 1996, were among the warmest since 1850

(Trenberth et al., 2007). Likewise, the year 1996 was charac-

terized by low average annual air temperature in our model

experiment. Lower annual air temperature and low rain-

fall in 1996 led to low epilimnion temperature, and a deep

and short-lasting thermocline. According to future climate

projections for Scandinavia, warmer and wetter winters are

expected in south-eastern Norway (Hanssen-Bauer et al.,

2005). If so, we should also expect more intensive soil ero-

sion, higher phosphorus loading, lower water transparency,

and greater phytoplankton biomasses, primarily cyanobac-

teria, in the lakes. Global climate changes and inter-annual

variations in the local weather directly, and indirectly through

an impact on the catchment, influence the physico-chemical

and biological processes in lakes. The limnological and bio-

geochemical knowledge of this lake identified by decompos-

ing year-to-year variation in the two factors has potential

in determining future management. Runoff is partially con-

trolled by precipitation, which in turn is predicted to change,

and so are air temperature and global radiation. Therefore,

the effects of climate should be critically considered in future

decision-making processes concerning water management.
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