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Assessing SNP genotyping of 
noninvasively collected wildlife 
samples using microfluidic arrays
Alina von Thaden1,2, Berardino Cocchiararo1, Anne Jarausch1,2, Hannah Jüngling1, Alexandros 
A. Karamanlidis3,4, Annika Tiesmeyer1,2, Carsten Nowak1 & Violeta Muñoz-Fuentes1,5

Noninvasively collected samples are a common source of DNA in wildlife genetic studies. Currently, 
single nucleotide polymorphism (SNP) genotyping using microfluidic arrays is emerging as an easy-
to-use and cost-effective methodology. Here we assessed the performance of microfluidic SNP arrays 
in genotyping noninvasive samples from grey wolves, European wildcats and brown bears, and we 
compared results with traditional microsatellite genotyping. We successfully SNP-genotyped 87%, 
80% and 97% of the wolf, cat and bear samples, respectively. Genotype recovery was higher based 
on SNPs, while both marker types identified the same individuals and provided almost identical 
estimates of pairwise differentiation. We found that samples for which all SNP loci were scored had 
no disagreements across the three replicates (except one locus in a wolf sample). Thus, we argue that 
call rate (amplification success) can be used as a proxy for genotype quality, allowing the reduction of 
replication effort when call rate is high. Furthermore, we used cycle threshold values of real-time PCR to 
guide the choice of protocols for SNP amplification. Finally, we provide general guidelines for successful 
SNP genotyping of degraded DNA using microfluidic technology.

Noninvasively collected samples play an important role in wildlife genetic studies. The collection of animal res-
idues, such as hair, scats, saliva and feathers, enables the study of wild and elusive species that are otherwise 
difficult to sample, whilst minimizing disturbance to the animals and their habitats1–5. However, the extraction 
and subsequent analyses of DNA from noninvasively collected samples present considerable challenges6–8. The 
recovered DNA is often degraded and quantities are usually low, resulting in decreased amplification success and 
increased processing efforts to obtain genotypes of sufficient quality9–11. Co-extracted PCR inhibitors, especially 
from scat samples, may further complicate the generation of reliable genotype data.

In the past years, genome-wide single nucleotide polymorphisms (SNPs) have become increasingly popular 
as a marker of choice in population genetic studies12–17. SNPs are valued as an efficient and cost-effective addition 
to the toolkit of genetic markers5, 18. Assessing population structure or hybridization, individual identification, 
as well as sex, parentage and relatedness determination are examples of key applications in population genetic 
studies for which SNP loci have been selected19. Consequently, SNP marker panels have been used in a num-
ber of conservation genetic studies to date (e.g. wild guppies, Poecilia reticulata14; mountain ponies, Equus ferus 
caballus20; Atlantic salmon, Salmo salar21). However, the technology has not reached routine genetic monitoring 
for many species, which would be a prerequisite for joint cross-laboratory conservation efforts5.

SNPs have considerable advantages compared to the more traditionally applied microsatellite markers5, 19, 22. 
Unlike microsatellite scores, SNP data do not require calibration across different laboratories and therefore the 
data can be readily compared. Also, the mutation modes are better known for SNPs, and thus ambiguities due 
to null alleles or variable mutation patterns are less frequent than in microsatellite studies19. Genotype calls are 
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rather straight-forward and the bi-allelic nature of the markers leaves little room for subjective scoring decisions. 
Using microfluidic platforms, genotype data for up to 192 samples can be generated within a few hours, allow-
ing for high-throughput analyses. With the advent of next generation sequencing (NGS) technologies, panels 
of SNPs can easily be generated (e.g., refs 15 and 23–25), including for non-model organisms26–28. Importantly, 
selection of markers might lead to ascertainment bias in the panel composition, e.g., if loci with high FST values 
have been selected to distinguish individuals in a certain population only29. These kinds of implications need to 
be considered when assembling or adopting SNP marker panels, as is also the case for other marker systems, such 
as microsatellites30–32.

The requirement of samples with high DNA quantity and quality has complicated the implementation of SNP 
markers in wildlife monitoring for a long time33, 34. Recently emerged microfluidic platforms, however, rely on 
the amplification of very short amplicons (typically less than 120 bp). Thus they might be particularly suitable for 
the amplification of fragmented DNA, such as DNA extracted from noninvasively collected or historical material.

In this study, we address the issue of how to produce, assess and apply SNP data to samples with low DNA 
quantity and quality using microfluidic platforms. We focus on how reliable SNP data can be generated from 
this type of samples, and how the data can be assessed in order to minimize replication. Finally, we compare the 
success in obtaining SNP- versus microsatellite-based genotypes.

To answer these questions, we generated SNP data for hair and scat samples of grey wolves, European wildcats 
and brown bears. We assessed SNP genotyping performance across replicates and in relation to real-time PCR 
(RT-PCR) measurements. In addition, we compared the performance of SNP and microsatellite genotyping data 
generated from the same samples. Finally, based on our results, we provide general SNP genotyping guidelines for 
noninvasive samples that may be applicable to other projects aiming to use microfluidic SNP genotyping arrays.

Results
SNP genotyping performance. We generated SNP genotypes for noninvasively collected samples based 
on three PCR replicates for three carnivore species and investigated genotyping performance using available pan-
els of 96 SNP loci35–37. We removed loci that failed to amplify in ≥70% of the reactions (16 for wolves, 37 for cats 
and 25 for bears) to minimize missing data, and calculated the percentage of samples that got called for 0–100% 
of the remaining loci, averaged over the three replicates (Fig. 1A). Call rates of 100% were obtained for 50% of the 
wolf samples (scats), 26% of the cat samples (hair) and 42% of the bear samples (hair).

Our results were similar across the three species. As SNP call rates decreased, disagreements across sam-
ple replicates increased (i.e., at least one disagreement per locus out of two or three successful PCR replicates; 
Fig. 1B), and so did the number of loci with insufficient/missing data (only one PCR replicate amplified or no 
amplification in all replicates). Notably, samples without missing data (call rate of 100%) had no disagreements, 
except for one locus in a wolf sample. For samples with an average call rate of <70% we did not attempt to obtain a 
consensus genotype. We also noted that the variability in rates of missing data across the three replicates increased 
as a proportion of decreasing average SNP call rate (Fig. 1C). For samples with SNP call rates <70%, the mean SD 
of missing data increased to more than 40% across replicates.

Comparison of SNP and microsatellite amplification against cycle threshold values of real-time 
PCR. In order to assess sample quality and, thus, the need for replication of noninvasive samples, we compared 
SNP genotyping performance (SNP call rate and proportion of disagreements) and microsatellite amplification 
rate against cycle threshold (Ct) value from real-time PCR (RT-PCR) (Fig. 2). The percentage of disagreements 
across the three SNP genotype replicates increased with Ct, while the SNP and microsatellite call rates decreased 
with increasing Ct. Notably, samples with Ct values >30 showed dramatically lower performance.

Performance of SNP vs. microsatellite markers. Both SNPs and microsatellites identified the same 
individuals, with no differences between the two marker types (Supplementary Table S3). However, we were able 
to generate more SNP- than microsatellite-based genotypes, namely 87% vs. 70% for the wolf and 80% vs. 54% 
for the cat (after applying quality thresholds of ≥70% amplified loci; Supplementary Figure S1). The bear samples 
showed similar success in genotype recovery for both marker types (97% vs. 99%); however, these rates are not 
directly comparable due to sample pre-selection and DNA preservation conditions between microsatellite and 
SNP genotyping analyses (see Methods).

Assessment of genetic substructure using PCoA and STRUCTURE (Fig. 3 and Supplementary Figure S3, 
respectively) revealed the presence of genetic clusters that could be attributed to either sampling locations (grey 
wolves, brown bears) or species identity (European wildcats and domestic cats). In the PCoAs for grey wolves, 
individuals sampled in the same federal state in Germany appeared closer to each other than to the remaining 
individuals (Fig. 3, left panels), and this effect was clearer with SNP than with microsatellite data. The PCoA for 
wildcats and domestic cats showed two distinct clusters, one formed by wildcats and the other one by domestic 
cats, with SNPs being better at differentiating the two species than microsatellites (Fig. 3, middle panels). For the 
brown bears, the PCoA analysis of the SNP data set showed no distinct clusters, but the four Serbian samples 
separated from the remaining samples with the microsatellite data (Fig. 3, right panels). The STRUCTURE plots 
reflected results consistent with those of the PCoAs (Supplementary Figure S3); wolves and cats showed more dis-
tinct clusters with the SNP data set, while a cluster of Serbian bear samples appeared as distinct with the microsat-
ellite data set. When combining the SNP and microsatellite data sets, differentiation for wolves and brown bears 
sampled in different regions increased slightly, and, in the case of the wildcat, species differentiation remained 
similar or improved slightly as compared to the SNP-based analyses and certainly improved as compared to the 
microsatellite-based analyses (Fig. 3 and Supplementary Figure S3, bottom panels).

We further tested the power to detect population structure for different numbers of SNPs and microsatellites 
(Supplementary Figures S6–S12). To do this, we compared the PCoAs obtained with the original SNP marker sets 
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(85 loci for wolves, 65 loci for wildcats, and 69 loci for bears) with those obtained with decreasing numbers of SNPs 
(40, 20, 10, 5 loci). Subsets of markers were selected (i) randomly, (ii) based on highest heterozygosity, and (iii) high-
est FST value (only wild and domestic cats). Similarly, we compared the original microsatellite marker sets (13 for 
wolves, 14 for wildcats, and 18 for bears) with decreasing numbers of microsatellite loci (10, 5 loci), selected based 
on highest heterozygosity and highest FST value (the latter only for wild and domestic cats). No major differences 
were found among the PCoA plots obtained from randomly selected SNPs (Supplementary Figures S7, S10 and S12). 
While reducing the SNP panels to 40 selected loci resulted in little effect on PCoA outcomes, further reduction of 
loci numbers severely reduced differentiation power (Supplementary Figures S6, S8, S9 and S11).

Regarding variability estimates, the higher number of alleles per locus in microsatellites resulted in higher 
heterozygosity levels than those obtained for SNPs (Supplementary Table S4). For wolves and bears, heterozygo-
sity values for different groups were almost identical for the same marker type, so no relative comparisons across 
markers could be made (e.g., highest or lowest heterozygosity obtained with both markers). Wildcats and domes-
tic cats had similar heterozygosity levels based on microsatellites, but were twofold higher for domestic cats in the 
case of SNPs. FST values calculated with either marker type for each pair of groups were almost identical (wolves, 
FST = 0.10–0.05; bears, FST = 0.03–0.06; Supplementary Tables S5 amd S7), except in the case of the wildcats and 
domestic cats, as SNP markers were specifically selected to maximize differentiation between the two taxa (SNPs, 
FST = 0.79; microsatellites, FST = 0.13; Supplementary Table S6).

Additionally, we assessed how the probabilities of identity (PID) and the probability of identity between sib-
lings (PIDsib) changed according to the number of loci considered (Fig. 4). In the case of the microsatellites, 
PID < 0.0001 is reached with three to five markers (depending on species), whereas at least 10 markers are needed 
to reach the same value with SNPs. The more conservative PIDsib estimates for microsatellites behaved similarly 
to PID values for SNPs, except in the case of the grey wolves, for which the 13 microsatellite loci used in this study 

Figure 1. Assessment of sample performance and genotype consistency. Each sample was genotyped three 
times. Loci that failed to amplify in ≥70% of the reactions were removed. The SNP call rate indicates the 
proportion of scored loci per sample, averaged across the three genotypes. (A) Overview of sample success. (B) 
Proportion of loci with no mismatches (across two or three replicates, green) or with disagreements (at least one 
replicate, red) or with insufficient/missing data (two or three replicates failed, grey). (C) Variability in missing 
data measured as the mean of the standard deviations for the percentage of missing data averaged across the 
three replicates.
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were not sufficient to reach PIDsib < 0.0001. With SNP markers, PIDsib < 0.0001 was reached when 18 (wolves 
and bears) and 21 (wildcats) markers were employed.

Discussion
Wildlife management decisions are increasingly informed by genetic analyses, for which noninvasive sampling 
has become a prominent source of DNA11. Some of the advantages posed by noninvasive sampling schemes 
include the low disturbance to the species of interest and the relative ease in which animal residues that are 
frequently shed or deposited into the environment can be collected38. However, noninvasively collected samples 
also present challenges due to the potentially low quantity and quality of target DNA. This problem is usually 
overcome by a multiple-tube approach6, 7, which in turn leads to a rise in analysis cost and time. In this study, we 
show that recently developed SNP marker panels implemented on microfluidic arrays provide reliable results for 
noninvasively collected samples. We further show that SNP call rates, as well as Ct values derived from RT-PCR 
experiments, are good indicators of sample quality and of the number of replicates that should be conducted in 
order to obtain reliable genotype data.

Replication of samples with very low amounts of DNA, as is often found in noninvasively collected samples, is 
one of the prime means to account for genotyping errors38. To date, the multiple-tube approach7 is widely applied 
in genetic studies based on noninvasive samples39, 40. Keeping the number of required replicates as low as possible 
is often desirable, because available funding is generally scarce and the consumption of precious DNA extracts 
rises with the number of replicates41, 42. Therefore, it was important to investigate how noninvasive samples per-
formed when genotyped with SNP marker panels implemented using a microfluidic approach, in order to assess 
the reliability of the genotypes obtained and propose recommendations for its implementation. Based on our 
analyses, we propose a classification of the samples based on their SNP call rates, and use this as a proxy of sample 
quality and of the reliability of the genotype. Samples with a SNP call rate of 100% (i.e., no missing data) showed 
nearly no disagreements in the genotypes among the three replicates. We found only one case in which one out of 
the three replicates disagreed for one wolf sample at one locus, out of 74 samples that had no missing data across 
the three species studied. Based on this, samples that reach call rates of 100% in a first run can be excluded from 
further replication and the genotype considered as reliable. In the case of our study, this was the situation for 
26–50% of the investigated samples (but see Discussion on sample pre-selection, below). Samples that reached 
95–99% SNP call rates in first runs may need to be duplicated, since up to 17% of the generated genotypes might 
have disagreements. Ultimately, the researcher will need to decide which data require further validation through 
duplication, depending on the questions to be answered. Samples with call rates of 71–94% should be at least 
triplicated to detect potential errors. In our data set, we detected 34% of disagreements in this sample class. 
Finally, samples with call rates ≤70% may be subject to additional replication, if needed, or be discarded. When 
applying call rate as a proxy, it is important to consider that technical issues may very rarely hamper successful 
amplification. For instance, while two of the three replicates of one bear sample obtained call rates of 99%, the 
third replicate had a call rate of almost 0%. This is most probably explained by an air bubble introduced into the 
chip inlet during pipetting. This particular case led to an averaged call rate of 67% for that sample; while only one 
disagreement was detected between the two well-performing replicates (Fig. 1B, bears).

In this study, we included samples that had passed successful species identification tests based on mtDNA 
sequencing (grey wolf, wildcats) or had been successfully genotyped using microsatellite markers (brown bears), 
which may explain why SNP call rates were overall relatively high. Because mtDNA analysis is the primary means 
to determine species identity, we expect that most molecular ecology laboratories working with noninvasively 
collected samples will have similar pipelines of pre-selection in order to exclude samples from non-targeted 

Figure 2. Comparison of SNP and microsatellite amplification (call rates) against Ct values measured with 
RT-PCR. Ct values > 30 seem to indicate a threshold after which samples show dramatically lower performance 
(dashed line). Microsatellite call rates for the bear samples were not available.
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species. Also, we increased DNA volume (from 1.25 µl to 3.2 µl) and STA-PCR cycles (from 14 to 18) as compared 
to the manufacturers’ protocol, which further aids successful amplification.

Previous studies have applied the SNP marker panels that we used here to noninvasively collected samples35, 36, 43.  
Nussberger et al.36 calculated genotyping error rates (allelic dropout and false alleles) for their SNP markers and 
subsequently selected hair samples adequate for SNP genotyping based on DNA concentration. Kraus et al.35 
reported an overall error rate of about 1% for dilution series of tissue and blood samples (to concentrations as low 
as 0.2 ng/µl) and suggested that there may be no need for PCR replication. Norman et al.3 reported genotyping 
error rates as low as 0.00038 (based on pre-selected samples that had worked for microsatellites). A follow-up 
study, which investigated population size and pedigrees in bear scat samples, reported no replication for the 
implemented SNP genotyping approach of noninvasive faecal samples37. Notably, the reported error rates for 
SNP genotyping of noninvasive samples described so far are below microsatellite error rates using noninvasive 
sampling44.

Figure 3. PCoA analyses of SNP and microsatellite data. Each point represents an individual’s genotype, 
colour-coded to its sampling region (grey wolves, brown bears) or species identification (wildcats or domestic 
cats, based on SNP data). In the case of the cats, two potential hybrids were identified with SNPs and one with 
microsatellites, due to amplification failure of one of the samples with microsatellites. Number of samples and 
loci included in each analysis are indicated in the lower left corner of each panel.
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Predicting SNP genotyping performance of noninvasive samples may be useful when selecting a subset of 
samples of the best quality for genotyping when many samples are available. We show here that the Ct value of 
RT-PCR of noninvasively collected samples may constitute a good indicator. We targeted an autosomal product 
of similar size to the loci being amplified in the SNP array (127 bp). Our results, based on different sample types 
(hair and scats), showed that both SNP and microsatellite genotyping success strongly decreased for samples with 
Ct values >30 and that the occurrence of SNP genotype disagreements increased. Nevertheless, it must be noted 
that samples with Ct values >30 occasionally performed very well. This may be due to a delay in amplification 
because of the presence of inhibitors or very small amounts of DNA in the extracts45. Also, SNP genotype disa-
greements of up to 1% (wolves), 3% (wildcats) or even 35% (one case in the bears) occurred for samples with Ct 
values <30.

Nussberger et al.46 extracted DNA from single hairs and assessed sample quality using RT-PCR quantification. 
They reported a minimal DNA concentration of 50 pg/µl as a threshold for SNP amplification, favouring extracts 
with a minimum of 200 pg/µl. Here, we decided not to attempt to determine DNA concentration because dilution 
series of standard DNA might not be available, particularly for non-model species, and because standards might 
produce different results since they are usually pristine, ultra-clean and non-degraded gDNA products. In our 
experience, comparing the performance of noninvasively collected samples in RT-PCR to a good quality tissue 
sample permitted the assessment of sample quality adequately, as was the case for the bear samples in this study.

Furthermore, we used RT-PCR results to guide the genotyping protocol conditions, in order to maximize 
scoring success. For samples with good quantity and quality of DNA (low Ct values) the STA pre-amplification 
protocol was run following the manufacturers’ protocol including 1.25 µl of DNA and 14 cycles. Samples with 
lower quality and quantity of DNA were performed with our modified STA protocol of 3.2 µl DNA and 18 cycles 
of amplification.

SNP genotyping is increasingly applied to investigate wild populations and to inform management decisions, 
and it is thus of utmost interest to compare the performance of novel SNP panels to more traditionally applied 
panels of microsatellites when genotyping noninvasively collected samples37, 46–49. In terms of amplification suc-
cess (call rate) SNP markers performed better when compared to microsatellite markers. This increased success 
might be explained by the shorter size of the SNP fragments (<120 bp), which favours PCR success when using 
small quantities of degraded DNA templates. We found no inconsistencies in the identification of individuals 
based on SNP and microsatellite data, proofing the suitability of the investigated SNP panels for individual iden-
tification. We show here that approximately 20 of the most heterozygous SNPs in our data sets were sufficient to 
reach PIDsib < 0.0001 and thus should distinguish even closely related individuals with high certainties. Panels of 
approximately 12 microsatellites performed similarly well, except for the relatively homozygous Central European 
wolf population, where PIDsib calculations showed that inbred individuals cannot be differentiated when apply-
ing a strict PIDsib < 0.0001 cutoff.

The genotypic performance and statistical power of SNP markers as compared to standard microsatellite 
markers has occupied population geneticists for years (refs 50–54, for a comprehensive overview see ref. 55). 
Because of the bi-allelic nature of SNP markers, much higher numbers of SNP loci should be required to reach the 
same statistical power as with multi-allelic microsatellites56, 57. While many studies use thousands of SNP markers 
derived from high-density SNP chips or NGS data with high statistical power14, 25, 58, 59, others have shown that few 
selected SNPs may provide enough information to answer questions on individual identification, population ori-
gin or introgression13, 24, 54, 60–62. In summary, the number of required markers will depend on the question posed, 
the diagnostic power of the markers, their variability and the particular history of the population under study. 
Morin et al.52 propose the software POWSIM63 for an estimation of sample size, number of loci and types of SNPs 
needed for a study as well as testing the statistical power for a given SNP marker set. A pilot study that assesses 

Figure 4. Relationship between probability of identity (PID), probability of identity between siblings (PIDsib) 
and the number of genotyped SNP or microsatellite loci. Loci were ranked according to highest heterozygosity 
(HE). A cutoff of 0.0001 was used because it is considered as sufficiently low for most applications involving 
natural populations84.
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the adequacy of the markers is advisable, as it is the case with microsatellites. However, to make cross-laboratory 
comparisons possible, the same SNP panels should be used to aid marker harmonization (see also ref. 5).

Due to marked differences in allelic richness, heterozygosity values with SNP markers were approximately 
half as with microsatellites. FST values between predefined regional subpopulations were almost identical with 
the two marker types, except for the wildcat, where the SNP loci were designed to maximize FST between wild-
cats and their domestic congeners. Due to the bi-allelic nature of SNP markers, a number of monomorphic 
loci in the SNP panels are almost inevitable, particularly when they are designed to maximize differentiation 
in a different population (wildcats, Switzerland36; bears, Scandinavia43) or if they are applied to a small sample 
size and/or a population with little genetic differentiation (wolves, compare Supplementary Table S4). Future 
studies with larger sample sizes and proper sampling design should further take into account differences in 
estimates of effective population sizes with SNP and microsatellite markers, as preliminarily tested in a simu-
lation study54.

When comparing genetic structures within the sampling sets using SNPs and microsatellites, differences 
appeared rather moderate, except for the cat dataset. The most likely K values in STRUCTURE were higher for 
the SNP data sets for wolves and bears, indicating that the resolution power of the SNP markers might be higher 
in this particular case (compare Supplementary Figures S2 and S3). We tested if this was an effect of sample size, 
but did not find any differences when using the same individuals in both marker sets (Supplementary Figure S4). 
Nevertheless, these types of genetic studies are typically performed with a higher number of samples and/or with 
samples from more widespread locations than in the examples presented here. In some cases, the combination 
of both microsatellite and SNP markers may produce the best results13, 50, 61. When we combined the genotypes 
of SNP and microsatellite loci for each species, the resolution of the PCoA and STRUCTURE analyses improved 
slightly. This effect may be due to the increase in the number of markers, and may also be observed if the total 
number of SNPs is increased. Several studies have shown that raising the number of loci rather than investigating 
more individuals further increases the power of inferences64, 65.

For laboratories that process many samples in the frame of routine genetic monitoring, especially using non-
invasively collected samples, SNP genotyping with microfluidic arrays may easily become the method of choice 
due to the reduced cost, hands-on and scoring time as compared to microsatellites. Microfluidic platforms cur-
rently enable the analysis of up to 96 SNP markers on the same number of samples in one run66. Considering 
this, the analysis of single samples may be more expensive, as single samples cannot be run alone economically. 
Previously, we estimated that processing 24 samples would result in similar costs either for microsatellites or SNP 
genotyping using the Fluidigm technology, whereas processing 240 samples would result in almost double costs 
and, therefore, microsatellite analysis may be the cheapest when sample sizes are small and labour costs low5. This 
is, however, not an issue in laboratories that process large numbers of samples, where a chip can readily be filled 
with approximately 30 samples that are triplicated, if necessary. Several studies have shown that a panel of up to 
100 SNPs is sufficient to distinguish among individuals, resolve basic family structures and population origin, and 
even to detect fine-scale landscape relatedness3, 46, 47, 51, 52. If finer-scale genetic assessments are needed, additional 
SNP panels may easily be added to the currently available sets.

With the advent of NGS in the last decades, and the associated arrival of high-throughput SNP genotyping, 
analyses based on high numbers of markers are no longer an issue. A number of different genotyping platforms 
for diverse sample throughputs and incorporating various kinds of multiplexing capabilities and chemistries 
have become available67. Eventually, the choice of genotyping platform is largely influenced by the application 
and sample requirements, where cost and throughput need to be balanced individually (see also ref. 55). Here we 
used Fluidigms’ microfluidic array technology, as have done others seeking to SNP-genotype noninvasively col-
lected samples35, 46, 47. However, additional technologies have been reported, including the MassARRAY platform 
(Sequenom)49 or SNaPshot61. The microfluidic arrays introduced by Fluidigm66 combine, in our view, several 
advantages. Some of the major benefits include the suitability to genotype low quality and quantity DNA, due to 
a pre-amplification step and the small size of the amplicons; the few microliters of DNA extract required, 3.2 µl in 
our adapted protocol; and the relatively straight-forward methodology, provided standard molecular laboratory 
setup and expertise are available. The MassARRAY technology (Sequenom) may present a comparable alterna-
tive to the microfluidic approach; however, only up to 42 SNP loci could be co-amplified with the MassARRAY 
platform using noninvasive samples49. Finally, the implementation of massive parallel sequencing has markedly 
improved microsatellite genotyping68, which may present another powerful tool for genotyping of noninvasive 
samples, but may also have similar constraints.

Here we have shown that noninvasively collected samples selected using proposed thresholds and treated 
with specific protocols may provide good quality SNP data (Fig. 5) while keeping replication to a minimum. 
Calculating the corresponding SNP call rate of a sample allows for the adjustment of the number of replicates that 
might be needed to reduce error rates or, alternatively, to discard the sample (Fig. 1). In addition, pre-evaluation 
of samples using RT-PCR will allow for the calibration of thresholds for the replication of samples (Fig. 2). We 
provide a set of recommendations for SNP genotyping using microfluidic arrays on noninvasively collected sam-
ples, as follows:

 a) Costs. – SNP genotyping may incur higher costs than microsatellite genotyping in the case of a single or a 
few samples, but costs dramatically decrease for larger sample sets.

 b) Choice of markers. – SNP marker selection should be preceded by a validation phase; in our experience, 
approximately 10% of SNP markers that performed well with tissue samples continually failed to amplify 
when applied to noninvasively collected samples.

 c) Genotyping protocol. – Ct values obtained from RT-PCRs can be used to determine the best SNP genotyp-
ing protocol. Generally, high quality samples with low Ct values perform well with the manufacturers’ STA 
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pre-amplification protocol, while performance of samples with high Ct values benefited from our modified 
STA protocol (see Methods section).

 d) Sample selection. – The exact Ct value indicative of good SNP genotyping performance may need to be 
validated through a small pilot experiment. This will help to exclude low quality samples.

 e) Genotyping success. – To keep costs to a minimum, we found that the number of required replications for a 
sample can be determined after a first run, based on call rate (see above for thresholds). This may result in 
avoiding replication in the case of noninvasively collected samples of high quality, or reduce replication to 
the necessary minimum.

 f) Reference libraries. – We recommend setting up a reference set of high quality samples that will ideally in-
clude homozygotes and heterozygotes for all loci in the marker panel. The genotypes of these samples can 
be used to create a reference library, which is then applied as a reference to subsequent runs of noninvasive 
samples to improve clustering and facilitate scoring.

Methods
Sample selection and DNA extraction. We SNP-genotyped wolf scats (n = 60), and wildcat and 
domestic cat hair (n = 41 and n = 13, respectively) that were selected randomly using the sample() function 
in R from samples collected in the frame of the German wildlife monitoring program between 2004 and 2015 
(Supplementary Table S2). These samples were mtDNA sequenced for species identification and typed with 
microsatellite markers (Supplementary Methods). Brown bear hair samples (n = 72) were analysed as part of a 
larger genetic study focusing on brown bears from the Balkans and were selected for SNP genotyping based on 
successful performance in microsatellite genotyping. Wolf scats were stored in 96% ethanol at room temperature 
until DNA extraction, while cat hairs were stored at room temperature between dry filter paper within a plastic 
sample bag containing silica as a desiccant agent until DNA extraction. We extracted DNA using the QIAamp 
DNA Stool Mini Kit (Qiagen) and the QIAamp DNA Investigator Kit (Qiagen), respectively. Bear hair samples 
were stored and extracted as described in69. For shipment between laboratories, bear DNA extracts were dried 
after microsatellite genotyping and reconstituted prior to SNP analyses.

No animals were handled or killed for this study. Noninvasive scat and hair samples were collected in compli-
ance with the respective local and national laws.

RT-PCR measurements. We performed RT-PCR measurements in a TOptical Gradient thermal cycler 
(Biometra). PCR reactions with a total volume of 10 µl contained 3.2 µl DNA, 5 µl 2x SensiFAST SYBR No-Rox 
Mix (Bioline), 1.4 µl molecular grade water and 0.2 µl of forward and reverse species-specific primers (10 µM 
each) (Table 1). Thermal cycler conditions included an initial denaturation step of 95 °C for 3 min, followed by 38 
cycles of 95 °C for 5 s, 65 °C for 10 s and 72 °C for 5 s. The melting curve was performed at 60 to 95 °C, with meas-
urements taken every 10 s with an increment of temperature (∆T) of 1 °C and a heating rate of 5 °C/s. Standards 
containing 10 ng/µl, 1 ng/µl, 100 pg/µl and 10 pg/µl of domestic cat and domestic dog genomic DNA (Zyagen) 
were included as controls. Bear samples were evaluated relative to good quality samples, as no standards were 
available. Samples were run alone or in duplicates, along with two no-template controls (NTC) per RT-PCR run. 
Results were analysed using the software qPCRsoft 3.1 (Biometra).

Figure 5. SNP genotyping performance of noninvasively collected samples. Samples were rated as ‘successfully 
genotyped’ if the genotype data obtained was of sufficient quality for downstream analyses by fulfilling a set of 
criteria (see text for details; briefly, a consensus could be derived based on a minimum of two replicates across 
≥70% of loci after exclusion of badly performing loci). A SNP marker was rated as ‘reliable’ if, after genotype 
consensuses were obtained, ≥70% of the samples had data for that marker.

http://S2
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Genotyping. Mitochondrial DNA and microsatellite genotyping. Prior to SNP typing, the species identity 
of scat and hair samples was determined using mtDNA sequencing as described in previous studies (wolves70, 
wildcat71). Brown bear hair samples were checked macroscopically in order to avoid wild boar hairs. Unlinked 
autosomal microsatellite data for grey wolves and European wildcats were obtained as part of the regular 
genetic monitoring program implemented in our laboratory and from brown bears as part of another study69. 
Detailed protocols are provided in the Supplement and elsewhere (wolves2; wildcats71; brown bears72).

SNP genotyping. DNA samples were genotyped using 96.96 Fluidigm Dynamic Arrays (Fluidigm) with inte-
grated fluidic circuits (IFCs). All marker panels consisted of 96 SNPs and were developed to maximize indi-
vidual information (wolves35; brown bears43) or discriminate between wild and domestic taxa (wildcats36). The 
genotyping protocol involved two consecutive PCR reactions. In the first one, all 96 loci were pre-amplified in a 
single reaction with locus-specific primers (STA reaction) in order to generate sufficient amounts of template for 
the subsequent genotyping reaction. Next, fluorescently labelled allele-specific primers were used to target both 
alleles in a genotyping PCR. Finally, the fluorescence signal of each reaction was measured in an endpoint reader 
(EP1 reader, Fluidigm) in order to determine whether the individual was homozygote or heterozygote for that 
locus.

We slightly modified the manufacturers’ original STA protocol to facilitate the genotyping of noninvasively 
collected samples that typically feature low DNA quantity and quality. STA-PCRs contained 3.2 µl (instead of 
1.25 µl) of DNA, 4 µl 2x QIAGEN Multiplex PCR Master Mix (Qiagen) and 0.8 µl of 10x SNPtype Assay STA 
primers (500 nM). Thermal conditions included an initial denaturation step of 95 °C for 15 min, followed by 18 
(instead of 14 cycles) of 95 °C for 15 s and 60 °C for 4 min. STA products were diluted 1:10 (instead of 1:100) with 
DNA Suspension Buffer (TEKnova, PN T0221). The subsequent genotyping PCR was conducted according to 
the manufacturer’s protocol, but in addition to measuring the fluorescent signal after 34 cycles, a second meas-
urement was performed after four more cycles to ensure sufficient fluorescence strength. All samples were run as 
triplicates along with four NTC reactions per plate to monitor for potential contamination.

SNP genotype scoring. We scored SNPs using the Fluidigm SNP genotyping analysis software v4.1.2, manually 
validating the automatically generated scatter plots. First, sample replicates with a call rate of ≤70% over all SNP 
loci were invalidated and thus excluded from the clustering algorithm. Next, we eliminated the loci in which at 
least one NTC overlapped with the samples’ genotype clusters or in which the clusters were not clearly separated 
from one another, as this made those loci unreliable. In addition, we invalidated NTCs that showed significant flu-
orescence (≥0.2) to ensure proper fluorescence data normalization over all loci. Occasional fluorescence of NTCs 
is a known phenomenon in the Fluidigm system, but is no cause for particular concern, because target DNA is 
favoured in PCRs containing sample DNA35. To facilitate genotype calling and improve clustering analysis, assay 
reference libraries were incorporated, which should typically feature good quality samples and all homozygote 
types.

Assessment of SNP genotype consistency across replicates. To prevent the influence of locus-specific performance 
on the assessment of replicate genotypes, we excluded loci that worked in <70% of the reactions and, in the case 
of the bears, also the mtDNA and Y-linked SNP loci (n = 4 and n = 2, respectively). This resulted in 16 loci, 37 and 
25 loci being removed from the wolf, wildcat and brown bear data sets, respectively.

We evaluated sample performance by calculating the SNP call rate for each sample; we defined this as the 
percentage of called genotypes or successful amplifications over all loci for that sample. Because each sample was 
genotyped three times, we calculated a mean call rate for each sample as an average of call rates (Fig. 1A).

We subsequently assessed genotype consistency across replicates in relation to call rate (Fig. 1B). To do 
this, we counted the number of loci which agreed or disagreed on a genotype or, alternatively, had missing data 
across the three PCR replicates of a sample at each locus. If at least two of the PCR replicates contained missing 
data, the locus was counted as having insufficient/missing data. If at least one replicate disagreed, the locus was 
counted as having a disagreement. If all three replicates agreed on the genotype or, alternatively, if two agreed 
while the remaining one contained missing data, the locus was counted as having an agreement. We then calcu-
lated the percentage of loci with agreements, disagreements, or insufficient/missing data, and plotted them to 
the corresponding SNP call rate (per sample over all loci) (Fig. 1B). Furthermore, we investigated the variability 
in missing data across the three replicates in relation to the call rate. We calculated the mean of the rounded 
standard deviations for the percentage of missing data across all samples with the same average SNP call rate 
(Fig. 1C).

Target species Target region Primer name Sequence Reference

European wildcat c-Myc proto-oncogene
catcMycfor (fwd) ACGCACAACGTCTTGGAAC

36
catcMycrev (rev) TGGCCTTTTTAAGGATCACC

Grey wolf MC1R (melanocortin 1 
receptor)

MC1R.Canis.F1 (fwd) CTGCTGGGCTCTCTCAATGG
this study

MC1R.R1 (rev) GCCCCAGGCTGAGGAACAG

Brown bear MC1R (melanocortin 1 
receptor)

MC1R.CARN.F1 (fwd) CCGGTGCCTGGAGGTGTC
this study

MC1R.CARN.R1 (rev) ATACATGGGCGAGTGCAGG

Table 1. List of primers used in this study for RT-PCR measurements.
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Given the bi-allelic nature of the loci examined with the Fluidigm technology, it is difficult to classify geno-
typing errors as false alleles or dropouts. Therefore, we omitted these types of error classifications in our analyses.

Comparison of SNP vs. microsatellite performance. In order to better understand SNP performance, 
we compared amplification success against Ct values of RT-PCR for SNPs and microsatellites, and performed 
individual identification and population genetic inferences with both marker types.

Consensus genotypes. We determined SNP consensus genotypes for each sample over two to three replicates 
with a custom R script in the case of wolves and cats, and using ConGenR73 in the case of bears. The script counts 
how many times each allele was found over the replicates and the most common allele is assumed as true. When 
more than one replicate had missing data at a locus, the genotype at the respective locus was considered as miss-
ing data. Resulting consensus genotypes were checked for quality (i.e., rates of missing data) per sample and locus. 
In contrast to the assessment of genotype consistency across replicates described above, the quality thresholds 
were in this case applied to consensus data only, thus resulting in slightly differing numbers of samples and loci 
(Supplementary Figure S1). Samples with ≤70% SNP call rate (i.e., more than 30% missing data) were excluded 
from the analyses. We only examined autosomal loci here, and thus excluded mtDNA and Y-linked SNPs from 
the wildcat (n = 8 and n = 2, respectively) and the bear dataset (n = 4 and n = 2, respectively). This resulted in data 
sets comprising 52 samples and 85 loci for the grey wolf, 43 samples and 65 loci for European wildcats and domes-
tic cats, and 70 samples and 69 loci for the brown bear. We determined the microsatellite consensus genotype 
for wolf and wildcat microsatellite data with the custom R script described above. We applied a multiple-tubes 
approach with four (wolf) or three (cats) PCR replicates each. Consensus genotypes with more than four missing 
loci, an allelic dropout rate of >0.4 and a call rate of <50% were excluded from further analyses. The microsatel-
lite consensus genotypes for brown bears were determined as described in ref. 69. This resulted in 42 samples with 
data for 13 loci for the grey wolf, 29 samples and 14 loci for European wildcat and domestic cat, and 71 samples 
and 18 loci for the brown bear.

Individualization. To find matching consensus genotypes, we used the R package DNA TOOLS74 in the case 
of wolves and cats and ConGenR73 in the case of bears. We accepted one mismatch at one locus to consider 
genotypes as belonging to the same individual. Based on SNP data, we identified 41 individual grey wolves, 
39 individual wildcats and domestic cats and 70 individual brown bears. Using microsatellite data, we iden-
tified 34 individual grey wolves, 25 individual wildcats and domestic cats and 71 individual brown bears (see 
Supplementary Figure S1 for details). The difference in the number of individuals identified using SNP- or 
microsatellite-based genotypes was due to microsatellite amplification failure. We found that all successfully 
genotyped samples represented a different individual, except for seven grey wolf individuals which were each 
represented by multiple (up to four) samples, and four wildcat individuals which were each represented by two 
samples (Supplementary Table S3). These results were the same with SNPs or microsatellites, except for three 
wolf samples that did not amplify with microsatellites. Among wolves and cats, we found four pairs of geno-
types differentiated by single mismatches in the SNP data sets, and four pairs of genotypes differentiated by 
single mismatches in the microsatellite data sets, which were considered to belong to the same individual. No 
matching genotypes were found in the brown bear data sets, consistent with the fact that all samples had been 
previously individualized using a panel of 18 microsatellites in the course of a previous study. All matching 
genotypes were checked against metadata, like sampling dates and locations, and no contradictory evidence 
was found.

PCoA. We used the PCoA implemented in GenAlEx v.6.575, 76 in order to infer genetic structure in our genotype 
datasets. We identified one outlier in the wolf and two in the cat data sets that, on closer inspection, had low SNP 
call rates (between 80–71%) and were therefore excluded from the figures and further analysis (Supplementary 
Figure S5 with outliers). No outliers were identified using the microsatellite data sets. To ascertain relative sta-
tistical power of SNP markers, we performed PCoA analyses for sets of decreasing number of SNPs (40, 20, 10, 
5 loci) selected (i) randomly (3 times each case); (ii) based on highest heterozygosity; and (iii) highest FST value 
(only wild and domestic cats). Furthermore, we tested subsets of microsatellite markers (10, 5 loci) selected based 
on highest heterozygosity and highest FST (the latter only for wild and domestic cats). We assumed that, in studies 
in which a minimum number of markers are desired and a pool of available markers to select from exists, the 
markers chosen may either be the most heterozygous ones or, in the case of hybridization studies, those that best 
allow to differentiate two taxa.

Bayesian clustering with STRUCTURE. We tested for population structure using the Bayesian clustering algo-
rithm implemented in STRUCTURE77. After an initial burn-in of 250,000 steps, 500,000 MCMCs were run using 
the admixture model with correlated allele frequencies with no prior information. Ten independent iterations 
were run for each K = 1–10 and combined using the GREEDY or LARGEKGREEDY algorithm as implemented 
in CLUMPP78. The Evanno method79 as implemented in STRUCTURE HARVESTER80 was used to select the 
most likely K value (Supplementary Figure S2).

Basic population genetic parameters and probabilities of identity. Analyses of basic population genetic measures 
and calculations of probabilities of identity were performed with GenAlEx v6.576. We calculated the mean num-
ber of different alleles (Na), observed heterozygosity (HO) and (unbiased) expected heterozygosity (HE) for sam-
pling groups with n ≥ 5 and for total sample pools of each species. Pairwise FST calculations were performed using 
AMOVA for sampling groups with n ≥ 5 and significance assessed using a permutation approach81. We calculated 
probability of identity (PID) and probability of identity between siblings (PIDsib) for SNP and microsatellite loci 
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for all three investigated species according to82–84. For PID and PIDsib calculations loci were ranked according to 
highest (unbiased) expected heterozygosity (HE).

Data availability. The datasets generated and analysed during the current study are available from the corre-
sponding authors on reasonable request.
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