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Long-term monitoring of surface water quality has shown
increasing concentrations of colored dissolved organic matter
(CDOM) across large parts of the northern latitudes. This

has increased purification costs for domestic water works.
Appropriate abatement actions require better knowledge of the
governing factors for the increase, and this has motivated a
growing scientific interest in understanding the factors

and mechanisms promoting the CDOM increase. A proposed
water color model for an important raw water source for Oslo,
Norway, is based on the precipitation’s amount and mobile
ion concentration. The model explained more than 93% of the
temporal variation in CDOM between 1983 and 2008. The
model structure was also tested on three adjacent raw water
sources and was found to explain 75—82% of the CDOM
development throughout the same period. The long-term trend
of increasing CDOM was closely related to the decline in
sulfate and chloride concentrations in precipitation. Furthermore,
interannual fluctuations in CDOM were explained by variation
in predominant water flow paths, depending on amounts

and intensity of precipitation, both of which are predicted to
increase in several parts of the northern latitudes according to
climate change scenarios.

Introduction

Concentrations of CDOM in northern European and north-
eastern American lakes have increased significantly over the
past 2—3 decades (1—5). SO, emissions peaked in northern
Europe and North America from the mid 1960s to the mid-
1970s (6), and in southern Norway there has been a decline
in the concentration of acid rain components of about 70%
during the past two decades (7). In the early 1980s, it was
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hypothesized that increased inputs of strong mineral acids
possibly could explain the decline in CDOM (8), which in the
previous decades had been observed in several lakes on the
northern hemisphere. At present, the increase in CDOM
concentrations in northern Europe and North America has
been linked to the decreasing acid rain depositions (I, 9).
Some studies have also pointed out a similar effect caused
by sea-salt in precipitation as for the acid rain deposition
(1, 10, 11). Several authors also mention fluctuations in rainfall
amount and intensity, air temperature, and sunlight radiation
as regionally important factors, along with the impact of
climate change, for the seasonal and interannual variation
in CDOM concentration and quality (12—20). In addition,
the importance of catchment characteristics such as soil
acidity on CDOM has been recognized (I, 11). Catchment
runoff chemistry has also been found to be highly influenced
by hydrology (21). In particular, headwater streams show
elevated CDOM concentrations and changes in the quality
of CDOM during periods of high runoff (16—20, 22—24).
Hence, the predicted changes in precipitation patterns,
causing annual flooding in southern Norway (22), will further
affect the amount and characteristics of CDOM leaching from
the soil to surface waters in the future.

The main objective of this study was to assess more directly
how temporal trends in CDOM concentrations in boreal lakes
of low ionic strength are related to changes in precipitation
quality and quantity. This was made possible by long time
series of color intensity measurements on raw water for
drinking water purposes, conducted by the Oslo Water and
Sewerage Works (WSW) where land use within the catchment
is heavily restricted, and where the average annual, growing
season and winter air temperatures have not changed
significantly (p > 0.05) throughout the past two decades.

Methods

Study Sites. Four adjacent lakes, which cover the municipal
drinking water demand in Oslo, Norway (Figure 1), were
included in the study; Elvdga (59°53'N, 10°54’E, 196 m a.s.l.),
Maridalsvatnet (59°59'N, 10°47’E, 150 m a.s.l.), Langlivatnet
(59°05’'N, 10°34’E, 320 m a.s.l.), and Alunsjgen (59°57'N,
10°51’E, 239 m a.s.l.). The catchment bedrock for all lakes

L B
FIGURE 1. Norway and location of the studied raw water

sources.
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consists mainly of gneisses and granites, predominantly
covered by a thin (typically 0—50 cm), acid-sensitive podzolic
soil with scattered mires. The vegetation cover is comprised
of low nutrient demanding Scots pine (Pinus sylvestris L.)
and Norway spruce (Picea abies L.) forest, with a scattered
mixture of deciduous trees. Surface waters within the area
are generally dilute (conductivity 25—40 xS/cm) and dys-
trophic. Average annual, growing season (June—August) and
winter (December—February) air temperatures have not
changed significantly (p > 0.05) throughout the past two
decades in this area.

Since the studied lakes are drinking water sources, land
use within the catchment is heavily restricted. This enabled
us to isolate the effect of varying precipitation chemistry and
precipitation amounts on the CDOM concentrations in the
lakes. Variations in theoretical water retention time and
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TABLE 1. Surface Areas and Theoretical Water Retention
Times of the Four Studied Lakes

Elvaga Maridalsvannet Langlivatnet Alunsjg
retention 0.27 0.15 1.6
time (yrs)
surfface 139 389 0.73 0.39
area (km?)

autumn circulation patterns, among the selected lakes,
allowed us to test the model for lakes with different settling/
resuspension properties with respect to CDOM, which is
important for the water color intensity development in the
lakes (25). Lake surface areas and theoretical retention times
are given in Table 1. Since they are raw water sources, the
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FIGURE 2. Sen’'s slope residuals and slope estimations for precipitation quality (chloride, sulfate, nitrate, and H" concentrations),
precipitation quantity, and water color intensity in the raw water source Elvaga (1983—2005).
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FIGURE 3. The sum of annual average sulfate and chloride
concentration (zmol/L) in precipitation vs water color (CU) in
December samples from the raw water source Elvaga.
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FIGURE 4. Annual precipitation amounts (mm) separated into
three quality classes regarding the sum of sulfate and chloride
concentration in precipitation (#mol;/L) vs water color (CU) in
Elvaga. A > 70, B = 50—70, and C < 50.

lakes are all fairly deep, with maximum depths ranging from
30—50 m.

Data Set and Model Approach. The Oslo WSW provided
25 years of monitoring data (1983—2008) from the lake Elvaga
on water color intensity, with biweekly to daily resolution.
The water was extracted below the thermocline. Corre-
sponding data series (with a monthly resolution) from three
adjacent lakes were also provided by the Oslo WSW. The
water color intensity was expressed as Hazen color units
(CU), where one unit of color is that produced by 1 mg Pt/L,
assessed from absorbency at 1410 nm (Abssi0) (26). Water
colorintensity can be used as a proxy for CDOM concentration.

Precipitation amounts and chemical composition data
were obtained from the Norwegian Meteorological Institute
for the nearby (4—14 km) station of Oslo-Blindern and from

the Norwegian Institute for Air Research (NILU) at Loken,
respectively. Annual long-term mean precipitation for station
Oslo-Blindern (1961—1990) is 763 mm.

The Mann-Kendall test for the presence of monotonic
long-term trends and a nonparametric Sen’s method for
estimating the slope for a linear trend for precipitation
chemistry and amount were conducted according to Gilbert
(27), using the MAKESENSE 1.0 software by the Finnish
Meteorological Institute (28).

Best subset regression analysis, a method used to help
determine which predictors should be included in a multiple
regression, was used to find the best predictors for the CDOM
development in the lake Elvaga. The potential predictors were
the annual amounts of precipitation and the annual average
concentrations of the major ions in precipitation (Ca?*, Mg?*,
Na*, K+, NH4*, HT, SO427,NOs~, and Cl"). This was only done
for lake Elvaga since it had the data set with the highest
resolution. By using color data from late December, we
assured a full circulation within the lake and thereby obtained
the best possible integrated value of the year’s input of
allochthonous organic matter. A multiple linear regression
analysis was used to determine the optimal set of predictors,
all of which had a significant (p < 0.05) explanation ability
for the color development in lake Elvaga. This set of predictors
was used in a model with the following general structure

C, = G, + k(A precip quality)*“(precip quantity)®

where G is the modeled water color intensity (CU), G is
equal to the water color intensity measured in the first year
of the monitoring (CU), k is a coefficient adjusting for
differences in denomination and scale (CU/(umol./L-mm)),
A precip quality denotes annual differences in the precipita-
tion chemistry (umol./L), precip quantity denotes annual
precipitation amounts (mm), and a and b are constants to
adjust catchment site specific weights between precipitation
quality and quantity, respectively.

The model structure was tested on corresponding monthly
averages of December data for Maridalsvatnet, Langlivatnet,
and Alunsje. For each lake, the model was empirically fitted
by using appropriate C, value optimizing the model coef-
ficient k and adjusting the site specific constants a and b.

According to the above model, parameters were set for
each lake, and the percentage influence (with a 5% step
resolution) from the previous year was found by using an
optimization of the correlation coefficient between the
modeled and the measured color intensity. As an example,
we can assume that a 25% influence from the previous year
gives the best correlation between the modeled and the
measured color intensity. Hence, if for instance 16 CU is
modeled from the present year’s precipitation data predictors,
and 8 CU is the previous year’s water color intensity
(measured or modeled), then the adjusted modeled water
color would be 0.25 - 8 CU + 0.75 - 16 CU = 14 CU. If then
18 CU is modeled for the following year, then the adjusted
modeled water color would be 0.25 - 14 CU + 0.75 -+ 18 CU
=17 CU, and so on.

TABLE 2. Water Color Model Parameters for the Four Investigated Lakes

127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Elvaga Maridalsvannet Langlivatnet Alunsjo
Co 12 10 22 6
k 9.80 x 1078 3.25 x 1079 4.15 x 1079 2.06 x 107°
a 1.3 1.3 1.3 1.3
b 2.0 25 25 25
influence from the 30% 259, 0% 20%

previous year
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FIGURE 5. Modeled and measured water color for the four raw water sources for Oslo Water and Sewage Works (left column). The
water color is for December samples. Linear regression lines for a plot between measured and modeled water color are shown in
the right column.
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Results

The best set of predictors for the temporal variation in lake
water color was found to be the sum of sulfate- and chloride
concentrations (i.e., mobile anions) in precipitation, along
with the precipitation amounts. The sulfate concentrations
in precipitation declined significantly (p<0.001) throughout
the study period (Figure 2). Despite substantial interannual
variations there was also a significant decline in the chloride
concentration (p< 0.05) throughout the study period (Figure
2). There were substantial interannual variations in annual
amounts of precipitation (531—1172 mm), but no significant
time trends (p > 0.05) were observed (Figure 2).

The sum of sulfate and chloride concentrations (umol./
L) in precipitation explained about 80% of the CDOM
development in Elvéga (Figure 3). Chloride would explain
some of the interannal variations (Figure 2). The lowest (12
CU) and highest (35 CU) water color intensities were
measured in the driest (1990) and wettest (2000) years,
respectively, but there was only a weak positive trend between
annual precipitation amounts and water color intensity (7
=0.29). However, when precipitation was divided into three
quality classes, 2(SO4*~ + Cl7): < 50, 50—70, > 70 (in umol./
L), a strong correlation between precipitation amount and
water color intensity was found within each quality class
(Figure 4). Hence, the annual precipitation amount was
interpreted as an overlying explanatory factor in the model,
explaining interannual variation in CDOM concentrations.

The fitted model parameters and the percentage correc-
tion for the previous year’s influence are shown in Table 2.
By correcting for previous year’s influence, the model for
Elvaga explained more than 93% of the CDOM development
throughout the study period (Figure 5). When the model
structure was refitted by using the monthly average De-
cember-data for the three adjacent raw water sources, it
explained 75—82% of the CDOM development throughout
the same 25-year timespan (Figure 5).

Discussion

Decreased Concentration of Mobile Anions. We believe that
the main factor governing trends in water color intensity
and increased concentrations of organic matter is decreased
ionic strength. This leads to increased surface charge of
CDOM species and increased electrostatic repulsion of
CDOM and thereby decreased flocculation, coagulation, and
precipitation (29). In situ studies have pointed out that
decreased ionic strength leads to increased export of CDOM
(30). The ionic strength is especially affected by changes in
concentrations of multivalent ions in precipitation, and the
decline of sulfate concentrations, along with reduced alum-
nium (AI"") leaching, should therefore be of major impor-
tance. Flocculation of CDOM using alumnium sulfate as a
flocculent is a well-known procedure in water treatment
plants. A decrease in inorganic alumnium concentrations in
soil solutions is therefore believed to decrease the extent of
flocculation and thereby allow for increased export of CDOM
from soils to surface waters. Hence, the reduced input of
atmospheric acid deposition and sea-salts plays a central
role in governing the water color intensity by decreasing the
ionic strength of soil solutions and thereby increasing the
export of CDOM from catchments to surface waters (1, 5, 11).
Therelative decrease in H* and mobile anion concentrations
in precipitation (Figure 2) has subsequently reduced the ionic
strength and to some extent the H* concentrations in lakes,
but the increase in pH in lakes in @stmarka has not been as
large as could be expected from the reduction of acid
deposition (data not shown). Increased concentrations of
weak organic humic acids (3I) and declined concentrations
of inorganic alumnium (32, 33) and base cations may however
counterbalance the observed reduction of mobile anions.

Precipitation Amounts. In three subsets of years with
similar mobile anion loading, the water color was found to
be correlated to precipitation amounts (Figure 4). Increased
amounts of precipitation are inherently related to increased
water runoff intensity, especially in regions with shallow soil
and impermeable bedrock. Increased runoff intensity reduces
the time available for retention processes to occur both in
terrestrial and aquatic environments and is known to be
associated with increased CDOM concentrations in surface
waters through various mechanisms. For instance, increased
runoff flux from lakes shortens the CDOM retention time
and thereby decreases turnover (25, 34, 35) and photo-
oxidation of CDOM (12, 13, 36, 37). The differences between
the lakes regarding the influence from the previous year can
to some extent be explained by the lakes’ theoretical water
retention time and differing lake and/or catchment char-
acteristics that influence autumn circulation. The lakes Elvaga
and Alunsjo have the longest water retention times, while
Langlivatnet has the shortest. Maridalsvatnet has a short
retention time but by far the largest catchment and lake
surface area. A larger lake surface area promotes a better
autumn circulation (38), and this could plausibly explain the
relatively high influence (25%) of precipitated CDOM from
the previous year when modeling the water color intensity
in Maridalsvatnet (Table 2). Processes upstream of Marid-
alsvatnet might also influence the prolongation of the
previous year’s influence. Furthermore, wet years with
elevated groundwater tables in catchments with shallow soils
promote leaching of more CDOM due to more drainage
through upper soil horizons with higher organic matter
contents, bypassing the sorption capacity of the deeper
mineral soil layers. The upper soil layers have relatively low
pH and higher concentrations of CDOM. Such an increased
water discharge from a forest floor end-member during
periods of high runoff has previously been documented by
several episode studies (39—41). Hence, the plausible con-
ceptual explanation for the overlying interannual variations
in color intensity in Lake Elvaga would be increased CDOM
leaching from the upper parts of the soil profile during wet
years (42, 43). Similar hydrological explanations for increased
CDOM concentrations in rivers and lakes have also been
proposed by others in previous studies within other catch-
ments (16, 23, 41).

Future Trends in Leaching of CDOM. The CDOM
development in the lake Elvaga is so far primarily explained
by the reduction of acid depositions and by natural variations
in sea-salt concentrations in precipitation. Annual precipita-
tion amounts explain the strong overlaying interannual
variations with higher CDOM concentrations during wetter
years. The present precipitation quality leaches more CDOM
from catchments to surface waters than precipitation with
higher concentrations of acid rain components. Both amounts
and intensity of precipitation are suggested to increase
according to climate change scenarios (22). Hence, despite
stabilized atmospheric input of mobile anions, there might
still be enhanced leaching of CDOM species from boreal
catchment soils in the future.
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