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Abstract

Delineation of tumors and cancerous lymph nodes in medical imaging is a
challenging, time-consuming and complex part of radiotherapy planning. A
program for autodelineation of cervical cancer from MRI data was investigated
to evaluate it’s possible use on PET/CT images.

In this Master’s thesis an autodelineation program developed to identify cervical
cancer tumors from different types of MR images was investigated. This program
classifies every voxel in MR image stacks as either cancerous or non-cancerous,
using voxel intensities, spatial relationships and Fisher’s Linear and Quadratic
Discriminant Analysis (LDA and QDA).The aim of this thesis was to further
develop the autodelineation program and adapt it to delineate head and neck
cancers in PET/CT images.

The dataset used in this study consisted of 206 head and neck cancer (HNC)
patients who had undergone 18F-FDG PET and contrast-enhanced CT in
conjunction with radiotherapy. All patients were treated at Oslo University
Hospital (OUS), Norway between 31.10.2007 and 31.07.2015.

Contours delineating tumors and cancerous lymph nodes in the PET/CT images
made by experienced oncologists and nuclear medicine physicists and are
considered the ground truth. The contours were used to train and evaluate the
autodelineation program. A total of twenty-four models were run for different
combinations of classifiers, imaging modalities, spatial information and sorting
of neighbors. The models were evaluated using the five performance measures
Dice Similarity Coefficient (DSC), area under the ROC curve (AUC), κ-statistics,
sensitivity and specificity.

Model evaluation revealed that there were large variations in delineation
performance between patients especially for the DSC and κ values. Inclusion of
the PET images in the models significantly improved model performance. Of the
twenty-four models, a total of thirteen models, based on different combinations of
either PET or CT + PET, gave an AUC larger than 0.90, DSC of 0.64-0.68 and κ

of 0.56-0.62, indicating very good model performance and substantial agreement

v



between the ground truth and the model mask. Overlap between ground truth and
the model delineation was significantly poorer when only CT images were included
in the classification. In this case, DSC and κ were in the ranges 0.27-0.40 and 0.12-
0.27, respectively.

There was a tendency for higher sensitivity for models based on CT (0.72-0.97)
than for both PET alone (0.62-0.76) and PET in combination with CT (0.58-
0.84). Thus, CT correctly classified more voxels as cancerous compared to PET
and PET in combination with CT. On the other hand, CT had significantly lower
specificity (0.26-0.50) than both PET (0.88-0.96) and CT + PET (0.84-0.96). As
a consequence, the inclusion of PET (PET and PET + CT) images in the model
resulted in a higher number of correctly classified voxels compared to CT images
alone.

Including spatial information in the form of neighboring voxels significantly
improved model performance, whereas sorting of the voxel neighbors in order
of descending intensity had little effect. The choice of classifier had little effect
on performance, except for delineation in CT images where QDA performed
significantly better.

All images were cropped to remove artifacts surrounding the patient such as air
and parts of the PET/CT unit. Removing image slices not containing cancerous
voxels is recommended to further improve the balance between the classes. For
classification based on CT images, there was a near linear relation between both
κ and DSC and the fraction of voxels of cancerous regions, with κ and DSC
increasing as the voxel balance between classes improved.

Overall, inclusion of PET images in the modeling was the dominant factor affecting
model performance. As a comparison to the delineation model, tumor and lymph
node contouring was attempted using a simple thresholding of the PET images,
where voxels with intensities larger than a chosen threshold (SUV > 2.5) were
defined as belonging to the cancerous structures. Similar performance measures to
the delineation models were obtained, further emphasizing the dominance of the
PET images for contouring.

Although PET had a significant effect on the performance measures, it was,
however, prone to false positives and false negatives as the tracer 18F-FDG
provides information about the glucose metabolism of different tissues. Non-
cancerous tissue can have high glucose metabolism and in a few cases cancerous
tissue can have low glucose metabolism.

With further testing and optimization, this autodelineation model has the potential
of becoming a useful tool for physicians for contouring and assessment of different
types of cancers based on a variety of different imaging modalities.
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Chapter 1

Introduction

Background

The International Agency for Research on Cancer (IARC) estimated a total of 14.1
million new cancer cases and 8.2 million cancer deaths worldwide in 2012 [1]. Due
to the growth and aging of the population, the global burden of cancer is estimated
to grow to 21.7 million new cancer cases and 13 million cancer deaths by 2030 [1].
Other factors, such as smoking, poor diet, physical inactivity and so forth, are
expected to further increase the global burden of cancer [1].

According to the Cancer Registry of Norway, the cancer incidence has increased
with approximately 3% after 2014, and this increase is equally represented for both
sexes [2]. The probability of being diagnosed with a cancer before the age of 75,
is approximately 36% in men and 30% in women [2].

Cancer is a disease that always begins in cells and occurs when abnormal cells
divide in an uncontrolled way, as signals controlling how much and how often the
cell divide are either faulty or missing [3]. Then these cells can start to multiple
and grow into lump called a tumor [3]. The primary tumor is referred to as the
volume of cancer cells where the cancer starts, and the first cancer cells can later
potentially spread into other tissues [3]. Cancer is a heterogeneous disease as there
are more than 200 different types of cancer [3].

Cancer is a common, complex disease with an increasing global burden and
many influencing causes, and is thus an important and large research field with
research being performed in multiple scientific disciplines. Only within the field
of medical imaging, there are numerous research questions to investigate related
to the preferred imaging modality for different cancer types, how to optimally
detect and delineate the cancerous regions and considerations of different types
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2 CHAPTER 1. INTRODUCTION

of volume delineation of the cancerous regions regarding the use of radiation
therapy [3, 4, 10, 43].

Aim of the Master’s Thesis

In this Master’s thesis the focus lies on delineation of tumors and cancerous lymph
nodes in medical images, as this is a challenging, time-consuming and complex
part of radiotherapy planning. With the estimated increasing global burden of
cancer, the benefit of an autodelineation program to faster, more consistently and
accurately detect cancerous regions from medical images would be beneficial and
of major importance for the treatment of cancer. Since the implementation of the
autodelineation program can affect the time between the scan and when treatment
starts, it can be valuable especially for patients with aggressive tumor growth [4].

Torheim et al have developed a diagnostic tool for autodelineation of cervical
cancer based on MRI scans [4]. This program classifies every voxel in MR
image stacks as either cancerous or non-cancerous, using voxel intensities, spatial
relationships and Fisher’s Linear and Quadratic Discriminant Analysis (LDA and
QDA). The aim of this thesis was to further develop the autodelineation program
and adapt it to delineate head and neck cancer in PET/CT images.

Head and neck cancer is a rare form of cancer, and accounts for just over 2% of
the total number of new cancer cases in Norway [5]. The dataset used in this
study consisted of 206 head and neck cancer (HNC) patients who had undergone
18F-FDG PET and contrast-enhanced CT in conjunction with radiotherapy. These
patients were treated at Oslo University Hospital (OUS), Norway during the eight
years between 31.10.2007 and 31.07.2015.

Build-up of the Master’s Thesis

This thesis starts by explaining head and neck cancers, defining delineation
volumes, display consideration related to the hybrid PET/CT scanner and going
through the steps of supervised learning, in Chapter 2 (Theory). In Chapter
3, the washing and organization of the dataset is thoroughly described. When
the dataset was quality assured, the autodelineation program could be tested and
further developed. Thus, Chapter 4 and 5 consist of the modifications and results of
the autodelineation program. Then the results are discussed and the autodelineation
program is assessed, in Chapter 6. The last chapter is the conclusion, summarizing
the finding of this study.



Chapter 2

Theory

2.1 Head and neck cancer

Head and neck cancer (HNC) accounts for just over 2 % of the total number of
new cancer cases in Norway [5]. Head and neck cancer is a heterogenous group of
cancer and is categorized by the area of the head and neck in which it begin [5, 6].
The head and neck areas are illustrated in Figure 2.1, and consist of paranasal
sinuses, nasal cavity, oral cavity, tongue, salivary glands, larynx, and pharynx
(including the nasopharynx, oropharynx, and hypopharynx).

Figure 2.1: Head and neck cancer regions, illustrating the location of paranasal sinuses,
nasal cavity, oral cavity, tongue, salivary glands, larynx, and pharynx (including the
nasopharynx, oropharynx, and hypopharynx) [6]. For the National Cancer Institute ©
2012 Terese Winslow LLC, U.S. Govt. has certain rights.
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4 CHAPTER 2. THEORY

Squamous cell cancer is responsible for 90 % of all head and neck cancers. This
type of cancer begins in the squamous cells lining the moist, mucosal surfaces
inside the head and neck, such as inside the mouth, the nose and the throat [5, 6].
Patients diagnosed with head and neck cancer in Norway have an average age of
64 years and the majority are male [5].

2.1.1 Causes of Head and Neck Cancer

There are different causes of head and neck cancer depending on the location of
the HNC [5]. Tobacco and alcohol are the main risk factors for HNC and there
are indications that they have a synergistic effect [5, 7]. This means that the effect
due to both alcohol and tobacco produces an effect greater than the sum of their
individual effects.

Oropharyngeal cancer is the only cancer type in the head and neck region proven to
be related to oncogenic forms of the human papillomavirus (HPV) [7,8]. However,
HNC in other areas also indicate a relation to HPV [7, 8]. HPV is a group of
more than 150 related viruses, where each HPV virus is given a unique number
(called its HPV type) [8]. The large recent increase in incidences of oropharyngeal
cancer is HPV-related, especially related to HPV type 16 [2, 9]. In a study
from USA regarding oropharyngeal squamous cell, around 60 % of the people
(in the study) have HPV 16 [9]. HPV-positive and HPV-negative oropharyngeal
cancers are clinically and molecular distinct [9]. Studies have indicated that HPV-
positive oropharyngeal cancer seems to be more responsive to treatment, such as
chemotherapy and radiation, than HPV-negative disease [9–11].

There are also some additional causes of HNC for specific areas in the head and
neck. Cancer in areas inside the mouth can be caused by bad dental hygiene and
status [12]. Occupational exposure to nickel and dust from both hardwoods and
leather products increases the risk of cancer in the areas inside the nose, the throat
and in the sinuses [13, 14]. Previous exposure to ionizing radiation is the only
known risk factor for cancer in the salivary glands [15].

2.1.2 Treatments

There are different kinds of treatment available for patients with HNC depending
on a number of factors, such as stage and location of the cancer. The stage of the
cancer is given by its TNM classification. The TNM classification is developed
by the Union for International Cancer Control (UICC), and it is an anatomically
based system that records the primary and regional nodal extent of the tumor and
the absence or presence of metastases [16].
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In general, the UICC TMN Classification is divided into the following three
categories (individual aspects of the TNM):

• T describing the primary tumor site,

• N describing the regional lymph node involvement, and

• M describing the presence or otherwise of distant metastatic spread.

The TNM classification is described in detail for cancer in specific regions of the
body, even within the head and neck area, in (the last/eight edition of) UICC’s TNM
Classification of Malignant Tissue [16].

Patients with tumors localized in the pharynx and larynx, are predominantly
treated (at Oslo University Hospital (OUS)) with a 6-week course of external
beam radiotherapy with concomitant administration of weekly chemotherapy
(cisplatinum) [10]. Radiotherapy kills or damages cancer cells in specific areas
(where the irradiation is aimed). Chemotherapy uses specific drugs that can also
affect cancer cells located in other areas of the body [17]. The three main goals for
chemotherapy are to cure, control and palliation the cancer and its side effects [17].
Surgery is another commonly used treatment, removing cancer cells located in the
volume operated out of the patient’s body [17].

2.2 Volume delineations used in radiotherapy planning

In the treatment planning and reporting processes, a number of different volumes,
related to both tumor and normal tissue, have to be defined [18]. The delineation
of these volumes must be performed before the radiation therapy part of treatment
can begin, as the absorbed dose is dependent on the volume the radiation is aimed
at [18]. The absorbed dose, DT [Gy = J/kg], is given as

DT = εT

mT
, (2.1)

where εT [J] is the total energy deposited in a mass mT [kg] of the irradiated
tissue [19].

The volumes are delineated on the basis of image stacks from various imaging
modalities, for example Positron Emission Tomography (PET) and Computed
Tomography (CT) [18]. In the delineation, the voxels (small volume elements of
tissue) in the image stack are assigned as malignant or normal tissue, for example as
cancerous and non-cancerous voxels, by the physician. All of the cancerous voxels
would then make up the total cancerous volume for that patient. Target volumes
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would consists of the total cancerous volume and most likely also an extra edge of
variable size. The most commonly used target areas are

• Gross tumor volume (GTV),

• Clinical target volume (CTV),

• Internal target volume (ITV), and

• Planning target volume (PTV).

The International Commission on Radiation Units and Measurements (ICRU)
develops internationally accepted recommendations for all radiation units and
measurements, for example by defining several target volumes for radiation therapy
planning [20]. As a consequence, treatments in different clinics around the world
would be based on the same recommendations, thus making it possible to compare
clinical results and data.

GTV and CTV have an anatomic basis, being independent of the chosen irradiation
technique and only influenced by oncological considerations [18]. Gross tumor
volume (GTV) is the demonstrable area of gross malignant growth [18]. The GTV
may include the primary tumor, metastatic regional lymph node(s) and distant
metastasis [18]. Normally, GTV structures are defined for the primary tumor
and nodes separately. To describe and report the GTV as accurate as possible is
essential, as GTV is

• required for staging (according to the TNM classification),

• the minimal volume the adequate absorbed dose must be aimed at,

• evaluated through the course of treatment and these changes of GTV might
be predictive of treatment outcome [18].

The clinical target volume (CTV) is a volume that contains the demonstrable GTV
and also tissue, relevant for radiation therapy, that has a certain probability of being
malignant [18]. A probability of disease higher than 5-10 % is normally assumed
to require treatment, and this probability threshold is based on clinical experience
[18]. This generally includes areas immediately surrounding the primary tumor and
lymph nodes, in addition to areas where tumor infiltration or metastasis is likely to
occur [18].

The ITV and PTV are geometric volumes, introduced to ensure that the absorbed
dose delivered to a specific volume, with a clinically acceptable probability,
matches the prescription constraints [18]. The internal target volume (ITV) consists
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of the CTV plus an internal margin. The internal margin take into account the
uncertainties in size, shape, and position of the CTV within the patient (such as
movement of internal structures due to the respiration cycle) [18]. The planning
target volume (PTV) is based on the ITV and a set-up margin that accounts for
geometrical uncertainties, such as patient position during the scan and alignment
of the therapeutic beams during the treatment planning and sessions [18].

During radiation therapy (RT), it is desirable to reduced the amount of irradiation
of (critical) normal tissue and radiosensitive organs, organs at risk (OAR), as much
as possible - while ensuring adequate absorbed dose delivered to the malignant
volumes [18]. This is because irradiation of these tissues could have substantial
consequences, such as reduced functionality of the tissue/organ, and therefore
might influence the treatment planning and/or the prescribed absorbed dose [18].

2.3 PET/CT

A PET/CT scanner is an important imaging modality in cancer research and
diagnosis, and is useful when it comes to

• Diagnose cancer,

• Consider the effect of treatment,

• Distinguish benign changes from cancer,

• Distinguish scar tissue after operation from tissue with regrowth of cancer
cells,

• Assess the prevalence of cancer, and

• Study the suspected spread of cancer [21].

PT/CT scanners combine a functional Positron Emission Tomography (PET)
scanner and an anatomical Computed Tomography (CT) scanner into one
integrated device [22]. In this device, the CT gantry is positioned parallel to
the PET gantry, and it is critical that these gantries are aligned properly in all
dimensions [23]. In addition, to image the patient at the exact same point in both
modalities the separation between the two gantries must be adjusted for (through
the position of the imaging table during scan) [23]. The PET/CT scanner can be
used to acquire only CT scans, only PET scans or combined PET/CT scans [23].
The physics behind the underlying imaging modalities, PET and CT, are the basis
for the hybrid PET/CT scanner.



8 CHAPTER 2. THEORY

2.3.1 Computed Tomography (CT)

Computed Tomography (CT) is an anatomical imaging technique that measures the
X-ray attenuation through thin cross sections of the body [23]. In other words, the
CT scanner measures the reductions in intensity, due to absorption or deflection, of
the X-ray beam when it goes through a given cross section of the body [23]. The
X-ray intensity beam, It , measured after traversing the material of thickness, ∆x ,
is given as

It = I0e−µ ∆x , (2.2)

where I0 is the X-ray intensity emitted from the X-ray source and µ is the linear
attenuation coefficient of the specific material [23]. Since the information of the
X-ray intensity without a body present, I0, is known, it is possible to compute the
sum of X-ray absorption along one line corresponding to a particular X-ray beam.

The X-ray intensity beam, It , through different cross sections of the patient, is
measured using a rotating frame with am X-ray tube mounted on one side and a
detector array on the opposite (the CT gantry), as illustrated in Figure 2.2. In a
spiral CT the patient’s body is scanned in a spiral path; the CT gantry is rotated
while the patient, lying on the scanning table, is moved through the scanner.

Figure 2.2: An illustration of the gantry of a CT scanner, consisting of an x-ray source
and detector array (located at the opposite side) that rotates around the patient. With
permission from Kari Helena Kvandal.



9

Forward projections to reconstructed CT image

During a CT scan, each detector in the (detector) array measures the X-ray
intensity, It , that is transmitted through a given cross section of the patient’s body
[22]. In the upper left illustration in Figure 2.3, the X-ray absorption measured
is illustrated, for two X-ray sources and detector orientations, as a number and a
shaded box for each detector [22]. The detector’s recordings are called the forward
projection [22].

Figure 2.3: The process from forward projection (upper left) through back projection
(lower left) to reconstructed CT image (lower right) is illustrated for two X-ray sources
and detector orientations. The gray scale of the tissue represents its absorption coefficient,
where the grey color indicates no absorption (µ = 0) and the white color that there is some
absorption (µ 6= 0) of the X-ray beam. With permission from Kari Helena Kvandal.

When the forward projections have been measured for all the relevant angles,
the process of back projection can begin. This process, illustrated in the lower
left of Figure 2.3, reconstructs the original tissue’s pattern of X-ray absorption
based on the sum of each detector’s absorption along the projected path [22]. The
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resulting matrix of local X-ray absorptions using a gray scale image leads to the
reconstructed CT image (lower right in Figure 2.3). The gray scale of the tissue
represents its absorption coefficient, where the grey color indicates no absorption
(µ = 0) and the white color that there is some absorption (µ 6= 0) of the X-ray beam.

Each picture element (pixel) for a specific slice of the displayed reconstructed
image, thus two-dimensional (2D), contain the pixel’s CT value (the gray scale
value) [22]. By combining pixels to form voxels (volume elements in the image
stack), each voxel would result in an averaged CT value for the given slices used.
When the CT values are normalized to the attenuation properties of water, it is
referred to as the C Tnumber and is reported in Hounsfield units (HU) [22]. The
C Tnumber [HU] is defined as,

C T number =
µt i ssue −µw ater

µw ater
×1000, (2.3)

the percentage difference between the X-ray attenuation coefficient of a given
voxel, µt i ssue , and that of water, µw ater , multiplied by the value 1000 [22].
While the pixel values (integers) are dependent on the X-ray intensities transmitted
through cross sections of the body, the convention is to define water as 0 HU and air
as -1000 HU independently of the X-ray spectrum [22]. The C Tnumber of human
tissue depend upon the X-ray spectrum, and is negative for fat (-50 to -100 HU),
very high for dense bone (> 1000 HU) and slightly positive for muscles and lymph
nodes (40 to 50 HU) and blood (50 to 60 HU) [23].

CT contrast agent

CT contrast agents, for example Visipaque 320, have a rapid uptake in the body and
are therefore injected shortly prior to the scan. The uptake of CT contrast agents
is higher in malignant than normal tissue as the contrast agents leak faster through
the more chaotic arterial network in the tumor and other malignant tissues [24–27].
The use of a contrast agent prior to scanning results in contrast enhancement and
therefore larger differences in C Tnumber between normal and malignant tissue in
the CT image. As a consequence, it is easier to differentiate between normal and
malignant tissue when CT contrast agent is applied. Then classification based on
C Tnumber would improve. There is a direct relation between the amount of contrast
enhancement and contrast agent (level of iodine) injected into the patient [28].
Limiting factors are due to the fact that contrast agents are associated with risks,
such as radiation exposure and potential allergic reactions [28].
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2.3.2 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a functional imaging technique that
measures different types of body function depending on the radionuclide
tracer used [22]. The most commonly used tracer in PET is 2-Deoxy-2-
[18F]fluoroglucose (18F-FDG) [23].

The tracer 18F-FDG in the glycolysis process

Chemically, in the tracer 18F-FDG, the positron-emission isotope Flourine-18 (18F)
is replaced by a hydroxy group (on C-2 rather than another carbon atom) in
the glucose molecule [23]. The 18F-FDG is a glucose analogue, and is, as a
normal glucose molecule, transported into cells in need of glucose by a group of
structurally related glucose transport proteins (GLUT) [29]. When the glucose and
18F-FDG molecules are inside the cell, the first step towards glycolysis can begin
[29]. Here the glucose and 18F-FDG are phosphorylated by hexokinase [29, 30].
A phosphorylated normal glucose molecule will continue along the glycolytic
pathway for energy production [29, 30]. In contrast, this is not possible for the
phosphorylated 18F-FDG molecule because the C-2 position in the molecule no
longer contains an oxygen atom (OH was changed with 18F in order to obtain 18F-
FDG) [30]. As a consequence, the tracer 18F-FDG ends up being trapped inside
the cell as 18F-FDG-6-Phosphate [29, 30].

Uptake of 18F-FDG in different tissue

The use of 18F-FDG, in PET, gives information on the uptake of glucose in
different tissues. 18F-FDG is useful in oncology as tumor cells are generally more
metabolically active than normal tissue [23,29,30]. Reasons for this are that tumor
cells

• have increased number of glucose transporters (especially GLUT 1 and
GLUT 3),

• contain highly active hexokinase isoform (type I and II), and

• are often in a condition of relative hypoxia (lack of oxygen) activating the
metabolic steps in the more energy demanding anaerobic glycolytic pathway
[29, 30].

Each of these three reasons result in enhanced glucose, and thus 18F-FDG, uptake
[29,30]. Necrotic (dead) tissue, that may be present, inside a tumor causes reduced
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tumor-to-nontumor ratio (based on the 18F-FDG uptake of different tissues) [30].

The tracer 18F-FDG is not cancer specific and will accumulate in all kinds
of tissue consuming high levels of glucose, and thus having high metabolism
[29, 30]. There is high uptake of 18F-FDG in areas such as the brain and the
heart (due to low cellular glucose-6-phosphatase), and also in sites of hyperactivity
(muscular/nervous), active inflammation and in scar tissue [29,30]. Uptake of 18F-
FDG in non-cancerous tissue, would therefore interfere with the visualization of
only the cancerous tissue in a PET scan. In order to reduce the availability of
glucose transporters (GLUT) and lower the 18F-FDG uptake in muscles (otherwise
normally prominent), ICRU recommends that patients both fast and remain at rest
prior to a PET scan [30].

Positron emission and annihilation

The 18F-FDG-6-Phosphate, trapped inside the cell, is unstable due to radioactive
Flourine-18 (18F) with a half-life of 109.8 min. 18F decays through β+ decay (97
%). The last 3 % is due to electron capture (a parent nucleus captures one of its
orbital electrons and emits a neutrino) [23]. During the β+ decay of 18F,

18
9 F →18

8 O +e++ν+ener g y, (2.4)

a daughter nucleus, 18
8 O, a positron, e+, and a neutrino, ν, is emitted [23]. Energy

is released during the β+ decay, in the form of kinetic energy of the released
particles [23]. The positron, e+, is the anti-particle of the electron (with the same
mass, but exactly opposite charge), and the neutrino, ν, has very little mass and
interacts extremely weakly with matter [23].

The positron travels a short distance in tissue (up to 2 mm), slowing down due
to interactions (ionization and excitation) with nearby atoms [23]. Only when the
positron has lost almost all its energy can ir interact with a nearby electron [23].
This interaction between the positron (almost at rest) and the electron is called an
annihilation, as illustrated in Figure 2.4. The annihilation forms two 511 keV γ

photons, and this energy is equivalent to the rest mass of a electron/positron. This
is a consequence of Albert Einstein’s famous equation for the rest mass energy, E ,

E = mc2, (2.5)

where m is here the total mass of the positron and electron (m = me+ + me−) and
c is the speed of light in vaccum [22,31]. Conservation of momentum dictates that
if both the positron and electron were at rest, at the annihilation site, the two 511
keV γ photons would be emitted in exactly opposite directions [22, 23, 32].
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Figure 2.4: A positron, e+, emitted from a nucleus annihilates, within 1 or 2 mm in tissue,
with an electron, e− , to form two 511 keV γ photons emitted in opposite directions. With
permission from Kari Helena Kvandal.

The PET scanner design utilizes that the annihilation photons are created in pairs,
have known energy (511 keV) and are traveling in opposite directions. The
PET gantry consists of a circular configuration with (multiple) rings of detectors,
surrounding the patient bed [31]. The detectors count the annihilation photon
pairs that are hit in coincidence during a small time window, τ, hereby referred
to as a coincidence event [31]. The scintillation detectors detect the incoming
annihilation photons as they interact, by either the Photoelectric effect or Compton
scattering, with the scintillator medium (for example Lutetium Oxyorthosilicate
(LSO)) [31]. The resulting scintillation (optical light) photons are registered in
the photon detector, creating electrical pulses [31]. Every interacting annihilation
photon produces a single pulse in the detector [31]. The amplitude of the pulse
is determined by the number of scintillation photons reaching the photon detector
and any amplification inherent in the photon detector [31].

Figure 2.5 illustrates how the detectors can register scattered coincidences (left),
random coincidences (middle) and true coincidences (right). When a photon
interacts with tissue (due to Photoelectric effect/Compton scattering), the result
would be reduced energy and changed direction of the photon. A random
coincidence is detected when two unrelated γ photons enter a pair of detectors
at the same time [32]. The line joining the two detected locations is referred to as
the line of response (LOR). The LOR is illustrated, in Figure 2.5, as the dashed
line for both scattered coincidences (left) and random coincidences (middle), but
as solid line (as the path the photons take and the LOR is exactly the same) in the
true coincidences (right). Ideally (in the case of true coincidence), the annihilation
point should lie somewhere along the LOR.
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Figure 2.5: The detectors can register scattered coincidences (left), random coincidences
(middle) and true coincidences (right). With permission from Kari Helena Kvandal.

While conventional PET seeks to determine along which LOR the annihilation has
occurred, the TOF-PET seeks to also determine the position of the annihilation
along the LOR [33]. The time of flight principle (TOF) makes a probability
distribution of where the annihilation might have occurred along the line of
response (LOR), by exploiting the measured difference in arrival time of the two
annihilation photons to estimate the point of annihilation, as illustrated in Figure
2.6 [33, 34].

Figure 2.6: Conventional PET seeks to determine along which LOR the annihilation has
occurred, giving equal probability distribution along the LOR inside the patient (left).
TOF-PET (right) seeks to also determine the position of the annihilation along the LOR,
using Time of flight (TOF) principle, exploiting the measured difference in arrival time
of the two annihilation photons to estimate the point of annihilation. This resulted in a
probability distribution of where the annihilation might have occurred. With permission
from Kari Helena Kvandal.

The raw data from a PET scan is a list of counts of the coincidence events obtained
along each LOR [23]. The distribution of counts along any direction is a projection
of the distribution of radioactivity [23]. The data must be corrected for attenuation
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effects as well as for accidental and multiple coincidences, dead-time losses and
scattered radiation [34]. Then image reconstruction can be performed, and in PET
iterative algorithms based on filtered backprojection form the image from all the
acquired LORs [34].

Standardized Uptake Value (SUV)

The standardized uptake value (SUV) is the PET value corresponding to the voxel
intensity (for each voxel in the PET image stack). The SUV is a simple, semi-
quantitative measure of the radioactivity, normalized to the patient’s weight and
the injected amount of radioactivity. The SUV is defined as

SUV = C
A

W

, (2.6)

where C is the radioactivity [mCi/mL] measured within a region of interest, A is the
amount of tracer injection into the patient [mCi] and W is the weight of the patient
[g]. The SUV becomes unitless under the assumption that 1 g of body weight is
equal to 1 mL, which is the case for water.

As the SUV is sensitive to

• the time between tracer injection and scan,

• whether the patient has been fasting (prior to scan), and

• the patient’s weight and body mass index,

misleading SUV can often occur and it is therefore a measure that needs to be
treated with caution [23].

SUV would have a value of 1, if the injected tracer was completely and uniformly
distributed throughout the body after injection, and if there was no excretion [23].
As previously discussed, this is not the case as 18F-FDG would generally be higher
in cancers, but also in other tissues consuming high levels of glucose. SUV is used
to assess 18F-FDG in oncology as a measure to separate malignant from benign
tissues (in most cases) [23]. In addition, the SUV would be useful for monitoring
the response to cancer treatment since higher SUV may be associated with more
aggressive tumors [23].

Since SUV, under certain conditions, shows promising differentiation between
cancerous and non-cancerous regions, a PET thresholding would be interesting to
perform [23]. Several different PET thresholding methods exist for segmentation of
target volumes. In the simplest method, the absolute PET thresholding, an absolute
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SUV value (for example 2.5) is used as the condition for the segmentation of the
cancerous regions.

Consideration of PET/CT

There are multiple advantages with a hybrid PET/CT scanner relative to separate
PET and CT scanners. Figure 2.7 displays the same slice of the image stacks for
the imaging modalities CT (left), PET (middle) and CT + PET (right, and PET
overlayed in the red channel). CT clearly yield good anatomical information, due
to the high spatial resolution of around 1x1x2 mm3. PET on the other hand, had
a lower spatial resolution of around 3x3x2 mm3. However, the functional PET
scanner provides a display of the tracer uptake (glucose metabolism), which is
useful to distinguish the cancerous regions as they clearly light up (displayed in
yellow) in Figure 2.7 [23].

Figure 2.7: Images are displayed for patient number 50 and slice number 111, for the
imaging modalities CT (left), PET (middle) and CT + PET (right, and PET overlayed in
the red channel).

The lower spatial resolution of PET (compared to CT) is due to

1. the distance the positron travels in tissue before annihilation,

2. the small deviations from 180 ◦angle difference of the two γ photons created
in the annihilation, and

3. the dimensions of the detector crystals (uncertainty in the exact location
at which the γ photon first strikes the detector (especially for Compton
scatterings inside the crystal, as they would be multiple) increases with the
thickness of the crystal) [34].

The CT data improves the spatial resolution by generating accurate localization
maps and accurate attenuation correction maps [23]. It is the high photon flux
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in CT that leads to improved accuracy and reduced noise levels for attenuation
measurements [23].

Information from both the PET and CT scanner can make diagnoses more accurate
(Figure 2.7, right), by reducing the number of

• false negatives, since CT can detect tumors that might not show up on PET
as metabolically active, and

• false positives, as PET can distinguish between malignant and benign tumors
that have the same appearance in CT [22].

There are also challenges with the hybrid PET/CT scanner unique for this fused
imaging modality. While CT images are taken at specific times (a snapshot image),
PET images are acquired over a longer time interval [23]. As a consequence,
respiratory motion would then be an intrinsic component of the PET images,
and can lead to blurring, due to the averaging over the respiratory cycle [23].
In contrast, CT would then give an image of a specific part of the respiratory
cycle, and therefore it would be difficult to achieve perfect registration between
the PET and CT images, as structures in these two images might have slightly
change position [23].

2.4 Supervised learning in MATLAB

Supervised learning is an approach within machine learning. In a supervised
learning algorithm, there is a known set of input data and known output responses
of the data [35]. The supervised learning algorithm trains a model to generate
reasonable predictions for the response to new data based on evidence in the
presence of uncertainty [35]. Supervised learning uses both classification and
regression techniques to develop predictive models [35]. In this thesis, the
focus lies on using classification techniques because the medical images can be
categorized into certain categories, such as cancerous and non-cancerous regions.

In MATLAB there are many Statistics and Machine Learning Toolbox™
algorithms for supervised learning. Most of these use the following steps for
obtaining a predictor model:

1. Prepare data,

2. Choose an algorithm,

3. Fit a model,
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4. Choose a validation method,

5. Examine fit and update until satisfied, and

6. Use fitted model for predictions.

The first step in preparing the data is to look for outliers and missing data,
and decide how to deal with these. The input data matrix, X, contains all the
observations the model is based upon [35]. Each row and column in X represents
one observation and predictor, respectively [35]. Therefore, each element in Y
represents the response to the corresponding row of X [35]. Rows containing
missing values, so-called NaN values in MATLAB, are ignored.

When choosing an algorithm there are trade-offs to consider, such as the speed of
training, memory usage, predictive accuracy on new data and interpretability [35].

The model is fitted using the chosen classification algorithm. Choosing the right
model takes time, and there are multiple considerations to take [35]. As seen in
Figure 2.8, the same data can be grouped, or classified, in several ways leading to
an underfit of the data (left), a decent fit (middle) or an overfit of the data (right).
Simple models can lead to underfitting of the data due to an oversimplification,
for example through inappropriate assumptions [35]. On the other hand, models
can be too flexible, leading to an overfit of the data by modeling minor variations
caused by noise [35].

Figure 2.8: A model is fitted to the same dataset using different classification algorithms,
leading to underfitting the data (left), decent fitting of the data (middle) or overfitting of
the data (right).

The accuracy of the fitted model has to be examined, as a measurement of how well
the model performs both on the given dataset and new datasets [35]. One of the
main methods to examine the accuracy of the resulting fitted model is to examine
the cross-validation error [35]. Cross-validation is a model validation technique
based on dividing the dataset into a training set, to train the model, and a test set, to
evaluate the predicted model [36]. Since the model is tested against data that was
not being used during the modeling process, the cross-validation give an indication
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of how it will perform on new datasets [35]. Larger datasets tend to yield models
that generalize well for new datasets [35].

After validating the model, the fit should be examined and updated until the
fitted model is satisfactory for the specific purpose. In this step, the model
can be fitted using slightly different model parameters in order to obtain better
accuracy, computing speed and being less memory demanding [35]. The model
could be fitted using a different classification algorithm and potentially also more
classes. Another option, is introducing a cost function to reflect the consequences
of oversensitive detection (more false positives) compared to undersensitive
detection (more false negatives). For example, it is better to have oversensitive
cancer detection than undersensitive cancer detection, as the consequences for an
undetected cancer tumor are often far worse than a falsely detected cancer tumor
for a patient.

In the last step, the fit is examined and updated until the fitted model is satisfactory.
MATLAB has the build-in function predict(obj,Xnew), that predicts the
classification response, Ypr edi cted , for the fitted model obj and the new input data
Xnew .

In this thesis the classification algorithm used is the discriminant analysis, both
linear and quadratic, through the build-in MATLAB function fitcdiscr. The
function fitcdiscr offers high prediction speed, high interpretability, low
memory use for linear discriminant analysis, but large memory use for quadratic
discriminant analysis [35]. A requirement for using this function is that the
predictor is numerical and not categorical. In general, the discriminant analysis
classifiers are robust and do not exhibit overtraining (when the number of predictors
is much less than the number of observations) [35].





Chapter 3

Dataset

3.1 The dataset

3.1.1 Background of the dataset

Oslo University Hospital (OUS) treats around 60% of the head and neck cancer
(HNC) patients in Norway [10]. To be able to better understand the complexities of
HNC it is essential to have a solid dataset to analyze. OUS has collected data from
HNC patient records from the Department of Oncology and also these patient’s
radiotherapy plans from the Department of Medical Physics [10]. The Department
of Oncology, OUS, has collected data consisting of both clinical factors, such
as age, sex, stage, nodal status and HPV, and follow-up data, such as local and
regional control and metastases [10]. During the eight years, between 2007 and
2015, data have been collected from 256 HNC patients treated at OUS. Due to
the extensive dataset in terms of a high number of patients, many clinical factors,
follow-up data and digital radiotherapy plans, this material comprises one of the
largest cohorts of this sort worldwide [10].

The clinical use of 18F-FDG PET in radiotherapy planning of HNC was
implemented at OUS in 2007 [10]. The dataset used in this Master’s thesis is
from a local retrospective study of HNC patients who have undergone 18F-FDG
PET and contrast-enhanced CT in conjunction with radiotherapy [10]. This dataset
has not been processed before, and it had to be washed and quality assured before
it could be analyzed. After processing and quality assurance of this dataset there
were 206 HNC patients left. The reduction of this dataset is described in detail in
Section 3.2. The dataset for these 206 HNC patients was collected over a period of
around eight years, from 31.10.2007 to 31.07.2015.

21
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3.1.2 The PET/CT scanning

Oslo University Hospital (OUS) has the combined PET/CT scanner Siemens
Biograph 16 PET/CT. This scanner ran in three dimensional (3D) PET/CT mode
for all patients in this dataset. During the PET/CT scan all the patients were
wearing a radiation mask.

Before injection of the tracer 18F-FDG the patients had to fast for a minimum of
six hours. The time from the tracer injection to the scanning started was 60±10
minutes for all the patients in the dataset. This can result in differences of up to 20
minutes, which can affect the magnitude of the standardized uptake value (SUV)
for the patients. The SUV value given in the dataset is adjusted by the patient’s
body weight.

The patients were given the same amount (100 ml) of CT contrast agent (Visipaque
320) without taking weight considerations. This leads to the situation where a
patient weighing 50 kg would be injected with the same amount of contrast agent
as someone with twice the weight. Larger patients have larger blood volumes than
smaller patients, and as a consequence the contrast agent administered into the
blood compartment dilutes more in the larger patient than in the smaller patient
[28]. This would therefore lead to a smaller contrast agent concentration in the
blood for the larger patient, which would lower contrast enhancement [28]. As a
result, differences in CT voxel intensities between patients can be due to the weight
differences. For future data collection, it is an idea to differentiate the amount of
CT contrast agent injected to the patient based on their weight, in order to achieve
similar contrast enhancement.

The CT contrast agent was injected around one minute before the scan due to rapid
uptake in the body. CT contrast agent uptake is higher in tumors than in normal
tissue because the contrast agent leaks faster through the more chaotic arterial
network in the tumor [24–27]. To convert to Hounsfield units the value 1024 must
be subtracted from the C Tnumber given in the dataset.

3.1.3 From DICOM-images to a co-registered dataset

Oslo University Hospital (OUS) uses the program IDL (Harris Geospatial
Solutions, Broomfield, Colorado, USA) to process the medical images. The
DICOM-images from each scan were converted to uint16 PET and CT image
stacks, and text files containing relevant, anonymized data about each scanning.
These image stacks were smoothed in IDL with a Gaussian filter. Then the co-
registration was performed, by registering the PET and CT image stacks on a
common image stack with isotropic voxels of size 1×1×1 mm3. The registration
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was performed with linear interpolation (using the command congrid in IDL).
Originally, the voxel size of the PET and CT images differed, both between the
imaging modalities and also for patients within the same imaging modality.

All the patients in the dataset were anonymized by replacing date of birth and
initials with the patient number, P???, in the folder name and file name. This made
it impossible to identify the patients in the dataset. All of these processes in IDL
were performed by Professor Eirik Malinen, Department of Physics, University of
Oslo.

3.1.4 Primary tumor and lymph nodes contouring

Contour masks identifying (potentially) cancerous regions were created. The
structures with names containing PET was contoured by the nuclear medicine
physicist, while those that did not contain PET was contoured by the oncologist.

It was initially decided to only include primary tumors contoured by the oncologist.
If no primary tumor contour was provided by the oncologist it was decided to
use primary tumor drawn in by the nuclear medicine physicist (if it existed). The
reason for this is that the oncologist might have agreed with the nuclear medicine
physicist regarding the location of the primary tumor. In this case the oncologist
might just have drawn in a clinical target volume (CTV) and not a gross tumor
volume (GTV). For the patients with more than one tumor, these were checked and
analyzed in detail to decide i) which tumor to choose as the primary tumor, or ii)
potentially use both as the primary tumor (as this can occur).

For the lymph nodes all contours were used; both those from the oncologist and
the nuclear medicine physicist. This resulted in a UNION-volume between the
different lymph nodes that was larger than the lymph node volume contoured by
either the oncologist or the nuclear medicine physicist.

The chosen contouring was considered the ground truth in the model. This is
naturally not accurate, as there are variations in the contouring, both between
the oncologist and nuclear medicine physicist per patient and also intra-variances
between different oncologists and nuclear medicine physicists [38].

3.1.5 Biopsies only of tumors

Biopsies of the tumors had been taken, but not of the lymph nodes. Therefore, one
can be sure that the contoured tumors contain cancer cells. Since biopsies of the
lymph nodes were not performed, one can not be sure whether the contoured lymph
nodes contained cancer cells. For instance, infectious lymph nodes would also be
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displayed as metabolically active in a PET/CT image stack [29, 30]. It is therefore
important to take biopsies of the lymph nodes in order to rule out or verify the
existence of cancer cells in all contoured structures. In practice, however, is this a
demanding and invasive procedure for the patient, especially in the situation with
multiple lymph nodes. A compromise here, could be to take a biopsy of only one
lymph nodes (the most likely cancerous lymph node), to be able to assess if the
cancer has spread from the primary tumor to the lymph system. This is especially
important as cancer cells can spread through the lymph system to other parts of the
body [39].

3.1.6 A better and more quality assured dataset

The dataset was generated in two rounds. In the first round, there were 256 patients.
Of these, 226 patients had a patient folder with three separate text files containing
information about the performed PET/CT scanning in addition to the PET and CT
image stacks. In total, there were 30 so-called missing patient folders. There
are several reasons for patients not having a folder. Patients were excluded if
there were problems with the co-registration between PET and CT. Patients with
incorrect SUV or C Tnumber would also be excluded. There could also be an error of
some kind in the process from the DICOM-images to an anonymized, co-registered
dataset.

As a number of challenges with the dataset were detected, it was decided to
generate the dataset again. In this second round, all the data was generated
simultaneously, to assure no discrepancies in the number of patients between the
different files in the dataset. The PET/CT images were checked by Professor Eirik
Malinen after the co-registration [26]. For some patients this co-registration was
poorly executed, as the images were shifted in relation to each other. All patients
with discovered errors, in any of the files in the dataset, were removed [26]. The
new dataset consisting of 226 patients is thereby a better and more quality assured
dataset than the previous one.

3.1.7 Files in the dataset

Each of the 226 patients in the new dataset have a patient folder containing the
following files

1. P???_struk.txt (henceforth referred to as the struk-file): name of the GTV-
structures and the voxel indices,

2. P???_ info.txt (henceforth referred to as the info-file): contain information
about the dimensions of the images and the maximum PET and CT value,
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3. P???_ bilde.jpg (henceforth referred to as the jpg-image): is a fused PET
and CT image with structures drawn in for three different slices through the
patient.

In addition to these three files, the dataset also consists of PET and CT image stacks
from the PET/CT scan for each patient.

An example of the jpg-image is seen in Figure 3.1. The cancerous regions shown
in these slices are drawn in, as seen by the white lines, by the oncologist and
the nuclear medicine physicist. This figure also displays the names of the GTV-
structures, which are given in the struk-file, together with the voxel indices for all
the cancerous regions for each patient. Notice, in Figure 3.1, that the oncologist
detected three lymph nodes and one primary tumor, and that the nuclear medicine
physicist detected four lymph nodes and one primary tumor. The structure called
GTV union is a structure consisting of both the primary tumor and the lymph nodes.

Figure 3.1: A fused PET and CT image with cancerous regions drawn in for three different
slices through patient number 50.
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3.2 Washing and organization of the dataset

3.2.1 Conversion from IDL to MATLAB

The smoothed, co-registered PET and CT images were imported into MATLAB.
MATLAB and IDL have different indexing, which is illustrated in Figure 3.2.
In this figure the indexing in IDL and MATLAB are given for a matrix with the
dimensions 256×256×nz; where nz is the first slice of the matrix.

Figure 3.2: A matrix with dimensions 256×256×nz, where nz is the first slice of the matrix,
is illustrated for the programs IDL (left) and MATLAB (right). The voxel conversion from
IDL to MATLAB requires that the value one be added to all the voxel indices, and all
images and masks (based on the contoured voxel indices) to be rotated by 90 degrees
clockwise.

In IDL, the origin (0,0,0) is placed in the lower left corner and has the voxel index
of zero (Figure 3.2). The voxel indexing proceeds to the right and then upward
row by row. In contrast, the origin (1,1,1) in MATLAB has a voxel index of one
and a location in the upper left corner. MATLAB counts the voxel indices by going
through every row in a column and then does the same for the next column, as is
illustrated in Figure 3.2. It is thereby apparent that the voxel conversion from IDL
to MATLAB requires that the value one be added to all the voxel indices of the
images and the masks, based on the contoured voxel indices, to be rotated by 90
degrees clockwise.

In the PET and CT image stacks, it was necessary to check if all the patients had
their nose pointing upwards as this will ensure the same anatomical location of the
voxels as the created, contoured masks. An example of PET and CT images is
illustrated in Figure 3.3. Notice that the brain is very metabolically active from the
PET image; this is because the brain consumes relatively large amounts of sugar
compared to normal tissue [29, 30]. Normally symmetrically, metabolically active
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areas in the head and neck area are benign, despite the high SUV [23]. In a few
cases, malignant tissue can hide behind these symmetric active areas [23].

Figure 3.3: The CT (left) and PET (right) image stacks for slice number 205 for patient
number 50. Notice that the nose is pointing upwards, and that the brain is significantly
more metabolically active than the normal tissue.

3.2.2 Patients injected with a contrast agent

It was decided to only include patients given CT contrast agent, as these contrast
agents results in higher relative intensities between normal and malignant tissue.
The contrast agent results in an increase in contrast enhancement in the CT
image, and the contrast enhancement is directly related to the amount of contrast
agent injected into the patient [28]. As a consequence, even if the CT image
stacks were auto-scaled (to a mean of zero and standard deviation of one) the
voxel intensities (for the specific structures) in the CT image would be different
depending on whether the patient was injected with CT contrast agent or not. To
ensure consistency in C Tnumber between patients, all patients not given contrast
agent were excluded from further analysis. Of the 226 patients in the new dataset
that have all the files (described in subchapter 3.1.7), there are 210 patients left
after the condition of applied CT contrast agent was met.

3.2.3 Naming consistency

The washing and organization of the dataset became a time-consuming task during
this thesis, especially considering the lack of consistency when naming the GTV
structures. This is because the dataset was collected over almost eight years and
several different oncologists and nuclear medicine physicists were involved in the
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contouring. For instance, twenty conditions were used to find the primary tumor
as different oncologists and nuclear medicine physicists referred to the tumor by
different names. In order to find the names of all the lymph nodes, eight conditions
were needed; searching for names containing kn, lk, LK, LN, ln, Knute, l.k and lg.

3.2.4 Zero or two primary tumors

Nine patients were found not to have a primary tumor. This can, according to Eirik
Malinen [26], be because

• the primary tumor is unknown (patients can have cancer-infiltrated lymph
nodes without a known place of origin),

• the primary tumor has been surgically removed prior to operation (but this is
very rarely done), or

• the primary tumor was not given the correct name (and it therefore not
selected out from the database).

Twenty-seven patients had a primary tumor drawn in by the nuclear medicine
physicist, but not the oncologist.

Eight patients had two primary tumors (P038, P051, P182, P186, P202, P205, P206
and P246). The decision on which masks to use as the primary tumor were taken
after investigating the masks and the PET/CT images (jpg-file). For example, in the
case of patient number 202 and 206, one of the masks of the primary tumor gave
an indication of non-connected structures; which had to be a combination of tumor
and lymph node(s). These structures were used in the planning of radiation therapy
to decide where the radiation should be aimed [26]. For six out of the eight patients
with two primary tumors, one tumor was selected as the primary tumor. In the case
of the two last patients with two primary tumors, P051 and P186, it was not possible
at present time to determine which was the primary tumor. This was the case
(undetermined primary tumor) also for the two patients, P235 and P238, having
one detected tumor. Even though the four patients, P051, P186, P235 and P238,
had information about the lymph nodes, they were excluded from the dataset due
to uncertainties regarding the primary tumor (as described above). This exclusion
is important as an unclassified primary tumor would result in misclassification
as non-cancerous region in the images and would thereby negatively affect the
classification model.

Forty-two patients had no contoured lymph nodes. Patients with only lymph
node(s) and no tumor were kept in the dataset as long as no tumors were drawn
in their PET/CT image. For one patient, P177, the given name of the primary
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tumor did not correspond with the twenty conditions used to extract the primary
tumors in the MATLAB code. The primary tumor, for this patient, was added to the
dataset.

GTV-structures, for both primary tumor(s) and lymph node(s), have been added
and removed for selected patients in the dataset (as described above). In the end,
twelve and forty-five patients did not have a primary tumor and lymph node(s),
respectively. All of the 198 patients with a primary tumor now had one and only
one primary tumor.

3.2.5 Organization of the dataset

Patients injected with CT contrast agent were selected out from the patients in the
new dataset. All of these patients had all the files: struk-file, info-file, jpg-image,
PET and CT image stacks (described in 3.1.7). Organizing the dataset focused
on collecting all the information from all the patients together into one table or
structure for the two different files, the struk-file and the info-file, respectively. For
the info-file, a matrix containing patient number, image dimensions in x, nx, y, ny,
and z, nz, maxSUV and maxCT for all patients was created.

A pipeline from P???_struk.txt to the total mask, based on the contouring of both
primary tumor and lymph nodes, is illustrated in Figure 3.5. For the struk-file,
a cell array with a hash table in each cell was created. The hash table mapped
the keys, the name of the GTV structures, to the values, the corresponding voxel
indices (Figure 3.4). The cell index corresponds to the index in the array consisting
of all the patients in the dataset. This organization of the cancerous regions made
it possible to find the values to the desired keys for each patient. The cell array
with the hash tables made it convenient and simple to extract information about the
relevant GTV structures.

MATLAB structures for primary tumors and lymph nodes were created so that
each structure contained the patient number, the name of the GTV structure
and the corresponding voxel indices for the primary tumors and lymph nodes,
respectively.When the MATLAB structures for primary tumors and lymph nodes
were created, the value one was added to all the voxel indices, to take care of
the difference in starting voxel index in MATLAB compared to IDL. The created
masks, based on the voxel indices for the primary tumors and lymph nodes, were
rotated by 90 degrees clockwise. These steps are essential in order to make the
transition from IDL to MATLAB correct, as discussed in Section 3.2.1.
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Figure 3.4: From P???_struk.txt file to a hash table structure. The hash table mapped the
keys, the name of the GTV structures, to the values, the corresponding voxel indices. In this
example, m and p designate the number of voxels for the first and last (n) GTV structure
(either primary tumor or lymph nodes), respectively.

Figure 3.5: This is an illustration of the pipeline from the P???_struk.txt-file to the
contoured masks. On the basis of the P???_struk.txt file, hash tables were created for all
patient and later gathered in a cell array. Then MATLAB structures for the primary tumor
and lymph nodes are created. Based on the information of voxel indices in the MATLAB
structures all the masks, showing primary tumor and lymph nodes contours, were created.
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Lymph nodes can be either PET-positive or PET-negative depending on how
metabolically active they are, given by their standardized uptake value (SUV).
The separation of these groups of lymph nodes was based on testing whether over
a quarter of the voxels in a lymph node had a SUV value greater or less than
2.5 [26]. The PET-positive and PET-negative lymph nodes were given a unique
value between 0 and 1; the values 0.8 and 0.5 were chosen, respectively. This
gave greater flexibility for future classification of different structures, in addition
to proving valuable information for the detection of overlapping structures.

All the masks, for primary tumors and lymph nodes (both PET-positive and PET-
negative), were added together to form one mask for each patient (henceforth called
total mask). For distinct and non-overlapping regions, the voxel intensities of the
total mask should consist of the value 0.5 in case of PET-negative lymph nodes,
the value 0.8 in case of PET-positive lymph nodes, the value 1 for primary tumors
and the value 0 for normal tissue and background. Therefore in the case of non-
overlapping structure within the total mask, there are maximum four unique values
(0, 0.5, 0.8 and 1) and a maximum value of one.

An overlap for the lymph nodes was expected, as these are contoured by both the
oncologist and the nuclear medicine physicist. In total for all the masks, there were
205 incidences regarding a total of twelve new, distinct values (different than the
four expected unique values 0, 0.5, 0.8 and 1). More than half of these structures
(116/205) were due to an overlap between two different PET-positive lymph nodes,
and there were fourteen instances of overlap between a single PET-positive and
PET-negative lymph node. Overlaps between both types of lymph nodes and the
primary tumor also exist, and these were most likely due to misnaming of clinical
target volumes. In these cases, the voxel indices for the primary tumor also include
voxel indices for the lymph nodes, as illustrated in Figure 3.6.

Figure 3.6: The masks for primary tumor (left) and PET-positive lymph nodes (right),
for patient number 18 and slice number 142 is illustrated. Here the structures seem to
have a high degree over overlap and calculations show that 11525 voxels (out of a total
of 25742304 voxels in the image stack) overlap between primary tumor and PET-positive
lymph nodes.
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Visual inspection of this figure clearly shows overlap between primary tumor and
PET-positive lymph nodes, and calculations (of the entire image stack X) give
an overlap of 11525 voxels (out of a total of 25742304 voxels). For forty-nine
instances, multiple structures overlap without there being a clear indication of the
structures involved in the overlap (on the basis of the voxel intensity values). All
of the overlapping structures needs to be quality assured before it is possible to
perform more than a binary classification of the structures involved.

3.2.6 Cropping of the masks, PET and CT images

A cropping, of the total masks and the PET and CT images stacks, results in a
higher percentage of cancerous voxels in the image stacks and therefore in a better
balance between the classes. Therefore, two different types of croppings were
performed, as illustrated in Figure 3.7. The two main cropping methods are local
and global cropping.

Figure 3.7: The total masks and the image stacks can be cropped in different ways. The
first choice is whether to do a local or global cropping, and the second choice is whether
to remove slices not containing primary tumor or lymph nodes.

An voxel index in the image stack is converted into it’s coordinates in the x-, y- and
z-plane. The voxel indices with voxel intensities larger than zero gives the location
of the cancerous regions in the image stack, and these x, y and z coordinates
form the basis of the cropping. The local cropping is based on the minimum and
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maximum of these x, y and z coordinates for each patient. The global minimum
and maximum were calculated by finding the global minimum and maximum in
the x-plane, y-plane and z-plane from all patient’s local minimum and maximum x,
y and z coordinates. The PET and CT images were cropped in the exact same way
as the mask for the two cropping methods.

The global cropping was based on a box with the size of the biggest difference
between minimum and maximum values in the x- and y-plane. For each patient
this box was placed in the middle of the local minimum and maximum in both the
x- and y-plane. An edge of 1 mm was added around this box, to make sure that
the voxel indices of all cancerous regions were inside the box, for all patients. For
each patient the local minimum and maximum z-plane were used for the cropping
in the z-direction. The local cropping was based on local minimum and maximum
in all three planes.

The relation between the number of voxels of the cancerous region and the
total number of voxels in the image stack were approximately 3% for global
cropping, and approximately 9% for local cropping. The method with local
cropping is preferred as this roughly triples the relation between the number
of voxels of cancerous region and the total number of voxels. The method,
Local cropping and sliced (illustrated in Figure 3.7), is a way to further reduce the
dataset by excluding z-slices where there are no cancerous regions. The relation
between the number of voxels of cancerous region and the total number of voxels
were approximately 13% for local cropping with z-slices without cancerous regions
sliced out of the image stacks. There were large variations regarding the fraction of
cancerous voxels among patients, in the range of 3% to 59%, for locally cropped
and sliced image stacks.

3.3 Software and computer

The software MATLAB (version R2017a, The Mathworks Inc., Natick, MA) with
the packages Statistics and Machine Learning Toolbox™ and Image Processing
Toolbox™ was used in this thesis. MATLAB was used to import and organize the
dataset, make calculations, perform LDA and QDA classifications and statistical
analysis.

The models were run, in MATLAB, on the computer LENOVO ThinkStation P910
with the processor Intel® Xeon® E5-2600 v4 (with 20 cores, 3.5 GHz per CPU)
and the operating system Ubuntu. This computer had a RAM of 125.8 GiB, which
allows for processing and analysis of large datasets. An external Toshiba hard-
disk, with 1.81 TB memory, were used to store the large dataset and all the scripts,
functions and results from the MATLAB programming.





Chapter 4

Modifications of the
autodelineation program

4.1 Background of the autodelineation program

A tumor autodelineation program, which was based on MR images of cervical
cancer, was developed by former PhD student at NMBU, Turid Torheim [4]. This
autodelineation program builds on classification methods in supervised learning,
see Section 2.4 on page 17. The aim of the autodelineation program is to classify
the voxels in the image as tumor or not tumor [4]. The steps in the autodelineation
program are illustrated in Figure 4.1.

Input and output to the program are both images. The input images are medical
images from the scanning, while the output images are showing the predicted
cancerous regions either as cancer probability maps or as binary maps (cancer/not
cancer). The steps in the autodelineation program consist of image pre-processing,
image unfolding, voxel classification, post-processing of resulting predictions and
performance measure calculation.

In Torheim’s PhD Thesis the input images were MR images of cervical cancer
and the delineation was performed by two radiologists [4]. These delineations
were considered the ground truth, and were used as the basis for training and
assessment of the classification [4]. If necrotic areas (dead tissue) in the tumor were
present, they were included in the delineation [4]. The MR images were dynamic,
consisting of several time steps, and static (only one time step) [4]. Torheim used
images for 78 patients for three different MR representations (T2w (static), T1w
(static) and DCE-MRI (dynamic)), and she downscaled the T2w and T1w images
to match the size of the DCE-MR images [4].

35
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Figure 4.1: The build-up of the autodelineation program. Input to the program is the
medical images from the scanning. These images are pre-processed to compensate for
intensity differences among patients. Then the images are unfolded. The classification of
each voxel is performed on the basis of the unfolded mask and the chosen classification
algorithm. The mask is based on the voxel indices given by contouring by the physician.
Insignificant noise is removed by post-processing the resulting predictions. In the final
step the program’s performance is evaluated by comparing the output images, showing the
predicted cancerous regions, with the masks based on the physician’s contouring.

Then these images were cropped and further reduced, by only including the image
slices in which the radiologist’s identified tumor tissue, as shown in Figure 4.2(a).
By cropping and slicing the images, the balance between the two voxel classes
(Torheim used in her paper), tumor and non-tumor, improved.

The already cropped input images were pre-processed by auto-scaling the images
to a mean of 0 and a standard deviation of 1. The auto-scaling is performed
to compensate for intensity differences between patients (for the T2w and T1w
images) and to maintain the intensity increase between time steps (for DCE-MR)
[4].

The next step in the autodelineation program is image unfolding, as illustrated in
Figure 4.2 (b), (c) and (d). The voxels in the image stacks (for T2w, T1w and
DCE-MRI) are defined by their position in the image, the x, y and z coordinate,
and a specific voxel index. The image stack is unfolded with increasing voxel
indices, from voxel index 1 to voxel index n (n is the total number of voxels in
an image stack). To obtain information about the spatial relationships between
voxels, the eight closest neighbors were included, in the unfolding, for T2w and
T1w images (illustrated in Figure (4.2(c))). The voxel intensity is, for T2w and
T1w images, represented in each voxel. For DCE-MRI, the 13 first time steps were
included in the unfolding process, and here the voxel intensity represents its time-
intensity curve. The constructed data matrix X consists of the unfolded T2w and
T1w images (both with eight neighbors) and the unfolded DCE-MRI images (with
13 time steps), as seen in Figure 4.2(d).
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Figure 4.2: Conversion of the MR images into a data matrix X used for voxel classification.
(a) Edges were removed from all images. (b) For the DCE-MRI series, each voxel was
represented by the intensities of the 13 first time steps in the image series. (c) The T2w or
T1w images were represented by either only their intensity, or by their intensity (dark gray)
and the intensities of the eight closest neighbor voxels (light gray). (d) The data matrix X
for the model based on T2w images with eight neighbors included, the T1w images with
eight neighbors included and the 13 first DCE-MRI time steps. With permission from Turid
Torheim, from her PhD thesis [4].

Then the voxel classification can begin. The voxels were classified using Fisher’s
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)
[4]. Fishers’s LDA and QDA seeks to find a line, linear or quadratic, respectively,
that maximizes the separability among two (or more) classes. The models (based
on either LDA and QDA) were trained using the radiologist’s contours, to classify
all the voxels in the data matrix X as tumor or non-tumor.

Classification produced the probability maps, which gave the probability of each
voxel belonging to the tumor. The probability threshold were set to 50 %; all voxels
with probabilities (of the voxel being a tumor) higher than 50 % were assigned as
tumor. The probability maps were converted into a binary image on the basis of
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the chosen probability threshold. These binary images were post-processed by an
in-plane morphological operation that removed voxel volumes consisting of less
than 100 voxels [4].

The model’s performance, on new sets of images, was estimated using leave-one-
out cross-validation [4]. The images of one patient were removed, and the LDA
or QDA model was trained on the remaining N-1 patients, as illustrated in Figure
4.3. Then the resulting model was used for segmentation of the images from the
left-out patient [4]. This process was repeated until all patients were left out once.
A benefit with this validation method is the similarity with the situation in a clinic;
a model trained on images from earlier patients will be used for the diagnosis of a
new patient [4].

Figure 4.3: Leave-one-out cross-validation. The model was trained on N - 1 patients, and
the resulting model was used for segmentation of the images of the left-out patient. With
permission from former PhD student at NMBU, Turid Torheim.

In the final step, the program’s performance is evaluated by comparing the mask
based on the radiologist’s contouring (ground truth) with the mask based on
the LDA/QDA classification model (the program’s output image). The overlap
between these two masks was evaluated using Dice similarity coefficient (DSC)
and the Kappa statistics K [4]. In addition, the assessment of the model
performance for classifying each of the two voxel groups (tumor and non-tumor)
was also based on the the area under the receiving operator curve (AUC), sensitivity
(Se) and specificity(Se) [4]. N-way ANOVA (with significance level p < 0.05)
was used to test the main effect and two-factor interaction of different model
parameters, such as image type and spatial information [4].
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4.2 Modifications of the autodelineation program

4.2.1 Input images

In this thesis, the PET/CT images of head and neck cancer, both PET, CT
and PET/CT images stacks, are used as the input images to the autodelineation
program. These images were locally cropped and either sliced and not sliced, as
discussed in detail in Section 3.2.6. In addition, these images could be unfolded
with zero neighbors and eight neighbors (both sorted and unsorted).

4.2.2 Preprocessing

The first step of the program is to pre-process the input images in order
to compensate for intensity differences between patients and the two imaging
modalities. The chosen pre-processing method is auto-scaling with an average
of 0 and a standard deviation of 1. The auto-scaling had to be performed for the
PET + CT image stacks since the intensity differences between these two imaging
modalities are significantly different. By auto-scaling the CT images, subtracting
the value 1024 from the C Tnumber given in the dataset in order to obtain Hounsfield
units is no longer necessary, as demonstrated in Appendix A, for Equations 1 to 6.

Standardization or auto-scaling is a method yielding z scores,

zscor es,i = xi −E(x)

σ(x)
, (4.1)

where E(x) and σ(x) is the expected value and standard deviation, respectively, of
the total sample variable array x. x consists of the sample variables xi , for i = 1, 2,
...,n-1, n. In this Thesis, the x would correspond to the image stack(s) containing
all the voxel intensities, and xi would be the voxel intensity of a specific voxel i . In
the MATLAB computation of the z scores, potential NaN values are omitted using
the option ’omitnan’ inside the z scores function.

4.2.3 Unfolding

In the unfolding step the images are folded out to a matrix consisting of the
intensity value to all the voxels of all the patients in a systematic manner. For zero
neighbors this matrix consists either of two columns, when PET/CT data is used
as input, or only one column, when either PET or CT is used. Then the images are
unfolded out to a matrix where each row consist of the intensity value to a specific
voxel in the image and to a specific patient. For PET and CT images, a row in
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the matrix will consist of the SUV and the C Tnumber , respectively. In the case of
PET/CT data, the first column of the matrix will consist of the C Tnumber and the
second column of the SUV.

When the unfolding includes the 8 nearest neighbors, the unfolding is the same as
illustrated in Figure 4.2 on page 37. Then instead of one column, there are nine
columns for each imaging modality. Therefore, there are eighteen columns for the
combination of both imaging modalities, PET/CT. The (nine or eighteen) columns
are either sorted in descending order (from first to last column) or unsorted.

4.2.4 Classification

The classification of each voxel is performed on the basis of the unfolded mask
and the chosen classification algorithm. The mask is based on the contouring
performed by the oncologist/nuclear medicine physicist of primary tumor and
lymph nodes (located in the head and neck), and represented by their voxel indices
in the image stacks. The applied classification algorithms are Fisher’s Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

For the head and neck dataset it will be beneficial to include the cancer infiltrated
lymph nodes in addition to the primary tumor. The main reason for this is that the
lymph nodes need to be considered in the treatment plan, as cancer cells can spread
through the lymphatic system to other regions of the body [39]. The lymph nodes
can be PET-positive or PET-negative depending on how metabolically active they
are, which their SUV give an indication of (as discussed in Section 2.3.2). The
separation of these groups of lymph nodes is based on whether over a quarter of
the voxels in the lymph nodes have a SUV higher than 2.5 or not, respectively [26].
This leads to the following possibilities for the number of classes:

• Two classes

1. Lymph nodes (both PET-positive and PET-negative) and the primary
tumor

2. Everything else

• Three classes

1. Primary tumor

2. Lymph nodes (both PET-positive and PET-negative)

3. Everything else
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• Four classes

1. Primary tumor

2. PET-positive lymph nodes

3. PET-negative lymph nodes

4. Everything else

The classification step of the program therefore does not only depend upon the
chosen classification method, but also on how many classes the classification
should be build on. Due to the challenges with the washing of the dataset and
the time limitation of this Master’s Thesis, as described in the Section 3.2.5, only a
binary (two class) problem is performed. Multiple structures need to be manually
checked for each of the 206 patients in the dataset, making sure that, for example,
the GTV-structures were given the correct name and that overlapping structures are
assigned to the correct class.

LDA and QDA

The models (based on either LDA and QDA) are trained using the oncologist’s and
nuclear medicine physicist’s contours, to classify all the voxels in the data matrix,
X, into the two classes

1. Primary tumor and lymph nodes,

2. Everything else.

Fishers’s linear and quadratic discriminant analysis (LDA and QDA) seeks to find a
boundary, linear or quadratic, respectively, that maximizes the separability among
two (or more) classes. This is equivalent to finding the combination of predictors
giving the maximum separation between the centers of the data (between-class
variance) and at the same time minimizing the variation within each class of
the data (within-class variance) [40]. Mathematically, LDA and QDA minimizes
the total probability of misclassification by assuming that the data can be truly
separated by hyperplanes or quadratic surfaces, respectively [40].

Fisher’s LDA determines linear combinations of the predictors to maximize the
signal-to-noise ratio [40]. When B represent the between-group covariance matrix
and W represent the within-group covariance matrix, the LDA problem seeks to
find the value of b that maximizes [40]

b′Bb

b′Wb
. (4.2)
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The eigenvector, or linear discriminant, corresponding to the largest eigenvalue of
W−1B is the solution to this optimization problem (given in Equation 4.2) [40]. The
same optimization in new directions, uncorrelated with the previous discriminants,
leads to the subsequent discriminants [40].

While LDA assumes the same covariance matrix for all the classes, the covariance
matrix for each class is estimated separately in QDA [40, 41] As a consequence,
if there is reason to believe that there are different within-class variations, and
the classes therefore should have their own covariance matrix, QDA should
theoretically perform better than LDA. With QDA the decision boundaries become
quadratically curvilinear in the predictor space [40]. As all the class-specific
matrices are utilized in QDA, the inverse of the matrices must exist, the number
of predictors must be less than the number of cases within each class, and there
must not be any collinearity between these in-class predictors.

4.2.5 Postprosessing

Post-processing is needed to remove insignificant noise in the classification results.
This is done by applying an in-plane morphologic operation on the binary images
to remove all elements containing less than 10 voxels. It was decided to remove
elements smaller than 10 instead of 100, as lymph nodes and not just primary
tumor, are now included in the contouring.

4.2.6 Performance measure

In the final step, the program’s performance is evaluated by comparing
the program’s images, the output images, with the masks based on the
oncologist’s/nuclear medicine physicist’s contouring. This is the results and
validation step of the program. The probability threshold was set to 50 %,
converting the probability maps into binary output images.

The oncologist/nuclear medicine physicist analyzes medical images from a patient
to diagnose the patient as being sick or healthy. In this case being sick is equivalent
of having cancer tumor(s) and (potentially) cancerous lymph nodes, and healthy
refers to the patient not having any cancerous regions. To be diagnosed as
sick is referred to as being positive, while negative refers to being diagnosed as
healthy. The terms true and false refers to a correct and an incorrect diagnosis,
respectively. Therefore, in clinical diagnostics there are four possible outcomes
[34], as illustrated in Table 4.1.
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Table 4.1: Four possible outcomes when analyzing medical images

Actual class
Predicted class Sick Healthy
Sick True positive (TP) False positive (FP)
Healthy False negative (FN) True negative (TN)

A true positive means that the patient is sick and is also diagnosed to be sick, while
a a false positive is when the patient is healthy, but is diagnosed as sick. When a
patient is diagnosed as healthy, the patient is either healthy, a true negative, or sick,
a false negative.

These four possible outcomes can in turn be exploited in further analysis. The
accuracy, Ac , is the number of correct diagnoses divided by the total number of
diagnoses

Ac = T P +T N

T P +T N +F P +F N
, (4.3)

where TP is true positives, FP is false positives, TN is true negatives and FN is
false negatives. The sensitivity, Se , is the number of true positives ( TP) divided by
the sum of the true positives ( TP) and false negatives ( FN) [34]

Se = T P

T P +F N
. (4.4)

The specificity, Sp is the number of true negatives ( TN) divided by the sum of the
number of true negatives ( TN) and false positives ( FP) [34]

Sp = T N

T N +F P
. (4.5)

A commonly used analyzing technique is based on the receiver operating
characteristic (ROC) curve [34].The ROC curve plots the sensitivity on the vertical
axis and one minus specificity on the horizontal axis [34]. The ideal ROC curve
has a true positive fraction of 1 and a false positive fraction of 0. The area under
the ROC curve, AUC, therefore gives a quantitative measure of the quality of the
diagnostic procedure. In Figure 4.4, the area under the ROC (AUC) curve is given
for CT + PET as input images, that are locally cropped and sliced, with 8 neighbors
(sorted). The dashed line, in Figure 4.4, is a non-informative diagonal ROC curve,
with sensitivity = 1 - specificity. In the case of sensitivity = specificity = 0.5, this
would be as good as a flipping a coin [42]. The ideal ROC curve maximizes the
integral ( AUC) with a value of 1 [34]. This is equivalent to the ideal ROC curve
having an ideal value of 100 percent for the three measures accuracy, sensitivity
and specificity [34].
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Figure 4.4: AUC, the area under the ROC curve, given for CT + PET as input images, that
are locally cropped and sliced, with 8 neighbors (sorted).

Both the Dice similarity coefficient (DSC) and the κ statistics compares the binary
masks (output images) of the autodelineation program with the contoured masks
(based on the contouring of the oncologist/nuclear medicine physicist). The Dice
similarity coefficient (DSC) is a performance measure used to evaluate the overlap
between the contoured masks (ground truth) and the binary masks (produced by
the autodelineation program). DSC is defined as

DSC = 2T P

F P +F N +2T P
, (4.6)

where TP are the true positives, FP are the false negatives and FN are the false
negatives. DSC can have values between 0 and 1, where 0 and 1 indicates no and
perfect overlap, respectively.

The κ statistics for comparison between observers find the agreement between
the contoured masks (the ground truth) and the binary masks produced by the
autodelineation program. The κ is calculated as

κ= 2(T P ·T N −F P ·F N )

(T P +F N )(F P +T N )+ (T P +F P )(F N +T N )
, (4.7)

where all the variables are defined above. A κ value of 1 indicates perfect
agreement, and κ value larger than zero indicates agreement better than chance.

ANOVA

To test whether the mean of different performance parameters are significantly
different, the analysis of variance, ANOVA, was performed [42]. In ANOVA, the
null hypothesis is that there is no significant difference among the groups, while the



45

alternative hypothesis states that there is at least one significant difference among
the groups [42].

When using ANOVA, the following three assumptions need to be checked if

1. the samples are drawn from a normally distributed population,

2. the samples are independent of each other, and

3. the variance among the groups should be approximately equal [42].

After the assumptions of the ANOVA are tested, the calculation of the F -value and
the p-value is performed. If the p-value is less than 0.05, the null hypothesis is
rejected with 95 % confidence, concluding with the alternative hypothesis that at
least one group mean is different.





Chapter 5

Results

The autodelineation program was based on the contouring of cancerous regions
performed by the oncologist and nuclear medicine physicist. The input images to
the model could have any combinations of the following parameters,

• imaging modality (CT, PET or CT + PET),

• spatial information, zero or eight neighbors (and whether the neighbors were
sorted or not), and

• size of the image stacks (sliced/not sliced).

The classification algorithm chosen was Fisher’s Discriminant Analysis, and
the model was tested using both the Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). Twenty four different models were run,
as seen in Table 5.1.

In addition, a PET-thresholding was performed using an absolute SUV of 2.5 as
the chosen threshold limit. This gives an indication of how well a simple PET-
thresholding would perform.

5.1 Performance measures of the models

All the models, given in Table 5.1, had DSC values between 0.27 to 0.68 and κ

values between 0.12 and 0.62, indicating low but better than chance agreement
with the contoured ground truth masks. The DSC and κ values were lowest for the
CT images, with the values 0.27-0.4 and 0.12-0.27, respectively, indicating a slight
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to fair agreement. The PET images, with DSC values (0.65-0.68) and κ values
(0.57-0.61), and the CT + PET images, with DSC values (0.53-0.68) and κ values
(0.47-0.62), indicate moderate agreement. It is therefore evident that PET images
and PET + CT images show a significant increase in the performance measures
DSC and κ compared to only CT images.

Table 5.1: Performance measures for LDA and QDA classification models based on different
combinations of feature vectors derived from PET, CT and CT + PET, given with two significant
figures.

Images Neighbors Sliced Method DSC κ AUC Sens Spec
PET 0 Yes LDA 0.65 0.59 0.90 0.62 0.95
CT 0 Yes LDA 0.27 0.12 0.58 0.72 0.44
CT + PET 0 Yes LDA 0.53 0.47 0.87 0.58 0.93
PET 8 Yes LDA 0.68 0.61 0.92 0.70 0.93
CT 8 Yes LDA 0.40 0.27 0.71 0.88 0.47
CT + PET 8 Yes LDA 0.68 0.62 0.92 0.71 0.93
PET 8 Yes QDA 0.66 0.58 0.91 0.76 0.88
CT 8 Yes QDA 0.39 0.25 0.76 0.92 0.39
CT + PET 8 Yes QDA 0.66 0.58 0.91 0.83 0.85
PET 8 No LDA 0.68 0.61 0.92 0.70 0.93
CT 8 No LDA 0.40 0.26 0.70 0.88 0.48
CT + PET 8 No LDA 0.68 0.61 0.92 0.71 0.94
PET 8 (unsorted) Yes LDA 0.65 0.60 0.91 0.63 0.96
CT 8 (unsorted) Yes LDA 0.35 0.20 0.61 0.75 0.50
CT + PET 8(unsorted) Yes LDA 0.66 0.60 0.91 0.63 0.96
PET 8 (unsorted) Yes QDA 0.65 0.57 0.90 0.75 0.88
CT 8 (unsorted) Yes QDA 0.39 0.25 0.76 0.92 0.39
CT + PET 8(unsorted) Yes QDA 0.64 0.56 0.90 0.84 0.84
PET 0 Yes QDA 0.65 0.59 0.89 0.64 0.94
CT 0 Yes QDA 0.36 0.20 0.70 0.97 0.26
CT + PET 0 Yes QDA 0.66 0.58 0.91 0.75 0.90
PET 8 No QDA 0.66 0.58 0.91 0.76 0.88
CT 8 No QDA 0.38 0.25 0.76 0.93 0.38
CT + PET 8 No QDA 0.65 0.58 0.91 0.83 0.85

DSC: Dice similarity coefficient, Sens: Sensitivity, Spec: Specificity, AUC: area under the
receiving operator curve and κ: κ statistics. Values are averaged over all patients. LDA: Linear
Discriminant Analysis, QDA: Quadratic Discriminant Analysis.

Models using CT showed a tendency for higher sensitivity and significantly lower
specificity than PET alone or PET combined with CT. For CT the sensitivity was
between 0.72 and 0.97, compared to the sensitivity for PET (0.62-0.76) and CT +
PET (0.58-0.84). CT models had a specificity between 0.26 and 0.50. In contrast,
the specificity was above 0.84 for all models run using PET (0.88-0.96) and CT +
PET (0.84-0.96). The AUC was lower for CT (0.58-0.76) than for PET (0.89-0.92)
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and CT + PET (0.87-0.92), indicating that the models performed better when PET
images (either alone or in combination with CT) were included as the input images.

5.2 The effect of different factors

For the imaging modality PET all of the five performance measures wre significant,
and thus it was evident that the model was heavily influenced by PET. It was
therefore interesting to test the effect of each imaging modality separately for the
effect of different model factors, without PET present as the dominating factor, in
the N-way ANOVA. This was especially beneficial for CT, as this imaging modality
contributed significantly less to the model in comparison with PET (and PET in
combination with CT). It was then possible to test how the factors in the model,
spatial information, sorting, slicing and classifier, affected the model performance
in only CT images (or only PET or only CT + PET images).

5.2.1 Effect of spatial information and classifier

The effect of including spatial information (zero or eight sorted neighbors) and
the classifier choice (LDA/QDA) on model performance was investigated. The p
values (from the N-way ANOVA) are displayed in the Tables 5.2, 5.3, 5.4 and 5.5,
testing for the effect of spatial information and classifier choice both including and
excluding PET and CT as factors. The input images to all of these models were
locally cropped and sliced.

In Table 5.2, PET and CT included as factors, it is evident that the performance
measures DSC, κ and sensitivity improved significantly when neighborhood
information was included. The choice of classifier had a significant effect on the
performance measures sensitivity and specificity. PET had significant effect on all
performance measures, specificity were the only significant performance measure
for CT. As seen in the Tables 5.3, 5.4 and 5.5, the effect of neighbors and classifier
were significant for sensitivity (all), specificity (PET and CT), and DSC (CT).

It was beneficial to include spatial information for all model combinations. For
the models with eight sorted neighbors, there were minimal differences in the
performance measures due to classifier choice. However, models based on zero
neighbors had higher specificity, but lower sensitivity for the QDA classifier
compared to the LDA classifier. The classifier QDA performed better for DSC, κ
and AUC than LDA for CT images, especially for zero neighbors. In contrast, for
PET and CT + PET, there were minimal effect of the choice of classifier. Therefore,
it is recommended to include spatial information in models, as neighborhood
information improved model performance.
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Table 5.2: p values (from the N-way ANOVA) for the effects of the factors classifier choice
(LDA/QDA) and spatial information (zero or eight sorted neighbors), including imaging
modality (CT and PET) as a factor.

Factor DSC κ AUC Sens Spec
CT - - - - 0.04
PET <0.0001 <0.0001 0.0003 0.0009 <0.0001
Neighbors 0.003 0.007 - 0.002 -
Classifier - - - 0.011 0.0001

Table 5.3: p values (from the N-way ANOVA) for the effects of the factors classifier choice
(LDA/QDA) and spatial information (zero or eight sorted neighbors) based on only PET
images.

Factor DSC κ AUC Sens Spec
Neighbors - - - 0.03 0.003
Classifier - - - 0.04 0.0012

Table 5.4: p values (from the N-way ANOVA) for the effects of the factors classifier choice
(LDA/QDA) and spatial information (zero or eight sorted neighbors) based on only CT
images.

Factor DSC κ AUC Sens Spec
Neighbors <0.0001 - - 0.03 0.003
Classifier 0.0001 - - 0.04 0.0012

Table 5.5: p values (from the N-way ANOVA) for the effects of the factors classifier choice
(LDA/QDA) and spatial information (zero or eight sorted neighbors) based on only CT +
PET images

.
Factor DSC κ AUC Sens Spec
Neighbors - - - 0.02 -
Classifier - - - 0.02 -

DSC: Dice similarity coefficient, Sens: Sensitivity, Spec: Specificity, AUC: area under
the receiving operator curve and κ: κ statistics. Values are averaged over all patients.
Non significant p-values are given by ’-’, using the significance level p = 0.05, for visual
purposes.
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5.2.2 Effect of sorting neighbors and classifier

The effect of sorting the eight neighbors and the classifier choice (LDA/QDA) on
model performance was investigated. Table 5.6 displays the p values for the effects
of the factors image type, classifier choice (LDA/QDA) and sorting of the eight
neighbors on the classification performance measures. The ANOVA tables for only
CT and only PET showed no significance of sorting the eight neighbors and the
classifier choice (LDA/QDA) for any of the five performance measures. Table 5.7
displays the p values for the effects of the factors classifier choice (LDA/QDA)
and sorting of the eight neighbors on the performance measures. The input images
to all of these models were locally cropped and sliced.

Table 5.6: p values from N-way ANOVA for the effects of the factors image type, classifier
choice (LDA/QDA) and sorting of the eight neighbors on the classification performance
measures.

Factor DSC κ AUC Sens Spec

CT - - - - -
PET <0.0001 <0.0001 0.0003 0.004 <0.0001
Sorted 0.04 - - - -
Classifier - - - 0.001 <0.0001

Table 5.7: p values from N-way ANOVA for CT + PET, testing for the effects of the
factors classifier choice (LDA/QDA) and sorting of the eight neighbors on the classification
performance measures.

Factor DSC κ AUC Sens Spec
Sorted - - - - -
Classifier - - 0.02 - -

DSC: Dice similarity coefficient, Sens: Sensitivity, Spec: Specificity, AUC: area under
the receiving operator curve and κ: κ statistics. Values are averaged over all patients.
Non significant p-values are given by ’-’, using the significance level p = 0.05, for visual
purposes.

In Table 5.6, PET and CT included as factors, it is evident that sorting of the eight
neighbors were only significant for the performance measures DSC. The classifier
choice had a significant effect on the two performance measures sensitivity and
specificity. For LDA, the sensitivity was higher when the neighbor were sorting,
while the specificity was higher for unsorted neighbors. In the case of QDA,
there was minimal effect of sorting (of the eight neighbors) on specificity and
sensitivity. PET had a significant effect on all performance measures, while CT had
no significant effect on any of the performance measures. It is evident, from Table
5.7, that the only significant factor for CT + PET was classifier choice (LDA/QDA)
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on the performance measure AUC. Therefore, sorting of the neighbors had no to
minimal effect on model performance.

5.2.3 Effect of slicing and classifier

The slicing of the image stacks reduced the total number of voxels and improved
the balance between the two classes. In this study, the slicing of the locally cropped
images increased, in total, the fraction of cancerous voxels in the image stacks
from approximately 9% to 13%. The effect of slicing and classifier choice on
model performance was thus investigated. The results from the N-way ANOVA
testing slicing, classifier choice, CT and PET on model performance is displayed
in Table 5.8. The effect of slicing and classifier choice, for the individual imaging
modalities CT, PET and CT+PET, is displayed in the Tables 5.9, 5.10 and 5.11,
respectively. All these models were based on image stacks that were unfolded with
eight sorted neighbors.

In Table 5.8, including CT and PET as factors, there was no significant effect of
slicing for any of the performance measures. PET was, as always in this study,
significant for all performance measures. The choice of classifier had an significant
on effect on all performance measures except AUC.

In contrast, in the Tables 5.9, 5.10 and 5.11, it is clear that the factor slicing had
significant effect on the performance measures for the individually tested imaging
modalities. For PET and PET in combination with CT, the factor slicing had
significant effect on all performance measures, while CT had significant effect on
DSC, κ and AUC. The classifier (LDA/QDA) had significant effect on DSC (PET
and CT) and sensitivity (CT + PET).

Thus, the effect of slicing was found to be minimal in this study, as there
were no significant effect of slicing for any of the performance measures when
factors of imaging modality, PET and CT, were included. Since testing for
individual imaging modalities showed that slicing had significant effect on
performance measures and better balance between the classes was desirable, it was
recommended to perform slicing. The slicing increased the fraction of cancerous
voxels in the image stack.
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Table 5.8: p values from N-way ANOVA for the effects of the factors image type, classifier
(LDA/QDA) and slicing of the image stacks on the classification performance measures.

Factor DSC κ AUC Sens Spec

CT - - - - -
PET <0.0001 <0.0001 <0.0001 0.0001 <0.0001
Slicing - - - - -
Classifier <0.0001 <0.0001 - 0.0007 <0.0001

Table 5.9: p values from N-way ANOVA for PET, testing for the effects of the factors
classifier (LDA/QDA) and slicing of the image stacks on the classification performance
measures.

Factor DSC κ AUC Sens Spec

Slicing 0.009 0.006 0.008 0.009 0.002
Classifier 0.05 - - - -

Table 5.10: p values from N-way ANOVA for CT, testing for the effects of the factors
classifier (LDA/QDA) and slicing of the image stacks on the classification performance
measures.

Factor DSC κ AUC Sens Spec

Slicing 0.005 0.03 0.009 - -
Classifier 0.02 - - - -

Table 5.11: p values from N-way ANOVA for CT + PET, testing for the effects of the factors
classifier (LDA/QDA) and slicing of the image stacks on the classification performance
measures.

Factor DSC κ AUC Sens Spec

Slicing 0.010 0.006 0.03 <0.0001 0.003
Classifier - - - 0.0005 -

DSC: Dice similarity coefficient, Sens: Sensitivity, Spec: Specificity, AUC: area under
the receiving operator curve and κ: κ statistics. Values are averaged over all patients.
Non significant p-values are given by ’-’, using the significance level p = 0.05, for visual
purposes.
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5.2.4 Visualization of the ROC curve

Figure 5.1 displays the AUC for all the models with eight sorted neighbors for both
classifiers (LDA/QDA) and all imaging combinations. The three models based on
PET for LDA and CT + PET for both LDA and QDA resulted in AUCs over 0.90.
The combination of CT and PET for LDA had slightly (but not significantly) larger
AUC than the other two models. The model combination resulting in the lowest
AUC was again CT and LDA, were a small part of the ROC curve is even lower
than the by-chance line for sensitivities and false positive rates smaller than 0.05.

Figure 5.2 displays the AUC for all the models with zero neighbors for both
classifiers (LDA/QDA) and all imaging combinations. It was evident that the
combination of PET and LDA gave the highest AUC for models with zero
neighbors. In contrast, the combination of PET and QDA gave somewhat (but
not significantly) lower AUC. The worst model combination here was CT and
LDA, were part of the ROC curve is even lower than the by-chance line when
the sensitivity and false positive rate is low (smaller than 0.3). Thus, this model
performs no better than randomly expected for low sensitivities and false positive
rates. Therefore, if the model is run for CT, there would be improvement in AUC by
switching from the linear LDA (0.58) to the non-linear QDA (0.70) classification
algorithm.

Figure 5.3 displays the AUC for all the models with eight unsorted neighbors for
both LDA and QDA and all imaging combinations. The model combinations
based on PET using the LDA classifier and PET in combination with CT for
both classifiers (LDA and QDA), resulted in AUC larger than 0.90. The model
combination yielding the lowest AUC was again obtained using the LDA classifier
and the CT images.

Figure 5.4 displays the AUC for all the models based on locally cropped and sliced
image stacks, unfolded with eight sorted neighbors, and both classifiers (LDA and
QDA) for all imaging combinations. The models based on inclusion of PET (either
PET alone or PET in combination with CT) all yielded an AUC larger than 0.90,
while the AUCs for the CT based models were less than 0.76.

Of the twenty-four models, a total of thirteen models based on different
combinations of either PET or CT + PET, gave an AUC larger than 0.90, with DSC
of 0.64-0.68 and κ of 0.56-0.62, indicating a very good model performance and
substantial agreement between the ground truth and the binary mask produced by
the model. The model combinations based on the LDA classifier, inclusion of both
sliced and unsliced PET images (PET and PET + CT), resulted the in same AUC of
0.92 indicating excellent performance of these four models. For these four models
the DSC (0.68) and κ (0.61-0.62) were high, indicating a substantial agreement
between the ground truth and the mask produced by the autodelineation program.



55

Figure 5.1: Area under the curve (AUC) for models with eight sorted neighbors, sliced,
LDA and QDA classifiers, and for all imaging modalities.

Figure 5.2: Area under the curve (AUC) for models with zero neighbors, sliced, LDA and
QDA classifiers, and for all imaging modalities.



56 CHAPTER 5. RESULTS

Figure 5.3: Area under the curve (AUC) for models with eight unsorted neighbors,
unsliced, LDA and QDA classifiers, and for all imaging modalities.

Figure 5.4: Area under the curve (AUC) for models with eight sorted neighbors, unsliced,
LDA and QDA classifiers, and for all imaging modalities.
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5.2.5 Performance plots of the best models

There was clear differences in performance measures among patient, especially for
κ and DSC, also within the same model combination. The two model combinations
yielding the absolute highest AUC, both the sliced and unsliced combined CT and
PET images, unfolded with eight sorted neighbors, using the LDA classifier, are
displayed in the performance plots in Figures 5.5 and 5.6. In the performance plot
for the sliced images, four arbitrary ground truth masks (with the visually largest
amount of cancerous regions, displayed in white) are also displayed.

Figure 5.5: Performance measures for the model combination of sliced CT + PET images,
eight sorted neighbors and LDA classifier. The four ground truth masks are added
to visually inspect the amount of cancerous regions (white) and non-cancerous regions
(black).
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Figure 5.6: Performance measures for the model combination of unsliced CT + PET
images, eight sorted neighbors and LDA classifier.

5.3 Dependencies of κ and DSC on class balance

As the variations of κ and DSC values were substantial between patients, these two
performance measures were tested for their relation with the fraction of cancerous
regions and the number of cancerous voxels, as these two parameters also displayed
variation between patients. These relations are illustrated in Figures 5.7, 5.8 and
5.9 for all imaging modalities (CT and PET combined, PET only and CT only,
respectively). For these plots, the first row display κ and DSC as a function of the
relative fraction of cancerous regions and the second row display the κ and DSC
values as a function of the number of cancerous voxels.

For the PET + CT case, Figure 5.7, small relative fraction of cancerous regions
and number of cancerous voxels had a large range in both κ and DSC values.
Higher relative fractions of cancerous regions and number of cancerous regions
had smaller variations in κ and DSC values. Therefore, there was no evident, clear
relation between the variable κ and DSC values and either the relative fraction of
cancerous regions or the numbers of cancerous voxels for the CT + PET images.
Almost identical tendencies for these same four plots for PET + CT is found in the
corresponding plots for PET, as seen in Figure 5.8.
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Figure 5.7: κ (left) and DSC (right) as a function of the relative fraction of cancerous
regions (row 1) and number of cancerous regions (row 2), for CT + PET image stacks
(sliced and eight sorted neighbors), respectively.

Figure 5.8: κ (left) and DSC (right) as a function of the relative fraction of cancerous
regions (row 1) and number of cancerous regions (row 2) for PET image stacks (sliced and
eight sorted neighbors), respectively.
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In contrast, the CT plots (Figure 5.9) were notably different on all the PET and CT
+ PET cases. In the plots of κ and DSC plotted against the number of cancerous
voxels there were larger variations in κ and DSC for smaller numbers of cancerous
voxels, but this might simply be due to the larger amount of patients with smaller
number of cancerous voxels. In the plot of κ and DSC against the fraction of
voxels of cancerous regions there was a near linear tendency. Thus, κ and DSC
were almost linearly dependent on the fraction of voxels of cancerous regions.
Higher κ and DSC was desirable and would was achieved for CT image stacks with
higher fraction of cancerous regions, and thus methods to improve the fraction of
cancerous voxels in an image stack seems promising.

Figure 5.9: κ (left) and DSC (right) as a function of the relative fraction of cancerous
regions (row 1) and number of cancerous regions (row 2) for CT image stacks (sliced and
eight sorted neighbors), respectively.

5.4 Visualization of input and output masks

Another interesting aspect to investigate, is how the model was affected by non-
cancerous regions with high SUV and cancerous regions with low SUV. The
Figures 5.10 and 5.11 display the unsliced and sliced CT + PET images (first
column), the ground truth mask (second column), probability maps (third column)
and LDA binary mask (forth column), respectively. All of the input models were
unfolded using eight sorted neighbors and classified using LDA.
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Figure 5.10 displays image sliced from four patients, all having unsliced CT +
PET images, unfolded with eight sorted neighbors and classified by LDA. The
agreement between the contoured mask (ground truth) and the LDA binary mask
were good for two of the patients, with DSC of 0.88 (first row) and 0.72 (second
row), and low for the patient given in the third and forth row with a DSC of 0.11
and 0.21, respectively. In the CT + PET image, the CT is displayed as grey while
PET is displayed in the red color shading.

Figure 5.10: The CT + PET ( PET overlayed in the red channel) image in the first column
and the ground truth mask in the second column for image slices from three different
patients. The LDA model was based on CT + PET, unfolding using eight sorted neighbors
and auto-scaling as a preprocessing method, and resulted in the probability maps (third
column) and LDA output image (forth column). In the probability maps, black and white
indicate 0% and 100% predicted probability of the voxel belonging to cancerous tissue,
respectively. A probability threshold of 50% was used to convert the probability maps into
LDA output images. The agreement between the contoured mask (ground truth) and the
LDA binary mask, given for the Dice similarity coefficent ( DSC), was 0.88 (first row), 0.72
(second row), 0.11 (third row) and 0.21 (fourth row).
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For the two first rows, the red color is highly defined in regions similar to the
binary image representing the ground truth and also to the binary image produced
by the autodelineation program using the LDA classification algorithm. From
these images, it is clear that there was a high overlap between the contoured mask
(ground truth) and the LDA binary mask, and thus achieving high DSC of 0.88
(first row) and moderately high of DSC 0.72 (second row). In contrast, for the
third and forth row there was little overlay between the contoured mask (ground
truth) and the LDA binary mask, resulting in the low DSC values of 0.11 and 0.21.
In the CT + PET images for the third and forth row, large portions of the image
are displayed in red, indicating areas of high metabolism. Due to the symmetric
distribution of the metabolically active areas, these are not cancerous as seen in
the image representing the ground truth, but rather due to other glucose-demanding
causes, such as infections. This led to a high number of false positives as many non-
cancerous regions were classified as cancerous. Also, the actual cancerous regions
were not classified as cancerous, thus causing a high number of false positives.

In Figure 5.11, the sliced CT + PET images (first column), the ground truth
mask (second column), probability maps (third column) and LDA binary mask
(forth column) are illustrated for image slices from three different patients. The
agreement between the contoured mask (ground truth) and the LDA binary mask
are good for two of the patients, with DSC of 0.80 (first row) and 0.84 (third row),
and low for the patient given in the second row with a DSC of 0.21.

For the patient in the second row, it is clear that there was regions in the tissue
with high glucose metabolism that the oncologist/nuclear medicine physicist has
not contoured as cancerous tissue. This would then lead to a false positive, as non-
cancerous tissue are classified as cancerous in the LDA model. On the other hand,
the largest cancerous region displayed in the mask considered the ground truth
(created by the contouring of the oncologist/nuclear medicine physicist) was not
displayed in the CT + PET image. As a consequence, this patient also has regions
that are cancerous, but are not classified as cancerous in the LDA model (false
negative). In conclusion, this patient had both types of misclassification (false
positive and false negative). It is therefore evident that the agreement between the
contoured mask (ground truth) and the LDA binary mask was low for this patient.
This is both seen by the differences between the mask showing the ground truth
and the LDA created mask, and by the low DSC and κ values.

Patients with high degree of either false positives, false negatives or both types
of misclassification would therefore have low agreement between the ground truth
mask and the output mask for the model. It is also worth mentioning that the
deeper red color in the CT + PET image (first row and first column) indicates that
there are areas with higher metabolism within the tumor, and thus this tumor is
heterogeneous with regard to voxel intensity (in PET image).
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Figure 5.11: The CT + PET ( PET overlayed in the red channel) image in the first column
and the oncologists’/nuclear medicine physicists’ mask in the second column for image
slices from three different patients. The LDA model was based on CT + PET, unfolding
using eight neighbors (sorted) and auto-scaling as a preprocessing method, and resulted
in the probability maps (third column) and LDA output image (fourth column). In the
probability maps, black and white indicate 0% and 100% predicted probability of the
voxel belonging to cancerous tissue, respectively. A probability threshold of 50% was
used to convert the probability maps into LDA output images. The agreement between the
contoured mask (ground truth) and the LDA binary mask, given for the Dice similarity
coefficent ( DSC), was 0.80 (first row), 0.21 (second row) and 0.84 (third row).

5.5 PET, CT and PET + CT images

It is clear that PET images influence the voxel classification model heavily, when
all the imaging modalities are used to test different performance measures. To
get a visual understanding of how the autodelineation model performs for the CT
and PET separately as well as combined, the classification results are illustrated in
Figure 5.12.

From the CT images (first row), it is clear that there was little overlap with the
binary mask representing the ground truth in the actual CT image, the probability
map image and the LDA binary mask, as given by the low DSC (0.15) and κ

(0.14). This model combination achieved an AUC of 0.71, indicating fair model
performance. The sensitivity was very high (0.99), as there are few cancerous
voxels classified as non-cancerous. In contrast, the specificity was very low (0.41).
This is evident through the large fraction of non-cancerous voxels being classified
as cancerous in the LDA binary mask for CT.
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Both the PET and CT+ PET display overlap between the input images, the
probability map images and the LDA binary masks compared to the mask
representing the ground truth, as indicated through the high DSC (0.64) and κ

(0.62) values. The PET and CT+ PET both achieves an AUC of 0.92, sensitivity of
0.74 and specificity of 0.97, indicating good to excellent model performance.

Figure 5.12: The CT, PET and CT + PET (PET overlayed in the red channel) sliced images
in the first column and the ground truth masks in the second column for image slices
from the same patient. The LDA model was based on unfolding of eight sorted neighbors
and auto-scaling as a preprocessing method, and resulted in the probability maps (third
column) and LDA output image (fourth column). In the probability maps, black and white
indicate 0% and 100% predicted probability of the voxel belonging to cancerous tissue,
respectively. A probability threshold of 50% was used to convert the probability maps into
LDA output images. The agreement between the contoured mask (ground truth) and the
LDA binary mask, given for the Dice similarity coefficent (DSC), was 0.15 (first row), 0.64
(second row) and 0.64 (third row).
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5.6 PET thresholding

Including the PET images in the classification significantly improved all the
performance measures. Thus, it is interesting to find out how well a fast, simple
absolute PET thresholding would determine the cancerous regions compared to the
more time consuming autodelineation model.

All the voxels in the PET image stack was tested on whether the voxel intensity
were larger than 2.5 or not. This test resulted in a binary image mask where
voxels with intensities larger than 2.5 were given the value one, while the voxels
with intensities smaller than 2.5 were given the value zero. This segmentation of
cancerous and non-cancerous tissues was performed on the basis of the locally
cropped and sliced PET image stack.

In Figure 5.13, the performance measures DSC, κ, sensitivity and specificity are
plotted for each of the 206 patients in the dataset.

Figure 5.13: Performance measures for simple PET thresholding, segmenting into
cancerous regions for SUV > 2.5.
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This PET thresholding resulted in a DSC of 0.66, κ of 0.58, sensitivity of 0.77 and
specificity of 0.86, indication a good overlap between the binary image resulting
from the PET thresholding and the ground truth mask. All the performance
measures from the PET thresholding were within the intervals, for all the 24 model
combinations as seen in Table 5.1. This indicates that a simple PET thresholding is
a promising tool as a fast estimate of the location of the cancerous regions within
the patient.
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Discussion

A delineation program was developed to automatically identify cancerous regions
within the head and neck. This program was originally developed for tumor
delineation for different types of MR images of cervical cancer. It has now been
tested and modified for CT, PET and CT + PET image stacks of head and neck
cancers. All of these image stacks were locally cropped to improve the balance
between the two voxel classes (cancer/no cancer). For each patient the location
of the cancerous regions in the image stack, their x, y and z coordinates, were
found and the minimum and maximum of these x, y and z coordinates formed
the basis for the local cropping. The locally cropped image stacks could also be
sliced by removing z-planes without any cancerous voxels. Thus, the slicing of the
image stacks further reduced the size of the image stack and improved the balance
between the classes. All of the image stacks were auto-scaled to a mean of zero
and a standard deviation of one.

The image stacks were unfolded with either zero neighbors or eight neighbors
(sorted/unsorted), to test the effect of spatial information in the model. The
classification algorithms Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) were implemented to classify voxels in the CT, PET
or CT + PET image stacks as cancerous or non-cancerous. This classification
resulted in probability maps and binary LDA/QDA masks which were then
compared to the ground truth, binary masks based on the oncologist’s/nuclear
medicine physicist’s contouring, yielding the performance measures DSC, AUC, κ,
sensitivity and specificity. A total of twenty-four models were evaluated to explore
the effects for different parameters on model performance.

67
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6.1 Overview of the effect of imaging modality

All the models tested had DSC values between 0.27 and 0.68 and κ values between
0.12 and 0.62, indicating a low to substantial agreement between the contoured
masks (ground truth) and the binary masks resulting from the autodelineation
program. Models based on only CT had significantly lower for DSC and κ

values than PET and CT + PET models, that both had moderate to substantial
agreement with the contoured masks. Therefore, it is evident that PET had a
significant contribution to the voxel classification model and that information
regarding cancerous and non-cancerous regions are, in general, better captured by
the PET image stacks than the CT image stacks, as illustrated in Figure 5.12.

PET contributed significantly to the classification model, and the models based on
PET or CT + PET images provided the highest overall performance measures. Of
the twenty-four models, a total of thirteen models gave an AUC larger than 0.90
and thus had very good performance. Models with the classifier LDA, spatial
information (eight sorted neighbors) and either PET or PET + CT images (as
input to the model) resulted in an AUC of 0.92, DSC of 0.68 and κ of 0.61-0.62.
Thus, these four models had excellent performance and the masks produced by the
autodelineation program had substantial agreement with the ground truth.

There were indications of higher sensitivity for models using CT (0.72-0.97)
compared to than PET alone (0.62-0.76) or PET in combination with CT (0.58-
0.84). As sensitivity, or true positive rate, gives the proportion of cancerous voxels
correctly identified as such, this performance measure is influenced by the number
of false positives and the number of true positives [23]. The number of false
positives was substantial in the PET image stacks for some patients and slices,
particularly when there were non-cancerous regions with high glucose metabolism,
as seen in the Figures 5.11 and 5.10. Because 18F-FDG PET measures the glucose
metabolism of different tissue, this imaging modality would display metabolically
active areas due to cancer and other causes in the same manner, causing false
positives (non-cancerous regions classified as cancerous) [23]. On the other hand,
some cancers have low glucose metabolism, resulting in false negatives (cancerous
regions classified as non-cancerous) [23].

The false positives and false negatives were naturally problematic for the
autodelineation program, and resulted in poorer model performance. Therefore,
the performance measures of the models varied for individual patients in relation
to the fraction of false positives and false negative, as visually displayed in the
Figures 5.11 and 5.10. Similar voxel intensities (SUV) in the PET images do not
necessarily indicate a tumor, but could result from a variety of glucose-demanding
causes, such as infection and muscle movement. Symmetric regions with high
metabolism are in most cases due to other causes than cancer, and the model



69

might perform better if a test for symmetrical areas is implemented [23]. Instead
of a program based entirely on autocontouring, a semi-automated program for
contouring would be preferred in this situation [23]. In a semi-automated program,
the oncologist/nuclear medicine physicist can apply knowledge that is challenging
to implement in a machine learning algorithm, such as typical spread of cancers in
certain areas, relevant information about the patients (for example, scar tissue after
an operation would result in higher SUV) and aspects regarding human anatomy
and so fourth [23].

CT had significantly lower specificity (0.26-0.50) than both PET (0.88-0.96) and
PET in combination with CT (0.84-0.96). This means that in CT images there
was a higher proportion of non-cancerous voxels correctly identified as such (non-
cancerous), compared to the PET and CT + PET images. As already discussed,
PET provided more false positives than CT, due to high 18F-FDG uptake in all
tissue with high glucose metabolism, and thus had more non-cancerous voxels
incorrectly classified as cancerous. Therefore, there were fewer correctly identified
non-cancerous voxels for PET compared to CT.

The AUC, the area under the ROC curve plotted for sensitivity as a function of
false positive rate (1 - specificity), was lower for CT (0.58-0.76) than for PET
alone (0.89-0.92) and PET in combination with CT (0.87 - 0.92). Thus, the models
performed significantly better when PET images, either alone or in combination
with CT, were included as the input images.

6.2 The effect of model parameters

All the imaging modalities were tested to determine the effect of including spatial
information (zero or eight sorted neighbors), sorting of the eight neighbors,
slicing of the locally cropped image stacks and the choice of classifier on model
performance.

Inclusion of the PET images in the modeling significantly improved the
performance measures and appears to be the significant factor. Since PET is
a functional imaging modality it provides, for the most part, clear differences
between cancerous and non-cancerous regions, as previously discussed.

The model performance also improved significantly when neighborhood
information was included. In this case, the model had more information that
could be used to distinguish the two classes. However, sorting of the neighbors
according to descending voxel intensity did not, in general, significantly effect
model performance. Thus, this sorting provided no or little additional information.

The choice of classifier had little effect on performance, except for delineation
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in CT images where QDA performed significantly better. This indicates that
cancerous and non-cancerous voxels in CT images were better classified using a
non-linear boundary than a linear boundary. In contrast, for PET alone or PET
in combination with CT, the model performance was either higher for LDA than
QDA or there was insignificant effect of the choice of classifier. As a consequence,
a classification based on a linear boundary for PET images performs well and thus
a simple thresholding of PET images should also perform well. Applying a simple,
absolute SUV threshold of 2.5 to the PET images resulted in an AUC of 0.85, DSC
of 0.66 and κ of 0.58, indicating good model performance and moderate agreement
between the segmented binary mask, resulting from testing the voxels (in the PET
image stack) against the absolute threshold of 2.5, and the ground truth binary
mask. The performed thresholding method for volume delineation is the simplest
of the thresholding methods, and had a simple interpretation and high efficiency
[43]. However, this thresholding method was sensitive to particularly the partial
volume effect, an effect due to the combination of the limiting resolution of PET
and image sampling, tumor heterogeneity, lack of consideration of the background
and so forth [43]. Thus, more advanced methods, based on a relative thresholding
or a combination of an absolute and a relative threshold, should be performed to
achieve higher degree of overlap between the segmented binary masks, from the
thresholding, and the ground truth binary masks [43, 44].

The model performance was not significantly affected by slicing when imaging
modality were included as a factor, but was significant affected when the imaging
modalities were tested separately, as PET otherwise had a dominantly effect in
these models. The slicing of the locally cropped images increased the fraction of
cancerous voxels, in the total image stack, from approximately 9% to 13% and thus
improved the balance between the two classes. Therefore, slicing is recommended
in order to increase the fraction of cancerous voxels in the image stack and enhance
performance measures.

6.3 Dependencies of κ and DSC on class balance

There were large variations between patients regarding the performance measures,
especially for κ and DSC, also within the same model combination. These two
performance measures were tested for their relation with the fraction of cancerous
regions and the number of cancerous voxels, as these two parameters also displayed
variation between patients.

There was no clear relationship between the two performance measures κ and
DSC and the fraction of cancerous regions or the number of cancerous voxels
for models based on PET images alone and PET images in combination with CT
images (Figures 5.7 and 5.8). In contrast, models based on CT images showed
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a near linear relation between κ and DSC, and the fraction of cancerous regions
(Figure 5.9). Higher κ and DSC were achieved for CT image stacks with higher
fraction of cancerous regions. Thus, ways to further improve the class balance
could potentially improve CT classification models.

6.4 Assessment of the autodelineation program

An autodelineation program to identify cervical cancer tumors was developed by
former PhD student at NMBU, Turid Torheim. It used different types of MR
images (T2w, T1w abd DCE), not PET and CT images as in this study [4]. Torheim
found improved model performance when spatial neighborhood information was
included, in accordance with this study.

Inclusion of functional imaging modalities (such as PET and DCE-MRI) gave
higher model performance than anatomical imaging modalities (such as CT, Tw1
and Tw2 MRI). The inclusion of the DCE-MRI features in Torheim’s study had
an significant effect on all performance measures except sensitivity, increasing
DSC (from 0.18-0.20 to 0.41-0.44), κ (from 0.14-0.17 to 0.38-0.42), AUC (from
0.65-0.76 to 0.84-0.87) and specificity (from 0.50-0.54 to 0.92-0.94) [4]. In this
study, the inclusion of the PET images led to a significant improvement of all
performance measures, increasing DSC (from 0.27-0.4 to 0.65-0.68), κ (from 0.12-
0.27 to 0.46-0.62), AUC (from 0.58-0.76 to 0.87-0.92) and specificity (from 0.26-
0.50 to 0.84-0.96). However, sensitivity was lower, from 0.72-0.97 to 0.58-0.84,
when either PET alone or PET in combination with CT was used compared to
models solely based on CT. Thus, in both these studies, the model combination that
gave the highest model performance was based on inclusion of functional imaging,
indicating that cancerous regions are better segmented on the basis of glucose
metabolism, given in the PET images, compared to the anatomy of cancerous tumor
tissues, given in the CT images.

On an overall basis, these two studies are based on both different imaging
modalities and cancer type, and thus the comparison of the performance measures
must consider this difference. For example, the achieved DSC and κ is higher
for the best model in this study compared to the best model in Torheim’s study.
However, the achieved performance measures should rather be compared to similar
studies as the autodelineation model is clearly significantly affected by the imaging
modality used as the input images. Another difference between the studies is
the number of patients, 206 patients in this study compared to 78 patients in
Torheim’s study, which can influence the significance of the factors and also
results in fewer patients to train the model on yielding potentially higher degree
of overfitting. Torheim achieved better balance between the classes, twenty-seven
percent compared to nine or thirteen percent, and thus might perform better in
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the segmentation of the two classes. If only primary tumors were considered for
the dataset used in this study, there would be an increase in the balance between
classes, as the images stacks could be cropped smaller than what was the case when
the cropping was based on all cancerous regions (both tumors and cancer-infiltrated
lymph nodes).

A former Master student at NMBU, Elise Mühlbradt, further developed Torheim’s
autodelineation program using the same dataset, testing the effect of different
pre-processing methods and classification algorithms on model performance [45].
Mühlbradt found that other pre-processing methods, such as Median filtering,
Savitzky-Golay filtering or Contrast Limited Adaptive Histogram Equalization
(CLAHE), did not significantly improve performance measures relative to
autoscaling [45]. Thus, in this Master’s thesis, autoscaling was used for image
pre-processing. Moreover, as voxel intensities in the PET and CT images are on
different scales and were used together for the combined PET and CT images,
autoscaling or similar pre-processing was needed in order to adjust for the
differences in voxel intensity between these two imaging modalities.

None of the classification methods implemented by Mühlbradt, random forest,
k nearest neighbors, SVM or AdaBoost, resulted in significantly different
performance from LDA [45]. These methods were therefore not implemented in
this Master’s thesis, which focused on the methods Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis (QDA). LDA and QDA draw a border,
linear or quadratic, respectively, between the two classification groups. These
models would thus be more robust for different types of cancerous regions and
would therefore classify the cancerous voxels more equally for the cancerous
regions, of each patient, compared to more advanced classification methods with
higher tendencies of overfitting [40].

In this study, the same dataset was divided into different training and validation
sets, but it would have been beneficial to test the classification on an independent
dataset to reduce the bias resulting from developing and testing the model on the
same patients [40]. This is also the aim for the autodelineation program, to train
it on a dataset, and then being able to identity all types of cancerous regions that
are not part of the training dataset. For the cervical cancer dataset, the leave-ten-
out and leave-one-out cross validation resulted in no significant difference for the
five performance measures [45]. Although a leave-ten-out cross validation is more
time-efficient, due to the reduction in the number of times the training has to be
performed, it was decided to use the leave-one-out cross validation in this study as
this would be the situation in a clinic.

Although the models performed well for certain model combinations, fully
automatic delineations are still not accurate enough for all patients, as shown in
this study. The autodelineation can assist the physician in the delineation of the
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cancerous regions, and in particular the probability maps could be beneficial, as
these (probability) maps showed the probability of the voxels belonging to a tumor.

Several studies have shown that there are variations in the contouring performed by
different physicians (inter-variance) and also variations in contouring performed
by the same physician on the same medical images (intra-variation) [46–48].
Considering the oncologist’s and nuclear medicine physicist’s contouring as the
ground truth, is naturally not accurate. This assumption was made in order
to train the model and get an estimate of the performance measures from the
program, based on the supervised learning classification. The accuracy of the
physician, although considered the ground truth, would affect the accuracy of the
autodelineation program for the performance measures. The voxel classification
cannot be more accurate than the contouring performed by the physicians, as this
is used in the training of the model.

The autodelineation program needs to be further developed before it can be
implemented at hospitals. The autodelineation program was originally developed
to analyze different types of MR images of cervical cancer. During this thesis,
the autodelineation program has been adapted and tested on CT, PET and CT
+ PET images of head and neck cancer (HNC). Thus, the program can be used
to detect different cancer types in different imaging modalities, demonstrating its
flexibility. The autodelineation program shows promising results when tested on
both different types of MR images of cervical cancer and CT/PET images of head
and neck cancer.

6.5 Proposals for further research

To further test the developed autodelineation model it should be tested on new and
independent datasets. Oslo University Hospital (OUS) has access to 18F-FDG PET
and CT images together with clinical data for about 200 HNC patients at three
collaborating institutions on medical imaging and radiotherapy of HNCs [10]. In
addition, the autodelineation program should be adapted and tested for other cancer
types than cervical cancer and HNC.

The optimal pre-processing method of the input images should be investigated
in order to find the best method for specific imaging modalities and datasets, as
image properties can be enhanced by the use of appropriate filters and other pre-
processing methods [36, 40].

During this thesis, only two classification methods, Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis (QDA), were used to classify the
voxels, due to time limitations. There are a large number of other classification
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methods that should be tested, in order to find the optimal classification method for
the given model specifications [35, 38, 40, 41].

The influence of spatial information on the model performance can be tested using
more than eight neighbors (in 2D unfolding) and 3D unfolding of various number
of neighbors. In addition, other methods to achieve spatial information on the
voxels should be tested, such as a Local Binary Pattern code per voxel [38, 40].

Optimization of the post-processing of the voxel classification using different post-
processing methods should be performed for different imaging modalities and
datasets, in order to improve the output binary image compared to the contoured
mask (ground truth). Further research should implement and test the use of
supervoxels, to find out if this implementation makes the cancerous regions more
coherent. Active contour modeling should be tested for the effect of object
outlining from a possibly noisy 2D image [40]. Also, different classification
methods might perform better depending on the fraction of voxels of cancerous
regions, especially for the CT images. Deep learning techniques can be applied to
further test the autodelineation program [36].

The oncologist’s/nuclear medicine physicist’s contouring of the cancerous regions
were considered the ground truth during this thesis. This assumption is not
accurate, as there can be both large intra- and inter-variations in tumor contouring.
A method to assess the robustness of the autodelineation program given the
uncertainties in the contouring should be developed, to be able to display the
cancerous regions with an uncertainty margin.
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Conclusion

An autodelineation program, developed on the basis of different kinds of MR
images of cervical cancer, was further developed using PET/CT images of head
and neck cancer. The program’s performance was assessed for different model
factors for the performance measures Dice Similarity Coefficient (DSC), area
under the ROC curve (AUC), κ-statistics, sensitivity and specificity. There were
large variations between the patients in the performance measures also within the
same model combination, especially for the DSC and κ values.

PET had a significant effect on all performance measures. Of the twenty-four
models, a total of thirteen models based on different combinations of either PET
or CT + PET, gave an AUC larger than 0.90, with DSC of 0.64-0.68 and κ of
0.56-0.62, indicating a very good model performance and substantial agreement
between the ground truth and the binary mask produced by the model. The model
combinations based on the LDA classifier, inclusion of both sliced and unsliced
PET images (PET and PET + CT), resulted the in same AUC of 0.92 indicating
excellent performance of these four models. For these four models the DSC (0.68)
and κ (0.61-0.62) were high, indicating a substantial agreement between the ground
truth and the mask produced by the autodelineation program.

Although PET had a significant effect on the performance measures, it was
also prone to false positives and false negatives as the tracer 18F-FDG provides
information about the glucose metabolism of different tissues. Non-cancerous
tissue can have high glucose metabolism and cancerous tissue is not alway more
metabolically active than normal tissue. A simple thresholding of PET was
promising, yielding similar performance measures as the total of the twenty-four
model combinations.

There was a tendency for higher sensitivity for models based on CT (0.72-0.97)
than for both PET alone (0.62-0.76) and PET in combination with CT (0.58-0.84).

75
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On the other hand, CT had significantly lower specificity (0.26-0.50) than both
PET (0.88-0.96) and CT + PET (0.84-0.96).

Apart from the effect of imaging modality, the factors spatial information,
neighbors, sorting of the eight neighbors, classifier choice and the slicing of the
image stacks were tested for significance. The DSC, κ and sensitivity all indicated a
positive significant effect when spatial information, unfolding with eight neighbors,
were introduced. However, whether these neighbors were sorted had little effect.
The use of a linear (LDA) compared to a non-linear (QDA) classifier had significant
effect on the performance measures. Slicing of the locally cropped image stacks is
recommended as a balance between the classes was desirable, in the classification,
and there were indications of a near linear relation for CT between both κ and DSC
and the fraction of voxels of cancerous regions.

In conclusion, the autodelineation program shows promising results when tested on
both different types of MR images of cervical cancer and CT/PET images of head
and neck cancer. The classification should be tested on new, independent datasets
to better assess the model’s performance. In addition, different methods for
pre-processing, extraction of spatial information, classification algorithms, post-
processing and so forth, should be further tested in order to achieve optimization.
This autodelineation model has the potential of becoming a useful tool for
physicians in contouring and radiotherapy planning assessment of different types
of cancer based on a variety of different imaging modalities.
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Appendices

Appendix A: Standardization of z scores

Standardization or auto-scaling is a method yielding z scor es,

zscor es,i = xi −E(x)

σ(x)
, (1)

where E(x) and σ(x) is the expected value and standard deviation, respectively, of
the total sample variable array x. x consists of the sample variables xi , for i = 1, 2,
...,n-1, n. In this Thesis, the x would correspond to the image stack(s) containing
all the voxel intensities, and xi would be the voxel intensity of a specific voxel i . In
the MATLAB computation of the z scor es, potential NaN values are omitted using
the option ’omitnan’ inside the z scor es function.

The expected value, E(X), is equal to the sample mean x̄. The mean without
subtraction, x̄ ′, is larger than the mean after the subtraction by the value 1024,
x̄, as seen in Equations 2 and 3. The mean before the subtraction is

x̄ ′ = 1

n
(

n∑
i=1

x ′
i ), (2)

while the mean after the subtraction is given as

x̄ = 1

n
(

n∑
i=1

xi )

= 1

n
(

n∑
i=1

x ′
i −1024)

= 1

n
(

n∑
i=1

x ′
i )− 1

n
(n ·1024)

= 1

n
(

n∑
i=1

x ′
i )−1024

= x̄ ′−1024.

(3)

v
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The marked variables, x ′
i and x̄ ′, are the sample variable and mean before the

subtraction, while the unmarked variables, xi and x̄, are the sample variable and
mean after the subtraction. There are n samples of x.

The numerator of Equation 1, x - E(x), will be equal both with and without a
subtraction because

x ′−E(x ′) = (x +1024)−E(x +1024)

= x +1024−E(x)−E(1024)

= x +1024− x̄ −1024

= x − x̄

= x −E(x),

(4)

where all the variables are defined above. The step between the first and the second
line, in the equation above, is due to the linearity of the expected value

E(X +Y ) = E(X )+E(Y ). (5)

The denominator of Equation 1, σ(x), is equal with and without a subtraction
because

σ(x + c) =σ(x), (6)

where c is a constant. In this case, c = -1024, with a standard deviation of zero.
Both the numerator and denominator in Equation 1 are exactly the same with and
without the subtraction, as is evident from Equations 4 and 6, proving that the
same subtraction performed to all the sample point yield no difference in z scores.
Therefore, there is no need to subtract the value 1024 from the C Tnumber when
auto-scaling is performed.





 

 

 


	Introduction
	Theory
	Head and neck cancer
	Causes of Head and Neck Cancer
	Treatments

	Volume delineations used in radiotherapy planning
	PET/CT
	Computed Tomography (CT)
	Positron Emission Tomography (PET)

	Supervised learning in Matlab

	Dataset
	The dataset
	Background of the dataset
	The PET/CT scanning
	From DICOM-images to a co-registered dataset
	Primary tumor and lymph nodes contouring
	Biopsies only of tumors
	A better and more quality assured dataset
	Files in the dataset

	Washing and organization of the dataset
	Conversion from IDL to Matlab
	Patients injected with a contrast agent
	Naming consistency
	Zero or two primary tumors
	Organization of the dataset
	Cropping of the masks, PET and CT images

	Software and computer

	Modifications of the autodelineation program
	Background of the autodelineation program
	Modifications of the autodelineation program
	Input images
	Preprocessing
	Unfolding
	Classification
	Postprosessing
	Performance measure


	Results
	Performance measures of the models
	The effect of different factors
	Effect of spatial information and classifier
	Effect of sorting neighbors and classifier
	Effect of slicing and classifier
	Visualization of the ROC curve
	Performance plots of the best models

	Dependencies of  and DSC on class balance
	Visualization of input and output masks
	PET, CT and PET + CT images
	PET thresholding

	Discussion
	Overview of the effect of imaging modality
	The effect of model parameters
	Dependencies of  and DSC on class balance
	Assessment of the autodelineation program
	Proposals for further research

	Conclusion
	Bibliography
	Appendices


