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The concept of heritability is rooted in the observation that relatives resemble 
one another more than expected by chance. Narrow-sense heritability is defined 
as the proportion of phenotypic variance that is attributable to additive genetic 
variation (i.e. where an allele substitution has the same effect irrespective of the 
rest of the genotype), while broad-sense heritability denotes the proportion of 
phenotypic variance caused by genetic variation including non-additive effects. 
Both concepts have been highly instrumental in evolutionary biology, production 
biology and biomedical research for several decades.  

However, this successful instrumental use should not be equated with 
deep understanding of how underlying biology shapes narrow- and broad-sense 
heritability. Nor does it guarantee that these statistical definitions and associated 
methodology are optimally suited to deal with the recent floods of biological 
data.  

Seeking a deeper understanding of the relationship between narrow- and 
broad-sense heritability in terms of biological mechanisms, I simulated genetic 
variation in dynamic models of biological systems. A striking result was that the 
ratio between narrow-sense and broad-sense heritability depended strongly on 
the type of regulatory architecture involved.  

Applying the same approach to an ensemble of gene regulatory network 
models, I showed that monotonicity features of genotype-to-phenotype maps 
reveal deep connections between molecular regulatory architecture and 
heritability aspects; connections that do not materialize from the classical 
distinction between additive, dominant and epistatic gene actions. 

Lastly, I addressed why genome-wide association studies (GWAS) have 
failed to identify much of the genetic variation underlying highly heritable traits. 
By linking computational physiology to GWAS, one can do GWAS on lower-level 
phenotypes that are mathematically related to each other through a dynamic 
model. This allows much more precise identification of the causal genetic 
variation, coupled with understanding of its function. 
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Begrepet arvbarhet gjenspeiler det faktum at slektninger jevnt over ligner mer 
på hverandre enn på andre individer. Arvbarhet i smal forstand defineres som 
andelen av fenotypisk varians som kan tilskrives additive effekter av genetisk 
variasjon (altså der en allel-substitusjon har samme effekt uavhengig av resten 
av genotypen), mens arvbarhet i vid forstand betegner den samlede andelen 
som skyldes både additive og ikke-additive effekter. Begge begrepene har vist 
seg nyttige i evolusjonsbiologi, produksjonsbiologi og biomedisinsk forskning 
over flere tiår. 

Denne nytten som verktøy er imidlertid ikke ensbetydende med dyp 
innsikt i hvordan de to typene av arvbarhet formes av underliggende biologi. Det 
er heller ikke selvsagt at disse statistisk baserte definisjonene og metodene vil 
være de beste til å møte dagens flom av nye biologiske data. 

I mitt doktorgradsarbeid har jeg belyst hvordan forholdet mellom 
arvbarhet i smal og vid forstand henger sammen med biologiske mekanismer, 
gjennom å simulere genetisk variasjon i dynamiske modeller av fysiologiske 
systemer. Et slående resultat var at den regulatoriske arkitekturen til systemet 
har mye å si for forholdstallet mellom arvbarhet i smal og vid forstand. 

På lignende vis studerte jeg arvbarhet i et knippe modeller av 
genregulatoriske nettverk med ulike grader av monotonitet i den matematiske 
sammenhengen mellom genotype og fenotype. Dette avdekket dype bånd 
mellom arvbarhetsmønstre og molekylær regulatorisk arkitektur; sammenhenger 
som ikke er åpenbare ut fra det klassiske skillet mellom additive, dominante og 
epistatiske gen-effekter. 

Til sist tok jeg for meg svakheter ved dagens statistiske metoder for å 
forklare hvordan variasjon i sterkt arvbare trekk styres av genetiske forskjeller 
mellom individer. Såkalte hel-genom-assosiasjons-studier (genome-wide 
association studies, GWAS) påviser ofte en mengde relevante loci med genetisk 
variasjon, men disse forklarer likevel bare en liten del av den observerte 
arvbarheten i overordnede trekk som f.eks. kroppshøyde eller 
sjukdomsforekomst. En mer lovende tilnærming er å koble matematisk fysiologi 
til GWAS. Jeg viser at man ved å gjøre GWAS på lavnivå-fenotyper som er 
matematisk forbundet gjennom en dynamisk modell, kan identifisere den 
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årsaksbestemmende genetiske variasjonen langt mer presist og samtidig øke 
forståelsen av dennes funksjon. 
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“… unless and until we uncover the ʻrules of transformationʼ that connect 
ʻgenotype spaceʼ with ʻphenotype spaceʼ then we cannot seriously entertain, or 
be satisfied with, a gene-based theory of evolution. How an individual 
phenotype emerges and reproduces from a given unique set of genes inherited 
from its sexual parents is the central question of evolutionary theory: all the rest 
is subsidiary” 

 
Gabriel Dover (Dover, 2000)  
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The science of genetics deals with heredity and the variation of organisms 
(Gove and Merriam-Webster Inc., 2012). An individual's genotype denotes its 
hereditary material, or a relevant portion of it, whereas its phenotype denotes its 
observable traits of interest. Phenotypic traits include any morphological, 
developmental, biochemical or physiological property all the way down to the 
subcellular level, as well as any behavior and product of behavior (Omholt, 
2012). The mathematical abstraction of the genotype-phenotype relation as a 
genotype-phenotype map, assigning a phenotypic outcome to each possible 
genotype, facilitates the characterization and comparison of the genotype-
phenotype relation for different biological systems under different environmental 
conditions (Vik et al., 2012) 

Over the last decade, as genomics and other -omics technologies have 
matured (Joyce and Palsson, 2006), a flood of genotype and phenotype data 
has become available. Full genomes have been sequenced for many species, 
including human, mouse, dog, worm, fly and others (Pagani et al., 2012). 
Phenome data include the organismal, tissue or whole cell transcript 
(transcriptomics), protein (proteomics), metabolite (metabolomics) and other 
measurements (Joyce and Palsson, 2006).  
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However, this wealth of information has proved difficult to incorporate in 
classical population and quantitative genetics. Population genetics describes the 
dynamics of gene frequencies due to natural selection, genetic drift, mutation 
and gene flow (Hedrick, 2011), thus operating mostly in genotype space. The 
genotype-phenotype relation is simplified to a "fitness function", which simply 
assigns fitness values to different genotypes. Quantitative genetics, on the other 
hand, focuses on changes in phenotype distributions (Falconer and Mackay, 
1996; Lynch and Walsh, 1998), primarily of continuously varying traits. Even 
though genes and genotypes are ingredients of quantitative genetic theory, all 
the genotype-level concepts are expressed in terms of the means and variances 
of phenotypic values (Lynch and Walsh, 1998), operating primarily in phenotype 
space. The genotype-phenotype relation is approximated by linear regression 
models of phenotypic values as a function of gene content.  

A more mechanistic view of the genotype-phenotype map has emerged 
in developmental genetics (Johnson and Porter, 2000). The mathematical 
theory of dynamical systems is applied by viewing physiological state as 
variables and parameters as proxies of genotypes (Johnson and Porter, 2000; 
Omholt et al., 2000; Jaeger et al., 2012). This highlights the roles that genes 
play in various development and physiological processes and how gene 
products coordinate to produce cellular phenotypes.  

More generally, systems genetics aims to understand the integration, 
coordination and transmission of genetic information through molecular, cellular, 
and physiological networks to generate the emergent properties of the biological 
systems (Nadeau and Dudley, 2011). For instance, gene-mapping 
methodologies have been applied on transcription level by taking transcript 
abundance as phenotypes (Jansen and Nap, 2001; Rockman and Kruglyak, 
2006; Cheung and Spielman, 2009; Cookson et al., 2009). The associated 
genome regions are termed expression quantitative trait loci (eQTLs). 
Combining information about eQTLs, differential expression patterns between 
individuals and the co-expression networks, not only enriches the list of putative 
causal genes but also sheds some light on the generating pathways of the focal 
phenotypes (Ayroles et al., 2009; Flint and Mackay, 2009; Swami, 2009; 
Capobianco, 2012). Other types of networks, i.e. protein-protein interaction 
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(Rual et al., 2005; Stelzl et al., 2005) and metabolites interaction (Jeong et al., 
2000; Duarte et al., 2007), have also been used to prioritize candidate genes, to 
interpret gene-mapping results in context (Köhler et al., 2008; Zanzoni et al., 
2009; Barabási et al., 2011).   

A mature genetic theory will treat both genotypes and phenotypes as 
state variables and study the transformations between and within the state 
variables (Lewontin, 1974). New genotypes are formed by recombination, 
whereas mating, migration and natural selection operate in phenotype space. 
Genotype-phenotype maps represent the transformation from genotypes into 
phenotypes. Population and quantitative genetics have generally neglected the 
complexity of the genotype-phenotype maps but have developed a tremendous 
amount of knowledge in terms of genotype and phenotype spaces, separately. 
Developmental genetics and systems genetic are promising approaches to 
follow albeit not as mature as population and quantitative genetics. In the next 
section, I describe a research program framework taking into account both the 
static and dynamic interactions among systemic components (Rajasingh et al., 
2008; Houle et al., 2010; Vik, 2011; Omholt, 2012; Wang et al., 2012). 
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Mathematical modeling of biological systems dates back almost 100 years ago. 
The Lotka-Volterra predator-prey model (Lotka, 1920; Volterra, 1926)  and the 
Hodgkin-Huxley action potential model (Hodgkin and Huxley, 1952) are arguably 
the earliest successful examples in ecology and cell biology, respectively. The 
accumulation of high-throughput data at multiple biological levels in past 
decades has put mathematical modeling at the fore of biology as the means to 
understand the data and the underlying mechanisms. Subcellular, cellular, 
tissue, organ and organism level biological systems are represented by 
mathematical equations (discrete or continuous, deterministic or stochastic), 
obeying the inherent physical-/chemical-laws (Hunter and Borg, 2003; Kohl and 
Noble, 2009). 

Models are increasingly tested, curated and deposited in public 
databases for reuse. For instance, the BioModels database focuses on 
subcellular or cellular models, mainly about biochemical processes (Li et al., 
2010), whereas the CellML repository aims for integration across multi-scale 
and multi-physics and including models on cellular, tissue, organ and organism 
levels (Lloyd et al., 2008). However, these models do not explicitly link to the 
realm of genetics. In the following, I describe an approach for embedding 
systems biology models in a setting that maintains a relation to genetic 
variation.  

A=A(5&;#&22?('0>+#7B+(.+,0$?9+@9>+,0$?9+(C'D8E(*0-+27,.((
Causally cohesive genotype-phenotype (cGP) modeling (Rajasingh et al., 2008; 
Houle et al., 2010; Omholt, 2012) denotes an approach where (1) model 
elements, including state variables and parameters, are associated with genes; 
(2) genotype variations is represented by variation in a set of parameters; (3) 
the model describes how phenotypes emerge from low level of processes in a 
causally cohesive way. Parameters are any quantities that are constant on the 
time scale of a model instance. An important part of cGP modeling is to view 
such parameters as low-level phenotypes (Omholt, 2012). In contrast to 
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standard quantitative or population genetic models where phenotypic values are 
assigned directly to genotypes, cGP models stick genotypes and phenotypes 
causally together through regulatory principles and mechanisms.  
 By studying cGP models in virtual populations a whole range of genetic 
phenomena can be addressed. Figure 1 outlines the cGP modeling framework. 
The linkage map governs the dynamics of haplotypes cross generation. The 
cGP model, illustrated here by a simple three-gene regulatory network, bridges 
the gap between genotypes and phenotypes. Four transformations are 
incorporated: selection, operating in the phenotype space; meiosis, producing 
genetic variation by sampling and recombination processes, and operating in 
the genotype space; mating, generating new genotypes; and finally, the 
genotypic variation feeds into cGP models via model parameters and 
manifested by phenotypic variation. In this framework, arbitrary complex cGP 
models and different types of linkage maps can be studied.  

 

 
 

Figure 1. The scheme of cGP study framework (Omholt, 2012). 
 

The cGPtoolbox (available at https://github.com/jonovik/cgptoolbox) is a Python 
implementation of the cGP modeling framework. It provides a streamlined 
interface from genomic databases to model parameter structures, and from 
parameters to model phenotypes. Currently, the genotype data of HapMap 
(Gibbs et al., 2003) populations is integrated into the pipeline and served as an 
example of using other data resources. Models deposited in both BioModel (Li 
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et al., 2010) and CellML repository (Lloyd et al., 2008) can be readily 
incorporated as cGP models. The simulated datasets can be analyzed using 
standard quantitative genetic methods. For instance, in Paper III I performed 
genome-wide association studies on datasets generated by the cGPtoolbox.  

A=F(3>+(#$&$+(04($>+(&%$(7,('D8(*0-+27,.(
While the cGP modeling framework was proposed recently (Rajasingh et al., 
2008; Houle et al., 2010; Vik, 2011; Omholt, 2012; Wang et al., 2012) the basic 
idea is not new. Jim Burns (1970) stated that: “ it is the quantitative phenotype, 
arising from the genotypic prescriptions and the environment, which is of critical 
importance for the cellʼs survival and which therefore features in population 
genetic theory. A study of this synthetic problem would thus, by providing 
genotype-phenotype mappings for simple synthetic systems, help to connect 
two major areas of biological theory: the biochemical and the population 
genetics.”  I this section I will illustrate the fruitfulness of the cGP modeling 
program from a number of early studies. 

Genetic dominance is a phenomenon where the phenotype of the 
heterozygote does not fall midway between the homozygotes. The dominance 
concept dates back to Mendel, and was the subject of intense debates between 
the founders of the modern synthesis. However, geneticists paid little attention 
to biological mechanisms before Kacser and Burns in 1981 proposed a novel 
explanation based on a model of enzyme reaction kinetics (Kacser and Burns, 
1981). Later studies have followed up on this. For the generic diffusion-gradient-
threshold model of pattern formation, Gilchrist and Nijhout showed that this 
nonlinear process is capable of generating dominance in all its components 
(Gilchrist and Nijhout, 2001). Furthermore, in regulatory biology, transcriptional 
regulatory networks (Mestl et al., 1995) have the capacity of accounting for the 
observed dominance equally well (Omholt et al., 2000). 

Interactions between genes on different loci, termed epistasis in genetics, 
have also been given mechanistic explanations in the last decades. Two distinct 
meanings are implicated by epistasis depending on the context: the 
physiological epistasis (Cheverud and Routman, 1995), also called functional 
(Hansen and Günter, 2001) or biological epistasis (Moore, 2002), describes the 
phenomenon that the effects of a set of genes depend on their genetic 



 15 

background and, the statistical epistasis defined as the average deviation of 
combinations of allele effects from additivity in quantitative genetic models 
(Phillips, 1998; Moore, 2002; Zeng et al., 2005; Alvarez-Castro and Carlborg, 
2006; Phillips, 2008). Epistasis in the biological sense is an intrinsic property of 
genotype-phenotype maps, but it does not necessarily turn up as statistical 
epistasis in given population (Cheverud and Routman, 1995). Both types of 
epistasis are argued to be pervasive on a range of phenotypes and across 
species (Cordell, 2002; Moore, 2002; Phillips, 2008; Breen et al., 2012). It is well 
recognized that genes or gene products function in a cooperative manner and 
thus physiological epistasis is expected. But how these molecular interactions 
give rise to the statistical epistasis is largely unknown (Moore and Williams, 
2005). Using three-gene regulatory networks as cGP models, Gjuvsland et al 
(2007b) reported that statistical epistasis is an emergent property of functional 
dependence between genes. In particular, positive feedback architecture gives 
more pronounced statistical epistasis than other types of architectures. In a 
similar fashion, Pumir & Shraiman showed that additivity between loci is the 
norm under the regime of small parameter perturbations while with large 
perturbations statistical epistasis appears generally at lower order (on pair-wise 
level) if at all, by analyzing a validated signaling transduction model (Pumir and 
Shraiman, 2011). Combining experiments and mathematical modeling, Gertz et 
al. demonstrated that thermodynamic properties of yeast sporulation process 
can generate statistical epistasis phenomena (Gertz et al., 2010).  

The cGP framework has also been employed to explain other genetic 
concepts, such as variations in phenotypic penetrance (Plahte et al., 1998; 
Gjuvsland et al., 2007a), the dependence of genetic variance on the shape of 
gene regulatory functions (Gjuvsland et al., 2007c) and genetic background (Vik 
et al., 2011), and the response to selection (Peccoud et al., 2004).  

These examples highlight how cGP modeling goes beyond classical 
genetics, critically examining the mechanistic underpinnings of phenomeno-
logical descriptors used in statistical genetic research.   
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“They [offspring] resemble their parents more 
than remoter ancestors, and resemble those 
ancestors more than any chance individual”  
   

Aristotle, c. 340 BC (Peck, 1948) 

 

F=<(50,'+9$;&2("&'/.%0;,-(
Heritability is one of the most important parameters in genetics research. In 
evolutionary biology, knowledge of heritability of a trait is the necessary 
condition in predicting its response to natural selection (Visscher et al., 2008). In 
animal/plant breeding, it predicts the short-term response of selection 
operations (Falconer and Mackay, 1996; Lynch and Walsh, 1998). In gene 
mapping studies, it affects the efficacy of the effort in detecting causal variants 
(Visscher et al., 2008). In medical genetics, it affects the possibility of predicting 
genetic risk of diseases (Falconer and Mackay, 1996; Visscher et al., 2008; 
Manolio et al., 2009; Zaitlen and Kraft, 2012). However, the term heritability has 
been defined in several different ways. Jacquard (1983) outlines three types of 
definitions, biometric heritability, broad sense and narrow sense heritability 
(Jacquard, 1983). There also a less used meaning, realized heritability 
(Falconer and Mackay, 1996), which appear mainly in the artificial selection 
literature.  
 
Biometric heritability  
The heritability of a phenotype, here, is defined as the coefficient of the 
regression of offspring phenotype on mid-parent phenotype values (Jacquard, 
1983). The only assumption here is that there exists a linear trend between 
offspring and parent phenotypes. In other words, the conditional distribution of 
offspring phenotype values can be expressed as a linear function of parent 
phenotype values. This definition only refers to the phenotype space, is a 
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statistical parameter that quantifies the degree of resemblance between 
offspring and parents.  

Even though the definition of biometric heritability already indicates the 
method of estimation cautions need to be taken. A linear relationship between 
the phenotypic value of offspring and a parent (or the average of both parents) 
is guaranteed if the phenotype values have a bivariate normal distribution. For 
many phenotypes distributions close to bivariate normal are observed, but 
frequently nonlinear relationship is reported (Gifford and Barker, 1991; Koerhuis, 
1996). If the nonlinearities are strong, transformations such as the box-cox 
procedure (Box and Cox, 1964) have to be done before estimation.  
 
Broad sense and narrow sense genetic heritability 

The definitions of broad and narrow sense heritabilities refer to both genotypes 
and phenotypes. In quantitative genetics, the phenotype value, P , of an 
individual is assumed to be the result of a genetic effect (G ), an environmental 
effect (E ), and a genetic-environmental interaction effect. The combination of 
different factors is often assumed to be additive and the interaction term is 
neglected, expressed as P =G +E . The genetic contribution is further 
decomposed into components from additive gene effect ( A ) and non-additive 
interactions between genes (D  for dominance effect and I  for epistasis effect). 

Accordingly, the observed phenotypic variance (! P
2 ) can be decomposed into 

variances due to each contributing factor, i.e., ! P
2 =! A

2 +! D
2 +! I

2 +! E
2 , and 

!G
2 =! A

2 +! D
2 +! I

2  is the total genetic variance. Heritability in the broad sense 

(H 2 ) is defined as the proportion of phenotypic variance that is genetic, i.e., 

H 2 =!G
2 /! P

2 , and, heritability in the narrow sense ( h2 ) is the proportion of 

phenotypic variance due to additive genetic effect, h2 =! A
2 /! P

2 .  

Twin study is a standard approach for estimating H 2 . Monozygotic twins 
(MZ ) share identical genotypes and dizygotic twins (DZ ) on average share 
only half of their alleles (Lynch and Walsh, 1998). Twice the difference in 

correlation coefficients of the two types of twins is used as a estimate of H 2 , 

i.e., H 2 = 2[r(MZ )! r(DZ )] , under the assumption that environmental factors 
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contribute equally in each type (Falconer and Mackay, 1996; Lynch and Walsh, 
1998). 

Heritability in the narrow sense (h2 ) is traditionally estimated by variance-
component framework The covariance ! (X,Y ) , of phenotypes of pairs of 

relatives ( X,Y ), all with the same relationship, is expressed in terms of 

variances due to additive and interacting gene actions, ! 2
AnDm  under the 

assumption of independent segregation and assortment principles and 
assuming environments do not contribute (Lynch and Walsh, 1998). Equ.1  is the 

general formula for estimating genetic variance components using pedigree 
data (Lynch and Walsh, 1998). The summation runs over n , the number of 
additive effects, and m , the number of dominance effects. The exact ranges n  
and m depend on the relationship in pedigree. The kinship and fraternity 
coefficients are denoted by !XY and !XY , respectively. In most case, only 

additive genetic effect are interested and the genetic coefficients in Equ.1  are 

determined by the kinship coefficient.  

! X,Y( ) = (2!XY )
n"XY

m ! 2
AnDm#     (Equ.1 )  

In practice, the restricted maximum likelihood (REML) algorithm is used to 

estimate each component. Heritability in narrow sense ( h2 ) is estimated by 

h2 =VA /VP , where VA  and VP  are the sample estimate of ! A
2  and ! P

2 , 

respectively.  
 In contrast to biometric heritability, the contributing factors to phenotypic 
variation are explicitly sought in genetic heritability. Thus, more assumptions 
have to be made both in their definitions and estimations (Jacquard, 1983). The 

biometric heritability is equivalent to h2  when genetic interactions involving 

additive effect are absent, since dominance effects does not contribute to 
parent-offspring resemblance. But the interpretation is different. Biometric 
heritability measures the degree of resemblance between parents and offspring 
and the reliability of using phenotypes of parents to predict offspring phenotype. 

Whereas, h2  measures the contributions from additive genetic variation to 
phenotypic variation and affect the predictability of phenotypic variation from 
genotypic variation and the efficiency of gene-mapping efforts (Visscher et al., 
2008).  
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The ratio between narrow- and broad-sense heritability, h2 /H 2 =! A

2 /!G
2 , is of 

importance in evolutionary theory, and also has practical consequences in 
medical genetics and breeding. It has been intensely debated during the 
development of quantitative genetics, and a key question is if biochemical 
interactions leading to physiological dominance and epistasis will also lead to 
low values of this ratio. Hill et al. argued that high values of this ratio are 
expected, despite strongly non-linear GP maps, as long as the frequencies of 
causative variants are close to zero or one (Hill et al., 2008). However, line-
cross populations, having intermediate gene frequencies, can also show high 
additive variance. In the first paper I studied five dynamic models (of the cAMP 
pathway, the glycolysis, the circadian rhythms, the cell cycle, and action 
potential cell), assuming genetic variation in model parameters. Even when 
imposing purely linear genotype to parameter maps and no environmental 

variation, we observed quite low VA /VG  (estimate of ! A
2 /!G

2 ) ratios. 

Furthermore, models with positive feedback and cyclic dynamics gave much 
lower VA /VG  ratios than those without. The results show that some types of 

regulatory architectures consistently maintain a transparent genotype-
phenotype relation, whereas other architectures generate more subtle patterns.  

This raises several issues, which are pursued in paper II. Does a positive 
feedback structure by itself produce low additive variance? Are there any other 
types of architectures that have the same capability? Why is variance so often 
chiefly additive, despite the ubiquitous nonlinear interactions in regulatory 
systems? Gjuvsland et al. proposed that high VA /VG  ratios could be explained 

by monotonic relationships between the phenotypic values and gene content 
(i.e. the number of alleles of a given type), so-called monotonic GP maps 
(Gjuvsland et al., 2011). To this end, we studied an ensemble of three-gene 
regulatory networks, which provide the building blocks of more complex models. 
Moreover, we present two measures of the monotonicity of a GP map, one 
based on allele substitution effects, and the other based on isotonic regression 
(De Leeuw et al., 2009).  We confirm, both numerically and analytically, that 
generally GP maps are indeed highly monotonic across network types. 



 20 

However, regulatory motifs involving incoherent feedforward and positive 
feedback, as well as pleiotropy in the mapping between genotypes and gene 
regulatory parameters, are clearly predisposed for generating non-monotonicity. 
These deep connections between molecular regulatory architecture and 
properties of the GP maps do not materialize from the classical distinction 
between linear and nonlinear gene action. 

F=F(3>+(I*7##7,.(>+%7$&"727$?J(9%0"2+*(
Genome-wide association studies (GWAS) find statistical associations between 
a complex trait and genomic variants (mostly SNPs) based on populations of 
unrelated individuals (Wang et al., 2005; Hardy and Singleton, 2009). But even 
though thousands of SNPs (http://www.genome.gov/gwastudies/) have been 
linked to complex human diseases or traits, their combined effect typically 
explain very little (<10%) of the heritability of a trait. This discrepancy is known 
as the “missing heritability” problem (Maher, 2008).  

For a continuous trait GWAS is typically done as a series of univariate 
regressions to identify loci with significant additive effect on the trait (Zaitlen and 
Kraft, 2012). The proportion of phenotypic variance explained by genotypes at 

multiple loci (h2GWAS ) can then be estimated as follows. The phenotypic value 

vector (Y ) is expressed as the sum of genetic and environmental contributions, 
Y = µ +G•! +" , Y contains normalized phenotype values with variance one, µ  

is the vector of population mean, G  is the matrix of normalized genotypes with 

element for j th individual at i th SNP computed by !gij =
gij " 2pi
2pi (1" pi )

, gij = 0,1, 2 is 

the number of copies of the reference allele and pi is the population frequency 

of the same allele, !  is the vector of allelic effects and the ! is the vector of 
environmental contributions whose elements are i.i.d.  normal variables with 

mean 0 and variance ! e
2  (Zaitlen and Kraft, 2012).  Then the additive variance 

VA  is computed as the sum of squared allelic effects and h2GWAS  is calculated as 

the ratio of additive variance to total phenotypic variance. Another method used 
very often in GWAS is to estimate the genetic coefficient in Equ.1  by genotypes 

at all genotyped SNPs and then the variance-component machinery is used to 
estimate each variance component (Zaitlen and Kraft, 2012). 
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Many possible reasons for the “missing heritability” and strategies of how 
to account for it have been proposed (Manolio et al., 2009; Eichler et al., 2010; 
Zuk et al., 2012).  Estimators of heritability are based on pedigree information 
and phenotype and do not refer to the number of causal variants. And, 
depending on the type of pedigrees available, some components of gene 
interactions are not always separable from additive variance. On the other hand, 
the GWAS estimator relies on the number of causal variants, or proxies of 
causal variants, detected and their frequencies. So, undetected causal variants, 
such as SNPs with low frequencies and structure variants, incomplete linkage 
between common SNP and causative variants, epistatic interactions, gene-

environment interaction, parent of origins, and over-estimation of h2  could all 
contribute to the “missing heritability” (McCarroll and Altshuler, 2007; Manolio et 
al., 2009; Eichler et al., 2010; Yang et al., 2010; Zuk et al., 2012). 

In paper III we used cGP modeling to suggest a possible direction to 
tackle the problem. We integrated the HapMap III (Gibbs et al., 2003; Altshuler 
et al., 2010) population data into the cGP modeling framework and used the 
open source program simuPOP (Peng and Amos, 2010) to construct an in silico 
population suitable for performing GWAS. The action potential model was used 
as cGP model with 34 parameters harboring genetic variation and 16 cellular 
phenotypes. We showed that genome-wide association studies on parameters 
reveal much more genetic variation than when using higher- level cellular 
phenotypes. Thereby more phenotypic variation can be explained with detected 
SNPs. The results suggest that letting such studies be guided by computational 
physiology may facilitate a causal understanding of the genotype-to-phenotype 
map of complex traits, with strong implications for the development of 
phenomics technology (Houle et al., 2010). 
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The GP map concept applies to any time point in the ontogeny of a living 
system and it is an abstraction of a relation that is the outcome of a very 
complex dynamics. This is the major rationale underlying efforts to elucidate 
genetic concepts and understand genetic phenomena by use of systems 
dynamics. In this thesis I have shown that this approach does indeed reveal 
new understanding on matters related to the heritability concept. I found that the 
ratio between narrow sense and broad sense heritability of a trait is a function of 
the type of regulatory architectures that generate the trait. In particular, the 
positive feedback and incoherent feedforward loops are more prone to give low 
ratios than other structures due to more non-monotone genotype-phenotype 
map. Thus, the concept of monotonicity of genotype-to-phenotype maps reveal 
deeper connections between molecular regulatory architecture and heritability 
than the classical distinction between additive, dominant and epistatic gene 
actions. Finally, I demonstrated that the “missing heritability” problem arising 
from genome wide association studies (GWAS) could be solved partially by 
linking computational physiology to GWAS. In such a setting one can do GWAS 
on lower-level phenotypes mathematically related to each other through a 
dynamic model, and, more genetic variants could be discovered thus increasing 
the proportion of heritability accounted.  
 Investigation of the GP map associated with high-level phenotypes 
manifested at the level of the whole organism requires computational models 
integrating molecular-, cellular-, tissue-, and organ-level processes to high-level 
function. There is in principle no limit to the complexity of biological models that 
can be used in a cGP context. In the not too distant future, the cGP program in a 
multiscale and multiphysics context will probably give us an extensive 
understanding of how different types of genetic variation propagate and 
manifest in different physiological settings and genetic backgrounds.  

The results of this thesis at least suggest that this emerging 
understanding will become a rich source for filling current genetic concepts with 
causal content and for identifying basic theoretical principles concerning the 
relationship between genetic variation, regulatory anatomy and phenotypic 
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variation that will provide a foundation for a quantitative genetics theory based 
on biological mechanism.   
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Abstract  
Additive genetic variance (VA) and total genetic variance (VG) are core concepts  in 

biomedical, evolutionary and production-biology genetics. What determines the large 

variation in reported VA/VG ratios from line-cross experiments, is not well understood. 

Here we report how the VA/VG ratio, and thus the ratio between narrow and broad 

sense heritability (h2/H2), varies as a function of the regulatory architecture underlying 

genotype-to-phenotype (GP) maps. We studied five dynamic models (of the cAMP 

pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell 

dynamics), assuming genetic variation in model parameters. Even when imposing 

purely linear genotype to parameter maps and no environmental variation we observe 

we observe quite low VA/VG ratios and models with positive feedback and cyclic 

dynamics gave much lower VA/VG ratios than those without. Our results show that 

some regulatory architectures consistently maintain a transparent genotype-to-

phenotype relationship, whereas other architectures generate more subtle patterns. 

Our approach can be used to elucidate these relationships across a whole range of 

biological systems in a systematic fashion.  

 

Author summary 
The broad-sense heritability of a trait is the proportion of phenotypic variance 

attributable to genetic causes, while the narrow-sense heritability is the proportion 

attributable to additive gene effects. A better understanding of what underlies 

variation in the ratio of the two heritability measures, or the equivalent ratio of 

additive variance VA to total genetic variance VG, is important for production biology, 

biomedicine and evolution. We find that reported VA/VG values from line crosses vary 

greatly and ask if biological mechanisms underlying such differences can be 

elucidated by linking computational biology models with genetics. To this end we 

made use of models of the cAMP pathway, the glycolysis, circadian rhythms, the cell 

cycle and cardiocyte dynamics. We assumed additive gene action from genotypes to 

model parameters and studied the resulting GP maps and VA/VG ratios of system-level 

phenotypes. Our results show that some types of regulatory architectures consistently 

preserve a transparent genotype-to-phenotype relationship, whereas others generate 

more subtle patterns. Particularly, systems with positive feedback and cyclic 

dynamics resulted in more non-monotonicity in the GP map leading to lower VA/VG 
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ratios. Our approach can be used to elucidate the VA/VG relationship across a whole 

range of biological systems in a systematic fashion.  

 

Introduction 
The broad-sense heritability of a trait, 2 /G PH V V= , is the proportion of phenotypic 

variance attributable to genetic causes, while the narrow-sense heritability 
2 /A Ph V V= , is the proportion attributable to additive gene action. The non-additive 

genetic variance that distinguishes the two heritability measures has been subject to 

substantial controversy for more than 80 years (e.g., [1-6]). Through statistical 

arguments it was recently shown that for traits with many loci at extreme allele 

frequencies much of the genetic variance becomes additive with h2/H2 or equivalently 

VA/VG typically >0.5 [4]. In populations with intermediate allele frequencies, such as 

controlled line crosses, the picture becomes more nuanced [7]. Table 1 summarizes 

VA/VG ratios from a collection of studies on such populations, and it shows that the 

ratio can become very small in some cases. The explanation for the wide range of 

h2/H2 ratios in line crosses must be sought in the genotype-phenotype (GP) map and 

the underlying biological systems rather than allele-frequencies. 

It is important to understand the causal underpinnings of this observed variation in 

h2/H2 ratios within and between biological systems for several reasons. In human 

quantitative genetics where twin studies are commonly used most heritability 

estimates refer to H2 [8] and in cases where h2/H2 is low this can lead to unrealistic 

expectations about how much of the underlying causative variation may be located by 

linear QTL detection methods [6]. On the other hand, low narrow sense heritability 

for a given complex trait does not necessarily imply that the environment determines 

much of the variation. In evolutionary biology additive variance is the foremost 

currency for evolutionary adaptation and evolvability. Important questions in this 

context are for example (i) to which degree is there selection on the regulatory 

anatomies themselves to maintain high additive variance,  (ii) are there organizational 

constraints in building adaptive systems such that in some cases a low h2/H2 ratio 

must of necessity emerge while the proximal solution is still selected for? Moreover, 

in a production biology context in connection with genetic modifications of sexually 

reproducing organisms, one would like to ensure that the modifications would be 

passed over to future generations in a fully predictable way. Thus one would like to 

ensure that the modification becomes highly heritable in the narrow sense.  
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As a step towards a physiologically grounded understanding of the variation of 

the h2/H2 relationship across biological systems or processes, we posed the question: 

Are there regulatory structures, or certain classes of phenotypes, more likely to 

generate low VA/VG ratios than others? Addressing this question requires the linking of 

genetic variation to computational biology in a population context (e.g., [9-18]), so-

called causally-cohesive genotype-phenotype (cGP) modeling [13,17,18]. We applied 

this approach to five well-validated computational biology models describing, 

respectively, the glycolysis metabolic pathway in budding yeast [19], the cyclic 

adenosine monophosphate (cAMP) signaling pathway in budding yeast [20], the cell 

cycle regulation of budding yeast [21], the gene network underlying mammalian 

circadian rhythms [22], and the ion channels determining the action potential in 

mouse heart myocytes [23]. These models differ in their regulatory architecture; 

below, we show that they also differ in the range of VA/VG ratios that they can exhibit. 

In particular, positive feedback regulation and oscillatory behaviour seem to dispose 

for low VA/VG ratios. The results suggest that our approach can be used in a generic 

manner to probe how the h2/H2 ratio varies as a function of regulatory anatomy. 

 

Methods 

Simulations of cGP models 
The five cGP models were built and analyzed with the cgptoolbox 

(http://github.com/jonvi/cgptoolbox) an open-source Python package developed by 

the authors; further source code specific to the simulations in this paper is available on 

request. In the following we describe the three main parts of the workflow: (i) the 

mapping from genotypes to parameters, (ii) the mapping from parameters to 

phenotypes, i.e. solving the dynamic models and (iii) the setup of Monte-Carlo 

simulations combining the two mappings. For each model, we briefly describe its 

origins, the software used to solve it, which parameters were subject to genetic 

variation, what phenotypes were recorded, and criteria for omitting outlying datasets. 

Text S1 contains more detailed descriptions of all five models. 

Genotype to parameter mapping 
For each model, the following procedure was repeated many times for different 

selections of parameters to be subjected to simulated genetic variation (see "Monte 

Carlo simulations" below for details). We started by sampling three polymorphic loci, 

each determining one or two parameter in the dynamic model. Tables of eligible loci 
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with corresponding parameters and their baseline values are listed in Table S1-5, 

corresponding to the cAMP, glycolysis, cell cycle, circadian and action potential 

models respectively. Heritable variation in a chosen parameter was generated for a 

single bi-allelic locus with allele indexes 0 and 1 in the following manner. First, two 

numbers r1 and r2 were sampled uniformly in the interval [0.7, 1.3]. The parameter 

value for a homozygote 00 was set to 1rb  where b is the baseline value, for a 

homozygote 11 the parameter value was 2r b , while the heterozygous genotype 01 was 

assigned the average of the two homozygotes 1 2( ) / 2r r b+ . 

 

cAMP model  
The model of the complete cAMP signaling pathway in S. cerevisiae [20] taking the 

external glucose level as input was downloaded as SBML code (link) and integrated 

using PySCeS [24]. Genetic variation was introduced on association/dissociation and 

phosphorylation/dephosphorylation rates of signal proteins (see Table S1). The initial 

steady state concentrations before adding external glucose, the peak values after 

adding glucose and the time taken to reach peak values of cellular proteins were 

recorded as phenotypes (Figure 1A for phenotype illustration and Table S6 for 

phenotype descriptions).  

  

Glycolysis model  

The model published by Teusink et al. [19] describes glycolysis in S. cerevisiae 

through the kinetics of 13 glycolytic enzymes determining the fluxes of metabolite 

state variables. Genetic variation was introduced on maximal reaction rates for the 

enzymes (see Table S2). We downloaded the model from the BioModels database 

(link) in SBML L2 V1, and solved it with PySCeS [24] to find the stable steady state 

concentrations of metabolites, which used as phenotypes (see Figure 1B and Table 

S7). Datasets were discarded if one or more of the genotypes did not give a stable 

steady state, as can happen due to a saddle-node bifurcation [25].  

Cell cycle model  
The consensus control mechanisms of the cell cycle in S. cerevisae modeled by 

algebraic/differential equations that describe the continuous changes in state variables 

and discontinuities due cellular events [21] was obtained from the CellML repository 

(link). Genetic variation was introduced on the production and decay rates of various 

proteins (see Table S3). The published model contains reset rules (events) for both 
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parameters and state variables, but the CellML implementation only includes the 

parameter (kmad2, kbub2 and klte1) rules. Reset rules for state variables [BUD], [SPN], 

and [ORI] as described in the model paper, were implemented by solving the model 

with rootfinding for the relevant variables. The model was numerically integrated 

using the CVODE solver [26] until convergence of cell division time, cell cycle 

events. The peak levels and time to peak levels for the cytosolic protein 

concentrations, together with the timing of cell division events were recorded as 

phenotypes (see Figure 1C for phenotype illustrations and Table S8 for phenotype 

descriptions).  

Circadian model  
The mammalian circadian clock published by Leloup and Goldbeter [22,27] describes 

the dynamics mRNA and proteins of three genes in the cytosol and nucleus. Genetic 

variation was introduced on mRNA decay rates (see Table S4). The model was 

downloaded from CellML repository (link) and integrated using CVODE [26] until 

convergence to its limit cycle. As phenotypes we used the bottom levels, time to from 

bottom level to peak value of the concentrations of mRNAs, proteins and protein 

complexes. In addition, the time between two successive peak values are record as the 

period phenotype (see Figure 1D for phenotype illustrations and Table S9 for 

phenotype descriptions).  

Action potential model  
The model of [28] describes the action potential and calcium transient of a mouse 

heart muscle cell. We obtained CellML code from the authors; numerical integration 

was done using CVODE [26].  Genetic variation was introduced on the maximal 

conductances of ion channels and pump affinities (see Table S5). Phenotypes were 

generated by simulated regular pacing as done in [17,18], with a stimulus potassium 

current of -15 V/s was lasting for 3 ms at the start of each stimulus interval. The 

model was simulated to convergence as described in [17] ; datasets that failed to 

converge were discarded. The initial level, peak level, amplitude, and time to 25, 50, 

75 and 90% recovery of the action potential and calcium transient were recorded as 

the cell level phenotypes (see Figure 1E for phenotype illustrations and Table S10 for 

phenotype descriptions). 

Monte Carlo simulations 
For each model we performed 1000 Monte Carlo simulations as follows. 
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We first sampled three polymorphic loci for introduction of genetic variation and 

sampled the genotype-to-parameter map as described above. Then all 27 possible 

three-locus genotypes were enumerated, mapped into 27 parameter sets and for each 

parameter set the dynamic model was solved and phenotypes (as described above and 

in Figure 1) were obtained. To avoid artifacts arising from numerical noise datasets 

with low variability were omitted from the genetic analysis. Absolute variability was 

measured as the difference between the maximum and minimum values of a 

phenotype in a dataset, and relative variability as the ratio of the absolute variation to 

the mean phenotype of the same dataset. The threshold values for each phenotype and 

the number of datasets exceeding the thresholds are listed in Tables S6-10, for the 

cAMP, glycolysis, cell cycle, circadian and action potential models, respectively.  

Statistical analysis  

Decomposition of genetic variance 
A single Monte Carlo simulation results in genotype-to-phenotype maps comprised by 

27 genotypic values (i.e. the phenotype values corresponding to the 27 genotypes) for 

a given phenotype. We used the NOIA framework [29] to compute the resulting 

genetic variance ( GV ) in a hypothetical F2 population and decompose it into additive 

( AV ) and non-additive components. This was done with the function 

linearGPmapanalysis in the R package noia (http://cran.r-

project.org/web/packages/noia/) version 0.94.1.  

Monotonicity of GP-maps  
We build on the definitions of monotonicity and the indexing of alleles introduced in 

[30]. Given a simulated GP map with 27 genotypic values we measure the degree of 

order-breaking for a particular locus k by the allele substitution effects at that locus. 

For a fixed background genotype at all other loci (as indicated in eq. (14) in [30]) we 

compute the difference in genotypic value when substituting a 1-allele with a 2-allele 

(i.e. when going from 11 to 12 or from 12 to 22 at locus k).  We collect substitution 

effects across all 9 background genotypes compute N, the sum of all negative 

substitution effects and A, the sum of absolute values of all substitution effects. If the 

GP map is monotone for locus k then N=0. In Figure 5, only GP maps with N/A are 

counted as order-breaking.  
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Results/Discussion 

System classification and phenotype dimensionality 
The five cGP models studied in this work differ in many ways, both in their function 

and the underlying network structure. The glycolysis and cAMP models are both 

pathway models with an acyclic series of reactions transforming inputs to outputs. 

The glycolysis model [19] is more advanced than the metabolic models in earlier 

genetically oriented studies (e.g., [4,31,32]) in that it contains many different types of 

enzyme kinetics as well as negative feedback regulation of some enzyme activities 

through product inhibition. The cAMP model [20] contains a number of negative 

feedback loops, but overall it also has a clear pathway structure where the glucose 

signal is relayed from G-proteins to cAMP to the target kinase PKA. Both these two 

models have in common relatively simple dynamics with solutions converging to a 

stable steady state (Figure 1A and B).  

In contrast, the three other models show cyclic behavior resulting from an 

interplay between positive and negative feedback loops (Figure 1 C-E). However, 

there are clear differences between these models too. The heart cell model [23] is an 

excitable system with feedback mechanisms such as calcium-induced calcium release 

and several voltage-dependent ion channels. In contrast to pacemaker cells, it relies on 

external pacing to initiate the action potential. The circadian rhythm model [22,27] is 

a gene expression network with intertwined positive and negative transcriptional 

feedback loops, giving a limit cycle oscillator with sustained oscillations even in 

continuous darkness. The cell cycle model [21] centers around a positive feedback 

loop between B-type cyclins in association with cyclin dependent kinase and 

inhibitors of the cyclin dependent kinase, which establishes a hysteresis loop causing 

the cell cycle to emerge from transitions between the two alternative stable steady 

states.  

This crude classification of the five cGP models into pathway models and 

more complex regulatory systems is clearly reflected in the effective dimensionality 

of the phenotypes arising in our Monte Carlo simulations. We studied the phenotypic 

dimensionality for all five cGP models by principal components analysis for each 

Monte Carlo simulation (Figure S2). On average 95% of phenotypic variation of the 

glycolysis and cAMP models can be explained by the first 3 principal components, 

whereas, the cell cycle and heart cell models require the first 5 principal components 

and 7 is required for the circadian model. Since the genotype-to-parameter maps are 

analogous among the five models these differences in the effective dimensionality of 
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high-level phenotypes indicates that the mappings from parameters to phenotypes are 

simpler for the pathway models than the other three models. This, together with 

results on the effect of positive feedback in gene regulatory networks [33] suggested 

that the glycolysis and cAMP models might result in higher VA/VG ratios than the 

other three models.  

 

The ratio of additive genetic variance to total genetic variance 
The VA/VG results confirmed the expectations. Furthermore, a number of distinct 

patterns emerged. The cAMP model shows the overall highest VA/VG ratios values 

(Figure 2A and Table S6), with mean and median values above 0.99 across all 

recorded phenotypes. The 0.05-quantile (i.e. only 5 percent of the Monte Carlo 

simulations show lower values than this) VA/VG values were above 0.97 for all 

phenotypes and no values lower than 0.6 were observed. In other words, the 

genotype-phenotype maps arising from this cGP model are very well approximated by 

an intra- and inter-locus additive model of gene action.  

The glycolysis model too has mean and median VA/VG values close to 1 for all 

phenotypes (Figure 2B and Table S7), but compared to the cAMP model the number 

are clearly lower with BPG having the lowest recorded mean value of 0.9. The 

difference to the cAMP model is very clear when it comes to the lowest, with 0.05-

quantiles below 0.7 for some of the phenotypes and values below 0.5 observed across 

all phenotypes. The distribution of VA/VG ratios for the cell cycle model (Figure S1 

and Table S8) is quite similar to that of the glycolysis model with time to peak for 

Sic1 having the lowest mean VA/VG values of 0.93 and 0.05-quantiles below 0.8 for 

some phenotypes. VA/VG values below 0.1 are observed for a few Monte Carlo 

simulations in some phenotypes.  

For the cAMP, glycolysis and cell cycle models the distributions of VA/VG ratios 

were quite similar across all phenotypes and a large majority of the Monte Carlo 

simulations showed very high VA/VG. The circadian clock model differs from these 

both with large variation between phenotypes and with large proportions of the 

simulations ending up with low VA/VG (Figure 3A and Table S9). Four phenotypes 

stand out with VA/VG distributions that resemble a uniform distribution U(0,1). These 

phenotypes are the time from bottom to peak for the phosphorylated and 

unphosphorylated proteins of Per and Cry, with median VA/VG ranging from 0.46 to 

0.70 and 0.05-quantiles from 0.04 to 0.10. The remaining phenotypes give somewhat 

higher VA/VG values, but over half of the recorded phenotypes have 0.05-quantiles 
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below 0.6. For the action potential model all recorded phenotypes contain a large 

number of datasets showing low VA/VG ratios (Figure 3B and Table S10) with median 

values below 0.9 for the majority of phenotypes and with 0.05-quantiles in the range 

0.18-0-35. The distributions are quite similar across action potential and calcium 

transient phenotypes, with the time to 90% repolarization for the action potential 

showing somewhat higher values than the others. 

When comparing the distribution of VA/VG across the five cGP models a 

couple of remarks can be made. All five cGP models are capable of creating VA/VG 

ratios close to 1, and except for two phenotypes for the circadian model all median 

values of VA/VG are well above 0.5. This adds evidence in favor of the hypothesis [30] 

that inherent properties of biological systems could lead to considerable amounts of 

additive genetic variance even at intermediate allele frequencies. On the other hand, 

the incidence of low VA/VG ratios varied markedly among the five models, with the 

cAMP model giving virtually no non-additive genetic variance (Figure 2A), the 

glycolysis (Figure 2B) and cell cycle (Figure S1) models sometimes giving low VA/VG 

ratios, and the circadian and heart models doing so often (Figure 3). Encouragingly, 

the mean values of VA/VG obtained from our simulations cover the range of 

experimental values in Table 1. Because the genotype-parameter maps were purely 

additive, all non-additive genetic variance is a result of non-linearity in the ODE 

models. The expected effect of introducing non-additivity in the genotype-parameter 

maps would be a further decrease in the VA/VG ratios. 

The association of positive feedback loops with lower VA/VG agrees with our 

earlier findings in gene regulatory networks [33]. A plausible explanation for the 

relatively high VA/VG ratios of the cell cycle model compared to the circadian and 

action potential models can be explained by a quote from Tyson and Novak’s [34] 

discussion of why the cell-cycle is better understood as a hysteresis loop than as a 

limit cycle oscillator (LCO). ”Generally speaking, the period of an LCO is a 

complicated function of all the kinetic parameters in the differential equations. 

However, the period of the cell division cycle depends on only one kinetic property of 

the cell: its mass-doubling time.”  This could explain why the genotype-phenotype 

maps arising from the cell-cycle models is much more linear than the maps from the 

circadian model which is a LCO.  

Systemic constraints on the genotype-phenotype map 
In populations with intermediate allele frequencies the VA/VG values are determined 

by the shape of the genotype-phenotype map, and differences between cGP models in 
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the distribution of VA/VG point to different constraints on the GP map. The concept of 

monotonicity of GP maps which we recently proposed [30] turns out to describe much 

of these constraints. Figure 4 depicts three extreme types of GP maps seen in our 

simulations. Nearly additive GP maps as shown in Figure 4A give VA/VG ratios very 

close to one. GP maps with strong magnitude epistasis as in Figure 4B result in 

intermediate VA/VG ratios while highly non-monotone GP maps (Figure 4C) showing 

strong overdominance and/or sign epistasis result in VA/VG ratios close to zero. Based 

on recent results from studies of gene regulatory networks [30] we expected that the 

three cGP models with complex regulation involving positive feedback should result 

in considerably more non-monotone or order-breaking GP maps than the two pathway 

models.  

We measured the amount of order-breaking in all simulated GP maps (see 

Methods) and found a very clear pattern (Figure 5). While the datasets from the 

glycolysis and cAMP models contained only 1.1% and 1.3% GP maps with order-

breaking for any locus, those from the cell cycle, circadian and action potential 

models contained 20.7%, 44.4% and 69.5%, respectively. We confirmed that 

monotone GP maps give higher VA/VG values than non-monotone GP maps for all five 

cGP models using the Mann-Whitney test (with p-values all below 1e-10).  

The glycolysis model rarely shows order-breaking even for a single locus, but 

nevertheless can much lower VA/VG than the cAMP model. A plausible explanation is 

that the steady-state concentration of metabolites can increase strongly near a saddle-

node bifurcation in the model [25]. Monte Carlo simulations with unstable steady 

states are discarded, but in those cases where one of the genotypes just comes close to 

the bifurcation point, we end up with genotype-phenotype maps as that seen in Figure 

4B where one (or a small set of) genotype has much higher phenotypes than the 

others. Such GP maps, similar to the duplicate factor model in Hill et al [4],  are 

known to give low VA/VG ratios despite being monotonic. Similar GP maps and VA/VG 

ratios close to zero were also found in the metabolic models studied by Keightley [32] 

in the case of null alleles at all loci.  

 

Concluding remarks  
We have shown that the VA/VG ratio varies as a function of regulatory architecture and 

that distinct pattern emerge from linking computational biology models with genetic 

concepts. Our approach can be used to explain how properties of the GP map vary 

across and within biological systems. As it can be used with any computational 
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biology model, it has the potential to contribute substantially to a theoretical 

foundation capable of predicting when we are to expect low or high VA/VG or h2/H2 

ratios from the principles of regulatory biology. Causally cohesive genotype-

phenotype modeling thus appears to qualify as a promising approach in the emerging 

field systems genetics, which aims to integrate causal models of biological networks 

with quantitative genetics [35-40].  
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Figure legends 
   
Figure 1. Phenotypes derived from the cGP models. Graphical illustration of the 

phenotypes recorded for the five cGP models studied. Time courses (state variable on 

y-axis, time on x-axis) for the baseline parameter set are displayed for all five models. 

A. In the absence of external glucose all state variables (concentration of cAMP is 

shown) in the cAMP model [20] converge to a stable steady state (blue circle on y-

axis). After addition of external glucose (5mM added at time 50) we see a rapid 

change followed by a slow return to the original steady state. In addition to the 

original steady state, the extremal concentration (top blue circle) as well as the time to 

reach the extremum (blue line) was recorded as phenotypes. B. Metabolite 

concentrations (internal glucose (GLCi), glucose-6-phospate (G6P) and fructose-6-

phospate (F6P) are shown) in the glycolysis model [19] all converge to a stable steady 

state, indicated by open circles. The steady state concentrations for 13 metabolites 

were recorded as phenotypes from this model. C. For the cell cycle model [21] we 

recorded the peak level and the time from bottom to peak as for the circadian model 

(Figure 1D), and in addition we recorded cell cycle events such as bud emergence at 

the time when [BUD]=1 indicated by the black arrow. D. mRNA and protein 

concentrations (mRNA for Bmal1 (MB), Cry (MC) and Per (MP) are shown) in the 

circadian model [22] converge to a limit cycle. In addition to the period of oscillation 

(long blue line) for each of the 16 variables the peak level (open blue circle) as well as 

the time from bottom to peak (short blue line) were recorded as phenotypes.  E. We 

used the base level, peak level, amplitude, time to peak, and time to 25%, 50%, 75% 

and 90% recovery of the action potential and calcium transient as cell level 

phenotypes of the action potential model. An action potential is shown in the figure. 

 

Figure 2. The empirical cumulative distribution function of VA/VG ratios for 

phenotypes of the cAMP (A) and the glycolysis (B) models. A. The empirical 

cumulative distribution functions (y axis) of VA/VG ratios (x axis) for all phenotypes 

studied in the cAMP model: The initial steady state concentrations before adding 

external glucose of the cyclic adenosine monophosphate (cAMP), the G-protein 

Ras2a (Ras2a), the guanine-nucleotide-exchange factor (Cdc25), the protein kinase A 

(PKAi).  The peak values after adding glucose of these proteins (cAMPv, Ras2av, 

Cdc25v and PKAiv), the Kelch repeat homologue protein (Krhv), the G-protein 

Gpa2a (Gpa2av), and the phosphodiesterase (Pde1v).  The time taken to reach the 
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peak values (cAMPt, Ras2at, Cdc25t, PKAit, Krht, Gpa2at, Ped1t). See Table S6 for 

further phenotype descriptions and numerical summaries of the distribution of VA /VG 

ratios. B. The empirical cumulative distribution function (y axis) of VA /VG ratios (x 

axis) for the steady state concentrations of 13 metabolites in the glycolysis model: 

acetaldehyde (ACE), 1,3-bisphospoglycerate (BPG), fructose-1,6-bisphosphate 

(F16P), fructose 6-phosphate (F6P), glucose 6-phosphate (G6P), glucose in cell 

(GLCi), nicotinamide adenine dinucleotide (NADH), phosphates in adenine 

nucleotide (P), 2-phosphoglyerate (P2G), 3-phosphoglycerate (P3G), 

phosphoenolpyruvate (PEP), pyruvate (PYP), and trio-phosphate (TRIO). See Table 

S7 for further phenotype descriptions and numerical summaries of the distribution of 

VA /VG ratios. 

 

 

 
Figure 3. The empirical cumulative distribution function of VA/VG ratios for 

phenotypes of the circadian model (A) and the action potential model (B). The 

empirical cumulative distribution functions (y axis) of VA/VG ratios (x axis) for 

phenotypes studied in the circadian model and the heart cell model. A. The upper-left 

panel (Bmal1) shows phenotypes related to bmal1gene, including the mRNA (MB), 

the unphosphorylated/phosphorylated protein in cytosol (BC/BCP) and nucleus 

(BN/BNP). The upper-right panel (Complex) is for protein complexes PCC, PCN, 

PCCP and PCNP. The bottom-right panel (Per) is for per gene, including the mRNA 

(MP), the unphosphorylated protein (PC) and the phosphorylated protein (PCP). The 

bottom concentration (solid line) and the time take to peak (dashed line) of each 

species are recorded phenotypes. The bottom-left panel (Cry) is related to cry gene, 

including the mRNA (MC), the unphosphorylated protein (CC) and phosphorylated 

protein (CCP). The period of circadian rhythm (Period, dotted line) is also shown. See 

Table S9 for further phenotype descriptions and numerical summaries of the 

distribution of VA /VG ratios.  B. The empirical cumulative distribution functions (y 

axis) of VA/VG ratios (x axis) for phenotypes studied in the action potential model: 

time to 25%, 50%, 75% and 90% of initial values, the amplitude, initial values (Base), 

peak values, time to reach peak values of action potential (left panel) and calcium 

transient (right panel) are shown. See Table S10 for further phenotype descriptions 

and numerical summaries of the distribution of VA /VG ratios.  
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Figure 4. Three distinct types of genotype-phenotype maps. Examples of three 

distinct types of genotype-phenotype maps seen in our simulations. A. A nearly 

additive map exemplified by the GP map of the time to peak concentration of Cdc25 

(VA/VG = 0.99) in the cAMP model; B. A fully monotone but non-additive map 

exemplified by the GP map of the concentration of P2G protein (VA/VG = 0.41) of the 

Glycolysis model; and, C. A strongly non-monotonic map is found the time to peak 

concentration of the PC protein (VA/VG = 0.03) from the circadian model. For each 

panel the phenotypic value is shown on each y-axis while the x-axises, line colours 

and plot columns indicate the genotype at the three loci.  

 
 

 

Figure 5. The number of loci for which the GP-map shows order-breaking. The 

number of Monte Carlo simulationss where the GP-map for a given phenotype is 

clearly order-breaking (see Methods) is shown for the cAMP model (A), the 

glycolysis model (B), the cell cycle model (C), the circadian model (D) and the action 

potential model (E). Only phenotypes with at least one out of the 1000 simulated GP 

map showing order-breaking for at least one locus, are shown. 

  

Tables 
 
Table 1. Summary of VA/VG Ratios of traits in line-crossing experiment reported 
from other groups.  
 
Species Type of traits Number 

of traits 
Min 
VA/VG 

Max 
VA/VG 

Mean 
VA/VG 

Chicken Bodyweighta [41] 17 0.03 0.71 0.34 
Mouse Hyperoxic Survival [42] 1 - - 0.46 
Drosophila  
melanogaster 

Locomotor Behavior[43] 1 - - 0.31 
Olfactory Behavior[44] 1 - - 0.64 

Root-knot 
nematode 

Resistance in the Auburn 
and Nem-X resistance 
sources [45] 

1 - - 0.79 

Cotton Morphological traitsb [46] 6 0.0 1 0.48 
Melon Beta-carotene-associated 

mesocarp colorc and fruit 
maturity[47] 

2 0.55 0.58 0.57 

Maize 
 

Morphological traitsd [48] 17 0.13 1.1 0.61 
Partial resistance to grey 
leaf spote [49] 

5 0.51 0.92 0.76 

Arabidopsis Morphological traitsf [50]  22 0.58 1.05 0.76 
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thaliana 
Eggplant  Callus related traitsg [51] 4 0.42 0.92 0.73 
 

a. Averaged over measures of bodyweight and growth rate. 
b. Averaged over both lines (I and II) and leaf morphological traits. 
c. Averaged over measures based on generation mean method, 

variance component method on individuals and on families. 
d. Averaged over both traits and inbred and hybrid lines, and For 

each trait the average narrow sense heritability was used. 
e. Average of three crosses and five resistance phenotypes. 
f. The ratio of each trait was calculated by h2

n/h2
b of the triple test 

crosses and the average over all traits is shown. 
g. Averaged over four traits. 

 
 
 
 
 

Supporting Information 
 

Text S1 More detailed descriptions of the five cGP models. 

 

 

Figure S1. The empirical cumulative distribution function of VA/VG ratios for 

phenotypes of the cell cycle model. The empirical cumulative distribution functions 

(y axis) of VA/VG ratios (x axis) for all phenotypes studied in the cell cycle model. The 

phenotypes are divided into 3 groups. Cell events refer to the discrete events defined 

in the model paper and include timing of budding (Bud), timing of DNA replication 

(Rep) and timing of alignment of chromosomes on the metaphase plates (Spn). Peak 

concentration include the concentration of the phosphorylated anaphase-promoting 

complex (APCP), the G1-stabilizing protein Cdc6, the B-type Cyclin protein 2 (Clb2), 

the S-phase promoting B-type Cyclin (Clb5), the starter kinase (Cln2) and the G1 

phase stabilizing protein (Sci1). The time to peak phenotypes include the time to 

reach peak concentrations of APCP, Cdc6, Clb2, Clb5, Cln2 and Sci1. See Table S8 

for further phenotype descriptions and numerical summaries of the distribution of VA 

/VG ratios.  

 

Figure S2. Dimensionality of phenotypic variation. The percentage of total 

phenotypic variation (y axis) versus the number of principal components (x axis) 

across all five cGP models (colour coded).  For each Monte Carlo data set the 27 M!  

matrices containing the full genotype-phenotype map for all M recorded phenotypes 
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was standardized to unit variance before principal components analysis. Each boxplot 

summarizes explained variance for 1000 or close to 1000 simulations.  

 

Table S1. Polymorphic model elements of the cAMP model. A list of cAMP model 

elements used as polymorphic loci together with the names and baseline values of 

parameters used to manifest genetic variation.  

 

Table S2. Polymorphic model elements of the glycolysis model. A list of glycolysis 

model elements used as polymorphic loci together with the names and baseline values 

of parameters used to manifest genetic variation.  

 

Table S3. Polymorphic model elements of the cell cycle model. A list of cell cycle 

model elements used as polymorphic loci together with the names and baseline values 

of parameters used to manifest genetic variation.  

 

Table S4. Polymorphic model elements of the circadian model. A list of circadian 

model elements used as polymorphic loci together with the names and baseline values 

of parameters used to manifest genetic variation.  

 

Table S5. Polymorphic model elements of the action potential model. A list of 

action potential model elements used as polymorphic loci together with the names and 

baseline values of parameters used to manifest genetic variation.  

 

Table S6. Summary of phenotype descriptions, variability thresholds and 

distribution of VA/VG ratios for the cAMP model. The first three columns list the 

phenotype abbreviations used in this study, a text description of the phenotypes and 

their units. The thresholds used to filter out dataset with very low relative and/or 

absolute variability are listed in the next two columns, followed by the number of 

Monte Carlo simulations (out of 1000) passing the threshold.  The last 7 columns 

contain quantiles and means of the VA/VG values for the datasets passing the 

variability threshold. 

 

 

Table S7. Summary of phenotype descriptions, variability thresholds and 

distribution of VA/VG ratios for the glycolysis model. The first three columns list 

the phenotype abbreviations used in this study, a text description of the phenotypes 
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and their units. The thresholds used to filter out dataset with very low relative and/or 

absolute variability are listed in the next two columns, followed by the number of 

Monte Carlo simulations (out of 1000) passing the threshold.  The last 7 columns 

contain quantiles and means of the VA/VG values for the datasets passing the 

variability threshold. 

 

Table S8. Summary of phenotype descriptions, variability thresholds and 

distribution of VA/VG ratios for the cell cycle model. The first three columns list the 

phenotype abbreviations used in this study, a text description of the phenotypes and 

their units. The thresholds used to filter out dataset with very low relative and/or 

absolute variability are listed in the next two columns, followed by the number of 

Monte Carlo simulations (out of 1000) passing the threshold.  The last 7 columns 

contain quantiles and means of the VA/VG values for the datasets passing the 

variability threshold. 

 

Table S9. Summary of phenotype descriptions, variability thresholds and 

distribution of VA/VG ratios for the circadian model. The first three columns list the 

phenotype abbreviations used in this study, a text description of the phenotypes and 

their units. The thresholds used to filter out dataset with very low relative and/or 

absolute variability are listed in the next two columns, followed by the number of 

Monte Carlo simulations (out of 1000) passing the threshold.  The last 7 columns 

contain quantiles and means of the VA/VG values for the datasets passing the 

variability threshold. Abbreviations: phosphorylated – phos., cytosolic – cyt., nuclear 

– nuc., bottom concentration – b.c., peak concentration – p.c. 

 

Table S10. Summary of phenotype descriptions, variability thresholds and 

distribution of VA/VG ratios for the action potential model. The first three columns 

list the phenotype abbreviations used in this study, a text description of the 

phenotypes and their units. The thresholds used to filter out dataset with very low 

relative and/or absolute variability are listed in the next two columns, followed by the 

number of Monte Carlo simulations (out of 1000) passing the threshold.  The last 7 

columns contain quantiles and means of the VA/VG values for the datasets passing the 

variability threshold. 
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On the relationship between heritability and regulatory architecture 
Yunpeng Wang, Jon Olav Vik, Stig W. Omholt, Arne B. Gjuvsland* 
 
 
 
 
 
Table S1. Polymorphic model elements of the cAMP model. A list of cAMP model elements used as polymorphic loci together with the names and 
baseline values of parameters used to manifest genetic variation.  
Model element Parameters  Baseline values 
1. G-protein coupled glucose 
receptor with glucose 

Association rate 0.003 12/mM*s 
Dissociation rate  0.143 1/s 

2. Kelch Repeat Homologue 
protein with the G-protein 
Gpa2 

Association rate 391089.57 12/mM*s 
Dissociation rate  6.122 12/mM*s 

3. G-protein Gpa2 Activation rate 57682.62 12/mM*s 
Deactivation rate 12989.422 12/mM*s 

4. G-protein Ras2 Activation rate 0.74 1/s 
Deactivation rate 0.042 1/s 

5. Guanine-nucleotide-
exchanger factor 

Phosphorylation rate 0.18 1/s 
Dephosphorylation rate 2.52 1/s 

6. Phosphodiesterase Phosphorylation rate 6.82 1/s 
Dephosphorylation rate 2.4 1/s 

 
 
 
 

 

 

 

 



Table S2. Polymorphic model elements of the glycolysis model. A list of glycolysis model elements used as polymorphic loci together with the names 

and baseline values of parameters used to manifest genetic variation.  

 
Model element Parameters Baseline values 
1. Hexokinase Vmax 226.452 mM/min 
2. Glucose-6-phosphate isomerase Vmax 339.677 mM/min 
3. Phosphofructokinase Vmax 182.903 mM/min 
4. Aldolase Vmax 322.258 mM/min 
5. Glyceraldehyde 3-phosphate 
dehydrogenase 

Vmax 1184.52 mM/min 

6. Phosphoglycerate mutase Vmax 2525.81 mM/min 
7. Phosphoglycerate kinase Vmax 1306.45 mM/min 
8. Enolase Vmax 365.806 mM/min 
9. Pyruvate decarboxylase Vmax 174.194 mM/min 
10. Glucose transport Vmax 97.264 mM/min 
11. Alcohol dehydrogenase Vmax 810 mM/min 
12. Glyceral 3-phosphate dehydrogenase Vmax 70.15 mM/min 
13. Pyruvate kinase Vmax 1088.71 mM/min 
 

 

 

 

 

 

 

 

 

 



Table S3. Polymorphic model elements of the cell cycle model. A list of cell cycle model elements used as polymorphic loci together with the names 

and baseline values of parameters used to manifest genetic variation.  

 
Model species Parameters Baseline values 
1. Cln3 C0 0.4 dimensionless 
2. Bck2 B0 0.054 dimensionless 
3. Cln2 Production rate 0.15 min-1 

Decay rate 0.12 min-1 

4. Clb5 Production rate 0.005 min-1 

Decay rate 0.01 min-1 

5. Clb2 Production rate 0.04 min-1 

Decay rate 0.003 min-1 

6. Cdc15 Production rate 1 min-1 

Decay rate 0.5 min-1 

7. Cdc14 
  

Production rate 0.2 min-1 

Decay rate 0.1 min-1 

8. Pds1 Production rate 0.03 min-1 

Decay rate 0.01 min-1 

 
 
Table S4. Polymorphic model elements of the circadian model. A list of circadian model elements used as polymorphic loci together with the names 

and baseline values of parameters used to manifest genetic variation.  

Model element Parameters Baseline values 
1. per mRNA decay rate 1.1 nM/h 
2. bmal1 mRNA decay rate 0.2 nM/h 
3. cry mRNA decay rate 1.0 nM/h 
 
 
 
 
 
 



Table S5. Polymorphic model elements of the action potential model. A list of action potential model elements used as polymorphic loci together 
with the names and baseline values of parameters used to manifest genetic variation.  
 
Model element Parameters Standard values 
1. SERCA affinity to Ca2+ 4.12e-1 uM 
2. L-type Ca2+ channel permeability 2.5 ms-1 

3. Calsequestrin affinity to Ca2+ 6.30e2 uM 
4. Na+ channel maximum conductance 16 ms/uF 
5. ultrarapidly activating 
delayed rectifier K+ channel 

The maximum conductance 0.25 ms/uF 

6. rapidly recovering 
transient outward K+ 
channel 

maximal conductance 0.53 ms/uF 

7. time-dependent K+ 
channel 

maximal conductance 0.35 ms/uF 

8. Na+/K+ pump affinity of the to intracellular 
Na+ 

1.66e4 uM 

 
 

 

 

 

 

 

 

 

 

 

 

 



Table S6. Summary of phenotypic values, variability thresholds and distribution of VA/VG ratios for the cAMP model. The first three columns list 

the phenotype abbreviations used in this study, a text description of the phenotypes and their units. The thresholds used to filter out dataset with very 

low relative and/or absolute variability are listed in the next two columns, followed by the number of Monte Carlo simulations (out of 1000) passing the 

threshold.  The last 7 columns contain quantiles and means of the VA/VG values for the datasets passing the variability threshold. 

 
Phenotype Description Units Variability threshold # of valid 

datasets  

Quantiles and mean values of VA/VG 

 rel. abs. Q0.05 Q0.1 Q0.2 Q0.3 Q0.5 Q0.8 mean 

cAMP cAMP steady state concentration (SSC) 

before adding glucose 

 

mM 

0.01 1e-8 866 0.98 0.99 0.99 0.99 0.99 1 0.99 

cAMPt Time to peak concentration (PC) of  cAMP min 0.01 1 879 0.97 0.98 0.98 0.99 0.99 1 0.99 

cAMPv PC of cAMP after adding glucose mM 0.01 1e-8 983 0.98 0.99 0.99 0.99 1 1 0.99 

Cdc25 SSC of Cdc25 before adding glucose mM 0.01 1e-8 838 0.98 0.99 0.99 0.99 0.99 1 0.99 

Cdc25t Time to PC of Cdc25 min 0.01 1 986 0.99 0.99 0.99 0.99 1 1 1 

Cdc25v PC of Cdc25 after adding glucose mM 0.01 1e-8 951 0.98 0.99 0.99 0.99 0.99 1 0.99 

Gpa2at Time to PC of G- protein Gpa2a min 0.01 1 782 0.98 0.98 0.98 0.99 0.99 1 0.99 

Gpa2av PC of  Gpa2a after adding glucose mM 0.01 1e-8 890 0.98 0.99 0.99 0.99 1 1 0.99 

Krht Time to PC of Krh min 0.01 1 785 0.98 0.98 0.98 0.99 0.99 1 0.99 

Krhv PC of Krh after adding glucose mM 0.01 1e-8 803 0.98 0.99 0.99 0.99 0.99 1 0.99 

Pde1t Time to PC of Pde1 min 0.01 1 961 0.97 0.98 0.99 0.99 0.99 1 0.99 

Pde1v PC of Pde1 after adding glucose mM 0.01 1e-8 724 0.98 0.98 0.99 0.99 0.99 1 0.99 

PKAi  SSC of PKA before adding glucose mM 0.01 1e-8 622 0.98 0.99 0.99 0.99 0.99 1 0.99 

PKAit Time to PC of Protein kinase A min 0.01 1 964 0.97 0.98 0.99 0.99 0.99 1 0.99 

PKAiv PC of PKA after adding glucose mM 0.01 1e-8 998 0.98 0.99 0.99 0.99 0.99 1 0.99 

Ras2a SSC of Ras2a before adding glucose mM 0.01 1e-8 846 0.98 0.99 0.99 0.99 0.99 1 0.99 

Ras2at Time to PC of Ras2a min 0.01 1 937 0.98 0.99 0.99 0.99 0.99 1 0.99 

Ras2av PC of  Ras2a after adding glucose mM 0.01 1e-8 865 0.98 0.99 0.99 0.99 1 1 0.99 

 



 
Table S7. Summary of phenotypic values, variability thresholds and distribution of VA/VG ratios for the glycolysis model. The first three columns 

list the phenotype abbreviations used in this study, a text description of the phenotypes and their units. The thresholds used to filter out dataset with very 

low relative and/or absolute variability are listed in the next two columns, followed by the number of Monte Carlo simulations (out of 1000) passing the 

threshold.  The last 7 columns contain quantiles and means of the VA/VG values for the datasets passing the variability threshold. 

 
Phenotype Description Units Variability threshold # of valid 

datasets  

Quantiles and mean values of VA/VG 

 rel. abs. Q0.05 Q0.1 Q0.2 Q0.3 Q0.5 Q0.8 mean 

ACE Steady state concentration (SSC) 

 of acetaldehyde 

 0.01 1e-4 728 0.90 0.94 0.98 0.99 1 1 0.98 

BPG SSC of bisphospoglycerate  0.01 1e-4 478 0.67 0.72 0.81 0.90 0.96 0.98 0.90 

F16P SSC of fructose-1,6-bisphosphate  0.01 1e-4 934 0.75 0.87 0.94 0.96 0.98 1 0.95 

F6P SSC of fructose 6-phosphate  0.01 1e-4 908 0.83 0.89 0.95 0.96 0.98 1 0.96 

G6P SSC of glucose 6-phosphate  0.01 1e-4 922 0.84 0.90 0.95 0.96 0.98 1 0.96 

GLCi SSC of internal glucose in cell  0.01 1e-4 794 0.68 0.81 0.91 0.95 0.99 1 0.93 

NADH SSC of nicotinamide adenine dinucleotide  0.01 1e-4 710 0.88 0.93 0.97 0.98 0.99 1 0.97 

P SSC of phosphates in adenine nucleotides  0.01 1e-4 665 0.88 0.93 0.97 0.99 1 1 0.97 

P2G SSC of 2- phosphoglyerate  0.01 1e-4 896 0.73 0.82 0.93 0.96 0.98 1 0.94 

P3G SSC of 3-phosphoglycerate  0.01 1e-4 919 0.73 0.83 0.93 0.96 0.98 1 0.95 

PEP SSC of phosphoenolpyruvate  0.01 1e-4 886 0.71 0.80 0.92 0.96 0.98 1 0.94 

PYR SSC of pyruvate  0.01 1e-4 788 0.68 0.79 0.91 0.95 0.99 1 0.94 

TRIO SSC of trio-phosphate  0.01 1e-4 851 0.77 0.88 0.95 0.97 0.99 1 0.96 

 

 
 

 

 



Table S8. Summary of phenotypic values, variability thresholds and distribution of VA/VG ratios for the cell cycle model. The first three columns 

list the phenotype abbreviations used in this study, a text description of the phenotypes and their units. The thresholds used to filter out dataset with very 

low relative and/or absolute variability are listed in the next two columns, followed by the number of Monte Carlo simulations (out of 1000) passing the 

threshold.  The last 7 columns contain quantiles and means of the VA/VG values for the datasets passing the variability threshold. 

 
Phenotype Description Units Variability threshold # of valid 

datasets  

Quantiles and mean values of VA/VG 

 rel. abs. Q0.05 Q0.1 Q0.2 Q0.3 Q0.5 Q0.8 mean 

APCP Peak concentration (PC) of phosphorylated 

anaphase-promoting complex 

au 0.01 1e-4 948 0.86 0.93 0.96 0.98 0.99 1 0.96 

APCP(ttp) Time to PC of APCP min 0.01 0.5 726 0.92 0.95 0.97 0.98 0.99 1 0.98 

Bud Time of bud emergence min 0.01 0.5 913 0.77 0.91 0.95 0.97 0.99 1 0.95 

Cdc6 PC of Cdc6 au 0.01 1e-4 948 0.82 0.89 0.95 0.97 0.99 1 0.96 

Cdc6(ttp) Time to PC of Cdc6 min 0.01 0.5 836 0.83 0.86 0.92 0.94 0.97 0.99 0.95 

Clb2 PC of B-type cyclin Clb2 au 0.01 1e-4 903 0.84 0.92 0.96 0.98 0.99 1 0.97 

Clb2(ttp) Time to PC of Clb2 min 0.01 0.5 749 0.94 0.96 0.97 0.98 0.99 1 0.98 

Clb5 PC of B-type cyclin Clb5 au 0.01 1e-4 935 0.90 0.95 0.98 0.98 0.99 1 0.98 

Clb5(ttp) Time to PC of Clb5 min 0.01 0.5 779 0.90 0.93 0.96 0.97 0.99 1 0.97 

Cln2 PC of cyclin Cln2 au 0.01 1e-4 914 0.78 0.90 0.95 0.97 0.99 1 0.96 

Cln2(ttp)  Time to PC  of Cln2 min 0.01 0.5 790 0.90 0.94 0.96 0.98 0.99 1 0.98 

Rep Start time of DNA replication min 0.01 0.5 932 0.91 0.93 0.96 0.98 0.99 1 0.97 

Sic1 PC of cyclin-dep. kinase inhibitor Sic1 au 0.01 1e-4 950 0.77 0.89 0.94 0.97 0.99 1 0.95 

Sic1(ttp) Time to PC of Sic1 min 0.01 0.5 751 0.82 0.84 0.89 0.92 0.96 0.99 0.93 

Spn Time of completed chromosome alignment  min 0.01 0.5 816 0.94 0.96 0.97 0.98 0.99 1 0.98 

 

 

 



Table S9. Summary of phenotypic values, variability thresholds and distribution of VA/VG ratios for the circadian model. The first three columns 

list the phenotype abbreviations used in this study, a text description of the phenotypes and their units. The thresholds used to filter out dataset with very 

low relative and/or absolute variability are listed in the next two columns, followed by the number of Monte Carlo simulations (out of 1000) passing the 

threshold.  The last 7 columns contain quantiles and means of the VA/VG values for the datasets passing the variability threshold. Abbreviations: 

phosphorylated – phos., cytosolic – cyt., nuclear – nuc., bottom concentration – b.c., peak concentration – p.c. 

 
Phenotype Description (see legend for abbreviations) Units Variability threshold # of valid 

datasets  

Quantiles and mean values of VA/VG 

 rel. abs. Q0.05 Q0.1 Q0.2 Q0.3 Q0.5 Q0.8 mean 

BC B.c. of cyt. BMAL1 protein nM 0.01 1e-8 979 0.43 0.65 0.91 0.97 0.99 1 0.91 

BC(ttp) Time to p.c. of  cyt. BMAL1 protein hours 0.01 1e-8 997 0.40 0.70 0.85 0.91 0.96 0.98 0.88 

BCP B.c. of cyt. phos. BMAL1 protein nM 0.01 1e-8 953 0.82 0.88 0.93 0.96 0.99 1 0.95 

BCP(ttp) Time to p.c. of cyt. phos. BMAL1 protein hours 0.01 1e-8 999 0.62 0.80 0.87 0.92 0.97 0.99 0.91 

BN B.c. of nuc. BMAL1 protein nM 0.01 1e-8 999 0.37 0.67 0.84 0.93 0.98 0.99 0.89 

BN(ttp) Time to p.c. of nuc. BMAL1 protein hours 0.01 1e-8 1000 0.48 0.72 0.83 0.89 0.95 0.98 0.88 

BNP B.c. of nuc. Phos. BMAL1 protein nM 0.01 1e-8 979 0.82 0.91 0.97 0.99 1 1 0.97 

BNP(ttp) Time to p.c. of nuc. Phos. BMAL1 protein hours 0.01 1e-8 999 0.66 0.82 0.89 0.94 0.98 0.99 0.93 

CC B.c. of cyt. CRY protein nM 0.01 1e-8 1000 0.59 0.63 0.69 0.74 0.82 0.95 0.81 

CC(ttp) Time to p.c. of  cyt. CRY protein hours 0.01 1e-8 1000 0.10 0.16 0.27 0.39 0.67 0.94 0.61 

CCP B.c. of cyt. phos. CRY protein nM 0.01 1e-8 969 0.61 0.68 0.74 0.79 0.86 0.95 0.84 

CCP(ttp) Time to p.c. of  cyt. phos. CRY protein hours 0.01 1e-8 1000 0.10 0.15 0.31 0.46 0.70 0.91 0.62 

IN B.c. of inactive complex between CLOCK-

BMAL1 and PER-CRY 

nM 0.01 1e-8 1000 0.51 0.62 0.73 0.80 0.87 0.95 0.83 

IN(ttp) Time to p.c. of inactive complex between 

CLOCK-BMAL1 and PER-CRY 

hours 0.01 1e-8 1000 0.22 0.36 0.53 0.66 0.82 0.95 0.73 

MB B.c. of mRNA of the Bmal1 gene nM 0.01 1e-8 901 0.32 0.50 0.79 0.93 0.99 1 0.88 

MB(ttp) Time to p.c. of mRNA of the Bmal1 gene hours 0.01 1e-8 894 0.19 0.53 0.78 0.82 0.88 0.95 0.81 

MC B.c. of mRNA of the Cry gene nM 0.01 1e-8 999 0.91 0.92 0.94 0.96 0.98 0.99 0.96 



MC(ttp) Time to p.c. of mRNA of the Cry gene hours 0.01 1e-8 1000 0.52 0.66 0.82 0.88 0.96 0.99 0.88 

MP B.c. of the mRNA of the Per gene nM 0.01 1e-8 997 0.90 0.92 0.94 0.95 0.98 0.99 0.96 

MP(ttp) Time to p.c. of the mRNA of the Per gene hours 0.01 1e-8 999 0.32 0.52 0.74 0.87 0.96 0.99 0.85 

PC B.c. of cyt. PER protein nM 0.01 1e-8 1000 0.41 0.48 0.57 0.63 0.72 0.88 0.72 

PC(ttp) Time to p.c. of  cyt. PER protein hours 0.01 1e-8 1000 0.04 0.07 0.14 0.23 0.46 0.88 0.49 

PCC B.c. of cyt. PER-CRY complex nM 0.01 1e-8 1000 0.8 0.83 0.87 0.90 0.93 0.97 0.92 

PCC(ttp) Time to p.c. of cyt. PER-CRY complex hours 0.01 1e-8 1000 0.49 0.62 0.77 0.84 0.92 0.98 0.85 

PCCP B.c. of cyt. Phos. PER-CRY complex nM 0.01 1e-8 1000 0.92 0.94 0.95 0.96 0.98 0.99 0.97 

PCCP(ttp) Time to p.c. of cyt. phos. PER-CRY 

complex 

hours 0.01 1e-8 1000 0.46 0.61 0.75 0.83 0.92 0.98 0.85 

PCN B.c. of nuc. PER-CRY complex nM 0.01 1e-8 1000 0.52 0.60 0.69 0.75 0.85 0.95 0.81 

PCN(ttp) Time to p.c. of nuc. PER-CRY complex hours 0.01 1e-8 999 0.62 0.72 0.84 0.89 0.95 0.98 0.90 

PCNP B.c. of nuc. Phos. PER-CRY complex nM 0.01 1e-8 1000 0.80 0.83 0.87 0.90 0.94 0.98 0.92 

PCNP(ttp) Time to p.c. of nuc. phos. PER-CRY 

complex 

hours 0.01 1e-8 999 0.59 0.70 0.83 0.89 0.95 0.99 0.89 

PCP B.c. of cyt. phos. PER protein nM 0.01 1e-8 989 0.70 0.75 0.81 0.85 0.91 0.96 0.88 

PCP(ttp) Time to p.c. of  cyt. phos. PER protein hours 0.01 1e-8 1000 0.04 0.07 0.15 0.24 0.46 0.88 0.50 

Period Time for one complete cycle hours 0.01 0.1 997 0.60 0.81 0.90 0.94 0.98 0.99 0.92 

 

 

 

 

 

 

 

 



Table S10. Summary of phenotypic values, variability thresholds and distribution of VA/VG ratios for the action potential model. The first three 

columns list the phenotype abbreviations used in this study, a text description of the phenotypes and their units. The thresholds used to filter out dataset 

with very low relative and/or absolute variability are listed in the next two columns, followed by the number of Monte Carlo simulations (out of 1000) 

passing the threshold.  The last 7 columns contain quantiles and means of the VA/VG values for the datasets passing the variability threshold. 

 
Phenotype Description Units Variability threshold # of valid 

datasets  

Quantiles and mean values of VA/VG 

 rel. abs. Q0.05 Q0.1 Q0.2 Q0.3 Q0.5 Q0.8 mean 

A
ct

io
n 

Po
te

nt
ia

l 

25% Time to 25% of the initial value ms 0.01 1e-5 909 0.31 0.44 0.67 0.72 0.88 0.98 0.88 

50% Time to 50% of the initial value ms 0.01 1e-5 980 0.29 0.39 0.63 0.72 0.90 1 0.9 

75% Time to 75% of the initial value ms 0.01 1e-5 968 0.21 0.31 0.48 0.62 0.88 0.99 0.88 

90% Time to 90% of the initial value ms 0.01 1e-5 976 0.21 0.31 0.64 0.92 0.99 1 0.99 

Amplitude Amplitude of action potential value mV 0.01 1e-5 652 0.20 0.28 0.50 0.66 0.97 0.99 0.97 

Base  Initial action potential  mV 0.01 1e-5 1000 0.21 0.31 0.56 0.67 0.83 0.98 0.83 

Peak  Maximum action potential mV 0.01 1e-5 892 0.19 0.27 0.45 0.59 0.77 0.99 0.77 

Time to peak Time to maximum action potential ms 0.01 1e-5 801 0.20 0.30 0.48 0.59 0.83 0.98 0.84 

C
al

si
um

 tr
an

si
en

t 

25% Time to 25% of the initial concentration ms 0.01 1e-5 961 0.18 0.28 0.53 0.69 0.92 0.99 0.92 

50% Time to 50% of the initial concentration ms 0.01 1e-5 960 0.22 0.35 0.58 0.67 0.89 0.99 0.88 

75% Time to 75% of the initial concentration ms 0.01 1e-5 955 0.35 0.45 0.60 0.67 0.86 0.99 0.86 

90% Time to 90% of the initial concentration ms 0.01 1e-5 928 0.29 0.38 0.52 0.63 0.76 0.98 0.76 

Amplitude Amplitude of the calcium concentration uM 0.01 1e-5 990 0.18 0.29 0.46 0.58 0.77 0.98 0.77 

Base  Initial calcium concentration uM 0.01 1e-5 965 0.27 0.36 0.51 0.63 0.78 0.99 0.78 

Peak  Maximum calcium concentration uM 0.01 1e-5 983 0.28 0.36 0.52 0.61 0.73 0.98 0.73 

Time to peak Time to maximum concentration ms 0.01 1e-5 974 0.18 0.24 0.43 0.60 0.84 0.97 0.84 
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Supplementary text  
Here we describe the five models in some more detail than in the main text.  

 

 

cAMP Model  

The complete cAMP signaling pathway [1] of Saccharomyces cerevisiae, involved in 

various essential cell activities such as nutrient sensing,  stress response, growth, cell 

cycle progression, is modeled by a system of ordinary differential equations having 15 

variables and 27 parameters. Glucose metabolism via the glycolysis pathway as well 

as the dynamics of the G-protein Gpa2a, the Kelch repeat homologue protein (Krh), 

the G-protein Ras2, and Protein Kinase A (PKA) is described by mass action kinetics. 

Modified Michaelis-Menten kinetics is used to describe the activity of adenylate 

cyclase and phosphodiesterase. A number of negative feedback mechanisms are 

included in the model. The model is capable of reproducing how cAMP changes in 

response to addition of glucose both in wild-type and several mutant strains. 

 

Glycolysis model  

The branched kinetic model of the glycolysis pathway of non-growing anaerobic 

Saccharomyces cerevisiae [2] how external glucose molecules are transported into the 

cell, its conversion  into pyruvate (ultimately to ethanol), glycogen, trehalose, 

glycerol, and succinate, by a series of enzyme-catalyzed reactions. The dynamics of 

19 metabolic fluxes (12 reversible and 7 irreversible) and 17 intermediate 

concentrations, are represented by 14 ordinary differential equations. The model 

described the kinetics of the 13 enzymes hexokinase (HK), phosphoglucose isomerase 

(PGI), phosphofructokinase (PFK), aldolase (ALD), triosephosphate isomerase (TPI), 

glycerol 3-phosphate dehydrogenase (G3PDH), glyceraldehyde-3-phosphate 

dehydrogenase (GraPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase 

(PGM), enolase (ENO), pyruvate kinase (PYK)  pyruvate decarboxylase (PDC) and 

alcohol dehydrogenase (ADH).  

 



 

Cell cycle model  

A model based on the consensus mechanism of the cell cycle regulation in budding 

yeast [3], Saccharomyces cerevisiae. The model describes this process by 36 ordinary 

differential and 25 algebraic equations. The four phases in cell cycle, S (the primary 

activity is DNA synthesis), G2 (preparing for mitosis), M (mitosis) and G1 (growth 

phase) are modeled as two states, the G1 state and the S-G2-M state. The 

unidirectional transitions between the two self-maintaining states are achieved by a 

bistable mechanism involving positive and negative feedback loops. The model is 

capable of mimicking the behaviour of >100 mutant strains.  

 

Circadian model  

The model describes a consensus network underlying the mammalian circadian clock 

[4,5], a regulatory network involving the Per, Cry, Bmal1 and Clock genes.  The 

model consists of 16 coupled ordinary differential equations, with intertwined 

positive and negative feedback loops. The state variable include mRNA, 

phosphorylated and unphorsphorylated proteins as well as protein complexes.  Few 

sleep-wake related human disorders were studies with this model by examining the 

parameter spaces. The model gives rice to sustained oscillation with a period close to 

24 hours under continuous darkness. 

 

Action potential model  

The mouse ventricular myocyte model [6] extends that of Bondarenko et al [7] with 

more realistic calcium handling, detailed re-parameterization to consistent 

experimental data for the C57BL/6 "black 6" mouse and conservation of charge. State 

variables include ion concentrations of sodium, potassium and calcium in the cytosol, 

calcium concentration in the sarcoplasmic reticulum, and the conformation state 

distribution of ion channels, whose transition rates between open, closed, and 

inactivated conformations may depend on transmembrane voltage. Formulated as a 

system of 35 coupled ordinary differential equations with more than hundred of 

parameters, this model provides a comprehensive representation of membrane-bound 

channels and transporter functions as well as fluxes between the cytosol and 

intracellular organelles. 
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/<-+9,(-&H!%$/!(&!,;/!?($),!=+%'/!),%,(),('%+G!,;/!)/'-&6!=+%'/!),%,(),('%+G!%&6!-&+A!(&!,;/!

,;($6!=+%'/!7(-+-@('%+!!I1/%$)-&G!242JKL!M-!%!;(@;!6/@$//!,;()!),%,/>/&,!%+)-!%==+(/)!,-!

$/'/&,!)A),/>)!@/&/,(')!:-$N!7%)/6!-&!;(@;O6(>/&)(-&%+!O->(')!6%,%!IP%'N%A!/,!%+G!

QBB4R!S%6/%9!T!U96+/AG!QB22KL!P-$/!)=/'(?('%++AG!89%&,(,%,(</!@/&/,(')!()!7%)/6!-&!

-$,;-@-&%+!6/'->=-)(,(-&!-?!,;/!@/&-,A=/O=;/&-,A=/!$/+%,(-&!I*1!>%=K!%&6!

'-$$/)=-&6(&@!@/&-,A=/!?$/89/&'(/)!(&,-!%&!%66(,(</!=%$,G!%&6!,:-!,A=/)!-?!&-&O

%66(,(</!=%$,)G!6->(&%&'/!%&6!/=(),%)()!IVA&';!T!W%+);G!2443KL!X+,;-9@;!,;()!

=$-<(6/)!,;/!7%)()!?-$!%!</$A!)9''/))?9+!,;/-$A!:;/&!(,!'->/)!,-!=$/6(',(&@!)/+/',(-&!

$/)=-&)/!%&6!7$//6(&@!<%+9/)G!(,!6-/)!&-,!7$(&@!:(,;!(,!%&!9&6/$),%&6(&@!-?!:;%,!

/&)9$/)!,;/!97(89(,-9)!=$/)/&'/!-?!;(@;!%66(,(</!<%$(%&'/!$/+%,(</!,-!@/&/,('!<%$(%&'/!

(&!)/Y9%++A!$/=$-69'(&@!-$@%&()>)!%'$-))!,;/!:;-+/!%++/+/!?$/89/&'A!)=/',$9>!

I*Z9<)+%&6!/,!%+G!QB22R![(++!/,!%+G!QBB3KL!!M;/!$/%)-&!?-$!,;()!()!,;%,!'9$$/&,!@/&/,('!

,;/-$A!()!79(+,!9=-&!,;/!/>=($('%+!?%',!,;%,!-??)=$(&@!$/)/>7+/!,;/($!=%$/&,)G!%&6!(,!()!

,;/$/?-$/!&-,!(&!%!=-)(,(-&!,-!/Y=+%(&!,;/!7(-+-@('%+!?-9&6%,(-&!-?!,;()!?9&6%>/&,%+!

%)=/',!-?!;/$/6(,AL!S/:!%==$-%';/)!%$/!,;9)!&//6/6!,-!9&6/$),%&6!,;/!>/';%&()>)!

9&6/$+A(&@!,;()!=$/$/89()(,/!?-$!&%,9$%+!)/+/',(-&!,-!-=/$%,/L!!

\,!:%)!$/'/&,+A!);-:&!I*Z9<)+%&6!/,!%+G!QB22K!,;%,!%!N/A!?/%,9$/!-?!*1!>%=)!

,;%,!@(</!;(@;!$%,(-)!-?!%66(,(</!,-!@/&-,A=('!<%$(%&'/!I ]" #$ $ KG!()!%!>-&-,-&/!I-$!

-$6/$O=$/)/$<(&@K!$/+%,(-&!7/,://&!@/&/!'-&,/&,!I,;/!&9>7/$!-?!%++/+/)!-?!%!@(</&!

,A=/K!%&6!=;/&-,A=/L!^A!6/</+-=(&@!&/:!89%&,(,%,(</!>/%)9$/)!?-$!>-&-,-&('(,A!:/!

);-:!,;%,!,;/!*1!>%=)!%$()(&@!?$->!%!:(6/!$%&@/!-?!@/&/!$/@9+%,-$A!&/,:-$N!>-,(?)!

%$/!(&!@/&/$%+!;(@;+A!>-&-,-&/L!^9,!>-),!&-,/:-$,;AG!,;/)/!&/:!>/%)9$/)!%+)-!$/</%+!

:;(';!>-,(?)!=$/6()=-)/!?-$!&-&O>-&-,-&('(,AL!W/!);-:!,;%,!,;/)/!6//=!'-&&/',(-&)!

7/,://&!>-+/'9+%$!$/@9+%,-$A!%$';(,/',9$/!%&6!=$-=/$,(/)!-?!,;/!@/&-,A=/O=;/&-,A=/!

>%=!_!-?!)97),%&,(%+!$/+/<%&'/!,-!?9&',(-&%+!@/&->(')!(&!@/&/$%+!_!%$/!7/A-&6!$/%';!

7A!,;/!),%&6%$6!6(),(&',(-&!7/,://&!%66(,(</!%&6!&-&O%66(,(</!@/&/!%',(-&!IVA&';!T!

W%+);G!2443KL!!

`9$!%==$-%';!=$-<(6/)!%!,;/-$/,('%+!?-9&6%,(-&!?-$!';%$%',/$(a(&@!,;/!6/@$//!

-?!>-&-,-&('(,A!-?!,;/!@/&-,A=/O=;/&-,A=/!>%==(&@)!/>/$@(&@!?$->!'%9)%++A!



! !

! "!

#$%&'()&!*&+$,-.&/.%&+$,-.&!0$1&2'!34565'(+*%!&,!527!899:;!<(=!&,!527!89>>?!5,!5+-!

2&)&2!$@!0$1&2!#$0.2&A(,-B!C%('!$.&+'!@$D!5!'-',&05,(#!',E1-!$@!,%&!$D1&D/.D&'&D)(+*!

5+1!$D1&D/FD&5=(+*!.D$.&D,(&'!$@!0$2&#E25D!D&*E25,$D-!',DE#,ED&'!E+1&D2-(+*!,%&!G%$2&!

'.&#,DE0!$@!.%-'($2$*(#52!D&*E25,($+B!!

!"#$%&#'
()*+,-.$/0'./'1./.&./2*2&3'.4'56'1)7#'
C$!&5'&!E+1&D',5+1(+*!G&!.D$)(1&!5!FD(&@!D&#5.(,E25,($+!$@!,%&!#$+#&.,!$@!

0$+$,$+(#(,-!3$D!$D1&D/.D&'&D)5,($+?!(+!HI!05.'!(+,D$1E#&1!(+!3H6E)'25+1!&,!527!

89>>?B!J&!#$+'(1&D!5!1(.2$(1!*&+&,(#!0$1&2!G(,%!!"F(522&2(#!3522&2&'!(+1&A&1!>!5+1!8?!

2$#("E+1&D2-(+*!5!KE5+,(,5,()&!.%&+$,-.&B!L!*&+$,-.&!5,!5!'(+*2&!2$#E'!#"('!1&+$,&1!F-!

M>>7>8788N#$ ∈ B!O+!,%&!#5'&!$@!,G$!2$#(!#"5+1!%!,%&D&!5D&!P!.$''(F2&!

*&+$,-.&' #% # %$ $ $= ∈M>>>>7!>>>87!>>887!>8>>7BB7!88>87!8888NB!C%&!*&+&D52!!"2$#(!

*&+$,-.&!'.5#&!Γ#$+,5(+' Q! *&+$,-.&'! > 8 !$ $ $ !3(+!#$+1&+'&1!+$,5,($+! >R!$ ?!

#$+',DE#,&1!F-!#$+#5,&+5,(+*!&2&0&+,'!@D$0!'(+*2&!2$#E'!*&+$,-.&!'.5#&'7!

> 8M S M>>7>8788N7 ! >787BBB7 N! #$ $ $ $ # !Γ = ∈ = B!!J&!E'&!,%&!522&2&!#$+,&+,!3(B&B!,%&!

+E0F&D!$@!8/522&2&'?!$@!*&+$,-.&'!,$!1&@(+&!5!.5D,(52!$D1&D!$+!,%&!*&+$,-.&!'.5#&!

Γ 3'&&!T(*ED&!>7!2&@,!.5+&2!@$D!5+!(22E',D5,($+?B!T$D!5!.5D,(#E25D!2$#E'!#!G&!$D1&D!,%&!

,%D&&!*&+$,-.&'!'%5D(+*!,%&!'50&!F5#=*D$E+1!*&+$,-.&! >R > >R# # !$ $− + !5'!@$22$G'7! !

! >R > >R >R > >R >R > >R>> >8 88# # ! # # ! # # !$ $ $ $ $ $− + − + − +< < B! 3>?! !

J&!#522!,%('!,%&"&'()*'%"$+,-).&+"-(/+("(+%')*0+")-"%-123"#7!5+1!(,!1&@(+&'!5!',D(#,!.5D,(52!

$D1&D!$+!Γ B!!

L!*&+$,-.&/.%&+$,-.&!05.!('!5!05..(+*!4!G%(#%!5''(*+'!,$!&5#%!*&+$,-.&!

$∈Γ !5!D&52/)52E&1!*&+$,-.(#!)52E&!3,%&!0&5+!,D5(,!)52E&!@$D!5!*()&+!*&+$,-.&?!

3 ?4 $ B!J&!1&@(+&!0$+$,$+(#(,-!$@!4!(+!,&D0'!$@!%$G!(,!,D5+'@$D0'!,%&!.5D,(52!

*&+$,-.&!$D1&D'!$!,$!,%&!52*&FD5(#!$D1&D!$@!,%&!*&+$,-.(#!)52E&'!43$?B!J(,%$E,!2$''!$@!

*&+&D52(,-!G&!5''E0&!,%5,!,%&!522&2&!(+1&A&'!5,!&5#%!2$#E'!%5)&!F&&+!#%$'&+!'E#%!,%5,!

3>>>> >>?4 !('!,%&!'0522&',!$@!522!%$0$U-*$,&!*&+$,-.(#!)52E&'B!J&!#522!5!*&+$,-.&/

.%&+$,-.&!05.!4"5-,-)-,+!-("-(/+(6&(+3+(0*,$"7*)8"(+3&+1)")-"%-123"#!(@!(,!.D&'&D)&'!

,%&!.5D,(52!*&+$,-.&!$D1&D!D&25,()&!,$!2$#E'!#!9"(B&B!(@!!! ! !

! >R > >R >R > >R >R > >R3 >> ? 3 >8 ? 3 88 ?# # ! # # ! # # !4 $ $ 4 $ $ 4 $ $− + − + − +≤ ≤ 7! 38?! !
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#$%!&''!()*)+,-!.&-/(%$0*12!$#!'$-02!!"!34!&''$5,*(!*$*62+%,-+!,*)70&',+,)2!5)!,*-'01)!

89!:&;2!2<$5,*(!-$:;')+)!1$:,*&*-)!&*1!-$:;')+)!:&(*,+01)!);,2+&2,2!=>),*%),-<!

)+!&'?!@AA"B!,*!+<)!-'&22!$#!$%1)%6;%)2)%C,*(!89!:&;2D!E$*C)%2)'4!5)!-&''!&!89!:&;!

#$#%&$#$'$#(!$%!$)*()%+)(,!-#.!/-'01)(23(4'1'$15$462!!!,#!,+!1$)2!*$+!;%)2)%C)!+<)!

;&%+,&'!()*$+4;)!$%1)%!%)'&+,C)!+$!'$-02!!!#$%!&''!.&-/(%$0*12D!F,(0%)!G!=%,(<+!;&*)'B!

2<$52!)H&:;')2!$#!:$*$+$*)!&*1!*$*6:$*$+$*)!89!:&;2!,*-'01,*(!$%+<$($*&'!

-$:;$*)*+2!02)1!+$!1)-$:;$2)!()*)+,-!C&%,&*-)!=E<)C)%01!I!J$0+:&*?!GKKLM!N)*(!

)+!&'?!@AA"B?!&*1!-'&22,-&'!1$:,*&*-)!&*1!);,2+&2,2!;&++)%*2D!

!"#$%&'()*+,(,-,('.'-/*,0*12*+#3$*
O*!+<)!#$''$5,*(!5)!;%)2)*+!+5$!*0:)%,-&'!:)&20%)2!#$%!70&*+,#4,*(!:$*$+$*,-,+4!,*!&!

89!:&;!7!5,+<!81.,&'')',-!'$-,D!P<)!#,%2+!70&*+,#,)2!+<)!:$*$+$*,-,+4!$#!,*1,C,10&'!

'$-,!.4!-$:;&%,*(!*)(&+,C)!&*1!;$2,+,C)!&'')')!20.2+,+0+,$*!)##)-+2!.)#$%)!5),(<+,*(!

+<)!,*1,C,10&'!'$-,!,*+$!&*!$C)%&''!:)&20%)D!P<)!2)-$*1!0+,',Q)2!,2$+$*,-!%)(%)22,$*!+$!

70&*+,#4!<$5!-'$2)!7!,2!+$!+<)!-'$2)2+!#0''4!:$*$+$*)!89!:&;D!O*!R0;;'):)*+&%4!P)H+!

G!5)!;%$C,1)!&!2+);6.462+);!)H&:;')!$*!:)&20%,*(!:$*$+$*,-,+4!$#!&!%)&'65$%'1!89!

:&;!#%$:!=E<)C)%01!I!J$0+:&*?!GKK"BD!!

!"#$%&"*45*6%#(-'0/'()*(,(7+,(,-,('.'-/*8/*$%8$-'-%-',(*"00".-$*
S!2+%&,(<+#$%5&%1!5&4!+$!-<)-/!5<)+<)%!+<)!,*)70&',+4!=@B!,2!#0'#,'')1!,2!+$!'$$/!&+!+<)!

2,(*2!$#!+<)!)##)-+!$#!20.2+,+0+,*(!&!2,*(')!&'')')!&+!'$-02!!!!

! GT G GT GT G GT GT G GT= B = @ B = G B-
! ! 8 ! ! 8 ! ! 82 . . 7 . - . 7 . - .− + − + − += − ! =UB!

!5<,')!/));,*(!+<)!$+<)%!&'')')!=-1V!G!$%!@B!&+!'$-02!!!&*1!+<)!.&-/(%$0*1!()*$+4;)!

GT G GT! ! 8. .+ + !#,H)1D!W$*$+$*,-,+4!&2!1)#,*)1!&.$C)!,2!)70,C&')*+!+$! GT G GT= B-
! ! 82 . .− + !.),*(!

*$*6*)(&+,C)!&-%$22!&''!()*)+,-!.&-/(%$0*12!$#!'$-02!!D!!!34!+&/,*(!,*+$!&--$0*+!&'2$!

+<)!:&(*,+01)!$#!+<)!20.2+,+0+,$*!)##)-+2!5)!-&*!70&*+,#4!:$*$+$*,-,+4D!>)!2+&%+!5,+<!

+<)!2)+! GT G GTX = BY! -
! ! 89 2 . .− += !$#!2,*(')!&'')')!20.2+,+0+,$*!)##)-+2!#$%!'$-02!!!#$%!-!VG?@!

&*1!&-%$22!&''!()*$+4;,-!.&-/(%$0*12! GT G GT! ! 8. .+ + D!P<)!+$+&'!*0:.)%!$#!)'):)*+2!,*!

!9 +<02!.)-$:)2! G@ U8 −⋅ ?!&*1!5)!2;',+!+<)!2)+!,*+$!+5$!1,2Z$,*+!20.2)+2!%)#')-+,*(!+<),%!

2,(*M! GT G GT GT G GTX = B ? = B AY! - ! -
! ! 8 ! ! 89 2 . . 9 2 . .+ − + − += ∈ > !&*1!

GT G GT GT G GTX = B ? = B AY! - ! -
! ! 8 ! ! 89 2 . . 9 2 . .− − + − += ∈ < D!!>)!-$:;0+)!+<)!20:!$#!;$2,+,C)!

20.2+,+0+,$*!)##)-+2!&*1!+<)!20:!$#!&.2$'0+)!C&'0)2!$#!*)(&+,C)!20.2+,+0+,$*!)##)-+2?!!
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)*+!,-. ! ! !( % #= + +-*/.-!.0-!/1-2),,!345!/6!)73/,4.-!3473.8.4.8/*!-66-9.3:!;-!.0-*!

+-68*-!.0-!+-<2--!./!=0890!.0-!>?@5)A!)!83!5/*/./*-!=8.0!2-3A-9.!./!,/943!!*7B!

! C C! !
!

!

% #+
(
−= :! %D&!

E,-)2,B!)!83!5/*/./*-!=:2:.:!,/943!!*866! #!+ = '!=0-2-)3! #!+ < !85A,8-3!.0).!)!83!

/2+-2@72-)F8*<!=:2:.:!,/943!!,!G6! H!+ = '!.0-*!.0-!A/38.81-!3473.8.4.8/*!-66-9.3!-I4),!.0-!

*-<).81-!3473.8.4.8/*!-66-9.3!8*!5)<*8.4+-!)*+!=-!3)B!.0).!)!83!9/5A,-.-,B!/2+-2@

72-)F8*<!=:2:.:!,/943!!:!J083!5-)342-!+83.8*<4830-3!=-,,!7-.=--*!.0-!5/*/./*-!)*+!

*/*@5/*/./*-!5)A3!8*!K8<42-!#'!9,-)2,B! # L #+ += = !6/2!.0-!)++8.81-!5)A!%M&!)3!=-,,!

)3!.0-!>?!5)A3!30/=8*<!A)2.8),!+/58*)*9-!)*+!+4A,89).-!+/58*)*9-!-A83.)383'!

=0-2-)3! # L H+ += = !6/2!.0-!5)A3!=8.0!A42-!/1-2+/58*)*9-!%NO&!)*+!A42-!-A83.)383!

%MPM!)*+!OPO&:!

! G*!/2+-2!./!+-39287-!.0-!/1-2),,!5/*/./*898.B!/6!.0-!>?!5)A!)!=-!8*.2/+49-!

.0-!-.'/..*01*+020302"4"35!6+7!=0890!83!)!=-8<0.-+!5-)*!/6!.0-! !+ '!=0-2-!.0-!

=-8<0.3!2-6,-9.!.0-!2-,).81-!85A/2.)*9-!/6!.0-!,/98!8*!.-253!/6!(!'!
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M3!30/=*!8*!K8<42-!LM'!.0-!-.'/..*01*+020302"4"35*83*#!6/2!.0-!5/*/./*-!5)A3!8*!

K8<42-!#!=08,-!8.!83!H!6/2!.0-!A42-!/1-2+/58*)*9-!)*+!A42-!-A83.)383!5)A3:!J083!

+-68*8.8/*!/6!-.'/..*01*+020302"4"35*),,/=3!43!./!-3.)7,830!)!1/9)74,)2B!=0890!83!

)*),/</43!./!.0-!9,)338689).8/*!/6!38*<,-!,/943!+/58*)*9-Q!)!>?!5)A!83!9),,-+!

+020302.*86! #+ = '!%89/3"9::57*202;+020302.!86! #+ < !)*+!8</.:5*202;+020302.!86!

H+ = :!M!5/2-!+-.)8,-+!A2-3-*.).8/*!/6!.0-!+-<2--!/6!5/*/./*898.B!83!<81-*!8*!3-9.8/*!

#!/6!R4AA,-5-*.)2B!J-P.!L:!

J0-!3854,).8/*!2-34,.3!6/2!2)*+/5!>?!5)A3!A2-3-*.-+!8*!K8<42-!LM!30/=!.0).!

.0-2-!83!)!3.2/*<!A/38.81-!9/22-,).8/*!7-.=--*!.0-!+-<2--!/6!5/*/./*898.B!)*+!.0-!38S-!

/6!.0-!)++8.81-!9/5A/*-*.!% T=>? =>?
@ )A A &'!7/.0!6/2!.0-!>?!5)A3!+-A89.-+!8*!K8<42-!#!
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#$%!&'(!(#$%')*+!,#)-*.%!/0!)#-,1!2!,3)3*#(!(.*#43'$,53-!6#,!'7,.(8.%!&'(!45(..9

*':;,!(#$%')!/0!)#-,!<=;--*.).$4#(+!>3?;(.!@2A1!2**!/0!)#-,!3$!>3?;(.!BC!6345!

D1B" < !5#8.! E D1@#$% #$%
& '( ( < 1!24!45.!'45.(!.$%!'&!45.!,-.:4(;)!45.(.!3,!);:5!)'(.!

8#(3#43'$F!&'(!3$,4#$:.!45.!)',4!.G4(.).!:')-*.4.*+!)'$'4'$.!)#-!<45.!%;-*3:#4.!

%')3$#$4!&#:4'(,!HHA!5#,! E#$% #$%
& '( ( !#,!*'6!#,!D1I"J1!! !

!"#$%&"'()'*%#+,-./-+0'12+2,2+-3-,/'4/'-$2,2+-3'&"0&"$$-2+'
K53,!).#,;(.!L;#$43&3.,!45.!)'$'4'$3:34+!7+!).#$,!'&!45.!%3,4#$:.!7.46..$!'!#$%!45.!

:*',.,4!)'$'4'$.!)#-1!M'$,3%.(!#!,-#:.!'&!?.$'4+-.9-5.$'4+-.!)#-,!&'(!)!73#**.*3:!

*':3!ΤNO P Q R* * %Γ → !#$%!%.&3$.!45.!,;7,.4! +, ,⊂ !'&!)'$'4'$.!/0!)#-,!

+, NO P !3,!'(%.(9-(.,.(83$?!'$! R* , *∈ Γ 1!/38.$!#!/0!)#-!' ,∈ 6.!3%.$43&+!45.!

"-.-/-.0!1-"2-.0./!'&!'!#,!45.!)#- + +' ,∈ !653:5!)3$3)3S.,!45.!(.,3%;#*!8#(3#$:.!

8#(< A+' '− F!31.1! +' 3,!45.!)'$'4'$.!/0!)#-!653:5!3,!:*',.,4!4'!' 3$!45.!*.#,49

,L;#(.,!,.$,.1!K5.!)'$'4'$.!:')-'$.$4 +' :#$!7.!3%.$43&3.%!$;).(3:#**+!7+!3,'4'$3:!

(.?(.,,3'$!<T..;6!.4!#*F!BDDUA!'&!' !,;7V.:4!4'!45.!-#(43#*!'(%.(3$?!'&!?.$'4+-.,!

%.&3$.%!3$!.L1!<@A1!>;(45.()'(.!45.!(.,3%;#*! )' 3,!'(45'?'$#*!4'! +' 3$!45.!,.$,.!45#4!

45.!8.:4'(!-('%;:4! D+ )' '⋅ = 1!K53,!#**'6,!45.!'(45'?'$#*!%.:')-',343'$!!

! + )' ' '= + F! <"A!
! !
'&!#!?.$'4+-.9-5.$'4+-.!)#-!3$4'!#!"-.-/-.0!1-"2-.0./! +' !#$%!#!.-.3"-.-/-.0!

1-"2-.0./! )' !,;:5!45#4! 8#(< A 8#(< A 8#(< A+ )' ' '= + 1!=;--*.).$4#(+!K.G4!@!
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<(&1(&6!0BR.3/+%&1!'#!%+:!KLLS%5!#$%#!6'&'!)'6.+%#,)=!2,#(</!;(#$!7,/(#(3'!<''18%->!

6(3'!-,&/(1')%8+=!2,)'!/#%#(/#(-%+!'7(/#%/(/!#$%&!#$,/'!;(#$,.#4!

J(#$,.#!%&=!)'/#)(-#(,&/!,&!#$'!-,&&'-#(3(#=!,<!%!#$)''*6'&'!/=/#'2!#$')'!%)'!
GT "GUMT= !7,//(8+'!1(/#(&-#!&'#;,)>/4!@$'!2%(&!)'/#)(-#(,&!;'!(27,/'1!0/''!A,1'+/!

%&1!2'#$,1/!<,)!1'#%(+/5!;%/!%!2%Q(2.2!,<!#;,!)'6.+%#,)/!7')!6'&':!;$(-$!%++,;'1!

./!#,!./'!V,,+'%&!6'&'!)'6.+%#(,&!<.&-#(,&/!%+)'%1=!'/#%8+(/$'1!(&!#$'!/(62,(1!

<,)2%+(/2!0BR.3/+%&1!'#!%+:!KLLS8W!C+%$#'!'#!%+:!"GGM54!A,1'+!<,)2%+(/2/!%++,;(&6!%&!

%)8(#)%)=!&.28')!,<!)'6.+%#,)/!%)'!;'++!'/#%8+(/$'1!09('6%+!E!V')62%&:!KLLKW!

J%6&'):!"GGXW!J%6&'):!"GGU5!%&1!-,.+1!8'!'Q#'&1'1!#,!1(7+,(1!<,)2/!%&1!./'1!(&!

+%#')!/#.1('/4!!

! Y3'&!#$,.6$!8,#$!(&-,$')'&#!<''1<,);%)1!%&1!7,/(#(3'!<''18%->!7)'1(/7,/'!<,)!

&,&*2,&,#,&'!BC!2%7/:!#$'!.&1')+=(&6!2'-$%&(/2/!%)'!/,2';$%#!1(<<')'&#!<,)!#$'!

#;,!)'6.+%#,)=!2,#(</4!P&!#$'!-%/'!,<!(&-,$')'&#!<''1<,);%)1!#$'!/.2!,<!1()'-#!%&1!



! !

! "#!

$%&$'()*!(++()*,!-./!'(,01*!$%!.!%2%3-2%2*2%(!&2,(3'(,42%,(!'(1.*$2%,5$4!67.41.%!(*!

.18!#99:;8!<%!%(*=2'>,!=$*5!42,$*$?(!+((&@.)>!&$++('(%)(,!$%!1224!A.$%!@(*=((%!

A(%2*/4(,!).%!A$?(!%2%3-2%2*2%$)$*/!6,((!B0441(-(%*.'/!C(D*!#!+2'!&(*.$1,;E!F2,$*$?(!

+((&@.)>!.1,2!4'(&$,42,(,!+2'!-01*$41(!,*(.&/!,*.*(,8!.%&!2'&('3@'(.>$%A!)201&!(-('A(!

+'2-!&$++('(%*!A(%2*/4(,!)2''(,42%&$%A!*2!&$++('(%*!,*.*(,E!<*!,5201&!@(!%2*(&8!

52=(?('8!*5.*!42,$*$?(!+((&@.)>!$,!2%1/!.!%()(,,.'/!)2%&$*$2%!+2'!-01*$,*.*$2%.'$*/!

6F1.5*(!(*!.18!"GGH;8!.%&!.!1224!$%!*5(!)2%%()*$?$*/!-.*'$D!!"2+!.!,/,*(-!&2(,!%2*!

A0.'.%*((!*5.*!*5(!1224!$,!.)*$?(!.*!.%/!42$%*!&0'$%A!*5(!*$-(!)20',(!2+!*5(!,/,*(-E!

C5$,!)201&!(D41.$%!*5(!4.**('%!$%!I$A0'(!J!=5('(!-2*$+,!=$*5!2%1/!42,$*$?(!+((&@.)>!

1(.&!*2!2'&('3@'(.>$%A!+.'!1(,,!+'(K0(%*1/!*5.%!*52,(!*5.*!.1,2!)2%*.$%!$%)25('(%*!

+((&+2'=.'&E!

! L1*520A5!*5$,!,*0&/!5.,!+2)0,(&!2%!A(%(!'(A01.*2'/!%(*=2'>,8!*5(!)2%)(4*!2+!

-2%2*2%(!A(%(!.)*$2%!.441$(,!*2!*5(!4'24.A.*$2%!2+!A(%(*$)!?.'$.*$2%!.)'2,,!*5(!=521(!

45/,$212A$).1!5$('.')5/E!M%(!-./!*5('(+2'(!,/,*(-.*$).11/!0,(!*5(!)2%)(4*,!.%&!

-(*52&,!4'(,(%*(&!5('(!*2!,*0&/!*5(!2'&('34'(,('?$%A!.%&!2'&('3@'(.>$%A!4'24('*$(,!2+!

A(%2*/4(345(%2*/4(!-.44$%A,!*5.*!.'(!.,,2)$.*(&!=$*5!.%/!'(A01.*2'/!,*'0)*0'(!

.-(%.@1(!+2'!-.*5(-.*$).1!-2&(1$%AE!C5'20A5!*5$,!$*!=$11!@(!42,,$@1(!*2!-.>(!.!

)2-4'(5(%,$?(!,0'?(/!2+!=5$)5!'(A01.*2'/!.%.*2-$(,!4'2-2*(!-2%2*2%$)$*/!.%&!

=5$)5!4'2-2*(!%2%3-2%2*2%$)$*/E!N(!+2'(,((!*5.*!*5$,!)1.,,$+$).*$2%!-./!@()2-(!

$%,*'0-(%*.1!+2'!4'(&$)*$%A!52=!45(%2*/4$)!(++()*,!2+!A(%(*$)!?.'$.*$2%!4'24.A.*(!

.)'2,,!A(%('.*$2%,!$%!,(D0.11/!'(4'2&0)$%A!42401.*$2%,E!!!

!"#$%&"'()"*+)!$#,-+()
.&//$%$*#&"')$01"#&-*)2-+$'()
N(!,*0&/!.!+.-$1/!2+!A(%(!'(A01.*2'/!%(*=2'>!-2&(1,!)2%*.$%$%A!*5'((!&$412$&!A(%(,!

O"8!O#!.%&!OJ8!2'A.%$P(&!.,!.!'(A01.*2'/!,/,*(-!=5('(!*5(!'.*(!2+!(D4'(,,$2%!2+!(.)5!

A(%(!).%!@(!'(A01.*(&!@/!*5(!(D4'(,,$2%!1(?(1!2+!2%(!2+!2'!@2*5!*5(!2*5('!A(%(,E!C5(!

=$'$%A!2+!*5(!,/,*(-!$,!&(,)'$@(&!@/!.!JDJ!)2%%()*$?$*/!-.*'$D !=$*5!(1(-(%*,!

Q "898"R#$! ∈ − E!C5(!,$A%,!2+!*5(!(1(-(%*,!2+!!!&(,)'$@(!*5(!-2&(!2+!'(A01.*$2%8!

9#$! = !$%&$).*(,!*5.*!A(%(!$!$,!%2*!.!'(A01.*2'!2+!A(%(!#8!$+ "#$! = !*5(%!A(%(!$"$,!.%!

.)*$?.*2'!2+!A(%(!#".%&!$+! "#$! = − !*5(%!A(%(!$"$,!.!'(4'(,,2'!2+!A(%(!#%"S(%(!

'(A01.*2'/!,/,*(-,!.'(!2+*(%!1.$&!20*!?$,0.11/!.,!,$A%(&!&$'()*(&!A'.45,E!C5('(!$,!.!

2%(3*232%(!)2''(,42%&(%)(!@(*=((%!.!)2%%()*$?$*/!-.*'$D!.%&!.!,$A%(&!&$'()*(&!



! !

! "#!

$%&'()!*+,!-.&/'0-1!&%-!20031*%&*-4!25!62$3%-!7#8!9-!31-!*(-!12$/,24!:,%/&021/!

;<-1*0!-*!&0)!"==>?!@0&(*-!-*!&0)!"==AB!25!*(-!42'0,24!:,%/!;C/(,0*!-*!&0)!DEEEB!+(-%-!

*(-!-.'%-112,5!*(-!*+,!&00-0-1!,:!$-5-!"!21!4-1F%2G-4!GH!*(-!:,00,+25$!CIJ1)!

!
" " " " D # " "

D D D " D # D D

" D

; ) ) B ) !!!!!!!!!
; ) ) B ) !!!!!!!!!
) !!!! ") D)#8

" " " " "

" " " " "

" " "

# $ % % % #
# $ % % % #
% # # "

α γ
α γ

= −
= −

= + =
! ;AB!

K-%- "&α 21!*(-!/&.2/&0!'%,43F*2,5!%&*-!:,%!&00-0-!&!,:!$-5-!")! "&γ 21!*(-!4-F&H!%&*-)!
+(20-! "&$ 21!*(-!$-5-!%-$30&*2,5!:35F*2,5!;4,1-L%-1',51-!:35F*2,5B8!M:!$-5-!"!(&1!5,!
%-$30&*,%1)!+-!&113/-!'%,43F*2,5!21!&0+&H1!1+2*F(-4!,5!1,! ""&$ = 8!M:!$-5-!"!!(&1!&!
125$0-!%-$30&*,%!%')!*(-!$-5-!%-$30&*2,5!:35F*2,5!21!$2N-5!&1! ; B ; ) ) B"& ' ' '"& '"&$ % ( % )θ= )!
+(-%-!! ; ) ) B O; B) ) )( % ) % %θ θ= + 2:!$-5-!'!21!&5!&F*2N&*,%!&54!
; ) ) B " O; B) ) )( % ) % %θ θ= − + !2:!2*!21!&!%-'%-11,%8!M5!G,*(!F&1-1!*(-!'&%&/-*-%! '"&θ !$2N-1!
*(-!&/,35*!,:!%-$30&*,%!5--4-4!*,!$-*!>EP!,:!/&.2/&0!'%,43F*2,5!%&*-)!&54! '"&) !
4-*-%/25-1!*(-!1*--'5-11!,:!*(-!%-1',51-8!M5!*(-!F&1-!,:!*+,!%-$30&*,%1!%'!&54!%*!+-!1-*!
; ) B ; ) ) B ; ) ) B"& ' * ' '"& '"& * *"& *"&$ % % ( % ) ( % )θ θ= 8!!

! 92*(!3'!*,!*+,!%-$30&*,%1!'-%!$-5-!*(-!53/G-%!,:!',112G0-!F,55-F*2N2*H!

/&*%2F-1!21!"=#QRA>=8!9-!:3%*(-%!%-S32%-!*(&*!*(-!1H1*-/!21!F,55-F*-4)!&54!*(&*!$-5-!#!

21!5,*!'3%-0H!3'1*%-&/!,:!$-5-!"!&54!D!1,!-2*(-%!$-5-!"!&54!D!G,*(!%-$30&*-!$-5-!#!

42%-F*0H!; #" #D E+ + ≠ B)!,%!,5-!%-$30&*-1!25!42%-F*0H!&54!*(-!,*(-%!,5-!2542%-F*0H!

; #" "D E+ + ≠ !,%! #D D" E+ + ≠ B8!T(21!%-43F-1!*(-!53/G-%!,:!421*25F*!F,55-F*2N2*H!/&*%2F-1!

*,!#UDV8!!625&00H!+-!24-5*2:H!'&2%1!,:!/&*%2F-1!+(2F(!&%-!1H//-*%2F!+2*(!%-1'-F*!*,!

25*-%F(&5$25$!W"!&54!WD!&54!'2FX!Y31*!,5-!/&*%2.!:%,/!-&F(!'&2%8!T(-!%-130*25$!"AA"!

F,55-F*2N2*H!/&*%2F-1!&%-!31-4!:,%!,3%!$-5-!%-$30&*,%H!12/30&*2,518!!

!"#$%&'(&$)*'##"+,-.*/0012*,$"*'##"'034,3"*50%&'2*
6,%!&!1H1*-/!4-:25-4!GH!&!$2N-5!F,55-F*2N2*H!/&*%2.!+-!F,/'3*-!*(-!0,,'!'%,43F*1!,:!

*(%--!&3*,%-$30&*,%H!:--4G&FX!0,,'1! " "",- += )! D DD,- += ) # ##,- += )!*(%--!*+,L$-5-!

:--4G&FX!0,,'1Z! "D D" "D,- + += )! "# #" "#,- + += )! D# D# #D,- + += !&54!*+,!*(%--L$-5-!

:--4G&FX!0,,'1Z! "D# #D D" "#,- + + += )! D"# #" "D D#,- + + += 8![,5\-%,!0,,'!'%,43F*1!2542F&*-!

*(&*!*(-!1H1*-/!F,5*&251!*(-!F,%%-1',5425$!:--4G&FX!0,,')!&54!*(-!12$5!,:!*(-!0,,'!

'%,43F*!$2N-1!*(-!12$5!,:!*(-!:--4G&FX!0,,'8!9-!&01,!F,/'3*-!*(-!'%,43F*1!:,%!*+,!

:--4:,%+&%4!/,*2:1Z! #D #D #" "D; B,,- + + += )! #" #" #D D"; B,,- + + += 8!]$&25!5,5\-%,!

'%,43F*1!2542F&*-!*(&*!*(-!1H1*-/!F,5*&251!*(-!F,%%-1',5425$!:--4:,%+&%4!/,*2:)!&!

',12*2N-!N&03-!F,%%-1',541!*,!&!F,(-%-5*!:--4:,%+&%4!+(20-!&!5-$&*2N-!N&03-!2542F&*-1!



! !

! "#!

$%&'()*)%+!,))-,'*./*-0!12334)5)%+/*6!7$82*)!9!-)3$&+:!+()!&'%%)&+$;$+6!5/+*$<!/%-!

+()!:$8%)-!-$8*/3(:!',!/!:6:+)5!.$+(!/!3':$+$;)!,))-=/&>!4''3!/:!.)44!/:!/!:6:+)5!.$+(!

$%&'()*)%+!,))-,'*./*-0!12334)5)%+/*6!?/+/:)+!"!&'%+/$%:!/-@/&)%&6!5/+*$&):!/%-!

4''3!3*'-2&+:!,'*!/44!"AA"!5'+$,:0!!

!"#$%&'"(')"#$%&'"*+,-./0%,$#+*
B()!:$524/+$'%:!.)*)!3)*,'*5)-!$%!/!:$5$4/*!,/:($'%!/:!-):&*$=)-!$%!CD@2;:4/%-!)+!/4E!

FG""H0!I)!&'53/*)-!+.'!-$,,)*)%+!+63):!',!8)%'+63)J+'J3/*/5)+)*!5/3:K!

o!!"#$%&'"(%$(')*)+"%"*(+)'(,-%.$/%('0"-$%*$'&1(=$/44)4$&!8)%'+63$&!;/*$/+$'%!,'*!/44!

+(*))!4'&$!.)*)!$%+*'-2&)-!+(*'28(!+()!5/<$5/4!3*'-2&+$'%!*/+):! 2-α E!,'*!)/&(!

L'%+)!M/*4'!:$524/+$'%!+()!/44)4$&!3/*/5)+)*!;/42):!.)*)!:/534)-!,*'5!

C"GGEFGGH3 0!!

o!!"#$%&'"(%$(')*)+"%"*(+)'(,-%.('0"-$%*$'&1(/44)4$&!3/*/5)+)*!;/42):!.)*)!:/534)-!

,'*!5/<$5/4!3*'-2&+$'%!*/+):! 2-α !C:/534)-!,*'5! C"GGEFGGH3 HE!*)824/+$'%!

+(*):('4-:! 02-θ C:/534)-!,*'5! CFGE#GH3 HE!/%-!*)824/+$'%!:+))3%)::):! 02-' !C:/534)-!

,*'5! C"E"GH3 H0!

N44!-)&/6!*/+):! 2-γ .)*)!:)+!+'!"G0!I)!/::)5=4)-!3/*/5)+)*!:)+:!,'*!/44!FO!-$34'$-!

8)%'+63):E!/%-!,'*!)/&(!8)%'+63$&!3/*/5)+)*!:)+!+()!:6:+)5!',!)P2/+$'%:!CAH!./:!

$%+)8*/+)-!%25)*$&/446!2%+$4!&'%;)*8)%&)!+'!/!:+/=4)!:+/+)0!B()!)P2$4$=*$25!;/42)!',!

9& !./:!*)&'*-)-!/:!3()%'+63)0!?/+/:)+:!.()*)!+()!:6:+)5!,/$4)-!+'!&'%;)*8)!,'*!'%)!

'*!5'*)!8)%'+63):!.)*)!-$:&/*-)-0!!7'*!)/&(!',!+()!"AA"!5'+$,:!.)!3)*,'*5)-!"GGG!

L'%+)!M/*4'!:$524/+$'%:0!!

! 1'5)!L'%+)!M/*4'!:$524/+$'%:!4)/-!+'!;)*6!4$++4)!3()%'+63$&!;/*$/+$'%E!$%!+()!

:)%:)!+(/+!+()!:3/%!=)+.))%!+()!4/*8):+!/%-!:5/44):+!',!+()!FO!8)%'+63$&!;/42):!./:!

:5/440!Q%!'*-)*!+'!/;'$-!/*+$,/&+:!/*$:$%8!,*'5!+()!%25)*$&!R?S!:'4;)*!+'4)*/%&)E!+():)!

)::)%+$/446!,4/+!DT!5/3:!.)*)!-$:&/*-)-0!72*+()*!/%/46:$:!',!5'%'+'%$&$+6!/%-!

;/*$/%&)!&'53'%)%+:!.)*)!'%46!-'%)!'%!DT!5/3:!.()*)!+()!/=:'42+)!*/%8)!

C5/<$525!8)%'+63$&!;/42)!U!5$%$525!8)%'+63$&!;/42)H!/%-!*)4/+$;)!*/%8)!C/=:'42+)!

*/%8)!V!5)/%!8)%'+63$&!;/42)H!.)*)!='+(!WG0G"0!(



! !

! "#!

!"#"$%"$&#'()*&+,-+%$"$+.(+/(0*.+"1-*2-3*.+"1-*(,#-%(
$%&%'(%')&*!+,)-./-('%'-0!-1!23!.&/(!4&(!/,51-5.,+!4'%6!%6,!170)%'-0!

linearGPmapanalysis '0!%6,!8!/&)9&:,!noia ;<,!8-7=')!>!?*@&5,=AB&(%5-C!

DEEFG!;6%%/HII)5&0J5A/5-K,)%J-5:I4,LI/&)9&:,(I0-'&IG!@,5('-0!EJMNJ"J!O,!7(,+!

704,':6%,+!5,:5,(('-0!;PO8G!&(!'0!;B6,@,57+!>!8-7%.&0C!"MM#G!%-!+,)-./-(,!&!23!

.&/!'0%-!'%(!&++'%'@,!&0+!0-0A&++'%'@,!)-./-0,0%(!&0+!)-./7%,+!%6,!5&%'-!-1!&++'%'@,!

%-!%-%&*!:,0,%')!@&5'&0),! I! "
#$% #$%& & !&(!&!.,&(75,!-1!&++'%'@'%QJ!$,,!;?*@&5,=AB&(%5-!>!

B&5*L-5:C!DEERS!T,0:!,%!&*C!DEE#G!1-5!+,%&'*(!-0!%6,!%6,-5,%')&*!15&.,4-59J!!

!

4&5.+6'*)0*,*."%(
U6'(!4-59!4&(!(7//-5%,+!LQ!%6,!8,(,&5)6!B-70)'*!-1!V-54&Q!;6%%/HII444J5)0J0-IG!

70+,5!%6,!,WXU?!/5-:5&.C!/5-K,)%!07.L,5!"RFME"IWYE!&0+!LQ!%6,!W'5%7&*!

36Q('-*-:')&*!8&%!35-K,)%!170+,+!%65-7:6!VXZ!:5&0%!3#EA2[EMN#EYJ!V\UP8C!%6,!

V-54,:'&0!.,%&),0%,5!1-5!)-./7%&%'-0&*!()',0),C!/5-@'+,+!)-./7%'0:!5,(-75),(!

70+,5!/5-K,)%!00N]#Y9J!

47"3+8(9+."8$:7"$+.%(
B-0),'@,+!%6,!(%7+QH!?^2!&0+!$O\J!3,51-5.,+!('.7*&%'-0(!&0+!&0&*Q('(H!?^2C!_3C!

&0+!`OJ!O5-%,!%6,!/&/,5H!&**!&7%6-5(J!

9+./'$&"(+/(;."*8*%"(
U6,!&7%6-5(!+,)*&5,!%6&%!%6,Q!6&@,!0-!)-01*')%!-1!'0%,5,(%J!

!

!

!

<*/*8*.&*%(
?*@&5,=AB&(%5-!a[C!B&5*L-5:!b!;DEERG!?!70'1',+!.-+,*!1-5!170)%'-0&*!&0+!(%&%'(%')&*!
,/'(%&('(!&0+!'%(!&//*')&%'-0!'0!cU<!&0&*Q('(J!"'(')*+,!!"#$!""#"A""]R!
!
B6,@,57+!a[C!8-7%.&0!_a!;"MM#G!_/'(%&('(!&0+!'%(!)-0%5'L7%'-0!%-!:,0,%')!@&5'&0),!
)-./-0,0%(J!"'(')*+,!!%&$!"N##A"N]"!
!
B6,@,57+!a[C!8-7%.&0!_a!;"MM]G!_/'(%&('(!&(!&!(-75),!-1!'0)5,&(,+!&++'%'@,!:,0,%')!
@&5'&0),!&%!/-/7*&%'-0!L-%%*,0,)9(J!-./01)*/(!'($!"ENDA"E#"!
!



! !

! "#!

$%&'()*+,!$$!-"./01!23!(45(367%3!%8!5*(!&%3&(95!%8!9+)5757%373:!*()(;75+)<!
=+)7+3&(6!8%)!+3+><676!%8!&%=+)7+3&(6!+,%3:!)(>+57=(6!?*(3!(9765+676!76!9)(6(35@!
!"#"$%&'!!"#!A/.BAAC!
!
D+>&%3()!EFG!H+&'+<!ID$!-"..#1!(#$)*+,&$%*#-$*-.,/#$%$/$%0"-1"#"$%&'G!!J+)>%?K!
L%3:,+3!M)%N9@!
!
D76*()!O2!-"."A1!I*(!$%))(>+57%3!P(5?((3!O(>+57=(6!%3!5*(!FN99%6757%3!%8!H(3;(>7+3!
Q3*()75+3&(@!2)/#'/&$%*#'-*3-$4"-5*6/7-8*&%"$6-*3-9+%#:,)14!$%#!R..B0RR!
!
MSN=6>+3;!2TG!J+<(6!TUG!V,*%>5!FWG!$+)>P%):!X!-CYYZ+1!F5+57657&+>!(9765+676!76!+!
:(3()7&!8(+5N)(!%8!:(3(!)(:N>+5%)<!3(5?%)'6@!!"#"$%&'!&'$#!0""B0CY!
!
MSN=6>+3;!2TG![>+*5(!\G!V,*%>5!FW!-CYYZP1!I*)(6*%>;B;%,73+5(;!)(:N>+57%3!*7;(6!
:(3(57&!=+)7+57%3!73!:(3(!(49)(667%3!3(5?%)'6@!;<=-86'$">'-;%*7*16!&#!/Z!
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Supplementary Figure 1 Measures of monotonicity versus additivity of GP maps 

with three loci. Scatterplots showing /
A G

V V  from unweighted regression versus (left 

panel) degree of monotonicity and (right panel) monotone R2. Red dots show 1000 

random three-locus GP maps, blue dots show the same 1000 GP maps after sorting to 

introduce order-preservation for 1 locus while green dots show the same 1000 GP maps 

after sorting to introduce order-preservation for 2 loci (Gjuvsland et al, 2011). 

 



 

Supplementary Figure 2 Comparing measures of monotonicity GP maps. 

Scatterplots showing degree of monotonicity versus monotone R2 . Black dots correspond 

to the maps shown in Figure 1. Red dots show 1000 random two-locus GP maps, while 

blue dots show the same 1000 GP maps after sorting to introduce order-preservation for 1 

locus (see (Gjuvsland et al, 2011)). 

 



 

Supplementary Figure 3 Connectivity matrices and signed directed graphs. Two of 

the 1881 systems in the simulation study connectivity matrix A and the corresponding 

signed directed graph. The left panel depicts the connectivity matrix and the signed 

digraph of a system with a positive feedback loop between X1 and X2 while the right 

panel shows a system with incoherent feedforward from X1 to X3. 
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Supplementary Text 1 Measuring monotonicity of a GP map 
 
In this supplementary text we provide details on measuring monotonicity of a 

genotype-phenotype (GP) map and code for computing this with the R package 

gpmap. As an example GP map we use the data published by Cheverud & Routman 

(1995), for two loci underlying 10-week body-weight at 10 weeks in a mouse F2 

cross.  

Supplementary Table 1 (genotypic values from 

Table 1 in Cheverud & Routman 1995) Genotypic 

values for  10-wk body  weight (in grams) at marker 

loci D7Mitl7 (locus A) and DlMit7 (locus B) in a F2 

intercross of Large (LG/J; allele 2) and Small (SM/J; 

allele 1) inbred mouse strains 

 A1A1 A1A2 A2A2 

B1B1 36.839  37.951 34.118 

B1B2 36.527  35.898   34.894 

B2B2 33.824   34.125 31.234 

 

 

Supplementary Figure 4 Lineplot of the GP     

map in Supplementary Table 1. 

 

In the main text we assumed for simplicity that the allele indexes is chosen such that 

G(1111) is the smallest of the homozygote genotypic values. This is not the case in 

this example, but since both monotonicity measures are invariant with respect to 

choice of indexes there is no need to reindex the alleles. Looking at the lineplot in 

Supplementary Figure 4 we find that this GP map is non-monotonic with respect to 

both loci, locus A shows marginal overdominance for the 11 and 22 genotypes at 

locus B, while locus B shows marginal overdominance for the 22 genotype at locus A. 

However the deviation from a monotone map is not extreme in the sense that there is 

a clear tendency that for both loci substituting allele 1 for allele 2 tends to increase the 

phenotype. Based on this qualitative assessment of the monotonicity of this GP map 

we expect m  and 2

mono
R values less than, but not much less than 1.  

 

Computing degree of monotonicity 

We start with computing the set of single allele substitution effects for locus A by 

substracting row 1 from row 2 and row 3 from in Supplementary Table 1 we get 

{1.112, 3.833, 0.629, 1.004,0.301, 2.891}A
S = − − − −  and divide this into sets of positive  
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{1.112,0.301}A
S

+
=  and negative effects { 3.833, 0.629, 1.004, 2.891}A

S
−

= − − − − . The 

sum of elements in A
S

+
 is 1.413 and the sum of absolute values of elements in A

S
−

 is 

8.357 which gives 1.413
A

P = , 8.357
A

N =  and 9.770
A

T = . From equation [5] in the 

main text we get 0.711
A

m = . The sets of substitution effects for locus B can be found 

by subtracting rows in Table S1 to be { 0.312, 2.703, 2.053, 1.773, 3.660}B
S

−
= − − − − −  

and 0.776B
S

+
= . This gives 0.776

B
P = , 10.501

B
N = , 11.277

B
T = and 0.862

B
m = . 

Inserting values for both loci into equation [6] in the main text we get the degree of 

monotonicity 0.792m = . 

 

Quantifying monotonicity by isotonic regression 

Isotonic regression requires a partial ordering of genotype space as defined in 

equation [1] in the main text. In this two-locus example equation [1] defines 12 

inequalities that can be laid out like this: 

 

1122 1222 2222

1112 1212 2212

1111 1211 2211

< <

< <

< <

v v v

v v v

   (SI.1) 

 

By isotone regression (Leeuw, Hornik et al. 2009) on the partial genotype ordering 

(SI.1) the original GP map is decomposed into a monotone and a non-monotone 

component (Supplementary Figure 54), with the coefficient of determination 

2 0.97
mono

R = . 

 

Supplementary Figure 5 Lineplots of original GPmap G (as in Supplementary Figure 4) and 

its monotone (GM) and non-monotone (GN) components determined by isotone regression. 
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Reproducing numbers and figures in this text using the R package gpmap 
 
> library(gpmap)  #load package 

> data(GPmaps)  #load dataset 

> gp <- mouseweight 

> 

> ## Table S1 

> cbind(gp$genotype,gp$values)  

> 

> ## Supplementary Figure 4 

> plot(gp)    

> 

> ## Computing degree of monotonicity 

> gp <- degree_of_monotonicity(gp) 

> gp$degree.monotonicity.locus 

> print(gp) 

> 

> ## Quantifying monotonicity by isotonic regression 

> gp <- decompose_monotone(gp) 

> print(gp) 

> 

> ## Supplementary Figure 5 
> plot(gp,decomposed=TRUE)  



Supplementary Text 2
Monotonicity is a key measure of genotype-phenotype maps

Arne B. Gjuvsland, Yunpeng Wang, Erik Plahte and Stig W. Omholt

In this supplement we first present a formal definition of the degree of monotonicity for a genotype-
phenotype (GP) map. We then investigate monotonocity in the GP maps emerging from diploid gene regu-
latory networks. Under non-pleiotropic genotypic variation, i.e. genetic variation only in the maximum of
the dose-response function, not in its shape, we show that the following is true:

1. If there are no positive feedback loops and no incoherent feedforward loops in the network, there is
no order-breaking, the degree of monotonicity m = 1.

2. If there is a positive feedback loop or an incoherent feedforward loop in the network, there may be
order-breaking in the GP map (m < 1).

The results hold for phenotypes given as the stable concentration of the product of one of the genes, and
under certain restrictions also for phenotypes given as a function of one or several stable gene product
concentrations that is monotonic with respect to each of its arguments.

1 Genotype-phenotype maps and degree of monotonicity

In this section we introduce a condensed notation for genotypes and genotype-phenotype maps and use it to
give a more detailed presentation of the degree of monotonicity than in the main manuscript. To ease the
presentation the present notation is slightly different in some respects.

We consider N diploid loci Xk, k = 1, . . . ,N, that together determine a real-valued phenotype. Each gene has
two alleles with arbitrary indexes 1 and 2. We let gk represent the genotype, i.e. the allelic composition of
Xk. The two homozygous genotypes of Xk are gk = 11 and gk = 22, the heterozygote is gk = 12, in general
gk = αkβk.

Multi-locus genotypes are made by concatenating single-locus genotypes. For instance, if an individual
has g j = 11 and gk = 12, then we denote the corresponding two-locus genotype by g jk = g jgk = [1112].
The full N-locus genotype is g = [g1g2 . . .gk . . .gN ] = [g1:N ]. The space of all genotypes g is denoted ΓN .
For any locus Xk, the genotypic background of Xk, i.e. the allele composition of all the genes except Xk,
is g(k) = [g1g2 . . .gk−1gk+1 . . .gN ] = [g1:k−1gk+1:N ]. For example, if N = 4 and j = 2, then g(2) = [112212]
means that the genotypes of X1, X3 and X4 are 11, 22, and 12, respectively. In the main paper we use (see
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e.g. equation [1]) the straightforward notation [g1g2 . . .gk−111gk+1 . . .gN ] = [g1:k−111gk+1:N ] to indicate a
genotype where g j = 11 while the background genotype is arbitrary. In the following we shall also use the
compressed notation g = gkg(k).

By a genotype-phenotype map we mean a mapping or transformation G : ΓN → R which maps a N-locus
genotype g into a real-valued phenotype G(g). For any given background g(k) we define the two allele
substitution effects s1(g(k)) and s2(g(k)) by

s1(g(k)) = G(g1:k−112gk+1:N)−G(g1:k−111gk+1:N),

s2(g(k)) = G(g1:k−122gk+1:N)−G(g1:k−112gk+1:N).
(1)

For example, s1(g(k)) is the change in the genotypic value G(g) when allele 1 is substituted by allele 2 such
that gk changes from 11 to 12 while the background g(k) is kept fixed.

We measure the monotonicity of G(g) with respect to locus Xk for a given background g(k) by

µk(g(k)) =
s1(g(k))+ s2(g(k))

|s1(g(k))|+ |s2(g(k))|
. (2)

If both substitution effects are zero, we set µk(g(k)) = 1. Obviously, |µk(g(k))|≤ 1, the equality sign apply-
ing if and only if both differences have the same sign or if one or both of the terms are zero. Equivalently,
|µk(g(k))|= 1 iff G(g1:k−112gk+1:N) ∈ [G(g1:k−111gk+1:N),G(g1:k−122gk+1:N)]. Translated into single locus
gene action terms this means that for a fixed background genotype g(k), |µk(g(k))| = 1 if locus Xk shows
additivity, partial/complete dominance/recessivity or no phenotypic variation at all, whereas |µk(g(k)| <
1 indicates overdominance or underdominance. Furthermore, sign(µk(g(k))) = sign

(
s1(g(k) + s2(g(k)

)
=

sign(G(g1:k−122gk+1:N)−G(g1:k−111gk+1:N)), i.e. the sign of µk(g(k)) indicates which of the two homozy-
gotes at locus Xk that give the higher phenotype for the given background.

The degree of monotonicity of G with respect to locus Xk is

mk =

∣∣∣∑g(k) µk(g(k))tk(g(k))
∣∣∣

∑g(k) tk(g(k))
=

∣∣∣∑g(k)
(
s1(g(k))+ s2(g(k))

)∣∣∣

∑g(k)
(
|s1(g(k))|+ |s2(g(k))|

) , (3)

where tk(g(k)) = |s1(g(k))|+ |s2(g(k))|, and each sum extends over all backgrounds g(k). The absolute value
ensures that the measure mk does not depend on our arbitrary numbering of the two alleles of Xk. Interchang-
ing the numbering of the alleles leads to the mappings s1(g(k)) %→ −s2(g(k)), s2(g(k)) %→ −s1(g(k)), which
leave the value of mk invariant.

By the triangle inequality mk ≤ 1. If mk = 1, then G is monotonic with respect to locus Xk. On the other
hand mk < 1 indicates non-monotonicity, which could occur for two different reasons. Heterozygous non-
monotonicity occurs if there exists a background g(k) for which |µk(g(k))| < 1, indicating that locus Xk
shows over- or underdominance for the given background. Homozygous non-monotonicy occurs if the sign
of µk(g(k)) depends on the background g(k). This happens if there exist two backgrounds g(k)1 and g(k)2

such that G(22g(k)1 )−G(11g(k)1 ) and G(22g(k)2 )−G(11g(k)2 ) have opposite signs, i.e. the 11 homozygote
gives the higher phenotype in one background while the 22 homozygote is the higher in the other, so-
called sign epistasis. It follows that if G(g1:k−112gk+1:N) ∈ [G(g1:k−111gk+1:N),G(g1:k−122gk+1:N)] and
G(g1:k−111gk+1:N)≤ G(g1:k−122gk+1:N) for all g(k) (or vice versa), then mk = 1.
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Finally, we define the overall degree of monotonicity m for the GP map G as a weighted average of all mk.
Denote the denominator in Eq. (3) by Tk. Then

m =
∑N

k=1 mkTk

∑N
k=1 Tk

=

∣∣∣∑k,g(k)
(
s1(g(k))+ s2(g(k))

)∣∣∣

∑k,g(k) (|s1
(
g(k))|+ |s2(g(k))|

) . (4)

In the second expression the sums extend over all k and over all backgrounds g(k) for eack k. Obvivously,
m < 1 if at least one mk < 1, otherwise m = 1.

The present definition of m is equivalent to the one given in the main paper.

2 Order breaking, feedback loops and feedforward loops

In section 1 we studied monotonicity in generic genotype-phenotype maps. In the present section we analyse
GP maps emerging from ODE models of gene regulatory networks. We consider a dynamic system con-
sisting of N mutually interacting diploid loci Xi, i = 1, . . . ,N, regulating each other’s expression. Following
Omholt et al. (2000) we introduce genetic variation in regulatory parameters and use steady-state expres-
sion levels as phenotypes. In particular, we show that there are particular motifs in the network architecture
whose presence tend to lower the degree of monotonicity by giving rise to order breaking.

We shall use the set notation for vectors and matrices introduced in Plahte et al. (tted). Let J and K be
disjoint subsets of 1,2, . . . ,N. Then for any vector v ∈ RN and matrix A ∈ RN ×RN , vJ is the vector with
components v j, j ∈ J, and AJK is the matrix with elements A jk, j ∈ J and k ∈ K. To indicate that some
components or elements are excluded from a vector or a matrix, we use parentheses in superscripts. For
example, x( j) = [x1, . . . ,x j−1,x j+1, . . . ,xN ], and A( jk) is the matrix obtained from A by excluding row j and
column k. In a similar way we let A(JK) signify the matrix obtained from A by excluding the rows numbered
by J and columns numbered by K.

The time dependent output of Xi is denoted zi, and we define z = [z1,z2, . . . ,zN ]. It goes without saying that
zi in general depends on the genotypes of all the genes even though we will not always state this explicitly.
Our model, which was first suggested by Omholt et al. (2000), is based on the assumption that the total
output rate of the gene is the sum of the output rates of each allele. This assumption is reasonable if the two
alleles only differ in the regulatorory domain of the gene, not in its coding domain.

For a given genotype g = α jβ jg( j) the equations of motion for Xj are

ż1
j = aα j

j rα j
j (z)− γα j

j z1
j ,

ż2
j = aβ j

j rβ j
j (z)− γβ j

j z2
j ,

z j = z1
j + z2

j ,

(5)

where zα j
j and zβ j

j are the time-dependent outputs of the two alleles. The two allele rate functions r1
j (z) and

r2
j (z) have range [0,1] so that a1

j and a2
j represent the maximum production rates of the two alleles. We

assume that all dose-response functions in Eq. (5) are differentiable and monotonic with respect to each of
its arguments, and that for each j,k, the signs of ∂ r1

j/∂xk and ∂ r2
j/∂xk in the stable point x are equal.
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In the following we are only concerned with the homostatic states of Eqs. (5), and assume for simplicity that
they have just a single stable equilibrium point. Solving the stability conditions of Eq. (5) with respect to z1

j
and z2

j and adding gives

f j(x) = bα j
j rα j

i (x)+bβ j
j rβ j

j (x)− x j = 0, j = 1, . . . ,N, (6)

where x is the stable point, bαi
j = aα j

j /γα j
j and bβ j

j = aβ j
j /γβ j

j . Since our monocity measure is invariant with
respect to the numbering of alleles, we will without loss of generality assume b1

j ≤ b2
j for all j.

The network architecture can be read out from the structure of the system’s Jacobian matrix in the stable
state x. We define the elements of the Jacobian J for the set of functions f j defined in Eq. (6) by

Jjk = Jjk(g) =
∂ f j(x)

∂xk
, j,k = 1, . . . ,N. (7)

The determinant of J is D = det(J).

To the Jacobian J it is customary to assign a signed directed graph G in which each locus Xk is represented
by a node Xk, and in which there is an arc from Xj to Xi if and only if Ji j #= 0, its sign given by the sign
of Ji j. A chain or a directed path Ci j in G is a set of arcs leading from Xj to Xi, all intermediate nodes
being visited only once. The sign of a chain is equal to the product of the signs of the Ji j corresponding
to the arcs in the chain. If there is a chain from Xi to Xj and also a chain from Xj to Xi through a disjoint
set of nodes, the two chains constitute a (proper) feedback loop (FBL). To each FBL is associated a loop
product L which is the product of the Jacobian elements corresponding to all the arcs in the loop. The sign
of the loop (not to be confused with the signature of the loop, a quantity we shall not need here) is equal
to the sign of L. Therefore, loops are either positive or negative. It is useful to distinguish between proper
loops as defined above and composite loops. A composite loop is a union of two or more proper loops (the
subloops of the composite loop) having no nodes in common. For example, X1 → X2 → X3 → X1 is a proper
loop, (X1 → X2 → X3 → X1)(X4 → X5 → X4) is a composite loop, while (X1 → X2 → X1)(X2 → X3 → X2)
is not a loop at all, but two different loops involving X2. The loop product of a composite loop is equal to
the product of the loop products of its subloops. The feedback loops (proper and composite) in G can be
read out from J by computing its determinant and all its principal subdeterminants. Each nonzero term in
any of these corresponds a feedback loop in G . A node regulating itself constitutes an autoregulatory loop,
corresponding to a nonzero diagonal element Jii stemming from ∂ fi/∂xi #= 0 for some i. If ∂ fi/∂xi =−1, the
rate function of node Xi is independent of xi. In that case there is no effective autoregulation in a biological
sense.

Two chains from Xj to Xi, i #= j, with only the endpoint nodes in common, constitute a feedforward loop
(FFL). If the two chains have opposite signs, the FFL is incoherent (IFFL), otherwise it is coherent (CFFL).

In the following sections we analyse the causes of order breaking in the restricted case when there is only
variation in the maximum transcription rates a1

i and a2
i , not in the shape of the dose-response functions r1

i
and r2

i , implying r1
i (x) = r2

i (x) = ri(x). This restricted, non-pleiotropic kind of variation could occur by gene
duplication or allele knockout in a homozygous locus.

As indicated in the first section, the system’s phenotype could be any scalar quantity defined by its equi-
librium value x. In the following we assume the genotype-phenotype map G(g) = xq(g), q ∈ {1 : N}, for a
given and fixed k, and investigate the monotonicity properties of G(gkg(k)) with respect to genetic variation
in any locus Xk for different backgrounds g(k). In the next section we prove the following result:
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Proposition 1. Assume all rate functions in Eq. (5) are monotonic and that G = xq for some fixed q. If
there is no feedback loop (FBL) and no feedforward loop (FFL) anywhere in G corresponding to the system
Eq. (5), then necessarily mk = 1 for all k. In a system with a single feedback loop or a single feedforward
loop there may be order breaking for some xk if the feedback loop is positive or the feedforward loop is
incoherent, but if the FBL is negative or the FFL is coherent, no order breaking can occur for any xk.

At the end of this note we show that under some reasonable conditions this result is also valid for more
general phenotypes depending on more than one xq.

2.1 Networks without loops

We first consider networks containing no feedforward loop and no feedback loop. In these networks there
is at most one chain from one node to another, and of course no autoregulatory loops. If there is a chain
from Xj to Xi, there is no chain from Xi to Xj. Any node is either unregulated (constitutively expressed) or
regulated by one or several other nodes.

We first prove a useful lemma.

Lemma 1. If xl(11g( j))≤ xl(12g( j))≤ xl(22g( j)) for any j and l and there is an arc Xl → Xm with positive
sign and no other chain from Xl → Xm, then also xm(11g( j)) ≤ xm(12g( j)) ≤ xm(22g( j)). If the sign of the
arc is negative, then xm(11g( j))≥ xm(12g( j))≥ xm(22g( j)).

Proof. Suppressing the explicit dependence on other genes that are not affected by genetic variation in Xj,
we have

xm(11g( j)) = 2b1
mrm(xl(11g( j))),

xm(12g( j)) = (b1
m +b2

m)rm(xl(12g( j))),

xm(22g( j)) = 2b2
mrm(xl(22g( j))).

(8)

Now, rm is monotonic by assumption. If it is monotonically increasing,

xm(12g( j))≥ (b1
m +b2

m)rm(xl(11g( j))),

xm(22g( j))≥ 2b2
mrm(xl(11g( j))),

(9)

from which the assertion follows. If rm is monotonically decreasing, we find the same relations with the
inequality signs reversed.

If there is no chain from Xj to Xq, genetic variation in Xj will not affect G, i.e. G(11g( j)) = G(12g( j)) =
G(22g( j)), and does not give order-breaking. Then assume Xj is upstream relative to Xq. We first let Xj be
an unregulated node with no predecessor. Then

x j(11g( j)) = 2b1
j ,

x j(12g( j)) = b1
j +b2

j ,

x j(22g( j)) = 2b2
j ,

(10)
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because r1
j = r2

j = 1. From this it follows that x j(11g( j))≤ x j(12g( j))≤ x j(22g( j)).

Repeated use of the Lemma leads eventually to xq(11g( j)) ≤ xq(12g( j)) ≤ xq(22g( j)), irrespective of the
genotypic background of Xj. The above argument can be carried out in the same way if Xj is not top-stream.
It follows that in a network without FFBs and FFLs, there can be no order breaking under non-pleiotropic
genetic variation.

2.2 Networks with a feedback loop

In this section we investigate the effects of feedback loops on the degree of monotonicity. We consider a
network in which there is no FFL and a single FBL. Without loss of generality let the loop be X1 → X2 →
. . .→ Xk → X1, comprising k nodes. There is at most one directed path from any node Xl to any other node
Xm, and if there is a path from Xl to Xm, there is no return path from Xm to Xl if either Xl or Xm is not part of
the loop.

In Plahte et al. (tted) we introduced the propagation functions xk = pk j(x j) which express the effect on xk
of genetic variation in Xj. An important property of pk j is that it can be derived from all the equilibrium
conditions Eq. (6) except the equation for f j. This implies that the effects of genotypic variation in Xj are
only expressed in terms of x j, while the parameters expressing the genotype of Xj do not enter into the
function pk j. We showed in the previous section that there can be no order breaking in a network without
FBLs and FFLs. Below we show this again, using a more formal derivation, as a warm-up for the analysis
of FBLs.

In a network without FBLs and FFLs let XU be the set of nodes in the chain from Xk to Xk, initial node and
terminal node included, and XV the full set of nodes not in this chain. For example, if N = 5 and the chain is
X2 → X1 → X4, then U = {1,2,4}, V = {3,5}, XU = {X1,X2,X4}, and XV = {X3,X5}. The derivative p′kk(xk)
can be expressed as (Plahte et al., tted)

p′kk(xk) = (−1)n−1 DVV

D( j j) P, (11)

where n is the number of nodes in the chain, DVV is the principal subdeterminant of the Jacobian J of
Eq. (6) composed of the rows and columns not in C, D( j j) is the principal subdeterminant of J with row j
and column j deleted, and P is the product of the Jacobian elements corresponding to the arcs in the chain.
As there is no feedback loop in any of the subsets of nodes defining these two subdeterminants, only the
diagonal elements stemming from the term −xi in fi contribute, and DVV = (−1)N−n, D( j j) = (−1)N−1,
hence

p′kk(xk) = (−1)n−1+N−n+N−1P = P. (12)

The Jacobian element corresponding to the arc Xl → Xm is Jml = ∂ rm/∂xl , which by assumption has a fixed
sign irrespective of the system’s genotype. It follows that p′kk has a fixed sign, and from this the conclusion
that there can be no order breaking follows just as in the previous section.

Then assume there is a FBL in the network and first let Xq be a node in the loop. Without loss of generality
let the loop be X1 → X2 → . . .→ Xq → X1. Let Xk also be a member of the loop. We will show that if the
loop is positive, the sign sqk of ∂xq/∂bk may vary with varying genotype gk, while if the loop is negative,
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sqk is fixed. In the following we suppress the dependence on xi of any variable xm whose value is unaffected
by genetic variation in Xk.

As above, xq = pqk(xk), but also xk = bkrk(xk−1) and xk−1 = pk−1,q(xq). Combining these three equations
leads to

xq = pqk(bkrk(xk−1)) = pqk(bkrk(pk−1,q(xq))). (13)

By assumption this equation is satisfied by the stable value xq. For all i, let Ei be the equation Eq. (6). To
derive the expressions for pqk and pk−1,k we use Ek+1, . . . ,Eq and E1, . . . ,Ek−1, respectively. In other words,
Ek is not used. It follows that the right-hand side of Eq. (13) does not depend implicitly on bk. Using implicit
differentiation on Eq. (13) therefore gives

∂xq

∂bk
=

d pqk
dxk

1−bk
d pqk
dxk

drk
dxk−1

d pk−1,q
dxq

, (14)

granted that the denominator in Eq. (14) is nonzero. Combining this with Eq. (12) leads to

∂xq

∂bk
=

PC

1−L
, (15)

where L is the loop product of the loop, i.e. the product of the Jacobian elements corresponding to all directed
arcs in the loop, and PC is the chain product for the chain from Xk to Xq.

It is easy to see that L is proportional to bk and that bk does not enter into PC. If the loop is negative, L < 0,
the sign of ∂xq/∂bk is fixed and equal to the sign of PC. If PC > 0, then this implies that xq(11g(k)) ≤
xq(12g(k)) ≤ xq(22g(k)) so that no order-break is possible, and likewise if PC < 0. However, when the loop
is positive, homozygous or heterozygous order breaking will occur if 0 < L < 1 for one background or one
value of bk and L > 1 for another.

If Xk is not in the loop but upstream of some node Xj in the loop, genetic variation in Xk causes monotonicity
in Xj, and the above analysis can be carried out more or less in the same way, also leading to Eq. (15). If Xq
is not in the loop but downstream of some Xj in the loop, the order breaking in Xj may propagate to Xq, and
monotonicity is not ensured.

2.3 Feedforward loops (FFLs)

A feedforward loop (FFL) is a motif in the network in which there are two different chains C1 and C2 from
one particular node to another particular node. To each chain Ci is associated a chain product Pi defined as
the product of the Jacobian elements corresponding to the arcs in Ci. If P1 and P2 have equal signs, the FFL
is coherent, otherwise it is incoherent.

In a network with a single feedforward loop and no feedback loops we now investigate the effect on G = xq
of genetic variation in Xk by studying possible sign changes in s1(g(k)) and s2(g(k)) for varying background
g(k. We first let Xk and Xq be the initial and terminal nodes in the FFL. The two chains C1 and C2 leading
from Xk to Xq comprise n1 and n2 nodes including Xk and Xq, respectively. Let the set of nodes in C1 and C2
be XU1 and XU2 , respectively, where U1 and U2 are the corresponding subsets of {1,2, . . . ,N}, and let V1 and
V2 be their complements.
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We again use the propagation function xq = pqk(xk) which expresses the variation of xq when xk varies due
to genotypic variation. Roughly speaking, the derivative of pqk(xk) can be expressed as a sum of terms, each
term corresponding to one of the chains leading from Xk to Xq (Plahte et al., tted). To the chain Ci we assign
the chain weight wi given by

wi = (−1)ni−1 DViVi

D(kk) , i = 1,2, (16)

where DViVi is the Jacobian subdeterminant for the nodes not included in Ci, and D(kk) is the Jacobian
subdeterminant for all nodes except Xk. Eq. (11) which expresses the the derivative of pqk when there is
a single chain from Xk to Xq, is then replaced by (Plahte et al., tted)

dpqk

dxk
= w1P1 +w2P2. (17)

When there is no feedback loop in the system, only the diagonal elements in J stemming from the term −xi
in Eq. (6) contribute to the determinants DViVi and D(kk):

DViVi = (−1)N−ni ,

D(kk) = (−1)N−1.
(18)

Altogether this gives
dxq

dxk
=

dpqk

dxk
= P1 +P2. (19)

The chain products P1 and P2 depend on the genotype gk of Xk as well as on the genotypic background g(k),
but their signs S1 and S2 are invariant under genotypic variation. It is easy to see that a negative autoregula-
tory loop, which is a common feature in gene regulatory networks, would not invalidate the conclusion, but
a positive autoregulatory loop might.

If the FFL is incoherent, P1 and P2 have opposite signs, implying that the sign of dxq/dxk may vary. This
may give rise to heterozygous as well as homozygous non-monotonicity. If the FFL is coherent, however,
no order-breaking can occur.

If Xk is upstream relative to the initial node Xinit of the FFL, it follows from Sect. 2.1 that there will be no
order-breaking in Xinit, and the above argument is still valid.

2.4 More general phenotypes

In real life, relevant phenotypes are not direct gene products, but rather functions of the concentrations of
one or several gene products. Let the phenotype G(g) be a function of xU(g), G = h(xU(g)), where U is a
subset of {1,2, . . . ,N}, and assume that for any u ∈U , ∂h/∂xu has fixed sign for all genotypes. To analyse
this case we extend the original system Eq. (6) to

bαi
i rαi

i (x(g))+bβi
i rβi

i (x(g))− xi(g) = 0, i = 1, . . . ,N,

h(xU(g))−G(g) = 0,
(20)

and apply our above results to this system, in which G(g) = xN+1(g), i.e. q = N +1. If there are two nodes
among XU which have a common predecessor Xk, then there will exist two chains from Xk to XN+1. These
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two chains constitute a feedforward loop with XN+1 as final node. If this FFL is incoherent, order breaking
due to genetic variation in Xk may occur even if there is no order breaking in the original system comprising
the nodes X1, . . . ,XN . If the FFL is coherent, order breaking only occurs if it occurs in the original system.
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Abstract

Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion
of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated
dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as
variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic
variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps,
we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-
level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may
facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the
development of phenomics technology.
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Introduction

The phenotypic variance cumulatively explained by marker loci
found to associate with complex traits in genome-wide association
studies (GWAS) is usually much less than the narrow-sense
heritability [1–6], the ratio of additive genetic variance to total
phenotypic variance. Several explanations have been proposed for
this unexplained variance, popularly called the missing heritability
[1], including imprecise heritability estimates; insufficient sample
size; exclusion of particular types of polymorphisms such as copy
number variants and rare SNPs in GWAS; unaccounted epistatic
effects; and underestimated effect size of associated SNPs due to
incomplete linkage with causal variants [3,6]. Recently it was
shown [7] that a large proportion of the missing heritability can be
accounted for if one estimates the variance explained by all
available marker loci together. This suggests that most of the
genetic variation underlying complex trait variation is due to
marginal effects of many loci that are too small to pass stringent
significance tests. Strong support for this interpretation comes
from several meta-analyses of genome-wide association data [8–
10]. While this insight appears to resolve much of the missing
heritability issue as such, it also implies that standard GWAS
approaches will not be very helpful for disclosing which genetic
variants do actually contribute to additive variance.
Part of the problem underlying the missing heritability is that

while the genotype-phenotype map in reality arises from complex
biological systems best described by nonlinear dynamic models,
the statistical machinery of quantitative genetics, including GWAS

methods, is built upon linear models of gene action. The aim of
this study is not to improve the statistical methods per se, but rather
to explore how more of the missing heritability can be explained
and understood by combining nonlinear dynamic models with
existing GWAS methods. The research program of linking system
dynamics and genetics was suggested more than 40 years ago [11]
and has been an active research area for more than 10 years [12–
24]. Emergent properties of nonlinear systems, such as systemic
silencing [25], might lead to a situation where genetic variation
that penetrates to low-level phenotypes underlying a higher-level
phenotype does not necessarily manifest in the higher-level
phenotype itself. Doing GWAS on these low-phenotypes may
thus reveal more of the genetic variation influencing the higher-
level trait. This line of reasoning is reflected in recent GWA studies
on metabolite profiles [26,27], in pathway and network-based
analysis of genome-wide association studies [28] and in GWAS
analyses on global gene expression data [29–30]. While all these
studies represent important contributions, they do not combine a
genetic mapping framework with mathematical models describing
how high-level trait variation emerges from low-level trait
variation, i.e. they do not provide a quantitative framework for
elucidating how genetic variation affecting a low-level phenotype
do actually influence a focal high-level phenotype.
If a dynamic model can describe the phenotypic variation of a

given trait, it follows that irrespective of the biological resolution of
the model, the genetic variation underlying the phenotypic
variation will have to be reflected as variation in the parameters
of the model. We therefore hypothesized that performing GWAS
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on parameters in computational physiology models might reveal
much more of the underlying genetic variation, as well as shedding
light on how this variation actually causes phenotypic variation.
To test the plausibility of this reasoning, we combined GWAS

methodology with a causally-cohesive genotype-phenotype (cGP)
model linking genetic variation to phenotypic variation. More
specifically, a cGP model [19] is a mathematical model of a
biological system where low-level parameters have an articulated
relationship to an individual’s genotype, and higher-level pheno-
types emerge from the mathematical model describing the causal
dynamic relationships between these lower-level processes. Our
approach bears some resemblance to that of functional GWAS
(fGWAS) [31], where the genetic control of traits is analyzed by
integrating biological principles of trait formation into the GWAS
framework through mathematical and statistical bridges. Fu et al.
[23] recently extended the functional mapping framework [15] to
handle cyclic phenotypes such as circadian rhythms by combining
differential equations with functional mapping of QTLs. However,
there are clear differences between functional mapping and the
cGP approach. In functional mapping the phenotypic measure-
ments are currently done at the systems level, while lower-level
parameters are estimated by combining curve-fitting with more
classical QTL methods. In contrast, the cGP approach advocated
here focuses on measuring lower-level parameters based on the
idea that they are highly relevant phenotypes of the system.
We studied a cGP model of a mouse heart cell [24], where

genetic variation is mapped to parametric variation, which
propagates through the physiological model to generate multivar-
iate phenotypes for the action potential (an electrical signal) and
calcium transient (linked to muscle contraction) under regular
pacing. The rationale for using a heart cell model was that
multiscale and multiphysics modelling of the mammalian heart has
a solid empirical basis, and arguably comprises the most complex
mathematical conceptualization of any organ or physiological trait
available. For clarity of exposition, and because heart cell models
lie at the core of this class of multiscale whole organ models [32–
37], we deemed it sufficient to illustrate our points using a single
cell model only. We used HapMap data [38,39] as a guide to
generate genetic variation with realistic allele frequencies and
linkage disequilibrium to underlie variation in the model
parameters. Based on HapMap [39] individuals we simulated
complex pedigree populations and performed GWAS on both low-

level parameters and high-level phenotypes arising from the cGP
model. The layout of the computational pipeline used for this
study is depicted in Figure 1.
We show that genome-wide association studies on parameters

reveal many more of the underlying SNPs than when using higher-
level cellular phenotypes. Furthermore, the SNPs identified by
GWAS on parameters can be used to build multivariate prediction
models of higher-level phenotypes giving much higher explained
variance than from GWAS on higher-level phenotypes alone. Our
results suggest that combining statistical genetics with computa-
tional biology will facilitate both identification of genetic variation
underlying complex traits and a much deeper understanding of
how this genetic variation becomes causative.

Methods

The general layout of the study is outlined in Figure 1.

Heart cell model
The cell model [40] extends that of Bondarenko et al. [41] with

more realistic calcium handling, conservation of charge, and
detailed re-parameterization to consistent experimental data for
the C57BL/6 ‘‘black 6’’ mouse. State variables include ion
concentrations of sodium, potassium and calcium in the cytosol,
calcium concentration in the sarcoplasmic reticulum, and the state
distribution of ion channels, whose transition rates between open,
closed, and inactivated conformations may depend on transmem-
brane voltage. Formulated as a system of coupled ordinary

Figure 1. Flowchart of computational pipeline. A heart cell
model, a genetic map and a virtual population are tied together by
selecting heart model parameters assumed to be under influence of
genetic variation and associating the parameter variation to a
population of virtual genomes based upon HapMap 3 data. Individual
genotypes are mapped into heart model parameters (steps 1–3) and by
running the heart cell model parameters are mapped into cell-level
phenotypes (step 4). Finally, GWAS analysis is then performed on the
virtual population (step 5).
doi:10.1371/journal.pcbi.1002459.g001

Author Summary

Despite an ever-increasing number of genome locations
reported to be associated with complex human diseases or
quantitative traits, only a small proportion of phenotypic
variations in a typical quantitative trait can be explained by
the discovered variants. We argue that this problem can
partly be resolved by combining the statistical methods of
quantitative genetics with computational biology. We
demonstrate this for the in silico genotype-to-phenotype
map of a model heart cell in conjunction with publically
accessible genomic data. We show that genome wide
association studies (GWAS) on model parameters identify
more causal variants and can build better prediction
models for the higher-level phenotypes than by perform-
ing GWAS on the higher-level phenotypes themselves.
Since model parameters are in principle measurable
physiological phenotypes, our findings suggest that
development of future phenotyping technologies could
be guided by mathematical models of the biological
systems being targeted.

Dynamic Model Parameters and Missing Heritability
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differential equations, this model provides a comprehensive
representation of membrane-bound channels and transporter
functions as well as fluxes between the cytosol and intracellular
organelles. As the action potential and calcium transient features
following an electrical stimulation are the only state descriptors fed
into higher level features of current multiscale heart models [33],
we used these and associated aggregated measures as high-level
phenotypes, see ‘‘Parameter to phenotype mapping’’ below. See
Vik et al. [24] for a detailed description of this model including
model diagram, differential equations and a CellML implemen-
tation.

Polymorphic parameters
Out of the 86 model parameters we chose 34 to mediate the

effects of genetic variation (Table 1 and Table S1). Because the
genotype to parameter map for parameters describing ion channel
properties may in general be much more straightforward than
what is the case for many others, we picked mainly parameters
describing affinities, conductivities and ion permeabilities for the
ion channels and pumps underlying four potassium outward
currents, one calcium current, one chloride current, one sodium
current, the sodium-calcium exchangers, the sarcoplasmic reticu-
lar calcium ATPase (SERCA), the sodium potassium pump,
cytosolic calmodulin, the ryanodine receptors on sarcoplasmic
reticulum and the calcium handling processes within sarcoplasmic
reticulum.

Virtual genome and virtual population
To ensure some realism in the construction of the genetic

structure of our in silico populations in terms of allele frequencies
and LD patterns, we extracted HapMap3 data [39] for 2,000
evenly spaced SNPs (,5000 nucleotides apart) for each of the first
20 autosomal chromosomes. We extracted genotypes for the
40000 SNPs for the 1301 individuals in the 11 HapMap 3
populations. We then expanded this into a population of 5000
individuals by use of the Python package simuPOP [42]. The
population expansion by simuPOP maintained allele frequencies
and LD patterns in accordance with the HapMap 3 data.
Mutations were introduced based on a symmetric diallelic
mutation model, all recombinations were based on genetic maps
estimated from the HapMap data and migrations between the 11
subpopulations were allowed for. The mutation rate, migration
rate and number of generations used as input to the simuPOP
population expansion were 1e-8, 0.001 and 500, respectively.

Genotype to parameter mapping
Assuming a purely additive genetic model, 400 causal SNPs

were randomly sampled from the virtual genome for each of the
34 parameters selected to mediate genetic variation. The genotype
to parameter mapping for each parameter was set up by defining
the 5,000640,000 genotype matrix G, where each element gij
denoted the genotype of individual i at SNP j (21 for the
homozygous with the least frequent allele, 0 for the heterozygous
and 1 for the homozygous with the most frequent allele). We then
constructed for each parameter the 40,000x1 relative effect vector
E, where element ej was sampled from a Laplace (0, 0.0035)
distribution if the j-th SNP was among the 400 parameter-specific
causative SNPs, and set to 0 otherwise (the relative effect being
defined as the percentage increase or decrease of the baseline
parameter value (Table 1 and Table S1)). The 5000-element
vector of parameter values for all individuals was then computed
as p(GE+1), where p is the baseline value. With this procedure,
each of the focal 34 parameters was varied within ,635% of its
baseline value, and for each causal SNP, the heterozygous

individuals were assigned the baseline parameter value (Table 1
and Table S1). The 635% parameter variation range was chosen
as a compromise between getting ample genetic signals and
avoiding too many physiologically unrealistic phenotypes. We also
tested a genetic model with 200 causative SNPs for each
parameter, the only difference being that the standard deviation
of the Laplace distribution was set to 0.0049.

Parameter to phenotype mapping
Cellular phenotypes for individual parameter sets were

generated by a virtual experiment of constant pacing as described
in Bondarenko et al. [41]. The potassium current was stimulated by
215 V/s for 3 ms at the start of each stimulus interval.
Convergence was checked by comparing successive intervals with
respect to the initial value of each state variable as well as the
integral of its trajectory over that interval. A running history of 10
intervals was kept, and after each interval we checked for a match
(within a relative tolerance of 5% for all state variables) against the
previous one. This was done for three different pacing rates with
stimulus intervals of intervals 100, 200 and 300 ms, respectively.
The cell dynamics was categorized as ‘‘failure’’ if it did not
converge to non-alternating dynamics within 10 minutes of
simulation time. The Python code of the heart cell model was
autogenerated from CellML [43], using the code generating
service available at the CellML repository (www.cellml.org). The
equations were integrated using the CVODE solver [44] with a
Python wrapper.
Eight scalar phenotypes (see Table 2 and Table S2) were

extracted from each computed action potential and calcium
transient curve: the initial value (apbase and ctbase), the amplitude
(apamp and ctamp), the peak value (appeak and ctpeak), the time
to peak value (apttp and ctttp), the time to 25%, 50%, 75%, and
90% of the initial base value (apd25, apd50, apd75, apd90 and
ctd25, ctd50, ctd75, ctd90).

Data preparation
We removed individuals with physiologically unrealistic pheno-

types within each of the 100 datasets analyzed. The exclusion
criterion was based on the inter-quartile range (IQR); points that
were more than twice the IQR above the third quartile or below
the first quartile were excluded. Each filtered data set, containing
4000–5000 individuals, was divided into a training set of 2500
individuals and a test set consisting of the remaining individuals.
The training data set was used to detect causal SNPs, compute the
false positive rate and sensitivity characteristics. The test set was
used to estimate the phenotypic variation accounted for by the
detected SNPs.

Statistical analysis
The same GWAS procedure was used for each parameter and

each phenotype. The quantitative trait association analysis was
performed with the program PLINK [45] on the training data. We
used a threshold of 1e-5 on the Bonferroni-corrected p-value from
PLINK to determine the set of significant SNPs.
The detected SNP set and associated discovery rates were

defined as follows. Let Si denote the set of significant SNPs from
GWAS on the i-th parameter and let Ci denote the causal SNPs set
of the i-th parameter. The set of detected SNPs of the i-th
parameter was then computed as Di= Si>Ci, and the discovery
rate of i-th parameter was computed as di=|Di|/|Ci|. The union
of causal SNP sets for parameters defined the causal SNP set
underlying all cellular phenotypes, and the detected SNP set and
the discovery rate for each cellular phenotype was computed in the

Dynamic Model Parameters and Missing Heritability
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same way as for each parameter. The set of false positive SNPs of
the i-th parameter or phenotype, Fi, consists of SNPs in the set of
significant SNPs Si that are not in the causal SNPs set Ci.. The
false positive rate of the i-th parameter or phenotype was defined
as the number of false positive SNPs in Fi divided by the number
of signals in Si, |Fi|/|Si|.
To quantify explained genetic variance a multiple regression

model was constructed by regressing the phenotype or parameter
value of the training set on the causal SNPs detected by GWAS
(similar to the weighted genomic profile approach in [46]). Then
the phenotypes of test set individuals were predicted using the
corresponding fitted models. We measured the explained variation
by the R2 values from regressing observed values on predicted
phenotypic values for the individuals in the test set.

Global sensitivity analysis
We quantified the linear sensitivity [47] of each phenotype to

each parameter using linear regression in the training set. For each
high-level phenotype and Monte Carlo simulation we used the
2500 simulated phenotypes as response and performed a series of
univariate regressions each time with a single parameter as
predictor. We measured global sensitivity by the coefficient of
determination (R2).

Results/Discussion

The proportion of true causative SNPs detected by GWAS was
as expected substantially higher for the parameters than for the
cellular phenotypes (Figure 2 and Figure S2 for the 200 SNPs

Table 1. Parameters with genetic variation.

Parameter
name Description Unit Baseline value Min Max

Ka+ The PC1 – PO1 rate constant of the Ryanodine receptor mM24/ms 6.08e-3 4.09e-3 8.06e-3

Ka2 The PO1 – PC1 rate constant of the Ryanodine receptor ms21 7.133-2 4.70e-2 9.58e-2

Kb+ The PO1 – PO2 rate constant of the Ryanodine receptor mM23/ms 4.05e-3 2.64e-3 5.47e-3

Kb2 The PO2 – PO1 rate constant of the Ryanodine receptor ms21 9.65e-1 6.32e-1 1.31

Kc+ The PO1 – PC2 rate constant of the Ryanodine receptor ms21 9.00e-3 6.09e-3 1.20e-2

Kc2 The PC2 – PO1 rate constant of the Ryanodine receptor ms21 8.00e-4 5.24e-4 1.07e-3

m The Ca2+ cooperativity parameter of PO1 – PO2 of the Ryanodine receptor - 3.0 1.99 3.97

n The Ca2+ cooperativity parameter of PC1 – PO1 of the Ryanodine receptor - 4.0 2.75 5.33

P_CaL The permeability of the L-type Ca2+ channel ms21 2.5 1.62 3.30

t_L The time constant of the switch between open and close states of the L-type Ca2+ channel ms21 1.5 1.01 1.98

tau_L The Inactivation time constant of the L-type Ca2+ channel ms21 1.15e3 7.82e2 1.52e3

phi_L The proportion of closed states in open mode of the L-type Ca2+ channel - 1.80 1.23 2.43

Kup The SERCA affinity to Ca2+ mM 4.12e-1 2.93e-1 5.68e-1

V1 The leak constant of the Network Sarcoplasmic Reticulum ms21 4.5 3.05 5.90

KCSQN The Calsequestrin affinity to Ca2+ mM 6.30e2 4.35e2 8.57e2

K_Co The affinities of the Na+/Ca2+ exchanger to extracellular Ca2+ mM 1.4e3 9.38e2 1.85e3

K_Ci The affinities of the Na+/Ca2+ exchanger to intracellular Ca2+ mM 3.6 2.45 4.93

K_No The affinities of the Na+/Ca2+ exchanger to extracellular Na+ mM 8.80e4 6.06e4 1.20e5

K_Ni The affinities of the Na+/Ca2+ exchanger to intracellular Na+ mM 1.2e4 8.38e3 1.58e4

KNai The affinity of the Na+/K+ pump to intracellular Na+ mM 1.66e4 1.13e4 2.17e4

KKo The affinity of the Na+/K+ pump to extracellular K+ mM 1.5e3 1.04e3 2.08e3

KpCa The affinity of the Ca2+ pump to intracellular Ca2+ mM 2.89e-1 1.95e-1 3.93e-1

Vmax The maximal exchange rate of Na+/Ca2+ exchanger pA/pF 3.94 2.71 5.19

Imax The maximal current of the Na+/K+ pump pA/pF 2.49 1.71 3.58

GK1 The maximal conductance of the time-dependent K+ channel ms/mF 3.5e-1 2.39e-1 4.52e-1

GKr The maximal conductance of the rapid delayed rectifier K+ channel ms/mF 1.65e-2 1.11e-2 2.17e-2

GKur The maximal conductance of the ultrarapidly activating delayed rectifier K+ channel ms/mF 2.50e-1 1.76e-1 3.27e-1

KCl The half saturation constant of the Ca2+ activated Cl2 channel mM 1.00e1 6.65 1.36e1

GNa The maximal conductance of the Na+ channel ms/mF 1.60e1 1.07e1 2.10e1

GKtof The maximal conductance of the rapidly recovering transient outward K+ channel ms/mF 5.35e-1 3.97e-1 7.11e-1

GClCa The maximum conductance of the Ca2+ activated Cl2 channel ms/mF 1.00e1 6.56 1.33e1

on_rate The autophosphorylation rate of Calmodulin ms21 5.0e-2 3.25e-2 6.56e-2

off_rate The dephosphorylation rate of the Calmodulin ms21 2.0e-4 1.34e-4 2.67e-4

IpCm The maximal current of the Ca2+ pump pA/pF 9.55e-2 6.35e-2 1.26e-1

Listing of the 34 parameters where genetic variation was introduced. The descriptions, units and baseline values are taken from the original publication [40]. The
minimum and maximum values were obtained from the Monte Carlo simulations.
doi:10.1371/journal.pcbi.1002459.t001
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case). Median detection rates of causal SNPs were in the range
3.5%–4% after GWAS directly on parameter values (Figure 2A),
and this number dropped to ,0.05% for GWAS studies on action
potential phenotypes and ,0.02% for calcium transient pheno-
types (Figure 2B), and the corresponding figures in the 200 SNPs
case were 8–8.5%, ,0.16% and ,0.08%. The low overall
detection rates were to be expected since we sampled SNP effects
from an L-shaped distribution resulting in datasets where a small
proportion of the SNPs underlying a given parameter will explain
a substantial part of the variation. The main explanation for the
decrease in detection rates is that the number of causal SNPs
increases 34 times and the relative effects of all causal SNPs
decrease, making them harder to pick up. Another, probably less
important, phenomenon contributing to lower detection rates at
the higher-level phenotypes is that going from parameter level to
the system-level phenotype introduces nonlinearities in the SNP
effects, and standard GWAS methods pick up only the additive
part.
The difference between parameter and cellular phenotypes is

also evident when looking at the amount of phenotypic variance
explained by SNPs detected in the GWAS (Figure 3 and Figure S3
for the 200 SNPs case). The median explained variance is typically
in the range 30–40% for parameter phenotypes (Figure 3A), 10–
20% for action potential phenotypes and ,5% for calcium
transient phenotypes (Figure 3B). The proportion of phenotypic
variance explained by detected SNPs was on average 2.6 (2.0 in
the 200 SNP case) and 5.6 (3.9 for the 200 SNPs case) times higher
for a parameter phenotype than for an action potential and
calcium transient phenotype, respectively. However, when we
made use of the SNPs detected for parameters we were able to
explain 1.8 and 3.9 times (1.6 and 2.9 times for the 200 SNPs case)
more of the phenotypic variance of the action potential and
calcium transient phenotypes, respectively, approaching the levels
obtained for the parameters (Figure 3C). We also calculated the
explained variances with all significant SNPs and obtained similar

results. This suggests that our approach can be tested empirically
in a straightforward way.
The gain in explained variance by using parameter-associated

SNPs was not as dramatic for the action potential phenotypes as
for the calcium transient phenotypes (Figure 3C), but even in this
case the gain in number of identified SNPs was on average 13.96
(12.3 for the 200 SNPs case). The corresponding figure for the
calcium transient phenotypes was 39.46 (26.5 for the 200 SNPs
case). Because these additional SNPs are attached to one or more
parameters describing specific biological processes or features that
are causally related according to the functional structure of the
mathematical model, the gain in our causal understanding of the
genotype to phenotype map may be substantial.
Both the detection rate of causal SNP and the variances

explained for the calcium transient phenotypes were overall
significantly lower than those for the action potential phenotypes
(Figure 2B and 3B). We investigated this further by a linear global
sensitivity analysis of how variation in the cellular phenotypes
depended on variation in the parameters, and compared this with
the number of causative SNPs for each parameter detected by
performing GWAS on high-level cellular phenotypes. We found
that the GWAS results for the two cellular phenotype groups are
predominantly a consequence of the sensitivity structure of the
dynamic model (Figure 4 and Figure S4 for the 200 SNPs case),
and that the action potential phenotypes are overall more sensitive
to fewer parameters than the calcium transient phenotypes. The
only exception to this latter pattern is the parameter Kup,
quantifying the affinity of SERCA to calcium ions (Figure 4A). It
has a substantial impact on the calcium transient base value
phenotype (ctbase), and the amount of variance explained by the
SNPs detected for this phenotype is on par with the action
potential phenotypes (Figure 3B). This suggests that SNPs
associated with traits that are sensitive to few parameters will
have a higher penetrance than SNPs associated with traits that are
sensitive to many parameters for a given model resolution.
Moreover, the results imply that the more poly-parametric the
sensitivity profile of a model phenotype is, the more will be gained
in terms of added explained variance by performing GWAS on
parameters. On the other hand, the results also imply that a
sensitivity analysis can be used to systematically reveal hotspots for
genetic variation underlying a complex trait and thus guide a
parameter phenotyping program. Within this framework a SNP
affecting a parameter to which the focal higher-level phenotypes
are not very sensitive will have little impact on these phenotypes
unless it is highly penetrant at the parameter level.
GWAS methods are well known for producing false positives

due to multiple testing and high LD between SNPs. A typical
GWAS block of SNPs in high LD is often reduced to a subset of
tagSNPs in low LD (typically with a pairwise correlation ,0.2).
The GWAS methods are aimed at identifying significant tagSNPs,
and the task of distinguishing the causal SNPs from false positives
in high LD has to be done with other methods such as functional
studies of candidate SNPs. Our approach is not intended to solve
this problem (but see e.g. [48,49] for reviews of methods for
identifying causal variants after GWAS) and in our study the
increases detection rate for parameters is accompanied by an
expected increased false positive rate (Figure S1 and Figure S5 for
the 200 SNPs case). However, as parameters as a rule are closer to
mechanism than higher-level phenotypes, it should be noted that
to do GWAS on parameters could become very instrumental for
identifying candidate mechanisms and genes for follow up studies.
We envision that ongoing efforts such as the RICORDO project
[50] aimed at developing semantic interoperability for biomedical
data and models will facilitate bioinformatic identification of

Table 2. Attained cellular phenotype values.

Phenotypes Unit Baseline value Min Max

apd25 ms 4.34 4.10 4.56

apd50 ms 5.89 5.33 6.39

apd75 ms 1.11e1 9.28 1.29e1

apd90 ms 1.95e1 1.60e1 2.30e1

apamp mV 1.18e2 1.14e2 1.23e2

apbase mV 28.00e1 28.0.6e1 27.93e1

appeak mV 3.82e1 3.41e1 4.23e1

apttp ms 3.20 3.03 3.35

ctd25 ms 6.19e1 4.80e1 7.98e1

ctd50 ms 1.05e2 7.98e1 1.37e2

ctd75 ms 1.79e2 1.39e2 2.16e2

ctd90 ms 2.55e2 2.20e2 2.79e2

ctamp mM 1.4e-1 4.85e-2 2.76e-1

ctbase mM 8.14e-2 6.12e-2 1.05e-1

ctpeak mM 0.22 1.15e-1 3.68e-1

ctttp ms 2.40e1 1.93e1 2.98e1

The phenotypic values resulting from use of the baseline parameter values (see
Table 1) are listed together with the minimum and maximum values achieved in
the Monte Carlo simulations.
doi:10.1371/journal.pcbi.1002459.t002
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candidate mechanisms and genes from cGP model sensitivities and
GWAS results on parameter phenotypes.
We made deliberate use of the simplest possible genotype to

parameter map in this study. A more complex map incorporating
genetic dominance and various types of epistasis [51] would have

diminished the SNP discovery rates and the explained variances of
the parameters. However, this reduction in penetrance would
apply equally well at higher phenotypic levels, and so would not
affect our conclusions. We did not put any environmental
variation on the parameters as we deemed this unnecessary in a

Figure 2. Percentage of causative SNPs detected by GWAS. (A) The percentage of 400 causative SNPs (y axis) detected as significant SNPs by
GWAS on genetically controlled model parameters (x axis). (B) The percentage of all 13600 causative SNPs (y axis) detected as significant SNPs by
GWAS on cellular phenotypes (x axis). Each boxplot summarizes 100 Monte Carlo runs. See Methods for further descriptions of model parameters and
phenotypes.
doi:10.1371/journal.pcbi.1002459.g002

Figure 3. Phenotypic variance explained by genotypic variation. (A) Total explained variance for genetically controlled parameters (x axis)
using detected causal SNPs as predictors. (B) Total explained variance for cellular phenotypes (x axis) using detected causal SNPs obtained from
GWAS targeting these phenotypes. (C) Total explained variance for cellular phenotypes (x axis) using detected causal SNPs obtained from GWAS
targeting all genetically controlled parameters. Each boxplot summarizes total explained variance by GWAS for 100 Monte Carlo runs. Explained
variance was measured as R2 from test set prediction with a multiple regression model, see Methods for further descriptions.
doi:10.1371/journal.pcbi.1002459.g003
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context where the main focus was to compare the genetic signal
strength at the parameter and cellular phenotype levels. However,
in future studies this aspect needs to be taken into account in order
to make quantitative assessments of how well we will be able to
pick up genetic signals as function of environmental variation.
Our approach will remain useful in conjunction with future

advances in statistical GWAS methodology, as it is applicable to
any phenotypic variation that can be described by computational
physiological modeling, irrespective of its position in the
phenotypic hierarchy. Even in those cases where the parameters
of a computational model are quite high-level phenotypes, our
results suggest that one will be able to gain insights about the
genotype to phenotype map that would otherwise be challenging
to achieve.
There has been an enormous expansion in efforts to model

complex biological systems the last decade, and steadily expanding
model repositories such as http://www.cellml.org and http://
biomodels.net facilitate exchange and reuse of such models.
Illustratively, our study benefited from the reuse of a model
available in CellML format. Future development of the cGP
approach and systems genetics in general will benefit greatly from
these standards and online resources as well as modeling efforts
like the Virtual Physiological Human (http://www.vph-noe.eu).
Reflecting upon how to improve the current performance of

large-scale GWA studies aiming to find the genetic determinants
underlying complex diseases, Dermitzakis and Clark stated
recently that ‘‘A major breakthrough will be to predict and
interpret the effect of mutational and biochemical changes in
human cells and understand how this signal is transmitted spatially

(among tissues) and temporally (spanning development)’’ [52]. Our
results suggest that combining GWAS methodology with a mature
phenomics technology guided to fit the needs of computational
physiology [53], may contribute substantially to making this vision
come true.

Supporting Information

Figure S1 False positive rates of GWAS on parameters
and cellular phenotypes (400 SNPs case). Boxplots
summarizing false positive rates (y axis) for 100 Monte Carlo
simulations for (A) parameters and (B) cellular phenotypes. The
false positive rate is defined as the proportion of the non-causative
SNPs among those identified as significant by the GWAS.
(EPS)

Figure S2 Percentage of causative SNPs detected by
GWAS (200 SNPs case). (A) The percentage of 200 causative
SNPs (y axis) detected as significant SNPs by GWAS on genetically
controlled model parameters (x axis). (B) The percentage of all
6800 causative SNPs (y axis) detected as significant SNPs by
GWAS on cellular phenotypes (x axis). Each boxplot summarizes
100 Monte Carlo runs. See Methods for further descriptions of
model parameters and phenotypes.
(EPS)

Figure S3 Phenotypic variance explained by genotypic
variation (200 SNPs case). (A) Total explained variance for
genetically controlled parameters (x axis) using detected causal
SNPs as predictors. (B) Total explained variance for cellular
phenotypes (x axis) using detected causal SNPs obtained from
GWAS targeting these phenotypes. (C) Total explained variance
for cellular phenotypes (x axis) using detected causal SNPs
obtained from GWAS targeting all genetically controlled param-
eters. Each boxplot summarizes total explained variance by
GWAS for 100 Monte Carlo runs. Explained variance was
measured as R2 from test set prediction with a multiple regression
model, see Methods for further descriptions.
(EPS)

Figure S4 The close resemblance between GWAS results
and linear sensitivity analysis (200 SNPs case). (A) The
number of causative SNPs for each parameter (y axis) detected by
performing GWAS on high-level cellular phenotypes (x axis). The
color intensity of each square describes the mean value of 100
Monte Carlo runs. (B) Sensitivities of the high-level phenotypes (x
axis) of the 2500 individuals in the training set to variation in each
parameter (y axis) quantified by univariate linear regression (see
Methods). The color intensity of each square describes the mean
R2 (coefficient of determination) value of 100 Monte Carlo runs.
(EPS)

Figure S5 False positive rates of GWAS on parameters
and cellular phenotypes (200 SNPs case). Boxplots
summarizing false positive rates (y axis) for 100 Monte Carlo
simulations for (A) parameters and (B) cellular phenotypes. The
false positive rate is defined as the proportion of the non-causative
SNPs among those identified as significant by the GWAS.
(EPS)

Table S1 Parameters with genetic variation. This sup-
plementary table contains data similar to that shown in Table 1,
the only difference being that it is based on 200 causal SNPs per
parameter instead of 400.
(PDF)

Table S2 Attained cellular phenotype values. This
supplementary table contains data similar to that shown in

Figure 4. The close resemblance between GWAS results and
linear sensitivity analysis. (A) The number of causative SNPs for
each parameter(y axis) detected by performing GWAS on high-level
cellular phenotypes(x axis). The color intensity of each square describes
the mean value of 100 Monte Carlo runs. (B) Sensitivities of the high-
level phenotypes (x axis) of the 2500 individuals in the training set to
variation in each parameter (y axis) quantified by univariate linear
regression (see Methods). The color intensity of each square describes
the mean R2 (coefficient of determination) value of 100 Monte Carlo
runs.
doi:10.1371/journal.pcbi.1002459.g004
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Table 2, the only difference being that it is based on 200 causal
SNPs per parameter instead of 400.
(PDF)
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