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Summary

The main objective of this thesis is the improvement of prokaryotic classification based on the
16S ribosomal RNA. As a result of the shift in sequencing technology, generating enormous
amounts of sequencing data and the rise of cultivation-independent methods, the need for
reliable, fast and memory efficient methods has been revealed. The 16S rRNA is used for
building the existing taxonomy of prokaryotes and map it into the phylogenetic tree of life,
as well as for the exploration of microbial communities, which has become a major focus
in microbiology. It is a common belief that the discriminant power of the 16S marker lies
within nine variable regions located along the gene. We began our work challenging this
assumption by searching systematically for discriminating sites that contributes to a correct
classification. 50 discriminating sites were found when classifying down to phylum level
and for genus identification, over 80% of all sites were important, they were all scattered

throughout the gene.

We further present a systematic comparison of five K -mer based classification methods for
the 16S rRNA gene. Classification methods based on counting K -mer are popular because
they are fast, consider the whole sequence and will not suffer from the same uncertainties as
evolutionary models and alignments. The five methods differ both in data usage and mod-
elling strategies. Preprocessed nearest-neighbour (PLSNN) performed best on full-length
sequences, but overall, for both full and fragmented sequences, the multinomial method out-
performed the others. It was significantly better than the RDP-classifier, which today works

as a gold standard classification method.

There is no official taxonomy of prokaryotes and any classification method will suffer from
the lack of consensus in training data. The ConTax database, presented in this thesis, is a
seed-set of the most accurately classified sequences from which we can continue to explore
the prokaryotic taxonomy and train new classification methods. A major feature of the new
dataset is that a sequence is included only if three primary 16S databases agree on its assigned
taxonomy down to genus level. The results are combined and presented in an R-package,
microclass, which provide classification tools down to genus level. Efforts have been made
to make the tools both fast and memory-efficient. All methods can be trained on new data, but
a ready-to-use tool, the taxMachine, is also presented. The taxMachine has been trained
with the multinomial method on full-length 16S sequences to recognize full or fragmented

sequences, using the designed and optimized trimmed ConTax dataset for training.
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Sammendrag

Hovedmalet med avhandlingen er & forbedre klassifikasjon av prokaryoter basert pa 16S
ribosomalt RNA. Som et resultat av skiftet i sekvenseringsteknologien, som na genererer
enorme mengder med sekvensdata, og fremveksten av kultiverings-uavhengige metoder, er
det blitt avdekket et behovet for stabile, kjappe og minne-effektive metoder. 16S rRNA er
blitt brukt for & bygge den eksisterende taxonomien av prokaryoter og kartelgge de i det
fylogentiske livstreet. Samt, utforske mikrobielle samfunn, som har blitt et hovedfokus i mik-
robiologi. Det er en vanlig oppfatning at den diskriminante evnen til 16S markgren ligger
innenfor ni variable regioner lokalisert langs genet. Vi begynte vart arbeid med & utfordre
denne antagelsen ved a sgke systematisk for posisjoner med diskriminerende evner som bidro
til korrekt klassifikasjon. 50 diskriminerende posisjoner ble funnet ved klassifisering ned til
phylum nivé og for genus identifisering var over 80% av alle posisjoner viktige, de var alle

spredt over hele genet.

Videre presenterer vi en systematisk sammenligning av fem K -mer baserte klassifiserings-
metoder for 16S rRNA genet. Klassifiseringsmetoder basert pa a telle K -merer er populere
fordi de er raske, tar for seg hele sekvensen og lider ikke av usikkerhetene som evolusjonere
modeller og sammenstillinger gjgr. De fem metodene er forskjellige bade i databruken og
modellerings-strategien. Den forbehandlede nermeste-nabo metoden (PLSNN) gjorde det
best for full lengde sekvenser, men generelt, for bade full lengde og fragmenterte sekvenser,
gjorde mutinomial metoden det bedre enn de andre. Den var signifikant bedre enn RDP

klassifikatoren, som idag fungerer som en gullstandard av klassifiseringsmetoder.

Det finnes ingen offisiell taxonomi av prokaryoter og enhver klassifiseringsmetode vil lide av
mangelen pa konsensus i treningsdata. ConTax datasettene, presentert i denne avhandlingen,
er en samling av de mest ngyaktig klassifiserte sekvensene som vi kan fortsette a utforske
den prokaryote taksonomien utifra og trene nye methoder med. Den viktigste egenskapen
til datasettet er at en sekvens bare blir inkludert hvis tre hoved 16S databaser er enige om
den tildelte taksonomien ned til genus nivd. Resultatene er kombinert og presentert i en R-
pakke, microclass, som inneholder klassifiseringsverktgy ned til genus niva. En innsats har
blitt gjort i a gjgre redskapene bade kjappe og minne-effektive. Alle metoder kan bli trent
med nye data, men en klar-til-bruk metode, taxMachine, er ogsa presentert. taxMachine er
blitt trent med multinomial metoden pa full lengde 16S sekvenser for a kjenne igjen fulle eller
fragmenterte sekvenser, ved a bruke det konstruerte og optimerte trimmede ConTax datasettet

for trening.
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Abbreviations and Explanations

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

16S rRNA 16S ribosomal RNA

PCR Polymerase chain reaction

Taxon/taxa A group of one or more organisms that categorize to form a unit
Reads Short DNA sequences, product of sequencing

K-mers All possible words of length K in the DNA alphabet

KNN K nearest neighbour

PLS Partial least squares

MSA Multiple sequence alignments
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1 Introduction

1.1 Background

Microbes such as archaea and bacteria, together referred to as prokaryotes, are single-cell
organisms found everywhere on earth, in the air, soil and water and inside (and on) living
creatures. They play a major role of biological functions. Without them we would have been
unable to digest food, plants would not grow and there would have been considerably less
oxygen in the air. Microbes maintain the ecological balance of our planet and are indispens-
able for the survival of most species and essential for every part of human life [12]. Simply

put: Microbes run the world!

DNA sequencing is a highly prioritized area in modern biology as it provides us with the most
basic information of all: The DNA sequence of nucleotides. Over the past ten years several
new sequencing technologies have revolutionized the field; They have gone from high-costs,
low throughput to high-throughput. The costs have been reduced significantly and the se-
quencing has become considerably more efficient, generating an enormous amount of data.
Thousands of sequences are now available in public repositories and today there are tens of
thousands of sequencing projects in progress. For a long time it has been difficult to study
microbes in their own environment; the microbiologists studied individual species one by one
in the laboratory and these so called pure-cultures were the standard for microbiology. In the
middle of the 20th century, in the pure-culture paradigm, microbes that grew well as single
cells suspended in a liquid medium became the model for much of modern biology [46].
Today we know that these microbes only covered 1% of the diversity of all species [27].

As a result of the shift in sequence technology, and the rise of cultivation-independent meth-
ods, it has become clear that microbes actually live in communities and interact in complex
systems. In these communities they are in physical contact with microbes of their own kind
and with other species, as well as the environment. In fact, bacterial monocultures hardly
ever occur in nature. The composition of microbial communities is far from accidental and it
has opened a whole new spectre of understanding the (microbial) world. "Who is out there?",
"what are they doing there?" and "how are they doing it?" are questions that now can be
investigated by studying a microbial community from a specific habitat.
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1.2 The study of complex microbial communities

There are two common ways to obtain data and study complex microbial communities.

I) Amplicon sequencing for building a 16S-profile: The diversity of a microbial community
is often investigated by sequencing a selected genomic marker which is able to identify the
microbes to a certain level of taxonomy. For prokaryotes the choice of marker usually falls
on the variable regions of the 16S ribosomal RNA (see section 1.3). Amplicon sequencing is
the most widely used method for identifying the composition of microbial communities. A
sample is taken from the environment (for example water, soil, gut) and the DNA is extracted
from all the sampled cells. An informative genetic marker (here the 16S rRNA) is targeted
with universal primers. Primers are short sequences matching and enclosing key parts of
the marker and are universal in the way that they span all taxa. The regions enclosed by the
primers are called amplicon-sequences and are subtracted from the DNA by a polymerase
chain reaction (PCR). The PCR products are sequenced by using technology such as Sanger,
but more recently, high-throughput sequencing platforms like Illumina, Ion Torrent and Pac-
Bio. These generated short amplicon-sequences can be bioinformatically characterized to
determine which microbes are present in the sample and at what relative abundance, hence
building a 16S-profile. The study of microbial communities has been revolutionized after
ribosomal RNA profiling methods were implemented [69, 47, 18, 59]. It can also be used to
ascertain the similarity of two or more communities (hence, communities that share a greater
degree of identical taxa are more similar) [56]. The method is widespread, it has for instance
been used to map the diversity of the human gut [13, 72], Arabidopsis thaliana roots [36],

ocean thermal vents [38] and Antarctic volcano mineral soils [61].

Although this method is used extensively to study community constituents, amplicon sequen-
cing is not without limitations. It may, for instance, fail to identify the true diversity of the
sample because of biases associated with the primers chosen, or because of failure during
the PCR process [24, 57, 33]. Sequencing errors and formation of chimeric sequences during
PCR produces artificial sequences, which are difficult to identify. A chimera is an incorrect
pairing of two different sequences. Because the 16S gene can be transferred horizontally
between distantly related taxa the 16S analysis can result in overestimations of the diversity
in the community [3]. Also, the amplicon sequencing and construction of the 16S-profile is
unable to resolve the biological function associated with the community and is also limited

to the analysis of taxa that contain known genetic markers.
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IT) Some of these limitations can be overcome by Shotgun metagenomic DNA sequencing.
Shotgun metagenomic DNA sequencing is a relatively new and powerful environmental se-
quencing approach that provides insight into the diversity and functions of a community. The
DNA is again extracted from all the cells in a sample, but instead of targeting a genomic
marker, random sequencing of short sub-sequences across the entire genomic content in the
sample is considered, hence the name shotgun sequencing. The fragments are independently
sequenced and results in short read sequences. Some of the reads are sampled from genomic
markers, such as the 16S rRNA, and some are from coding sequences and as a result, meta-
genomics then allows us to explore: "Which genes are present in the sample?" and "what are
they capable of doing?". For example, studies of metagenomic samples from the human body
have discovered a relationship between the human microbiome and human health [13, 12] an
approach used to study antibiotic-resistance genes [55]. But metagenomic data is complex
and vast, and there are limitations connected to the retrieval of information for this approach
as well. The short reads need to reassemble into longer contigs or, if possible, whole gen-
omes. This is not trivial. For instance, because of the diversity of the community, some
genomes are not completely represented by reads. If two reads do not overlap it is impossible
to rebuild the genome through an assembly. And, if they do overlap it is not hard evidence
that they are from the same genome. Therefore, a large volume of sequences is required to

obtain meaningful results from a microbial community.

The preferred approach to study a microbial community depends on what you want to know
and how much you are willing to spend. The metagenomic approach has the advantage of
providing more information of the community and its function. However, it is more expens-
ive than amplicon sequencing to reach the detailed level of sequencing needed to carry out the
analysis. It also requires significantly more computational analysis to obtain the information.
As sequencing has become cheaper and faster, and as new methods of extracting information
from random sequencing metagenomics have been developed, researchers have speculated
whether the amplicon sequencing for creating a 16S-profile will soon be obsolete. Recent
studies, however, have shown that this is not the case. In many studies, the 16S-profiles
provide exactly the information needed, for less expenses and computational effort. An ap-
proach is to use 16S-profiles in forensics, where these are used to investigate which part of the
body a biological trace originates from. This cannot be determined by the "regular" DNA-
trace, because human DNA is identical wherever it is retrieved from in the body. Instead
one must withdraw the DNA from the microbes in the sample, and determine the relative
abundance of the various taxa, hence building a 16S-profile. The abundance can then easily
be compared to the 16S-profiles for all known body sites. Body sites show very distinctive
profiles [73, 53, 9] and it has been demonstrated that marker-gene profiles of human microbi-
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ota can provide a view of microbial diversity across body sites [14].

Both amplicon sequencing and shotgun metagenomic sequencing are still computationally
challenged due to the rapid advances in sequencing technologies which now generate billions
of reads in a few days. It is therefore crucial for software tools to minimize computational
resources (for example time, memory and I/O) and obtaining high accuracy when analysing

sequencing data.

1.3 The 16S ribosomal RNA gene

In the 1980’s, it was demonstrated that phylogenetic relationships of bacteria and all other
life-forms, could be well approximated by comparing stable parts of the genome [70, 68].
Today, the most commonly used marker for phylogenetic studies and studies of microbial
communities is the 16S ribosomal RNA. The 16S rRNA is a structural component of the
prokaryotic ribosome and present in all bacteria and archaea. Its common use in metagen-
omics and phylogenetic analysis is both due to its presence in all prokaryotes and because
of its high level of conservation [47]. The 16S sequence is around 1550 base pair long, and
the pattern of sequence conservation is assumed to be because of its essential role in cell
function. It is an efficient tool for all sequencing platforms and its structure of both variable
and conserved regions makes it very convenient for use as a molecular chronometer in evol-
utionary studies. Previous mapping of bacterial 16S genes show nine hypervariable regions
[7]. These regions, denoted V1-V9, show distinct sequence diversity among different bac-
teria and have commonly been used for bacterial identification and taxonomic studies [63, 8].
Since the sequenced rRNA genes are frequently used as markers in metagenomics and phylo-
genetic reconstruction, the need for systematic databases has increased. The Silva compre-
hensive ribosomal RNA database (http://www.arb-silva.de/, [48]), the Greengenes 16S rRNA
gene database (GG, http://greengenes.lbl.gov/cgi-bin/nph-index.cgi, [19]) and the Ribosomal
Database Project (RDP, http://rdp.cme.msu.edu/, [11]) provide access to sets of rRNA se-
quences and tools for analysis useful in microbial studies. Due to the 16S rRNA’s properties

it can be used for bacterial identification and classification down to genus level [10].
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1.4 Taxonomic classification

Following on from Darwin’s work in the book "On The Origin Of Species" (1859), which dis-
cussed that all life forms arose from a common ancestor, biologists have attempted to classify
life according to evolution. Taxonomy (sometimes known as "systematics") is the science of
classifying organisms. It is a rank-based classification built on a hierarchical system. Each
organism belongs to a series of ranked taxonomic categories where the broadest is by domain
and kingdom, and the most specific classification is by genus and species. At any level in the

hierarchy an organism belongs to only one taxon, or taxonomic group.

Classification is the arrangement of an organism into these predetermined groups, the taxa.
The classification of 16S sequences obtained from some samples is a classical pattern recog-
nition problem, i.e. recognizing patterns in a sequence, and assign it to one out of several
predetermined categories, based on how similar these sequences are to the known sequences
from the respective category. Figure 2 is an illustration of this concept. When a new se-
quence (i) is obtained, one of the first questions that arises is "What are we looking at?".
For a microbial community study, you are dependent upon identifying the DNA sequence
regardless of whether you are interested in exactly this bacteria alone, or whether you are
facing the problem of identification of community constituents. You need a classifier (ii); a
method that inputs one, or a couple of million, sequences and returns a qualified guess of

which predetermined class (iii) it belongs to.

The retrieval of information from bacterial sequencing data is not trivial. The conditions for
scientific success and progress depends mainly on two aspects; the quality of the methods,
the classifier, and the quality of the data available, which the classifier is trained on. The
amount of sequence data, the skewness in the data obtained and, perhaps the fishy problem,
that there is no universal taxonomy makes the retrieval of information from the data we have

today challenging.

In his paper from 1971 Cowan presented it as follows: "Taxonomy is written by taxonomists
for taxonomists; in this form the subject is so dull that few, if any, non-taxonomists are temp-
ted to read it, presumably even fewer try their hand at it". Cowan followed up with: "It is the
most subjective branch of any biological discipline, and in many ways is more an art than a
science"[15]. Although this is an exaggerated assertion it is important to realize that consid-
erable subjectivity has been allowed when designing the predetermined classes that today’s
taxonomy depends on. The taxonomy has, to a certain extent, been built on the intuition of

individual researchers rather than fact based knowledge of an organism [6, 51].

Some of the branches in the bacterial tree of life are widely accepted and will most likely



1 INTRODUCTION Hilde Vinje
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Figure 1: A visualization of the classification concept. A new DNA sequence (i) is used as
input in a classifier (ii). This classifier will use a classification method to try to place the
new sequence into one of many predetermined classes (iii), which again is divided into a
hierarchic system: the taxonomy

never change, but a significant part of the taxonomy is still evolving. The culture-independent
techniques highlighted our fragmented view of the phylogenetic tree of life by crudely out-
lining its borders. This was achieved, as explained in section 1.1, by sequencing 16S genes
from DNA extracted directly from environmental sources as microbial communities. This
known lack of biological insight is often referred to as the microbial dark matter. It is a
daunting fact that the coverage of the real microbial diversity is estimated conservatively to
represent hundreds of thousands of species [16]. The improvements in sequencing technolo-
gies have highlighted this issue [58, 39, 42], which again has resulted in many new taxa [64]
and an ever increasing diversity in data available [45, 26]. Figure 2 visualizes a proposal of
the phylogenetic tree of life from April 2016. The bluish, top-right branch of the tree is a new
addition as a result of the culture-independent methods. The branch was completely unknown
until a few years ago! The question remains; How much of the diversity in the microbial world

have we not yet seen?

Thus, there is no comprehensive gold standard dataset which gives a clear picture of the
microbial world as we know it; the classification system represented by Bergey’s Manual of
Systematic Bacteriology [67] is widely accepted and is therefore often considered the best ap-

Kingdom
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Lysobacter Class
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proximation to an official classification [6]. The Bergey’s classification system is based on the
phylogenetic analysis of the 16S gene, together with classical microscopic and biochemical
observations of relations between organisms, and it has been valuable in describing the width
in prokaryotic diversity and setting the framework for the study of relationships between taxa
[34, 6, 28].

Bacteria

Candidate
Phyla Radiation
o

Eukaryotes

Archaea

Figure 2: A current view of the phylogenetic tree of life, encompassing the total diversity
represented by sequenced genomes from April 2016, source: Hug et al. 2016 [25]
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Classification error

Despite the numerous new classification tools and the approximately 600 — 700 new de-
scriptions of bacteria and archaea published each year, we still come up short of finding an
adequate solution to the classification problems. The fact that this is so hard to achieve is
due to several reasons. 1) DNA sequences are complex. We try to categorize nature with
classification-based approaches that make taxonomic assignments to help us understand the
whole aspect of life. For further discussion on this issue see section 3.3. 2) Sequencing and
sequencing error in the sequenced data. There are numerous quality-filtering techniques to
correct or eliminate reads that contain sequencing errors [54, 66, 29, 49]. However, there is
a long way left to obtain error-free data. 3) Databases and classification methods are con-
structed considering the existing diffuse taxonomy. As mentioned, the taxonomy for every

organism has evolved over years and there is no consensus.
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2  QOutline and aim of thesis

The amount of sequence data available today gives us a solid foundation to understand the
phenomena of biology, and has led to an increased need for computer-efficient and time-
saving methods to extract information from data such as this. The overall aim of this PhD
project has been to improve classification of Prokaryotes, both by presenting new insight
concerning the amount of data we are exposed to and by rigorously testing and presenting
different classification methods. The project also gives an indication of where the current

sequencing data falls short, and points out future improvements.

Two important aspects of why it is important to improve classification of Prokaryotes are:

I) Taxonomy: This is what it is all about! It is the mapping and understanding of the rela-
tionships of all living organisms which allows us insight in how life on earth collaborates and
functions. Figure 2 shows a suggestion for this relationship referred to as the phylogenetic
tree of life, where the prokaryotes are represented by the bacteria, the big left branch pointing

west and the archaea, located together with the Eukaryotes pointing south.

1) Microbial communities: The exploration of microbial communities has recently become
a major focus in microbiology as mentioned in section 1.2. A main goal is to model the
constituents of microbes within complex communities. This can be used as markers for dia-

gnosing disease, identify body fluids in forensics and describe environments.

The 16S gene performs well in phylogenetic studies and studies of microbial communities.
Due to the properties/qualities of the 16S gene, the research presented in this thesis is build
solely on 16S sequencing data. The data is obtained from the three main databases: The Silva
comprehensive ribosomal RNA database, the Greengenes 16S rRNA gene database and the
Ribosomal Database Project.



3 METHODS Hilde Vinje

3 Methods

After emphasizing the breakthrough in sequencing technology closely followed by the age of
sequencing data, we must look at how all this data can be beneficial for understanding the
phenomena of biology. How can we extract information from the hundreds of millions of
A’s, C’s, G’s and T’s that we now have so easy access to? A bottleneck has arisen when it
comes to method development. Computer memory and capacity are bottlenecks considering
millions of sequences. Even with an excellent classification method, most computers today
do not have the ability to take as input millions of full length genomes, 16S sequences, or
even short reads. We need an approach with respect to both speed, memory and accuracy.
Instead it is very often a question of a trade-off between these. In metagenomics, classifying
sequences more efficiently is a key since the number of sequences to classify may be vast.
On the other hand, since the 16S marker is used to build the entire prokaryotic taxonomy one
should make all possible efforts to have the absolute best classification available, meaning
accuracy trumps time-efficiency. Ultimately, a method that can input millions of sequences

and rapidly return them to their correct classes is a goal.

3.1 Sequences to numbers

In order to apply classification methods to sequencing data it is crucial to convert it into
meaningful numeric variables, to maintain and identify relevant information and useful sig-
nals. There are several ways to translate letters into numbers [30, 37, 22]. Two different
approaches have been used in this thesis, which have proven satisfactory in conserving im-
portant information. One by considering a multiple sequence alignment (MSA) and dummy-
code each symbol in the alignment into a row-vector of five binary values. The symbol A is
coded as (1,0,0,0,0), Cas (0,1,0,0,0), G as (0,0,1,0,0), T as (0,0,0,1,0) and the indel
- as (0,0,0,0,1). Hence, each site gives rise to five numerical (binary) variables (paper I).
The other approach by consider the frequency of a short nucleotide word, known as a K-mer
(paper II-IV).

After converting sequences into a matrix consisting of numerical variables there are numer-

ous statistical tools that can be applied to gain insight and information from the data.

Multiple Sequence Alignments

Multiple sequence alignments (MSA) have been widely used in all areas of DNA and protein
sequence analysis. It has several purposes, including finding interesting patterns, detecting

10
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homology between new sequences and existing families, building phylogenetic trees and/or

calculate the evolutionary distances between sequences.

MSA is generally the alignment of three or more biological sequences (protein or nucleic
acid) in such a way that the sequences obtain the best match of each other. Most procedures
for taxonomic studies have actually been based on alignments and reconstruction of phylogen-
etic trees, making use of predefined evolutionary models and relevant algorithms [35, 68, 4].
However, considering the huge amount of data available for the 16S sequences, sequence ana-
lysis based on MSA can pose problems. Firstly, the time and computational load required to
align DNA sequences increases exponentially with the number of taxa analysed. Secondly,
it is not trivial to fit a new sequence into the already existing alignment. Hence, the entire
alignment must be redone for each new sequence. Thirdly, different algorithms give different
alignment results. For 16S data the alignments will be fairly similar in the conserved regions,
but show dramatic differences in the variable regions, causing the multiple alignments to be
very software dependent. Another problem is that today’s shotgun sequencing technology
only provides fragments (short reads) of the 16S gene, making the result of the alignment

methods dependent upon good assembling methods to obtain the full length gene.

In paper I three different MSA datasets with 16S sequences were downloaded from the data-
bases Greengene, Silva, and RDP. All three databased have their unique alignment methods,

making the alignments based on the same sequences differ in a distinct way.

K-mer

The limitations of MSA have resulted in that methods based on counting K -mers by sliding
windows now are considered the most interesting classification approach with respect to both
speed and accuracy [52, 32, 60, 65]. Every sequence is converted to a numeric vector by
counting overlapping "words" of length K in the sequence. Hence, there are D = 4 possible
words of length K in the DNA alphabet. Wang et al. [65] developed the RDP classifier,
based on the naive Bayes principle (see section 3.3) and a word-length of K = 8. The
RDP classifier is close to a standard in 16S based classification. In 2011, Essential Science
Indicators found Wang et. al. to be the most-cited research paper in microbiology [1]. K-
mer methods are fast and do not suffer from the same uncertainties as the procedures based
on evolutionary models and alignments. This way of converting sequences to numerical
data is not as intuitive as evolutionary models and lack the obvious interpretation given by
evolutionary distances. Positional information will also get lost with this method, but it is
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very objective in its mechanism and has proven to work impeccably on obtaining information

from sequencing data.

Because of its strengths we use K -mer counts as numerical variables in paper I-IV.

3.2 Supervised learning methods

The aim of a supervised machine learning method, is to build a model that makes predictions
and classifications based on known information. As adaptive algorithms the methods identify
patterns in data and "learns" from the observations. When you input new observations, the

methods consider them and improve its predictive performance.

Specifically, a supervised learning algorithm takes a set of explanatory variables and their
known response classes, and trains a model to generate reasonable predictions for the re-
sponse to new data. Supervised learning methods can be divided into two broad categories:
Classification: The goal is to assign an observation to one out of a distinct set of classes. As
such, the response variable is a categorical variable as in the case of taxonomic classification.
Regression: The response variables are real numbers and the goal is to predict a continuous
measurement of an observation. Applications for the method include prediction of apartment
prices based on size, age and location, or forecasting and financial analysis.

3.3 Classification

The main goal for a classifier is to come up with well-defined rules, that can be used for
assigning new objects. Let k; denote the classes of random feature vectors x. The classi-
fication task is to predict k; after observing a new x. The quantitative outputs k;, are dis-
junct categorical variables and the assumption is made that one observation belongs to only
one of the classes. Therefore, a prediction based on a new feature will either be correct or
wrong in a classification perspective. One of the simplest and most efficient classifiers is the
Bayes Classifier also known as the Minimum Misclassification Rule. This is an easy and pre-
ferred method, but it is dependent on known class densities as well as class prior probabilities
Pr(k;), which, in most cases, are not possible to obtain. The Bayes Classifier says that we

classify to the most probable class, using the conditional probabilities Pr(k;|x).

For each class the probability for the class k; given the new x is calculated in the following

way:
x|k;) Pr(k;)

Pr(k;|x) = Pl Pr(x) ey
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The probability on the left hand side in (1) is the posterior probability of class k; given the
observed x, and we classify to the corresponding group k; that max[Pr(k1|x), Pr(ka|x),
...,Pr(k;|x)]. Notice that the denominator Pr(x) does not depend on the classes k;. Hence,
the k that maximizes Pr(k;|x) is exactly the same k that maximizes Pr(x|k;)Pr(k;), and
we can ignore Pr(x) altogether. If the prior probabilities of every Pr(k;) are identical for
all classes, we get the simple relation Pr(k;|x) o< Pr(x|k;). A way to calculate the joint
probability, Pr(x|k;), is to write each element of the feature vector x as a product of their

marginal probabilities:

Pr(x|k;) = [ Pr(x;|k) 2)
j=1

where r is the number of elements in x.

This assumption is correct only if the elements are independent, which in most cases is a
naive assumption, but has shown to often work satisfactory [20]. This approach is known as
the naive Bayes approach.

Figure 3 is a visualization of the Bayes decision boundary. The line is the threshold of two
classes (blue and yellow). A new observation located at the upper side of the line is classified
as yellow and vice versa; all new observations located in the lower part of the plot, under the
line, are now classified as blue. As one can see, this is not perfect and emphasizes the fact that
the world, with all its biology, is too complex to be categorized into disjunct classes. Even

though we give it our best try, will we repeatedly fail at some level.

There are a vast number of methods with various rules associated with them. In the coming

sections some of the main classification methods considered in this project are presented.

K-nearest-neighbour

K-nearest-neighbour (KNN) classification is widely used to classify objects based on dis-
tances between them. The idea is simple, by finding the K training points closest in distance
to the new observation, it is classified using a majority vote among this K neighbours [23].
It is widely used for all classification purposes because of its simplicity and that it in many
cases has shown to work satisfactory.
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Figure 3: Example picture of the Bayes decision boundary from "The elements of Statistical
learning" by Hastie et al. [23]

PLS

Partial Least Squares (PLS) [71] is a well-established classification method that has been used
in many bioinformatic applications, including analysis of sequence data [44, 43, 2, 41, 40].
In practice PLS finds linear combinations of the explanatory (known here as the numerical)
variables which gives the minimum classification error. These combinations are referred to
as PLS components. In principle, all explanatory variables are included, and given more or
less weight in the components. Unlike the very general KNN method, PLS needs numer-
ical responses and is especially applicable when there are many and correlated explanatory
variables. This will typically be the case for K-mer data, as K increases. In K -mer space
every sequence has D = 4% numerical variables (words), and every one of these variables
carries equal weight. However, it is more than likely that some of these will be more, or less,
important for recognizing a particular class. Replacing the original D dimensional space by
a smaller number of variables, with more emphasis on the important numerical variables, can

be beneficial for classification.
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The RDP-classifier and the Multinomial method, presented below, are more specific classi-
fication methods, made for the purpose of classifying nucleotide sequences by considering

K -mer data.

RDP-classifier

The RDP-classifier [65] considers the presence/absence of a K-mer in a sequence. All words
of length K are ordered alphabetically as w;, ws, ..., wp. For every sequence, we create a
vector of D elements where element j is 1 if K-mer w; is present in the sequence, and 0 if
not. For a new sequence we construct a similar vector and compute the posterior probabilities
for each taxon using the trained model and a naive Bayes assumption. The predicted taxon is

the one producing the maximum posterior probability.

Multinomial method

The Multinomial method differs from the RDP method by considering the relative frequency
of every K-mer instead of only presence/absence. The calculation steps are similar as de-
scribed for the RDP-classifier above. This approach has also been tested by Lui and Wong in
[31].

For a more detailed explanation of the two latter methods see paper II.

3.4 Validation

In practice most classification methods will be used to classify a new sequence not included
in the training data. To obtain a realistic impression of the accuracy of classification, and to
avoid over-fitting to the data, some kind of validation of the methods is needed. Over-fitting
is the risk of making the trained models too complex, too "fit" for the respective training data.
In this case the accuracy measure will be unnaturally high, because your model is customized
to describe exactly the trained data. Classification methods built on such models will not be
able to classify new sequences in a meaningful way and therefore not serve as a decent and
general classification method. There are several ways to validate classification methods. Two
popular ways are by external validation and cross-validation. In the case of external validation
the performance of a method is measured in its prediction capability on an independent test
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dataset. This is solved by splitting the dataset into one training- and one test set. Cross-
Validation [62] is also frequently used. In a K -fold cross-validation the dataset is split into K
segments, where K < n and n is the number of samples. Each segment is set aside once as a
validation set. The model is then trained on the remaining K — 1 segments and the accuracy
is calculated based on the models ability to predict each K validation set. What is the optimal
K is an ongoing discussion [23]. In the case where K = 1, one observation is removed, the
model is trained on every other observation and the class/value for the excluded observation

is predicted with the trained model.
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4 Paper summaries

Paper I - A systematic search for discriminating sites in the 16S ribosomal
RNA gene

The 16S sequence is usually divided into conserved and variable regions of the sequence
dependent on similarity of the genes. Nine variable regions have been detected, named V' 1-
V9, and in earlier research it has been claimed that the discriminatory power of the 16S
marker lies within these variable regions. The location of the variable regions, and impli-
citly the conserved parts flanking them, has been based on multiple alignments of full-length
16S sequences. Three multiple alignments were considered, comprising the same 16S se-
quences, but differs in the way they were conducted. A supervised learning method was used
to search systematically for sites that contribute to correct classifications at either phylum or
genus level. After dummy coding each site along the alignment (including gaps), PLS was
run accompanied by the variable selection algorithm, Selectivity Ratio, to detect the sites in
the alignments that were significant with respect to correct classification. The site selection
algorithm located 50 discriminative sites when considering classification on phylum level.
Instead of being exclusively located in the variable regions, these were scattered across most
of the alignments. Therefore, while variable regions are important, they are not more import-
ant than any other region. The discriminative sites are also typically sites with high entropy
(variability) located among neighbouring sites of much lower entropy. Regions of lower en-
tropy imply some degree of conservation, and alignments tend to be more accurate in such
regions. When classifying genera the site selection algorithm needed around 80% of the sites
in the 16S sequence before the classification error reached a minimum. This means that all
variation in the 16S sequence, in both variable and conserved regions, is needed in order to

separate the prokaryotes down to genus level in an optimal way.

As aresult of the findings in this paper, we continued our pursuit for the ultimate classification
method by considering full length 16S sequences, and fragmented sequences obtained from

the entire sequence.
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Paper II - Comparing K -mer based methods for improved classification
of 16S sequences

There has been a shift in approaches considering classification methods. Previously,
alignment-based methods were seen as the most applicable tools. Now however, methods
based on counting K -mers by sliding windows are preferred due to improved speed and ac-
curacy. In this paper we presented a systematic comparison of five different K-mer based
classification methods for the 16S sequence. The study is based on the commonly known and
well-used RDP-classifier, which only registers whether or whether not a K -mer is observed
in a sequence. Four other methods were considered: The Multinomial method, this is quite
similar to the RDP-classifier, except here we consider frequencies of K -mer rather than pres-
ence/absence, Nearest-neighbour classification (NN), the Preprocessed nearest-neighbour
(PLSNN) and an ordinary Markov model. They were all implemented and tested on two
different datasets, and differed from each other in data usage and modelling strategies. Due
to the results obtained in paper I, all five methods were tested on full-length sequences and
on fragments (of typical read-length) coming from the whole sequence. The difference in
classification error generated by the methods seemed to be small, but they were stable and
present for both datasets tested. The PLSNN method performed best for full-length 16S
rRNA sequences, and significantly better than the RDP-classifier. On fragmented sequences
the Multinomial method performed significantly better than all other methods. For the two
datasets explored, and both on full-length and fragmented sequences, all five methods reached
an error-plateau. The error-plateau differed between the different datasets, indicating that we
need better training data to further improve classifications and classification models. Classi-

fication errors occur most frequently for genera that consists of few sequences.

We concluded that for further improvements of the taxonomy and testing of new classification
methods, the need for a better and more universal training dataset is crucial.
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Paper III — The ConTax data: Improved supervised learning of proka-

ryotic taxonomy

There is no official taxonomy for prokaryotes, which is a great hindrance when it comes to
classification and the construction of reliable and stable classification methods. In paper II we
concluded that in order to achieve classification improvement for prokaryotes, we must take a
step back and focus on obtaining stable and correct training data before we continue the de-
velopment of classification methods. We used to our advantage that there are some branches
in the phylogenetic tree of life that are widely accepted - and will most likely never change
- and that there are several different databases containing hundreds of thousands of 16S se-
quences. From three of the most popular databases; the Silva comprehensive ribosomal RNA
database, the Greengenes 16S rRNA gene database, and the Ribosomal Database Project,
we downloaded all the high quality, full-length 16S sequences. From this enormous amount
of data we filtered out the sequences where the databases agreed on its assigned taxonomy
down to genus level; where there was a taxonomy consensus. Together these sequences forms
a new and improved dataset with consensus taxonomy: The ConTax set. The ConTax set
comprises 664, 199 16S rRNA sequences. From a method training perspective, the enormous
number of sequences in some of the genera provides no additional information for classific-
ation purposes. Therefore, the largest genera in the ConTax set were trimmed in such a way
that the main information is retained. The trimmed ConTax set consists of 38, 784 sequences.
The results presented in this paper confirmed that the performance of different classification
methods improves once trained and tested on the ConTax set, compared to other established
datasets. The ConTax set can be seen as a seed-set of the most accurately classified sequences
from which we can continue to investigate the prokaryotic taxonomy. We observed that most
of the mis-classifications are caused by small taxa, drawing the conclusion that for real classi-
fication improvements to take place, an effort must be made to investigate the rarely explored

and poorly represented taxa.
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Paper IV —microclass: An R-package for 16S taxonomy classification

In paper II we found that the algorithm for the multinomial method obtained the best overall
results for classification of full-length and fragmented 16S sequences at the shortest amount
of time. In paper III we corrected some of the uncertainty related to diffuse taxonomy, and
created a stable and most likely correct training set for taxonomic classification. Based on
these findings we have constructed an R-package, microclass, with tools addressing classi-
fication down to genus level. Efforts have been made to make the tools both fast and memory-
efficient. All methods in the package can be trained on new data, but considering our previous
results we also developed a ready-to-use tool, the taxMachine. The taxMachine has been
trained with the multinomial method for full-length 16S sequences to recognize full or partial
(reads) sequences at the genus level, using the designed and optimized trimmed ConTax set,
from paper 111, for training. It has been optimized to produce the most accurate classifications
at genus level, without consuming too much memory. One of the major benefits with this
machinery is that it, together with an accurate classification for every sequence or read (even
short ones), also provides some quantified uncertainties indicating if the input sequences are
difficult to recognize. Based on input sequences of varying length and quality, we demon-
strated how the output from the classifications can be used to obtain high quality taxonomic
assignments from 16S sequences within the R computing environment. The microclass
R-package, as well as its symbiotic data package microcontax, are freely available at the
Comprehensive R Archive Network (CRAN, [50]).
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5 Discussion and concluding remarks

The need for precise and stable taxonomic classification is crucial in modern microbiology
and in this project we have made an effort to improve taxonomic classification by accuracy,
computer capability and run time. We started this project by considering the nine variable
regions in the 16S rRNA gene, since it is a common belief that the discriminatory power of
the 16S marker lies within these nine regions and because amplicon sequencing techniques
provide targeted sequence reads as output from the much discussed regions. Alignments
of the 16S sequences were investigated and, by only considering the nine variable regions,
we got a considerably higher error rate for our distance tests than by calculating simple
p-distances across the full length 16S alignments. The p-distance is one of the simplest ways
to calculate evolutionary distances, it is the proportion in nucleotides that differs between
two sequences. Some discriminant information got lost in the attempt to only consider the
variable regions. With this as the premise, in paper I we made a detailed examination of
the input data, the 16S sequences ((i) in figure 1). We used a supervised learning method
(PLS) to search systematically for sites that contribute to the correct classification and found
that discriminating sites were scattered all over the sequence and not at all located solely
in the variable regions, as often presumed. Another conclusion drawn from these results
was that methods built on multiple sequence alignments are not compatible with the large
amount of sequencing data we face today. A natural continuation was to consider methods
that did not discriminate against some parts of the 16S sequence and that circumvented
the alignment step. Our choice fell on one of the most popular pattern-recognition method
in the literature: counting K -mers by sliding windows. The K-mer methods are fast and
all parts of the sequence are included, it also evades the uncertainties and computational
drawback by producing an alignment. In paper II, we presented a thorough overview of
five different classification methods ((ii) in figure 1). All methods reached an error plateau
indicating that in order to improving taxonomy, and test new classification methods, the
need for a better and more universal training dataset is crucial. In short, it is impossible
to make the ultimate classification tool without the ultimate training data. The fact that
there is no universal consensus of the taxonomy makes the classification problem highly
vulnerable; the same DNA sequence can have different taxonomy when considering different
databases and classification methods trained on uncertain data will lead to a growing number
of false taxonomy assignments. Therefore, a stable dataset where we are confident about
the sequences taxonomy will be of greatly beneficial. A consensus of the taxonomical
system is fundamental also for precise communication between scientists [21]. Paper III is
again a concrete result of the conclusion drawn in paper II, and concerns the predetermined
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taxonomic classes ((iii) in figure 1). In paper III we discussed the problem of unreliable
training data more thoroughly and came up with a solution on a consensus taxonomic dataset
based on the amount of data we now are exposed to. We presented the new and improved
training dataset with consensus taxonomy: The ConTax set. It consists of sequences from
three main 16S databases that are agreeing on the assigned taxonomy down to genus level.
We also presented a trimmed down, more usable version of this, were the largest genera are
trimmed in such a way that the main information is retained. The ConTax set can be seen as
a seed-set or a gold standard set of the most accurately classified sequences from which we
can continue to improve classification methods, as well as explore and map the prokaryotic
taxonomy. Paper IV sums up our detailed work in the previous papers and present the
microclass package which provides optimized tools for taxonomic classification of 16S
sequence data in the R computing environment. In this package a ready-to-use improved
classifier ((ii) in figure 1) is presented: The taxMachine. The taxMachine has been
trained with the multinomial method and KX = 8, which was the method found to conduct
the best overall results in paper II. Efforts have been made to make the R-function both
speed and memory usage efficient. It is found to be significantly better in classification
accuracy and also faster than today’s gold standard method: The RDP-classifier. One new,
and highly important improvement of this tool is its quantifies uncertainties measures, which
indicates if a new input sequence is difficult to recognize. As such, taxMachine improves
classification, and is superior with respect to time and computer memory, compared with

other highly used methods.

There is a growing concern about the reproducibility of scientific work. Science builds upon
itself and in an attempt to investigate if there really is a reproducibility crisis, Monya Baker
investigated this in Nature News Feature [5]. For the usability and reproducibility of some
of the work executed in this project the two R-packages, microcontax and microclass, are

conducted and available for free at The Comprehensive R Archive Network [50].

The work here is solely based on 16S data, making the results, for now, limited to prokaryotes.
16S is, as repeatedly mentioned, a conserved marker which can be used to identify prokaryotes
down to genus level. Accurate classifications down to species level is not possible using the
16S rRNA due to the small sequence differences between species within the same genus,
which creates another boundary for research based on this genomic marker. The classification
methods presented in microclass, can be trained on other genomic markers, coding genes
as well as full-length genomes. However, it is important to stress that we have optimized it
for the 16S marker. If it were to be used on other sequencing data, a systematic investigation,
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as in paper II, should be conducted to, for instance, optimize the word length K.

Another interesting observation worth mentioning, is the robustness of taxMachine with
respect to short reads. It is trained on full-length 16S sequences, so the K -mer frequency for
the whole sequence is considered. However, it works astonishingly well identifying shorter
fragments (reads). The fact that these short fragments of 16S, which for the most part so
easily can be classified, are scattered all over the gene is interesting. Amplicon-sequences
obtained from region V4 were also tested in paper III-IV. These are of approximately
292 bases long. In paper IV the number of misclassified was reported for these versus
for randomly scattered 270 — 300 bases long fragments and the classification accuracy
differs with as little as 0.021. In fact, random scattered fragments with 450 — 500 bases
outperformed the amplicon-sequences from V4, indicating that the length of the fragment
has a greater impact on classification than the position along the 16S gene. These results
support the fact that interesting and discriminating sites are located all over the 16S gene.
The longer the fragment considered the more of these sites it will enclose which again
highlights the findings in paper 1.

16S studies go through a series of in vitro and in silico steps that can greatly influence their
outcomes. For an overview of the steps regarding amplicon sequencing see figure 4. The raw
sequences obtained from the PCR process are processed using bioinformatic pipelines that
try their best to remove low-quality reads and detect and remove chimeric sequences. Two
common ways to continue the analysis of the sequence content are: a) Cluster the curated se-
quences into operational taxonomic units (OTUs). From here one can compare OTU content
of several microbial communities, or at different states, for the same community, and/or do a
taxonomic classification based on a core sequence in each OTU. b) By straightforward taxo-
nomic labelling of the sequences by rigorously comparing them against a reference database
and assigning them to the taxon with the best match. Regardless of the angle of approach, it
will often be a request of classification of the sequence data and as such, the need of a stable,

fast and reliable classifier is crucial.
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Figure 4: A flowchart of a usual work-flow for a 16S study from sampling to the beginning
of the data analysis. The orange boxes highlights the problems associated with each step.
(Adapted from de la Cuesta-Zuluaga et al. [17])

5.1 Future perspectives

For some parts of the taxonomy a huge amount of data is available, from other branches in
the phylogenetic tree of life we have very few observations (sometimes as few as one) and
some branches have we, most likely, not even seen yet. We observed that most of the mis-
classifications are made for small taxa. The problem of singleton taxa haunted us throughout
this project and even with various attempts to smooth out the skewness we could not overcome
this problem. A further challenge and request from a bioinformatics point of view, to really
improve classifications from here, is to make an effort to investigate the rarely explored and

poorly represented taxa.

The classification of 16S is the most basic approach to profiling a microbial community, and

due to the explosion in metagenomic research activities, tools for recognizing taxa from 16S
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sequences (reads) should be tuned to their optimal performance. A questionable result of
K-mer methods is that position information is getting lost and an attempt to include such

information can be beneficial.

Future perspectives of our new classification method, the taxMachine, lie in the investigation
of the elusive classification, those sequences that can not easily be recognized and assigned to
a class. Are they elusive because they are something new, infected with sequencing error or
because they lie in the middle of two genera? The fact that the uncertainty measures, defined
in paper IV, gives us an indication of whether a new sequence read is coming from the 16S
gene or not, combined with the fact that K -mer frequency can be used to identify fragmented
sequences scattered over the whole 16S gene, opens up a possibility to identify and classify
the 16S reads using taxMachine directly on shotgun metagenomic DNA sequences. In the
very end of this project we did a brief test on the ability the taxMachine has to determine
or not if a short sequencing read is coming from the 16S gene. For the Escherichia coli
genome we sampled at random 150 bases long reads inside and outside the 16S regions in the
genome. Every read was used as an input in taxMachine. The r-score and the p-recognize,
indication if the sequence is recognized in the test data or not, were investigated and a distinct
separation of the 16S from "the others" was observed. Figure 5 is an illustration in how the
scores distributed. It shows a distinct separation, both in r-score density, in the upper panel,
and also in the lower panel where the r-score is plotted against the d-score. The horizontal
and vertical lines are the boundary lines of a certain classification suggested in paper IV. If
a classified sequence (the points) are located in the upper right box bounded by these lines it
is defined as a certain classification. The mis-classified sequences (the red points in figure 5)
are all identified by taxMachine and given a small d-value. The same test was tried out on
several other genomes (e.g. Acaryochloris marina, Carnobacterium sp. and Pseudomonas
aeruginosa) and they all showed the same total disunity between 16S regions and not 16S.
This is a good indication that taxMachine may be used as a tool in shotgun metagenomic
samples taking as input short reads from shotgun sequencing, recognizing the once that are
16S reads and in a fast and accurate way classify them. Considering the advantage in speed,
memory and accuracy that the taxMachine provides, these indications are worth an extended

investigation.
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Figure 5: Randomly shotgun sequences, 150 bases long, were sampled from 16S regions and
outside the 16S regions on the Escherichia coli genome. The short reads were used as input
in the taxMachine. The top panel is the r-score density for both regions, and the lower panel
displays the r-scores plotted against the d-score. The lines are the boundary lines of a certain
classification suggested in paper IV
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Abstract

Background: The 16S rRNA is by far the most common genomic marker used for prokaryotic classification, and has
been used extensively in metagenomic studies over recent years. Along the 16S gene there are regions with more or
less variation across the kingdom of bacteria. Nine variable regions have been identified, flanked by more conserved
parts of the sequence. It has been stated that the discriminatory power of the 16S marker lies in these variable regions.
In the present study we wanted to examine this more closely, and used a supervised learning method to search
systematically for sites that contribute to correct classification at either the phylum or genus level.

Results: When classifying phyla the site selection algorithm located 50 discriminative sites. These were scattered over
most of the alignments and only around half of them were located in the variable regions. The selected sites did,
however, have an entropy significantly larger than expected, meaning they are sites of large variation. We found that
the discriminative sites typically have a large entropy compared to their closest neighbours along the alignments.
When classifying genera the site selection algorithm needed around 80% of the sites in the 16S gene before the
classification error reached a minimum. This means that all variation, in both variable and conserved regions, is
needed in order to separate genera.

Conclusions: Our findings does not support the statement that the discriminative power of the 16S gene is located

only in the variable regions. Variable regions are important, but just as many discriminative sites are found in the more
conserved parts. The discriminative power is typically found in sites of large variation located inside shorter regions of

higher conservation.

Background

The use of stable parts of the genomic content as an evolu-
tionary marker was a breakthrough for microbial studies
in the 1980s [1,2]. The 16S small ribosomal subunit gene
(16S rRNA) is today considered the gold standard for
phylogenetic studies of microbial communities and for
assigning taxonomic names to bacteria [3-5]. There are
several properties of the 16S gene that has made it useful
as a taxonomic target. First, the 16S gene is present in all
bacteria. Second, it contains regions resistant to prokary-
otic evolution [2]. This has made it possible to recognize
the 16S without too much problems in most genomes.
Third, and most important to this study, the 16S gene also
includes some variable regions in between the more con-
served parts. Nine such regions were once identified and
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Department of Chemistry, Biotechnology and Food Sciences, Norwegian
University of Life Sciences, As N-1432, Norway
Full list of author information is available at the end of the article

( BiolVed Central

named V1-V9 [6] from the sequence data available at that
time. Based on the data sets of those days, it was con-
cluded that the conserved regions are too conserved to be
useful for discriminating between taxa, and that the vari-
able regions are the key to classification of prokaryotes.
Some later studies [7,8] have also confirmed these results,
establishing a dogma in the use of 16S sequence data:
The information separating taxa is found in the variable
regions of the 16S gene.

The location of the variable regions, and implicitly the
conserved parts flanking them, has been based on some
multiple alignment of more or less full-length 16S genes.
Van de Peer et al. [6] used distances between sequences
together with the specific nucleotide substitution rate for
each position to identify the variable regions. Another
approach is to compute the entropy for each position in
the alignment [9], and conserved/variable regions corre-
spond to low/high entropy.

© 2014 Vinje et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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The conserved parts are used to locate the marker gene,
either in silico in a sequence of genomic DNA, or more
commonly, in situ by polymerase chain reaction (PCR)
amplification [10] based on primers matching these con-
served parts. The first sets of primers were named accord-
ing to their positions on Escherichia coli 16S rRNA [11].
Over the years many publications have been devoted to
improving these primers [12,13].

In recent years it has been discovered that the conserved
parts are not in fact as conserved as once conceived,
and that there are really no such thing as universal PCR-
primers that will sample equally well in all branches of
the tree-of-life [14-16]. A recent study by Mizrahi-Man
et al. [17] consider, among other things, how well the vari-
ous variable regions are suited for classification. Still, these
investigations all have in common that they first fix a set of
primers, and then look at the regions between the primer-
matching sites to see if the corresponding sub-sequences
discriminate well or not. In this article we want to
examine the whole length of the 16S gene, and to see
if mining in the huge set of available 16S sequences can
tell us something about where the discriminating sites are
located, without any constraints with respect to primer
matching sites.

We approach this problem by classifying the 16S
sequences using a multivariate method and data con-
sisting of multiple alignments. We conduct a system-
atic search for the best discriminative sites along the
alignments. We use high-quality data from the databases
Greengenes [18], the Ribosomal Database Project (RDP)
[19] and SILVA [20]. The aim of this study is to investi-
gate where the most discriminative sites in the 16S marker
gene are located, more specifically if they correspond to
variable or conserved regions.

Methods

Data

Data were downloaded from three databases; Greengenes
[21], RDP [22] and SILVA [23]. From Greengenes
we downloaded the alignment of isolated named
strains, containing 117 101 sequences over 7682
positions. From RDP we downloaded all bacterial
sequences marked as good quality and with at least
1200 bases which resulted in an alignment containing
1 151 913 sequences over 22 721 positions. From
SILVA we downloaded the archived alignment named
SSURef 111 NR_tax silva trunc_aligned con-
taining 286 858 sequences over 45 984 positions.

From all alignments we discarded sequences less than
1200 bases long, sequences having alien characters
(not A,C,G, T or -) and sequences not classified to
one of the 2074 bacterial genera listed in the List
of Prokaryotic names with Standing in Nomenclature
(LPSN, http://www.bacterio.cict.fr/). We also discarded
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duplicated sequences. This resulted in a reduced align-
ment of high-quality data from each database, see Table 1.

Finally, we focused on the subset of sequences found
in all three databases, i.e. the intersection between the
databases. In order to obtain a consensus-based class label
for all sequences, we also discarded sequences assigned
to different genera in the three databases. We were then
left with 12362 sequences found in all three databases, see
Table 1. For each of these sequences both the assigned
phylum and genus were recorded as two alternative class
labels. Figure 1 shows the distribution of phyla in this data
set.

When performing the systematic search for discrim-
inating sites, phyla with less than 25 sequences were
discarded, leaving us with data for 11 phyla and a total
of 12270 sequences in the data set. When using genus as
response, we required at least 10 sequences in each genus,
resulting in 198 distinct genera (9948 sequences).

Entropy

To relate sites in the three alignments to each other,
and to conserved/variable regions, we computed the
entropy for each site in each alignment. This approach
has also been used in previous studies (e.g. [9]). For
all three alignments all sites consisting of less than 30
A, C, G and T were discarded as these provided too
little data. At each remaining site k we computed the
entropy

4
He==>" pilog(p;) (1)

i=1

where p1,p2, p3 and py are the empirical proportions of
the four bases appearing at position k.

In order to visually identify the regions of high/low
entropy, this entropy was smoothed across positions using
a centered moving average of length 51. Figure 2 is a
visualisation of this from the three different alignments.
Note, the position specific entropy from (1) was used in
the subsequent analysis, the smoothing was only used to
illustrate.

Table 1 Overview of data

Database Downloaded Filtered Intersection
Greengenes 117101 x 7682 74928 x 3664 12362 x 3166
RDP 1151913 x 22721 135120 x 16686 12362 x 4084
SILVA 286858 x 45984 111914 x 13172 12362 x 4230

Each cell shows the number of sequences x the number of positions of each
alignment. Downloaded are the original alignments, Filtered means after
filtering of high-quality data (see text) and Intersection is the subset of
sequences common to all databases.
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Figure 1 Distribution of phyla in data set. The final 12362 sequences are classified into 26 different phyla in the data set. The left panel shows the
distribution among these phyla. The right panel gives a more detailed picture for the smaller numbers, with the four most common phyla ignored.

Number of sequences

Site selection algorithm

In order to search for discriminating sites along the 16S
alignments in a systematic way, we implemented a super-
vised learning approach. The input data to the supervised
learning method are one of the three alignments previ-
ously described and the class-labels for each sequence in
the alignment. We have used the Partial Least Squares
(PLS) method [24], which is one in a long list of super-
vised learning methods. PLS is well established and has
been used in many bioinformatics applications, also for
the analysis of sequence data [25,26]. PLS is especially
applicable when there are many correlated explanatory
variables. This will typically be the case for the present
data since the explanatory variables are in our case the
sites in the alignments, and many sites along the align-
ment will have similar base compositions giving high
correlations.

All three alignments were considered one at a time. Each
site in the alignment contains a column with the symbols
A,C,G,T or -. In order to use the supervised learning
method we coded each symbol into a row-vector of five
binary values. The symbol A was coded as (1,0,0,0,0),
Cas (0,1,0,0,0), G as (0,0,1,0,0), T as (0,0,0,1,0) and
the indel - as (0,0,0,0,1). Thus, each N x 1 column of
symbols in the alignment gives rise to a N x 5 matrix
of binary values to be used in the PLS-algorithm. Where
N is the number of sequences. We use the term variable
instead of site below, but each site actually gives rise to five
numerical (binary) variables.

The response variable is in this case the class labels, and
this was also coded in a similar way, using one bit for each

class. As an example, when using phylum as response, the
single N x 1 column containing 11 different phyla was
translated into an N x 11 matrix of binary values, where
Proteobacteria corresponds to (1,0,0,0,0,0,0,0,0,0,0),
Firmicutes to (0,1,0,0,0,0,0,0,0,0,0) etc.

Being a multivariate method, PLS finds combinations
of the explanatory variables giving the minimum classifi-
cation error. These combinations are referred to as PLS
components. In principle, all explanatory variables are
included, and given more or less weight in the compo-
nents. Variable selection means we intend to select only
a subset of the original explanatory variables, and then
combine these to achieve the best possible discrimination.
There are many approaches to variable selection under
the PLS paradigm [27], and for this application we have
chosen the Selectivity Ratio (SR) score as the criterion.
The SR-score is the ratio of explained variance to residual
variance for each variable. This represents a measure of
the ability to discriminate between the classes. High SR-
score for a variable means it contains information about
the classes and can discriminate between these in a good
way [28].

The site-selection algorithm contained the following
steps:

1. A 10-fold cross validation was first used to find the
optimal number of PLS-components needed to
classify the given response with the minimum
obtainable error.

2. A PLS regression model was fitted to the full data set,
with the fixed number of components from Step 1, to
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Figure 2 Smoothed entropy. The three panels show the smoothed entropy for the Greengenes, RDP and SILVA alignments covering the same
12362 sequences in this study. Positions with less than 30 bases have no entropy here, hence the 'holes’ at some positions. Notice the difference in
the number of positions, Greengenes being the shortest and SILVA the longest alignment. The nine variable regions V1,.., V9 are indicated for each
alignment. Five examples of primers (27F, 536F, 928F, U2 and 1492R) used for PCR amplification of 16S are also marked along the position axis,
indicating where they frequently match.

obtain regression coefficients for all explanatory
variables. For every explanatory variable the
selectivity ratio.

3. For every explanatory variable the selectivity ratio
was calculated based on the regression coeftficients
from 2. Due to the coding, each site in the alignment
corresponds to five SR-scores. The maximum of these
five SR-scores was used as a site specific SR-score.

4. These site specific SR-scores were sorted in
descending order; the largest SR-score corresponding

to the most interesting sites. One by one the sites
were included in the final model, and a 10-fold cross
validation was again conducted to estimate a
classification error. The final choice of how many
sites to include was based on this classification error.

Results and discussion

We extracted 12362 unique sequences from the three
databases Greengenes, RDP and SILVA, all having at
least 1200 bases, no alien characters, found in all three
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databases and with identical assignment to genus. This
consensus data set must be considered a high-quality
data set for 16S sequences, and an overview is given in
Table 1. The three databases provide alignments of these
sequences, and Figure 2 shows the smoothed entropy in
each case. The three alignments differ, specifically the
number of sites are different, which is due to a differ-
ing number of gaps introduced. However, the smoothed
entropy shows a fairly similar pattern in all cases, and nine
peaks can, with some good will, be identified. We empha-
size that the grey bars in Figure 2 shows the smoothed
entropy in order to display the regions. The actual entropy
at the various sites fluctuates much more, as we will come
back to below.

Instead of focusing on conserved or variable sites, we
used the PLS supervised learning method to extract the
sites giving the best possible discrimination regardless of
where they may be along the alignment. First, we used
phylum as response, i.e. there are 11 distinct classes, and
for each of the three alignments (Greengenes, RDP and
SILVA) we employed the site selection algorithm.

Figure 3 is an illustration of the selected discriminative
sites together with the smoothed entropy from Figure 2.
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For all three alignments we ended up with 50 selected
sites. The coloured bars indicate the selected sites. The
height of a bar is the (log-transformed) SR-score, i.e. the
tallest bars indicate the most discriminative sites. The
color shows which symbol had the largest discriminatory
power at the respective site. As an example, the leftmost
bar is red, meaning the majority (but not necessarily all)
of the information at this site is connected to whether
a sequence has an A or not an A at this position. The
three panels in Figure 3 are the results for the three dif-
ferent alignments. Despite the differences between the
alignments, the selected sites are remarkably similar with
respect to the variable and conserved regions. The largest
single SR-score is the site indicated by the tallest blue bar.
If we compare its location to the entropy in the back-
ground, we find it at the left hand side of region V4 in
all three cases. Since both relative location and the colors
of the selected sites are similar for the three panels, the
results of the selection algorithm are stable with respect
to the different alignments.

The first impression given by Figure 3 is that the selected
sites are scattered across almost the entire alignment,
there are no specific regions where they tend to cluster. As
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Figure 3 Selected discriminative sites. The selected sites for classification of phyla are plotted as coloured bars along the alignments. The height
of a bar is the log-transformed SR-score (right hand vertical axis). The colors indicate which of the symbols A, C, G, T or - have the dominating
discriminating power at the respective site, see legend. The grey bars in the background show the smoothed entropy values (left hand vertical axis)
at each site as in Figure 2.
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Table 2 Overview of the positions of the selected sites
V2 V3 V4 V5 V6 V7 V8 V9 Outside

Database Vi

Greengenes 0 7 2 6 3 1 3 0 2 26
RDP o 7 1 6 3 3 1 0 1 28
SILVA 2 6 1 6 4 3 1 0 1 26

Each cell shows the number of selected sites for phylum classification found
inside the variable regions V1-V9 for the three data sets. The rightmost column,
named Outside, are the number of selected sites outside the variable regions.
The total number of selected sites are 50 in each case.

shown in Figure 2 we can identify the nine variable regions
in each of the three alignments. By manual inspection we
found their boundaries, and Table 2 shows the number
of selected sites in each. Most notably is that around half
of the 50 selected sites are outside the variable regions.
The variable regions cover roughly half of all the positions
in the alignments, hence a selected discriminative site is
just as likely to occur outside as inside of these regions.
From Table 2 we also see that regions V2 and V4 contain
many selected sites, while V8 has none in all three cases.
Regions differ in width, and V4 has most selected sites per
position.

Even if selected sites are both inside and outside of vari-
able regions, their actual site-specific entropy from eq. (1)
are in all cases significantly above the average entropy for
the entire alignment. This was tested by a simple permu-
tation test, and the results are displayed in the left panel
of Figure 4. The histogram shows the average entropy for
50 randomly sampled sites (repeated 10 000 times) in the
Greengenes alignment, and the red bar marks the aver-
age for the 50 sites selected by PLS. Clearly, the selected
sites have a mean entropy (1.23) which is much larger
than what we expect at random (histogram), giving a
p-value p < 0.0001 here. The point is that selected
sites have high entropy, but are not necessarily located
in high-entropy regions. In fact, they tend to have much
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higher entropy than their surrounding sites, which is
shown in the right panel of Figure 4. Here we computed
the difference between the entropy of a selected site and
its 10 neighbouring sites at each side. For the Greengenes
data this resulted in the average difference 0.57 marked
by the red bar. The histogram is again the result of a
permutation test (10 000 permutations) where the same
difference has been computed for randomly sampled sites.
The results of Figure 4 were very similar for the RDP and
Silva alignments, and are not shown here.

Figure 5 presents some detailed results for phylum
classification based on the Greengenes alignment, again
the results turned out similar for the RDP and SILVA
alignment. Panel A (top left) shows how the number of
mis-classifications decreases by including more selected
variables, and converging at around 100 errors, giving
an accuracy of over 99%. The other five panels visu-
alize sequences in PLS-plots. Every point represents a
sequence and the coordinate axes represent the opti-
mal combinations selected by PLS (PLS components).
Sequences located near each other are aligned similarly,
at least in the discriminative sites. The colors represent
the true classes (phyla). The first components separate
the large classes, and it is not until the 10th compo-
nent that smaller groups are separated. In panel B of
Figure 4, we can see some obvious mis-classifications.
Some black dots (supposedly Proteobacteria) are found in
the center cloud of yellow (Firmicutes). This must be due
to either alignment errors or sequences assigned to the
wrong class from the beginning. In order to construct the
huge alignments we use here, greedy algorithms of some
kind are required. This means errors accumulate, and
alignments of this size will most likely contain a substan-
tial number of errors. Structure-based alignment meth-
ods should perform better for RNA-sequences. The RDP
alignment we use here is based on the Infernal software
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Figure 4 Entropy of selected sites. The left panel shows that mean entropy of the selected sites compared to random samples. The vertical red
bar marks the mean entropy of the 50 selected sites, at 1.23. The histogram is constructed by sampling 50 random positions, computing their mean
entropy, and repeating this 10 000 times. The right panel shows the mean difference between the entropy of a selected site and its 20 neighbors (10
on each side). Again the red bar marks this difference for the 50 selected sites and the histogram displays the same difference for 50 sites sampled at
random, repeated 10 000 times. This figure is based on the Greengenes data, but the RDP and SILVA data gave similar results.
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Greengenes data, but the RDP and SILVA data gave similar results.
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Figure 5 Details of phylum classification. Panel A shows how the number of mis-classifications drops as more and more sites are selected by the
site selection algorithm. The error levels out at around 100 mis-classifications, and 50 selected sites seems to be enough to achieve this error rate.
Panels B-F are PLS-plots of the sequence data, and the various panels show the same data from different perspectives. In panel B we plot the data
in a coordinate system spanned by PLS-component 1 and 2, in panel C it is spanned by component 3 and 4 and so on. Each dot corresponds to a
sequence, and the colors represent the true class label for each sequence, indicated by the legend in panel B. This figure is based on the

[29], but still we find a number of mis-classifications.
These errors constitutes a significant source of the clas-
sification errors we observe. In fact, the methods most
frequently used for classification are those based on
word-frequencies instead of alignments, e.g. the RDP-
classifier [30], indicating that huge, monolithic alignments
are quite poor data for classification purposes. However,
when linking the classification to the location of con-
served and variable regions, the use of alignments seems
unavoidable.

From Figure 5 we see how the separation of the larger
classes is more important than the smaller classes, since
the first PLS-components are devoted to this. Each mis-

classification counts equally much, and separating larger
classes will always reduce the total error more. This
means the selected sites we find are those sites most
important for separating the larger classes. The num-
ber of sequences in each class varies a lot in all avail-
able 16S data sets, e.g. see Figure 1. In this study
we have only focused on the total error, and different
results would be found if we focused only on the smaller
classes.

Next, we repeated everything done so far, but using
genus instead of phylum as class labels. This means we
have 198 instead of 11 classes, making the separation
much more difficult. In Figure 6 we show how the number
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Figure 6 Site selection for genus classification. The figure
illustrates how the number of mis-classifications drops by increased
number of selected sites for genus classification. The error levels out
at around 1000, and we need around 2500 sites to achieve this. This
figure is based on the Greengenes data, but RDP and SILVA gave
similar results.

of mis-classifications drops as we select more and more
sites in the Greengenes alignment. We need to include
many more sites than for phylum, and the classification
error seems to level out after around 2500 selected sites,
the remaining 600-700 sites do not provide further infor-
mation about genus. Since around 80% of the sites are
selected, it is obvious that the discriminating information
in this case is not restricted to the variable regions. In
fact, it tells us that in order to separate genera, we need
to utilize almost every difference that can be found in
the sequences regardless of where they are located. The
error level we reach here, around 10% mis-classifications,
is comparable to those reported by other studies on the
genus level. This error rate and the number of selected
sites indicates that a 16S based classification of genera
means we are pushing the limit for how much informa-
tion we can extract from the alignments of a single gene
marker.

Conclusion

The aim of this study was to investigate the dogma of 16S
based classification, stating that the key information for
separating classes is harboured in the variable regions of
this marker. By using three different multiple alignments
of the same sequence data, we implemented a supervised
learning method to systematically search for discrimina-
tive sites without any constraints with respect to conser-
vation. The selected sites came out remarkably similar for
the three data sets, a sign of a stable selection despite the
obvious differences between the three alignments.

Page 8 of 9

Our first major finding is that the discriminative sites
are not exclusively located in the variable regions. In fact,
the nine variable regions are not even enriched with sites
selected by our algorithm. Variable regions are important,
but not more important than any other region. The sec-
ond major finding is that discriminative sites are typically
sites with high entropy located among neighbouring sites
of much lower entropy. This seems like a logical outcome.
Regions of lower entropy means some degree of conser-
vation, and alignments tend to be more accurate in such
regions. If a site inside such regions show a much larger
variation, it is more likely this is due to real biology, not
alignment errors.

We believe these findings should be taken into consider-
ation when it comes to improving methods for 16S based
classification of bacteria.
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Abstract

read-length.

Background: The need for precise and stable taxonomic classification is highly relevant in modern microbiology.
Parallel to the explosion in the amount of sequence data accessible, there has also been a shift in focus for
classification methods. Previously, alignment-based methods were the most applicable tools. Now, methods based
on counting K-mers by sliding windows are the most interesting classification approach with respect to both speed
and accuracy. Here, we present a systematic comparison on five different K-mer based classification methods for the
16S rRNA gene. The methods differ from each other both in data usage and modelling strategies. We have based our
study on the commonly known and well-used naive Bayes classifier from the RDP project, and four other methods
were implemented and tested on two different data sets, on full-length sequences as well as fragments of typical

Results: The difference in classification error obtained by the methods seemed to be small, but they were stable and
for both data sets tested. The Preprocessed nearest-neighbour (PLSNN) method performed best for full-length 16S
rRNA sequences, significantly better than the naive Bayes RDP method. On fragmented sequences the naive Bayes

Multinomial method performed best, significantly better than all other methods. For both data sets explored, and on
both full-length and fragmented sequences, all the five methods reached an error-plateau.

Conclusions: We conclude that no K-mer based method is universally best for classifying both full-length sequences
and fragments (reads). All methods approach an error plateau indicating improved training data is needed to improve
classification from here. Classification errors occur most frequent for genera with few sequences present. For

improving the taxonomy and testing new classification methods, the need for a better and more universal and robust

training data set is crucial.

Background

The exploration of microbial communities is now a major
focus in microbiology, opening new approaches to the
study of microbiomes of humans and other organisms as
well as the communities found in natural environments
of air, water or soil [1]. Already in the 1980s Carl Woese
introduced the rRNA-based phylogenetic comparisons of
prokaryotes [2, 3], and the 16S rRNA gene is still the
most useful genomic marker for the study of diversity and
composition of metagenomes. The classification of 16S
sequences obtained from some samples is a classical pat-
tern recognition problem, i.e. recognizing some pattern in
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Full list of author information is available at the end of the article

( ) BiolVied Central

a sequence and assign it to one out of several predeter-
mined categories. Whether the sequences are subjected
to multiple alignments or, as in this paper, counting of
short words, some assignment must be made based on
how similar these sequences are to previously classified
sequences. Naturally, the methods employed should give
as accurate classifications as possible, but in metage-
nomics time-efficiency is also an issue since the number of
sequences to classify may be vast. It should also be noted
that with today’s massively parallel sequencing technolo-
gies, shorter reads covering only a region of the gene are
more accessible [4—6], making classification methods that
perform well on sequence fragments essential.

However, classifications based on 16S rRNA sequences
do not only have a practical use in metagenomics. In fact,
this marker is used to build the entire prokaryotic taxon-
omy and is considered the gold standard for phylogenetic

© 2015 Vinje et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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studies [7-9]. In this perspective the classification of full-
length 16S sequences is the issue. It should also be noted
that in this context we should make all possible efforts
to have the absolute best classifications available, and
time-efficiency is no longer important.

A number of different procedures have been used to
classify 16S sequences, and several different databases
purposely designed as 16S rRNA repositories are avail-
able, e.g. Greengenes [10], RDP [11] and SILVA [12].
Most procedures for taxonomic studies have been based
on alignments and reconstruction of phylogenetic trees,
making use of some predefined evolutionary models and
relevant algorithms [3, 13, 14]. However, with the enor-
mous increase in data from next generation sequencing
technology, these approaches suffer some problems. First,
the computational time required to align a large set of
sequences increases exponentially by its size. Secondly,
greedy algorithms of some kind are required to construct
these huge alignments and these sparse, monolithic align-
ments will most likely contain a substantial number of
errors due to the heuristics employed. Finally, the lack
of consensus, e.g. on evolutionary model assumptions,
has made it impossible to arrive at an official taxon-
omy for prokaryotes, the most widely accepted taxonomy
being the Bergey’s Manual of Systematics of Archaea and
Bacteria [15]. Thus, objective pattern recognition algo-
rithms are likely to be valuable tools for building the
prokaryotic taxonomy itself.

The most popular pattern recognition methods for 16S
sequences are those based on counting K-mers, i.e. over-
lapping ‘words’ of length K in the sequences [16-19].
Wang et al. [19] developed the RDP classifier, based on
the naive Bayes principle and a word-length of K = 8.
The RDP classifier is now close to being a standard in 16S
based classification, and was in 2011 selected by Essential
Science Indicators as the most-cited paper in a highlighted
research area of microbiology [20]. K-mer methods are
fast and will not suffer from the same uncertainties as
the procedures based on evolutionary models and align-
ments. This way of converting sequences to numerical
data is not as intuitive as evolutionary models, and lack the
obvious interpretation given by evolutionary distances,
but they are very objective in their mechanism. Also, in
a previous study [21] we found that in order to obtain
the best possible classification at the genus level, one
has to consider more or less all positions along the full-
length 16S sequences (around 1500 bases), not only hyper-
variable regions or other subsequences. This is another
advantage of the K-mer methods; they use all data in a
sequence.

However, K-mer based pattern recognition methods
are not without model assumptions, and the RDP clas-
sifier uses the K-mer counts in one out of a number
of alternative ways. Recent suggested improvements of
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this approach [22] have made it necessary to make a
more systematic investigation on how well other K-mer
based methods would perform, and possibly to reveal
how and where efforts should be made to improve the
objective classification of prokaryotes. In this paper we
have compared different classification methods based
on K-mer data for 16S sequences. We consider five
different methods based on different machine-learning
approaches, and we have compared their performance
for full-length sequences as well as fragments. In addi-
tion to the method comparison, we also try to pin-
point where improvements should be made in order
to give us better future methods for the important
problem of identifying the majority of species on this
planet.

Methods

Data

To compare methods we used two data sets. The
Trainingset? is the data used to compare 16S clas-
sification methods in [19], and was downloaded from
RDP [11]. It consists of 10032 16S rRNA sequences vary-
ing from 320 to 2210 bases in length, with the majority
around 1400 bases. There are 37 phyla and 1943 genera
represented in this set.

The SilvaSet is an extract from the SILVA database
[12], where the largest genera have been ‘pruned’ by ran-
dom sampling to contain fewer sequences. This set has
29520 sequences, covering 29 phyla and 1533 genera. The
main reason for including this data set is that it is a man-
ually curated data set different from Trainingset9,
which was used during the development of the RDP-
classifier.

In this paper we only consider classification to genus, i.e.
the lowest taxonomic level of these data. This is the most
challenging and also the most relevant problem for most
studies where taxonomic classification is important.

The distributions of sequence abundance across gen-
era are skewed for both Trainingset9 and SilvaSet.
Genera with only one sequence available are by far the
most common in Trainingset9 (Fig. 1). These sin-
gleton genera were included in the analysis, but will
always be mis-classified by all methods, and all reported
errors exclude these sequences. For Trainingset9 few
genera have more than 15 sequences, while some gen-
era are considerably larger (not shown). The genus with
most sequences is Streptomyces, which consists of 513
sequences. In the SilvaSet the difference in genus
sizes is not as pronounced as in Trainingset9, but
the majority of genera consists of 40 or less sequences.
The genus with most sequences is Pseudomonas with 115
sequences.

To estimate the model performance we conducted a
10-fold cross validation [23] for all methods. The data
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were ordered alphabetically by genus name and split into
ten different segments by enumeration from one to ten
repeatedly, and then assigned to segments according to
this number, i.e. every tenth sequence belongs to the same
segment. This ensured a maximum spread of all genera
across the segments. Each segment was set aside once as
a test set, while the rest were used as training set in each
cross-validation iteration.

K-mer based methods
All methods compared here represent a 16S sequence by
its overlapping K-mers, i.e. words of length K. There are
D = 4K possible words of length K in the DNA (RNA)
alphabet, and in our study we tested word lengths from
two to eight. The methods tested differ in the way they
represent a sequence as K-mers and how this information
is utilized in a statistical learning algorithm to achieve best
possible classification.

All five methods were implemented in the software
environment R [24]. Our implementation of the RDP clas-
sifier was tested against the original Java-implementation

to ensure consistency. The PLS and nearest-neighbour
methods already exist in the R-environment.

RDP

The RDP method considers only the presence/absence of
aword in a sequence, not its frequency. All words of length
K are ordered alphabetically as wi, wa, ..., wp. For every
sequence, we create a vector of D elements where element
jis 1if word wj is present in the sequence, and 0 if not. We
have chosen to describe the RDP method in detail below,
even if this has been done in [19], because this method
serves as a reference for the other methods described later.

Training

For each of the N sequences in the training set we get a
vector of 1’s and 0’s, and these vectors are arranged as rows
in the N' x D matrix A",

First, we estimate the unconditional probability: The
probability of presence of each word regardless of genus.
Summing the elements in each column of A" produces
the vector n1, 3, . . ., np, i.e. 1 is the number of sequences
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in the training set where word w; is observed at least once.
The probability that word w; will be found present in any
sequence is estimated by
nj + 0.5
. M
N+1
where the added 0.5 and 1 guarantees that no probability
is zero or one.
Next, consider only sequences from genus g, i.e. we

Pr(wj) =

consider a sub-matrix Agdp containing only the M, rows
corresponding to genus g. Again we can sum over the
rows of A;dp, and we get the vector myg1, mg, ..., mMgp,
i.e. mg; is the number of sequences from genus g where
we observe the word w; at least once. The genus-specific
or conditional probabilities are estimated by

Mg + Pr(wj)

My +1 @

qqj = Pr(wjlg) =

If the training set contains data for G genera, we can

arrange the probabilities g, in a G x D matrix Q" 4p where

the element in row g and column jis g4, forg = 1,..., G,

j=1,...,D. This matrix Q" P is the trained model, with a
set of probabilities (a row) for each genus.

Classification

Given a new sequence we construct the vector a corre-
sponding to a row in the matrix A" from above. Element
j in a is 1 if word wj; is found in the new sequence, and
0 otherwise. The unconditional probability of a is found
from (1) by

D
Pr(a) = | [ Prowp® ®3)
j=1

where a; is element j in @ and p; is from (1). Notice that
Pr(a is a joint probability of observing the words we see
in this sequence. The naive Bayes approach lies in the
assumption that this joint probability can be written as
a product of the marginal probabilities, as we have done
on the right hand side above. This assumption is correct
only if the elements of a are independent, which is a naive
assumption, but often still works in a satisfactory manner.

The conditional probability of & given some genus g is
computed in a similar way from (2) by

D
Pr(alg) = [ ag; @
j=1

From the general relation between conditional and
marginal probabilities it follows that
Pr(g)Pr(alg)

Pr(gla) = T(a) (5)

where the probability on the left hand side is the crite-
rion we use to classify. This is the posterior probability
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of genus g given the observed sequence 4, and we clas-
sify to the genus that maximizes this probability. On the
right hand side we have the prior probability of genus g,
Pr(g), in addition to the two probabilities we computed
in (3) and (4). It is customary to set the prior probabil-
ity equal to the proportion of data from genus g in the
training data set. In the RDP classifier the prior probabil-
ities are assumed to be equal for all genera, and genera
with few sequences are just as likely to be observed as
those with many sequences in the training set. In our study
we considered both flat priors (RDP) as well as priors
proportional to genus abundances.

The posterior probability Pr(g|a) is computed for every
genus, and we assign the sequence to the genus where we
get the largest probability. Notice that the denominator
Pr(a) in (5) does not depend on genus g. Hence, the g that
maximizes Pr(g|a) is exactly the same g that maximizes
Pr(al|g)Pr(g), and we can ignore Pr(a) altogether. Also, if
the prior probabilities Pr(g) are identical for all genera, we
get the simple relation Pr(g|la) = Pr(alg).

From a computational perspective, we prefer the log-
transformed version of (5) (ignoring Pr(a)), and using the
relation in (4) we get

D

log, (Pr(gla)) = log,(Pr(g)) + Zaj log, (qg,) (6)
j=1

since this log-probability is maximized for the same g as
the one in (4). If the matrix Q"% from the training step
is log-transformed and called L™ 4P and p is the column-
vector of the G log-priors for all genera, we can compute
the score vector

z=p+L% .4 (7)

as the inner product of L% and the column vector a'.
The score vector z has one element for each genus, and
we assign to the genus where z has its maximum value. In
case of two or more genera obtaining the same maximum
value, the sequence is marked as unclassified.

Notice that with flat priors, the terms log,(Pr(g)) are
identical for all g, i.e. all elements of p are identical, and
it can be omitted from (7) since it will add the same to all
genera.

Multinomial

The Multinomial method differs from the RDP method by
considering the relative frequency of every word instead of
presence/absence. The naive Bayes principle is the same.
A similar approach has also been tested by Lui and Wong
in their work in [22].

Training
For each of the N sequences in the training set we get a
vector of frequencies, i.e. element j is the number of times
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we observe w; in the sequence. These vectors are arranged
as rows in the N x D matrix A7

As before we consider a sub-matrix qu containing the
Mg rows corresponding to genus g. Summing over the

columns of qu we get a vector mig 1, Mg, ..., Mgp. The
genus-specific frequencies F(wj|g) are:
mgi 1
Fwilg) = —L 4 = 8
ol = T + ®)

where % pseudo-counts are added to each frequency to
avoid 0 counts. The multinomial probabilities for genus
g is then calculated by dividing each F(wjlg) by their
respective row sum, giving us a new set of multinomial
probabilities gg,;:

D

gj = Fwjl9)/ Y F(wlg) ©)
k=1

The trained model consists of the (G x D) matrix Q™
where row g contains the multinomial probabilities g, ; for
genus g.

Classification

From the new sequence we construct the frequency vec-
tor a corresponding to a row in the matrix 47 above.
Again we use the naive Bayes approach to compute a score
vector z:

z=p+L" .4 (10)

where L"" is the log-transformation of Q™ from the

training step and p are the log-priors just as for the RDP-
classifier. The score vector z has one element for each
genus, and the sequence is assigned to the genus with
maximum score in z. In case of two or more genera obtain-
ing the same maximum value, the sequence is marked as
unclassified.

Markov

In the present context ordinary Markov models consider
word frequencies, but differ from the naive Bayes prin-
ciple used by the previous two methods. Markov mod-
els have been tested on sequence data with the K-mer
approach in earlier studies, e.g. by Davidsen et al. [25].

Training

The training step corresponds to estimating the transition
probabilities of the Markov model. Any word of length K
can be split into the pretext consisting of the first K — 1
symbols, and the last letter, being A, C, G or T. The tran-
sition probabilities are the conditional probabilities of the
last letter given the pretext. These probabilities are usu-
ally organized in a transition matrix with 4 columns (one
for each letter) and one row for each pretext (4~ rows).
However, these probabilities can equally well be organised
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in a single row-vector, where the conditional probabilities
of A given the ordered pretexts is found at positions [ =
(1,5,9,...), for C given the ordered pretexts in positions
Ic = (2,6,10,...) and so on. Note that this corresponds
to the K-mers in alphabetical order. Each consecutive four
positions corresponds to the same pretext, extended by A,
C, G and T, respectively.

The matrices A7 and qu are computed as for the

Multinomial method. Summing over the columns of Aj;rq
again produces genus-specific frequencies F(wj|g) as in
(8). If K-mer wj contains pretext / followed by, say, A, then
the corresponding genus-specific transition probability is
estimated by

qgj = Fwjl9)/ Y F(wilg) 1)
kely

and similar if the pretext is followed by C, G or T, I4 is
replaced by the corresponding index set. If we had orga-
nized the transition probabilities in a matrix, this value
would appear in cell (4,1) since we consider pretext &
followed by A (column 1). Instead we arrange these prob-
abilities in a row vector of D elements. Having the transi-
tion probabilities for each genus, we arrange the vectors as
rows in a (G x D) matrix Q""" k. The latter organization of
the transition probabilities is done only to have the same
data structure as for the other methods; it does not affect
the computations.

Classification

From the new sequence we count K-mers as for the
Multinomial method, constructing the frequency vector a
corresponding to a row in the matrix 477, We compute
scores for the sequence as

z=L1"%. 4 (12)

where L% is the log-transformation of Q""*. Again we
classify to the genus yielding maximum score. In case of a
tie, the sequence is marked as unclassified.

Nearest-neighbour (NN)

In this method we use nearest-neighbour classification
based on multinomial probabilities. Nearest-neighbour
methods have no specific training step, but use the train-
ing data as a database and perform a lookup based on
some characteristics of the query sequence. Another 16S
nearest-neighbour method, called the Similarity Rank
tool, was published by Maidak et al. [26] for use in The
Ribosomal Database Project.

As before we compute the (N x D) matrix 4™ by word
counting, where N is the number of sequences in the
training set. Then we divide all elements in a row by its
row-sum to obtain multinomial probabilities, and these
are stored in the (N x D) matrix A™. Thus, each training
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sequence, with its labelled genus, is represented as a row
in this matrix.

For every new sequence we also count word frequencies
and divide by the number of words in the sequence, pro-
ducing a vector a similar to a row in A", The Euclidean
distance from a to all sequences (rows) in the training set
is computed. The new sequence is assigned to the same
genus as the nearest neighbour in the training set. In case
of a tie, i.e. two or more genera are nearest neighbours, it
is left unclassified.

Preprocessed nearest-neighbour (PLSNN)

In this method we extend the nearest-neighbour by com-
bining it with the partial least squares (PLS) method [27].
This is a supervised learning method that has been used
in many bioinformatics applications (e.g. [28—32]). A rea-
son for the wide-spread use of PLS is that it is especially
applicable when we have many correlated explanatory
variables, which is typical for the present K-mer data,
especially as K increases.

The idea is to compute a linear mapping from the
K-mer frequency space to a much lower dimensional
space, and then look for nearest-neighbours in this low-
dimensional space. In K-mer space every sequence has
D = 4K coordinates, and in the nearest-neighbour
method above all coordinates (K-mers) have equal weight.
However, it is more than likely that some of these
will be more or less important for recognizing a par-
ticular genus. Replacing the original D dimensional
space by a smaller number of combinations can be
seen as a preprocessing of the data before the nearest-
neighbour step, hopefully resulting in more ‘correct’
distances between sequences when seeking the nearest
neighbour.

Training
From the training data we again compute the (N x D)
matrix A”% as above. This is used as the matrix of
explanatory variables in training the PLS-method. The
response is the genus for each sequence. This is coded as
a row-vector of G elements, with 1 in position g if the
sequence comes from genus g and 0 in all other positions.
This assembles into an (N x G) matrix Y.
The PLS assumption is based on the linear model
E(Y)=A"g (13)
where B is some (D x G) vector of regression coeffi-
cients. The algorithm will search for an orthogonal sub-
space by combining the variables (columns) of A" and
maximising the covariance between ¥ and A", The algo-
rithm first finds the 1-dimensional sub-space, then the
2-dimensional, etc. The main idea is to stop the search
after C dimensions, where C << D but still enough to
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have a good fit according to the model in (13). This means
we end with

Amlt ~ SR (14)

where the (N x C) dimensional matrix S consist of lin-
ear combinations of the columns in A™”, and R is some
orthonormal projection matrix. The rows of § are the
training sequences represented in the C-dimensional sub-
space with maximum covariance to genus information.
In this representation we have filtered out less important
variation in K-mer frequencies, e.g. variation within gen-
era. Distances between sequences in this space should be
more sensitive to between-genus variation and less sensi-
tive to within-genus variation. For every word length K we
tested 8 different dimensions C. The maximum was set to
Ciax = min(N—1, D—1,2000), and we used C = iCy,,/8
fori=1,2...,8.

Classification

For every new sequence we compute a vector @ similar
to a row in A" From (14) it follows that AmitR ~ S
since R is orthonormal, and thus we can compute s = aR.
The vector s is the representation of the new sequence in
the subspace spanned by S. The new sequence is finally
classified with the nearest-neighbour method as before,
where Euclidean distances from s to all rows of S are
considered.

Results and discussion

We have tested five methods for K-mer based classifica-
tion of 16S sequences, using a 10-fold cross validation, on
two different data sets to compare their performance.

Figure 2 shows the classification error for full-length
sequences for both Trainingset9 and the SilvasSet.
The Multinomial, the NN and the PLSNN method, all
had a smooth, steady reduction in classification error
from word length three, while the RDP method did
not stabilize until word length five. The latter is due
to the present/absent logic of this method: With too
short word-length almost all words are present in most
sequences. RDP and Multinomial had their minimum
error at word length eight, NN and PLSNN at word length
seven for Trainingset9 and eight for the SilvasSet,
while The Markov method reached the minimum error
rate at word lengths of four and six, respectively, for
the two data sets. The smallest error reached is fairly
similar for all methods. The minimum error level was
around 5% for Trainingset9, and slightly higher for
the silvaset.

The classification errors for the optimal word lengths
are summarized in Table 1. For full-length sequences,
using the optimal word length for each method, PLSNN
performed best on both data sets with classification errors
42% and 4.9% respectively. The differences from the
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Fig. 2 Classification error for full-length 16S sequences. The top panels display the classification error for full-length sequences using all methods on
word lengths K2 — K8. The bottom panels are the same results only zoomed at the last three word lengths (K6 — K8). Hence, the results are discrete
values for every K-mer length and the connecting lines are merely to aid visual interpretation

other methods may seem small, but were stable. This is
indicated by the error percentages in each of the ten cross-
validation test-sets (Fig. 3). Each test set was a random
subset of the full data set. The fact that methods behave
consistent across subsets is an indication of a stable dif-
ference. From Fig. 3 we observed that not only was the
PLSNN method overall best, but also best in nine out
of ten sub-sets. We also noticed that the RDP method
was not among the best methods in any sub-sets, and
the Markov method produced the largest error in most
cases. To test the effect of methods on the classification
error, we employed a standard analysis-of-variance, using
method as fixed effect (five levels) and test set as random

Table 1 Results from a 10-fold cross validation. Classification
errors (% misclassified) for the different methods at their optimal
word length and for various data sets. Singleton genera errors are
not included since they add the same to all methods

Trainingset9 SilvaSet
Method Full-length Fragments Full-length Fragments
PLSNN 4.15 (K7) 16.96 (K8) 4.87 (K8) 2433 (K7)
Multinomial 4.70 (K8) 16.00 (K8) 5.68 (K8) 19.73 (K8)
NN 4.99 (K7) 16.54 (K8) 5.63 (K8) 24.02 (K8)
RDP 543 (K8) 1642 (K8) 6.55 (K8) 20.49 (K8)
Markov 5.93 (K4) 21.78 (K6) 8.10 (K6) 22.98 (K7)

effect (ten levels). Using the RDP method as a reference
method, we made a pairwise comparison with Tukey’s
Honestly Significant test of the other four methods. The
p-values are found in Table 2. The Markov method
was significantly poorer and both the Multinomial and
the PLSNN methods were significantly better (p < 0.05)
than RDP on full-length sequences for both data
sets.

All methods were also tested on shorter fragments
of 16S sequences. Present sequencing technologies pro-
vide high-quality reads up to a few hundred bases, and
some kind of assembly is required to provide a full-
length 16S sequence (minimum 1200 bases). Thus, clas-
sification based directly from the reads is desired. We
divided the test sequences into ten partially overlapping
fragments of 200 bases, and all fragments were classi-
fied. Figure 4 shows the classification error based on the
fragment sequences for both Trainingset9 and the
SilvaSet.No method behaved well before word lengths
of at least five or six, and again there was some error-
plateau below which no method reached. Naturally, the
errors were larger than for full sequences, since the infor-
mation content of these shorter fragments must be smaller
than the full sequence. Again, the ANOVA analysis was
performed and we found that, compared to our con-
trol method RDP, the Multinomial was the only method
that performed significantly better (p < 0.05) for both
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data sets. PLSNN, on the other hand, now performed
significantly poorer than RDP. The details of the results
can be seen in Tables 1 and 2.

A difference between 4.2% (full-length PLSNN
Trainingset9) and 54% (full-length RDP
Trainingset9) error may seem small, but for build-
ing the taxonomy itself, there is no excuse for ignoring
any improvement in methods. In principle the error
should be zero. In a more practical use, where we want
to classify a large number of sequences, a difference in
1% means many misclassified sequences. Computation
time is also an issue that should be taken into consid-
eration. The RDP, Multinomial and Markov methods
are fast and easy to both train and use for subsequent
classification. All nearest-neighbour methods, including
NN and PLSNN, are slower since they require distance
computations for each new sequence to every sequence
in the training set. The PLSNN method requires heavy

Table 2 p-values for pairwise comparison of methods. Results
from ANOVA on the effect of methods. The RDP is considered our
control level and the p-values stated in the table below are the
pairwise comparison for the four other methods to RDP

Trainingset9 SilvaSet
Method Full-length Fragments Full-length Fragments
PLSNN <0001(=) 0002(+) <0001(=) < 0001(+)
Multinomial ~ 0.016(—) 0.026(—) <0001(=) < 0001(—)
NN 0.293(—) 0.895(+) <0001(=) < 0001(+)
Markov 0.198(+) <0001(+) <0001(+) < 0001(+)

The signs in the parentheses indicate if a method gave smaller (—) or larger (+)
errors than RDP

computations during training, but once this has been
done, new sequences are classified faster (and better)
than with NN since distances are computed in a smaller
sub-space.

The Markov method appears to be the clear loser in
our tests. Not only does it give poorest best-case results,
but we also noticed that the best word length for the
Markov classifier changed from four to seven depending
on the data set. The uncertainty in word length makes this
method unstable and unreliable and it is discarded as a
fruitful approach for 16S sequence classification.

In the PLSNN method we employ the PLS method
as a preprocessing of the count data, finding linear
combinations of the K-mer counts having maximum
class information. If we consider word length seven
there are 47 = 16384 different K-mers. A full-length
16S sequence has around 1500 words of this length,
which means more than 90% of these K-mers occur
zero times in any given sequence. Not all K-mers of
this length can be equally important and a dimension
reduction must be possible. We found that for K >
6 a reduction to 2000 dimensions gave the best PLS-
performance. Thus, for K = 7 we reduce the coordinate-
space from more than 16000 dimensions to 2000 before
computing distances. Still, 2000 dimensions is remark-
ably large, but of course affected by the fact that we
want to classify into a huge number of distinct gen-
era. If the training set includes 1800 different genera,
it is perhaps not surprising that we need at least this
many dimensions to get a proper resolution to discrim-
inate between them. This huge number of categories,
as well as the considerable size variation between them
seen in Fig. 1, makes this a rather special classification
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problem with several methodological challenges worth
pursuing.

In [19] flat priors were used in their RDP-classifier.
The results presented above also employ this strategy,
assuming all genera are equally likely to occur in a
new 16S sequence. If genera with many sequences in
the training set are truly more widespread, this should
be taken into account, and priors reflecting the abun-
dance of each genus in the training set should pro-
duce better classifications. On the other hand, if a small
training sample is due to an unexplored or newly discov-
ered genus frequency-weighted priors supplies no further
information to the data. We tested the RDP-classifier
and the Multinomial method with both prior strategies
on Trainingset9. The results were surprisingly similar
regardless of priors. For word length eight the misclas-
sified sequences were practically identical for the two
cases, both for full-length and fragmented sequences.
With this lack of differences we conclude that, unless
very good arguments for the opposite can be provided,
flat priors should be used. A flat prior means a sin-
gle parameter (probability) is used for the entire pop-
ulation instead of (Ockham’s razor) favours the simpler
solution.

In the results we observed an error-plateau or bar-
rier below which no K-mer based method seemed to

reach. Data sets like Trainingset9 and SilvaSet
will always contain some proportion of questionable
classifications partly since the actual relatedness between
various genera is unknown, but also because the 16S
gene itself is not a flawless marker. Variability between
copies within the same genome as well as recombination
events have been reported even for this highly conserved
gene [33, 34]. If some sequences have been assigned
to an incorrect genus from the beginning, classification
errors seems unavoidable. Wang et al. tested their naive
Bayes classifier (RDP-classifier) on two different data sets
in their work [19] from 2007. They reported the clas-
sification errors at genus level as 8.6% and 7.9% for
the Bergey corpus and the NCBI corpus, respec-
tively. The difference from our errors for the same
method can be explained by a data set effect, presum-
ably the data sets we have been ‘improved’ by eliminating
some obvious mis-assignments since 2007. This empha-
sizes the importance of training data for classification
performance [35].

All the sequences that were classified faulty by at least
one of the methods were extracted and investigated fur-
ther. For full-length sequences from Trainingset9
this consisted of 725 sequences, and the errors were
distributed over methods as shown in Fig. 5. First, we
noticed all methods made some unique errors, from
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18 for PLSNN to 97 for RDP. The pairwise relations
showed that RDP and Multinomial shared 78 common
errors, and NN and PLSNN shared 62. All other pairs
had much fewer common errors (3,6,13 and 164), as
expected from how the methods are designed. We also
noticed that 227 sequences were classified faulty by all
methods (center sector), and among these, 176 were
assigned to the same genus by all five methods. These
176 sequences belong to 127 unique genera and 42 of
these genera contained only two sequences in the full
data set.

To investigate further the effect of genus-size, we have
in Fig. 6 plotted the error percentages for sizes two to ten.
As expected, small genera had elevated risk of being clas-
sified wrongly. Genera of size two means there are two
sequences in total, one sequence in the training set and
one in the test set. Recognizing a genus based on one pre-
viously observed sequence is of course very difficult. The
genera with only one sequence present (singletons) are
not shown as they always will have 100 % error. The figure
shows that more errors were made for genera consisting
of few sequences and this skewness in abundance poses
a challenge to all statistical learning methods. One may
argue that to improve classifications we need better data

more than we need better methods, and that a larger data
set is not necessarily a better data set. The SilvaSet
is three times larger than Trainingset9 but still rela-
tively more errors were made. We agree that better data
is essential, but better data and better methods are also
interleaved, since no data set is completely independent of
methods, and manual curation is certainly no guarantee
against classification errors.

In the introduction we mentioned that previous stud-
ies show that we should consider all positions along the
16S sequences to get optimal genus-classification. Still,
in Fig. 7, we see that some fragments are more informa-
tive than others. Fragment four gave a considerably better
classification than the other fragments. Please note that
we chopped the 16S sequences into ten partly overlap-
ping fragments, all of length 200 bases. Thus, fragment
four is located relative to each sequence length, and does
not correspond exactly to a hyper-variable region, but
is in most cases around region V3-V4, which is known
to be the most informative part of the 16S gene. In
this perspective it seems likely that there is something
to gain from utilizing position-specific information. K-
mer based methods do not take into account where in
the sequence the different words are located, and there
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may be a potential for improving the methods along
this line.

Conclusion

We have compared the popular RDP method to four
other K-mer based methods with respect to classifica-
tion of prokaryotes based on 16S sequences. The dif-
ferences in classification performance are significant,
but all methods apart from the Markov method seem
to stabilise on a classification error less than 6.6 % for
word length bigger than seven for full-length sequences.
Small extensions to the RDP method, such as count-
ing the frequencies instead of just present/absent, seem
to be an advantage, as also pointed out by [22]. On
full-length 16S sequences, the Preprocessed nearest-
neighbour method stands out as the best, and should be
considered for high-precision jobs. With shorter ‘reads’
as input, the naive Bayes based Multinomial method

proves to be the method with least classification errors
and therefore the method, out of the five presented
methods, which is the optimal option for rapid taxonomic
assignments.

The study also reveals the importance of high-quality
data for improving the classifications further. All methods
seem to level out at some error which is inherent in
the various data sets, and it is not likely that improved
methods as such will lower this barrier. We have pointed
out the special features of this type of data; a large
number of categories (genera) in combination with an
extreme skewness in their sizes. A key to improve clas-
sification is to obtain gold standard training sets in
which all efforts have been made to have as few gen-
era as possible with only a few sequences. Increas-
ing the number of representative sequences from one
to three or four can greatly increase the classification
accuracy.
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The K-mer methods examined here ignore the posi-
tion specific information that is most likely important to
discriminate certain genera. For further improvement of
classification, pattern-recognition methods that takes into
account position specific information through the 16S
sequences may be a good place to start.
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Abstract

A major issue in 16S-based taxonomic classification of prokaryotes is the lack of an official taxonomy. The same
DNA sequence can have different taxon assignments when considering different databases. Regardless of
methods used, this database discrepancy leads to a larger than necessary variance in taxonomic assignments.
For both exploration of the sequence space and for training effective and robust classification methods there is
an obvious need for a stable and reliable training data set. In this paper we present data sets with consensus
taxonomy, the ConTax sets, for the 16S rRNA gene. It derives from three well-known and often used
repositories of 16S rRNA; The Silva comprehensive ribosomal RNA database, the Greengenes 16S rRNA gene
database, and the Ribosomal Database Project (RDP). A sequence is included in the ConTax set if it is marked
as high quality, longer than 1200 bases, and consists strictly of A, C, G or T(U). The major new feature of this
set is that a sequence is included if and only if it is found in at least two of the three databases, with no
diverging taxon assignments down to genus level. The ConTax set comprises 664,199 16s rRNA sequences.
From a method training perspective, the enormous number of sequences in some of the taxa provides no
additional information for classification purposes. Therefore, a trimmed ConTax set is also presented. The
trimming is designed to maintain the major information for each taxon, and the trimmed set consists of 38, 784
sequences. The results presented in this paper confirm that the performance of different classification methods

trained and tested on the ConTax set improves substantially compared to other established data sets.

INTRODUCTION

There is no such thing as an official taxonomy of prokaryotes. This illuminating fact means there are no
comprehensive gold standard data sets giving a clear picture of the microbial world as we know it. Of
course, some of the branches in the bacterial tree of life are widely accepted and will most likely remain
unchanged for all foreseeable future. But, a significant part of the taxonomy is still evolving, and advances
in sequencing technologies have spawned a plethora of tools for exploring this ’biological dark matter’ [1,2]
resulting in many new taxa [3] and an ever increasing diversity [4].

Since Woese [5] the small subunit 16S ribosomal RNA has been the central genetic marker for recognizing

prokaryotes. Even if whole-genome data are now widely available, the 16S gene is still the dominating



marker for assigning bacteria to their proper position in the tree of life, at least down to the genus level.
There are several methods for the classification of bacteria based on this marker, e.g. [6-8]. A common
approach is still to simply BLAST any 16S sequence fragment against a database, and look for the nearest
neighbours, even if this is suboptimal both in speed and precision compared to the mentioned methods.
Given the countless studies where a 16S based profiling of some microbial community is a part, the number
of (mis)classifications based on this marker is growing as ever before.

Regardless of the tool used, the 16S-based classification of bacteria is a typical example of a supervised
learning problem. This means an observed 16S sequence (fragment) is assigned to one group (or bin or
lineage) based on how similar it is to previously assigned sequences. These previously assigned sequences
are usually referred to as the training data (the database), and as pointed out in [9], the quality of these
data affects the classification results severely. In a recent paper [10] we examined the performance of
several supervised learning methods for this problem, and one major conclusion was that improving the
training data will probably have greater impact than improving the statistical methods, even if there are
differences between methods as well.

There are several important aspects of such a training data set. Werner et al. [9] emphasize the importance
of a wide ranging training set, i.e. as many branches as possible of the phylogenetic tree should be
represented. This also means we need many variants of every taxon, in order to span the evolutionary
variance within taxa. We can extend this criterion by demanding that taxa should also be present by
approximately the same number of representatives. Virtually all supervised learning methods will perform
better if the training data are approximately balanced compared to a highly skewed set. Unfortunately, the
latter situation is common in frequently used databases. Some genera are over-represented with a huge
number of sequence variants, while many others are barely present.

Another criterion, partly in conflict with the first, is that training data are ’correct’. This seems like the
bottleneck since there is no official taxonomy. If sequences have been faulty assigned in the training data,
this will of course lead to further errors when using the trained algorithm on new sequences. Given the
more or less diverging taxonomy assignments in todays databases, the closest we can get to a ’correct’ data
set is to look for sequences where we have some consensus across several sources with respect to the
classification.

The motivation for our work here has been to come up with a database of 16S sequences which is spanning
as many genera as possible and at the same time only includes sequences with a very high likelihood of

having a correct taxon label. This comprehensive data set should be used as a supervised learning training



set or database in order to give best possible classifications based on 16S sequence data. In this study we
have collected a large number of 16S sequences from three major public repositories. Through a list of
quality filtering and analyses described below we arrive at a set of full-length 16S consensus-classified
sequences spanning the majority of the tree-of-prokaryotes in the List of Prokaryotic names with Standing
in the Literature (LPSN, [11]). Several versions of this ConTax data set is available in the public

R-package named microcontax.

MATERIALS AND METHODS
The ConTax set

Here we describe the major steps for how the ConTax set was assembled.

Step 1 - Data retrieval and filtering:

In this study we focused on data downloaded from the following three repositories: The Silva
comprehensive ribosomal RNA database (http://www.arb-silva.de/, [12]), the Greengenes 165 rRNA gene
database (GG, http://greengenes.lbl.gov/cgi-bin/nph-index.cgi, [6]) and the Ribosomal Database Project
(RDP, http://rdp.cme.msu.edu/, [13]). All three are devoted specifically to ribosomal RNA, and have huge
collections of high quality 16S data, including taxonomic assignments.

The data obtained from these three sources were all subject to the same quality filtering:
e Sequences with alien characters (not A, C, G or T(U)) were discarded.
e Sequences shorter than 1200 bases were discarded.
e Sequences without a genus assignment were discarded.

Within each of the three filtered data sets we also deleted duplicated sequences. In a few cases we found
that identical sequences were given different classifications even within the same database. Such sequences

were eliminated from the data set.

Step 2 - Consensus taxonomy:
From the filtered data sets we extracted sequences with consensus taxonomy. A sequence found in all three
databases was approved if its genus assignment was identical in all three cases. We denote this subset the

SRG (Silva, RDP, Greegenes) set. In addition, we also considered sequences found in two of the three



sources, and again required matching genus assignments in the corresponding repositories. These three
subsets were denoted SR, SG and RG, respectively.

The assigned genera in the repositories contained some names not found among the standard names in the
LPSN database. However, the only manual editing we did was to allow textual comparisons across the
databases, like replacing the text Armatimonas/Armatimonadetes_ gpl with just Armatimonas etc.

It follows from this that there will also be a number of conflict sequences, i.e. sequences found in two or
three databases, but with differing genus assignment. Such sequences can give us information about where

the taxonomy is uncertain (diverging opinions), but we will not pursue these data in this paper.

Step 3 - Eliminating subsequences:

All collected sequences (union of SRG, SR, SG and RG) were grouped by their genus assignment. Within
each genus all sequences were compared to all longer sequences. In all cases where a shorter sequence
turned out to be a subsequence of a longer, the shorter was discarded.

All sequences left after these three steps is the full ConTax set. In the supplied R-package this data set is
referred to as contax.full. In addition the the sequences themselves, each sequence has a unique tag,
information about which repositories it originates from, and the full taxonomy (domain, phylum, class,

order, family, genus).

Trimming large genera

Typical for all 16S data sets of a considerable size is that some genera have a large number of (slightly)
different sequences. For most practical uses this density is not needed, and will only slow down
classifications without improving precision. We made a trimmed version of the contax.full database as
follows.

Let M be the median genus size in the data set. Let N > M be the number of sequences in a large genus.

We then trimmed this large genus to contain
N, =M+ [VN — M]

sequences, where the [.] means rounding up to the nearest integer.
For each genus we made a multiple alignment using the Infernal software [14] and the SSU-model for
bacteria or archaea downloaded from Rfam [15]. The alignments were trimmed at each end, eliminating

positions with more than 50% gaps, and trimmed inside by eliminating position with excess of 90% gaps.



For each genus-alignment simple p-distances [16] were computed between all sequences and the medoide
sequence was detected. The medoide sequence is the sequence with the smallest sum of distances to all
other sequences in the genus. These sequences are available as the medoids subset in the R-package.

The trimming was done in two steps. I) To avoid extreme sequences we first excluded sequences where the
distance to its nearest neighbour was larger than the average distance between all sequences within the
respective genus. II) From the remaining sequences the medoide sequence was included as the first member
of the trimmed set. All subsequent members of the trimmed set were selected as the sequence having the
largest sum of distances to the previously selected members, and this was iterated until N; sequences were
included.

In Figure 1 we illustrate the trimming idea graphically. The trimmed set is named contax.trim in the

R-package.
X Hl Medoide
* Shell
X Outliers
Discarded
A .. .

Figure 1: Trimming. An illustration of the trimming procedure. Each marker corresponds to a sequence in
a large genus. In Step 1 the extreme sequences, marked as crosses, are discarded. In Step 2 the medoide
sequence, marked as large filled square, is included as the first member of the trimmed set. The remaining
steps select the ’shell’ members marked as large filled circles. The small dots (and crosses) are the sequences
discarded by the trimming.



Classification

The classification accuracy, or error level, is always partly a product of inexact data and imperfect
methods. In order to compute accuracy levels, we used three distinct supervised learning methods: Tthe
RDP classifier, the Multinomial classifier and the nearest-neighbour BLAST. The two first are described in
detail in [7,10,17]. The BLAST approach means a sequence is classified by making a blastn search against
the training data and classify to the same taxon as the best BLAST-hit (largest bit-score).

A 10-fold cross-validation procedure was used to estimate accuracy for a given data set and method,

see [10] for a detailed description.

Accuracy is most commonly presented as a total result for the entire data set. It can also be computed per
genus, which is also presented in the Result section. However, from a user-perspective, the accuracy is not
the optimal measure of reliability. The reason is that it conditions upon the correct genus. When
classifying a new sequence, we never know the correct genus, hence we do not know which accuracy is
relevant for the current sequence. Instead, the Positive Predictive Values (PPV) are more informative.
This is the proportion of correctly classified sequences who are all classified to the same genus [18]. Hence,
a genus with a large PPV (close to 1.0) indicates that classifications to this genus are most often correct.
PPV is an estimate of Pr(correct|predicted genus) while accuracy estimates Pr(correct|actual genus). In
case a genus is never predicted, its PPV value is simply unknown.

Classifications were also done based on the amplicon-sequences collected in silico by primer pair
515F/R806 to see how well we may classify sequences in a typical metagenome sample. These primers are
suggested by the Earth Microbiome Project (http://www.earthmicrobiome.org/) to match the V4 region of
the 16S gene. The 10-fold cross-validation procedure was again used to estimate accuracy. Hence, a
method was trained on full length sequences from the training set and tested on the considerable shorter

amplicon-sequences extracted from the test set sequences.

Implementation

An R data package, microcontax, is available for free on The Comprehensive R Archive Network [19]. The
package consists of various versions of the ConTax data along with some functions for extracting and
manipulating sequences and/or taxonomy information. The latter include taxonomy lookup and related
functions. All data can be stored as FASTA-files and used, e.g. as a BLAST database.

We have also made available another free R package, microclass, containing R implementations of the

classification methods used in this manuscript. This package also contains trained models based on the



ConTax data.

RESULTS
The ConTax data

From the three major data repositories on 16S rRNA, we downloaded all available sequences, and filtered
them to obtain sets of unique high-quality sequences with assignments at the genus level, as described in
Step 1 of the Methods section. This resulted in 1,064, 763 sequences from Silva, 912,409 from RDP and
624,078 from the Greengenes data repository. In Figure 2 we show how the repositories overlap with
respect to sequence identity after this first step.

For each of the intersections in Figure 2 we collected all sequences with identical genus assignment, and a
summary is listed in Table 1. Finally, within every genus all shorter subsequences were also discarded,

resulting in the contax.full set (last column of Table 1).

Table 1: For each of the four intersections between the repositories is listed the number of sequences left
after each of the three filtering steps described in the Methods section. SRG means the intersection Silva-
RDP-Greengenes, etc. After step 1 we find the number of high-quality sequences in each intersection, after
step 2 the number of sequences with consensus taxonomy only and after the last step all subsequences have
been eliminated. The last column corresponds to the contax.full sequences.

Subset  Step 1  Step 2 Step 3
SRG 393696 366194 349617

SR 381176 312987 288899
SG 21819 7358 7107
RG 25382 19592 18576

Sum 822073 706131 664199

The contax.full set has 664, 199 sequences covering 1774 different genera, 316 families, 138 orders, 68

classes, 32 phyla and 2 domains.

Trimming

As expected, the contax.full set is extremely skewed with 156 genera having only 1 sequence while the
largest genus (Staphylococcus) has 76,484 sequences. The average size of a genus is 374 sequences and the
median is 21. All genera with more than 21 sequences were trimmed according to the procedure described
in the Method section. In total 878 genera were trimmed and the largest genus (Staphylococcus) was
reduced from 76,484 to 245 sequences. A total of 38,784 sequences were left in the trimmed data set
named contax.trim in the R-package. The trimmed version covers the exact same taxa as the full data

set, only with less density for the larger genera.
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Figure 2: Venn diagram. The Venn diagram illustrates how the RDP, Silva and the Greengenes data
repositories overlap with respect to sequence identity. The numbers refer to the number of unique 16S
sequences in each sector.

Figure 3 is a visualization of data set skewness. The area-under-curve (auc) is a measure of skewness, with
0.5 as the minimum (all genera same size) and 1.0 the maximum. The contax.full data set (grey full

curve) has an auc of 0.95, where the largest 10% of the genera covers more than 80% of the data set. This is
reduced to 0.73 for contax.trim. The Trainset9 (auc= 0.83) is un-trimmed like contax.full, but much

smaller. The Silvaset (auc=0.70) has been trimmed in a manor similar to contax.trim, described in [10].

Classifications

The major idea of collecting the ConTax set is to have a data set where the assigned classifications are very
likely to be correct. If this is the case, cross-validated classifications should produce few errors, given that
the supervised learning method used is fairly good.

This was tested by running a 10-fold cross validation over the contax.trim data set, using three well
known and much used supervised learning methods. The exact same procedure was repeated for two
previously used training data sets, the Trainingset9 from RDP, the Silvaset from the Silva

database [10], in order to compare results.
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Figure 3: Data set skewness. The curves display data set skewness as follows: All genera in a data set have
been sorted in descending order according to size (number of sequences) and arranged along the horizontal
axis, which is then normalized to (0,1). The relative contribution of each genus to the full data set size
is then accumulated along the vertical axis. A data set where all genera have the same size (no skewness)
would result in a straight line from (0,0) to (1, 1), indicated in the plot, with an area-under-curve of 0.5. A
maximum skewness (one huge genus plus only singeltons) means an area-under-curve would be close to 1.0.

The total accuracy in classification for all three data sets and all three methods are displayed in Table 2.
Singleton genera are not included in any of the results since they always will appear as mis-classified, by
any method.

Table 2: The classification results (% correctly classified sequences) with the different methods and for
various data sets. For both the RDP-classifier and the Multinomial a word-length of X' = 8 was used.

METHOD Silvaset Trainset9 Contax.trim

RDP 93.45 94.59 99.03
Multinomial 94.21 95.54 99.26
BLAST 93.75 94.40 98.05

In addition to the total accuracy we also inspected the accuracy within each genus. We only report the
results for contax.trim with the Multinomial method, as the results follow the same pattern as in Table 2.
For the 1618 non-singleton genera the average accuracy was 98.59%. 1389 genera were perfectly classified
(no errors), while two genera were completely missed: Thermosyntropha and Candidimonas. These
consisted of only two sequences each. A total of 13 genera classified 50% or worse, all consisting of two
sequences each. Figure 4 shows how errors accumulate over genus sizes. The first bar marks the number of

errors made for genera of size 2, and then accumulated over gradually larger taxa. Of a total of 287
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mis-classified sequences (horizontal line), 75% of them are seen among genera of size 39 or less (vertical
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Figure 4: Errors and genus size. The figure shows how the number of errors accumulates over genus size.
These results are based on the Multinomial method and the contax.trim set. The horizontal axis lists genus
sizes in ascending order. The smallest size is 2 sequences (singeltons discarded), and these genera produce
15 errors. The vertical line marks that 75% of the 287 errors are made in genera of size 39 or less.

The amplicon-sequences extracted in silico by the primer pair 515F/R806 were also tested using
contax.trim in order to get a picture of how good classifications we may expect from a metagenome
sample. First, with this primer pair 7117 (out of 38,784) sequences from contax.trim had no perfect
match. This means close to 20% of the sequences will produce no or perhaps only a few amplicons. A total
of 67 genera (out of 1774) were completely lost, producing no perfect amplicons. These genera were in
general small, except Propionibacterium with 205 sequences where none produced a primer match. The
mean amplicon length was 292 bases. Among the extracted amplicons the total classification accuracy was
93.19% for the RDP classifier and 93.83% for the Multinomial classifier.

The Positive Predictive Values (PPV) were also computed for each genus. Of the 1658 unique genera

assigned a sequence, 1348, had a perfect PPV of 100%. Additionally, 198 had a PPV of more than 90%
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while 70 genera ended in the interval 40 — 90%. The remaining had either a PPV of 0 (42 genera) or were
never predicted (116 genera), leaving the PPV unknown. Again we observed that a small or non-existing

PPV coincides with genera of very few sequences (1 or 2).

DISCUSSION
The ConTax set

Developing and improving methods for rapid and accurate recognition of sequence-patterns is at the very
heart of modern biology. Taxonomic classification, or binning, based on the 16S rRNA gene is in focus for
several good reasons, but the profiling of microbial communities is the most obvious. This means
implementation of some type of supervised learning method. A fundamental requirement in all method
development is a stable training data set, and the most important feature of this data set is its reliability.
In order to recognize taxon A we must be certain that our methods have been trained on sequences who
are in fact from taxon A. In our effort to develop and improve methods, we concluded in [10] that the lack
of such data is currently the most severe bottleneck.

In Table 2 we present some results from our pursuit to establish a high-quality training data set of 16S
sequences. From the three repositories we downloaded several million sequences, but after the quality
filtering we arrived at a total of around 2.6 million full-length 16S gene variants. Of these, 822,073 unique
sequences were found in either two or all three repositories, distributed as shown in Table 1 (Step 1). It is
obvious that the Silva and RDP databases were the most similar with respect to content. After Step 2 only
sequences with identical genus assignment remain.

In the intersection between all databases (SRG) there is around 93% agreement on genus assignment. In
total, the lack of consensus is around 15%, i.e. for approximately 1 out of 7 sequences the repositories
disagree on the genus assignment! This is a horrifying result, indicating that BLASTing a metagenome
sample against any randomly chosen database will produce a huge number of highly uncertain taxon
assignments. This ’error level’ is way larger than what is reported for most supervised learning method
used for classification. Having an accuracy of, say 95%, in a classifier is fine, but of little help if it is
trained on data where 15% of the sequences have incorrect taxon labels.

Despite our strict requirements we were able to collect as many as 664, 199 sequences in the contax.full
data set, covering 1774 genera. Exploring this data set is in itself interesting, since it may tell us something
about the 16S landscape as a whole, e.g. how well defined a genus really is, how well they are separated,

etc. However, from the viewpoint of developing supervised learning methods, this data set is too large, in
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the sense that many genera are too densely represented, and for this reason we produced a trimmed version.

Trimming

An optimal data set for training and testing methods should not be larger than necessary. The
contax.full data set is extremely skewed, as expected. The largest genera contains many, very similar,
sequences and only a smallish subset of these are really needed to recognize the genus. Our proposed
trimming procedure is based on the idea that a genus only needs the 'core’ and the ’shell’ sequences, i.e.
one in the centre and a number of representatives along the borders. We also discard extreme sequences in
order to prevent the trimmed set to be infested by possibly incorrectly labelled sequences. By this
trimming we reduce the full data set contax.full by around 20-fold to contax.trim with 38,784
sequences. The skewness, visualized in Figure 3 and quantified by the auc-measure, is reduced
substantially. Some information may of course be lost in this trimming, but the gain in time efficiency and
memory usage benefit future method development. We regard this trimming as an instrumental part of

designing a data set for improving taxonomic classification methods.

Classifications

From the results in Table 2 we see substantial improvement in classification accuracy for all three methods
when cross-validated on contax.trim compared to the other two data sets. Multinomial, which turns out
as the overall best classification method, only mis-classifies 287 sequences out of 38,625 in this data set.
We interpret the differences between the data sets as due to more correct genus-labels in contax.trim
sequences. A sequence that, due to its content, clearly belongs to taxon A, but has been labelled as taxon
B, will tend to produce an error when cross-validation is employed in combination with any classification
method. Since the sequences in the ConTax data sets all have some degree of consensus in their
taxon-labels, we presume that sequences on the border between two or more genera are under-represented.
Thus, all accuracies achieved here are most likely optimistic with respect to real uncertainties when
classifying new sequences, e.g. from a metagenome sample. However, as a data set for training supervised
learning methods, the contax.trim is the best we have seen so far.

It should also be noted that extremely skewed data sets may produce artificially high total accuracy.
Having an enormous number of sequences from one huge genus means virtually all of these will be correctly
classified, and the total per-sequence accuracy becomes large due to this genus alone, even if almost none

of the other taxa are recognized. For this reason, reported accuracies should always include per-taxon
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results as well.

From the per-genus results presented we see that the errors are in most cases made for small taxa. Figure 4
is an illustration of this. Grouping taxa by their size, and accumulating errors accordingly, clearly
demonstrates that the errors level off after reaching a certain size. There may be several reasons for this.
First, a small taxon means very little information for training a classifier, and any method will tend to
make more errors under such circumstances. Next, a small taxon is also more uncertain by nature. If we
have few sequences in a genus, it is either because this has been sequenced very rarely or because all other
sequences in this neighborhood has no consensus classification. The latter indicates that the taxon itself
has a vague definition. Singleton taxa (1 sequence only) is the most extreme case. The ConTax data sets
contains 156 singletons. This should be compared to 911 and 58 in Trainset9 and Silvaset, respectively.
By inspection, we found that none of the singletons from Trainset9 and Silvaset are found in the
ConTax sets. This reflects the uncertain nature of such genera. In order to really improve on the existing
taxonomy the effort must be made to achieve safe ground with respect to these rarely seen taxa.

We also classified amplicon-sequences matching the primer pair 515F/R806. This primer pair addresses
both bacteria and archaea 16S sequences in the variable region V4 and is recommended especially for
environmental samples [20,21]. The per-sequence accuracy dropped from 99.26% for full-length sequences
t0 93.83% for the much shorter amplicons, using the Multinomial method. A drop was expected, since we
have seen in a previous study that discriminating sites are scattered along the entire 16S gene, and any
shorter sub-sequence (even V4) is bound to produce sub-optimal classifications [22]. However, the accuracy
is still good compared to the bias introduced by the primers themselves. If we sampled an environment
with a population identical to contax.trim with these primers, we would never detect close to 20% of the
sequences, and 67 taxa would remain completely unseen.

The PPV for each genus is a measure of confidence once a new classification is made. It is an estimated
probability of correct classification given the predicted genus. Using the Multinomial method on the
contax.trim data set, we found that more than 75% of the 1774 genera have perfect PPV, and if we
include those with PPVs above 90% we observed that more than 87% of the genera are predicted with very

high confidence. Again, the small taxa are where we find low confidence.

CONCLUSION

In this paper we present the ConTax data sets specifically designed for training supervised learning

methods to make taxonomic classification based on the 16S marker. Everything is publicly available for
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free in the R data package microcontax. In our previous efforts to improve classification methods based on
the 16S gene we observed an error-plateau for all tested methods [10]. One of the main conclusions was
that training data quality must be improved in order to obtain better classification results. The ConTax
data sets presented here is our effort to meet this requirement. These data are designed to span as many
genera as possible while including only sequences with high-confidence consensus taxonomy assignments.
We tested three commonly used classification methods on the trimmed ConTax set as well as two other
publicly available training data sets. All methods showed a substantial improvement in cross-validated
accuracy when trained on the ConTax set in comparison to the others. We registered that most of the
mis-classifications are made for small genera, and any further expansion of the ConTax training data

should be focussed on adding more sequences to the smallest taxa.
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Abstract

Background: Taxonomic classification based on the 16S rRNA gene sequence is important for the profiling of
microbial communities. In addition to giving the best possible accuracy, it is also important to quantify
uncertainties in the classifications.

Results: We present an R package with tools for making such classifications, where the heavy computations are
implemented in C++ but operated through the standard R interface. The user may train classifiers based on
specialized data sets, but we also supply a ready-to-use function trained on a comprehensive training data set
designed specifically for this purpose. This tool also includes some novel ways to quantify uncertainties in the
classifications.

Conclusions: Based on input sequences of varying length and quality, we demonstrate how the output from the
classifications can be used to obtain high quality taxonomic assignments from 16S sequences within the R

computing environment. The package is publicly available at the Comprehensive R Archive Network.

Keywords: R, taxonomy, 16S.

Background

The profiling of microbial communities by the sequencing of the 16S rRNA gene has become a standard
approach in metagenomics [1]. This means that collected DNA is subject to a targeted sequencing to
extract a chosen region of the 16S gene from all organisms in the sample. The actual content of the sample
can then be described by performing a large scale taxonomic classification of these sequences, i.e. assign
them to the proper taxonomic bin, also referred to as binning [2]. Since 16S-based microbial profiling has
become such a widely adopted approach, it is also important that the bioinformatics tools involved are
optimized to the highest standard. Today’s most widely used tool for this job is the RDP-classifier [3]. It is
beyond doubt a good tool for this job, but at the same time it is not perfect, and in a systematic testing of
this and other approaches we found there were always other methods that performed better [4].
Alternative tools are necessary for scientific evolution, and here we present a software to be used within the

popular R computing environment [5].



There are some issues that must be considered when it comes to making tools for the binning of 16S
sequences. First, the pattern recognition algorithm itself must be capable of recognizing the, sometimes
small, differences in DNA that separates taxa. It must also handle the huge amount of bins or categories
we are facing here, thousands rather than 2-3 which is often the case in textbook literature. Precision also
very much depends on the quality of the training data [6]. Since there is no official taxonomy of
prokaryotes, there are no real gold standard data sets available. As we concluded in [4], this is probably
the most severe bottleneck. In [7] we recently published designed data sets based on a consensus taxonomy
assignment among several data repositories, which is probably the closest we get to a gold standard today.
Speed is another issue. With today’s sequencing technology and low prices, a data set may easily contain
millions of reads. Some procedures for OTU (Operational Taxonomic Unit) picking will start out by
classifying reads to pre-defined taxa [8]. Thus, the number of sequences to classify may be huge. Other
procedures cluster the reads before taxonomy assignments, defining OTU’s as ’spherical’ groups in a space
of evolutionary distances approximated by alignment percentage identity, and then classify only the cluster
centroids [9]. If we are interested in recognizing specific taxonomic profiles, e.g. in forensic

applications [10], the classification of all reads into pre-defined bins is clearly what we seek.

Uncertainty is the third issue. In any collection of reads there will be a number of sequences that cannot
be given a high-confidence classification. There are several reasons for this. First, the taxonomy itself is
not always well defined, and sometimes even high-quality sequences fall on the border between existing
taxa, making the classification uncertain. Second, due to sequencing errors and chimeras some reads may
be difficult to recognize, and third, some microbial communities will contain new taxa not previously seen.
In the presented R-package we have implemented some algorithms that have proved efficient and/or are
much used for 16S taxonomic classification. Efforts have been made to make them both fast and
memory-efficient. All methods can be trained on new data, but we have also supplied the package with a
ready-to-use tool that is already trained and optimized for the contax.trim data set from [7]. This tool
also quantifies uncertainties in a new way. The microclass R-package, as well as its symbiotic data

package microcontax, are freely available at the Comprehensive R Archive Network (CRAN, [11]).

Implementation
The multinomial method

Based on our previous testing of classification methods in [4] we found that the best overall results were

obtained by the algorithm denoted the multinomial method [12]. Thus, we have focused the attention on



this method in this package. The function multinomTrain is used to train a model of this type on any data
set containing FASTA-formatted sequences along with the correct taxon assignments for each sequence.
The function multinomClassify is then used to classify new sequences based on a trained model.

Both training of a multinomial model and classification of new sequences involves counting a large number
of K-mers (overlapping words of length K) in the sequences. The overhead when doing such operations is
large, and efficient vectorization is difficult to achieve. A direct implementation would also require the
computation of a matrix product of size (N x 4%) - (4% x M), where N and M are the number of
sequences to classify and the number of taxa in the training data, respectively. This is a time consuming
task for large N, M and K. Therefore, these computations have been implemented in C++ through the
Repp [13] interface in R, and some short-cuts are made.

The nucleotide sequences are first converted to integer vectors my mapping A, C, G and T (or U) to 0, 1,
2, and 3, while all other letters are mapped to -4!5. The latter is done to easily discard K-mers including
alien symbols when counting. For training of a multinomial model, all K-mers of each taxon are counted.
The counting itself is done by sliding a window along the integer vector of each sequence and computing a
position as the inner product between [45~1 452 4 1] and the integers in the window. For each of the
inner products, this position in the taxon’s counting vector is increased by 1. The result is a matrix, X, of
size (M x 4%) that holds the counts for all K-mers in all taxa. Finally, each position in the matrix is
re-scaled to log, (%), where P is the number of pseudo-counts added. This is stored in an

(M x 4%) matrix named Q to represent multinomial log-probabilities with pseudo-counts.

When classifying new sequences using the multinomial method, we avoid the mentioned matrix product by
combining the K-mer counting with summing of multinomial log-probabilities. For each counted K-mer,
the corresponding column in the @ matrix is added to the result, thus never explicitly creating the K-mer
count matrix or performing the product with Q. As such we reduce from (4 - M) operations to

((n— K) - M) for a new sequence of length n. For full 16S sequences (with n &~ 1500 bases) this is vastly

more efficient from around K = 6 and up and is easily parallelized.

The taxMachine

Users often want a ready-to-use tool to classify (many) 16S sequences without having to perform all the
training. Based on the work behind [4,7] we have arrived at an optimized tool for classifying 16S
sequences, called taxMachine in this package. The taxMachine is based on using the multinomial method

with a word length of K = 8 and a pseudo count of 100. It has been trained on full-length 16S sequences to



recognize full or partial (reads) sequences at the genus level, using the designed and optimized
contax.trim data set for training, see [7] for details. The taxMachine includes computations of

classification uncertainties that requires a detailed explanation.

Classification uncertainty

Uncertainty in a taxonomic classification can be split into two types. The first type is when a sequence
happens to be very close to the decision boundary between two or more taxa. We can be fairly certain it
belongs to one of these taxa, but it lacks the final discriminative power to safely assign it to one of them.
The second type of uncertainty occurs when something completely new is seen. This is not uncommon in
metagenome samples, and should be flagged separately since it may indicate sequencing errors, chimeras or

some novel type of organism.

The d-score
The first type of uncertainty is measured by what we name the d-score. Consider sequence i in a set of
sequences that we want to classify. In the taxMachine the predicted genus of sequence i is found by
computing the posterior log-probability for every genus, and classifying to the genus with maximum value.
If we sort all posterior log-probabilities for sequence 7 in descending order, p;; denotes this maximum,
while p; o is the second largest, etc. These log-probabilities all depend on the sequence length, since a
longer sequence will in general contain more unique K-mers, and the posterior log-probability will be a
sum with more (negative) terms. This is illustrated in the left panel of Figure 1. Here we have sampled
fragments of random length (> 100 bases) from all sequences in the contax.trim data set, and then
classified them, collecting the p;; for sequence i = 1, ...,38 781. The p; 1 values are clearly biased by
sequence length, and their variance is also increasing for longer sequences.
We first normalize the posterior log-probability with respect to sequence length. We fitted linear regression
models describing how both the mean and the standard deviation of the data in the left panel of Figure 1
varies by sequence length [ (from [ =1 to 2500). Thus, if sequence ¢ has length [ it gets the normalized
posterior log-probability

ﬁi,l _ pzﬂ,lg_ Di (1)
where p; and §; are the predicted mean and standard deviation at sequence length [, using the fitted
regression models. Note that p; o (and any other posterior log-probability) can be normalized in the same

way, using the same fitted regression model.
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Figure 1: Posterior log-probability normalization. The left panel shows posterior log-probabilities for 38 781
sequences. The sequences are random sub-sequences of the contax.trim data set, spanning all lengths from
100 bases to more than 1500. Every sequence has been classified using the multinomial model trained on
the full-length data, and each dot marks the maximum posterior log-probability for one sequence. There is
clearly a linear trend in the values, with larger variance for longer sequences. In the right panel the same
values are plotted after the normalization procedure described in the text.

The d-score of sequence i is simply the difference between the largest and the second largest normalized
posterior log-probability:

d; = Pi1 — Pi2 (2)
If we are near a decision boundary we expect d; ~ 0 since the second best genus is almost as good as the

best. On the other hand, if d; >> 0 it means the predicted genus is much more likely than any other, and

we have a high confidence classification.

The r-score

The second type of uncertainty is high if we see something very different from what we have in the training
data set. Consider sequence i belonging to genus g with corresponding normalized maximum posterior
log-probability p;1 from (1). From all sequences belonging to genus g we computed the sample mean and
sample standard deviation of the p; ;’s, denoted p, and s, respectively. The r-score for sequence i is the

standardized residual
= pi,lj Pg 3)
Sg



where 3, is smoothed version of s, as explained below. Thus, the r-score is a standardized measure of how
different a sequence is from its predicted genus centre.
Different genera have different sequence diversity, which is reflected in different values of the sample
standard deviation s,. However, many genera have too few sequences to provide a reliable estimate of this
standard deviation, some even have only 1 sequence making s, impossible to compute. Thus, the 54 in (3)
is based on a simple smoothing. First, all sample standard deviations where grouped by genus-size. In
Figure 2 we show how smaller genera (few sequences) tend to have smaller sample standard deviations. We
used the loess method [14] to estimate the size-specific sample standard deviation, shown as black squares
in Figure 2. We denote this s,, where n is the genus-size. If genus g has size n we get the genus-specific
standard deviation estimate as

(n—1)s2 + 52

So=\ " 4)

When a new sequence is classified, we do not know its true genus. The predicted genus is then used as a
plug-in in (3), i.e. we use py and 5, where g is the predicted genus. If the resulting 7; has a large negative
value, it means the computed p; ; is much smaller than the average p, for genus g, and sequence 7 is
unlikely to belong to this genus even if this is where it maximizes the posterior probability.

Exactly how negative is the r-score for an un-recognized sequence? To guide this decision we computed the
r-scores for all sequences in the contax.full data set [7], and from this we computed the empirical
cumulative distribution function. For any given r; value this gives us the probability of having an r-score
this small, or smaller, given that the sequence was from the training data. A very small probability means

the sequence is very unusual compared to the training data.

Other methods

The package also contains some alternatives to the multinomial method, mostly for comparisons. The
RDP-classifier [3] is a popular tool used in many metagenome applications. The version implemented here
is a stripped version without the bootstrapping effort to quantify uncertainties in the classifications. It has
been implemented in C++ and accelerated similarly to the multinomial method, see above for details.

A classification using BLAST is also included, since this approach has been common. It is both slower and

less precise then the other methods. It requires the BLAST+ software to be installed on the system.
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Figure 2: Smoothing genus standard deviation. The sample standard deviations for every genus (grey rings)
are plotted against genus size (number of sequences). The black squares are the mean values for each genus
size, after loess-smoothing as described in the text.

Results and Discussion

The microclass package provides optimized tools for taxonomic classification of 16S sequence data in the
R computing environment. Some well established and proven methods are available to all users of R, with
the possibility to train all methods on new and specialized data sets. However, a ready-made classification
tool, taxMachine, is also supplied as an R-function. This has been optimized in several ways to produce
the most accurate classifications at the genus level, without consuming too much memory. Specifically, it
employs K-mers of length 8, where an increase to K =9 or K = 10 comes at high cost in computation
time and memory consumption compared to the small gain in accuracy for genus classifications. Pseudo
counts have been set to 100 in the taxMachine as a robust compromise regardless of sequence length (see
Supplementary Figure 1).

The classification of 16S is the most fundamental approach to profiling a microbial community, and due to
the explosion in metagenomic research activities, tools for recognizing taxa from 16S sequences (reads)
should be tuned to their optimal performance. The taxMachine R-function builds on a parallelized
sparse-matrix implementation of the multinomial method that makes it efficient both with respect to speed
and memory usage. It has been trained on the contax.trim data set, containing 38 871 full-length

high-quality sequences covering 1774 genera, where all sequences have a consensus taxonomy, making it the



closest we get to a well-balanced gold standard training set.

As described in the Implementation section the taxMachine provides information about classification
uncertainty, based on the posterior probabilities of the multinomial model. The very first step needed in
these computations is to remove the bias from sequence length in the log-probabilities, as suggested in
equation (1). The right panel of Figure 1 shows how the normalized posterior log-probabilities have no
apparent trends over sequence length, as opposed to the raw-values in the left panel. This normalization
makes it possible to compute uncertainty /reliability scores to sequences regardless of their exact lengths.
The proposed d-score for a sequence is the difference in score between the most likely and the second most
likely taxon. A d-score close to 0 means the sequence is close to a decision border, being almost equally
similar to both taxa, and more likely to be mis-classified. To visualize this, we classified fragments of all
sequences in the contax.trim data set using the taxMachine. We considered fragments of typical
read-lengths; 120-150 and 270-300 bases, which is typical for Illumina HiSeq and MiSeq raw data, and
450-500 bases, which is typical for Roche 454 and merged (paired-end) Illumina MiSeq data. From each of
the original 38 871 sequences we sampled 10 such fragments at random locations along each sequence.
Comparing the predicted genus to the assigned genus, the error percentages were 1% for 450-500 bases
reads, 3% for 270-300 bases and 11% for 120-150 bases, respectively, when the sequences from which the
reads were generated were included in the model training (see Supplementary Table 1 for cross-validated
success rates). The d-score should ideally be small for the mis-classified sequences, and large for the others.
In Figure 3 we show a ROC analysis where all sequences are ranked by their d-score. Based on the large
AUC statistics (0.92 — 0.93) we conclude that a small d-score is an effective criterion for identifying
mis-classified sequences. In Figure 4 we show how the d-score distributes for the mis-classified sequences.
Clearly, the majority has a d-score below 1.0 and the shorter the reads the more the d-scores are
concentrated near 0. The probability of mis-classification will in general never exceed that of correct
classification even for d-score almost at 0, but at 0 there is a 50 — 50 chance of making a mistake. Various
applications will require different strictness, but a classification with d-score above 1.0 can in general be
considered safe. Based on the results in Figure 4 we found that among all classifications with a d > 1 there
were 1.1%, 0.7% and 0.3% errors for input sequences of lengths 120-150, 270-300 and 450-500 bases,
respectively.

We face a different type of uncertainty when we collect sequences very different from what we have seen in
the training data set. In the Implementation section we describe the r-score to detect this. A negative

r-score means the sequence has a lower probability than average for the assigned taxon. But how much
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lower than the average is critical? To investigate this we used the same results as mentioned above,
classifying sub-sequences of typical read-lengths, but in addition we also included full-length sequences. We
then computed the r-score for all correctly classified sequences. Figure 5 shows the r-score densities for the
various cases. It is the heavy left tail of the densities that is of interest. First, we notice there is some
difference between densities for sequences of different lengths. Next, we see that even for correctly classified
sequences, a very negative r-score occurs in a few cases. An r-score below —4 to —5 is rare for correctly
classified sequences, and indicates an unusual sequence. The taxMachine also provides a probabilistic
measure related to the r-score. Based on the contax.full data set (664 199 sequences) we computed
densities similar to those in Figure 5, and from these the empirical cumulative distribution functions. The
probability Pr(r < r;|training data) is found from this distribution, for any given ;. This probability
reflects how unusual a sequence is compared to the training data, and if this is very small, its classification

is not reliable.
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Figure 5: Densities of r-scores. Based only on correctly classified sequences, the densities show how the
r-scores distribute. The densities were estimated by a non-parametric kernel smoother in R. Only negative
r-scores are of interest, since a (very) negative value indicates a (very) unusual sequence.

In Figure 6 we demonstrate how the r-score histograms change when faced with sequences from unknown
taxa. Here we have only focused on sub-sequences of lengths 450 — 500, but the results were similar for
other sequence lengths as well. We used a taxon-wise cross-validation, i.e. in each iteration we leave out all

sequences from a taxon, train the model on the rest, and classify the sequences of the left-out taxon. This



means all classified sequences are from an unknown taxon, not part of the training data. The upper left
panel shows, for comparison, how the distribution looks like without this cross-validation (mean r-score
—0.1). In the upper right panel each genus has been left out, i.e. the training data contains no sequences
from the genus of the classified sequence. The r-scores in general become more negative even if some are
still quite large, even positive (mean r-score —13.5). This is not surprising, since many genera are quite
similar, and a sequence from the neighboring genus may not look very unusual. In the lower panels we have
cross-validated over order and phylum (mean r-scores —17.0 and —19.5), making the classified sequences
gradually more distant from those of the training data. The lower left tail of the histograms are thinner,
and a substantial number of sequences got very negative r-scores well outside the range of the plots. The

proportion of sequences in the green-yellow region (large r-scores) is gradually smaller.
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Figure 6: Effect of unknown taxa on r-scores. The four histograms show distribution of r-scores. The
colors are: Green for all positive r-scores and black for scores more negative than ever observed in the
contax.full data set. The transition from yellow to red indicates gradually smaller probabilities (from
around 107! at yellow to 1078 at dark red) of observing the corresponding r-score in the training set. Red
colors are probabilities below 107°. The upper left panel are r-scores where all classified taxa are present
in the training data, i.e. no unknown taxa. In the upper right panel each genus is unknown, i.e. when
classifying a sequence from genus A, there are no sequences from this genus in the training data. In the
lower panels the same procedure has been repeated but the training data lack sequences from the same order
and phylum, respectively.
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Figure 7 illustrates, in a similar way, the effect of sequencing errors. The sequences from the upper-left
panel of Figure 6 have been corrupted with random sequencing errors at two levels, and then classified. A
1% error level will distort the r-scores, but still the majority of sequences are recognized to an acceptable
level, with r-scores above —6. In total, more than 98% of the sequences are correctly classified. At 5%
sequencing error the majority of the reads have r-scores well into the red and even black region, indicating
unrecognised sequences. Still, more than 90% of them are correctly classified, mostly those with the larger
r-scores. Chimera sequences will also result in sequences that are different in K-mer composition from its
source sequences. In Supplementary Figure 2 an example of such a mixture, including d- and r-scores is

shown.
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Figure 7: Effect of sequencing error. Histograms of r-scores similar to those in Figure 6, but for two levels
of sequencing errors. Reads of lengths 450 — 500 bases were corrupted at random before classification.

The r-score, and/or its corresponding probability, may be used to discard sequences that appear unusual.
As always, the strictness of this procedure will depend on the application. For most applications we would
not discard reads unless they are in the lower 1% or 0.1% quantile, at least (probabilities smaller than

1072 — 1073). Instead of fixing some threshold, and discarding reads, one may also use these probabilities
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as weights, and give reads with small r-scores less weight. When tabulating read-counts into a taxonomic
profile, this seems like a natural procedure. Conservative estimates of the expected success rates in

classifying new reads and full sequences can be found in Supplementary Table 1.

Conclusions

The package microclass offers tools for taxonomic classification based on 16S rRNA sequence data to the
R community. There are function for training classifiers on your own, specialised data sets, and then use
these classifiers to classify new sequences. The taxMachine function has synthesized the designed training
data from the microcontax data package with the methods of this package, and is our suggested tool for
general classifications. It also implements some novel ways to express uncertainties in the classifications,

indicating if the input sequences are difficult to recognize.
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Supplementary Figure 1: Effect of pseudo-counts. The fraction of mis-classified sequences after 10-fold cross-
validation, using various number of pseudo-counts in the training of the multinomial models (horizontal axes).
This is based on the contax.trim data set, and models have been trained at all levels of the taxonomy,
from domain to genus (panels). The effects of different choices of pseudo-counts are modest, and at the
genus-level the use of 100 pseudo-counts is a reasonable compromise for all types of input sequence lengths.
The amplicon sequences are obtained by using the primer pair 515F (GTGYCAGCMGCCGCGGTAA) and 806rB
(GTGYCAGCMGCCGCGGTAA) to extract subsequences, in general matching the V3-V4 region of the 16S gene.
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Supplementary Figure 2: Chimera example. We constructed a chimera sequence by mixing Salmonella
and Enterococcus. Both sequences have 1503 bases, and the chimera starts as Salmonella and ends as
Enterococcus. The horizontal axis shows the number of Salmonella bases, i.e. if the n first bases are
Salmonella then the 1503 — n last bases are Enterococcus. The blue axis/dots shows how the d-score changes
as we gradually mix the two sequences, and the tan axis/dots similar for the r-score. The red/yellow/green
band at the top shows the classification at each chimera level. On the left side, when only a minority of the
sequence is Salmonella, it is recognized as Enterococcus (green region). In the middle, it is misclassified as
Escherichia (yellow region), which is a fairly close relative of Salmonella, but as the Salmonella-part gets
majority it is recognized as Salmonella (red region). Notice the low d-score values in the middle section,
indicating uncertain classifications. The r-scores also drop in the middle region. The ’jumps’ in r-score are
due to the dependency of the classified genus. The posterior log-probabilities do not change abruptly, but
the r-score is related to what we expect for the assigned genus, and the latter causes the switches.

Supplemtntary Table 1: Performance of the multinomial classifier. Number of misclassified for every 1000
sequences classified in the contax.trim data set using 10-fold cross-validation, removal of singletons, K = 8
and n.pseudo = 100. In parentheses are the effects of changing from K = 8 to K = 10, i.e. the reduction in
mis-classified sequences. Increasing K leads to a substantial increase in memory usage and computing time,
as the problem grows by O(4%), and at the genus-level the gain of increasing beyond K = 8 is too small.

120-150bp  270-300bp  450-500bp 515f+806rB  Full 165

domain 0 (-0) 0 (-0) 0 (-0) 0(-0)  0(0)
phylum 29(-11) 14 (-4) 9 (-3) 6(-4)  5(3)
class 40 (-8) 21 (-4) 14 (-3) 10 (-5) 6 (-3)
order 65 (-9) 34 (-6) 23 (-6) 20 (-7) 10 (-6)
family 107 (-3) 49 (-5) 32 (-5) 32 (-4) 12 (-5)
genus 197(+1) 85 (-0) 45 (-1) 64 (-2)  7(-0)
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