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Preface

Formalia

The research for and writing of this thesis were completed in the period 2013–2016 at

the Department of Chemistry, Biotechnology and Food Science (ikbm) at the Norwegian

University of Life Sciences (nmbu) under direction of main supervisor Solve Sæbø, and

co–supervisors Trygve Almøy, Ole Alvseike and Jørgen Kongsro. I have been employed by

Animalia, where I have been affiliated with the classification group headed by Morten Røe.

Thesis structure

The five papers that constitute the basis for the thesis can be divided into two major, related

themes. Papers I–III deal with linear regression containing a bivariate response variable

with missing data. Papers IV and V deal with 3D image analysis applied to computed

tomography (ct) images of Norwegian pigs. The papers are reproduced in full in the last

part of this thesis.

The introduction of this thesis is organized in two chapters reflecting the two major

themes. The first chapter deals with the missing data problem and the ”empirical Bayes

machinery” which fit well with papers I–III. This chapter also contains reviews and sum-

maries of papers I–III.

The second chapter deals with in vivo ct scans of pigs. It aims at explaining the basic

principles of atlas segmentation, and how papers IV and V fit into these principles. In

addition, summaries of paper IV and V are included, together with a closing section in

which I describe how the principles of atlas segmentation might be incorporated into the

”empirical Bayes machinery”.

Notations

Some mathematical formulas are inevitable, including in the introduction. With a cou-

ple of exceptions, the notations are consistent throughout the thesis. Scalars are denoted

by lowercase italic characters, vectors by lowercase bold italic characters and matrices by

uppercase bold italic characters. The single elements of any matrix are denoted by the

corresponding lowercase italic letter and a subindex, i.e. wij is the element of the ith row

and jth column of W . In general, Greek letters are used for parameters and Latin letters

are used for random variables. The risk function, Rθ̂, for an estimator or predictor, θ̂, is the

expectation of the standard quadratic loss function. I.e. the risk is given by the expected

sum of squares for the difference between the estimator, and its true value, θ.
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Summary
The main topic of this PhD–thesis is how to minimize the prediction error for multi–

response linear regression models. Two different applications are analysed, (i) bivariate

response with missing data and (ii) image analysis from computed tomography (ct). Both

applications were initialized by practical problems in porcine.

We evaluated a James–Stein estimator, a biased estimator, applied to the model with

missing data. As the first step, we assumed that some model parameters were known

in order to reach analytic results. By assuming that the predictor variables were drawn

independently from a multivariate normal distribution, we found analytical expressions for

expected squared prediction error, over all training– and test–sets, as presented in paper I.

In paper II, we analyzed the same model under a Bayesian regime, omitting the as-

sumption about known model parameters. We found a conjugate prior distribution for the

unknown parameters, and showed how a particular parameterization provides an estimator

with properties similar to the James–Stein estimator. Prediction of new responses might

be conducted by a totally data–driven methodology, ”the empirical Bayes machinery”.

By simulations, we showed that the prediction precision of the empirical Bayes estimator

mostly was better, often with substantial margin, compared to natural competitors. In

cases where competitors predicted more precisely, the margins tended to be small. In paper

III, we showed that the model works for real data, i.e. for prediction of lean meat percentage

in pig carcasses.

The pig breeding company Topigs Norsvin ct scans approximately 3 500 nucleus boars

annually in Norway. ct provides very valuable knowledge for the breeding process, but the

value would increase considerably if an effective method existed to identify various organs,

commercial cuts etc. Atlas segmentation is one such method.

The atlas might be viewed as an average pig. The underlying idea is that one can

transform (”squeeze”) the individual pigs into the atlas–space, where organs, commercial

cuts etc. are predefined. Thus, these features might be identified at the individual scale. The

transformation is a multivariate linear prediction, where the coordinates in atlas–space are

predicted by using basic functions of the coordinates in the individual–spaces as predictors.

For construction of the atlas, and fitting the transformations, we based our estimates on

corresponding landmarks. Skeleton structure and the surface (skin) were used for identifying

the landmarks. Paper IV describes solely an algorithm for automatic segmentation and

identification of the major bones in the skeleton. This algorithm is essential for paper V

where we describe how the atlas is constructed and used for segmentation. The algorithm

is derived from basic, and well–known, image analysis techniques.
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Sammendrag (Norwegian summary)

Hovedtemaet i denne PhD–avhandlingen er metodikk for å redusere prediksjonsfeil i linære

regresjonsmodeller med flere responsvariabler. To ulike bruksomr̊ader, (i) bivariat respons

med manglende data og (ii) 3D bildeanalyse av data fra computertomografi (ct), blir

behandlet. Begge har utganspunkt i praktiske problemstillinger fra svineproduksjon.

Vi analyserte en forventningsskjev estimator, kjent som James–Stein estimatoren, i prob-

lemet med manglende data. I paper I baserte vi analysene p̊a en antagelse om at flere

modellparametere var kjente størrelser. Ved å anta at forklaringsvariablene blir trukket

uavhengig av hverandre fra en multivariat normalfordeling, fant vi ogs̊a analytiske uttrykk

for forventet kvadrert prediksjonsfeil ved bruk av ulike estimatorer.

I paper II analyserte vi modellen under et Bayesiansk regime, uten å gjøre forutsetninger

om kjente modellparametere. Vi fant en konjungerende prior fordeling (conjugate prior) for

de ukjente parameterene, og viste hvordan en spesiell parametrisering av denne gir en esti-

mator med egenskaper svært like James–Stein estimatoren. Estimatoren kan beregnes ved

en fullstendig data drevet metode (empirisk Bayes). Ved simuleringer viste vi at empirisk

Bayes estimatoren oftest predikerer bedre, gjennomg̊aende med betydelig margin, sammen-

lignet med naturlige konkurrenter. I tilfeller hvor konkurrenter er bedre er marginene små. I

paper III viser vi at modellen fungerer p̊a reelle data, prediksjon av kjøttprosent i griseslakt.

Hvert år ct scanner selskapet Topigs Norsvin ca. 3 500 norske hanngriser som er ak-

tuelle å benytte i avlen. ct gir svært verdifull kunnskap for avlsarbeidet, men verdien vil

øke betydelig dersom man finner en effektiv metode for identifisere ulike organer, stykn-

ingsdeler etc. i ct bildene. Atlas segmentering er en slik metode. Atlaset kan ses p̊a som

en gjennomsnittsgris. Den underliggende ideen er at man kan transformere (”skvise”) de

enkelte individene inn i atlaset (atlas–formen), hvor organer, stykningsdeler etc. er defin-

ert p̊a forh̊and. Dermed identifiserer man de ulike organene/ stykningsdelene i individet.

Transformasjonen er en multivariat linær prediksjon, hvor de predikerte verdiene best̊ar

av koordinater i atlas–rommet og forklaringsvariablene er basert p̊a basis funksjoner av

koordinatene i individ–rommene.

For å konstruere atlaset, og transformasjonene, baserte vi oss p̊a landmerker (land-

marks). Dette er punkter med kjente koordinater b̊ade i atlas–rommet og i individ–

rommene. Skjelettstrukturen, samt overflaten (skinnet), ble benyttet for å identifisere disse

punktene. Paper IV beskriver utelukkende en algoritme for automatisk segmentering og

identifisering av de største knoklene i skjelettet. Denne algoritmen er viktig for paper V

hvor vi beskriver hvordan atlaset konstrueres og benyttes til segmentering. Hele paper V

er basert p̊a standard bildeanalyse teknikker.
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1 Background

1.1 Surrogate variable

The papers I–III were initiated by the practical problem dealt with in paper III, i.e. how to

best predict lean meat percentage (lmp) in Norwegian pig carcasses. The prediction equa-

tion had to be fitted by a set of data from a total of 465 pig carcasses. The measurements

from the optical probe ”Hennasay Grading Probe 7” (hgp7), together with registrations

of sex, breed and year of slaughtering, constituted the predictor variables. The lmp–s, i.e.

the response variables, were fully observed using computed tomography (ct) as dissection

method (Vester-Christensen et al., 2009) (lmp–ct), whereas lmp was only observed for 86

carcasses using manual dissection (Walstra and Merkus, 1995) (lmp–md).

lmp–ct and lmp–md are known to have a very high correlation (Daumas and Monzi-

ols, 2011), though their scale might differ. This pattern was evident for our data as the

correlation between lmp–ct and lmp–md were 0.968, with average values at 66.6 % and

60.5% respectively.

The salient point in the problem was that the lmp–s should be predicted at a scale

corresponding to manual dissection. Thus we wanted to ”borrow strength” from data

where only lmp–ct was registered when estimating the regression parameters associated

with lmp–md, and accordingly reduce the expected prediction error for lmp–md.

Even though our introduction to the problem in question was a practical problem in-

volving pigs, I assume that the general problem with missing data in a response variable

is very common. The fully observed response variable, i.e. lmp–ct in our case, might be

viewed as a surrogate variable, which is defined as (Upton and Cook, 2014) ”a variable that

can be measured (or is easy to measure) that is used in place of one that cannot be measured

(or is difficult to measure)”.

Upton and Cook (2014) distinguishes between a surrogate variable and a proxy variable

defined as ”a measurable variable that is used in place of a variable that cannot be measured”.

A search on scholar.google.com conducted on 18 January 2016 revealed approximately 30-

thousand hits for the term ”proxy variable” (inside quotation marks) versus approximately

6–thousand hits for the term ”surrogate variable”. Without further examination, I suspect

that a lot of studies using the term ”proxy variable” in reality mean ”surrogate variable”

under the strict definition by Upton and Cook (2014).

In a number of scientific disciplines, extensive use of proxy variables and/ or surrogate

variables, is a cornerstone in a large proportion of studies. I do not claim that the method

described in paper II and the theory of paper I can be directly implemented to address
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all such problems, at least not problems violating the assumption about independent error

terms between observations, typically time-series data. However, I do claim that paper II,

and in particular paper I, might shed some light on when a surrogate (response) variable

might help improve the prediction precision for the primary response variable, i.e. how to

deal with missing data for one response.

1.2 Model

The natural model for analysing linear regression with a bivarite response, and which is the

cornerstone of papers I–III, is:

yT
i

i.i.d∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1; (1.1)

where yi denotes the ith row of Y1 = [y1 y2] and xi denotes the ith row of X1, i.e. the

matrix of predictor variables. The number of rows in Y1 and X1 are n1. The n2 first rows

of Y1 and X1 are denoted Y2 and X2 and contains the observations where the response is

fully observed. The p×2 matrix β = [β1 β2], denotes the regression coefficients. The 2×2

matrix Σ denotes the error covariance matrix, with elements σij, i = 1, 2, j = 1, 2.

1.3 Focus on prediction precision

Multiresponse linear regression is well known in the statistical literature (Mardia et al.,

1979). However, when no data is missing, the uniformly minimum–variance unbiased es-

timator (umvue) for β equals the matrix whose columns consist of ordinary least squares

(ols) estimators for the corresponding univariate models (Srivastava, 1965). Thus the pop-

ularity of multiresponse models, at least when the ultimate goal is prediction, seems to be

somewhat restricted.

In papers I–III we evaluate the prediction precision associated with different estimators

for β2. That is, our focus is on finding an estimator that provides better prediction precision

for the response with missing data than natural competitors. We do not focus on the

quality of the estimates for the variance component, Σ, or the estimates for the regression

parameters associated with the response without missing data, β1.

The principle of focusing on a subset of model parameters or, as in our case, the predic-

tion precision, a function for which the influence of model parameters is restricted to the

estimate for β2, is the fundamental motivation for the focused information criterion (fic)

(Claeskens and Hjort, 2003), and model averaging based on similar principles (Hjort and

Claeskens, 2003). Even though fic relies on a frequentistic approach, and the leitmotif
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in papers I–III is evaluation of an empirical Bayes estimator, the number of focal points

between the two methods are abundant.

1.4 Alternative methods

We evaluated a method based on empirical Bayes principles in papers II and III. It is

worth noting that the parameters in the model defined in (1.1), including the missing data

challenge, might be estimated through standard methods. Examples of such methods are

the expectation maximization algorithm (A. P. Dempster, 1977), within the framework of

maximum likelihood estimation (mle), see Savage (1976) for history and basic principles.

The mle estimators for variance components are known to be biased.

A related method known as restricted maximum likelihood estimation (reml), deals

with the issue of biased variance components, see Harville (1977) for the basic ideas and

history. A reml based algorithm, as described in Diggle et al. (2002), for estimating the

parameters in (1.1) would be fairly easy to implement for the model and problem in question.

If we assume that σ11 = σ22 and σ12 ≥ 0, the model in (1.1) might be rewritten as a

random effects model (Laird and Ware, 1982), using standard software like the packages

”lme” (Bates et al., 2015) or ”nlme” (Pinheiro et al., 2015) inside R (R Core Team, 2014).

It is worth noting that these packages utilize the reml principles for estimating the variance

components that are central in the random effects models.

Finally, by a slight transformation of the model, the data might be analysed using a

method known as two-stage linear regression (2sls) (Wooldridge, 2012, chap.15). 2sls is a

method well–known in econometrics. The method is easy to implement using the package

”systemfit” (Henningsen and Hamann, 2007) inside R.

2 The empirical Bayes machinery

The following section is an excerpt of well–known theory. This theory describes a framework

of advantageous methods that were implemented, or might be easily implemented, for the

results derived in papers I–III, but also to a large extent for the results of paper V.

2.1 Bayes theorem – standard methods

The cornerstone of Bayesian statistics is the iconic Bayes theorem:

p (θi | Y , ηi) =
f (Y | θi) g (θi | ηi)

m (Y | ηi)
, i = 1, . . . , l; (2.2)
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The notation in (2.2) is based on the notation in Carlin and Louis (2008), and is suitable

for explaining the general theory in the next paragraphs. However, it differs slightly from

the notation used in paper II.

We assume that there exist a set, {M1, . . . ,Ml}, of l different possible models that might

explain the data, Y , indicated by the sub–indexing i in (2.2). The posterior distribution

of the model parameters, θi, conditional on data and hyperparameters, ηi, is denoted

p (θi | Y , ηi). The likelihood, in our case defined by (1.1), is denoted f (Y | θi) and the

prior distribution of the parameters is denoted g (θi | ηi). In common the conditioning on

hyperparameters, ηi, and model indexing is dropped, but this refinement is useful for the

present section. However, where conditioning on model is redundant I have omitted this

indexing.

The denominator in (2.2), m (Y | ηi), is known as the model evidence or the marginal

likelihood. It might be viewed as a normalizing constant that ensures that the posterior

distribution integrates to one over the model parameters, θi:

m (Y | ηi) =

∫
θ

[f (Y | θi) g (θi | ηi)] δθi;

, thus, assuming that the prior distribution is a proper probability distribution (pdf), the

posterior distribution is also a proper pdf for θi.

After the advent of computer technology and the possibility to conduct effective data

simulations, the popularity of Bayesian statistics increased sharply. The method known

as Marcov Chain Monte Carlo sampling enables examination of the posterior distribution,

even for extremely complex models, without the need of calculating the model evidence

(Gilks et al., 1996; Kass et al., 1998).

A specific class of prior distribution, known as conjugate priors, has the property that

their corresponding posterior distributions are known pdf–s of the same family of distri-

butions as the conjugate prior. The term conjugate priors was first used by Schlaifer and

Raiffa (1961), but the theory was developed independently by G. A. Barnard and reported

by Wetherill (1961), according to David and Edwards (2001).

For models where a conjugate prior distribution exists, a Bayesian analysis of the poste-

rior distribution is simple, as the posterior distribution is a known pdf for which parameters

are given by known functions of data, Y , and hyperparameters, η. Often, as is the case of

the model described in paper II, the conjugate distributions are compound pdf–s. How-

ever, the analysis is still simple, as Monte Carlo simulations for all parameters are achievable

without the need to implement Markov Chains. Furthermore, analytical expressions based
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on data and hyperparameters for basic properties like (posterior) means, medians and vari-

ances for the variable (in the Bayesian sense) in question, θ, will often be achievable.

2.2 Model selection

Another asset by applying a conjugate prior is the possibility to calculate the model evi-

dence. An analytical expression is easily derived by a slight transformation of (2.2), utilizing

the fact that p (θi | Y , ηi), f (Y | θi) and g (θi | ηi), are all known functions.

Since a possible interpretation of the model evidence is ”likelihood of data conditional on

model and hyperparameters”, model evidence might be used for model selection (Kass and

Raftery, 1995; MacKay, 1992). The well–known ”Bayes factor” for comparing two models

is simply the ratio of their model evidences.

Under the assumption that one of the possible models, {M1, . . . ,Ml}, is the correct

model, a posterior probability for a model being the correct one is easily achievable within

the Bayesian regime as:

π (Mi | Y , ηi) =
m (Y | ηi) γ (Mi)∑l

i=1 [m (Y | ηi) γ (Mi)]
; (2.3)

, where π (Mi | Y , ηi) and γ (Mi) denotes the posterior and prior probabilities that model

Mi is the correct model. If one model is to be chosen, the model with the largest posterior

probability should be used. Under the natural, though not mandatory, flat prior distribu-

tion, i.e. γ (Mi) = 1/l for i = 1, . . . , l, the model with largest model evidence would also

be the model with largest posterior probability. In paper III this method, i.e. choosing the

model with largest model evidence, is used for model selection.

Yet another variant of utilizing Bayesian methods for model selection in ordinary linear

regression, i.e. univariate response, is described in George and Foster (2000), where the

same model hyperparameters, η, are applied to all combination of predictor variables, i.e.

ηi = ηj for all i = 1, . . . , l, j = 1, . . . , l.

2.3 Model averaging

Selecting a single model ignores the model uncertainty. In turn, this leads to underestima-

tion of uncertainty about the quantities of interest, which for this thesis are the predicted

values. A possible solution to deal with the model uncertainty is to apply methods known

as ”Bayesian model averaging”. The natural Bayesian solution for prediction would be to

do the prediction using all possible models and then apply a weighted average of these

6



PhD thesis The empirical Bayes machinery

predictions, as the final prediction. The weights involved would be defined by the posterior

probabilities for models as given by (2.3).

Even though this method might be shown to provide optimal prediction ability (Madigan

and Raftery, 1994), it will be unsuitable for a lot of practical situations. Raftery et al.

(1997) outlines two practical approaches for ”Bayesian model averaging” in ordinary linear

regression. I have not pursued this method for model averaging in the case with missing

data, but assume that the principles from Raftery et al. (1997) should be transmittable to

the situation with missing data. The principles of Bayesian model averaging has met with

some criticism, and as already mentioned, a frequentist alternative is proposed by Hjort

and Claeskens (2003).

2.4 Empirical Bayes

The principles outlined in this section are valid for a more general linear regression model

than the model defined in (1.1), see Algorithm a.1 for details. The model defined by (1.1)

fits into this general framework.

So far I have considered the hyperparameters, η, as known. The basic idea of empirical

Bayes methods is to set the hyperparameters based on the data. Since the model evidence,

m (Y | η), might be viewed as a likelihood function like in (2.3), a common method for

setting the hyperparameters is to use the maximum likelihood (ml) estimate, i.e. η =

argmaxη [m (Y | η)]. This optimisation is not necessarily solvable by analytical methods.

A simple and practical alternative, assuming the dimension of η is not too high, is to use

a non–linear numerical optimizer for calculating η. We utilized this method in both paper

II and paper III. Another possibility is to use the expectation maximization algorithm for

setting hyperparameters such that model evidence is maximized.

The Bayesian estimator for regression parameters for model i is given by β̃i, which under

quadratic loss function is the posterior mean. Further, let a new observation be given by

{yN , xN}, where yN denotes a q × 1 vector of new responses, and the p × 1 vector xN

contains the corresponding predictor variables.

The Bayesian prediction, is given by ỹN = β̃TxN , where β̃ might be estimated by

model selection or model averaging. Algorithm a.1 outlines the basic principles for how this

prediction is reached by applying the totally data–driven empirical Bayes framework.

In regression, the set of possible models, {M1, . . . ,Ml}, denotes the combinations of

predictor variables. If we have p possible predictors and want to test ”all combinations” we

get l = 2p. Thus, if p is large, some kind of screening should be implemented to reduce the
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number of possible models, before Algorithm a.1 is applied.

Algorithm a.1 A general algorithm for empirical Bayes prediction in a linear model

Input:
Data:

→ Training set with responses Y (n1 × q), and predictors X (n1 × p),
where subindex j is used to identify row, i.e. j = 1, . . . , n1.

→ Predictor variables for a new observation, xN .
Model framework :

→ A set of possible models {M1, . . . ,Ml},
where subindex i is used to identify model, i.e. i = 1, . . . , l.

→ A data structure with independent, identical distributed (i.i.d.) observations.
→ Likelihood, f (yj | β, Σ, xj, Mi) such that:

→ E (yj | Mi) = Xβi

→ var (yj | Mi) = h (Σi, X)
→ Conjugate prior distribution, g (βi, Σi | ηi), such that:

→ m (Y | ηi) has known form.
→ A prior distribution for the model, γ (Mi).

Result: A predicted value, ỹN , for the response in the new observation.

Procedure:
For i = 1 to i = l

1) Set hyper–parameters based on model and data.
→ An alternative is the ml method, i.e. ηi = argmaxη [m (Y | ηi)]

2) Calculate and store the model evidence, m (Y | ηi)

End

3) Estimate β by β̃.
→ Alternative a: By model selection, see section (2.2)
→ Alternative b: By model averaging, see section (2.3)

4) Predict ỹN = β̃TxN

3 Summaries of papers I–III

3.1 Paper I: Prediction error – missing data

It is worth noting that even though paper I provides strong foreshadowing to paper II, a

paper based on Bayesian methods, paper I is based upon ordinary frequentist principles.

In the first paper we made the (unrealistic) assumption of known error covariance struc-

8



PhD thesis Summaries of papers I–III

ture, i.e. that Σ was known. Matrix algebra showed that the generalized least squares (gls)

estimator (Aitkin, 1935) for β2, denoted β̂v2, known by general theory to be the umvue

estimator (Amemiya, 1985, chap.6), is:

β̂v2 = β̂22 + σ12/σ11

(
β̂11 − β̂21

)
; (3.4)

, where β̂21 and β̂22 are the standard ols estimates based on the n2 first observations

(i.e. the observations without missing data) for β1 and β2 respectively, and β̂11 is the ols

estimate for β1 based on the full set of data (all n1 rows).

A crucial point, which is evident by simple analysis of (3.4), is that when the errors of

the two responses are uncorrelated, i.e. σ12 = 0, and/ or no data are missing, i.e. n2 = n1,

then the gls estimator, β̂v2, simplifies to the ols estimator based on the full observations,

β̂22. Consequently, in these particular cases, inclusion of a surrogate variable with extra

observations has no effect on the umvue estimator for β2.

As β̂v2 was shown to be multivariate normal distributed, we were able to analytically

confirm that the gain of including a surrogate variable increased as the absolute value of

the correlation, ρ = σ12/
√
σ11σ22, between error terms increased. Furthermore, the gain

increased as the difference between n1 and n2 increased, an intuitively correct result.

The next step of paper I was to analyse a biased estimator for β2, β̃2 = kβ̂v2, where

0 < k < 1, commonly known as the James–Stein estimator (James and Stein, 1961). If k

is set properly, the James–Stein estimator is a better estimator than the gls estimator in

the sense of having lower risk function, i.e. Rβ̂v2
> Rβ̃2

.

As our focus was prediction error, we evaluated how well a new observation, yN , was

expected to be predicted based on its corresponding predictor variable, xN . We denoted

the prediction based on the James–Stein estimator ỹN , thus the risk function of interest

was RỹN
. In the first theorem of the paper, we showed the analytical solution for this risk.

This risk is a function of k, n1, n2, Σ, β, X1 and xN .

The standard model for regression analysis does not include assumptions about the

predictor variables, X1 and xN . On the contrary, by using design matrices and/ or factorial

variables as predictors, the underlying models of the wide scope of statistical methods

known as ”variance analysis”, might be viewed as linear regression models. However, a

common method for constructing the matrix of predictor variables, X1, and responses, Y1,

is registration of features connected to a common object of interest.

Motivated by Helland and Almøy (1994) we wanted to evaluate aspects of the predic-

tion precision for the James–Stein estimator conditional on known values for some model
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parameters; the error variance Σ, the population coefficients of determination, R2
1 and R2

2,

and the intercept terms, β0, but unconditional on the predictor variables, i.e. X1 and xN .

We made the assumptions that all predictors were independently drawn from a common

multivariate normal distribution, and that the missing responses were missing at random.

By general theory this enabled us to find analytical results for the expected prediction risk,

Ex (RỹN
), over all training samples, X1, and new prediction variables, xN . These risks,

which are functions of k, n1, n2, Σ, R2
1, R

2
2 and β0, constitutes the core of the second

theorem of paper I.

The final step of paper I was to show that simulations using the R package ”Simrel”

(Sæbø, 2015; Sæbø et al., 2015) showed a pattern consistent with the analytical results.

Even if these simulations did not prove the analytical results to be correct, they strongly

supported the validity of our theoretical findings.

3.2 Paper II: Empirical Bayes – double shrinkage

Life is not always a matter of holding good cards,

but sometimes, playing a poor hand well.

– Jack London.

Papers I and II share the common basic model and problem with missing data. However,

in paper II, the unrealistic assumption of known covariance for the error terms was omitted.

Thus the methods outlined in paper II are fully serviceable for a practical situation where

the model in (1.1) is suitable.

The connection between certain prior distributions, empirical Bayes methods, and James–

Stein inspired estimators, was the theme of a series of papers by Efron and Morris (1971,

1972a,b, 1973, 1975, 1976). In paper II we applied these principles to the problem in ques-

tion. We showed that the resulting empirical Bayes estimator might be viewed as a double

shrinkage estimator, whose prediction precision for a large part of model parameter settings

outperformed natural competitors.

Paper II contains three crucial developments; (i) we showed that a conjugate prior

distribution exists for the missing data situation; (ii) we showed that shrinkage of the

unbiased estimate for the term σ12/σ11, utilized in the regression parameter estimate in

(3.4) is beneficial; and (iii) we showed how a parametrization with four free parameters, of

which two are connected to the estimator for β2, yields a desired double shrinkage effect.

The conjugate prior distribution we used might be viewed as a slight transformation of

the matrix–normal–inverse–Wishart distribution, which in turn is a conjugate prior distribu-
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tion for a linear regression model with multivariate response variable without missing data

(Box and Tiao, 1973). The elements of a Wishart distributed variable might be expressed

as a compound distribution composed of two new (independent) Wishart distributions and

a multivariate normal distribution (Giri, 2003). We used a parameter transformation of Σ,

which utilized this compound form. Since Σ in the present case was a 2×2 matrix, the two

”new” Wishart distributions simplified to gamma distributions, as the gamma distribution

might be viewed a univariate Wishart. The multivariate normal simplified to a univariate

normal distribution.

The transformation in Giri (2003) is valid for Wishart distributed variables of all dimen-

sions, corresponding to missing data problems in the general multivariate situation. Thus,

I suspect that most of the results obtained in paper II for the bivariate response, might be

possible to expand to the general multivariate response model.

Based on the conjugate prior distribution for the model in (1.1), the closed form solution

for the model evidence, denoted π (Y ) in paper II, was derived. Consequently, the totaly

data–driven Algorithm a.1 might be applied to practical problems.

If we stick to an unbiased estimator for β2, it was shown in paper I that the gls estimator

is given by β̂v2, see (3.4). If Σ is unknown, as is the case for all practical situations, the

natural solution is to substitute the term σ12/σ11 in (3.4) by an estimate. By applying an

argument analogous to the arguments leading to the canonical results obtained by Stein

et al. (1956), we showed that in order to minimize the variance of the (unbiased) estimator

for β2, based on (3.4), we should use a biased (i.e. shrunk towards zero) estimate for

σ12/σ11. Unfortunately the ideal level of shrinkage is itself a function of the unknown model

parameter Σ.

As already observed, the gls– and umvue–estimator for β2 simplifies to the ols–

estimator based on the observations without missing data, if σ12 = 0. Consequently, if

σ12 = 0, an estimator based on (3.4), where σ12/σ11 is substituted with any estimator having

variance larger than zero, will have larger variance than the ols/gls/umvue–estimator.

Both estimators will be unbiased.

Thus, in situations where the true value for σ12 is zero or close to zero, the statistician

trying to utilize the gls inspired estimator in (3.4), is ”dealt poor cards”. In order to play

these cards well, the estimator for σ12/σ11 should be shrunk very close to zero. Oppositely,

when ρ2 is large, the statistician trying to utilize the gls inspired estimator, is ”dealt good

cards”. In order to play them well the shrinkage of the estimate for σ12/σ11 should be small,

for maximizing the gain of the observations with missing data.

The empirical Bayes hyperparameters we applied to the model were heavily inspired by
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the prior proposed by Minka (2000), which is based on the principles of the ”Zellner’s g–

prior” (Zellner, 1986). We showed that if it is possible to tune the two free hyper parameters

associated with the estimator for β2 properly, then we get a ”double shrinkage estimator”

of the desired form. The tuning was simply conducted by following the empirical Bayes

strategy of Algorithm a.1, i.e. by maximizing the model evidence. As a very indicative

explanation for why this strategy works, one might view our prior distribution as the support

for the hypothesis that σ12/σ11 = 0. If the support of this hypothesis, conditional on data,

is high, the shrinkage of the estimate for σ12/σ11 towards zero is heavy. Oppositely if the

support is low, so is the shrinkage.

When working with paper II, we put considerable effort into finding a prior distribution

that would result in a posterior distribution for σ12/σ11, utilizing the part of data where one

of the responses was missing. We did not succeed. However, I think some of the results we

achieved, briefly summed up in section 4, have some general interest, and indicate that there

might exist prior distributions leading to additional reduction in the expected prediction

error compared to the prior we present in paper II.

The final step of paper II was to use the R-package ”Simrel” to simulate data where

the true population parameters were changed systematically. The simulations confirmed

the general results obtained in paper I, as the gain of substituting the ols–estimator with

the empirical Bayes estimator increased when: (i) ρ2 increased, (ii) the number of missing

data increased, (iii) the coefficient of determination associated with the response without

missing data, R2
1, increased, (iv) the coefficient of determination associated with the re-

sponse with missing data, R2
2, decreased. Furthermore, it was shown that tuning the free

hyperparameters by maximizing model evidence seems to be a suitable method.

Another aspect that required a considerable amount of extra work, unfortunately with-

out a result, was the search for an analytic solution for setting the hyperparameters, η. I

suspect that such solutions are achievable, for instance using the features of the hypergeo-

metric function, 2F1, see Abramowitz and Stegun (1964, chap.15). If so, some of the results

we had to evaluate by simulation might be possible to evaluate by direct analytical analysis.

3.3 Paper III: Lean meat percentage in pork

As already pointed out, the practical problem addressed in paper III initiated the analysis

described in paper I and paper II. Hence, paper III might be viewed as a practical application

for the empirical Bayes method described in paper II. The short conclusion is: The empirical

Bayes method performed well on a set of real data, where measurements from the optical
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probe Hennessy Grading Probe 7 (hgp7) combined with some other predictor variables,

were used to predict lean meat percentage (lmp) in Norwegian pig carcasses.

A model using four predictor variables, three measurements from hgp7, and gender,

was simple and provided a high prediction precision for lmp, well inside EU standards. For

practical simplicity gender might be omitted without severe loss of prediction precision.

We also showed that the number of pigs manually dissected could be substantially re-

duced without severe loss of prediction precision, provided a sufficiently large number of ct

scanned carcasses. This aspect was not addressed in paper I or II. A key lesson was that

if one possesses some prior knowledge about the covariance matrix Σ, the coefficients of

determination, R2
1 and R2

2, the cost associated with sampling the responses, and the gain of

reducing prediction error, this prior knowledge might be used for optimizing the sampling

design of the experiment.

4 An alternative estimator for σ12/σ11

This section treats an estimator for the proportion σ12/σ11 as defined in paper I and II.

The results presented in this section are not required to understand the entirety of the rest

of the thesis. However, the results indicate that there may exist prior distributions that

are potentially ”better” than the prior proposed in paper II. In paper I and II we assumed

that Z, i.e. the last p − 1 columns of X, were centred and normally distributed. These

assumptions are not necessary for the results derived in this section, where I introduce:

q4 = yT
−δ1

(
I(n1−n2) −H−δ

)
y−δ1;

, where the subindex −δ indicates the rows containing missing data. Q is defined in paper

I and II.

Proposition 1 - An alternative estimator for σ12/σ11

Under the assumption that ρ2 follows a proper prior pdf with known expected value, E (ρ2),

I propose to use the following estimator for σ12/σ11:

̂σ12/σ11 =a q12/q11 + (1− a) [(n1 − n2 − p− 2) q12]/[(n2 − p) q4];

where:

a =

 1, if n1 ≤ n2 + p+ 4
(n2−p−2)[1+(n1−2p−3)E(ρ2)]

(n2−p−2)[1+(n1−2p−3)E(ρ2)]+(n1−n2−p−4)[1−E(ρ2)]
, else;

(4.5)
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Lemma 1

The estimator proposed in (4.5) is unbiased for all 0 < a < 1. The value for a as given by

(4.5) minimizes the variance of ̂σ12/σ11 as given in (4.5).

Proof

Since q4 is based solely on the observations containing missing data, 1/q4 and Q are inde-

pendent variables, whose distributions are given by:

1/q4 ∼IG [(n1 − n2 − p)/2, 1/(2σ11)] ;

Q ∼W [Σ, (n2 − p)] ;

Due to the Wishart distribution of Q we have (Giri, 2003):

(
q22 − q212/q11

)
∼Ga

{
(n1 − n2 − p− 1)/2, 1/

[
2
(
σ22 − σ2

12/σ11

)]}
;

(q12/q11, q11) ∼NGa
[
σ12/σ11, 1/

(
σ22 − σ2

12/σ11

)
, (n2 − p)/2, 1/(2σ11)

]
;

, where (q22 − q212/q11) and (q12/q11, q11) are independent. To get the expression for the

covariance between q12/q11 and q12/q4 I used that:

E
[
q212/(q11q4)

]
= −

[
E
(
q22 − q212/q11

)
− E (q22)

]
E (1/q4) ;

Then I get the following expressions for expected values, variances and covariance for

the variables q12/q11 and q12/q4:

E (q12/q11) =σ12/σ11;

var (q12/q11) = (σ22/σ11)
(
1− ρ2

)
[1/(n2 − p− 2)] ;

E (q12/q4) = (σ12/σ11) [(n2 − p)/(n1 − n2 − p− 2)] ;

var (q12/q4) = (σ22/σ11) ({(n2 − p)/[(n1 − n2 − p− 2) (n1 − n2 − p− 4)]}+{
[(n2 − p) (n1 + n2 − 3p− 2)]/

[
(n1 − n2 − p− 2)2 (n1 − n2 − p− 4)

]}
ρ2
)
;

cov (q12/q11, q12/q4) = (σ22/σ11)
(
1− ρ2

)
[1/(n1 − n2 − p− 2)] ;

This leads to:

E
( ̂σ12/σ11

)
=σ22/σ11;

var
( ̂σ12/σ11

)
=(σ22/σ11)

[
f1 (a)− f2 (a) ρ

2
]
;
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, where:

f1 (a) =
{[
2 (n2 − p− 2) a− (n2 − p− 4) a2

]
/[(n2 − p) (n2 − p− 2)]+[

(1− a)2 (n1 − n2 − p− 2)
]
/[(n1 − n2 − p− 4) (n2 − p)]

}
;

f2 (a) =
{(

2 (n2 − p− 2) a− (n2 − p− 4) a2
)
/[(n2 − p) (n2 − p− 2)]−[

(1− a)2 (n1 + n2 − 3p− 2)
]
/[(n1 − n2 − p− 4) (n2 − p)]

}
;

By viewing ρ2 as a random variable with expectation E (ρ2), a Bayesian approach, and

applying the law of total variance (Eve’s law) the variance of ̂σ12/σ11 is:

var
( ̂σ12/σ11

)
= (σ22/σ11)

[
f1 (a)− f2 (a)E

(
ρ2
)]

;

, which is minimized for a as given in (4.5). One should note that:

varρ2
[
E
( ̂σ12/σ11

)]
= varρ2 (σ12/σ11) = 0;
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1 Background

The first computet tomography (ct) scanner was developed by Sir Godfrey Hounsfield, and

the first patient brain–scan was done on October 1st 1971, according to Beckmann (2006).

Hounsfield received the Nobel prize for physiology or medicine together with Allan McLeod

Cormack in 1979, for his part in developing the diagnostic technique of ct. The data in

ct scans might be viewed as a 3D volume consisting of voxels, where voxel is the basic 3D

unit. An intensity measured in the Hounsfield scale (hu) is aligned to each voxel.

The main application for ct is of course human medicine, where huge resources are

allocated to the research field broadly known as ”medical image analysis”, a field covering

more techniques than ct. However, at least compared to the age of the technology, ct

has a long history within the meat industry, where the first paper utilizing ct on pigs was

published in 1981 (Skjervold et al., 1981), only two years after Hounsfield received the Nobel

prize.

ct has been used on living livestock animals (in vivo) or on carcasses (post mortem), for

a variety of species, including pigs, sheep, hens/ broilers and calves, see Scholz et al. (2015)

for an overview. In general ct has been a very valuable, and accurate, tool for measuring

body composition both in vivo and post mortem.

The breeding company Topigs Norsvin uses ct to measure body composition and mon-

itor orthopaedic disorders in 3 500 breeding boars annually as an integrated part of their

testing system. As we had access to these data; we had more than enough data at our

disposal to construct our atlas. Without having the full overview, I will also hypothesise

that few, if any, studies of humans has access to an equally large amount of empirical ct

data.

2 Atlas segmentation

A natural next step in order to exploit information from ct scans in animal breeding and

meat sciences, is to find methods for segmenting out and identify specific parts or organs

that are of special interest. There are a variety of methods that might be used for such

segmentation, of which many requires a substantial proportion of manual assistance.

A method which has a number of advantageous properties is known as ”atlas segmen-

tation”. The method is well known in human medicine and has been applied to numerous

human organs like the brain, heart, liver etc. I will not pretend to have anything even close

to a full overview of the whole discipline. However, one should note that the main scope
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a 

b 

c 

d 

Figure 2.1: (a) The center of the intensity atlas viewed perpendicular to the sagittal plane.
Red line show the position of the slice shown in panels b–d. (b) Intensities (”hu–s”) for a slice
viewed perpendicular to the coronal plane. (c) Boarders for labels in the same slice as shown in
panel b. (d) Labels in the same slice as shown in panels b and c. The following labels are shown:
Shoulder (red), belly (violet), ham (orange), lungs (dark blue), ”guts” (light blue), heart (red),
bones (different shades of gray), and testicles (pink).

for human body atlases is single organs, or parts of organs, not the full body. Indeed, a

crucial part of the software we utilized in order to fit the non–rigid, cubic B–spline based,

transformation of individual pigs to the atlas was originally used for fitting transformations

of the human mandible (Kroon, 2011a,b).

Atlas segmentation has actually been applied to pig carcasses in Denmark (Hansen,

2010; Olsen et al., 2012; Vester-Christensen, 2008), where the atlas construction was done

fairly easily by simply using a close to average carcass as the atlas. For various reasons, the

practical use of the Danish pig carcass atlas, named ”Saerimner”, has stagnated since its

origin in 2010.

As we wanted to construct an atlas for pigs in vivo, symmetric over the sagittal plane

except for the internal organs, we started the work from scratch. The methods we used,
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described in paper V, were to some extent novel. Our main inspiration and guidance came

from studies on micro–ct scans of mice, see Segars et al. (2004) for making and labelling

the atlas, and Baiker et al. (2010); Li et al. (2008) for automatic non–rigid registration

of individual bodies to an atlas. Even if mice are animals, they are not livestock animals.

Thus we exploited information from studies primarily aimed at human medicine (laboratory

mice), for agricultural purposes.

The labelled atlas that we constructed is deterministic, i.e. every voxel is aligned to a

label with probability 0 or 1 (Fig. 2.1). Another type of atlases is a so called probabilistic

atlas, where every voxel is aligned to a label with a probability between 0 and 1. For

the pig atlas the gain of applying a probabilistic atlas seems limited at the moment, as the

labelled parts are large, and the segmentation rough. However, the intensity atlas allows for

a substantially higher level of detail in the labelled atlas. The usefulness of a probabilistic

atlas will increase as the level of detail increases.

Probabilistic atlases might be constructed in different ways. The simplest method is to

manually segment, i.e. define the labels of, a (sub)sample of the individuals used for the atlas

construction. After registration of these individuals to the atlas, the probability of a random

atlas voxel being aligned to a label might be estimated by the corresponding Monte Carlo

estimate. Van Leemput (2009) describes a more sophisticated Bayesian inspired method

for constructing a probabilistic atlas. This method also relies on a subset of manually

segmented atlases as input.

A probabilistic atlas might also be constructed using an intensity atlas as input. Such

constructions are not a topic of this thesis, but will often involve variations of methods based

on Markov random fields, or related principles. To the best of my knowledge, I assume that

the intensity atlas for in vivo pigs would constitute a solid basis for such methods. It might

also be possible to utilise other features than average intensity for each voxel. Voxel–wise

features for intensities like variance, quantiles etc. would be easy to calculate. Such features

might be helpful in the process of constructing both deterministic and probabilistic atlases.

3 Summaries of papers IV and V

3.1 Paper IV: Skeleton segmentation

An automatic method for segmenting and identifying the major bones in ct scans of pigs,

in vivo or post mortem, is described in paper IV. The underlying motivation for developing

this method was that the skeleton constitutes the basic framework for constructing a full
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Step 1: Identify bone structure by a  
  threshold for hounsfield units. 

Step 2: Identify forelimbs by       

     connectivity. Set landmarks. 

. 

Step 3: Split 
  bones. 

Step 4-8:  Segmented skeleton. 

      Bones identified. 

Figure 3.2: Reproduction of the Graphical Abstract available for the online version of paper
IV. The figure illustrates the work flow used for bone segmentation and identification.

body atlas, as described in paper V.

The work flow we applied is described through the following enumerated list. The steps

in figure 3.2 correspond to this numbering.

1. The ct image was uploaded. The skeletons were segmented out by applying a thresh-

old value (180hu).

2. Skeletons were segmented into three identified major parts, two forelimbs and the

”central skeleton” by identification of connected objects.

3. The two forelimbs were segmented into three parts.

4. The two hindlimbs were segmented from the rest of the ”central skeleton”.

5. The two hindlimbs were segmented into 4 smaller parts.

6. The rest of the ”central skeleton” were segmented into 7 main parts.

7. The individual ribs were segmented out and identified.

8. The individual neck vertebras, thoracic vertebras, and lower back vertebras were seg-

mented out and identified.

For segmentation of the individual bones, we had to identify a region of interest (roi),

which embraced the physical interface between two bones. Then we used a 3D expansion

of Dijkstra’s algorithm in order to segment the two bones. The algorithm ensured that the

two bones were separated by a continuous, connected surface.
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The methods for identifying the roi–s, were ad.hoc.–methods based on prior anatomical

knowledge. The prior knowledge we utilized to make the methods work, might always be

a target for improvement. The work carried out into preparing these algorithms was not

principally innovative. However, ascertaining how to combine different, well known image

analysis techniques like thresholding for intensities and Euclidian distances, using gradients,

etc. was both cumbersome and involved a significant proportion of innovation. Not least,

writing the computer code for the algorithms was time–consuming work.

3.2 Paper V: Atlas construction

Paper V describes how we constructed an atlas for in vivo pigs. The work described in

paper IV constituted an important basis for paper V. Each step in the construction process

was characterized by being simple, i.e. they were based on basic methods inside the large

discipline broadly known as image analysis.

The procedure was applied to a substantial number of individual pigs, 386 in all. All

individuals were scanned with high level of detail, i.e. slice–thickness at 1.25 mm, giving

approximately 3×108 voxels that had to be handled some way or another for each individual.

Thus, we faced problems broadly known as big–data challenges; high computational time,

lack of memory in computers etc. Consequently, even if the method in principle was simple,

the many subsequent steps, each depending on a successful preceding step, mostly involving

large sets of data, made the full process challenging to implement. The steps for constructing

the intensity atlases were as follows, where the steps a–d correspond to panels a–d in Figure

1 and steps e–h correspond to panels a–d in Figure 2 of paper V:

(a) We segmented and identified all major bones in the 386 pigs as described in paper IV.

(b) We calculated image moment invariants for all bones. These included centre of mass

(COM), volume and spatial orientation.

(c) For all individual bones (femur, pelvis etc.), an average bone was constructed by an

affine transformation to a common basis, using the moment image invariants for all

386 pigs. The averages for the image moment invariants were calculated.

(d) A grid of landmarks was set on the average bones.

(e) The landmarks were transformed back to all individual pigs by applying the ”inverse

transformation” based on the moment’s invariants.
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(f) The ”average” landmarks were transformed into the atlas space, constituting the basis

of the atlas.

(g) A B-spline based non–rigid transformations, based on the corresponding landmarks

in the individual pigs and atlas space, was fitted to transform objects to atlas space.

These transformations were applied to the surface–points (skin) of the individual pigs.

An average surface (skin) based on these transformed points was constructed, and new

sets of corresponding landmarks were set based on Euclidian shortest distances.

(h) New transformations were fitted based on landmarks in skeletons and surface (skin).

These transformations were applied to the full set of voxels in all pigs. The result was

the intensity atlas. The intensities of each voxel in the intensity atlas were calculated

as the average hu from voxels in individual pigs transformed to atlas space.

A labelled atlas, identifying the four major commercial cuts; ”shoulder”, ”loin”, ”belly”

and ”ham”, the ”guts”, lungs, heart and the individual bones, was constructed by manual

segmentation of the intensity atlas. We demonstrated how the labelled atlas might be used

for atlas segmentation. Finally we showed that atlas segmentation of carcasses made a

significant contribution to knowledge about the relative sizes of the main commercial cuts

in a test set of 52 pig carcasses, when compared with results from manual butchering.

4 Further work – implementation of empirical Bayes

You will never reach your destination

if you stop and throw stones at every dog that barks.

– Winston Churchill.

In this section I will outline an alternative strategy for how the empirical Bayes machinery

might be utilized in order to fit the 3D image transformations described in paper V. I want

to emphasize that this does not imply any criticism of the method described by Kroon

(2011b), which worked flawlessly.

Let the volume of a random pig be defined by the Nx × 3 matrix X, where each row of

X defines the (Cartesian) coordinates of one voxel. The sum of all Nx voxels constitutes

the full volume. The ultimate goal of the registration of a random pig to the atlas is to

map X to its corresponding coordinates in the atlas, given by the Nx × 3 matrix Y . Then

we might apply the model:
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Y = Φxβ +E, ei
i.i.d∼ N3 (0, Σ) , i = 1, . . . , Nx; (4.1)

, where Φx denotes the Nx × p matrix of basis functions, i.e. a matrix that is a function

of X. As usual the regression parameters are given by the p × 3 matrix β, and the error

covariance term is given by the 3× 3 matrix Σ. Finally the Nx × 3 matrix E denotes the

errors, where row i is denoted ei.

One should note that the underlying idea for the model in (4.1) is that every voxel,

represented by its spatial position, xi, i = 1, . . . , Nx, inside the volume of a random pig, has a

corresponding ”correct” spatial position, yi, inside the atlas. In papers I and II, we evaluated

the expected prediction error, Rỹ. Due to the quadratic loss function and the Pythagorean

quadruple, a natural interpretation of the prediction risk function, Rỹ, is ”the expected

square of the spatial distance between the transformed point and its correct position in the

atlas”. Under this setup, we see that the landmark based transformation might be seen as

a large prediction challenge, where the ”atlas position” of approximately 108 voxels in each

pig is to be predicted by estimates based on approximately 2000 landmarks.

Even though we invested a substantial amount of work in order to gain the results

described in papers IV and V, one might, slightly exaggerating, view the results as a way of

constructing a multivariate response, i.e. the coordinates of landmarks in the atlas, given

by the n × 3 matrix YL, and 386 different inputs for possible predictors, i.e. the 386 sets

of landmark coordinates in the individual pigs, given by the n× 3 matrices denoted XL for

each individual. In paper V we used these data as input into what might be viewed as a

”gray box”, i.e. the functions from Kroon (2011a,b). Even though we were well aware of

the basic principles of the ”gray box”, we did not audit all computer code.

This ”gray box” completed three sequential operations; (i) model selection, i.e. opti-

mizing the knot sequens of the B-spline basic functions, (ii) estimation of the regression

parameters, and (iii) applied the transformation to the full volume, i.e. prediction. These

operations would fit like a glove for the empirical Bayes machinery as described by Algo-

rithm a.1.

A conjugate prior distribution for the model defined by (4.1) is the matrix–normal–

inverse–Wishard distribution (Box and Tiao, 1973), i.e. a compound distribution where the

inverse of Σ is Wishard distributed and β, conditional on Σ is matrix–normal distributed

with Σ as one of the scale parameters.

Without going into detail, if the prior expectation for β is set to β0, then the resulting

posterior estimate for β will ”shrink” the ols estimator towards β0, where the degree of
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shrinkage depends on the prior variance for the estimator. A common choice is to set

β0 = 0, like we did in paper II and III. The prior used by Minka (2000), inspired by the

Zellner’s g-prior (Zellner, 1986), corresponds to the prior we used in paper II and III, where

the second scale matrix is set proportional to XTX (or ΦT
xΦx). Another very common

prior is to set the second scale matrix proportional to identity. The frequentist counterpart

to this prior, when β0 = 0, is commonly known as ridge regression.

Since Φx is based on basic functions, in our case cubic B-Splines, a choice that does not

affect the following arguments, the second dimension of Φx might in principle be increased

to infinity. As the landmark based methods I have described depends on the least squares

solution to be computable, the second dimension of Φx can not be larger than the number

of landmarks. However, in line with the major theme of this thesis, the second dimension of

Φx should be controlled carefully in order to increase the prediction precision. In a highly

cited article, MacKay (1992) evaluates how to optimize basic functions like Φx for linear

regression, utilizing the principles within the empirical Bayes machinery. Van Leemput

(2009) advocates for applying these methods, within the discipline of image analysis for a

problem involving construction of an atlas for the human brain.

A huge challenge for the method we have used for the pigs is the uneven dispersal of

skeleton based landmarks within the volume. The density of landmarks is especially sparse

in and around the belly, but also in parts of the ham. Thus, the transformation applied to

points in these areas might be seen as severe extrapolation. A natural way to deal with this

uneven dispersal is some kind of weighted estimator. Such estimators should be fairly easy

to implement within the principles outlined in this thesis. Typically landmarks in ”dense”

areas will be assigned small weights and landmarks in ”scarce” areas will be assigned large

weights. The weights might also reflect the quality of the landmark, i.e. some landmarks

might be harder to identify, and thus should be assigned lower weight.

If there exist landmarks that have known correspondence for only one or two of the

(cartesian) dimensions of the atlas, the resulting regression challenge will become a missing

data problem analogues to the problem analyzed in paper I–III.

As a concluding remark to this chapter on image registration I have an admission to

make: I have left out a major part of state–of–the–art image registration principles by

restricting all my work to landmark based registration. I have made no attempt to utilize

the main data source, i.e. the hu intensities, in the process of fitting the transformations,

after the landmarks are identified. I am also (awkwardly) aware, as was briefly commented

in paper V, that iterative methods exist, often based on the Gauss–Newton algorithm (Gill

and Murray, 1978), that utilize the intensities for fitting the final transformations.
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These methods introduce a new loss function, based on a similarity measure between

intensities in the individual pigs and the intensity atlas (references and template). Conse-

quently, the nice link between the landmark based methods and linear regression methods

that constitutes the main topic of this thesis is broken. However, the atlas and transforma-

tions we have fitted constitute a natural starting point for applying Gauss–Newton inspired

methods. These methods might be implemented for the full body volume, but as a start,

it is natural to implement them for restricted volumes, such as different organs that might

be of interest.
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Theoretical evaluation of prediction error in linear regression with a bivariate

response variable containing missing data.
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Abstract: Methods for linear regression with multivariate response variables are well de-

scribed in statistical literature. In this study we conduct a theoretical evaluation of the

expected squared prediction error in bivariate linear regression where one of the response

variables contains missing data. We make the assumption of known covariance structure for

the error terms. On this basis, we evaluate three well-known estimators; standard ordinary

least squares, generalized least squares and a James-Stein inspired estimator. Theoretical

risk functions are worked out for all three estimators to evaluate under which circumstances

it is advantageous to take the error covariance structure into account.
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1 Introduction and notation

In this paper, we evaluate a linear regression model with a bivariate response variable

where one of the responses contains missing data. For practical purposes this situation is

likely to occur if predictor variables and one response variable, typically a response variable

of subordinate interest, are easily sampled; but the other response, typically the one of

primary interest, is hard(er) or more costly to sample. Often, though not necessarily, the

fully observed response variable will be a surrogate variable (Upton and Cook, 2014) for

the response variable containing missing data. In such situations, a sampling method where

the primary response variable is sampled only for a subset of the total sample, might be

beneficial, especially if the error terms in the bivariate linear regression model are highly

correlated.

When no data is missing and ordinary least squares (ols) estimators are used, the gain

of applying one single multiresponse regression model is limited compared to several single

response models, since the regression parameter estimates are equal and unaffected by the

covariance structure of the error term. In this paper, we show that the gain of using a

bivariate response variable model in cases with missing data for one of the responses might

be substantial if the covariance structure of the error terms is taken properly into account.

In the following scalars are denoted by lowercase italic characters, vectors by lowercase

bold italic characters and matrices by uppercase bold italic characters. The single elements

of any matrix are denoted by the corresponding lowercase italic letter and a subindex, i.e.

wij is the element of the ith row and jth column of W . In general, Greek letters are used

for parameters and Latin letters are used for random variables. The risk function, Rθ̂, for

an estimator or predictor, θ̂, with true value θ, is

Rθ̂ = E

[(
θ̂ − θ

)T (
θ̂ − θ

)]
;

2 Model spesification

The data are given by an n1 × 2 matrix of response variables, Y1, and an n1 × p matrix of

predictor variables, X1, in which the first column is the vector of unity, and the p− 1 last

columns are denoted Z1. If not stated otherwise, Z1 is assumed to be mean centred. The

model is a standard bivariate response variable regression model, i.e.

yT
i ∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1;
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where yi and xi denote the ith row of Y1 and X1 respectively. The p× 2 matrix β, which

first and second column are denoted β1 and β2, denotes the regression coefficients. The

notations β0 and βz are used for the first and p− 1 last rows of β respectively. The 2× 2

matrix Σ denotes the error covariance matrix, with elements σij, i = 1, 2, j = 1, 2. The

model is well known from literature, also in a Bayesian setting (Box and Tiao, 1973; Minka,

2000).

We assume that the data represents a random sample from a larger population, of

which a random subsample contains missing data for the second response variable. The

observations are rearranged so that the first n2 (p < n2 ≤ n1) rows of Y1 are fully observed,

and for the n1 − n2 last rows of Y1 only the first column is observed. For the rest of this

paper Y2, X2 and Z2 will represent the n2 × 2, n2 × p and n2 × (p− 1) sub-matrices of the

n2 first rows of Y1, X1 and Z1, respectively. Finally, yv is the stacked column-vector of the

first column of Y1 and the second column of Y2.

The model might be defined in different ways, but the representation

yv ∼ Nn1+n2

(
X(+)βv, Σ(+)

)
; (1)

where βv is the stacked column-vector of β1 and β2, is suitable for the purpose of the rest

of this paper. The (n1 + n2) × (n1 + n2) covariance matrix Σ(+) is the upper left block of

Σ ⊗ In1 . Likewise X(+) denotes the (n1 + n2) × 2p matrix representing the n1 + n2 first

rows of I2 ⊗X1.

3 Estimators

3.1 The generalized least squares estimator

The 2p × 1 vector β̂v denotes the generalized least squares (gls) estimator based on (1).

We denote the first p elements of β̂v by β̂v1, and the last p elements by β̂v2. The expression

and distribution of β̂v are:

β̂v =
(
XT

(+)Σ
−1
(+)X(+)

)−1

XT
(+)Σ

−1
(+)yv, β̂v ∼ N2p

[
βv,

(
XT

(+)Σ
−1
(+)X(+)

)−1
]
;

Remark 1

β̂v1, equals β̂11, i.e. the ordinary ols estimator based on X1.
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Remark 2

The expression and distribution for the gls–estimator for β2 is:

β̂v2 = β̂22 + σ12/σ11

(
β̂11 − β̂21

)
,

β̂v2 ∼ Np

{
β2, σ22

(
XT

2 X2

)−1 − σ12
2/σ11

[(
XT

2 X2

)−1 −
(
XT

1 X1

)−1
]}

;

, where β̂21 and β̂22 are the standard ols estimates based on the n2 first (full) observations

for β1 and β2 respectively. We observe that as n1 increases towards infinity the distribution

for β̂v2 approaches the distribution of β̂22 conditional on known β1, i.e.

β̂22 | β1 = β̂22 + σ12/σ11

(
β1 − β̂21

)
, β̂22 | β1 ∼ Np

[
β2,

(
σ22 − σ2

12/σ11

) (
XT

2 X2

)−1
]
;

Remark 3

The covariance between β̂v1 and β̂v2 is σ12

(
XT

1 X1

)−1
.

3.2 James-Stein estimator

An alternative estimator for βv, kβ̂v, where 0 ≤ k ≤ 1 is known as the James-Stein estimator

(Efron and Morris, 1973; James and Stein, 1961). It is well known that if the regularization

parameter, k, is set appropriately, then the James–Stein estimator outperforms the gls–

estimator in the sense of having smaller risk, i.e. Rkβ̂v ≤ Rβ̂v.

An obvious objection to the James–Stein estimator is that it is biased for all k ̸= 1.

Another issue is how to set the regularization parameter at a suitable value. Bock (1975)

showed how to set k to minimize Rkβ̂v, based on the largest eigenvalue of covariance for

β̂v. A problem with the estimator kβ̂v is that the same regularization, k, is applied to

both β̂v1 and β̂v2. Brown and Zidek (1980) and Matsuda and Komaki (2015), addressed

this problem by analysing different regularization matrices in detail, also based on known

error covariance structure. However, they do not deal with missing data for the response

variables.

In this paper, we evaluate a variant of the James–Stein estimator, β̃, a stacked vector

of β̃1 = k1β̂v1 and β̃2 = k2β̂v2 where 0 ≤ ki ≤ 1 for i = 1, 2.
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4 Prediction error

4.1 General form: No assumptions on predictor variables

Let yN denote a new observation, and let ỹN denote the corresponding predicted value

based on the new predictor variable, xN , i.e. a vector of length p where the first element is

1 and the last p− 1 elements are denoted zN .

Theorem 1: Expected prediction error

The expected squared prediction errors denoted RỹNi, for i = 1, 2, using the estimator β̃i,

and the notation Z2c for the first n2 rows of Z1 centred with respect to the column means

of the same rows, are:

RỹN1
=σ11 + σ11k

2
1

[
1/n1 + zT

N

(
ZT

1 Z1

)−1
zN

]
+ (1− k1)

2 xT
Nβ1β

T
1 xN ;

RỹN2
=σ22 +

(
σ22 − σ2

12/σ11

)
k2
2

[
1/n2 + zT

N

(
ZT

2cZ2c

)−1
zN

]
+

σ2
12/σ11k

2
2

[
1/n1 + zT

N

(
ZT

1 Z1

)−1
zN

]
+ (1− k2)

2 xT
Nβ2β

T
2 xN ;

(2)

The proof is deferred to the Appendix.

4.2 Multivariate normal distributed predictor variables

The formulas given by (2) is valid for a new and observed observation xN and the given

calibration setX1. A more general statement about prediction error is the expected squared

prediction error over all calibration samples and new observations, Ex (RỹNi
), which can be

obtained under certain assumptions (Helland and Almøy, 1994).

Assume that all rows of the original (non-centred) Z1, and the new (non-centred) obser-

vation, zN , are independent multivariate normal distributed with fixed expectation parame-

ter and a fixed covariance matrix, Γ. Under these assumptions the expected prediction risks

might be given as functions of Σ, ni, ki, β0i and R2
i , where R

2
i is the population coefficients

of determination.

The natural choices for ki, denoted kOracle i, for i = 1, 2, are the values that minimize the

expected squared prediction error. The sub-indexing ”Oracle” is used in line with Wasser-

man (2006) and reflects that these values are unattainable in most practical situations.

To compare the precision of different estimators we use the expected ratios of the ex-

pected squared prediction errors of the estimators. Since the ratio of expectation is constant,
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this ratio is equal to Ex (RỹNi
)/Ex (RŷNi

), where the subscripts ỹNi and ŷNi indicate the

estimator.

The expressions given in (3) simplify equations and increase readability. However, they

might also be given some kind of interpretation as nei increases with sample size and de-

creases as p increases. Further ne2 increases as ρ2 increases, an effect that might be given

the interpretation as increased population size for estimating β2 by borrowing strength from

the observations with missing data.

The constants, ci2, i = 1, 2, are functions of the population coefficient of determination,

R2
i , and the intercept term, β0i. The relationship between these constants and both input

arguments are positive, though not linear.

ci1 =(nip− 2)/[ni (ni − p− 1)], ci2 = (n1 + 1)R2
i /
[
n1

(
1−R2

i

)]
+ β2

0i, i = 1, 2

ne1 =1/c11, ne2 = σ22/
[(
σ22 − σ2

12/σ11

)
c21 +

(
σ2
12/σ11

)
c11

]
;

(3)

Theorem 2: Prediction error over all calibration samples

The expected squared prediction errors over all calibration samples and new observations

using the estimator β̃i, for i = 1, 2 under the assumptions specified above, are:

Ex (RỹNi
) =σii

[
1 + k2

i n
−1
ei + (1− ki)

2 ci2
]
; (4)

The proof is deferred to the Appendix.

Corollary 1:

The values for ki minimizing the expected squared prediction error, and the corresponding

expected risk functions are:

kOracle i = ci2/
(
n−1
ei + ci2

)
, Ex (RỹNi

)Oracle = σii

{
1 + ci2/

[
nei

(
n−1
ei + ci2

)]}
;

Corollary 2:

The values klim i =
(
n−1
ei − ci2

)
/
(
n−1
ei + ci2

)
, has the property that for klim i < ki < 1, then

Ex (RỹNi
) < Ex (RŷNi

), where ŷNi denotes the prediction based on β̂vi.

Corollary 3:

The expected ratios of the expected squared prediction errors of the estimator β̃i and the
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two competitors β̂vi and β̂2i, note that for i = 1 those are equal, the ratios of the expected

prediction risks, are:

Ex (RỹNi
)/Ex (RŷNi

) =1− n−2
ei /

[(
n−1
ei + 1

) (
n−1
ei + ci2

)]
,

Ex (RỹNi
)/Ex (Rŷ2Ni

) =1−
(
ci1n

−1
ei + ci2n

−1
ei − ci1ci2

)
/
[
(ci1 + 1)

(
n−1
ei + ci2

)]
;

Corollary 4:

The expected ratio of the expected squared prediction errors based on the estimators β̂vi and

β̂2i equals 1 for i = 1 and has a specially nice expression for i = 2, where ρ = σ12/
√
σ11σ22

is the correlation between the error terms.

Ex (RŷNi
)/Ex (Rŷ2Ni

) = 1− ρ2(c21 − c11)/(1 + c21);

Even though, in general, we assume Σ to be known in this paper the prediction risk for

the estimator

β̂Q2 = β̂22 + q12/q11

(
β̂11 − β̂21

)
, Q =

[
Y2 −X2

(
β̂21 β̂22

)]T [
Y2 −X2

(
β̂21 β̂22

)]
;

might be analysed analytically. The fraction q12/q11 is an unbiased estimator for σ12/σ11 as

can be derived using Giri (2003).

Lemma 1:

The expected risk function for prediction error, i.e. Ex

(
RŷQN2

)
, using β̂Q2 as estimator for

β2 is:

Ex

(
RŷQN2

)
=σ22

{
(1 + c21)− (c21 − c11)

[
ρ2 −

(
1− ρ2

)
/(n2 − p− 2)

]}
; (5)

The proof is deferred to the Appendix.

Corollary 5:

The expected ratio of the expected squared prediction errors based on the estimators β̂Q2 and

β̂22 is:

Ex

(
RŷQN2

)
/Ex (Rŷ2Ni

) =1− [(c21 − c11)(1 + c21)]
[
ρ2 −

(
1− ρ2

)
/(n2 − p− 2)

]
;

Do note that if ρ2 < 1/(n2 − p− 1), then the expected prediction risk using the standard

ols estimator, β̂22, is smaller than using the estimator β̂Q2.
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5 Results
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Figure 1: The expected relative size (in %) for the expected squared prediction errors using the
estimator β̂v2 compared with β̂22 as a function of ρ and the fraction c21 − c11/1 + c21. As this
fraction decreases, it basically means that the relative difference between the sample-sizes n1 and
n2 also decreases.

As shown in Figure 1, the gain of using β̂v2 over β̂22 may be substantial, especially

for combinations when ρ2 and (c21 − c11)/(1 + c21), are both high. The latter expression is

basically reflecting the relative difference between n1 and n2. Figure 2 shows that further

improvements might be achieved by substituting β̂vi with β̃i, for i = 1, 2 in situations when

ci2, basically reflecting the size of R2
i , is small. The effect diminishes when nei increases,

i.e. when the effective sample size is large.

The results of (2) and (5) were validated via simulations using the software ”R” (R Core

Team, 2014) and an extension of the package ”simrel” (Sæbø, 2015; Sæbø et al., 2015),

capable of producing a bivariate response variable. Figure 3 shows different simulation
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Figure 2: The expected relative size (in %) for the expected squared prediction errors using the
estimator β̃2 compared with β̂v2 as a function of ne2 and c22. c22 is basically a function of R2

2 and
increases when R2

2 increases.

tests. As this study is not a simulation study, we contented ourselves with simulating

results for a bundle of combinations for n1 and n2, varied ρ and plotted the results onto the

theoretical risks like shown in Figure 3 for visual validation.

6 Discussion

Our major finding in this study is to show that for linear regression with bivariate response

including missing data, there exists an unbiased gls–estimator, β̂v2, which reduces the

expected prediction error compared with the standard ols estimator, when the covariance

structure of error terms is assumed to be known. The prediction precision might be further

improved by shrinking the gls–estimator by the principles outlined by James and Stein

41



Submitted manuscript

ρ

E
xp

ec
te

d 
sq

. p
re

di
ct

io
n 

er
ro

r

−0.9 −0.5 −0.1 0.3 0.7

0

0.5

1

1.5

2

ρ

E
xp

ec
te

d 
sq

. p
re

di
ct

io
n 

er
ro

r

−0.9 −0.5 −0.1 0.3 0.7

0.35

0.4

0.45

0.5

0.55

Figure 3: Expected squared prediction error using the predictors β̃2 (black dashed lines) β̂v2

(dark gray dashed lines), β̂Q2 (light gray dashed lines) and β̂22 (black dotted line) as functions
of ρ. n1 equal to 20 in left panel and 50 in right panel, and n2 equal to 7 in left panel and 20
in right panel. The simulated means are shown by diamonds in the colors corresponding to the
theoretical lines. The simulation means are based on 5 × 103 independent calibration sets for
each of ρ = −0.9,−0.8, . . . , 0.9, and the estimates from each calibration set is used to predict 103

new independent observations. For all panels and simulations p = 4, R2
1 = 0.4, R2

2 = 0.6 and
β01 = β02 = 0.

(1961).

The natural next step is to test out estimators that do not assume known covariance

structure (Σ) and known coefficients of determination (R2
i ). The obvious choice correspond-

ing to β̃ is some kind of empirical Bayes estimator. Their connection to the James–Stein

estimator is well documented by a series of papers by Efron and Morris (1971, 1972a,b,

1973, 1975, 1976). Other candidates would be restricted maximum likelihood estimators,

corresponding to β̂v, and possibly an extension of the (C)PLS estimator (Indahl et al.,

2009), capable of utilizing information from observations with missing data.

The generalisation of assuming predictors to be multivariate normal distributed might

be severely biased in a lot of practical situations, especially when experiments are designed.

However, for many, perhaps the majority, of practical situations, the assumption might

be justified at least after some normalizing transformation of variables. The validity of
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the theoretical results when the assumption of normally distributed predictors is violated,

has been tested for the ols estimators by simulating results using randomly distributed,

not normal distributed predictors. The effect of non-normality was found to be negligible.

This seems intuitively correct, as the principles of the central limit theorem should also be

applicable for the current situation.
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A Appendix

A.1 Proof of Theorem 1

Since xN is centred we may write RỹNi
= σii + RxT

N β̃i
. Further since β̂vi is normally

distributed, so are β̃i and xT
n

(
βi − β̃i

)
for i = 1, 2. We have

E
[
xT
N

(
βi − β̃i

)]
= (1− ki)x

T
nβi, var

[
xT
n

(
βi − β̃i

)]
= k2

ix
T
N

(
XT

(+)Σ
−1
(+)X(+)

)−1

xN ;
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It might be shown that:

xT
N

(
XT

1 X1

)−1
xN = 1/n1+zT

N

(
ZT

1 Z1

)−1
zN , xT

N

(
XT

2 X2

)−1
xN = 1/n2+zT

N

(
ZT

2cZ2c

)−1
zN ;

, where both Z2c and zN are centred with respect to the n2 first rows, and X2 is centred

with respect to all n1 rows. Then, since

RxT
N β̃i

= var
[
xT
N

(
βi − β̃i

)]
+
{
E
[
xT
N

(
βi − β̃i

)]}2

;

we get (2).

A.2 Proof of Theorem 2

By applying the rules for double expectations, we may write Ex (RỹNi
) = EX1

[
ExN |X1 (RỹNi

)
]
.

Due to the assumption of independent normal distribution of the rows of Z1, we have that

ZT
1 Z1 and ZT

2cZ2c are two Wishard distributed variables with scale matrix Γ−1 and n1 − 1

and n2 − 1 degrees of freedom, respectively (Mardia et al., 1979). Thus, their inverse ma-

trices are inverse Wishard distributed with the same parameters. Due to the centring of

zN , we have that zN is multivariate normally distributed with zero mean and covariance

matrix [(ni + 1)/ni]Γ when centred using all rows (i = 1) or just the n2 first rows (i = 2).

By using rules for quadratic terms (Petersen and Pedersen, 2012), and the rules for

expectation of the trace, we find

E
[
zT
N

(
ZT

1 Z1

)−1
zN

]
= [(n1 + 1)/n1] [(p− 1)/(n1 − p− 1)] = c11 − 1/n1;

E
[
zT
N

(
ZT

2cZ2c

)−1
zN

]
= [(n2 + 1)/n2] [(p− 1)/(n2 − p− 1)] = c21 − 1/n2;

Further, E
(
xT
Nβiβ

T
i xN

)
= E (β2

0i) +E
(
zT
Nβziβ

T
zizN

)
since E (zN) = 0(p−1) for i = 1, 2.

Finally, the term E
(
zT
Nβziβ

T
zizN

)
= σiiR

2
i /(1−R2

i ) is given by definition.

Then (4) is obtained by substituting the elements in the expressions in (2) by the general

terms shown above. The corollaries are given without further proof as they are easily derived

mostly by minimizing functions with respect to k1 and k2.
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A.3 Proof of Lemma 1

Conditional on known Q it might be shown by matrix algebra and the means of the multi-

variate normal distribution that the distribution of β̂Q2 is:

β̂Q2 ∼ Np

{
β2, σ22

(
XT

2 X2

)−1 −
(
2σ12q12/q11 − σ11q

2
12/q

2
11

) [(
XT

2 X2

)−1 −
(
XT

1 X1

)−1
]}

;

Due to the properties of the normal–gamma distribution, we know that (Giri, 2003):

E (q12/q11) = σ12/σ11, E
(
q212/q

2
11

)
= σ2

12/σ
2
11 + |Σ|/

(
σ2
11 (n2 − p− 2)

)
;

Then, since varQ

[
E
(
β̂Q2

)]
= 0T

p 0p we find var
(
β̂Q2

)
= EQ

[
var

(
β̂Q2

)]
, leading to (5).
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Empirical Bayes – double shrinkage

Linear regression with bivariate response variable containing missing data. An

empirical Bayes strategy to increase prediction precision.

Lars Erik Gangseia,b, Trygve Almøyb & Solve Sæbøb

Abstract: Methods for linear regression with multivariate response variables are well

described in statistical literature, including in a Bayesian setting. The state–of–the–art

Bayesian methods including conjugate prior distributions require a set of data containing

no missing values. In this study we present a conjugate prior distribution, highly motivated

by the normal–inverse–Wishart distribution, for bivariate linear regression, where one of the

response variables contains missing data. Further we demonstrate how an empirical Bayes

approach improves prediction precision compared with standard methods in a dominant

share of practical cases, and that the improvement under certain, yet plausible, conditions

is substantial.

Keywords: bivariate linear regression; James–Stein estimator; missing data; prediction

error; conjugate prior.

a: Animalia, P.O. Box 396 - Økern, N-0513 Oslo, Norway

b: Norwegian University of Life Sciences (NMBU), Department of Chemistry, Biotechnology and Food
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1 Introduction and notation

In this paper, we evaluate different estimators for the regression parameters in linear regres-

sion with bivariate response variable. The estimators are based on data in which one of the

responses contains missing data. Gangsei et al. (2016) showed that under the assumption

of known error covariance structure, the prediction precision for the variable containing

missing data might be substantially improved by using the generalized least squares (gls)

estimator rather than the ordinary least squares (ols) estimator. Further additional im-

provement might be reached by substituting the gls–estimator with a James–Stein inspired

estimator (James and Stein, 1961), i.e. a biased shrinkage estimator.

The data structure with missing response data is likely to occur in a wide range of

practical situations. The response without missing data might be viewed as a surrogate

variable (Upton and Cook, 2014), i.e. as a cheaper/ easier alternative measurement for the

response, or it might simply be viewed as a predictor variable that will be absent for future

predictions.

In this paper, we deal primarily with a Bayesian method for analysing such data. The

novel part is to show that there, conditional on a suitable prior distribution, exits a closed

form solution for the posterior distribution, even if one of the response variables contains

missing data. In turn, this enables us to find the expression for the model evidence (also

known as the marginal likelihood) (DeGroot, 2005, chap.9). The model evidence might be

used for implementation of Bayesian model selection (Kass and Raftery, 1995).

In addition we include the perspective of the classic results obtained in a series of papers

by Efron and Morris (1971, 1972a,b, 1973, 1975, 1976), and show how an empirical Bayes

strategy results in a regression parameter estimate that might be viewed as a James-Stein

estimator very similar to the estimator evaluated by Gangsei et al. (2016).

The theoretical results are tested via a simulation study. The simulations are used to

evaluate aspects of the model for which we lack analytical results. Both the analytical

analysis and the simulation study are focused on evaluation of prediction precision.

In the following, scalars are denoted by lowercase italic characters, vectors by lowercase

bold italic characters and matrices by uppercase bold italic characters. The single elements

of any matrix are denoted by the corresponding lowercase italic letter and a subindex, i.e.

wij is the element of the ith row and jth column of W . In general, Greek letters are used

for parameters and Latin letters are used for random variables. The risk function, Rθ̂, for

an estimator or predictor, θ̂, with true value θ, is
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Rθ̂ = E

[(
θ̂ − θ

)T (
θ̂ − θ

)]
;

2 Likelihood

The model, that is, the likelihood, is similar to the model evaluated by Gangsei et al. (2016),

and we use the same notations. The basic model, without missing data, is well known from

previous work, also in a Bayesian setting (Box and Tiao, 1973; Minka, 2000). The basic

properties of the likelihood are reiterated in the following paragraphs.

The data are given by a n1 × 2 matrix of response variables, Y1, and a n1 × p matrix of

predictor variables, X1. The model is a standard bivariate response regression model, i.e.

yT
i

i.i.d.∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1

where yi and xi denote the ith row of Y1 and X1, respectively. The p × 2 matrix β

holds the regression coefficients and the 2× 2 matrix Σ is the error covariance matrix.

We assume that the data represents a random sample from a larger population, of

which a random subsample contains missing data for the second response variable. The

observations are rearranged so that the first n2 (p < n2 ≤ n1) rows of Y1 are fully observed,

and for the n1 − n2 last rows of Y1 only the first column is observed. For the rest of this

paper Y2 and X2 will represent the fully observed n2× 2 and n2× p sub-matrices of Y1 and

X1 respectively. Further y11 denotes the first column of Y1, y21 and y22 denotes the first

and second column of Y2.

3 Full Bayesian analysis - conjugate prior

In order to get an easier expression for the prior and posterior distributions we introduce a

parameter transformation Σ (σ11, σ22, σ12) → Λ (λ11, λ22, λ12), inspired by Giri (2003, chap.

6). The new parameters are given by λ11 = 1/σ11, λ22 = σ11/|Σ| and λ12 = −σ12/σ11.

Gangsei et al. (2016) showed that the gls–estimate for regression parameters is:

β̂v =
(
β̂T
v1 β̂T

v2

)T

=

{
β̂T
11

[
β̂22 + λ12

(
β̂21 − β̂11

)]T}T

;

, where β̂11 denotes the standard ols–estimator for β1 based onX1, and β̂21 and β̂22 are the

standard ols estimates for β1 and β2 respectively, based on X2, i.e. the n2 first (complete)

observations.
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The hyperparameters used in the prior distribution are given by the symmetric positive

definite 2 × 2 matrix Φ, the scalar ϕ3, the two symmetric positive definite p × p matrices

Ψ1 and Ψ2, the 2 × 1 vector ζ and the p × 2 matrix β0. β0v denotes the stacked column

vector of β0. Finally let Ω0, ΩX ,Υ, Ω̃, υ3 and β̃v be given by:

Ω0 = λ−1
11

[
(1 − λ12)

T (1 − λ12)
]
⊗Ψ−1

1 + λ−1
22

[
(0 1)T (0 1)

]
⊗Ψ−1

2 ;

Ωx = λ−1
11

[
(1 − λ12)

T (1 − λ12)
]
⊗

(
XT

1 X1

)−1
+ λ−1

22

[
(0 1)T (0 1)

]
⊗

(
XT

2 X2

)−1
;

Ω̃ = λ−1
11

[
(1 − λ12)

T (1 − λ12)
]
⊗
(
Ψ1 +XT

1 X1

)−1
+ λ−1

22

[
(0 1)T (0 1)

]
⊗
(
Ψ2 +XT

2 X2

)−1
;

Υ =
(
Y2 −X2β̂2

)T (
Y2 −X2β̂2

)
+
(
β̂2 − β0

)T [(
XT

2 X2

)−1
+Ψ−1

2

] (
β̂2 − β0

)
+Φ;

υ3 =
(
y1 −X1β̂11

)T (
y1 −X1β̂11

)
+
(
β̂11 − β01

)T [(
XT

1 X1

)−1
+Ψ−1

1

] (
β̂11 − β01

)
+ ϕ3;

β̃v = Ω̃
(
Ω−1

X β̂v +Ω−1
0 β0v

)
=

(
β̃T
1 β̃T

2

)T

;

β̃1 =
(
Ψ1 +XT

1 X1

)−1 (
XT

1 y1 +Ψ1β01

)
;

β̃2 =
(
Ψ2 +XT

2 X2

)−1 (
XT

2 y22 +Ψ2β02

)
+ λ12

[(
Ψ2 +XT

2 X2

)−1 (
XT

2 y21 +Ψ2β01

)
− β̃1

]
;

Theorem 1 Conjungate prior distribution

Conjugate prior distributions for λ11, λ22, λ12 and β are

λ11 ∼ Ga (ζ1/2, ϕ3/2) ;

λ22 ∼ Ga
[
ζ2/2,

(
ϕ22 − ϕ2

12ϕ11

)
/2
]
;

λ12 | λ22 ∼ N [−ϕ12/ϕ11, 1/(ϕ11λ22)] ;

βv | Λ ∼ N2p (β0v, Ω0) ;

(1)

For these priors the conditional posterior distributions are

λ11 | Y ∼ Ga [(ζ1 + n1)/2, υ3/2] ;

λ22 | Y ∼ Ga
[
(ζ2 + n2)/2,

(
υ22 − υ2

12υ11
)
/2
]
;

λ12 | Y , λ22 ∼ N [−υ12/υ11, 1/(υ11λ22)] ;

βv | Y ,Λ ∼ N2p

(
β̃v, Ω̃

)
;

(2)

The proof is deferred to the Appendix.
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Remark 1

If ϕ11 = ϕ3 and ζ2 = ζ1 + 1, the prior distribution for Λ might be represented as Σ−1 ∼
W (Φ−1, ζ2).

Remark 2

IfΨ1 = Ψ2 the prior distribution for βv | Λmight be represented as β | Λ ∼MNp,2

(
β0, Ψ−1

1 , Σ
)
.

Consequently if ϕ11 = ϕ3, ζ2 = ζ1 + 1 and Ψ1 = Ψ2 the prior distribution for (βv,Λ), ex-

pressed as (βv,Σ
−1), is given by (βv,Σ

−1) ∼ MNW
(
β0, Ψ−1

1 , Φ−1, ζ2
)
.

Since both the prior distribution and the posterior distribution are compound distribu-

tions of similar form, independent Monte Carlo estimates for Λ and β, i.e. estimates free of

auto correlation, are easily obtained by an iterative algorithm. First values for λ11 and λ22

are sampled independently, λ12 is sampled based on values for λ22 and finally β is sampled

based on Λ. Posterior means and variances for β and Λ are given in Appendix A.1.

The model evidence, denoted π (Y ), might be used for Bayesian model selection (Kass

and Raftery, 1995). In this paper, we highlight the application where model evidence, in

combination with a suitable prior distribution, is used for tuning the prior hyperparameters

into model regularization parameters in accordance with the principles outlined by James

and Stein (1961) and Efron and Morris (1971, 1972a,b, 1973, 1975).

Lemma 1 The model evidence, π (Y ), when the prior distribution in (1) is applied to

the model is given by

π (Y ) =
2∏

i=1

{
Γ [(ni + ζi)/2]

πni/2Γ (ζi/2)
· |Ψi|1/2

|Ψi +XT
i Xi|

1/2

}
· υ

(n2+ζ2−1)/2
11

ϕ
(ζ2−1)/2
11

· ϕ
ζ1/2
3

υ
(n1+ζ1)/2
3

· |Φ|ζ2/2

|Υ|(n2+ζ2)/2

(3)

The proof is deferred to the Appendix.

4 Empirical Bayes

Inspired by a desire to evaluate a James-Stein estimator using empirical Bayes methods,

we applied a prior distribution including four free hyper-parameters given by the vectors

α = (α1 α2)
T and γ = (γ1 γ2)

T of length 2, a prior that might also be viewed as a variant

of Zellners g-prior (Zellner, 1986) and also influenced by Minka (2000).
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For the empirical Bayes, we use centred data for non-categorical columns of X1 and

both columns of Y1. Note that even though the data are centered, the first row of β is

the traditional ”intercept”, i.e. the first column of X1 is 1n1 . Due to the centring the first

element of β̂11 equals zero. However the elements in the first row of β̂22 is not equal to zero

as X2 is centred with respect to all n1 columns.

Proposition 1 - Empirical Bayes prior distribution

We propose to use the following prior parameters:

ζ = γ, ϕ3 = γ1, Φ = γ2I2;

Ψi = (αi/ni)
(
XT

i Xi

)
, β0 = 0p0

T
2 ;

A nonlinear optimizer was used to set the hyperparameters at values maximizing the

logarithm of model evidence, see Appendix A.2.

Remark 3

The posterior means for β, denoted β̃EB =
(
β̃1EB β̃2EB

)
using the empirical Bayes

method are:

β̃1EB = [n1/(n1 + α1)] β̂11;

β̃2EB = [n2/(n2 + α2)] β̂22 − (υ12/υ11)
{
[n2/(n2 + α2)] β̂21 − β̃1EB

}
;

4.1 Justification for empirical Bayes

We aim at finding an estimator for β2 that exploits information from the observations with

missing data. As shown by Gangsei et al. (2016), the estimator β̂v2 has this property in

the sense that the expected prediction error using β̂v2 is smaller than (or equal to in the

special case ρ = 0) the expected prediction error using the standard ols estimator, β̂22.

However, unknown error covariance structure complicates the problem. We let

Q =
[
Y2 −X2

(
β̂21 β̂22

)]T [
Y2 −X2

(
β̂21 β̂22

)]
;

Gangsei et al. (2016) showed that just replacing λ12 in the equation for β̂v2 by its unbiased

estimate q12/q11 (Giri, 2003), was beneficial when ρ2 was large. However, when ρ2 is small,

particularly in combination with small values for n2 − p, this estimator, denoted β̂2λ̂ (in

Gangsei et al. (2016) the notation β̂Q2 was used), performs worse than the ordinary ols

estimator.
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A natural candidate as unbiased estimator for β2 is β̂2λ̃, where λ12 in the equation for

β̂v2 is replaced by λ̃12 = −υ12/υ11. λ̃12 is the posterior mean for λ12, and thereby a natural

point-estimate for λ12. Note that (1/λ22 + λ2
12/λ11) = σ22. The distribution of β̂2λ̃ is:

β̂2λ̃ ∼ Np

{
β2,

(
1/λ22 + λ2

12/λ11

) (
XT

2 X2

)−1 − f
(
Λ, λ̃12

) [(
XT

2 X2

)−1 −
(
XT

1 X1

)−1
]}

;

, where

f
(
Λ, λ̃12

)
=

(
2λ12λ̃12

)
/λ11 − λ̃2

12/λ11;

Examination of the expression for Υ clearly shows that γ2, conditional on known α2,

might be set in a way such that λ̃12 = −a · q12/q11, where 0 ≤ a ≤ 1. Thus γ2 might be seen

as a shrinkage parameter, having the effect of shrinking the estimate for λ12 towards zero.

By general theory of the model in question, we know that Q ∼ W (Σ, n2 − p) and

thus (−q12/q11, q11) ∼ NGa [λ12, λ22, (n2 − p)/2, λ11/2] (Giri, 2003). If we write λ̃12 =

−a · q12/q11 we get E
(
λ̃12

)
= a · λ12 and var

(
λ̃12

)
= a2 · λ11/[(n2 − p− 2)λ22]. Since we

want to minimize the variance of the unbiased estimator for β2 we want to maximize

Eλ̃12

[
f
(
Λ, λ̃12

)]
=λ−1

11

{
2λ12E

(
λ̃12

)
−

[
E
(
λ̃12

)]2
− var

(
λ̃12

)}
;

=a
(
2λ2

12/λ11 − a
{
λ2
12/λ11 + 1/[(n2 − p− 2)λ22]

})
;

with respect to a. If Λ was known, we see that this expectation is maximized for

aOracle =
[
(n2 − p− 2)λ2

12λ22

]
/
[
(n2 − p− 2)λ2

12λ22 + λ11

]
;

Furthermore we see that if 0 ≤ a ≤ 2aOracle, the variance of the unbiased estimator β̂2λ̃12

is smaller than the variance of the standard ols estimator, β̂22.

The fractions ni/(αi + ni), i = 1, 2, might be seen as James–Stein shrinkage factors,

corresponding to kOracle i in Gangsei et al. (2016). Thus the estimator β̃2EB might be seen

as a double shrinkage estimator, where αi, i = 1, 2, represents the prior population size for

shrinking the estimator for βi towards zero, and γ2 is a shrinkage factor for the estimator of

λ12. Our hypothesis, in line with the well known principles of empirical Bayes strategies, is

that tuning the values of α and γ by maximizing model evidence will be a suitable strategy

for setting these parameters. We tested this assumption by a comprehensive simulation

study.
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5 Simulation study

5.1 Simulation design

To simulate data, we set up a simulation study using the software ”R” (R Core Team,

2014) and an extension of the package ”Simrel” (Sæbø, 2015; Sæbø et al., 2015), capable

of producing a bivariate response variable. In the package, population values for Σ, p and

R2 = (R2
1, R2

2)
T
, i.e. the coefficients of determination, are possible inputs. The package

also offers the opportunity to simulate extra predictor variables with no relevance to the

response variable.

We used 19×4×3×10 = 2280 different combinations for the population parameters Σ,

R2, n1 and n2. The 19 settings ofΣ were varied over ρ = σ12/
√
σ11σ22 = −0.9,−0.8, . . . , 0.9.

The four combinations (0.75, 0.75)T , (0.75, 0.25)T , (0.25, 0.75)T and (0.5, 0.5)T were

used for R2. Finally we set n1 and n2 so that n2 = 6, 7, 9, 10, 12, 14, 17, 20, 24, 28 was

crossed over n1 = n2 + 5, 35, 100. Finally we set p = 3.

For each combination we used 5 different estimators for β2. (i) β̂22, i.e. the ordinary ols

estimator, the two unbiased estimators (ii) β̂2λ̃ and (iii) β̂2λ̂, (iv) β̃2EB, i.e. the empirical

Bayes estimator and finally (v) β̃2 = [n2/(n2 + α2)] β̂2λ̃. β̃2 is not an Bayes estimator

for the prior in question. However, unlike the real empirical Bayes estimator, β̃2EB, this

estimator is coherent with the justification for empirical Bayes as the ”adjustment part” is

proportional to
(
β̂21 − β̂21

)
, not to

{
[n2/(n2 + α2)] β̂21− [n1/(n1 + α1)] β̂11

}
.

It is worth noting that under the assumption of independent, identically normal dis-

tributed predictor variables, the expected risk functions for prediction error, i.e. Ex (Rŷ2N),

are known functions for β̂22 and β̂2λ̂12
(Gangsei et al., 2016). For the remaining estimators,

i.e. the empirical Bayes–based estimators β̂2EB and β̃2λ̃12
, we lack closed form solutions

for the expected prediction risks, and thus the primary aim of the simulation study is to

evaluate these risks.

A total of 5 × 104 observations of Y and X were simulated via ”Simrel” for each

combination of model parameters. For 5000 repeats, we draw training sets (i.e. used to

estimate model parameters) of size n1 and test sets of size 1000 randomly from the 5× 104

observations of Y and X. The estimated risk for each of the 5000 repetitions was calculated

as

R̂ŷxx j = (1/1000)
1000∑
i=1

(ŷi xx − yi)
2 , j = 1, . . . , 5000;

where the subindex xx indicates the estimator in question, i.e. OLS, EB etc. The vectors of
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R2 (0.75, 0.75) (0.75, 0.25) (0.25, 0.75) (0.5, 0.5)
Rank % Rank % Rank % Rank %

n1 = n2 + 5

β̂22 3.7 - 4.2 - 2.9 - 3.4 -

β̃2EB 3.9 99 2.2 95 4.9 105 4.3 100

β̃2 2.1 98 2.1 95 2.3 98 2.2 97

β̂2λ̂ 3.3 101 3.1 101 3.1 101 2.7 100

β̂2λ̃ 2.0 98 3.4 98 1.9 98 2.4 98
n1 = 35

β̂22 3.7 - 4.2 - 3.3 - 3.8 -

β̃2EB 2.9 97 1.8 94 4.3 99 3.2 96

β̃2 2.7 97 2.6 94 2.2 97 2.7 96

β̂2λ̂ 3.6 100 3.0 100 3.4 100 2.8 100

β̂2λ̃ 2.2 96 3.5 97 1.8 97 2.5 96
n1 = 100

β̂22 3.7 - 4.2 - 3.6 - 3.8 -

β̃2EB 2.3 95 1.7 93 3.6 96 2.3 95

β̃2 3.3 95 2.8 93 2.5 96 3.2 95

β̂2λ̂ 3.5 99 2.8 99 3.7 100 2.8 102

β̂2λ̃ 2.3 95 3.5 96 1.6 96 2.8 95

Table 1: Summary statistics for comparing the 5 estimators β̂22, β̃2EB, β̃2, β̂2λ̃ and β̂2λ̂. Each
row represents one of the estimators. The upper 5 rows represent results when n1 = n2 + 5,
the next 5 rows represent n1 = 35 and the last 5 rows represent n1 = 100. Double columns
represent different combinations for R2 as presented in the heading. For every combination of
R2, the leftmost column shows the average rank (1 - 5), i.e. estimators were ranked according to
prediction precision, where 1 is best, and the rightmost column shows the average prediction error
as % of prediction error using the ols estimator. All averages are calculated as averages of the 10
combinations of n2 crossed over the 19 combinations of ρ.

length 5000 of estimated risks were used to estimate the expected risks, denoted Êx (Rŷxx),

as means of these vectors. Furthermore we calculated 2.5% -, 97.5% quantiles and medians

based on the same vectors. We calculated means and quantiles for the elements of α and

γ by the same principle.

5.2 Simulation results

For the ”oracle parameters” evaluated in Gangsei et al. (2016) we showed that there was

a hierarchy between the estimators such that some of the estimators were uniformly better

than others in the sense of having lower expected prediction error. It was also shown that the

relationship between expected prediction error based on the estimator, β̂2λ̂, i.e. Ex

(
Rŷλ̂

)
,

and the expected prediction error based on the ordinary ols estimator, i.e. Ex (Rŷols), vary

in the sense that for some combinations of model parameters, β̂2λ̂ is preferable over β̂22,
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Figure 1: The upper panels show median values for log (γ2/n2) crossed over different combina-
tions for ρ2 and n2. The lower panels show median values for (α2/n2) over the same combinations
of ρ2 and n2. n1 is 100 for all panels. For left panels R2 = (0.75, 0.25) and for right panels
R2 = (0.25, 0.75).

typically when ρ2 is ”large”, and for other model-parameter combinations β̂22 is preferable

over β̂2λ̂. This relationship is illustrated in the right side panels of Figure 3.

When using the simulation setup, we have a total of 4(R2)×19(ρ)×10(n2)×3(n1) = 4560

combinations by which we can assess the expected prediction error for different estimators

against each other. The main results are summarized in Table 1. We observe that the

empirical Bayes estimators perform well. Furthermore, the biased estimators perform worse

when R2
2 is low and R2

1 is high than for the opposite situation. This is especially evident in

combination with small n1.

Table 1 shows that when we average over ρ and n2, then β̂2λ̃ outperforms β̂2λ̂ for all

(simulated) combinations of R2 and n1. The natural interpretation of this result is that

maximizing model evidence is a powerful tool for setting γ2 at suitable values. Figure 1

shows that γ2 and α2 respond in the expected and desired way when ρ, n2 and R2 vary.

The shrinkage increases as R2
2 decreases, n2 decreases and ρ2 decreases. We also observe

that when R2 and n2 are kept fixed, α2 decreases as ρ2 increases.

58



Empirical Bayes – double shrinkage

R2
1 = 0.75, R2

2 = 0.25
n2

0.
9

2

0.
7

2

0.
5

2

0.
3

2
0.

1
2ρ2

7101420

50
60
70
80
90
100
110
120

%

R2
1 = 0.75, R2

2 = 0.75
n2

0.
9

2

0.
7

2

0.
5

2

0.
3

2
0.

1
2ρ2

7101420

50
60
70
80
90
100
110
120

%

R2
1 = 0.25, R2

2 = 0.75
n2

0.
9

2

0.
7

2

0.
5

2

0.
3

2
0.

1
2ρ2

7101420

50
60
70
80
90
100
110
120

%

R2
1 = 0.5, R2

2 = 0.5
n2

0.
9

2

0.
7

2

0.
5

2

0.
3

2
0.

1
2ρ2

7101420

50
60
70
80
90
100
110
120

%

Figure 2: Simulated ratio between expected prediction error using the empirical Bayes es-
timator and the ordinary ols estimator, i.e. Êx (Rŷ EB)/Êx (Rŷols) for different combina-
tions of R2. From upper left to lower right panel; R2 = (0.75, 0.25), R2 = (0.75, 0.75),
R2 = (0.25, 0.75) and R2 = (0.5, 0.5). For all panels p = 3 and n1 = 100. In each panel,
results for ρ2 = 0.92, 0.82, . . . , 02 and n2 = 6, 7, 9, 10, 12, 14, 17, 20, 24, 28 are shown. Dark areas
represent combinations of n2 and ρ2 where the ols estimator has a lower expected prediction
error.

6 Discussion

Figures 2 and 3 are examples meant to illustrate some general patterns. We have examined

similar figures for all combinations of simulated model parameters. Figure 2 illustrates how

the empirical Bayes estimator outperforms the ordinary ols estimator for most combina-

tions of model parameters. Just as expected, the gain is high when R2
1 is large compared

with R2
2, and when ρ2 is high. The empirical Bayes estimator even outperforms the ols es-

timator for some combinations of R2
1 and R2

2 even if ρ2 = 0. This is due to the James–Stein

shrinkage effect. As seen by Figure 3 the unbiased estimators never outperforms the ols

estimator for ρ2 = 0.

Moreover, we observed that the performance of the estimator β̂2λ̂12
is extremely variable

for different values of ρ2. For ρ2 values close to 1, β̂2λ̂12
mostly outperforms the other

estimators, but in general the differences in relation to the empirical Bayes based estimators
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Figure 3: Simulated ratio between expected prediction error using the estimators β̂2λ̃ (left

panels), and β̂2λ̂ (right panels), and the ordinary ols estimator, i.e. Êx

(
Rŷλ̂

)
/Êx (Rŷols) and

Êx

(
Rŷλ̃

)
/Êx (Rŷols). Two different combinations of R2, R2 = (0.75, 0.25) (upper panels) and

R2 = (0.25, 0.75) (lower panels) are shown. For all panels p = 3 and n1 = 100. In each panel,
the results for ρ2 = 0.92, 0.82, . . . , 02 and n2 = 6, 7, 9, 10, 12, 14, 17, 20, 24, 28 are shown.

are small. However, for smaller values of ρ2, the estimator β̂2λ̂12
often performs very poorly

as shown in Figure (3).

We do not claim that the form of the prior distribution that we choose is the best. It

might be possible for this prior, or maybe for a somewhat different prior distribution, based

on similar principles, to find analytical solutions for the parameter values of α and γ (or

similar parameters) that maximize the model evidence. Then it might also be possible to

find analytical solutions for expected prediction error.

When ρ is 0, general theory tells us that the ols estimator is the best unbiased estimator

in the sense of having lowest variance. Thus, it is not surprising that our alternative

candidates, at least the unbiased candidates, perform worse than the ols estimate for small

values of ρ.
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A Appendix

A.1 Posterior means and variances

E (λ11) = (ζ1 + n1)/υ3, var (λ11) = 2(ζ1 + n1)/υ
2
3;

E (λ12) = −υ12/υ11, var (λ12) = |Υ|/
[
υ2
11 (ζ2 + n2 − 2)

]
;

E (λ22) = (ζ2 + n2)/
[
υ22 −

(
υ2
12/υ11

)]
, var (λ22) = 2

{
(ζ2 + n2)/

[
υ22 −

(
υ2
12/υ11

)]2}
;

E (β1) =
(
Ψ1 +XT

1 X1

)−1 (
XT

1 y1 +Ψ1β01

)
, var (β1) = [(ζ1 + n1)/υ3]

(
Ψ1 +XT

1 X1

)−1
;

E (β2) =
(
Ψ2 +XT

2 X2

)−1 (
XT

2 y22 +Ψ2β02

)
;

− (υ12/υ11)
[(
Ψ2 +XT

2 X2

)−1 (
XT

2 y21 +Ψ2β01

)
− E (β1)

]
;

var (β2) =
{
|Υ|/

[
(ζ2 + n2 − 2) υ2

11

]} (
β̂21 − β̂1

)(
β̂21 − β̂1

)T

;

+ {|Υ|/[(ζ2 + n2 − 2) υ11]}
(
Ψ2 +XT

2 X2

)−1
;

+
{[
υ3 |Υ|+ (ζ2 + n2 − 2) υ2

12υ3
]
/
[
(ζ1 + n1 − 2) (ζ2 + n2 − 2) υ2

11

]} (
Ψ1 +XT

1 X1

)−1
;

cov (β1, β2) = {(υ12υ3)/[υ11 (ζ1 + n1 − 2)]}
(
Ψ1 +XT

1 X1

)−1
;
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A.2 Equations for empirical Bayes hyperparameters

The empirical Bayes hyperparameters were set by

(α1, γ1) = argmax(α1, γ1) {log Γ [(n1 + γ1)/2]− log Γ (γ1/2)+

(γ1/2) log(γ1)− (n1 + γ1 − 1)/2 · log(υ3)+

(p/2) log [α1/(n1 + α1)]} ;

(α2, γ2) = argmax(α2, γ2) {log Γ [(n2 + γ2)/2]− log Γ (γ2/2)+

[(γ2 − 1)/2] · log(γ2)− [(n2 + γ2)/2] log(|Υ|)+

[(n2 + γ2 − 1)/2] log (υ11) + (p/2) log [α2/(n2 + α2)]} ;

Note that Υ and υ3 both are functions of α and γ.

A.3 Proof Theorem 1

By using some tedious, but straightforward matrix algebra, it is possible to show that the

likelihood function, denoted π (Y | β,Λ), might be written as

π (Y | β,Λ) = (2π)−(n1+n2)/2 λ
n1/2
11 λ

n2/2
22

exp
{
− (1/2)

[
λ22

(
q22 − q212/q11

)
+ λ22q11 (λ12 −−q12/q11)

2

+ λ11q3 +
(
βv − β̂v

)T

Ω−1
X

(
βv − β̂v

)]}
;

Furthermore, it might be shown that the product of the likelihood, π (Y | β,Λ), and

prior distribution, π (β,Λ), might be written as

π (Y | β,Λ)× π (β,Λ) = g0 (η)× f1 (λ11)× f2 (λ22)× f3 (λ12, λ22)× f4 (βv,Λ) ;

, where

f1 (λ11) =λ
[(n1+ζ1)/2−1]
11 exp [− (1/2) υ3λ11] ;

f2 (λ22) =λ
[(n2+ζ2)/2−1]
22 exp

[
− (1/2)

(
υ22 − υ2

12/υ11
)
λ22

]
;

f3 (λ12, λ22) = (λ22υ11)
1/2 exp

[
− (1/2)λ22υ11 (λ12 − υ12/υ11)

2] ;
f4 (βv,Λ) =

∣∣∣Ω̃∣∣∣−1/2

exp

[
(1/2) ·

(
βv − β̃v

)T

Ω̃−1
(
βv − β̃v

)]
;
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, and where

g0 (η) =
2∏

i=1

[
(2π)−(ni+p+0.5)/2

2ζi/2Γ (ζi/2)
· |Ψi|1/2

|Ψi +XT
i Xi|

1/2

]
· |Φ|ζ2/2

ϕ
−ζ1/2
3 ϕ

1/2
11 υ

1/2
11

;

is a constant independent of Λ and β.

From the form of the functions fi (·) it is clear that the posterior must have the distri-

bution as given by Eq. (2).

A.4 Proof Lemma 1

Due to the form of the posterior distribution, π (β,Λ | Y ), it might be written as

π (β,Λ|Y ) =
4∏

i=1

gi (η) fi (·) ;

, where the functions gi (η) are independent of Λ and β and given by

g1 (η) =
(υ3/2)

(n1+ζ1)/2

Γ [(n1 + ζ1)/2]
; g2 (η) =

[(υ22 − υ2
12/υ11)/2]

(n2+ζ2)/2

Γ [(n2 + ζ2)/2]
;

g3 (η) = (1/2π)1/2 ; g4 (η) = (1/2π)p ;

A slight transformation of Bayes theorem reveals a convenient formula for the model

evidence as the quotient between ”prior times likelihood” and ”posterior”, i.e.

π (Y ) =
π (Y | β,Λ)× π (β,Λ)

π (β,Λ|Y )
=

g0 (η)∏4
i=1 gi (η)

;

Evaluation of this quotient leads to the formula shown in Eq. (3).

A.5 Distributions and notations

The following notations are used for different well known distributions:

� x ∼ N (µ, σ2), for the normal distribution where µ denotes expectation and σ2

denotes the variance.

� x ∼ Ga (α, β), for the gamma distribution where α denotes shape parameter and β

denotes the rate parameter.
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� (x1, x2) ∼ NGa (µ, τ, α, β). For the normal–gamma distribution. The normal–

gamma distribution is a compound distribution where x2 ∼ Ga (α, β) and x1 | x2 ∼
N [µ, 1/(τx2)].

� x ∼ Nm (µ, Σ), for the multivariate normal distribution, where µ denotes the

expectation vector and Σ denotes the covariance matrix.

� X ∼ MNm,p (µ, Σ1, Σ2), for the matrix–normal distribution, where X is a matrix

of size m× p, µ denotes the location matrix (m× p) and Σ1 (m×m) and Σ2 (p× p)

denotes scale matrixes.

� X ∼ W (Φ, ν), for the Wishart distribution, where Φ denotes the scale matrix and

ν the degrees of freedom.

� (X1, X2) ∼ MNW (µ, Σ1, Φ, ν), for the matrix–normal–Wishart distribution.

The matrix–normal–Wishart distribution is a compound distribution where X2 ∼
W (Φ, ν) and X1 | X2 ∼ MN (µ, ,Σ1, X2).
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Prediction precision for lean meat percentage in Norwegian pig carcasses using

”Hennessy grading probe 7”. Evaluation of methods emphasized at exploiting

additional information from Computed Tomography.
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Abstract: The present study aims at improving the prediction of lean meat percentage

(lmp) for pig carcasses based on on–line measurements from the slaughterhouses using

the ”Hennessy Grading Probe 7” (hgp7) and auxiliary information such as gender and

breed. The prediction performance is evaluated using an empirical Bayes method capable

of utilising information from a surrogate variable, i.e. lmp from computed tomography.

hgp7 measures thicknesses of fat and meat layers. The hgp7 measurements of subcu-

taneous fat, sirloin height and interior fat layer should be included as predictor variables

together with gender. For efficiency at the slaughter–line gender might be omitted.

The empirical Bayes method improved prediction precision only marginally compared

with the standard ordinary least squares method when applied to the full set of data. How-

ever, simulations show that the empirical Bayes method enables a considerable reduction

of the data sample size without appreciable loss of prediction precision.

Keywords: Computed tomography; empirical Bayes; grading probe; lean meat percent-

age; pig–carcass; prediction precision; surrogate variable
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1 Introduction

The lean meat percentage (lmp) is used as the primary classification variable for the quality

of pig carcasses in the European Union (eu). lmp is defined as the proportion of weight

of lean meat to the total weight of the carcass (Commission of the European Communities,

2008). Measuring the lmp is typically done using ultrasound or optical probes. Norwegian

slaughterhouses use the optical probe ”Hennessey Grading Probe 7” (hgp7).

The data obtained from optical probes or ultrasound do not provide a direct measure-

ment of lmp, but are used as predictor variables in a regression equation whose sole purpose

is lmp–prediction. Due to rapid evolution in the pig–population, and to maintain a high

public confidence in on–line predictions of lmp, the prediction equation for lmp is updated

on regular basis. In Norway this is done approximately every fifth year, including the years

2008 and 2013.

The parameters in the regression equation are estimated using a training sample of

pig–carcasses where lmp is measured by at least one independent reference method. Until

January 1st 2009 manual dissection (Walstra and Merkus, 1995) was the only method

approved as an official reference method by the eu–authorities. From this date lmp–

estimates from computed tomography (ct) was approved as an official reference method

for lmp (Commission of the European Communities, 2008). Throughout this text lmp–md

and lmp–ct will denote lmp obtained by manual dissection and ct respectively.

eu regulations imposes requirements to prediction precision for lmp stating that: ”Grad-

ing methods shall be authorised only if the root mean squared error of prediction (rmsep),

computed by a full cross–validation technique or by a test set validation on a representative

sample of at least 60 carcases, is less than 2,5. In addition, any outliers shall be included

in the calculation of rmsep” (Commission of the European Communities, 2008).

Most countries use an equation which predicts lmp at a ”manual dissection scale”.

However, ct scanning is cheaper than manual dissection. Further the lmp–ct estimates

are believed to be more consistent, they are possible to replicate and they have a very high

correlation with lmp–md (Judas et al., 2007; Vester-Christensen et al., 2009). Therefore

many countries use ct–dissection as their main reference method (Daumas and Monziols,

2011), usually supported by manual dissection for a subset of the carcasses.

The choice of method for estimating regression parameters is a trade off between com-

plexity and accuracy. We want a method obtaining regression parameters providing small

prediction errors for the whole population of pig–carcasses. On the other hand we want

the method to be simple, and preferably yielding easily interpretable results. In this study

70



Lean meat percentage in pork

we examine a totally data–driven empirical Bayes method (Gangsei et al., 2016) capable

of utilizing information from the additional observations of lmp–ct to improve regression

estimates for lmp–md.

In addition to find a suitable regression equation for lmp–md based on the predictor

variables in question this study aim at examine the relationship between sample sizes of

manual dissected and ct–scanned carcasses and prediction precision for lmp–md.

The program R (R Core Team, 2014), including the package bestglm (McLeod and Xu,

2011), was used for statistical computing. The R–code used in this study can be provided

upon request.

2 Material and Methods

2.1 Data

The data consist of ct scans of 465 Norwegian half pig–carcasses of which 229 were scanned

in 2008 and 236 in 2013. The pigs were slaughtered at two different commercial Norwegian

abattoirs. The ct scanning was performed by Danish Meat Research Institute (dmri).

The carcasses were prepared, scanned and weighed in line with the description in Vester-

Christensen et al. (2009). Based on these ct–data dmri predicted lmp–ct for all carcasses

using the method described in Vester-Christensen et al. (2009).

The carcasses were stratified to 4 × 4 different classes based on weight and on–line

slaughterhouse hgp7 measurements to ensure data sampling across the entire range of

carcasses. The hgp7–probe penetrates the rind, and measures the thickness of subcutaneous

fat (denoted Fat), sirloin (denoted Meat) and the interior fat layer (denoted Totif ) under

the peritoneum. The measurements are done at two specified locations, one behind the last

rib and 8 cm from the spine midline, and the other 12 cm further forward on the carcass,

6 cm from the spine midline. For all carcasses on–line data from the hgp7, weight, gender

(castrates or females) and breed were registered.

A sample of the ct–scanned carcasses were transferred to Animalia’s pilot plant in Oslo

where manual dissection was carried out as described by Walstra and Merkus (1995), and

the lmp–md was calculated using the formula according to Commission of the European

Communities (2006). A total of 86 carcasses were manually dissected, of which 66 were

dissected in 2008 and 20 in 2013.

The maximum number of primary predictor variables was seven, of which four were

continuous variables, Fat, Meat, Totif (from hgp7–measurement) and Weight. Note that
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Fat was the mean of the two fat–measurements, since they were highly correlated (ρ =

.824), whereas the measurements for Meat and Totif were single measurements from the

foremost measurement point. The correlations between the four continuous predictor vari-

ables were low to moderate, i.e. in the range -0.49 till 0.48. In accordance with Gangsei

et al. (2016) continuous predictor variables, and the response variables, were centered prior

to the analysis.

There were three factorial variables. Year had two levels, 2008 (n=229) and 2013

(n=236). The variable Gender had two levels, females (n=228) and castrates (n=237).

Breed had three levels; Hampshire (lyhh) (n=69), Duroc (lyld) (n=243) and Norhybrid

(lyly) (n=153), representing three different hybrids used in Norway. The maternal line for

all three hybrids were crossings between Norwegian Landrace and Yorkshire (denoted ly).

The paternal lines were pure Hampshire (hh), crossing between Norwegian Landrace and

Duroc (ld) and crossing between Norwegian Landrace and Yorkshire (ly) respectively. In

the appendix (A.1) summary statistics for lmp–md, lmp–ct and the continuous predictor

variables crossed over the factor variables Year, Gender and Breed are presented. Since no

Norhybrids were manually dissected in 2013, the variables Year and Breed were confounded

for estimates based solely on lmp–md, but not for estimates based on lmp–ct.

2.2 Model

In this paper we use notations in line with Gangsei et al. (2016). lmp–md is a vector of

length n2 = 86 denoted yMD (corresponding to y22 in Gangsei et al. (2016)), and lmp–ct

is a vector of length n1 = 465, denoted yCT (corresponding to y11). Thus, the n1×2 matrix

Y1 contains a substantial number of unobserved lmp–md’s.

The matrix X1 is an n1 × p matrix of predictor variables where the first column is the

unit vector. The next p − 1 columns are the predictor variables. In some parts of the

analysis second–order interaction terms are included as extra predictor variables in X1.

The formal model is given in (1), where xi and yi denotes the ith row of X1 and Y1

respectively. Note the matrix–form of the regression–parameter (β = [βCT βMD]) and that

the error–terms for each observation might be correlated with covariance matrix Σ.

yT
i

i.i.d.∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1; (1)

Gangsei et al. (2016) deals with this model in detail under an empirical Bayes inference.

Empirical Bayes methods uses the data to fit the prior distribution, including the hyper-

parametes, i.e. the parameters used in the prior distrubution. In a strict Bayesian sense
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this is ”cheating”. However, in a number of situations the empirical Bayes strategies are

beneficial, as the prior is just a function of data, but also as the resulting Bayesian (biased)

parameter estimates often are better (in some senses) than their unbiased counterparts

(Carlin and Louis, 2008). One such case is linear regression, where the state–of–the–art

empirical Bayes strategies leads to shrinkage estimators highly related to ridge regression

estimators, estimators that often outperforms the standard ordinary least squares (ols)

estimator when it comes to prediction precision. In Gangsei et al. (2016) it is shown how

this ”empirical Bayes machinery” might be used in a situation with a bivariate response

variable with missing data.

The denominator in the iconic Bayes theorem is known as the model evidence or the

marginal likelihood. It might be viewed as a normalizing constant that ensures that the

posterior distribution integrates to one over the model parameters. After the advent of

computer technology the method known as Marcov Chain Monte Carlo sampling enables

Bayesian examination of even extremely complex models, without the need or possibility

of calculating the model evidence (Gilks et al., 1996). However, in some situations, like in

Gangsei et al. (2016), the model evidence have an analytical expression. Since the model

evidence might be given an interpretation as ”likelihood of data conditional on model and

hyperparameters”, it might be used for model selection (Kass and Raftery, 1995). The

well–known ”Bayes factor” for comparing two models is simply the ratio of their model

evidences.

Posterior means are used as point–estimates for β and Σ, and 95% Credibility intervals

are calculated by Monte Carlo sampling based on 104 simulations.

2.3 Model comparison

A total of 177 different combinations of predictor variables, denoted ”models” in the fol-

lowing paragraphs, were examined. These models included all 127 (= 27 − 1) possible

combinations involving at least one of the predictor variables. Further, 50 models involv-

ing interaction–terms including the four continuous primary variables Fat, Meat, Totif and

Weight as extra predictors were tested. These models were screened using bic (Schwarz,

1978) as selection criteria via the R–package bestglm (McLeod and Xu, 2011) for models

using lmp–ct as a single response variable. Within these 50 screened models the final

model selection was done by examination of model evidence (Kass and Raftery, 1995) and

rmsep (root–mean–squared–error of prediction).

Different models, and the difference between using the empirical Bayes method and
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ols based on the full observations, were compared by computing rmsep via leave–one–out

cross–validation. If not stated otherwise rmsep was based on prediction results for manual

dissection (lmp–md).

To investigate the gain of choosing the empirical Bayes method utilizing the extra in-

formation from ct, over ols, in situations with different combinations of sample sizes for

lmp–md and lmp–ct, a resampling study was conducted on the model with the favored

combination of predictor variables; Fat, Meat, Totif and Gender. rmsep was calculated

based on regression parameter estimates from ols and the empirical Bayes method us-

ing sets of data where n2 = 10, 15, 20, 30,. . ., 80 observations of lmp–md were assumed

known. The subsets were sampled randomly from the real data on two restrictions; the

sample should contain at least 2 carcasses from each sex, and the overall average Fat value

was to fall inside the range of Fat–values in the sample.

For every subsample of lmp–md the corresponding set of lmp–ct values were assumed

known. In addition n1 − n2 = 0, 10, 15, 25, 50, 100, 200, 300 extra observations of lmp–

ct were assumed known, by random sampling from the real data. For all combinations

of n2 and n1 rmsep was calculated using ols, and the empirical Bayes method. The

calculations were based on a test set comprised by the 86− n2 (n2 = 86 corresponds to the

full set of data) observations of lmp–md discarded from the sub–sample used for parameter

estimation. The process was repeated 500 times for every value of n2, except for n2 = 80

where the process was repeated 1000 times due to the small test set size for this value of

n2.

3 Results

3.1 Prediction precision and model selection

As part of the preliminary work for this paper, the data was also analyzed using two

alternative methods; two–stage least squares regression (2sls) (Wooldridge, 2012, chap.15)

and as a random effect model. To use the random effects model we had to assume that

σ12 > 0 and that σ11 = σ22. Both of these methods utilize the full set of data. The

unreported results from these methods differed negligible from the results obtained by the

empirical Bayes method.

The model referred to as ”the favored model”, is the model where hgp7–variables and

Gender were used as predictor variables. Among the models not including interaction–

terms this model had the highest model evidence for hyperparameters; γ1 = 1.90, γ2 = 1.22,
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Table 1: 95% Credible Intervals, and posterior median and mean values, for the elements of β
and Σ using the favored model.

βCT 2.5% 50% 97.5% Mean
Intercept 66.06 66.31 66.56 66.31
Fat –1.18 –1.11 –1.04 –1.11
Meat 0.07 0.10 0.13 0.10
Totif 0.06 0.11 0.16 0.11
Gender 0.19 0.56 0.94 0.56

βMD 2.5% 50% 97.5% Mean
Intercept 60.23 60.51 60.77 60.51
Fat –1.10 –1.03 –0.95 –1.03
Meat 0.07 0.10 0.13 0.10
Totif 0.08 0.13 0.18 0.13
Gender 0.31 0.71 1.12 0.71

Σ 2.5% 50% 97.5% Mean
σ11 (ct) 3.17 3.60 4.09 3.61
σ12 2.01 2.41 2.93 2.42
σ22 (MD) 2.28 2.67 3.12 2.68

α1 = 2.06 and α2 = 2.65. The hyperparameters might be given an interpretation as prior

population size, see (Gangsei et al., 2016) for further interpretation. Table 1 shows estimates

for regression parameters using the favored model. When interaction terms are not included

the favored model minimizes rmsep when using both ols and the empirical Bayes method.

This model, and the model where Gender was omitted, are marked with arrows in Figure

1.

Models including Fat as a predictor variable shows a clear pattern of having much higher

model evidence and lower values for rmsep compared to models where Fat is excluded,

c.f. Figure 1. Inclusion of Meat and Totif as predictor variables unambiguously improves

the model additionally. Among the factor variables Gender seems to be the only variable

improving the predictive precision for lmp–md as it is the only factor variable in the favored

model using model evidence as selection criteria. Further Gender is close to significant using

ols (p=0.053). rmsep decreased from 1.69 till 1.67 (ols) and 1.67 till 1.63 (empirical

Bayes) when Gender were added as predictor variable.

Inclusion of interaction–terms as predictor variables in the model gave no substantial

improvement for prediction precision. 13 models including interaction–terms had marginally

larger model evidence and 12 models had smaller rmsep than the favored model. The

smallest rmsep using interactions was 1.62 compared to 1.63 for the favored model.

lmp–md and lmp–ct were highly correlated, ρ = .968 (n=86). The effect of using the

empirical Bayes method might be viewed as a way of ”borrowing strength” from ct–data for
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Figure 1: Relationship between number of predictor variables and rmsep, using the empir-
ical Bayes method, for all 127 possible model–combinations including of the primary predictor
variables, and the 50 models including interaction–terms. Models omitting both Fat and gender
as predictor variable are shown in the leftmost group. Models where Gender, but not Fat was
included are shown in the second leftmost group. Models where Fat was included, but where Meat
and/or Totif were omitted are shown in the middle group. The second rightmost group represents
models where all hgp7–variables (Fat, Meat and Totif ) were included, and finally the rightmost
group represents the 50 models where interaction terms were included. Black color shows models
with one predictor variable, then the gradual transition to the lightest grey represents 2,..., up
till a maximum of 7 predictor variables. The two black arrows points at the favored model (right
arrow) and the model where Gender is omitted (left arrow).

estimating the parameters associated with manual dissection. The high correlation between

lmp–md and lmp–ct is exploited and increases the effective test–sample size. Thereby the

variance of prediction parameter estimates are reduced and prediction precision is increased.

Table 1 shows 95% Credible Intervals for parameters β and Σ for the favored model.

Notice that the posterior distributions for the different elements of both β and Σ in general

depend on each other. This is analogous to the situation in ols where cov β̂ = σ2 (X tX)
−1
.

The parameter σ22 = σMD has a natural interpretation as the expected variance for the

prediction error for lmp–md conditional on known βMD and known values for the predictor

variables (X). Consequently, for the favored model, the lower limit for expected rmsep was

estimated to 1.63, i.e. the square root of posterior mean for σ22 (see Table 1). This is equal

to the observed rmsep. However, do note that the empirical Bayes method is a method
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RMSEP vs. sample size for LMP−MD and LMP−CT.
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Figure 2: REMSEP for lmp–md based on samples with varying number of observations for
lmp–md and additional observations of lmp–ct. Each sample size combination for lmp–md and
lmp–ct represent a ”line–crossing” in the plane, and is represented with the average REMSEP
value for 500 (1000 for lmp–md size at 80) different random samples of lmp–md and lmp–ct
using the empirical Bayes model. Points represented by ”x”–s show corresponding REMSEPs
using ols. The dotted lines represent the difference (i.e. the gain) of using the empirical Bayes
method instead of ols for each combination of sample–sizes for lmp–md and lmp–ct.

specially design to reduce prediction precision. Thus the parameter–estimates, both for β

and for Σ are (very mildly) biased.

The conditional variance, i.e. conditional on known regression parameter and predictor

variables, of lmp–md (σ22) was smaller than the conditional variance of lmp–ct (σ11) as

a 95% Credible Interval for the fraction σ22/σ11 was given by (0.57, 0.79), with a posterior

median at 0.67. This corresponds to higher observed rmsep–values for lmp–ct, typically

around 1.9 for the best models.

3.2 Sufficient sample size

Figure 2 shows the relationship between rmsep and sample sizes for lmp–md and lmp–

ct, using the two methods ols and empirical Bayes. The figure shows that when there
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were no additional observations for lmp–ct, ols generated regression parameter estimates

just as good, or even better than the empirical Bayes method. However, when additional

observations of lmp–ct were present the empirical Bayes method generated regression

parameter estimates yielding increased prediction precision compared with ols–estimates.

4 Discussion

As the data structure with more observations for lmp–ct than lmp–md is likely to be a

challenge in numerous countries inside eu it might be advantageous to include methods for

analysing such data in Causeur et al. (2003). A prerequisite for such inclusion is that there

exist suitable software, like R–packages. Unfortunately a R–package for the empirical Bayes

method applied in this study is not yet available. For 2sls and random effects models some

such software exists (Bates et al., 2015; Henningsen and Hamann, 2007; Pinheiro et al.,

2015). Diggle et al. (e.g. 2002, chap 4.5) outlines a method for analysing the model in (1)

by frequentist principles.

The variation between regression parameter estimates for all methods, including ols

using lmp–md as a single response, was close to negligible. The favored model, i.e. the

model using hgp7–variables and Gender as predictor variables stood out as the better

model independently of method used for model selection (model evidense or rmsep). The

model omitting Gender as predictor variable performed almost as well as the favoured

model, and has the advantage of simpler data–sampling since gender doesn’t have to be

registered.

The signs of the regression parameter estimates are in line with prior expectations.

A thick Fat layer decreases predicted lmp, and oppositely a thick Meat layer increases

expected lmp. The inner layer of fat (Totif ) is the least important predictor variable

from the hgp7. Its effect in the regression equation is likely to be severely affected by

the other more dominant predictor variables. Finally the results show that conditional on

similar measurements for hgp7–variables, females were expected to have a higher lmp than

castrates.

When Year was included in the analysis the motive was not increased prediction pre-

cision as we have no observations for years 2014, 2015 etc. in the training data. Thus

it is not possible to include Year as a predictor in the future. The motive for including

Year in the analysis was to see if any effect was present, effects that are not a result of the

Year itself. Such effects might have numerous explanations like differences in the manual–

or ct–dissection (different butcher teams), development of the body composition in pigs
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etc. As the effect of Year in the present study is close to negligible it indicates that the

validity of the prediction equation is applicable over time. This interpretation is subject

to considerable uncertainty as only two different years, 2008 and 2013, is involved in the

study.

Omitting Gender as a predictor variable is in line with the principles used in the Nether-

lands, where the effect of gender on the prediction equation using hgp7 has been evaluated

in detail by Engel et al. (2006, 2012). Engel et al. (2012) was a study aiming at finding

robust methods for handling different proportions of females, castrates and males in the

pig population. They found a significant effect of Gender, but ended up using a prediction

equations for hgp7 where Fat and Meat were the two only predictor variables, data for the

inner fat layer (Totif ) was not used in their analysis. Engel et al. (2006, 2012) and Font i

Furnols and Gispert (2009) reported rmsep at 2.24, 2.10 and 1.8 % units respectively, a

little larger than the rmsep at 1.63, reported for Norway in the present study. In Font i

Furnols and Gispert (2009) Fat–O–Meater, an optical probe similar to hgp7, was used.

The results from this study show a significant effect of Gender as predictor variable

for lmp–md. Due to considerable extra costs if Gender has to be sampled for every car-

cass, models omitting Gender might be preferable. Since the bulk of pig farmers deliver a

close to equal proportion of females and castrates to slaughterhouses, omitting Gender as

predictor variable will have minor effect on the total cash settlement between farmer and

slaughterhouse. However, the omission will lead to a bias where lmp, in average, will be

underestimated for females and overestimated for castrates.

The effect of Gender indicate differences between females and castrates regarding the

meat and fat distribution in the carcass. If these differences affects the profitability of the

possible processing methods, it might be profitable for slaughterhouses to register Gender.

Further analysis of such effects falls outside the scope of this study.

Since the distribution of fat and meat in the carcasses to some extent depends on the

gender, it is very likely that such dependencies might also occur between breeds, even if the

effect was ignorable for the three breeds evaluated in the present study.

An eventual effect of Breed, unlike Gender, would introduce a bias providing a systematic

effect, positive or negative, for different farmers and cooperatives using different breeds.

Since lmp differs between breeds, see Appendix A.1, there is a consistent demand from

different cooperatives and farmers that the effect of Breed is to be tested and accounted

for in the prediction equation. Consequently the ignorable effect of Breed demonstrated

for the present study does not rule out testing for this effect in forthcoming updates of the

prediction equation for lmp.
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Furthermore, there seems to be very limited gain in including interaction–terms. Such

inclusions makes the models more complex, and thereby increases the possibility for sub-

stantially biased prediction of carcasses having anomalous on–line measurement values. The

non–usefulness of second–order interaction terms strongly suggests that including higher or-

der interaction terms or quadratic terms would not be beneficial.

The estimated values for the different elements of β were very similar for the estimates

regarding lmp–md and lmp–ct, with exception for the intercept–term, which was larger

for lmp–ct. The natural interpretation is that this difference reflects the difference of 6.3

percent units between average observed lmp–ct and lmp–md.

Statistically the expected value for rmsep is the square root of the sum of squared bias

and error variance for the predicted values. For any given model the only way to reduce the

expected value for rmsep is to reduce squared bias as the (model specific) error variance

is assumed fixed.

In the present case, with 86 observations of lmp–md, and a fairly simple model including

only four predictor variables, the main part of prediction errors are due to the modelled

error variance, and not a result of biased regression parameters. Consequently the empirical

Bayes method did not substantially improve prediction precision for lmp–md in terms of

rmsep.

The usefulness of applying the empirical Bayes method, or other methods utilizing the

information from a surrogate variable, i.e. lmp–ct, depends heavily on the sample sizes of

observed lmp–md and lmp–ct, and the covariance–matrix for the error terms (Σ). The

relationship between sample sizes of manually dissected carcasses, ct–scanned carcasses and

rmsep shown in Figure 2 might be used to optimize sample sizes if the cost of sampling and

the gain of reduced expected prediction error is known. The empirical Bayes method might

be applied to heavily reduced sets of data without appreciable loss of prediction precision.

In situations where several breeds are present methods utilizing ct–data will be espe-

cially useful. Then the training set might be composed of a limited number of manual

dissected carcasses, and a larger number of ct–scanned carcasses containing a sufficient

number of carcasses from all breeds.

Prior to looking at the results we had expected higher precision for predicted lmp–ct

values compared with lmp–md values, due to an assumption that ct is a more precise

method for predicting lmp than manual dissection. Evaluation of the manual dissection

method shows a generally high accuracy and reliability for the estimated lmp–md (Nissen

et al., 2006), but also revealed some problematic issues, for instance a significant effect of

butcher for the estimated lmp–md.
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The results in this study show the opposite, that on–line measurements using hgp7

tend to predict lmp–md more precisely than lmp–ct. This is seen by evaluating the

variances for the errors, and by comparing rmseps for lmp–md and lmp–ct. The pattern

is evident even if the sample is restricted to the carcasses where both lmp–md and lmp–

ct are observed. Thus, the non random sampling of carcasses for manual dissection does

not explain the observation. However, the difference might, at least partly, be explained

by the fact that the manual dissection method is a partial dissction method (Walstra and

Merkus, 1995), whereas ct performs a total dissection. Thus the measurements obtained

by the hgp7 on the back of the carcass might be better correlated with the partial manual

dissection than the full ct–dissection.

The estimate for σ22 = σMD, and the estimated rmsep values indicates that the eu

specification of rmsep at maximum 2,5 is easily fulfilled using hgp7 on Norwegian carcasses.

5 Conclusion

A model using four predictor variables; Fat, Meat, Totif (from the optical probe – hgp7)

and Gender, is simple and provides a high prediction precision well inside eu standards. The

three variables Year, Breed and Weight seems to be of none or minor importance for lmp–

md prediction when combined with the hgp7–variables and Gender for the data set used

in the present study. This result should not be generalized without reservation. Inclusion

of second–order interaction terms does not improve prediction precision substantially.

For analytical simplicity ols–regression using input from the optical probe and gender

is the better method and model. However, for practical simplicity gender might be omitted

without severe loss of prediction precision.

The drawback of ols–regression is its inability to utilize extra information from ct–

scanned carcasses. In order to limit the needed sample size of manually dissected carcasses

the empirical Bayes regression might be applied to a training sample with a low number

of manually dissected carcasses, but a sufficiently large number of ct–scanned carcasses,

yielding no or minor loss of prediction precision.
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A Appendix

A.1 Summary statistics for response and predictor variables

Table A1: Mean and standard deviation, in parenthesis, for lmp–md (%), lmp–ct (%) and the
4 continuous predictor variables (Fat (mm), Meat (mm), Totif (mm) and Weight (kg)). Values
distributed over the two levels for Year, i.e. 2008 and 2013, and the three levels for Breed, i.e.
Hampshire, Norhybrid and Duroc. The numbers nCT and nMD shows sample sizes for ct–scanned
and manual dissected carcasses respectively.

2008 Hamp. Norhyb. Duroc All
nCT 37 75 117 229
nMD 10 20 36 66
lmp–ct 66.6 (3.1) 66.5 (4.1) 66.4 (3.3) 66.4 (3.5)
lmp–md 60.5 (3.6) 60.6 (4.1) 60.1 (2.4) 60.3 (3.1)
Fat 11.9 (2.1) 12.5 (3) 12.4 (2.3) 12.3 (2.5)
Meat 57.9 (6.8) 54.9 (5.5) 56.1 (6) 56 (6)
Totif 12.7 (4.9) 12.6 (3) 10.6 (4.3) 11.6 (4.2)
Weight 81.1 (6) 82.1 (6.8) 78.4 (5.8) 80.1 (6.4)

2013 Hamp. Norhyb. Duroc All
nCT 32 78 126 236
nMD 10 0 10 20
lmp–ct 66.6 (2.6) 67.5 (4) 66.3 (3.7) 66.7 (3.7)
lmp–md 60.6 (2.8) – 59.8 (3.5) 60.2 (3.1)
Fat 11.9 (2.2) 11.3 (2.8) 12.2 (2.7) 11.8 (2.7)
Meat 59.6 (6.2) 55.7 (6.1) 53.3 (7.1) 55 (7)
Totif 10.8 (3.7) 13 (4.2) 10.6 (3.9) 11.4 (4.1)
Weight 80.8 (6.6) 79.2 (8.6) 76.1 (7.6) 77.7 (8)

Both
years Hamp. Norhyb. Duroc All
nCT 69 153 243 465
nMD 20 20 46 86
lmp–ct 66.6 (2.9) 67 (4.1) 66.3 (3.5) 66.6 (3.6)
lmp–md 60.5 (3.1) 60.6 (4.1) 60.1 (2.6) 60.3 (3.1)
Fat 11.9 (2.2) 11.9 (3) 12.3 (2.5) 12.1 (2.7)
Meat 58.7 (6.5) 55.3 (5.8) 54.7 (6.7) 55.5 (6.5)
Totif 11.8 (4.5) 12.8 (3.7) 10.6 (4.1) 11.5 (4.2)
Weight 80.9 (6.2) 80.6 (7.9) 77.2 (6.9) 78.9 (7.3)
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Automatic Segmentation of Computed Tomography (CT) images of domestic

pig skeleton using a 3D expansion of Dijkstra’s algorithm.

Lars Erik Gangseia & Jørgen Kongsrob

Abstract: A 3D expansion of Dijkstra’s algorithm used for automatic segmentation and

identification of the bones in ct images of live pigs was developed and validated. The major

bones in the skeletons of 208 out of 485 live pigs (43%) were segmented and identified from

the images without major errors. The segmentation and identification is executed through 8

main operations: (1) identify the full bone structure by a threshold of Hounsfield units, (2)

identify forelimbs by voxel connectivity and set landmarks, (3 - 8) segment out and identify

the individual bones in different main parts of the bone structure by the 3D expansion

of Dijkstra’s algorithm. The algorithms described will constitute an important basis for

further work applying ct in pig breeding and management.

Keywords: Computer Tomography; pig; skeleton; segmentation

a: Animalia, P.O. Box 396 - Økern, N-0513 Oslo, Norway

b: Norsvin SA, P.O. Box 504, N-2304 Hamar, Norway
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1 Introduction

Computer Tomography (ct) is a highly suitable method for identifying bonestructures

inside living and dead organisms containing a calcified skeletal structure, typically mammals

and fish. The full skeleton structure might easily be roughly segmented out from the rest

of body tissue by adding a threshold value, typically around 200 Hounsfield units (HU)

(Fiebich et al., 1999), and by classifying all voxels with larger values as bone.

The ability to segment the carcass into identifiable bones has several purposes. Our

ultimate goal is to construct a complete labeled body atlas for pigs. Segmented and iden-

tified bones from a plethora of pigs will be indispensable in the process of constructing the

atlas, as the skeleton will constitute the framework of the atlas. The atlas made for mice

by Dogdas et al. (2007), is an illustrative example for what we want to achieve. The bone

segmentation might also be used for other purposes, for instance to diagnose diseases or

undesirable qualities in the skeleton.

By a method known as atlas-based segmentation (Baiker et al., 2010; Cuadra et al.,

2015), the different parts of the pig, i.e. the ct scan, might be identified as cuts, muscles,

organs etc. The highest priority is to be able to identify the main commercial cuts in live

animals.

The aim was to describe an approach for automatic segmentation and identification of

the larger bones from ct images of live domestic pigs. To our knowledge, this is the first

automatic algorithm for segmenting pig skeletons in a volume generated from ct images.

2 Material and Methods

2.1 Animals and the ct scan

The material consists of in vivo ct scans from 485 boars at the Norsvin Delta test station

for purebred boars (Norsvin SA). The pigs were purebred Norsvin Landrace and Duroc

boars. The live weight is as close to 120 kg as practically possible. This is due to 120 kg

representing the end point of the testing period for terminal boars, and is regarded as the

optimal carcass weight (70-80 kg) in Norway. The samples were selected randomly from

the annual breeding stock of 3500 boars tested in the Norsvin breeding program. The ct

scanner was a GE Healthcare LightSpeed 32 VCT, and the settings used were 120kV, slice

thickness 1.25 mm and dynamic mA (400-500 mA) adjusting for object thickness.

Prior to ct scanning, the boars were sedated using Azaperone, 8mg/kg i.m. (Stresnil Vet

R , Janssen-Cilag Ltd, Buckinghamshire, UK). Boars were scanned, 45 min after injection,

doi:10.1016/j.compag.2015.12.002
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as the sedation was given to help facilitate the scanning procedure and improve image

quality. All animals were cared for according to the laws and regulations for keeping pigs

in Norway (Aasmundstad et al., 2013). After sedation, the pigs were transported to the ct

scanner using a crib made of fiberglass.

The software MATLAB (MATLAB, 2014), including the Image Processing Toolbox, was

used for the segmentation. The code for landmark identification and the 3D expansion of

Dijkstra’s algorithm was written from scratch. MATLAB code for a function conducting

the 3D expansion of Dijkstra’s algorithm will be provided by authors upon request.

2.2 General methods for segmentation

We applied three main principles for identifying and segmenting the individual bones; (i)

segmentation by connectivity, (ii) identification of points and lines and (iii) a 3D expansion

of Dijkstra’s algorithm.

Segmentation by connectivity was primarily involved at the start of the process. A

binary 3D image was constructed by applying a threshold value for bone (HU > 180). The

different connected objects in this 3D binary image were labeled by the MATLAB function

”bwconncomp”, which takes a binary image as input and returns an image where each

connected object is labelled with a specific value. The connected objects inside the 3D

binary image were identified by ranking their volumes or mass center points. The 4 largest

connected objects from a randomly selected pig are shown in Fig. 1.

To identify landmarks, 2D projections of the skeleton were used extensively. The prin-

ciples are explained through an example illustrated in Fig. 2. The steps were as follows:

1. A 2D image containing the sums of bone-voxels perpendicular to the sagittal plane

(in this example) was constructed, i.e. high intensity areas represent areas with thick

bones. One point, approximately corresponding to Trochanter major, was already

known from similar techniques, as illustrated in Fig. 2a.

2. Based on the known point, a new region of interest (roi) was defined based on eu-

clidian distances. Points closer than 50 mm, a figure set a priori based on experience,

from the known point were ”masked out”, (Fig. 2b).

3. A new point was set at the point having maximal intensity inside the new roi (Fig.

2c).

4. Steps similar to steps 2-3 were redone to find the rest of the points of interest resulting

in a set of four ”known fixed points” as illustrated in Fig. 2d.
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Crib Central skeleton

(a) (b)

Left forelimb Right forelimb

(c) (d)

Figure 1: An example of segmentation thorough connectivity. The 4 panels represents the 4
largest connected objects, i.e. crib (a), ”central skeleton” (b), left forelimb (c), and right forelimb
(d). The input is a binary image produced by setting a threshold at 180 HU for a ct image of a
random pig.

5. A variant of this method is to define the roi as a line, for instance the upper part

of the spine, by using the MATLAB function ”bwboundaries”. The points on top

of each vertebra and points between vertebras are set successively at local maximum

and minimum sagittal values for this line.

Most of the bones had to be segmented and treated one by one. Dijkstra’s algorithm

(Dijkstra, 1959), a basic method of image analysis, is well known for identifying the cheapest

path between two nodes, and is thereby a suitable method for separating different objects

in a 2D image. The method we applied might be viewed as an expansion of Dijkstra’s

algorithm in order to separate a 3D, not 2D, object.

The first step was to identify a roi (3D array) that encapsulates the surface in which

the two bones were connected. These rois were automatically constructed based on the

identified landmarks and prior information on bone dimensions and the spatial orientation

of bones. As an example, the roi illustrated by the box in Fig. 3 was constructed via a

landmark in the top of the overarm, i.e. the lower right corner of the box. The horizontal

distance for the roi was set by prior knowledge. The two remaining dimensions of the roi

were easily set by the extreme values for bone voxels within the horizontal limitation.

In the next paragraphs, we will view the 3D binary input array (bone/ not bone) inside
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Input with one known point Eucledian distances and masked area

(a) (b)

Two known points Four known points

(c) (d)

Figure 2: Principles for identifying points in hindlimbs. All panels show a right hindlimb
observed perpendicular to the sagittal plane. The intensities in (a), (c) and (d) represent the sum
of bone voxels over the full 3D array. The intensities in (b) represent the euclidian distances to
the ”known point” (≈Trochanter major).

the roi as a stack of 2D layers. For each layer, a virtual cut is constructed in the ”cutting

direction”. The sum of these cuts constitutes the segmentation surface. The directions of the

layers and the cutting direction varied with the main direction of the segmentation surface,

and were set based on prior knowledge. For instance, vertebras were split approximately

parallel to the transverse plane, pelvis was segmented from spine approximately parallel

to the sagittal plane etc. When the segmentation surface is approximately parallel to the

transverse plane as shown in Fig. 3, the layer direction is from top to bottom and cutting

direction is from the right to left side of the pig. The two bones to be segmented had

to penetrate the two opposite sides of the input array orientated perpendicular to both

cutting- and layer-direction.

The first step of Dijkstra’s algorithm (2D) is to construct a cost matrix, i.e. a matrix

defining the minimum cumulative cost of including any voxel to the virtual cut. The cost
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Figure 3: 3D representations of shoulderblade and overarm. The ”black box” represents the
roi used in the segmentation. The red surface show the surface where the bones are separated.

matrix for all layers was constructed by the standard Dijkstra’s algorithm. For the first

layer, the input to the algorithm was the first layer of the binary input array. For the next

layers the input consisted of the sum of the cost matrix from the previous layer and the

corresponding layer of the input array. The final 3D cost array was the array of stacked 2D

cost matrices.

The next step in Dijkstra’s algorithm is to construct the cheapest path, i.e. the segmen-

tation surface. For all layers, these paths were constructed via the standard 2D Dijkstra’s

algorithm based on the corresponding layers from the 3D cost array. The algorithm started

with the last layer. After the path in one layer was identified, a region of ”possible paths”,

i.e points connected to the identified path, was identified for the next layer. All points

outside this possible path in the 3D cost array were set to infinity. This step was repeated

successively for all layers. This method ensured that the resulting separating surface min-

imized the total cost for separating the two bones, and that the surface was connected in

both the ”cutting direction” and along the layer direction as illustrated in Fig. 3.

doi:10.1016/j.compag.2015.12.002



Skeleton segmentation

2.3 Work flow

The work flow we applied is described through the following enumerated list. The steps of

the graphical abstract (online version only) correspond to this numbering.

1. Upload ct image and segment out the skeleton by threshold (180HU).

2. Split the skeleton into three major parts, two forelimbs and ”central skeleton” by

connectivity.

3. Segment the two forelimbs into three parts: shoulderblade (Scapula), overarm (Humerus)

and ”the rest”.

4. Segment the two hindlimbs from the rest of the ”central skeleton”.

5. Split the two hindlimbs into 4 smaller parts: pelvic girdle (Illium, Pubis and Ischium),

leg bone (Femur), rear leg bones (Fibula and Tibia), and foot, (Tarsal bones and

Metatarsal bones).

6. Segment the rest of the ”central skeleton” into 7 main parts: head (including jaw),

breast bone (Sternum), neck vertebras (Vertebrae cervicis), thoracic vertebras (Ver-

tebrae thoracis), ribs (costae), lower back vertebras (Vertebrae lumbalis) including

sacrum (Os sacrum) and tail (Vertebrae coccygis).

7. Segment and identify the individual ribs.

8. Segment the neck vertebras, thoracic vertebras, and lower back vertebras into single

identified vertebras.

3 Results and discussion

We were not able to find a stable solution for segmenting out the foreshank bones (Radius

and Ulna) and foot (carpal bones and metacarpal bones), in the forelimbs. We did not

prioritize finding an algorithm for these parts as the prime meat cuts surrounding these

bones are of subordinate interest.

We applied the algorithm to 485 pigs. The results of the segmentation were evaluated by

visual inspection. The main reason for segmentation and identification failure was misplaced

landmarks. In order to reduce the fraction of skeletons that are unsatisfactorily segmented,

some semi-automatic methods, for instance visual inspection and correction of landmarks,

might be necessary to implement.
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If the segmentation procedure failed for a pig at a given step in the work flow, the

remaining steps were excluded as such failures heavily complicate or even preclude the

consecutive steps of the segmentation process. The failure rates for different steps are

summed up in the following results.

� 2 out of 485 (< 1%) pigs failed in the first step segmenting out the main part of the

skeleton.

� 17 of (the remaining) 483 (3,5%) pigs failed in identifying points in the hindlimbs.

� 65 of 466 (14%) failed in segmenting the vertebra in its main parts, mainly identifying

the points where last rib meets the vertebra.

� 25 of 401 (6%) failed in the segmentation of bones in the hindlimbs.

� 9 of 376 (2%) failed when identifying points in forelimbs.

� 67 of 367 (18%) failed in segmenting and identifying the ribs.

� 37 of 300 (12%) failed in segmenting the lower back vertebras to individual vertebras.

� 43 of 263 (16%) failed in identifying the last lower back vertebra.

� 12 of 220 (5%) failed in the segmentation of the forelimb.

� Totally 208 of 485 (43%) pig skeletons were segmented and identified without errors.

There is a wide scope of opportunities to improve the algorithm with respect to stability

and speed, e.g. by GPU computation, within the principles outlined in this application.

The ”expanded” Dijkstra’s algorithm might be further developed. For instance by using

continuous (intensities, gradients etc.), not binary variables, in the input, or by expanding

the possibilities for how the resulting surface is allowed to be connected.

4 Conclusion

The approach described in this application might be further developed. However, the main

principles will constitute an important basis for further work analysing ct scans of pigs.
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Building an in vivo anatomical atlas to close the phenomic gap in animal

breeding.

Lars Erik Gangseia,c, Jørgen Kongsrob,Kristin Olstadd, Eli Grindflekb & Solve Sæbøc

Abstract: Currently, a growing gap is observed between the enormous amount of genomic

information generated from genotyping and sequencing and the scale and quality of phe-

notypes in animal breeding. In order to fill this gap, new technologies and automated

large-scale measurements are needed. Body composition is an important trait in animal

breeding related to growth, feed efficiency, health, meat quality and market value of farmed

animals. In vivo anatomical atlases from ct will aid large-scale and high-throughput phe-

notyping in order to reduce some of the gap between genotyping and phenotyping in animal

breeding. We demonstrated that atlas segmentation was able to predict major parts and

organs of the pig with a numerical test applied to the primal commercial cuts.
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1 Introduction

Recent advances in genome sequencing technology has led to high-throughput and high–

density information in humans, animals and plants (Houle et al., 2010). Variation in phe-

notypes is produced through a web of interactions between genotype and environment, and

there is a need for detailed phenotypic data to characterize the phenomes. Measuring body

composition in farmed animal breeding is important in order to improve growth and feed

efficiency, health, meat quality and market value of carcasses. Body composition has tradi-

tionally been assessed by a number of different means, ranging from subjective scoring or

simple point measurements of subcutaneous fat to physical dissection of carcasses or in vivo

volume scans using Computed Tomography (ct) or Magnetic Resonance Imaging (mri).

For pigs, the use of ct makes it possible to obtain accurate in vivo measurements of

body composition (Gjerlaug-Enger et al., 2012). Genetic selection on body composition

traits in pigs was previously done by physical dissection of full-sibs and half-sibs of the

selection candidates, which give much less accurate breeding value estimations compared

with measuring body composition on the selection candidates themselves in vivo. Today, the

pig breeding company Topigs Norsvin uses ct to measure body composition and monitor

orthopedic disorders on 3.500 nucleus boars annually as an integrated part of their testing

system. In this paper, we present an anatomical atlas from ct, which will help to close the

phenomic gap in pig anatomy by giving access to high-throughput and high-dimensional

anatomical phenotypes.

Obtaining in vivo body composition data from ct relies on segmentation of cross sec-

tional slices. The segmentation strategies can be based on (1) intensities, applying adaptive

thresholding of different tissues like adipose (fat), muscle and bone tissue, (2) shape or

position using deformable models or active contours, and (3) labelled atlas (Commowick,

207). Methods are here ranked by complexity and demands of prior knowledge either from

own data or literature. Automation of the segmentation methods would allow for detailed

population studies of body composition. For atlas based segmentation, this paper show

how an atlas can be constructed using a subset of animals from the population of pigs.

The atlas can serve as a framework for building large data sets of anatomical pheno-

types, paving the way to detailed and high–density phenotypic information on pig anatom-

ical traits. The number of additional variables in the breeding value estimation may be a

limitation in terms of speed and complexity. The atlas phenotypes will be highly beneficial

in terms of selection for animals with competitive advantages on muscle types, compared

with the current selection in most breeding programs today, selecting for muscle- and fat
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depth only. Creating atlases for primal cuts; ”shoulder”, ”belly”, ”loin” and ”ham”, rep-

resenting the market needs around the world would also make us able to sort our genetic

material of pigs more efficiently in terms of different markets. Furthermore, by enhanc-

ing the anatomical traits by automatic segmentation, the accuracy of genetic selection for

carcass traits will increase even further. The indirect effect of this is that more weight

can be put in the breeding goal for hard-to-measure, low–heritable traits like maternal and

disease-related traits, and in the end the whole breeding goal and genetic engine towards

developing a more sustainable and accurate breeding program for farmed animals.

2 Methods

2.1 Approvement of the experiments

All animals were cared for according to laws, internationally recognized guidelines and

regulations controlling experiments with live animals in Norway (Animal welfare Act 2009-

06-19-97 (in Norwegian), 2009; Regulation for the keeping of pigs in Norway 2003-02-18-

175 (in Norwegian), 2003); according to the rules given by Norwegian Animal Research

Authority.

2.2 Data

The intensity atlas is in principle is the average of 386 nucleus boars, involving a total

of approximately 3.4 × 1010 voxels (the 3D basic unit of the ct scans). The method was

motivated by methods applied to micro ct scans of mice (Baiker et al., 2010; Li et al.,

2008), where the skeletons were utilized as a framework for conducting the transformations.

The raw ct scans were volume representations of the individual pigs. The size of 3D

data arrays (volumes) were approximately 512×512×1200, where the third dimension, size,

varied slightly with pig length. Each data point represented a voxel with size 0.9355mm×
0.9355mm×1.25mm. A ct intensity according to the Hounsfield (HU) scale was associated

with each voxel.

2.3 Atlas

The atlas represents the average pig. The atlas volume size was 500 × 500 × 1600, where

each voxel represents a cube with a side length of 1 mm. We use the expressions ”intensity

atlas” and ”labelled atlas”, where the intensities aligned to each voxel might be interpreted
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as HU–units. In the labelled version, every voxel is aligned to a specific label, i.e. organ,

cut part etc.

Labelled and intensity volumes (3D) might be defined by a matrix representation, where

the Ny × 3 matrix Y and Nx × 3 matrix X, represent the atlas, and a random individual

pig, respectively. Ny and Nx are the number of voxels in the respective images. Each row

in Y and X defines the (Cartesian) coordinates for one voxel. The atlas was constructed

through successive operations described in the next sections. Figures are used extensively

to highlight important principles.

2.4 Skeleton atlas – image moments invariants

Figure 1: Construction of average bone by image moment invariants. (a) Segmented skeleton in
a random pig; the vertebra illustrated in panels b–d is highlighted in red. (b) A vertebra with its
orthonormal basis (arrows), landmarks, and the area where extra weight for orientation is added
(red at top). (c) Construction of the average shape by rotating and scaling bones from all pigs to
a common formwork. (d) Landmarks (blue) on the average vertebrae.

The first step was to identify the major bones in all pigs (Gangsei and Kongsro, 2016)

(Fig. 1a). We calculated basic features for each bone, often referred to as image moments

invariants (Hu, 1962): Center of mass (COM or x̄), the orthonormal basis of the bone (R),

volume (v = nδ × 0.93552 × 1.25, where nδ is number of voxels) and length (l), that is,

the Euclidian distance spanned by the bone along the first orthogonal basis vector. Left

side bones were treated as right side bones by mirroring them over the sagittal plane before

calculating the image moments invariants. The coordinates of each bone were represented
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by the nδ × 3 matrix Xδ. Furthermore, the diagonal weight matrix W assigned a specific

weight to each voxel for the purpose of controlling the main directions of the orthonormal

basis. The mathematical expressions for the COM and orthonormal basis were:

x̄ = (1/nδ) Xt
δ1nδ

, R = Eig
{(

Xδ − 1nδ
x̄t
)t
W2

(
Xδ − 1nδ

x̄t
)}

,

where the notation Eig {A} denotes the eigenvectors of the matrix A scaled to unit length.

The concept of the weighting of voxels is shown in Figure 1b, where the voxels in the

red area, i.e. the voxels within a distance less than 1/10 of the total length (l) from the

top, were given heavy weights (100). Thus, the first column in R, i.e. the eigenvector

having the largest corresponding eigenvalue, points approximately perpendicular to the

coronal plane (upwards), the second eigenvector points approximately perpendicular to the

transverse plane (forwards) and the third eigenvector points approximately perpendicular

to the sagittal plane (to the left). For other bones, different parts were assigned additional

weights, but the basic principle remains unchanged.

Based on the features of the individual bones we constructed atlas bones, i.e. templates

for every bone in a pig (Fig. 1d). To every atlas bone, COM, volume, length, a common

orthonormal basis and a shape, was applied. The COM (x̄T ), volume (vT ) and length (lT )

was just the average for all bones. For all bones in the spine and sternum, the COM value

for the direction perpendicular to the sagittal plane (i.e. sideways), was set to 250 (mm).

The common orthonormal basis, RT , was set to the individual orthonormal basis closest

to the geometrically average ortonormal basis. Hence, by letting rij denote the element of

the ith row and jth column of R, and letting r̄ij denote the average of the same element in

all pigs, the R for which
∑3

i=1

∑3
j=1 (rij − r̄ij)

2 had the minimum value was chosen as the

common orthonormal basis for the bone in question.

In order to construct the average shape, all bones were transformed to a 3D image, B,

of predefined size, m1 × m2 × m3, (Fig 1c). The coordinates for the individual bones in

these 3D images, denoted Zδ, were given by rounded and scaled values of (m1/l) XδR. The

scaling of Zδ was done by subtracting column means and adding column minimum values.

Thus, every bone spanned the first dimension of B completely and was centred according

to the two remaining dimensions. The final intensities of B equalled the sum of all bones

transformed into it. The average shape was constructed by setting a threshold making sure

that the volume of voxels in B having higher intensity than this threshold, was equal to the

average volume of the bone (vT ).

105



Submitted manuscript

2.5 Corresponding landmarks

The crucial steps of the method involved constructing corresponding landmarks between the

volumes of the individual pigs (Fig. 2a–c). The initial step (Fig. 1d), was to set landmarks

at approximately every 20mm along the main direction of the orthonormal basis of the

average shaped bone. The landmarks were set either at the top, bottom, right and left

side of the surface or in the centre of the bone (typically for ribs, hand and foot). In total

approximately 1200 landmarks on the skeleton were identified (Fig.2a), varying with the

number of vertebras and ribs in the individual pigs. The coordinates of the landmarks in

the common orthogonal basis, RT , are denoted Zl, and the corresponding COM is denoted

z̄.

These landmarks were transformed back to the basis of the individual pigs and the

atlas by reversing the transformations based on image moments invariants. The common

averages were used for the transformation to the atlas space resulting in a pattern symmetric

over the sagittal plane (Fig. 2b). Individual image moments invariants were used for the

individual pigs; consequently there was no symmetric pattern for these points (Fig. 2a).

The mathematical expressions for the reverse transformations are given by:

Yl = (lT/m1) (Zl − 1nl
z̄)R−1

T + 1nl
x̄T

Xl = (lT/m1) (v/vT )
1/3 (Zl − 1nl

z̄)R−1 + 1nl
x̄

, where the landmarks in the atlas and individual pigs are denoted Yl and Xl, respectively.

2.6 Non–rigid transformation

The stacked matrices of Yl–s and Xl–s (all bones), are denoted Y1 and X1. These matrices

were used to construct a cubic B-spline based transformation of X1 to Y1. The underlying

model for the transformation is:

Y1 = Q1Xβ1 + E1,

, where Q1X denotes a matrix of size n1 × pL the elements of which were calculated by

tensor (cubic) B-spline functions using X1 as input. The parameter β1 denotes the regres-

sion parameters and E1 random noise. We utilized existing software (Kroon, 2011a,b) for

the implementation of all B-spline based transformations. The software automatically cal-

culated Q1X including optimizing the knot grid used in the cubic B-spline functions, and

provided estimates, β̂1, of β1 for all pigs based on the input X1 and Y1.
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Figure 2: Construction of corresponding landmarks and the intensity atlas. (a) Landmarks for
all bones transformed back to the original space of the pig. (b) Landmarks of all average bones
transformed to the atlas space. (c) Non–rigid transformation based on the skeleton landmarks
applied to the skeleton (blue/ red) and surface (skin). A secondary set of landmarks on the pig
surfaces (green). (d) The intensity atlas. I.e. average HU–units after all voxels of all pigs are
transformed to the atlas space.

For all pigs the surface voxels (skin) were identified, with coordinates denoted XS. The

surface points from all 386 pigs were transformed to a common 3D image, S, with the same

dimensions as the atlas, by applying the transformation based on skeleton landmarks. The

mathematical formula for this transformation is written as ŶS = QSX β̂1 where the rounded

values of ŶS gave the coordinates of the surface voxels XS transformed to S. In order to

get a symmetric surface, S was mirrored over the sagittal plane. The final atlas surface

was defined as the voxels in S having maximum intensity and composing a continuous,

connected surface.

For every 20 mm, on the interval from 200mm to 1400mm, along the longitudinal axis of

the atlas surface, 34 new landmarks were set on the average surface (Fig. 2c). These points

were set at a fixed set of angles around the centre of the slice in question. The coordinates

of these landmarks are denoted Y2. Corresponding points for individual pigs, X2, were set

as the surface points in XS of which the corresponding transformed points, i.e. ŶS, had

the minimum Euclidian distance to the points in Y2.

The motivation for constructing the corresponding points on the surface, i.e. Y2 and

X2, was to increase the precision of the final B-spline transformations that were applied to

the full volumes of the original pigs. Hence, the coordinates of the full volumes were the

rounded values of Ŷ = Q12X β̂12, where the basic functions of Q12X and β̂12 were calculated

using the stacked matrices of Y1 and Y2, and X1 and X2. The final intensity–based result

is illustrated in Figure 2d. The intensities of the voxels in the intensity atlas are simply the

average HU-unit after the final transformation of all voxels in all pigs.
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2.7 Labelled atlas – atlas segmentation

Figure 3: The labelled atlas. (a) View perpendicular to the sagittal plane. (b) View perpendic-
ular to the coronal plane. In both panels ham is shown with orange color, belly with violet color,
loin with clear red color and shoulder with red/ brown color. The major bones in the skeleton are
shown withe different shades in gray/ yellow/ pink colors.

A labelled version of the atlas (Fig. 3a–b), was constructed by manual segmentation

of the intensity atlas. The final step was to transform the labels onto the individual pigs,

or eventually, onto new pigs registered to the atlas. Since every voxel in the individuals

transformed to the (labelled) atlas corresponds to exactly one voxel in the atlas, the label

of all voxels in individual pigs are easily defined (Fig. 4a–d).

The inner organs were segmented out by methods combining thresholds (HU-units) in

the intensity atlas, and manual segmentation. The commercial cuts were set by segmenting

shoulder from loin and belly by a cut exactly in the transverse plane of the atlas. The ham

and loin were also segmented by a cut in the transverse plane. Belly was segmented from

ham and loin by manual segmentation based on the intensity atlas.

2.8 Validation

First and foremost the method was validated by visual inspection of the segmentation

applied to the individual pigs.

In order to conduct a numerical test of the method, we applied atlas segmentation to

the primal cuts of 52 carcasses (left half) (Fig. 4). We predicted the weights of all voxels

by applying a simple regression equation for voxel density (kg/m3) using the intensities,
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measured as Hounsfield units (HU), as predictor variable. The regression parameters were

calculated by ordinary least squares regression using the registered weights of all 52 carcasses

as response.

The corresponding cut weights (kg) and their proportions (% of carcass weight) (car-

cass right half) were registered by butchers at the Norwegian Meat and Poultry Research

Center (Animalia) pilot plant. Thus we were able to calculate the correlations between cut

weights and cut proportions based on two independent methods, i.e. atlas segmentation and

manual butchering. Variances in cut proportions are, unlike variances in the cut weights,

independent of total carcass weight. Thus, an eventual significant positive correlation for

cut proportions, as opposed to the correlation between cut weights, might be viewed as a

strong indication of the validity of the atlas segmentation method.

2.9 Code availability

All computations were conducted using the software Matlab. A demonstration of the central

parts of the computer code applied to data from parts of a random pig is included as

supplementary material in the zipped folder ”Code and Data.zip”.

3 Results

Figure 4: Atlas segmentation applied to a carcass (left half). (a) An untransformed carcass. (b–
c) The carcass registered (transformed) to the atlas. The loin cut is removed to increase visibility.
The other cuts are illustrated as black surfaces. (d) The final segmentation for the carcass in its
four major cuts.

Visual inspection of the individual carcasses after transformation show that the method

has an acceptable accuracy for atlas segmentation of the major parts, for an example see

supplementary Video 1. The accuracy is best close to the skeleton structure, where the
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density of landmark is huge, whereas the accuracy declines in areas where landmarks are

scarce, typically in the back part of the belly.

The correlations between cut weight measured by atlas segmentation and manual butcher-

ing were 0.95, 0.91, 0.87 and 0.95 for shoulder-, belly-, loin- and ham weights, respectively.

For the cut proportions the corresponding correlations were 0.60, 0.38, 0.36 and 0.47, all sig-

nificantly different from 0 (p < 0.01). The variation in cut proportions between individuals

were small, i.e. standard deviation at approximately 1 % unit.

4 Discussion

Differences in predicted cut weights between left and right sides might be substantial due to

morphological differences, butcher effects and inaccurate splitting of carcasses. For shoulder

and belly weights, differences between butchers are reported as high as 6–10% (Nissen et al.,

2006). Thus, the correlation between the cut weights registered by butchers and by atlas

segmentation was not expected to be extremely high even with a perfect atlas segmentation.

For the cut proportions the a priori expected correlation between the two methods were

substantially lower, due to the small variation in cut proportions between individuals. Thus,

the highly significant positive correlations is a strong support for the usefulness of atlas

segmentation.

The transformations were solely based on corresponding landmarks. The state–of–the–

art methods in medical image analysis would generally include an extra step involving

fine tuning of the transformation based on image intensities, typically based on the Gauss–

Newton algorithm (Gill and Murray, 1978). This step aims at minimizing the cost based on a

similarity measure between individual pigs and the intensity atlas (reference and template),

utilizing the intensities of all data points. The transformations and intensity atlas described

in this paper would constitute a natural starting point for such an algorithm. If successful,

the result would be an even finer tuned intensity atlas, which in turn enables construction

of a more detailed labelled atlas. However, there is a substantial risk associated with such

methods as they may result in convergence to local optima, or yield over–fitted solutions,

i.e. applying too much non-rigid deformation.

For a whole-body analysis, the corresponding landmarks are sufficient to obtain a sat-

isfactory level of accuracy. As the method is automatic and robust, it offers a potential of

multiplying the level of registered phenotypic variation for the full parental lines of breeding

pigs. Thus it might constitute the foundation for the next generation of high-throughput

and high-density phenotyping in animal breeding.
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