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Distribution based truncation for variable selection in subspace
methods for multivariate regression

Abstract

Analysis of data containing a vast number of features, but only a limited number of informative ones,
requires methods that can separate true signal from noise variables. One class of methods attempting
this are the sparse partial least squares methods for regression (sparse PLS). This paper aims at
improving the theoretical foundation, speed and robustness of such methods. A general justification
of truncation of PLS loading weights is achieved through distribution theory and the central limit
theorem. We also introduce a quick plug-in based truncation procedure based on a novel application
of theory intended for analysis of variance for experiments without replicates. The result is a versatile
and intuitive method that performs component-wise variable selection very efficiently and in a less ad
hoc manner than existing methods. Prediction performance is on par with existing methods, while

robustness is ensured through a better theoretical foundation.

1 Introduction

One of the major challenges in recent and coming data analysis is the ever increasing number of variables
recorded for each sample. The data matrices become wider and wider. Because of instrumental noise,
biological noise and other uncontrollable variations in the recorded signal, variables that should have no
signal for a given sample, or be equal across samples, almost never show a zero signal in the final centred
data set. And differences between two signals that should be zero are seldom zero in practice. Since
predictive multivariate methods like partial least squares regression (PLSR) [1] in their basic forms take
into account all variables, the sheer number of non-zero noise variables will often over-shadow the true

signal.

Various forms of variable selection approaches have been proposed in the context of regression. Variable
selection can also play a role in finding important variables in explorative studies, with the purpose of
stabilizing the regression modelling and improving its predictive ability and interpretability. Sometimes the
aim is to find which variables influence a certain process causually, or at least convey the most interesting
information, e.g. metabolites, genes, wavenumbers, or molecular weights. Depending on the aim of the
study different selection strategies may be favourable and the focus on how many variables to retain may
be different.

Based on ideas of component-wise variable selection, sparseness and normally distributed noise we propose
to use distribution based truncation to identify all unimportant model parameters that are (or appear to
be) non-zero due to random errors, and force these towards zero. In the present PLSR context, this means
to zero out small, apparently random elements in all the loading weight vectors. The intension is thereby
to drastically reduce the problem of non-zero noise contributions. In the following sections we will look at
some related methods intended for the same purpose and motivate a simple, intuitive and flexible strategy
for truncation of non-informative variables. Applications to real and simulated data and comparison with

other methods will also be presented.



2 Background

A basic assumption in statistics is the central limit theorem (CLT). The CLT was first presented by
Abraham de Moivre in 1733 and has been formalised and interpreted under varying conditions and degrees
of strictness ever since. A simple interpretation is that as the number of observations sampled from a
random process increases, the distribution of the mean (and the sum) will approach a normal distribution.
More interesting in this context is that many types of random noise are seen as approximately normally
distributed, and linear combinations of such will tend even more towards the normal distribution. In
this paper we propose to use the CLT to distinguish between variables with expected non-zero loading
weights from the noisy variables with loading weights with a zero-expectation. We refer to the new
modelling principle as Truncation-PLS in the following, and the resulting methods Truncation-PLSR and
Truncation-PLS-DA are described in detail in Section 3.

Many approaches have been invented that attempt to find the interesting information in a cloud of variables
—the needle in the haystack. One of the oldest and most varied class of methods for this purpose is variable
selection. A large proportion of these methods work univariately, evaluating single variables for inclusion
or exclusion. When the number of variables are counted in tens or hundreds of thousands, this strategy will
be prone to spurious correlations, hampered by multiple testing problems and vulnerable to low sensitivity
or high false discovery rate. Moreover, it can lead to serious misinterpretation: Assume e.g. that the
regressor set contains both an "upstream", causally important variable observed with much noise and a
"downstream" consequential but unimportant variable observed with little noise, and that the two are
strongly intercorrelated. Traditional stepwise variable selection methods will then eliminate the causally

important variable to reduce the collinearity.

Subspace-based regression methods such as PCR and PLSR attain an implicit variable selection - not
by eliminating individual variables, but by eliminating subspace dimensions- i.e. linear combinations of
variables. However, if the number of noisy regressor- or regressand-variables is very high compared to
the number of observations, this basic bilinear approach is not good enough: The combined covariation
contributions of the noisy variables prevent the bilinear regression methods from finding a useful initial
subspace. Therefore, various variable selection strageties have been developed also for PLSR to improve
prediction and to simplify interpretation, but without eliminating interesting variables just to reduce

collinearity.

One approach is to reduce small parameters towards zero by a general shrinking/expansion of the PLS
loading weight elements according to a chosen exponent (Powered PLS|[2, 3]). Another approach is to
induce sparseness in the data by forcing contributions close to zero to be true zeros. Examples of such
methods are the least absolute shrinkage and selection operator (LASSO) [4] and its spin-off the elastic net
[5], both inducing constraints on the L; norm of the regression vector 8. The latter method also applies
ridging by penalizing the Lo norm of 3. For PLSR sparseness was introduced by Martens & Nes (1989,
p. 160), who suggested the use of rough statistical significance testing of the elements in each individual
loading weight vector, followed by a re-orthogonalization. A similar approach was implemented in terms of
the soft-threshold-PLS [6] (ST-PLS) and sparse PLS [7] (sPLS). These methods apply a shrinkage towards
zero to the PLS loading weights so that many contributions become zero. The amount of shrinkage can
be chosen to remove a certain proportion of the variables or it can be chosen by some other criterion. In
addition to giving a multivariate approach to variable selection, these methods can also select different

variables in each PLS component that is produced. As these two methods, ST-PLS and sPLS, are very



similar in the single response case, we choose to compare our method to ST-PLS, as the R-implementation
of this method fits models much faster than the sPLS version. We propose to combine the sparseness ideas
with the distributional quality of noise in data, e.g. in PLS loading weights, to sort between noise and

signal and thereby weighting down or completely truncating what is classified as noise.

In addition to several of the mentioned sparse methods we will include variable selection by the Variable
Influence on Projection [8] (VIP) and Selectivity Ratio plot [9] (SR) methods for comparison. These PLS
based methods use different criteria for assessing the importance of variables in regression and classification.
We will not go into details about how variables are selected by these methods in this paper, but include

them as reference standards.

The distribution based truncation approach to variable selection adds to an already long list of methods
for variable selection. As described in this article the selection of variables in this approach is motivated
from a well established principle in classical statistics. Furthermore, there is only one tuning parameter
which needs to be set for variable selection, which makes the method simple and easy to implement.
The statistical foundation and the non-complexity of the new method makes it appealing and easy to
understand. However, the predictive performance of prediction methods is typically very dependent on
the properties of the data, and there is no uniformly best method for prediction and variable selection.
Therefore, it is important to expand the statistical toolbox, but at the same time it is important to build
an understanding of when the various methods work best. In order to do this we compare the predictive
performance of the various methods and attempt to interprete the results in light of the multivariate

properties of the data.

3 Methods

Distribution assumptions

In the following the Truncation-PLS is based on loading weights from PLS regression, though the concept
is applicable also to regular regression coefficients. Further, the approach could similarly be applied to
select Y variables, or to PLS scores in order to eliminate non-informative samples, but these aspects are
not covered in this paper. When recording output from some kind of spectroscopic/-metric instrument
we expect that the absence of a signal results in white (non-informative) noise, while the presence of a
signal will produce a systematic deviation from randomness. The same applies to other types of data, e.g.
micro arrays, but the distribution of the noise varies. When creating vectors of loading weights in PLS, we
compute the first eigenvector of the matrix product X{{aq} Y (4—1} (for component number a). If a given
X-variable is uncorrelated with the response variable(s) (for possibly deflated matrices) the loading weight
for this variable will be a sum over n equally distributed random variables, and by the CLT it will therefore
represent random normal noise, at least approximately. For X-variables correlated to the response variable
the theoretical distributions of each loading weight will also be asymptotically normal distributed, but with
non-zero mean. However, as the correlation increases the distributions will be increasingly skewed. As
the true correlation between an X-variable and the response approaches 1, the limiting distribution of the
corresponding loading weight will be a chi-square distribution with non-zero expectation. In Figure 1 (left)
the theoretical distributions of three non-normalized loading weights (sample size n=20) are illustrated;
a centred normal distribution for an uncorrelated X-variable, and two skewed distributions for two X-

variables with correlation -0.6 and 0.6 with the response, respectively. In this figure the distributions have



been weighted to reflect a situation where 70% of the variables are distributed according to the central
noise distribution and 30% are correlated with the response with either the -0.6 or the 0.6 correlation.
In a real data application the loading weights of the informative X-variables will follow different skewed
distributions. The sample distribution of the weights will therefore represent a mix of several theoretical
distributions and not just three as used in Figure 1 (left). An example of a sample distribution of loading
weights is given in Figure 1 (right). The main objective in Truncation-PLS is to find lower and upper
cut-offs between which it is assumed that the majority of the loading weights represent noise variables.
Hence, the problem boils down to finding an estimate of the central normal distribution of loading weights

(or at least selected percentiles) in order to distinguish this from the skewed distributions.
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Figure 1: Left: Simulated theoretical distributions of loading weights from X variables with no correlation
to the response (red curve, 70 % centred around 0), and correlation of -0.6 and 0.6, respectively (blue
curves, 15% each, centred around -12 and 12, respectively). Right: Histogram of normalized loading
weights (milk protein data) illustrates the distributional character of the noninformative loading weights.
The red vertical lines indicate the cut-offs between inliers and outliers.

To conform to the classical CLT the observations would need to be independent, but this is not always true
in practice. However, CLT theory also exist for observations having weak dependence, and we will only
consider the variables where we do not expect any information to be present, supporting independence of

these variables.

Algorithm

The idea presented in Section 2 lays the ground for a wide range of possible implementations for classifying
data as noise or signal based on their distribution. In principle, the truncation may be applied to several
different model parameter types - to object scores in Y or X, to Y-loading weights and to X-loading weights.
In this paper we focus on the truncation of the X-loading weights, called w in the nomenclature of [10].
The main approach will be to make a confidence interval around the median value of a sorted vector, e.g.
PLS loading weights, and truncate or down-weight everything that falls inside the interval, see Algorithm
1. The width of the confidence interval will be estimated using theory from Lenth [11]. A second approach
will be to make use of a qqg-plot, classifying variables close to the straight line going through a chosen pair
of quantiles as inliers. Alternatively one could adapt a normal or Student t distribution to the same vector
by direct fitting to the selected distribution, but this can be a time consuming and unstable procedure.
The variations have in common that outliers are considered true information, while observations within
a certain range of the distribution are classified as noise. In the histogram of loading weights in Figure
1 (right) the estimated cut-offs between inliers and outliers are indicated. The general distribution based

truncation algorithm is as follows:



Algorithm 1 General distribution based truncation for a given component

e Input candidate loading weight vector w to be truncated.
e Sort w = wy.

e Either

— compute a confidence interval around the median of w, or

— fit a line through quantiles around the median of wy.

Classify outliers as real, informative contributions and inliers as noise.

Truncate inliers.

In practice the distribution based truncation can be plugged into the NIPALS [12] algorithm or kernel based
algorithms as a component-wise processing of the candidate PLS loading weights to impose sparseness on
the variables, or even truncate the scores to impose sparseness on the objects. In this paper we limit
the applications to the single response case, but the procedures are equally relevant in multi-response
problems, as well as other multivariate methods like LPLS, PCA, ICA and CCA. Truncation of loading
weights will be relevant for most applications as it is more likely that some variables do not contribute
to a component than that a set of objects do not contribute. When truncating only loading weights, the
following computation of scores ensures that loading weights and scores reflect the same information. If
scores are truncated, this will not be reflected in the information of the loading weights, meaning that a
re-computation of loading weights and scores may be necessary based on the truncation generated from
the scores, or loading weights have to be disregarded when analysing the resulting model. As suggested by
Martens & Nees, one could also re-orthogonalize the vectors of loading weights if orthogonality is considered
important. Re-orthogonalization may introduce shadowing effect from previous component such that some
zero loading weights become non-zero. For the data sets we are using in this paper the changes in regression
coefficients are very small with or without re-orthogonalization, and the predictions are equal since the

non-orthogonalized and orthogonalized loading weights span the same predictor space.

Instead of applying hard thresholding, where inliers are set to zero and outliers are kept as they are, it
could be valuable to shrink according to the probability of being an inlier or outlier. Such a soft shrinkage
could be 1 — P(x; = inlier), but estimating this probability would require estimates of the distributions
of the outliers. Instead we apply a cumulative distribution function on the observed variables and rescale
so that the median is given weight 0 and the largest outlier is given weight 1. As this strategy gives
rather poor distinction between inliers and outliers we introduce a parameterized version of these weights

to produce weights that are closer to a hard cut-off as illustrated in Figure 2.
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Figure 2: Transformation of scaled weights for gradually steeper transition between inliers and outliers.
For this example the weight corresponding to the cut-off between inliers and outliers is set to 0.7.

3.1 Cut-off determination

In order to find cut-offs between inliers and outliers an estimate of the central normal distribution of
inliers is needed. Since the distribution is centered in zero the distribution will be fully characterized by
an estimate of its variance. In order to distinguish the central noise distribution from the non-central
distributions of the informative outliers, a mixture model approach could be adopted. For instance, [13]
presented a mixture model approach for sample size determination with false discovery rate control for
high-throughput data problems, and a similar approach could be adopted here. However, estimating a set
of central and non-central distributions involves iterative procedures (like the EM-algorithm) which would
seriously slow down the fitting process of the PLS regression model. Further, only the variance of the
central noise distribution is needed, not the properties of the non-central distributions.

A similar problem arises in the analysis of saturated ANOVA models for 2*-designs without replicates.
Then all degrees of freedom are consumed in the estimation of the effects and no conventional error variance
estimate can be computed. Still, all effect estimates have the same variance, but a set of non-important
effects have zero-expectation. From these a variance estimate for significance testing can be found by the
method presented by Lenth [11]. In order to estimate the variance Lenth uses the fact that the standard
deviation of a central normal distribution is tightly connected to the median of the absolute value of
the random variable. Since the median is rather robust against the influence from outliers, this variance
estimate will be only moderately affected by the outliers as long as the majority of the effects (or loading
weights in our case) are samples from the central noise distribution. In the setting of this paper the

approach of Lenth can be described as follows:

Let wn,ws, ..., w, represent the loading weights computed from the p X-variables at step a of the PLS
algorithm. Further, define sop = 1.5 - median |wg| for kK = 1,...p. Tt can be shown that s¢ is a fairly good
estimate of the standard deviation of the normal distribution of the inliers. In order to make it even more
robust and less biased Lenth recommends to make the final estimate, the pseudo standard error (PSE),
based on a set of inlying values only:

PSE =1.5- median |wy]|.
\wk\<2.5~50

Lenth argues that if the wy are realizations of a N(0,72) random variable W, the median of |W| is
approximately 0.6757, implying that 1.5 x median |W| = 1.017. And since Pr(|W| > 2.57) = 0.01, the



PSE is roughly consistent for 1.5 times the 0.495th quantile of |W|, which is 1.5 x 0.6657 ~ 7.

The PSE can be combined with a Student t quantile of d = p/3 degrees of freedom to give a conservative
margin of error (ME) for confidence intervals: ME = t¢.g75.4 - PSE (95% confidence). However, in high-
throughput data problems the degrees of freedom will usually be large, and percentiles from the standard
normal distribution may be used instead. In the PLS algorithm the cut-offs are thus defined by the limits
of a (1 — «)100% confidence interval around the median loading weight with margins of error as described

above: median(w) + M E, for some chosen confidence level (1 — ).

If there is a large asymmetry in the number of positive and negative outliers, the skewness in the distribution
of w may cause ME to be slightly inflated causing a potential loss of informative outliers detected in the
lighter tail. This can be avoided by estimating the margin of error separately for positive and negative
loading weights. This is accomplished by first finding s, and PSE~ using the absolute values of the
negative weights and then computing the marginal error M E~ for the lower tail. Then the same exercise
is conducted for the positive loading weights finding si’, PSE™ and finally M E* for the upper tail. Finally,
the cut-offs are defined by ME = min(ME~, ME™"). The increased flexibility can improve the estimation
of boundaries between inliers and outliers when there is asymmetry in the distributions. In the rest of this

paper we refer to truncation using Lenth’s methods as Lenth.

3.2 Outlier detection by qq-plots

An alternative to the above strategy is to use a qg-plot (quantile-quantile plot) as basis, extending an
interval around the median value of w, minimising the mean squared error (MSE) to the line going
through selected quantiles (qq-line), e.g. the 25-th and 75-th percentile of the Student t distribution or
normal distribution, see Figure 3. To favour solutions having many inliers the MSE is weighted with the

ratio between the total number of points and the number of non-informative inliers (72t). Alternatively

one can favour solutions with few informative outliers with MSEs that are not significantly worse than
the minimum MSE. Utilizing functions based on golden section search with parabolic interpolation, or
similar, the MSE minimization can be solved quickly as a linear search, or a series of such in cases of
asymmetry. Visualisation of the sorted w vector plotted against the final distribution, e.g. Figure 3, can

aid in validating and justifying the final truncation.
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Figure 3: qqg-plot of the first vector of loading weights (colon cancer data) against a Student t distribution
with 22 pseudo degrees of freedom. Small dots indicate outliers while larger dots indicate inliers. The line
going through the 20-th and 80-th percentiles is indicated in dot-dashed form.



When using a Student-t distribution the number of degrees of freedom needs to be specified. Calculating
exactly how many degrees of freedom that are consumed by a PLS component is not trivial, but a rough
estimate is the following leverage-based estimate (pseudo degrees of freedom): . m.%i(tg), where t, is
the a-th PLS-score vector and 7 is the sample number. As the truncation is robust to Ehanges in number
of degrees of freedom, we do not need the exact degrees of freedom. Note that the number of degrees
of freedom consumed will change after truncation. In the rest of this paper we refer to truncation using

qq-plots as qq-line.

Note that for both the Lenth and the qg-line method the number of variables selected as informative
may vary from one component to another. Furthermore, the same variable may be selected in several
components. Hence, the total number of selected variables may not be set exactly, but can be to some
extent controlled by the number of PLS-components and the chosen width of the interval around the

median weight.

3.3 Reference methods

The truncation procedures are compared to ST-PLS, Elastic net, variable selection by VIP and SR, and
PLS without any modifications. This is a small subset of representative methods. For more PLS based
variable selection methods we recommend the papers of Mehmood et al. [14] and Roger et al [15]. To
make comparisons fair we optimize each method separately with regard to classification/prediction. The
performance of each method is evaluated on test set data or by cross-validation in terms of classification
errors for the classification problems and root mean square error of prediction (RMSEP) for the prediction
problems. With the Elastic net the optimization is performed over a reasonable grid of ridging values (0.1
to 1, where the value 1 gives the Lasso) and L; shrinkages (automatically chosen [16]). The shrinkage of
ST-PLS is varied over a relevant range (0.05 to 0.95), and the cut-off for VIP is varied from 0.8 to 1.2 [17].
For SR we optimize the cut-off between 0.05 and 0.5, as the cut-off suggested by the authors (0.5) selects
too few variables to obtain good predictions on the data sets tested in this paper. Because there are so

many models, not all parameter combinations will be reported.

There are several sparse PLS regression methods to chose between, but we found that their resulting
variable selections were quite similar, especially when optimizing the sparseness parameter with regard to
prediction. We have selected ST-PLS [6] as a common representative, though any of [7, 18, 19] would have

been a good alternative.

In addition to the results associated with parameters giving the lowest prediction errors we will present
models that have slightly higher prediction errors but give more sparse loading weights and regression
coefficients (simplified models). For the data sets where repeated cross-validation is used, the simplified
models should have no more than one standard error higher prediction error, while for the data sets where
test set prediction is used common additions to the error of 0.001 and 0.01 are used (see the Results
section).



4 Examples

4.1 Data sets

The distribution based truncation method for variable selection is compared to the reference methods
on both a set of real data sets and to simulated data. These data sets represent a wide range of high-
dimensional data types with different properties, and the results will be discussed in light of these. In
order to summarize the data properties we use the approach of Helland and Almgy [20] and Saebg et al. [6]
who study the eigenvalue structure of the sample covariance matrix of the predictors and the covariance
between the principal components and the response. In the following we refer to the latter property as the
relevance of a latent component, following the notation of Nees and Helland [21]. We summarize the data
structures in eigenvalue-covariance plots. Helland and Almgy [20] conclude in their study that prediction,
using PLSR methods at least, is most difficult in cases where there are irrelevant components having large
eigenvalues, or contrary, if there are relevant components having small eigenvalues. In these cases we

therefore expect that variable selection methods based on latent components will be less favourable.

4.1.1 Simulated data

These are simulated data containing two correlating, informative features and a variable number of unin-
formative variables as described in [22, 23]. The total number of variables range from 100 to 20 000, and
the number of observations in each of two classes are 100 and 50 for the calibration and validation data,
respectively. The simulation study is replicated exactly to be comparable to the papers it has appeared in

previously.

4.1.2 Colon cancer data

These are expression levels of 2000 genes on 62 patients as presented by Alon et al. [24]. Among the
patients 20 were healthy while 42 had colon cancer. As can be seen from Figure 4 there are several large
eigenvalues which indicate several directions in the predictor space of large variance. At the same time
these directions appear to be relevant for prediction by having large covariances with the response. Hence,

prediction using PLS based methods should be relatively easy, but might require a few components.

4.1.3 Prostate cancer data

These are expression levels of 12600 genes on 102 patients as presented by Singh et al. [25]. Among
the samples 52 were tumor specimens and 50 were normal. From Figure 4 we observe a rapid drop in
eigenvalues implying strong dependence between the predictor variables. However, some directions of small
variability (small eigenvalues) have some of the largest covariances with the response. This is an example
of a data set where there are relevant components with small eigenvalues which according to Helland and
Almgy [20] is not favourable for PLS prediction. We therefore expect that the PLS-based variable selection

methods will not perform well for this data set.
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4.1.4 Fish oil data

These are Raman spectra from 45 oil samples extracted from farmed salmon (Salmo salar) [26]. Raman
spectroscopy with a UV laser has been conducted. As a fat indicator the iodine value has been chosen
as the response for regression. The spectra are pre-processed by asymmetric least squares [27] (A = 7,
p = 0.11 [28]) wrapped in a customized baseline correction [29] to reduce baseline flexibility under a broad
cluster of peaks. The spectra have been cut down to 2263 wavlengths to remove artifacts at the ends of
the spectra. These data have a structure resembling the colon data with several directions in the predictor
space with high variability and high relevance. Prediction should be relatively easy using a few components
in the PLS model.

4.1.5 Milk protein data

These are matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectra from 45 milk
mixtures (x 4 spot replicates) of cow, goat and ewe milk [3]. Another set of 45 mixtures from a technical
replicate is used as validation data. Spectral values from 5000 m/z to 20000 m/z (6179 variables) are
used for predicting the percentage of cow milk in the mixtures, i.e. the degree of adulteration. If the
truncation procedure is plugged into canonical PLS (CPLS) [30], the percentage of goat and ewe milk can
be used as additional responses to obtain more parsimonious solutions. The eigenvalues for these data
imply strong variable dependence with one or two relevant components. Prediction should be quite easy

with few components using PLS regression.

11
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Figure 4: Summaries of data properties for the real data sets. Eigenvalues of the sample covariance matrix
(scaled by the largest) are marked by the height of bars. Covariances (scaled by the largest) between
principal components and the response are marked by red dots.

4.2 Results
4.2.1 Simulated data

Following the proposed simulation scheme of [22] as was done with PLS and sPLS in [23], we obtain the
results shown in Figure 5. Choosing two different widths of the confidence intervals of Lenth’s method we
find classification errors almost identical to what was shown using sPLS and greatly improved compared
to the conventional PLS regression. However, the widest Lenth confidence interval (99.9 %) gives almost
perfect classification regardless of number of uninformative variables. These optimistic results are caused
by a simulation procedure that highly favours sparse modelling methods, and so should not be over-

interpreted.
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Figure 5: Classification error of two class simulated data. Two regressor variables are informative for the
regressand variable, while the total number of regressor variables are indicated on the first axis as p.

4.2.2 Colon cancer data

Figure 6a shows the average classification error of patients from 200 random 10-fold cross-validations [31].
Linear discriminant analysis with empirical priors is used for the classification. It is evident that one
component is not enough to obtain good classification regardless of the PLS method used. Elastic net
performs approximately at the same level as the one-component PLS variants. The ST-PLS and qqg-line
Truncation-PLS have the best combinations of few non-zero variables and low classification error (bottom
left corner of the figure). The VIP ans SR methods with two and three PLS components have a slightly

worse combination of sparseness and error, together with Lenth and Weighted Lenth.

We also observe that choosing a model with slightly higher error than the best model can greatly reduce
the number of non-zero variables, especially for Lenth’s method. Depending on the aim of the analysis, e.g.
variable selection or stable predictions, the choice of truncation type and parameter settings may differ,

especially since all the presented models using two and three components lie within a 1% error margin.

The most sparse two component models (average number of non-zero variables in parentheses) are ST-
PLS (74, simplified model), qq-line (171), Lenth (243) and ST-PLS (294). All of these models have a
higher average precision compared to the ordinary two component PLS solution, and are very close to the

precision of the three component PLS solution.

4.2.3 Prostate cancer data

Figure 6b shows the average classification error of patients from 100 random 10-fold cross-validations. We
observe that the best predictions are found when using 5 component PLS models with variable selection
by SR. Following closely is the Elastic net. Both of these methods give very sparse solutions. There is
almost a 2% gap down to the rest of the methods. Here variable selection by VIP, qg-line (simplified
model), ST-PLS and Lenth give the most sparse solutions while Weighted Lenth gives marginally better

classification.

For this data set it seems that the small variation in the discriminating information favours Elastic net
and SR while the sparse PLS methods and VIP obtain proportions correctly classified similar to only using
PLS with all variables.
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(a) Colon cancer micro-array — classification using LDA.
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(c) Fish oil Raman data — prediction of iodine.

Full PLSR: 1 comp.: 2.70, 2 comp.: 1.68, 3 comp.

(dashed lines).
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(b) Prostate cancer micro-array data — classification using
LDA.
Full PLS-DA: 5 comp.: 0.078, 10 comp. 0.0825 (dashed
lines).
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(d) Milk protein MALDI-TOF data — prediction of adul-
teration.

Full PLSR: 1 comp.: 0.103, 2 comp.: 0.074, 3 comp.: 0.078
(dashed lines).

Figure 6: Repeated random 10-fold cross-validated classification (subfigures a and b) and test set pre-
dictions (subfigures ¢ and d) using varying numbers of PLS components. The symbols indicate different
variable selection strategies and their numbers of components. Black symbols are associated with the
parameters giving the highest precision, while red symbols indicate models using fewer variables while

retaining most of their precision.
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4.2.4 Fish oil data

In Figure 6¢ we see the results of test set predictions using the same methods as above. Parameters have
been chosen by cross-validation. The best combination of prediction and sparseness is observed for Lenth
and ST-PLS. Precisions of these predictions are much better than only using PLS. The RMSEP values
from Elastic net are somewhere between the one component PLS models and the two/three component
models. As the parameters and simplifications are chosen on the cross-validation results, we observe both
reductions and increases in RMSEP when using simplified models.

4.2.5 Milk protein data

In addition to comparison with the reference methods this data set is included both to show how one can
obtain parsimonious models by plugging the truncation algorithm into a different NIPALS algorithm, the
canonical PLS, and to show how interpretation of spectral data can be made easier by imposing sparseness.
The CPLS algorithm differs from the regular PLS in the way that additional sample information (like design
variables) may be included as extra response variables to stabilize the extraction of the latent components.
This has the typical effect that the number of components is reduced compared to PLS regression. As
mentioned in the description of the data the percentage of goat and ewe milk was included as additional
responses in the analysis of the cow milk data. In Figure 6d we see the results of test set predictions
using the same methods as above. Parameters have been chosen by cross-validation. Here Elastic net
is the winner considering the combination of prediction and sparseness. However, prediction-wise the
other methods are very close behind. Among the PLS based methods, Lenth has the best combination of
prediction and sparseness, having marginally better prediction than Elastic net using less than 1/6 of the

variables with the simplified model.

Figure 7 shows the prediction error of PLS and CPLS regression used separately and combined with a
pre-chosen truncation (99.9 % confidence interval (Lenth’s method) with sharp cut-off). We observe that
for models using few components truncation has no effect on prediction with PLS, but gives a minor
improvement when combined with CPLS. Also, CPLS has much lower prediction error for one and two
component models. Looking only at prediction, the best balance between prediction error and complexity

is a two component CPLS model with truncation.
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Figure 7: Prediction of cow milk proportions in milk mixtures from MALDI-TOF spectra (left) and
the number of non-zero variables per component/in total using truncation (right). The total number of
variables was 6179.

In Figure 8 we see the first two vectors of loading weights from PLS and CPLS regression with and

without truncation. The contrast is high with a high level of noise in the upper spectra and only a few

remaining peaks in the lower spectra. Here the truncated spectra seem to have an advantage when used

for interpretation and protein assignment.
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Figure 8: Loading weight vectors from MALDI-TOF spectra of milk (two first components). The top
spectra come from ordinary PLS, the middle spectra from CPLS, while the bottom spectra come from
truncated CPLS with truncation parameters selected to reflect a typical choice applicable for many types

of data.
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5 Discussion

Through this paper we have formalised some aspects of the family of sparse PLS methods. Firstly we have
have justified truncation of loading weights through the central limit theorem and the distributions of
loading weights with no correlation to the response. Secondly we have proposed a new truncation founded
on classical statistical asymptotic principles. This is introduced through a novel application of Lenth’s
theory for creating confidence intervals in saturated ANOVA models for 2¥-designs without replicates. The
effect is that the user only has to choose a significance level for the confidence interval, resulting in a less

ad hoc approach.

Truncation in this paper is achieved using a general and flexible plug-in which can easily be adjusted and
implemented also in other projection based methods like PCA [32], ICA [33], PCR, CPLS and PPLS.
PLS regression is an iterative algorithm and component wise truncation will inevitably slow down the
algorithm, but Lenth’s method is extremely quick, i.e. there is a minimal lag compared to just running
regular PLSR. The alternative approach based on the qg-line is also quite quick, and appears to give
slightly better results in some situations.

With regard to prediction performance the truncation PLS is mostly on par with ST-PLS, sometimes
a little better, sometimes a little worse. As with all statistical methods, this is highly data dependent.
However, there are few parameters to tune and they have statistical interpretations. For the data sets
included in this paper we see that Elastic net sometimes performs significantly better than the sparse PLS
methods, while it trails behind when used on other data sets. This is also the case for the variable selection
by Selectivity Ratio plots and to some extent the Variable Influence on Prediction method. The Lasso
was also tested with the included data sets, but being a special case of the Elastic net it never performed
better in practice. But prediction is not the only goal for a statistical method. The truncation methods
have also shown consistent good results, are based on intuitive theory, are quite robust to the choice of

parameters and are extremely quick.

The performance of the various methods may to some extent be explained by the structure of the data.
The PLS-based methods perform relatively better when there are many directions in the predictor space
with both a high variance (high eigenvalue) and a high relevance. This was the case for both the colon
cancer data and the fish oil data, and here also the PLS-based variable selection methods performed well,
with the new truncation method and ST-PLS slightly ahead of the others. For the prostate data these
methods performed worse, and this result confirms the expectations based on the data properties that
PLS methods have trouble making good predictions for this kind of data where there are directions in the
predictor space of low variance, but with high relevance. However, an exception is the SR method based
on the 5 component PLS model. This can be explained by the fact that the SR method is adjusted to be
more favourable than ordinary PLS when there are variables with low variances, but with high correlations
with the response [9]. This is exactly what is the case here according to Figure 4. Apparently the elastic
net has a similar behaviour, which can be explained by the fact that this method, like the ordinary least
squares, gives higher weight to variables with high correlations to the response, as opposed to the more
covariance-focused PLS. The results indicate that in cases where there is a strong correlation structure in
the data (prostate cancer data and milk protein data) the elastic net is a good choice of method for variable
selection. When choosing a method for analysis and variable selection it may therefore be worthwhile to

study the data properties in terms of eigenvalues and component-response covariances.
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One side-effect of applying truncation to vectors of loading weights is that they are no longer orthogonal.
In most applications, small deviations from orthogonality can be disregarded. However, when orthogonal
vectors of loading weights is important, a re-orthogonalization step can be included after the truncation,
forcing the current vector of loading weights to be orthogonal to the previous vectors extracted. The
down-side to this is that shadow effects from previous loading weights may appear in the re-orthogonalized
loading weights, causing zero weights of regressors already used in previous components to become non-
zero. For the data sets we have used in this paper, the shadow effect was so small that they were invisible
in plots, and only appeared a few times in measurable sizes. The total number of non-zero regression

coefficients should not be affected.

A note should be made on the different roles of the X loading weights, w,, and the X loadings, p,. It
is important to remember that the loading weights contain the covariance information between Xy, 1,
and Yy,_1y (the first eigenvector of the covariance matrix if ¥ is multi response) and give us the weights
that each explanatory variable has when creating scores and loadings. The scores, t,, are just linear
combinations of the explanatory variables weighted by the loading weights. The loadings, however, are
found by projecting each explanatory variable of X, 1y on the scores, t,. Loading weights and loadings
can look quite similar when no truncation has been applied, especially for spectroscopic data. With
truncation, however, the loading weights obtain a lot of “zero holes”, while the loadings retain a more
continuous shape (at least for spectroscopic data). The upshot is that fully truncated variables are not
completely lost, and their role in the system may be interpreted graphically since their loadings are intact.
Depending on the application, either loading weights or loadings can be interpreted, having roles similar

to the regression coefficients with and without "zero holes”.

In some applications it may be interesting to apply truncation without ending up with zeros in the resulting
regression coefficients, analogous to focusing on loadings instead of loading weights. This can be justified by
the need to remove noise in the computation of PLS components and at the same time producing continuous
regression coefficients. From the early days of PLSR we find approximate estimates of regression coefficients
that produce the desired effect. Two alternatives have been proposed. Firstly the approximated regression
coefficients can simply be estimated by the product of the X and y loadings: BT = P¢'. A more elaborate
strategy is to produce new approximated X scores, y loadings and regression coefficients by full projection
on the X loadings: T* = XP(P'P)~!, ¢* = /T*(T*'T*)~', and finally: * = P¢*. Both strategies will

produce regression vectors without ”zero holes”.
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