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Distribution based trun
ation for variable sele
tion in subspa
emethods for multivariate regressionAbstra
tAnalysis of data 
ontaining a vast number of features, but only a limited number of informative ones,requires methods that 
an separate true signal from noise variables. One 
lass of methods attemptingthis are the sparse partial least squares methods for regression (sparse PLS). This paper aims atimproving the theoreti
al foundation, speed and robustness of su
h methods. A general justi�
ationof trun
ation of PLS loading weights is a
hieved through distribution theory and the 
entral limittheorem. We also introdu
e a qui
k plug-in based trun
ation pro
edure based on a novel appli
ationof theory intended for analysis of varian
e for experiments without repli
ates. The result is a versatileand intuitive method that performs 
omponent-wise variable sele
tion very e�
iently and in a less adho
 manner than existing methods. Predi
tion performan
e is on par with existing methods, whilerobustness is ensured through a better theoreti
al foundation.1 Introdu
tionOne of the major 
hallenges in re
ent and 
oming data analysis is the ever in
reasing number of variablesre
orded for ea
h sample. The data matri
es be
ome wider and wider. Be
ause of instrumental noise,biologi
al noise and other un
ontrollable variations in the re
orded signal, variables that should have nosignal for a given sample, or be equal a
ross samples, almost never show a zero signal in the �nal 
entreddata set. And di�eren
es between two signals that should be zero are seldom zero in pra
ti
e. Sin
epredi
tive multivariate methods like partial least squares regression (PLSR) [1℄ in their basi
 forms takeinto a

ount all variables, the sheer number of non-zero noise variables will often over-shadow the truesignal.Various forms of variable sele
tion approa
hes have been proposed in the 
ontext of regression. Variablesele
tion 
an also play a role in �nding important variables in explorative studies, with the purpose ofstabilizing the regression modelling and improving its predi
tive ability and interpretability. Sometimes theaim is to �nd whi
h variables in�uen
e a 
ertain pro
ess 
ausually, or at least 
onvey the most interestinginformation, e.g. metabolites, genes, wavenumbers, or mole
ular weights. Depending on the aim of thestudy di�erent sele
tion strategies may be favourable and the fo
us on how many variables to retain maybe di�erent.Based on ideas of 
omponent-wise variable sele
tion, sparseness and normally distributed noise we proposeto use distribution based trun
ation to identify all unimportant model parameters that are (or appear tobe) non-zero due to random errors, and for
e these towards zero. In the present PLSR 
ontext, this meansto zero out small, apparently random elements in all the loading weight ve
tors. The intension is therebyto drasti
ally redu
e the problem of non-zero noise 
ontributions. In the following se
tions we will look atsome related methods intended for the same purpose and motivate a simple, intuitive and �exible strategyfor trun
ation of non-informative variables. Appli
ations to real and simulated data and 
omparison withother methods will also be presented.
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2 Ba
kgroundA basi
 assumption in statisti
s is the 
entral limit theorem (CLT). The CLT was �rst presented byAbraham de Moivre in 1733 and has been formalised and interpreted under varying 
onditions and degreesof stri
tness ever sin
e. A simple interpretation is that as the number of observations sampled from arandom pro
ess in
reases, the distribution of the mean (and the sum) will approa
h a normal distribution.More interesting in this 
ontext is that many types of random noise are seen as approximately normallydistributed, and linear 
ombinations of su
h will tend even more towards the normal distribution. Inthis paper we propose to use the CLT to distinguish between variables with expe
ted non-zero loadingweights from the noisy variables with loading weights with a zero-expe
tation. We refer to the newmodelling prin
iple as Trun
ation-PLS in the following, and the resulting methods Trun
ation-PLSR andTrun
ation-PLS-DA are des
ribed in detail in Se
tion 3.Many approa
hes have been invented that attempt to �nd the interesting information in a 
loud of variables� the needle in the haysta
k. One of the oldest and most varied 
lass of methods for this purpose is variablesele
tion. A large proportion of these methods work univariately, evaluating single variables for in
lusionor ex
lusion. When the number of variables are 
ounted in tens or hundreds of thousands, this strategy willbe prone to spurious 
orrelations, hampered by multiple testing problems and vulnerable to low sensitivityor high false dis
overy rate. Moreover, it 
an lead to serious misinterpretation: Assume e.g. that theregressor set 
ontains both an "upstream", 
ausally important variable observed with mu
h noise and a"downstream" 
onsequential but unimportant variable observed with little noise, and that the two arestrongly inter
orrelated. Traditional stepwise variable sele
tion methods will then eliminate the 
ausallyimportant variable to redu
e the 
ollinearity.Subspa
e-based regression methods su
h as PCR and PLSR attain an impli
it variable sele
tion - notby eliminating individual variables, but by eliminating subspa
e dimensions- i.e. linear 
ombinations ofvariables. However, if the number of noisy regressor- or regressand-variables is very high 
ompared tothe number of observations, this basi
 bilinear approa
h is not good enough: The 
ombined 
ovariation
ontributions of the noisy variables prevent the bilinear regression methods from �nding a useful initialsubspa
e. Therefore, various variable sele
tion strageties have been developed also for PLSR to improvepredi
tion and to simplify interpretation, but without eliminating interesting variables just to redu
e
ollinearity.One approa
h is to redu
e small parameters towards zero by a general shrinking/expansion of the PLSloading weight elements a

ording to a 
hosen exponent (Powered PLS[2, 3℄). Another approa
h is toindu
e sparseness in the data by for
ing 
ontributions 
lose to zero to be true zeros. Examples of su
hmethods are the least absolute shrinkage and sele
tion operator (LASSO) [4℄ and its spin-o� the elasti
 net[5℄, both indu
ing 
onstraints on the L1 norm of the regression ve
tor β. The latter method also appliesridging by penalizing the L2 norm of β. For PLSR sparseness was introdu
ed by Martens & Næs (1989,p. 160), who suggested the use of rough statisti
al signi�
an
e testing of the elements in ea
h individualloading weight ve
tor, followed by a re-orthogonalization. A similar approa
h was implemented in terms ofthe soft-threshold-PLS [6℄ (ST-PLS) and sparse PLS [7℄ (sPLS). These methods apply a shrinkage towardszero to the PLS loading weights so that many 
ontributions be
ome zero. The amount of shrinkage 
anbe 
hosen to remove a 
ertain proportion of the variables or it 
an be 
hosen by some other 
riterion. Inaddition to giving a multivariate approa
h to variable sele
tion, these methods 
an also sele
t di�erentvariables in ea
h PLS 
omponent that is produ
ed. As these two methods, ST-PLS and sPLS, are very3



similar in the single response 
ase, we 
hoose to 
ompare our method to ST-PLS, as the R-implementationof this method �ts models mu
h faster than the sPLS version. We propose to 
ombine the sparseness ideaswith the distributional quality of noise in data, e.g. in PLS loading weights, to sort between noise andsignal and thereby weighting down or 
ompletely trun
ating what is 
lassi�ed as noise.In addition to several of the mentioned sparse methods we will in
lude variable sele
tion by the VariableIn�uen
e on Proje
tion [8℄ (VIP) and Sele
tivity Ratio plot [9℄ (SR) methods for 
omparison. These PLSbased methods use di�erent 
riteria for assessing the importan
e of variables in regression and 
lassi�
ation.We will not go into details about how variables are sele
ted by these methods in this paper, but in
ludethem as referen
e standards.The distribution based trun
ation approa
h to variable sele
tion adds to an already long list of methodsfor variable sele
tion. As des
ribed in this arti
le the sele
tion of variables in this approa
h is motivatedfrom a well established prin
iple in 
lassi
al statisti
s. Furthermore, there is only one tuning parameterwhi
h needs to be set for variable sele
tion, whi
h makes the method simple and easy to implement.The statisti
al foundation and the non-
omplexity of the new method makes it appealing and easy tounderstand. However, the predi
tive performan
e of predi
tion methods is typi
ally very dependent onthe properties of the data, and there is no uniformly best method for predi
tion and variable sele
tion.Therefore, it is important to expand the statisti
al toolbox, but at the same time it is important to buildan understanding of when the various methods work best. In order to do this we 
ompare the predi
tiveperforman
e of the various methods and attempt to interprete the results in light of the multivariateproperties of the data.3 MethodsDistribution assumptionsIn the following the Trun
ation-PLS is based on loading weights from PLS regression, though the 
on
eptis appli
able also to regular regression 
oe�
ients. Further, the approa
h 
ould similarly be applied tosele
t Y variables, or to PLS s
ores in order to eliminate non-informative samples, but these aspe
ts arenot 
overed in this paper. When re
ording output from some kind of spe
tros
opi
/-metri
 instrumentwe expe
t that the absen
e of a signal results in white (non-informative) noise, while the presen
e of asignal will produ
e a systemati
 deviation from randomness. The same applies to other types of data, e.g.mi
ro arrays, but the distribution of the noise varies. When 
reating ve
tors of loading weights in PLS, we
ompute the �rst eigenve
tor of the matrix produ
t X′
{a−1} ·Y{a−1} (for 
omponent number a). If a givenX-variable is un
orrelated with the response variable(s) (for possibly de�ated matri
es) the loading weightfor this variable will be a sum over n equally distributed random variables, and by the CLT it will thereforerepresent random normal noise, at least approximately. For X-variables 
orrelated to the response variablethe theoreti
al distributions of ea
h loading weight will also be asymptoti
ally normal distributed, but withnon-zero mean. However, as the 
orrelation in
reases the distributions will be in
reasingly skewed. Asthe true 
orrelation between an X-variable and the response approa
hes 1, the limiting distribution of the
orresponding loading weight will be a 
hi-square distribution with non-zero expe
tation. In Figure 1 (left)the theoreti
al distributions of three non-normalized loading weights (sample size n=20) are illustrated;a 
entred normal distribution for an un
orrelated X-variable, and two skewed distributions for two X-variables with 
orrelation -0.6 and 0.6 with the response, respe
tively. In this �gure the distributions have4



been weighted to re�e
t a situation where 70% of the variables are distributed a

ording to the 
entralnoise distribution and 30% are 
orrelated with the response with either the -0.6 or the 0.6 
orrelation.In a real data appli
ation the loading weights of the informative X-variables will follow di�erent skeweddistributions. The sample distribution of the weights will therefore represent a mix of several theoreti
aldistributions and not just three as used in Figure 1 (left). An example of a sample distribution of loadingweights is given in Figure 1 (right). The main obje
tive in Trun
ation-PLS is to �nd lower and upper
ut-o�s between whi
h it is assumed that the majority of the loading weights represent noise variables.Hen
e, the problem boils down to �nding an estimate of the 
entral normal distribution of loading weights(or at least sele
ted per
entiles) in order to distinguish this from the skewed distributions.
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Figure 1: Left: Simulated theoreti
al distributions of loading weights from X variables with no 
orrelationto the response (red 
urve, 70% 
entred around 0), and 
orrelation of -0.6 and 0.6, respe
tively (blue
urves, 15% ea
h, 
entred around -12 and 12, respe
tively). Right: Histogram of normalized loadingweights (milk protein data) illustrates the distributional 
hara
ter of the noninformative loading weights.The red verti
al lines indi
ate the 
ut-o�s between inliers and outliers.To 
onform to the 
lassi
al CLT the observations would need to be independent, but this is not always truein pra
ti
e. However, CLT theory also exist for observations having weak dependen
e, and we will only
onsider the variables where we do not expe
t any information to be present, supporting independen
e ofthese variables.AlgorithmThe idea presented in Se
tion 2 lays the ground for a wide range of possible implementations for 
lassifyingdata as noise or signal based on their distribution. In prin
iple, the trun
ation may be applied to severaldi�erent model parameter types - to obje
t s
ores in Y or X, to Y-loading weights and to X-loading weights.In this paper we fo
us on the trun
ation of the X-loading weights, 
alled w in the nomen
lature of [10℄.The main approa
h will be to make a 
on�den
e interval around the median value of a sorted ve
tor, e.g.PLS loading weights, and trun
ate or down-weight everything that falls inside the interval, see Algorithm1. The width of the 
on�den
e interval will be estimated using theory from Lenth [11℄. A se
ond approa
hwill be to make use of a qq-plot, 
lassifying variables 
lose to the straight line going through a 
hosen pairof quantiles as inliers. Alternatively one 
ould adapt a normal or Student t distribution to the same ve
torby dire
t �tting to the sele
ted distribution, but this 
an be a time 
onsuming and unstable pro
edure.The variations have in 
ommon that outliers are 
onsidered true information, while observations withina 
ertain range of the distribution are 
lassi�ed as noise. In the histogram of loading weights in Figure1 (right) the estimated 
ut-o�s between inliers and outliers are indi
ated. The general distribution basedtrun
ation algorithm is as follows: 5



Algorithm 1 General distribution based trun
ation for a given 
omponent
• Input 
andidate loading weight ve
tor w to be trun
ated.
• Sort w ⇒ ws.
• Either� 
ompute a 
on�den
e interval around the median of ws, or� �t a line through quantiles around the median of ws.
• Classify outliers as real, informative 
ontributions and inliers as noise.
• Trun
ate inliers.In pra
ti
e the distribution based trun
ation 
an be plugged into the NIPALS [12℄ algorithm or kernel basedalgorithms as a 
omponent-wise pro
essing of the 
andidate PLS loading weights to impose sparseness onthe variables, or even trun
ate the s
ores to impose sparseness on the obje
ts. In this paper we limitthe appli
ations to the single response 
ase, but the pro
edures are equally relevant in multi-responseproblems, as well as other multivariate methods like LPLS, PCA, ICA and CCA. Trun
ation of loadingweights will be relevant for most appli
ations as it is more likely that some variables do not 
ontributeto a 
omponent than that a set of obje
ts do not 
ontribute. When trun
ating only loading weights, thefollowing 
omputation of s
ores ensures that loading weights and s
ores re�e
t the same information. Ifs
ores are trun
ated, this will not be re�e
ted in the information of the loading weights, meaning that are-
omputation of loading weights and s
ores may be ne
essary based on the trun
ation generated fromthe s
ores, or loading weights have to be disregarded when analysing the resulting model. As suggested byMartens & Næs, one 
ould also re-orthogonalize the ve
tors of loading weights if orthogonality is 
onsideredimportant. Re-orthogonalization may introdu
e shadowing e�e
t from previous 
omponent su
h that somezero loading weights be
ome non-zero. For the data sets we are using in this paper the 
hanges in regression
oe�
ients are very small with or without re-orthogonalization, and the predi
tions are equal sin
e thenon-orthogonalized and orthogonalized loading weights span the same predi
tor spa
e.Instead of applying hard thresholding, where inliers are set to zero and outliers are kept as they are, it
ould be valuable to shrink a

ording to the probability of being an inlier or outlier. Su
h a soft shrinkage
ould be 1 − P (xj = inlier), but estimating this probability would require estimates of the distributionsof the outliers. Instead we apply a 
umulative distribution fun
tion on the observed variables and res
aleso that the median is given weight 0 and the largest outlier is given weight 1. As this strategy givesrather poor distin
tion between inliers and outliers we introdu
e a parameterized version of these weightsto produ
e weights that are 
loser to a hard 
ut-o� as illustrated in Figure 2.
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Figure 2: Transformation of s
aled weights for gradually steeper transition between inliers and outliers.For this example the weight 
orresponding to the 
ut-o� between inliers and outliers is set to 0.7.3.1 Cut-o� determinationIn order to �nd 
ut-o�s between inliers and outliers an estimate of the 
entral normal distribution ofinliers is needed. Sin
e the distribution is 
entered in zero the distribution will be fully 
hara
terized byan estimate of its varian
e. In order to distinguish the 
entral noise distribution from the non-
entraldistributions of the informative outliers, a mixture model approa
h 
ould be adopted. For instan
e, [13℄presented a mixture model approa
h for sample size determination with false dis
overy rate 
ontrol forhigh-throughput data problems, and a similar approa
h 
ould be adopted here. However, estimating a setof 
entral and non-
entral distributions involves iterative pro
edures (like the EM-algorithm) whi
h wouldseriously slow down the �tting pro
ess of the PLS regression model. Further, only the varian
e of the
entral noise distribution is needed, not the properties of the non-
entral distributions.A similar problem arises in the analysis of saturated ANOVA models for 2k-designs without repli
ates.Then all degrees of freedom are 
onsumed in the estimation of the e�e
ts and no 
onventional error varian
eestimate 
an be 
omputed. Still, all e�e
t estimates have the same varian
e, but a set of non-importante�e
ts have zero-expe
tation. From these a varian
e estimate for signi�
an
e testing 
an be found by themethod presented by Lenth [11℄. In order to estimate the varian
e Lenth uses the fa
t that the standarddeviation of a 
entral normal distribution is tightly 
onne
ted to the median of the absolute value ofthe random variable. Sin
e the median is rather robust against the in�uen
e from outliers, this varian
eestimate will be only moderately a�e
ted by the outliers as long as the majority of the e�e
ts (or loadingweights in our 
ase) are samples from the 
entral noise distribution. In the setting of this paper theapproa
h of Lenth 
an be des
ribed as follows:Let w1, w2, ..., wp represent the loading weights 
omputed from the p X-variables at step a of the PLSalgorithm. Further, de�ne s0 = 1.5 ·median |wk| for k = 1, ...p. It 
an be shown that s0 is a fairly goodestimate of the standard deviation of the normal distribution of the inliers. In order to make it even morerobust and less biased Lenth re
ommends to make the �nal estimate, the pseudo standard error (PSE),based on a set of inlying values only:
PSE = 1.5 · median

|wk|<2.5·s0
|wk|.Lenth argues that if the wk are realizations of a N(0, τ2) random variable W , the median of |W | isapproximately 0.675τ , implying that 1.5 × median |W | ≈ 1.01τ . And sin
e Pr(|W | > 2.5τ) ≈ 0.01, the7



PSE is roughly 
onsistent for 1.5 times the 0.495th quantile of |W |, whi
h is 1.5× 0.665τ ≈ τ .The PSE 
an be 
ombined with a Student t quantile of d = p/3 degrees of freedom to give a 
onservativemargin of error (ME) for 
on�den
e intervals: ME = t0.975;d · PSE (95% 
on�den
e). However, in high-throughput data problems the degrees of freedom will usually be large, and per
entiles from the standardnormal distribution may be used instead. In the PLS algorithm the 
ut-o�s are thus de�ned by the limitsof a (1−α)100% 
on�den
e interval around the median loading weight with margins of error as des
ribedabove: median(w)±ME, for some 
hosen 
on�den
e level (1− α).If there is a large asymmetry in the number of positive and negative outliers, the skewness in the distributionof w may 
ause ME to be slightly in�ated 
ausing a potential loss of informative outliers dete
ted in thelighter tail. This 
an be avoided by estimating the margin of error separately for positive and negativeloading weights. This is a

omplished by �rst �nding s−0 and PSE− using the absolute values of thenegative weights and then 
omputing the marginal error ME− for the lower tail. Then the same exer
iseis 
ondu
ted for the positive loading weights �nding s+0 , PSE+ and �nallyME+ for the upper tail. Finally,the 
ut-o�s are de�ned by ME = min(ME−,ME+). The in
reased �exibility 
an improve the estimationof boundaries between inliers and outliers when there is asymmetry in the distributions. In the rest of thispaper we refer to trun
ation using Lenth's methods as Lenth.3.2 Outlier dete
tion by qq-plotsAn alternative to the above strategy is to use a qq-plot (quantile-quantile plot) as basis, extending aninterval around the median value of ws minimising the mean squared error (MSE) to the line goingthrough sele
ted quantiles (qq-line), e.g. the 25-th and 75-th per
entile of the Student t distribution ornormal distribution, see Figure 3. To favour solutions having many inliers the MSE is weighted with theratio between the total number of points and the number of non-informative inliers (ntot

nin
). Alternativelyone 
an favour solutions with few informative outliers with MSEs that are not signi�
antly worse thanthe minimum MSE. Utilizing fun
tions based on golden se
tion sear
h with paraboli
 interpolation, orsimilar, the MSE minimization 
an be solved qui
kly as a linear sear
h, or a series of su
h in 
ases ofasymmetry. Visualisation of the sorted w ve
tor plotted against the �nal distribution, e.g. Figure 3, 
anaid in validating and justifying the �nal trun
ation.

−0.05 0 0.05 0.1
−4

−3

−2

−1

0

1

2

3

4

S
tu

de
nt

 t 
di

st
rib

ut
io

n 
(2

2 
ps

eu
do

 d
f)

Sorted loading weightsFigure 3: qq-plot of the �rst ve
tor of loading weights (
olon 
an
er data) against a Student t distributionwith 22 pseudo degrees of freedom. Small dots indi
ate outliers while larger dots indi
ate inliers. The linegoing through the 20-th and 80-th per
entiles is indi
ated in dot-dashed form.8



When using a Student-t distribution the number of degrees of freedom needs to be spe
i�ed. Cal
ulatingexa
tly how many degrees of freedom that are 
onsumed by a PLS 
omponent is not trivial, but a roughestimate is the following leverage-based estimate (pseudo degrees of freedom): ∑
i

t
2

a

max
i

(t2
a
) , where ta isthe a-th PLS-s
ore ve
tor and i is the sample number. As the trun
ation is robust to 
hanges in numberof degrees of freedom, we do not need the exa
t degrees of freedom. Note that the number of degreesof freedom 
onsumed will 
hange after trun
ation. In the rest of this paper we refer to trun
ation usingqq-plots as qq-line.Note that for both the Lenth and the qq-line method the number of variables sele
ted as informativemay vary from one 
omponent to another. Furthermore, the same variable may be sele
ted in several
omponents. Hen
e, the total number of sele
ted variables may not be set exa
tly, but 
an be to someextent 
ontrolled by the number of PLS-
omponents and the 
hosen width of the interval around themedian weight.3.3 Referen
e methodsThe trun
ation pro
edures are 
ompared to ST-PLS, Elasti
 net, variable sele
tion by VIP and SR, andPLS without any modi�
ations. This is a small subset of representative methods. For more PLS basedvariable sele
tion methods we re
ommend the papers of Mehmood et al. [14℄ and Roger et al [15℄. Tomake 
omparisons fair we optimize ea
h method separately with regard to 
lassi�
ation/predi
tion. Theperforman
e of ea
h method is evaluated on test set data or by 
ross-validation in terms of 
lassi�
ationerrors for the 
lassi�
ation problems and root mean square error of predi
tion (RMSEP) for the predi
tionproblems. With the Elasti
 net the optimization is performed over a reasonable grid of ridging values (0.1to 1, where the value 1 gives the Lasso) and L1 shrinkages (automati
ally 
hosen [16℄). The shrinkage ofST-PLS is varied over a relevant range (0.05 to 0.95), and the 
ut-o� for VIP is varied from 0.8 to 1.2 [17℄.For SR we optimize the 
ut-o� between 0.05 and 0.5, as the 
ut-o� suggested by the authors (0.5) sele
tstoo few variables to obtain good predi
tions on the data sets tested in this paper. Be
ause there are somany models, not all parameter 
ombinations will be reported.There are several sparse PLS regression methods to 
hose between, but we found that their resultingvariable sele
tions were quite similar, espe
ially when optimizing the sparseness parameter with regard topredi
tion. We have sele
ted ST-PLS [6℄ as a 
ommon representative, though any of [7, 18, 19℄ would havebeen a good alternative.In addition to the results asso
iated with parameters giving the lowest predi
tion errors we will presentmodels that have slightly higher predi
tion errors but give more sparse loading weights and regression
oe�
ients (simpli�ed models). For the data sets where repeated 
ross-validation is used, the simpli�edmodels should have no more than one standard error higher predi
tion error, while for the data sets wheretest set predi
tion is used 
ommon additions to the error of 0.001 and 0.01 are used (see the Resultsse
tion).
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4 Examples4.1 Data setsThe distribution based trun
ation method for variable sele
tion is 
ompared to the referen
e methodson both a set of real data sets and to simulated data. These data sets represent a wide range of high-dimensional data types with di�erent properties, and the results will be dis
ussed in light of these. Inorder to summarize the data properties we use the approa
h of Helland and Almøy [20℄ and Sæbø et al. [6℄who study the eigenvalue stru
ture of the sample 
ovarian
e matrix of the predi
tors and the 
ovarian
ebetween the prin
ipal 
omponents and the response. In the following we refer to the latter property as therelevan
e of a latent 
omponent, following the notation of Næs and Helland [21℄. We summarize the datastru
tures in eigenvalue-
ovarian
e plots. Helland and Almøy [20℄ 
on
lude in their study that predi
tion,using PLSR methods at least, is most di�
ult in 
ases where there are irrelevant 
omponents having largeeigenvalues, or 
ontrary, if there are relevant 
omponents having small eigenvalues. In these 
ases wetherefore expe
t that variable sele
tion methods based on latent 
omponents will be less favourable.4.1.1 Simulated dataThese are simulated data 
ontaining two 
orrelating, informative features and a variable number of unin-formative variables as des
ribed in [22, 23℄. The total number of variables range from 100 to 20 000, andthe number of observations in ea
h of two 
lasses are 100 and 50 for the 
alibration and validation data,respe
tively. The simulation study is repli
ated exa
tly to be 
omparable to the papers it has appeared inpreviously.4.1.2 Colon 
an
er dataThese are expression levels of 2000 genes on 62 patients as presented by Alon et al. [24℄. Among thepatients 20 were healthy while 42 had 
olon 
an
er. As 
an be seen from Figure 4 there are several largeeigenvalues whi
h indi
ate several dire
tions in the predi
tor spa
e of large varian
e. At the same timethese dire
tions appear to be relevant for predi
tion by having large 
ovarian
es with the response. Hen
e,predi
tion using PLS based methods should be relatively easy, but might require a few 
omponents.4.1.3 Prostate 
an
er dataThese are expression levels of 12 600 genes on 102 patients as presented by Singh et al. [25℄. Amongthe samples 52 were tumor spe
imens and 50 were normal. From Figure 4 we observe a rapid drop ineigenvalues implying strong dependen
e between the predi
tor variables. However, some dire
tions of smallvariability (small eigenvalues) have some of the largest 
ovarian
es with the response. This is an exampleof a data set where there are relevant 
omponents with small eigenvalues whi
h a

ording to Helland andAlmøy [20℄ is not favourable for PLS predi
tion. We therefore expe
t that the PLS-based variable sele
tionmethods will not perform well for this data set.
10



4.1.4 Fish oil dataThese are Raman spe
tra from 45 oil samples extra
ted from farmed salmon (Salmo salar) [26℄. Ramanspe
tros
opy with a UV laser has been 
ondu
ted. As a fat indi
ator the iodine value has been 
hosenas the response for regression. The spe
tra are pre-pro
essed by asymmetri
 least squares [27℄ (λ = 7,
p = 0.11 [28℄) wrapped in a 
ustomized baseline 
orre
tion [29℄ to redu
e baseline �exibility under a broad
luster of peaks. The spe
tra have been 
ut down to 2263 wavlengths to remove artifa
ts at the ends ofthe spe
tra. These data have a stru
ture resembling the 
olon data with several dire
tions in the predi
torspa
e with high variability and high relevan
e. Predi
tion should be relatively easy using a few 
omponentsin the PLS model.4.1.5 Milk protein dataThese are matrix-assisted laser desorption/ionization time-of-�ight (MALDI-TOF) spe
tra from 45 milkmixtures (x 4 spot repli
ates) of 
ow, goat and ewe milk [3℄. Another set of 45 mixtures from a te
hni
alrepli
ate is used as validation data. Spe
tral values from 5000 m/z to 20 000 m/z (6179 variables) areused for predi
ting the per
entage of 
ow milk in the mixtures, i.e. the degree of adulteration. If thetrun
ation pro
edure is plugged into 
anoni
al PLS (CPLS) [30℄, the per
entage of goat and ewe milk 
anbe used as additional responses to obtain more parsimonious solutions. The eigenvalues for these dataimply strong variable dependen
e with one or two relevant 
omponents. Predi
tion should be quite easywith few 
omponents using PLS regression.

11
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Prostate cancer data
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Fish oil data
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Milk protein data
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Figure 4: Summaries of data properties for the real data sets. Eigenvalues of the sample 
ovarian
e matrix(s
aled by the largest) are marked by the height of bars. Covarian
es (s
aled by the largest) betweenprin
ipal 
omponents and the response are marked by red dots.4.2 Results4.2.1 Simulated dataFollowing the proposed simulation s
heme of [22℄ as was done with PLS and sPLS in [23℄, we obtain theresults shown in Figure 5. Choosing two di�erent widths of the 
on�den
e intervals of Lenth's method we�nd 
lassi�
ation errors almost identi
al to what was shown using sPLS and greatly improved 
omparedto the 
onventional PLS regression. However, the widest Lenth 
on�den
e interval (99.9%) gives almostperfe
t 
lassi�
ation regardless of number of uninformative variables. These optimisti
 results are 
ausedby a simulation pro
edure that highly favours sparse modelling methods, and so should not be over-interpreted.
12
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Figure 5: Classi�
ation error of two 
lass simulated data. Two regressor variables are informative for theregressand variable, while the total number of regressor variables are indi
ated on the �rst axis as p.4.2.2 Colon 
an
er dataFigure 6a shows the average 
lassi�
ation error of patients from 200 random 10-fold 
ross-validations [31℄.Linear dis
riminant analysis with empiri
al priors is used for the 
lassi�
ation. It is evident that one
omponent is not enough to obtain good 
lassi�
ation regardless of the PLS method used. Elasti
 netperforms approximately at the same level as the one-
omponent PLS variants. The ST-PLS and qq-lineTrun
ation-PLS have the best 
ombinations of few non-zero variables and low 
lassi�
ation error (bottomleft 
orner of the �gure). The VIP ans SR methods with two and three PLS 
omponents have a slightlyworse 
ombination of sparseness and error, together with Lenth and Weighted Lenth.We also observe that 
hoosing a model with slightly higher error than the best model 
an greatly redu
ethe number of non-zero variables, espe
ially for Lenth's method. Depending on the aim of the analysis, e.g.variable sele
tion or stable predi
tions, the 
hoi
e of trun
ation type and parameter settings may di�er,espe
ially sin
e all the presented models using two and three 
omponents lie within a 1% error margin.The most sparse two 
omponent models (average number of non-zero variables in parentheses) are ST-PLS (74, simpli�ed model), qq-line (171), Lenth (243) and ST-PLS (294). All of these models have ahigher average pre
ision 
ompared to the ordinary two 
omponent PLS solution, and are very 
lose to thepre
ision of the three 
omponent PLS solution.4.2.3 Prostate 
an
er dataFigure 6b shows the average 
lassi�
ation error of patients from 100 random 10-fold 
ross-validations. Weobserve that the best predi
tions are found when using 5 
omponent PLS models with variable sele
tionby SR. Following 
losely is the Elasti
 net. Both of these methods give very sparse solutions. There isalmost a 2% gap down to the rest of the methods. Here variable sele
tion by VIP, qq-line (simpli�edmodel), ST-PLS and Lenth give the most sparse solutions while Weighted Lenth gives marginally better
lassi�
ation.For this data set it seems that the small variation in the dis
riminating information favours Elasti
 netand SR while the sparse PLS methods and VIP obtain proportions 
orre
tly 
lassi�ed similar to only usingPLS with all variables. 13
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(
) Fish oil Raman data � predi
tion of iodine.Full PLSR: 1 
omp.: 2.70, 2 
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(d) Milk protein MALDI-TOF data � predi
tion of adul-teration.Full PLSR: 1 
omp.: 0.103, 2 
omp.: 0.074, 3 
omp.: 0.078(dashed lines).Figure 6: Repeated random 10-fold 
ross-validated 
lassi�
ation (sub�gures a and b) and test set pre-di
tions (sub�gures 
 and d) using varying numbers of PLS 
omponents. The symbols indi
ate di�erentvariable sele
tion strategies and their numbers of 
omponents. Bla
k symbols are asso
iated with theparameters giving the highest pre
ision, while red symbols indi
ate models using fewer variables whileretaining most of their pre
ision.
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4.2.4 Fish oil dataIn Figure 6
 we see the results of test set predi
tions using the same methods as above. Parameters havebeen 
hosen by 
ross-validation. The best 
ombination of predi
tion and sparseness is observed for Lenthand ST-PLS. Pre
isions of these predi
tions are mu
h better than only using PLS. The RMSEP valuesfrom Elasti
 net are somewhere between the one 
omponent PLS models and the two/three 
omponentmodels. As the parameters and simpli�
ations are 
hosen on the 
ross-validation results, we observe bothredu
tions and in
reases in RMSEP when using simpli�ed models.4.2.5 Milk protein dataIn addition to 
omparison with the referen
e methods this data set is in
luded both to show how one 
anobtain parsimonious models by plugging the trun
ation algorithm into a di�erent NIPALS algorithm, the
anoni
al PLS, and to show how interpretation of spe
tral data 
an be made easier by imposing sparseness.The CPLS algorithm di�ers from the regular PLS in the way that additional sample information (like designvariables) may be in
luded as extra response variables to stabilize the extra
tion of the latent 
omponents.This has the typi
al e�e
t that the number of 
omponents is redu
ed 
ompared to PLS regression. Asmentioned in the des
ription of the data the per
entage of goat and ewe milk was in
luded as additionalresponses in the analysis of the 
ow milk data. In Figure 6d we see the results of test set predi
tionsusing the same methods as above. Parameters have been 
hosen by 
ross-validation. Here Elasti
 netis the winner 
onsidering the 
ombination of predi
tion and sparseness. However, predi
tion-wise theother methods are very 
lose behind. Among the PLS based methods, Lenth has the best 
ombination ofpredi
tion and sparseness, having marginally better predi
tion than Elasti
 net using less than 1/6 of thevariables with the simpli�ed model.Figure 7 shows the predi
tion error of PLS and CPLS regression used separately and 
ombined with apre-
hosen trun
ation (99.9 % 
on�den
e interval (Lenth's method) with sharp 
ut-o�). We observe thatfor models using few 
omponents trun
ation has no e�e
t on predi
tion with PLS, but gives a minorimprovement when 
ombined with CPLS. Also, CPLS has mu
h lower predi
tion error for one and two
omponent models. Looking only at predi
tion, the best balan
e between predi
tion error and 
omplexityis a two 
omponent CPLS model with trun
ation.
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Figure 7: Predi
tion of 
ow milk proportions in milk mixtures from MALDI-TOF spe
tra (left) andthe number of non-zero variables per 
omponent/in total using trun
ation (right). The total number ofvariables was 6179.In Figure 8 we see the �rst two ve
tors of loading weights from PLS and CPLS regression with andwithout trun
ation. The 
ontrast is high with a high level of noise in the upper spe
tra and only a fewremaining peaks in the lower spe
tra. Here the trun
ated spe
tra seem to have an advantage when usedfor interpretation and protein assignment.
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Figure 8: Loading weight ve
tors from MALDI-TOF spe
tra of milk (two �rst 
omponents). The topspe
tra 
ome from ordinary PLS, the middle spe
tra from CPLS, while the bottom spe
tra 
ome fromtrun
ated CPLS with trun
ation parameters sele
ted to re�e
t a typi
al 
hoi
e appli
able for many typesof data.
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5 Dis
ussionThrough this paper we have formalised some aspe
ts of the family of sparse PLS methods. Firstly we havehave justi�ed trun
ation of loading weights through the 
entral limit theorem and the distributions ofloading weights with no 
orrelation to the response. Se
ondly we have proposed a new trun
ation foundedon 
lassi
al statisti
al asymptoti
 prin
iples. This is introdu
ed through a novel appli
ation of Lenth'stheory for 
reating 
on�den
e intervals in saturated ANOVA models for 2k-designs without repli
ates. Thee�e
t is that the user only has to 
hoose a signi�
an
e level for the 
on�den
e interval, resulting in a lessad ho
 approa
h.Trun
ation in this paper is a
hieved using a general and �exible plug-in whi
h 
an easily be adjusted andimplemented also in other proje
tion based methods like PCA [32℄, ICA [33℄, PCR, CPLS and PPLS.PLS regression is an iterative algorithm and 
omponent wise trun
ation will inevitably slow down thealgorithm, but Lenth's method is extremely qui
k, i.e. there is a minimal lag 
ompared to just runningregular PLSR. The alternative approa
h based on the qq-line is also quite qui
k, and appears to giveslightly better results in some situations.With regard to predi
tion performan
e the trun
ation PLS is mostly on par with ST-PLS, sometimesa little better, sometimes a little worse. As with all statisti
al methods, this is highly data dependent.However, there are few parameters to tune and they have statisti
al interpretations. For the data setsin
luded in this paper we see that Elasti
 net sometimes performs signi�
antly better than the sparse PLSmethods, while it trails behind when used on other data sets. This is also the 
ase for the variable sele
tionby Sele
tivity Ratio plots and to some extent the Variable In�uen
e on Predi
tion method. The Lassowas also tested with the in
luded data sets, but being a spe
ial 
ase of the Elasti
 net it never performedbetter in pra
ti
e. But predi
tion is not the only goal for a statisti
al method. The trun
ation methodshave also shown 
onsistent good results, are based on intuitive theory, are quite robust to the 
hoi
e ofparameters and are extremely qui
k.The performan
e of the various methods may to some extent be explained by the stru
ture of the data.The PLS-based methods perform relatively better when there are many dire
tions in the predi
tor spa
ewith both a high varian
e (high eigenvalue) and a high relevan
e. This was the 
ase for both the 
olon
an
er data and the �sh oil data, and here also the PLS-based variable sele
tion methods performed well,with the new trun
ation method and ST-PLS slightly ahead of the others. For the prostate data thesemethods performed worse, and this result 
on�rms the expe
tations based on the data properties thatPLS methods have trouble making good predi
tions for this kind of data where there are dire
tions in thepredi
tor spa
e of low varian
e, but with high relevan
e. However, an ex
eption is the SR method basedon the 5 
omponent PLS model. This 
an be explained by the fa
t that the SR method is adjusted to bemore favourable than ordinary PLS when there are variables with low varian
es, but with high 
orrelationswith the response [9℄. This is exa
tly what is the 
ase here a

ording to Figure 4. Apparently the elasti
net has a similar behaviour, whi
h 
an be explained by the fa
t that this method, like the ordinary leastsquares, gives higher weight to variables with high 
orrelations to the response, as opposed to the more
ovarian
e-fo
used PLS. The results indi
ate that in 
ases where there is a strong 
orrelation stru
ture inthe data (prostate 
an
er data and milk protein data) the elasti
 net is a good 
hoi
e of method for variablesele
tion. When 
hoosing a method for analysis and variable sele
tion it may therefore be worthwhile tostudy the data properties in terms of eigenvalues and 
omponent-response 
ovarian
es.17



One side-e�e
t of applying trun
ation to ve
tors of loading weights is that they are no longer orthogonal.In most appli
ations, small deviations from orthogonality 
an be disregarded. However, when orthogonalve
tors of loading weights is important, a re-orthogonalization step 
an be in
luded after the trun
ation,for
ing the 
urrent ve
tor of loading weights to be orthogonal to the previous ve
tors extra
ted. Thedown-side to this is that shadow e�e
ts from previous loading weights may appear in the re-orthogonalizedloading weights, 
ausing zero weights of regressors already used in previous 
omponents to be
ome non-zero. For the data sets we have used in this paper, the shadow e�e
t was so small that they were invisiblein plots, and only appeared a few times in measurable sizes. The total number of non-zero regression
oe�
ients should not be a�e
ted.A note should be made on the di�erent roles of the X loading weights, wa, and the X loadings, pa. Itis important to remember that the loading weights 
ontain the 
ovarian
e information between X{a−1}and Y{a−1} (the �rst eigenve
tor of the 
ovarian
e matrix if Y is multi response) and give us the weightsthat ea
h explanatory variable has when 
reating s
ores and loadings. The s
ores, ta, are just linear
ombinations of the explanatory variables weighted by the loading weights. The loadings, however, arefound by proje
ting ea
h explanatory variable of X{a−1} on the s
ores, ta. Loading weights and loadings
an look quite similar when no trun
ation has been applied, espe
ially for spe
tros
opi
 data. Withtrun
ation, however, the loading weights obtain a lot of �zero holes�, while the loadings retain a more
ontinuous shape (at least for spe
tros
opi
 data). The upshot is that fully trun
ated variables are not
ompletely lost, and their role in the system may be interpreted graphi
ally sin
e their loadings are inta
t.Depending on the appli
ation, either loading weights or loadings 
an be interpreted, having roles similarto the regression 
oe�
ients with and without �zero holes�.In some appli
ations it may be interesting to apply trun
ation without ending up with zeros in the resultingregression 
oe�
ients, analogous to fo
using on loadings instead of loading weights. This 
an be justi�ed bythe need to remove noise in the 
omputation of PLS 
omponents and at the same time produ
ing 
ontinuousregression 
oe�
ients. From the early days of PLSR we �nd approximate estimates of regression 
oe�
ientsthat produ
e the desired e�e
t. Two alternatives have been proposed. Firstly the approximated regression
oe�
ients 
an simply be estimated by the produ
t of the X and y loadings: β̂† = Pq′. A more elaboratestrategy is to produ
e new approximated X s
ores, y loadings and regression 
oe�
ients by full proje
tionon the X loadings: T ⋆ = XP (P ′P )−1, q⋆ = y′T ⋆(T ⋆′T ⋆)−1, and �nally: β̂⋆ = Pq⋆′. Both strategies willprodu
e regression ve
tors without �zero holes�.Referen
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