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Abstract 

Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of infrared 

microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction 

algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically 

reviewed existing algorithms for corrections of Mie scattering and suggest improvements. We developed an 

iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure 

absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the Van de 

Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative 

algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the 

correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we 

could decrease the number of parameters from three to two independent parameters, which reduced the 

calculation time for the Mie scattering curves for iterative EMSC meta-model by a factor 10. Moreover, by 

employing the Hilbert transform for evaluating the Kramers-Kronig relations based on an FFT algorithm in 

Matlab, we further improved the speed of the algorithm by a factor 100. For testing the algorithm we simulate 

distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at 

absorbing spheres taking into account the high numerical aperture of infrared microscopes employed for the 

analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of 

single lung cancer cells. 

..    



Introduction 

Since the invention of infrared microscopes in the 90s, infrared microscopy has become an attractive tool for 

the analysis of single cells and connective tissues in biological and medical sciences1. Via infrared microscopy, 

tissues and cells can be analysed chemically without destroying the chemical structure of the material. 

Unfortunately, strong scatter effects that hamper the chemical interpretation of spectra occur, which have been 

interpreted as Mie-type scattering2. According to Mie theory3, 4, single cells are highly efficient scatterers in 

the infrared, since the wavelength of the infrared radiation is the same order as the size of the cells.  

The correction of Mie type scattering in infrared spectra of single cells is difficult, since scattering and 

absorption are highly entangled. The reason for this is that due to the strong scattering, a large part of the 

scattered light does not reach the detector: only scattered light that is collected by the Schwarzschild optics 

reaches the detector, while a substantial part of the light is scattered into solid angles, which are not covered 

by the Schwarzschild optics. The scattered light that does not reach the detector leads to apparent absorption 

signatures in the measured absorbance spectrum, and the researcher is at a loss to decide which part of the 

measured absorbance spectrum is due to scattering and which part is due to chemical absorption. Thus, in FTIR 

microspectroscopy of single cells, the measured absorbance spectrum is also termed the apparent absorbance 

spectrum, since it contains both absorption and scattering signatures. Due to the difficulties in the interpretation 

of absorption peaks, scattering and absorption of infrared radiation at cells have been studied during recent 

years and algorithms have been established to separate scattering and absorption in apparent absorbance 

spectra in infrared spectroscopy of single cells5-11. All established algorithms, are based on Mie-theory, an 

exact theory for the scattering of infrared light at absorbing spheres developed by Gustav Mie in 19053. The 

theory describes the scattering of electromagnetic radiation at spheres rigorously. Based on the exact Mie 

theory and approximation formulas thereof, a number of approaches have been developed, which aim at 

disentangling the scattering and absorption signatures in infrared spectra of single cells. In 2008, Kohler et al. 

developed an algorithm based on extended multiplicative signal correction (EMSC), which corrects Mie 

scattering in infrared spectra of cells9. The algorithm employs an approximation formula for the extinction 

efficiency and takes into account a constant refractive index. Since the exact size, morphology and refractive 

index of a cell are unknown in all practical situations, the algorithm employs a meta-model that comprises a 

range of cell sizes and refractive indices. The algorithm involves several approximations. (1) It considers only 

the extinction efficiency in forward direction when calculating the absorbance, while infrared microscopes use 



Schwarzschild optics and collect light over a large numerical aperture. (2) The extinction in forward direction 

is calculated by an approximation formula developed by V. De Hulst4. (3) The algorithm considers the 

refractive index as constant and real in the employed wavelength range, while it is known that for absorbing 

scatterers, the refractive index has a non-zero imaginary part and a fluctuating real part, i.e., is dispersive (4). 

The algorithm approximates the apparent absorbance by the scattering efficiency. Despite the approximations 

employed, the algorithm corrects the broad Mie scatter oscillations in the apparent absorbance of single cell 

spectra, while so-called dispersive artefacts due to the resonant Mie effect remain uncorrected. The term 

‘dispersive artefact’ circumscribes the fact that absorption resonances lead to fluctuations in the real part of 

the refractive index, which affect the extinction efficiency and thereby the measured absorbance spectrum. In 

2010, Bassan et al. 6 developed an iterative algorithm based on EMSC, which allows correcting the dispersive 

artefact. The algorithm developed by Bassan et al. 6 involves several approximations. (1) As in Kohler’s 

algorithm9, the apparent absorbance is approximated by the extinction efficiency in forward direction 

developed by V. de Hulst4. (2) While Bassan’s algorithm6 takes into account a fluctuating real refractive index, 

it does not use the imaginary part of the refractive index. Recently, van de Dijk et al.10 have introduced an 

iterative algorithm taking into account the high numerical aperture of infrared microscopes. The algorithm 

employs exact Mie formulas for the absorbance and treats the refractive index as complex. While it was shown 

that the algorithm corrects sharp dispersive Mie signatures in spectra of PMMA spheres10, it has also been 

demonstrated that the algorithm is not applicable to biological samples, which have a complex composition 

and a shape that often deviates substantially from a sphere11.  

Although the algorithm of Bassan et al. 6 does not take into account a complex refractive index, it has been 

widely employed during recent years, since it provides a stable extraction of the pure absorbance spectrum. It 

is currently considered as the best existing method for correcting the Mie scatter distortions in infrared 

microspectroscopy of cells and tissues.  

The aim of the present paper is to further develop the algorithm by Bassan et al. 6 by taking into account a 

complex refractive index according to Mie theory. The algorithm of Bassan et al. 6 requires the calculation of 

the Kramers-Kronig transform iteratively. Since this turns out to be a very time consuming process, we further 

aimed at improving the speed of the algorithm. In order to test the newly developed algorithm, we created a 

test set of apparent absorbance spectra. The test set consists of spectra that were distorted according to exact 

Mie theory. For the creation of the test set, the optical set-up including the Schwarzschild optics with a focusing 



and collecting optics has been taken into account. The algorithm presented in this paper is based on the 

algorithm of Kohler et al.9 and the algorithm of Bassan et al. 6 based on a meta-model taking into account a 

broad parameter range for parameters such as refractive index, size of the cell and effective sample thickness. 

While the resonant Mie scatter correction algorithm developed by Bassan et al. 6 uses three independent 

parameters for building the meta-model, we will show in the present paper that the meta-model can be set up 

with two independent parameters, which further improves the speed of the algorithm and the usage of memory 

in the modelling step.   



Simulation of pure absorbance spectra 

To validate the Mie scatter correction algorithm developed in this paper, a simulated data set of pure 

absorbance spectra was created. The spectra were simulated such that the obtained absorbance spectra 

resembled a matrigel spectrum of Bassan et al.6, i.e. a spectrum of an artificial base membrane consisting 

mainly of proteins. The matrigel spectrum is considered as a nearly scatter-free pure absorbance spectrum. A 

random number generator was used to change of heights (±20%), and shift band positions (±1 cm-1) of peaks 

by superimposing Lorentz lines for 50 spectra. This data set was divided into two data sets of 25 spectra. For 

data set one, we systematically changed the amplitudes at the peaks positions 1116, 1127, 1172, 1233, 1294, 

1388, 1544 and 1648 cm-1 by making them either higher or smaller for each respective band. For data set two, 

we changed the amplitudes at the positions 1075, 1155, 1192, 1243, 1315, 1404, 1456, 1551 and 1656 cm-1 by 

again making them either higher or smaller for each respective band. When analysing these data sets by PCA, 

two clusters of samples were obtained according to the design of the simulation. The simulated spectra are 

shown in Fig. 1a. The corresponding score plot for the first two PCA components is shown in Fig. 1b. The first 

two components account in total for 78,3% of the variance in these data. From the simulated pure absorbance 

spectra, the imaginary parts of refractive indices 𝑛′(𝜈̃) were calculated according to  

𝑛′(𝜈̃) =
𝐴(𝜈̃)ln⁡(10)

⁡⁡⁡4𝜋𝑑𝑒𝑓𝑓𝜈̃
, (1) 

where 𝑑𝑒𝑓𝑓 is the effective thickness of the cell11 and 𝜈 is the wavenumber. The real part of the fluctuating part 

of the refractive index was calculated by using the Kramers-Kronig transform 

𝑛(𝜈) = 𝑛0 +
2

𝜋
P∫

𝑠∙𝑛′(𝑠)

𝑠2−𝜈̃2
𝑑𝑠

∞

0
, (2) 

where 𝑛0 is the constant part of the real refractive index, P denotes the Cauchy principal value integral and 𝑛′ 

is the imaginary part of the refractive index12. 

 

Simulation of apparent absorbance spectra according to exact Mie theory 

In order to simulate apparent absorbance spectra, exact Mie theory was used. In the simulations, the optical 

setup of an infrared microscope with a numerical aperture NA was taken into account. The apparent absorbance 

was calculated according to 

𝐴𝑎𝑝𝑝 = − log10 (1 −
𝜋𝑎2

𝐺
𝑄𝑒𝑥𝑡 +

1

4𝜋𝐺𝜈̃2
∫ [𝑖1(𝜃) + 𝑖2(𝜃)] sin(𝜃) 𝑑𝜃
𝜃𝑁𝐴

0
), (3) 



where 𝑎 is the radius of the spherical scatterer, G is the size of the aperture and 𝜈 is the wavenumber. The 

integration is performed over the numerical aperture 𝜃𝑁𝐴 with integrand functions 𝑖1,2(𝜃), which are calculated 

from the scattering amplitudes 𝑆1,2(𝜃). Details are given in the Supplementary Material S.2 of paper Lukacs 

et. al11. For each simulated pure absorbance spectrum (see description in the previous section), imaginary and 

real parts of the refractive index were calculated according to Eqs. 1 and 2 and displayed in Fig. 1c and 1d, 

respectively. For each simulated apparent absorbance spectrum 𝐴𝑎𝑝𝑝, random values were chosen for 𝑛0 and 

𝑎 from the intervals 1.1 < 𝑛0 < 1.4 and 2𝑚𝜇 < 𝑎 < 5.5𝑚𝜇. Following this procedure, a set of 50 simulated 

apparent absorbance spectra was obtained. The apparent absorbance spectra are shown in Fig. 1e. The score 

plot of the first two components of the corresponding PCA analysis is shown in Fig. 1f. We can see that due 

to the scatter distortions, the two groups that were observed in the score plot of the first two components of the 

PCA of the pure absorbance spectra (Fig.1b) are now mixed. It is important to note that visualization of score 

plots of higher components reveals the grouping also in the apparent absorbance spectra. This is expected, 

since the scatter distortions are simply leading to a distortion of the main variation pattern, but the information 

related to the grouping according to the chemical difference is still obtained in the simulated apparent 

absorbance spectra. It is important to mention that the simulated apparent absorbance spectra as shown in Fig. 

1e include the so-called dispersive artefact. When the apparent absorbance spectra in Fig. 1e are corrected 

according to the EMSC algorithm developed by Kohler et al. 9, the dispersive artefact can be clearly seen 

(results not shown). The dispersive artefact is due to the fluctuations of the real refractive index caused by the 

absorption resonances and is not corrected by the algorithm developed by Kohler et al. 9, since the model 

assumes a real and constant refractive index. 

We further would like to mention that the apparent absorbance spectra in Fig. 1e contain ripples which are 

higher frequency oscillations. Ripples can be seen clearly in the region from 2800cm-1 to 1800cm-1. These 

ripples are also appearing in other spectral regions, but are less visible since they overlap with chemical 

absorbance bands. While we have observed ripples in spectra of pollen11, ripples are usually not dominant in 

spectra of human and animal cells and tissues. 

 

Extended multiplicative signal correction and meta-modelling 



For the extraction of the pure absorbance spectra from simulated apparent absorbance spectra, an iterative 

algorithm based on EMSC was developed, which is a further extension of the algorithms presented in Kohler 

et al.9 and Bassan et al.7. Multiplicative signal correction (MSC) and EMSC have been introduced for pre-

processing of near-infrared spectra13, 14. It has been shown in the past that both methods are versatile tools for 

correcting infrared spectra of biological materials6, 9, 15-17. When EMSC is used for estimating and correcting 

Mie scattering, a measured absorbance spectrum 𝐴𝑎𝑝𝑝(𝜈) is approximated by a reference spectrum 𝑍𝑟𝑒𝑓(𝜈) 

times a multiplicative effect b, plus deviations from this reference spectrum expressed by a constant baseline 

c plus a sum of components 𝑝𝑖(𝜈) times respective parameters 𝑔𝑖  

𝐴𝑎𝑝𝑝(𝜈) = 𝑏𝑍𝑟𝑒𝑓(𝜈) + 𝑐 + ∑ 𝑔𝑖𝑝𝑖(𝜈) + 𝜀(𝜈)
𝐴𝑜𝑝𝑡
𝑖=1

. (4) 

The un-modelled part is captured by the residual term 𝜀(𝜈). Further baseline effects may be included in the 

model by adding polynomials to the EMSC model15, 16. Since EMSC models an apparent absorbance spectrum 

around a reference spectrum, the estimation of the model parameter has turned out to be a very stable process. 

This is because infrared spectra of biological materials have very similar spectral signatures deriving from 

protein, fat and carbohydrate absorptions, leading to a visually very similar overall shape of the spectrum. 

When the parameters are estimated according to Eq. 4, the apparent absorbance spectrum is corrected 

according to  

𝐴𝑐𝑜𝑟𝑟(𝜈) =
(𝐴𝑎𝑝𝑝(𝜈̃)−𝑐−∑ 𝑔𝑖𝑝𝑖(𝜈̃)

𝐴𝑜𝑝𝑡
𝑖=1

)

𝑏
. (5) 

In an EMSC Mie model, the component spectra 𝑝𝑖(𝜈) are obtained from a meta-model based on Mie theory. 

In the meta-model used by Kohler et al.9 and Bassan et al. 7, the scatter extinction was approximated by the 

formula derived by Van de Hulst4, which was originally developed for a constant and real refractive index and 

writes as 

𝑄𝑒𝑥𝑡(𝜈̃) ≈ 2 −
4

𝜌
𝑠𝑖𝑛 𝜌 + (

4

𝜌2
) (1−𝑐𝑜𝑠 𝜌), (6) 

where 𝜌 is given by 

𝜌 = 4𝜋𝑎𝜈(𝑛 − 1)⁡⁡⁡⁡(7)  

and 𝑎 and 𝑛 are the radius of the spherical particle and the real refractive index, respectively. In order to allow 

for the correction of the dispersive artefact, Bassan et al. 7 introduced in Eq. 6 for 𝑛 a non-constant real 

refractive index, which was calculated from an estimate of the pure absorbance according to the Kramers-



Kronig transform (Eq. 2), while the imaginary part 𝑛′(𝜈) of the refractive index may be calculated from an 

estimate of the pure absorbance spectrum 𝐴(𝜈) according to Eq. 1. This relation was simplified in Bassan et 

al. 7 assuming that the imaginary part 𝑛′(𝜈) of the refractive index is proportional to the absorbance 𝐴(𝜈), i.e. 

𝑛′(𝜈̃) ≈ 𝑠 ∙ 𝐴(𝜈) (8) 

where 𝑠 is a proportionality factor. The proportionality is only a rough approximation since the wavenumber 

varies on the range under consideration. When the imaginary part of the refractive index, 𝑛′(𝜈), is known, the 

real part, 𝑛(𝜈), can be calculated according to the Kramers-Kronig relation in Eq. 2.  

 

The iterative algorithm developed by Bassan et al. works as follows: 

The algorithm of Bassan corrects a scatter distorted apparent absorbance spectrum 𝐴𝑎𝑝𝑝(𝜈) according the 

following interative procedure, which is based on the EMSC model in Eq. 4.  

Initialization: Eq. 4 requires the initialization of a reference spectrum 𝑍𝑟𝑒𝑓(𝜈), which ideally should be closed 

to the pure absorbance spectrum. To initialize the algorithm, a matrigel spectrum6 was used as pure absorbance 

spectrum 𝐴(𝜈).  

Iterative algorithm:  

1. The reference spectrum 𝑍𝑟𝑒𝑓(𝜈) in Eq. 4 is replaced by an estimate of the pure absorbance spectrum. 

2. The estimate of the pure absorbance spectrum is further used to calculate the imaginary part of the 

refractive index 𝑛′(𝜈) according to Eq. 1., From the imaginary part of the refractive index 𝑛′(𝜈), the 

real part of the refractive index, 𝑛(𝜈), is calculated by the Kramers-Kronig transform according to 

Eq. 2. The real part of the refractive index is then used to calculate the extinction efficiency 𝑄𝑒𝑥𝑡(𝜈) 

according to Eq. 3 for a wide range of parameters a, 𝑛0 and the proportionality factor of Eq. 8, denoted 

by s. For each parameter typically its range is covered by 10 different values. The apparent absorbance 

𝐴𝑎𝑝𝑝(𝜈) is then calculated for the range of parameters a, 𝑛0 and s by assuming that 𝐴𝑎𝑝𝑝(𝜈) ≈

𝑄𝑒𝑥𝑡(𝜈̃), resulting in a set of 10x10x10=1000 apparent absorbance spectra.  

3. The set of apparent absorbance spectra 𝐴𝑎𝑝𝑝(𝜈) is approximated by a meta-model using PCA, 

resulting in a set of principal components 𝑝𝑖(𝜈) that are used as components in Eq. 4. The EMSC 



parameters in Eq. 4 are estimated by ordinary least square fits. After estimation of the EMSC 

parameters, the spectrum is corrected according to Eq. 5, resulting in a corrected spectrum⁡𝐴𝑐𝑜𝑟𝑟(𝜈). 

4. The estimate of the pure absorbance spectrum is replaced by the corrected spectrum 𝐴𝑐𝑜𝑟𝑟(𝜈) and the 

algorithm is reiterated starting with step 1. 

The iterative algorithm by Bassan et al.6 deserves some comments. It is important to mention that the assumed 

porportionality 𝐴𝑎𝑝𝑝(𝜈)~𝑄𝑒𝑥𝑡(𝜈) that is employed in step 1, is a rough approximation of Eq. 3 11. It involves 

neglecting the third term in Eq. 3 resulting in  

𝐴𝑎𝑝𝑝 = − log10(1 −
𝜋𝑎2

𝐺
𝑄𝑒𝑥𝑡) (9) 

where 𝑎 is the radius of the sphere and 𝐺 is the detector area, and further the expansion of the logarithm ot 

Eq. 9 up to linear order, resulting in 

𝐴𝑎𝑝𝑝 ≈
𝜋𝑎2

𝐺
𝑄𝑒𝑥𝑡, (10) 

explaining the proportionality between 𝐴𝑎𝑝𝑝(𝜈) and 𝑄𝑒𝑥𝑡(𝜈).  

 

Improved algorithm suggested in this paper. 

The iterative algorithm suggested in this paper involves several improvements. First, the iterative algorithm in 

this paper is based on a meta-model, which involves a complex refractive index according to the Mie theory. 

We used an approximation formula for the extinction efficiency, that has been derived by Van de Hulst4  

𝑄𝑒𝑥𝑡(𝜈) ≈ 2 − 4𝑒−𝜌𝑡𝑎𝑛𝛽
𝑐𝑜𝑠 𝛽

𝜌
𝑠𝑖𝑛(𝜌 − 𝛽) − 4𝑒−𝜌𝑡𝑎𝑛𝛽 (

𝑐𝑜𝑠 𝛽

𝜌
)
2

𝑐𝑜𝑠(𝜌 − 2𝛽)

+ 4 (
𝑐𝑜𝑠 𝛽

𝜌
)
2

𝑐𝑜𝑠(2𝛽)⁡⁡⁡(11) 

with  

𝜌 = 4𝜋𝑎𝜈(𝑛 − 1)  and  tan𝛽 = 𝑛′/(𝑛 − 1) (12) 

where 𝑛 and 𝑛′ are the real and the imaginary parts of the refractive index, respectively. The differences 

between Eq. 6 and Eq. 11 are illustrated in11. The differences are significant, both with respect to the position 

of the band and the absolute values of the estimated extinction and absorbance. 



The second improvement relates to the complexity of the meta-model. While in Bassan et al. 6 a parameter 

model was used including ranges of three parameters (3 dimensions), it can be shown that a 2-dimensional 

parameter model is sufficient for the parameter estimation. Details about the reduction from the 3-parameter 

model to the 2-parameter model are given in the appendix A. The application of a 2-dimensional parameter 

model decreases the computation time and required of computer memory. This can be illustrated by an 

example. When the three parameter ranges represented by the size of the cell, the background refractive index 

and the scaling parameter s of Eq. 8 are covered and 10 values are used to cover each parameter range, 1000 

Mie extinction curves need to be simulated and used for the establishment of the meta-model. Employing a 

two-parameter model, 100 spectra are sufficient to cover the same range. Thus, memory usage is reduced by a 

factor 10 and the computation time for establishment of the meta-model is reduced as well.  

A third improvement of the algorithm was achieved by speeding up the Kramers-Kronig transform of Eq. 2. 

Kramers-Kronig relations are mainly used in optical spectroscopy to determine the complex refractive index 

𝑛̂ = 𝑛 + 𝑖𝑛′⁡of the medium from the measured absorption, transmission or reflection spectrum. The refractive 

index is an important quantity when considering the scattering and absorption of light at biological materials. 

The real part n of this index describes the refractive properties of the material; the imaginary part 𝑛′⁡of it, 

determines the absorptive properties of the material. The most employed method for obtaining n from 𝑛′ and 

vice versa is the Kramers-Kronig transform, which expresses the real part n in terms of the imaginary part 𝑛′ 

according to 

𝑛(𝜈) =
2

𝜋
𝑃∫

𝑠 ∙ 𝑛′(𝑠)

𝑠2 − 𝜈2

+∞

0

𝑑𝑠, (13𝑎) 

and the imaginary part 𝑛′ in terms of the real part n by 

𝑛′(𝜈) = −
2𝜈

𝜋
𝑃∫

𝑛(𝑠)

𝑠2 − 𝜈2

+∞

0

𝑑𝑠. (13𝑏) 

In Appendix B, we show that these relations are equivalent to the Hilbert transform, since the real part of the 

refractive index is an even function of the wavenumber and the imaginary part of the refractive index is an odd 

function of wavenumber, i.e. 𝑛(𝜈) = 𝑛(−𝜈) and 𝑛′(𝜈) = −𝑛′(−𝜈). This can be seen from the Lorentz model. 

Details are given in Supplementary Material S.1 of reference11.The Hilbert transform writes as  

𝑛(𝜈) =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈

+∞

−∞

𝑑𝑠 = −
1

𝜋𝜈
∗ 𝑛′(𝜈)⁡(14𝑎) 

and 



𝑛′(𝜈) = −
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈

+∞

0

𝑑𝑠 =
1

𝜋𝜈
∗ 𝑛(𝜈)⁡(14𝑏) 

respectively, where ∗ denotes convolution. The Hilbert transform can be calculated via Fast Fourier Transform 

(FFT). The FFT method is based on the fact that both real and imaginary parts of the complex refractive index 

defining the Hilbert transform are proportional to the convolution product between 𝑛(𝜈) or 𝑛′(𝜈̃) and the 

convolution kernel function 
1

𝜋𝜈̃
. In Eqs. 14 there is a singularity, when s is equal to 𝜈. The singularity problem 

is theoretically bypassed by introducing the Cauchy Principal Value18.  

 

The new iterative algorithm works as follows: 

The algorithm corrects a scatter distorted apparent absorbance spectrum 𝐴𝑎𝑝𝑝(𝜈) according to the following 

interative procedure which is based on the EMSC model in Eq. 4.  

Initialization: The reference spectrum 𝑍𝑟𝑒𝑓(𝜈) in Eq. 4 is initialized by a matrigel spectrum6 or another 

appropriate non-distorted spectrum. 

Iterative algorithm:  

1. The reference spectrum 𝑍𝑟𝑒𝑓(𝜈) in Eq. 4 may be either updated6 or the same reference spectrum may 

be used in each iteration. 

2. The estimate of the pure absorbance spectrum is further used to calculate the imaginary part of the 

refractive index 𝑛′(𝜈) according to Eq. 1. The real part of the refractive index, 𝑛(𝜈), is calculated from 

the imaginary part of the refractive index, 𝑛′(𝜈), by the Hilbert transform (function Hilbert in Matlab) 

according to Eq. 14a. The calculations of the Hilbert function are based on the FFT algorithm. The 

real part of the refractive index is then used to calculate the extinction efficiency 𝑄𝑒𝑥𝑡(𝜈) according to 

Eq. 11 involving a complex refractive index. In order to cover the relevant parameter range, the scaled 

parameters 𝛾 and 𝛼0 according to Eqs. A20 and A21 are used (see Appendix A) with the ranges 𝛼0 ∈

[0.2⁡𝜇𝑚, 2.2⁡𝜇𝑚] ∙ 4𝜋 and 𝛾 ∈ [5 ∙ 104
1

𝑚
, 6 ∙ 105

1

𝑚
]. The corresponding ranges of n0, a and f are 

given in A13. A set of 50 apparent absorbance 𝐴𝑎𝑝𝑝(𝜈) is then calculated according to Eq. 9 uniformly 

covering the parameter ranges for 𝛼0 and 𝛾, and stored as rows in a matrix M.  

3. The set of apparent absorbance spectra 𝐴𝑎𝑝𝑝(𝜈), i.e. the matrix M is approximated by a meta-model 

using PCA resulting in a set of principal components 𝑝𝑖(𝜈) that are used as components in Eq. 4. Prior 



to approximation by PCA, the matrix M is orthogonalized with respect to the reference spectrum 

𝑍𝑟𝑒𝑓(𝜈). This is to avoid competition between the parameters 𝑏 and 𝑔𝑖 (see Eq. 4) in the subsequent 

parameter estimation. The EMSC parameters in Eq. 4 are estimated by ordinary least squares fits. After 

estimation of the EMSC parameters, the spectrum is corrected according to Eq. 5 resulting in a 

corrected spectrum 𝐴𝑐𝑜𝑟𝑟(𝜈). 

4. The estimate of the pure absorbance spectrum is replaced by the corrected spectrum 𝐴𝑐𝑜𝑟𝑟(𝜈) and the 

algorithm is reiterated starting with step 1. 

This iterative algorithm is described schematically in Fig. 2. We suggest to call the algorithm fast resonant 

Mie scatter correction. 

EMSC correction of simulated and measured apparent absorbance spectra 

The correction of an apparent absorbance spectrum according to the algorithm suggested in this paper is 

demonstrated in Fig. 3. In Fig. 3a an example of a simulated apparent absorbance spectrum is shown. The 

spectrum is simulated employing Eq. 3. As parameters we used 𝑛0 = 1.35 and 𝑎 = 3.81⁡𝜇𝑚⁡. Corrected 

spectra that were obtained by the first three iterations of the correction algorithm proposed in this paper are 

shown in Fig. 3b together with the reference spectrum and the pure absorbance spectrum. As a reference 

spectrum we used the average spectrum of all simulated pure absorbance spectra. Alternatively, the matrigel 

spectrum could be used. It can be seen that the algorithm converges quickly and that the corrected spectra are 

close to the pure absorbance spectra used for the simulation. Ripples that can be observed in the region between 

4000 cm-1 and 3500 cm-1 were not corrected successfully. This is expected, since the Van de Hulst formula 

used for the correction (see Eq. 11) does not describe the Mie ripples. In Fig. 4a, a simulated apparent 

absorbance spectrum containing strong ripples is shown. As parameters, we used 𝑛0 = 1.36 and 𝑎 =

5.12⁡𝜇𝑚⁡. Ripples with these intensities are usually not observed in infrared microspectroscopy of single cells. 

An explanation for this will be given elsewhere. In the corrected spectra in Fig. 4b it can be seen clearly that 

the Van De Hulst algorithm is not capable of correcting the ripples.  

The complete set of corrected spectra for the simulated apparent absorbance spectra from Fig.1e is shown in 

Fig. 5. The spectra that correspond to the red scores of the pure absorbance spectra in Fig. 1b are plotted red 

in Fig. 5, while the spectra that correspond to the blue scores of the pure absorbance spectra in Fig. 1 b are 

plotted blue in Fig. 5. The reference spectrum is shown in green. It can be seen that the correction of the spectra 



worked well. The two groups of spectra can be separated visually after correction. As mentioned before, ripples 

are not well corrected, which does not pose a major problem, since strong ripples are usually not observed in 

the infrared microspctroscopy of single cells. The computation time for the correction of 50 spectra (one 

iteration in the iterative algorithm) using a 4th generation Intel ®CoreTMi7-4702HQ quad core processor,16GB 

memory and Matlab 2015 is 77 seconds. This is a substantial improvement to the algorithm developed by 

Bassan et al.6  which uses 765 seconds on the same computer (employing numerical integration and a parameter 

model with 3 parameters). No speed optimization of the algorithm by vectorization or parallel programming 

was done so far. It is important to mention that the Kramers-Kronig part of of the algorithm is improved by a 

factor of approximately 200 when using the algorithm based on the Hilbert transform compared to the 

numerical integration. The improvement of the Kramers-Kronig part shows especially advantages when more 

than 1 iterations are applied in the iterative algorithm.   

In order to demonstrate that chemical information that was distorded in the apparent absorbance spectra can 

be restored, we investigated peak ratios before and after correction. In Fig. 6, the peak ratios for the simulated 

pure absorbance spectra of the band at 1546 cm-1 and the band at 1387 cm-1 are shown in blue. The peak ratio 

of these bands is simulated such that the 50 spectra can be clearly separated into two groups of 25 spectra each. 

The spectra 1-25 have a lower peak ratio than the spectra 26-50. The corresponding peak ratios for the apparent 

absorbance spectra are shown in magenta. It is obvious that the scatter distorted apparent absorbance spectra 

do not allow to separate these two groups with the help of the peak ratio of the band at 1546 cm-1 and the band 

at 1387 cm-1. The apparent absorbance spectra were then corrected by the iterative algorithm. Corrected spectra 

are shown in red (one iteration), green (two iterations) and black (three iterations). The ratio obtained from the 

average spectrum of all simulated pure absorbance spectra that was used as the referense spectrum for the 

EMSC model is shown as the blue dashed line for comparison. It can be seen that the iterative algorithm 

retreives a good estimation of the ratio of the simulated pure absorbance spectrum.  

We further tested the algorithm on a set of measured infrared microspectroscopy spectra of lung cancer cells. 

Details about the data set can be found in Kohler et al 9. The measured spectra are shown in Fig. 7 (red) together 

with the corrected spectra (green). For the correction one iteration step was used. As reference spectrum the 

matrigel spectrum was used6. In Fig. 7, it can be seen that correction works visually very well. The resonant 

Mie effect that was not corrected by the algorithm presented in Kohler et al9, is now successfully corrected.  

 



The importance of the reference spectrum for the iterative algorithm 

An important comment relates to the updating of the EMSC reference spectrum in the iterative algorithm. The 

dashed line in Fig. 2 indicates, that there are two options: Either the reference spectrum is updated by the new 

estimate of the pure absorbance spectrum obtained after each iteration or the initial reference spectrum is kept 

and only the imaginary part of the refractive index and, after Kramers-Kronig transformation, the real part of 

the refractive index are updated. We have observed that an update of the reference spectrum may lead to 

instabilities in the iterative algorithm and the result obtained may completely depend on the number of 

iterations used, i.e. the iterative algorithm may drift completely apart from reasonable solutions. Thus, we do 

not suggest to update the reference spectrum for EMSC in the iterative algorithm.  

The use of a good reference spectrum is crutial for the success of the correction algorithm. In Fig.7 it is obvious 

that the corrected spectra become in their overall shape very close to the reference spectrum. This can be 

clearly seen when comparing the reference spectrum (for example in Fig. 4b) with the corrected spectra in 

Fig. 7. The same observation can be made in the paper of Bassan et al. 6, where the same reference spectrum 

was used as in the current paper. In reference6, after correction all spectra are in their overall shape similar to 

the matrigel spectrum used as a reference in EMSC. This is due to the high flexibility of the meta-model used 

for the correction. Notwithstanding, although the corrected spectra tend overally in their shape towards the 

reference spectrum, we could clearly show that chemical information can be restored by the suggested 

algorithm.  

 

Conclusions 

In this work we presented an improved iterative EMSC algorithm for correcting Mie scattering in infrared 

microspectroscopy of single cells and tissues. The iterative EMSC algorithm employs a meta-model based on 

an approximate formula by Van De Hulst, taking into account a complex refractive index for correcting Mie 

scattering. The new iterative algorithm was tested using a simulated set of apparent absorbance spectra and a 

set of measured apparent absorbance spectra. The simulated apparent absorbance spectra were obtained by 

first simulating pure absorbance spectra and then generating scatter distorted apparent absorbance spectra by 

full Mie theory. For the simulations, the full optical set up of an infrared microscope including the collecting 

and focusing Schwarzschild optics were taken into account. The set of simulated spectra used in this paper is 

thus more difficult to correct than the spectra simulated in the reference6, where spectra were simulated by 



using exactly the same approximation formula that was afterwards used for correction algorithm. In addition, 

the spectra simulated in reference6 were obtained by addition of pure absorbance spectra to simulated scatter 

spectra. This facilitated the correction of the spectra in reference6, since scatter distortions where only added 

on top of the pure absorbance spectra. In our simulations the scatter distorted spectra where obtained according 

to Eq. 3 and do not contain additive contributions of pure absorbance spectra. It is important to mention that 

according to the Mie theory, apparent absorbance spectra are not obtained by adding pure absorbance spectra 

to scatter contributions. Thus, the retrieval of chemical information from the simulated apparent absorbance 

spectra taking into account the full optical setup as employed in the current paper, demonstrates well the 

capability of the algorithm presented in this paper. 

The measured spectra used for correction in the current paper were obtained from single lung cancer cells9. 

The correction of the measured spectra was successful, while it is obvious that the corrected spectra tend in 

their overall shape towards the matrigel spectrum employed. The high flexibility of the meta-model results in 

corrected spectra that are in their overall shape very similar to the reference spectrum used in the EMSC model, 

while we showed by employing a simulated data set that chemical characteristics of the pure absorbance 

spectra could be restored. 

The iterative algorithm developed by Bassan et al. 6 involves a numerical integration in order to perform a 

Kramers-Kronig transform. In the algorithm presented in this paper, we replaced the integral of the Kramers-

Kronig by a fast Fourier transform (FFT) algorithm. This reduced the computation time of the Kramers-Kronig 

transform approximately by a factor 100. Moreover we have shown that two independent parameters 𝛼0 and 

𝛾 (each parameter contains 10 equidistant values in its respective range) are sufficient for compressing 100 

Mie scattering curves into a small number of principal components loading spectra to estimate the scattering 

contributions in the EMSC meta-model.  

While we have shown that the new algorithm retrieves the pure absorbance spectra from highly distorted 

apparent absorbance spectra, ripples that are present in simulated apparent absorbance spectra could not be 

corrected, since the Van de Hulst approximation does not account for ripples. The ripples that are visible in 

the simulated apparent absorbance spectra can be explained by diffractive surface waves. While we have 

observed that the appearance of ripples is not present or suppressed in measured spectra, we believe that the 

correction of ripples is in general not required for the correction of infrared microspectroscopic spectra of 

single cells and tissues. Ripples may be absent in measured spectra because the apertures used in infrared 



microspectroscopy are comparable to the size of the cells, while the exact Mie theory which assumes an 

incoming plane wave assumes apertures that are much bigger than the probed cell. Thus, diffractive surface 

waves that are causing ripples in exact Mie theory may be suppressed in practical measurement situations.  
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Appendix A: Complexity of meta model 

For building a meta-model we take into account a suitable parameter space for the approximation formula 

employed for the extinction efficiency. The approximation formula given by Eq. 11 contains the parameters 𝜌 

and 𝛽. We define 

𝛼 = 4𝜋𝑎(𝑛 − 1), (A1) 

where n is the real refractive index and a is the size of the sphere. It follows that 𝜌 = 𝜈𝛼.    

When the pure absorbance spectrum 𝐴(𝜈) is known, the imaginary part of the refractive index can be calculated 

according to   

𝑛′(𝜈̃) =
𝐴(𝜈̃)ln⁡(10)

⁡⁡⁡4𝜋𝑑𝑒𝑓𝑓𝜈̃
, (A2) 

where 𝑑𝑒𝑓𝑓 is the effective thickness of the cell11. The real part of the refractive index 𝑛(𝜈) can then be 

calculated by the Kramers-Kronig relation according to 

𝑛(𝜈) = 𝑛0 +
2

𝜋
𝐏∫

𝑠∙𝑛′(𝑠)

𝑠2−𝜈̃2
𝑑𝑠

∞

0
, (A3) 

where 𝑛0 is the constant part of the real refractive index and the integral term  

𝑛𝑘𝑘(𝜈) =
2

𝜋
𝑃 ∫

𝑠∙𝑛′(𝑠)

𝑠2−𝜈̃2
𝑑𝑠

∞

0
 (A4) 

is the fluctuating part of the real refractive index. 

It follows that  



𝛼 = 4𝜋𝑎(𝑛0+𝑛𝑘𝑘 − 1). (A5) 

If 𝑛𝑘𝑘 is calculated from the pure absorbance spectrum 𝐴(𝜈) according to Eqs. A2 and A4, the effective 

thickness 𝑑𝑒𝑓𝑓 of the cell is in general not known. We therefore define a scaled imaginary part of the refractive 

index, 𝑛𝑠
′ (𝜈), according to 

𝑛𝑠
′(𝜈) =

𝐴(𝜈̃)

⁡⁡𝜈̃
, (A6) 

where 

𝑛′(𝜈̃) = 𝑓𝑛𝑠
′(𝜈), (A7) 

with the scaling constant   

𝑓 =
ln⁡(10)

⁡⁡⁡4𝜋𝑑𝑒𝑓𝑓
. (A8) 

The fluctuating part is consequently calculated according to 

𝑛𝑘𝑘(𝜈) = 𝑓𝑛𝑘𝑘,𝑠(𝜈) (A9) 

where 

𝑛𝑘𝑘,𝑠(𝜈) =
2

𝜋
𝑃 ∫

𝑠∙𝑛𝑠
′

𝑠2−𝜈̃2
𝑑𝑠

∞

0
. (A10) 

Thus, we obtain  

𝛼 = 4𝜋𝑎(𝑛0+𝑓𝑛𝑘𝑘,𝑠 − 1) (A11) 

and 

𝑡𝑎𝑛𝛽 =
𝑓𝑛𝑠

′

𝑛0+𝑓𝑛𝑘𝑘,𝑠−1
. (A12) 

Generally the exact numbers for 𝑎, 𝑛0 and 𝑓 are not known. Only ranges for these values can be given. These 

parameters have to be estimated in the modeling process. The following ranges were found to be optimal  

𝑛0 ⁡ ∈ [1.1, 1.4], (A13𝑎) 

𝑓⁡ ∈ [104
1

𝑚
, 3 ∙ 104

1

𝑚
], (A13𝑏) 



𝑎⁡ ∈ [2𝜇𝑚, 5.5𝜇𝑚]. (A13𝑐) 

Since the parameters 𝑎 and 𝑛0 are not independent (see A5), these parameter ranges are not absolute. We 

include for example considerably higher values of 𝑎 than indicated by the range in (A13c), when the refractive 

index in an apparent absorbance spectrum is below the maximum value of (A13a), since the two parameters 

enter Eq. A5 as a product. The parameters in Eqs. A13 are not independent and one parameter can be omitted 

by rescaling as we will show in the following. We can write Eq. A11 as 

𝛼 = 4𝜋𝑎(𝑛0 − 1) (1 +
𝑓𝑛𝑘𝑘,𝑠

(𝑛0−1)
)⁡, (A14) 

and Eq. A12 as 

𝑡𝑎𝑛𝛽 =
𝑛𝑠
′

𝑛0−1

𝑓
+𝑛𝑘𝑘,𝑠

. (A15) 

By defining  

𝛼0 = 4𝜋𝑎(𝑛0 − 1), (A16) 

and 

𝛾 =
𝑓

(𝑛0−1)
, (A17) 

we obtain  

𝛼 = 𝛼0(1 + 𝛾𝑛𝑘𝑘,𝑠), (A18) 

and 

𝑡𝑎𝑛𝛽 =
𝑛𝑠
′

1
𝛾⁄ +𝑛𝑘𝑘,𝑠

 (A19) 

with the respective ranges that correspond to the values in Eqs.A13: 

𝛾 ∈ [5 ∙ 104
1

𝑚
, 6 ∙ 105

1

𝑚
] (A20) 

𝛼0 ⁡ ∈ [0.2𝜇𝑚, 2.2𝜇𝑚] ∙ 4𝜋 (A21) 



It follows that the obtained model contains two independent parameters 𝛾 and 𝛼0. The parameter 𝛾 is the new 

scaling value for the non-constant refractive index. A correct estimate of this parameter is important for the 

biochemical interpretation of the FTIR spectra. The parameter 𝛼0 corresponds to the 𝛼-value of the non-

resonant case used in Kohler et al9. A good estimation of the 𝛼0-value is important for the estimation of the 

physical parameters as size of cells 𝑎 and constant part of the real refractive index 𝑛0. 

Appendix B: Hilbert transform and Kramers-Kronig relations for a calculation 

of the complex refractive index 

In order to define the complex refractive index 𝑛̂(𝜈) = 𝑛(𝜈) + 𝑖𝑛′(𝜈)⁡of materials from measured absorption, 

transmission or reflection spectra in optical spectroscopy, Kramers-Kronig relations are used. The complex 

refractive index is an important physical quantity when considering the scattering and absorption of infrared 

light at biological materials. The real part n(𝜈) of this index describes the refractive properties of the material; 

the imaginary part 𝑛′(𝜈̃)⁡of it determines the absorptive properties of the material. A method for obtaining 

n(𝜈)and 𝑛′(𝜈) is the Kramers-Kronig transform, which relates the real part n(𝜈) to the imaginary part 𝑛′(𝜈) 

of the complex refractive index: 

𝑛(𝜈) =
2

𝜋
𝑃∫

𝑠 ∙ 𝑛′(𝑠)

𝑠2 − 𝜈2

+∞

0

𝑑𝑠, (B1𝑎) 

𝑛′(𝜈̃) = −
2𝜈

𝜋
𝑃∫

𝑛(𝑠)

𝑠2 − 𝜈2

+∞

0

𝑑𝑠, (B1𝑏) 

where P denotes Cauchy’s Principal Value. 

These relations are equivalent to the Hilbert transform, provided that the real part is an even function of 

wavenumber and the imaginary part is an odd function of wavenumber, i.e. 𝑛(𝜈) = 𝑛(−𝜈) and 𝑛′(𝜈) =

−𝑛′(−𝜈̃): 

𝑛(𝜈) =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈

+∞

−∞

𝑑𝑠 = −
1

𝜋𝜈
∗ 𝑛′(𝜈̃), (B2𝑎) 

𝑛′(𝜈̃) = −
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈

+∞

−∞

𝑑𝑠 =
1

𝜋𝜈
∗ 𝑛(𝜈).⁡⁡(B2𝑏) 



Let us consider the connections between Eqs. B1 and B2. Because of 𝑛′(𝜈̃) is an odd function of wavenumber, 

this property permits the conversion of the Hilbert transform pair (Eq.B2a) into the Kramers-Kronig relations. 

The Hilbert transform pair (Eq.B2a) is expanded as 

𝑛(𝜈) =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈

+∞

−∞

𝑑𝑠 =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈
𝑑𝑠

0

−∞

+
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

0

 

with 𝑛′(𝜈̃) = −𝑛′(−𝜈) we get 

𝑛(𝜈) =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 + 𝜈
𝑑𝑠 +

1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

0

+∞

0

=
2

𝜋
𝑃∫

𝑠 ∙ 𝑛′(𝑠)

𝑠2 − 𝜈2

+∞

0

𝑑𝑠. 

Because of 𝑛(𝜈) is an even function of wavenumber, this property permits the conversion of the Hilbert 

transform pair (Eq.B2b) into the Kramers-Kronig relations. The Hilbert transform pair (Eq.B2b) is expanded 

as 

𝑛′(𝜈) = −
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈

+∞

−∞

𝑑𝑠 = −
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈
𝑑𝑠

0

−∞

−
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

0

 

with 𝑛(𝜈) = 𝑛(−𝜈) 

𝑛′(𝜈) =
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 + 𝜈
𝑑𝑠 −

+∞

0

1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

0

= −
2𝜈

𝜋
𝑃∫

𝑛(𝑠)

𝑠2 − 𝜈2
𝑑𝑠

+∞

0

. 

The Hilbert transform can be calculated via the Fast Fourier Transform (FFT). The FFT method is based on 

the fact that both real and imaginary parts of the complex refractive index defining the Hilbert transform are 

proportional to the convolution product between 𝑛(𝜈) or 𝑛′(𝜈) and the convolution kernel function 
1

𝜋𝜈̃
.  

In Eqs. B2 there is a singularity, when s is equal to 𝜈. The singularity problem is theoretically bypassed by 

introducing the Cauchy Principal Value.  

Derivations of Hilbert transform and Kramers-Kronig relations 

If 𝑛̂(𝜈) is an analytic function, then 
𝑛̂(s)

s−𝜈̃
⁡is an analytic function too except at the pole 𝑠 = 𝜈. Cauchy’s theorem 

states that 

∮f(𝑠)d𝑠 = 0,⁡ 



provided that the closed contour encloses no poles of the analytic function 𝑓(𝑠). Let us apply Cauchy’s theorem 

to the function 
𝑛̂(s)

s−𝜈̃
, where 𝜈 is a point on the real axis, and the contour, shown in Fig. 8, is the union of four 

curves with parametric representations 

C1: 𝑠 = 𝛺, where −𝑅 ≤ ⁡𝛺⁡ ≤ ⁡ 𝜈 − 𝜌; 

C2: 𝑠 = ⁡ 𝜈 + 𝜌𝑒𝑖𝜑, where 0 ≤ ⁡𝜑⁡ ≤ ⁡𝜋; 

C3: 𝑠 = 𝛺, where 𝜈 + 𝜌 ≤ ⁡𝛺⁡ ≤ ⁡𝑅; 

   C4: 𝑠 = ⁡𝑅𝑒𝑖𝜑, where 0 ≤ ⁡𝜑⁡ ≤ ⁡𝜋. 

From Cauchy’s theorem we have 

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝜈̃−𝜌

−𝑅

∫
𝑛̂(𝜈 + 𝜌𝑒𝑖𝜑)

𝜈 + 𝜌𝑒𝑖𝜑 − 𝜈
𝑖𝜌𝑒𝑖𝜑𝑑𝜑 +

0

𝜋

∫ ⁡
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝑅

𝜈̃+𝜌

∫
𝑛̂(𝑅𝑒𝑖𝜑)

𝑅𝑒𝑖𝜑 − 𝜈
𝑖𝑅𝑒𝑖𝜑𝑑𝜑 = 0

𝜋

0

. 

Therefore 

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝜈̃−𝜌

−𝑅

𝑖 ∫ 𝑛̂(𝜈 + 𝜌𝑒𝑖𝜑)𝑑𝜑 +
0

𝜋

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝑅

𝜈̃+𝜌

𝑖 ∫
𝑛̂(𝑅𝑒𝑖𝜑)

𝑅𝑒𝑖𝜑 − 𝜈
𝑅𝑒𝑖𝜑𝑑𝜑 = 0

𝜋

0

. 

Putting 𝜌 → 0 and 𝑅 → ∞, we have 

lim
𝜌→0,
⁡𝑅→∞

(∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝜈̃−𝜌

−𝑅

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝑅

𝜈̃+𝜌

𝑖 ∫ 𝑛̂(𝜈 + 𝜌𝑒𝑖𝜑)𝑑𝜑 +
0

𝜋

𝑖 ∫
𝑛̂(𝑅𝑒𝑖𝜑)

𝑅𝑒𝑖𝜑 − 𝜈
𝑅𝑒𝑖𝜑𝑑𝜑

𝜋

0

) = 0. 

lim
𝜌→0

(∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝜈̃−𝜌

−∞

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

𝜈̃+𝜌

) − 𝑖𝜋𝑛̂(𝜈̃) = 0. 

We obtain the last line since the fourth term vanishes as 𝑅⁡ → ⁡∞ if 𝑙𝑖𝑚
|𝑠|→∞

𝑛̂(𝑠) = 0. 

According to the definition of the Cauchy Principal Value of an integral we get 

lim
𝜌→+0

(∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠 +

𝜈̃−𝜌

−∞

∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

𝜈̃+𝜌

) = 𝑃∫
𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

−∞

, (1) 

and therefore, from (1), we have 

1

𝜋𝑖
𝑃∫

𝑛̂(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

−∞

= 𝑛̂(𝜈). 

Taking the real and imaginary parts of 𝑛̂(𝜈) = 𝑛(𝜈) + 𝑖𝑛′(𝜈), we get 

⁡𝐻[𝑛(𝜈)] = 𝑛′(𝜈) = −
1

𝜋
𝑃∫

𝑛(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

−∞

, 



𝐻−1[𝑛′(𝜈̃)] = 𝑛(𝜈) =
1

𝜋
𝑃∫

𝑛′(𝑠)

𝑠 − 𝜈
𝑑𝑠

+∞

−∞

. 

The last two expressions are called the Hilbert transform pair.  

Now we focus on the numerical solution of the Hilbert transform pair.  

By means of the Fourier transform definition an analytic signal 𝑥(𝑡)⁡can be represented in the following way 

𝑥(𝑡) = 𝐹−1[𝑋(𝑓)] = ∫ 𝑋(𝑓)exp⁡(𝑖2𝜋𝑓𝑡)𝑑𝑓
+∞

−∞

, 

where 

𝑋(𝑓) = 𝐹[𝑥(𝑡)] = ∫ 𝑥(𝑡) exp(−𝑖2𝜋𝑓𝑡)𝑑𝑡.
+∞

−∞

 

According to the definition of the Hilbert transform for a function 𝑥(𝑡) we have 

𝑥̃(𝑡) = 𝐻(𝑥(𝑡)) =
1

𝜋
𝑃∫

𝑥(𝑠)

𝑠 − 𝑡
𝑑𝑠

+∞

−∞

=
1

𝜋𝑡
∗ 𝑥(𝑡). 

Since  

𝐹 (
1

𝜋𝑡
) = −𝑖[𝑠𝑖𝑔𝑛(𝑓)] = {

−𝑖, 𝑓 > 0;
0, 𝑓 = 0;
𝑖, 𝑓 < 0.

 

Then  

𝐹[𝑥̃(𝑡)] = 𝑋̃(𝑓) = 𝐹 [
1

𝜋𝑡
∗ 𝑥(𝑡)] = 𝐹[𝑥(𝑡)] ∙ 𝐹 (

1

𝜋𝑡
) = −𝑖[𝑠𝑖𝑔𝑛(𝑓)] ∙ 𝑋(𝑓). 

Multiplying both parts of the last expression by 𝑖[𝑠𝑖𝑔𝑛(𝑓)], we get 

𝑖[𝑠𝑖𝑔𝑛(𝑓)] ∙ 𝑋̃(𝑓) = 𝑋(𝑓). 

This equation is used for the numerical solution of the Hilbert transform pair. The algorithm of calculating the 

Hilbert transform consists of three steps: 

1) to calculate the spectrum 𝑋(𝑓): 

𝑋(𝑓) = 𝐹[𝑥(𝑡)]; 

2) to apply the expression 𝑖[𝑠𝑖𝑔𝑛(𝑓)] ∙ 𝑋̃(𝑓) = 𝑋(𝑓) for calculating 𝑋̃(𝑓): 

𝑋̃(𝑓) = −𝑖[𝑠𝑖𝑔𝑛(𝑓)] ∙ 𝑋(𝑓) 

3) to calculate 𝑥̃(𝑡): 

𝑥̃(𝑡) = 𝐹−1[𝑋̃(𝑓)]. 

These three steps are used in Matlab for the calculation of Eqs.B2 via the function Hilbert. 



More details about numerical solution of the Kramers-Kronig transforms based on the FFT algorithm are 

presented in P.Bruzzoni et19. 
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Figure 1. (a) A set of simulated pure absorbance spectra. (b) PCA of simulated pure absorbance spectra. (c) 

Imaginary part of the refractive index obtained from the simulated absorbance spectra (d) Real part of the 



refractive index obtained from the simulated absorbance spectra. (e) Apparent absorbance spectra obtained by 

employing exact Mie theory taking into account the optical setup of an infrared microscope. (f) PCA of 

simulated apparent absorbance spectra. 

 

Figure 2: Schematic illustration of the iterative algorithm for the retrieval of the pure absorbance spectrum 

from the apparent absorbance spectrum. After each iteration, a new estimate of the pure absorbance spectrum 

is obtained. The next iteration is initialized by using the estimate of the pure absorbance spectrum for updating 

the real and imaginary parts of refractive index for the iterative algorithm.  

 



Figure 3. (a) An example of a simulated apparent absorbance spectrum is shown. (b) Spectra corrected by an 

iterative EMSC meta-model employing the Van De Hulst approximate formula with complex refractive index 

are shown. Corrected spectra for iteration 1, 2 and 3 of the correction algorithm (green, brown and violet, 

respectively) are close to the underlying pure absorbance spectrum (blue dashed line) and different from the 

reference spectrum (red line) employed. For simulation of the apparent absorbance spectrum in (a) we used 

the parameters 𝑛0 = 1.35 and 𝑎 = 3.81⁡𝜇𝑚. 

 

Figure 4. (a) Apparent absorbance spectrum containing ripples. For the simulation of the apparent absorbance 

spectrum the parameters 𝑛0 = 1.36 and 𝑎 = 5.12⁡𝜇𝑚 were used. (b) The corrected spectra for iteration 1, 2 

and 3 of the correction algorithm (green, brown and violet, respectively). They still contain the ripple structure. 

As expected, the EMSC meta-model employing the Van De Hulst approximate formula with complex 

refractive index does not correct the ripples.  

 



Figure 5. The complete set of simulated apparent absorbance spectra shown in Fig.1e is corrected by the 

algorithm presented in this paper. The spectra that correspond to red scores of pure absorbance spectra in Fig 

1b are drawn in red; the spectra that correspond to blue scores of pure absorbance spectra in Fig. 1b are marked 

blue.The reference spectrum is shown in green. Some corrected absorbance spectra contain ripples. As 

expected, the EMSC meta-model employing the Van de Hulst formula with complex refractive index does not 

remove ripples. 

 

Figure 6: The peak ratio is shown for the bands at 1546 cm-1 and 1387 cm-1 for the simulated pure absorbance 

spectra (blue), for iteration 1, 2 and 3 of the correction algorithm (red, green and black, respectively) and for 

the apparent absorbance (magenta). The ratio for the reference spectra is plotted as the blue dashed line for 

comparison. 

 



Figure 7. The measured infrared microspectroscopy spectra of lung cancer cells are shown in red together with 

the corrected spectra in green. For the correction one iteration step was used. The matrigel spectrum was used 

as the reference spectrum (in blue). 

 

Figure 8. Contour in the complex plane used to derive the Kramers-Kronig relations. The integration path, 

which is skirting the singularity point 𝑠 = 𝜈, is indicated by arrows. The radius R of the outer semicircle tends 

to infinity. The radius 𝜌⁡of the small semicircle about 𝜈 tends to zero.  

 


