
Using time-to-event analysis to complement hierarchical

methodswhen assessing determinants of photographic

detectability during camera trapping

RichardBischof1*, ShoaibHameed2, HussainAli2, MuhammadKabir2, MuhammadYounas2,

KursheedA. Shah2, Jaffar U. Din2 andMuhammadA. Nawaz2,3

1Department of Ecology andNatural ResourceManagement, NorwegianUniversity of Life Sciences, P.O. Box 5003,

NO-1432�As, Norway; 2SnowLeopard Foundation, 17-Service RoadNorth, I-8/3, Islamabad, Pakistan; and 3Department of

Animal Sciences, Quaid-i-AzamUniversity, Islamabad 45320, Pakistan

Summary

1. Camera trapping, paired with analytical methods for estimating occupancy, abundance and other ecological

parameters, can yield information with direct consequences for wildlife management and conservation.

Although ecological information is the primary target of most camera trap studies, detectability influences every

aspect from design to interpretation.

2. Concepts and methods of time-to-event analysis are directly applicable to camera trapping, yet this statistical

field has thus far been ignored as a way to analyse photographic capture data. To illustrate the use of time-to-

event statistics and to better understand how photographic evidence accumulates, we explored patterns in two

related measures of detectability: detection probability and time to detection. We analysed camera trap data for

three sympatric carnivores (snow leopard, red fox and stone marten) in the mountains of northern Pakistan and

tested predictions about patterns in detectability across species, sites and time.

3. We found species-specific differences in the magnitude of detectability and the factors influencing it, reinforc-

ing the need to consider determinants of detectability in study design and to account for them during analysis.

Photographic detectability of snow leopard was noticeably lower than that of red fox, but comparable to detect-

ability of stone marten. Site-specific attributes such as the presence of carnivore sign (snow leopard), terrain

(snow leopard and red fox) and application of lures (red fox) influenced detectability. For the most part, detec-

tion probability was constant over time.

4. Species-specific differences in factors determining detectability make camera trap studies targeting multiple

species particularly vulnerable to misinterpretation if the hierarchical origin of the data is ignored. Investigators

should consider not only themagnitude of detectability, but also the shape of the curve describing the cumulative

process of photographic detection, as this has consequences for both determining survey effort and the selection

of analyticalmodels.Weighted time-to-event analysis can complement occupancy analysis and other hierarchical

methods by providing additional tools for exploring camera trap data and testing hypotheses regarding the tem-

poral aspect of photographic evidence accumulation.

Key-words: Cox proportional hazards model, cumulative incidence,Martes foina, Panthera uncia,

survival analysis,Vulpes vulpes, weighted observations

Introduction

Camera trapping has become an important tool in ecological

research, especially for monitoring rare and elusive species,

because it can provide detailed visual information without

requiring on-site human observers or physical capture. Devel-

opments and adaptations in analytical fields allow us to extract

from photographic capture data information about activity

patterns and behaviour (Maffei et al. 2005), species diversity/

inventory (Tobler et al. 2008), occupancy (Linkie et al. 2007),

abundance and density (Karanth & Nichols 1998), as well as

vital rates such as survival and fecundity (Gardner et al. 2010).

Like other evidence placing organisms in time and space, cam-

era trap data originate from two processes: the ecological

mechanisms determining abundance/occupancy and the pro-

cess of observation determining our ability to detect an organ-

ism when it is present (K�ery 2011). Although ecological

parameters are typically the focus, detectability permeates

every aspect of camera trap studies and most other surveys of

fauna and flora. Knowledge about detectability can help opti-

mize study design (MacKenzie & Royle 2005), and detectabil-

ity must be accounted for analytically to estimate the

ecological parameter of interest (K�ery & Schaub 2012). In*Correspondence author. E-mail: richard.bischof@umb.no
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addition, most studies strive towards achieving high detectabil-

ity because this increases cost efficiency, improves the precision

of the ecological parameter estimates and, in the presence of

latent heterogeneity in detection probability, also reduces bias

in the estimates (Lukacs&Burnham 2005).

We can express detectability (i) as the probability of making

a detection in a given time period (e.g. 1 day) or (ii) as the time

until a detection is made, both conditional on presence of the

focal individual or species. Although these two measures are

manifestations of the same binomial process, they provide dif-

ferent perspectives on detectability. Camera trapping typically

involves periods of inactivity, interrupted by photographic

captures of wildlife. An expansive statistical field, time-to-event

analysis, more commonly referred to as survival analysis, deals

with such situations. As the name suggests, the measure of

interest is the time until some event occurs. In the case of

camera trap studies, it is the time until a photographic capture

is made, and we illustrate the use of this concept to gain addi-

tional insights about detectability during multispecies camera

trap studies.

Using both occupancy analysis and time-to-event analysis,

we explored empirical patterns in photographic detectability

over species, sites and time for three sympatric carnivore

species (snow leopard Panthera uncia, red fox Vulpes vulpes

and stone martenMartes foina). We asked the following ques-

tions to guide our analysis:

Q1.How do the three carnivore species differ in their photo-

graphic detectability? We predict that widespread species

known to be tolerant of human activity and environmental dis-

turbance, such as red fox and stone marten (Adkins & Stott

1998; Herr et al. 2010), are more easily detected than the snow

leopard with its reputation for being elusive (Jane�cka et al.

2011).

Q2. What are the determinants of detectability? Site selec-

tion is a key factor during camera trapping studies targeted at

carnivores, and we expect species-specific responses of detect-

ability to site covariates, such as terrain, habitat type and the

presence/absence of carnivore sign in the area. We predict that

the presence of carnivore sign and application of scent lures at

camera traps improve detectability (higher detection probabil-

ity, shorter time to detection).

Q3. How does photographic detection proceed over time?

We predict that disturbances associated with placing camera

traps in the environment, as well as changes in the potency of

olfactory attractants due to scent dissipation, may lead to non-

constant detectability over time.

Q4. What is the quantitative effect of longer survey dura-

tion on the probability of detecting a focal species at least

once at a site if it is present? Hamel et al. (2012)

recommended a 30-day survey duration when multiple spe-

cies are targeted in one study to allow reliable parameter

estimates (conditional on the number of sites surveyed). This

would entail a two- to three-fold increase compared with the

camera trapping duration in our study (10–14 days), which

we anticipate would substantially boost the proportion of

cameras with at least one detection and consequently

increase the sample size.

We discuss implications of our findings for camera trap

study design and data analysis and illustrate for the first time

the utility of time-to-event analysis for complementing

information about detectability gained from hierarchical

models based on camera trap data.

Materials andmethods

STUDY AREAS AND CAMERA TRAPPING

Data analysed here were collected as part of a larger project studying

carnivore guild ecologyusingnon-invasivemethods.Camera trapswere

deployed in four studyareas situated in andaround three national parks

in themountains of northern Pakistan. Fromwest to east, the parks are

Broghil National Park, with study area BNP (36º 50′ N, 73º 28′ E;

450 km2; 3 217–5 696 m a.s.l), Qurumber National Park, with study

area QNP (36º 42′ N, 73º 59′ E; 650 km2; 2 474–5 914 m a.s.l), and

KhunjerabNational Park, with study areasKKH (36º 52′ N, 75º 07′ E;

1 025 km2; 2 748–6 029 m a.s.l.) and SHS (36º 25′ N, 75º 23′ E;

475 km2; 2 923–6 372 m a.s.l., Fig. 1). Broghil and Qurumber

NationalParks are located in thePamirMountains,whereasKhunjerab

National Park is in theKarakoramMountains. The landscape is rugged

in all four study areas, dominated by narrow valleys, ravines, cliffs and

ridges, andmostly glaciatedmountain crests. Four vegetation zones can

be distinguished along the elevation gradient: alpine dry steppe, subal-

pine scrub zone, alpinemeadowsandpermanent snowfields.

Camera traps were deployed September 25–November 16, 2011, in

KKH/SHS and June 18–July 30, 2012, in BNP/QNP.We selected cam-

era trap locations within each study area based on terrain features

favoured bymedium to largemammalian carnivores (ridges, cliff bases,

draws/valleys) and preferably the presence of carnivore and/or prey

sign. Accessibility in rough terrain constrained site selection. Study

grids (5 9 5 km, Fig. 1) were used as guides to spread camera traps

across the landscape, but due to the variable terrain, mostly represent-

ing linear systems of narrow draws and ridges, grid cells are not true

sampling units. We set 2 (occasionally 1 or 3) camera traps in each

5 9 5 km grid cell. Camera traps were separated by at least 1 km, with

some exceptions due to constraints posed by terrain. Upon selecting a

site, a single-motion-triggered digital camera with infrared flash

(HC500/PC900; Reconyx, Holmen,WI, USA) was installed by affixing

it at a height of c. 50–60 cm to a steel pole driven into the ground. Cam-

era traps were set to take consecutive images (1-s picture interval) while

being triggered and were typically kept active at a given location for

10–14 days.

SPECIES STUDIED

We chose to include data from three species in this study (Fig. 1) as

they were the most frequently captured carnivores during camera

trapping. The red fox is one of the most widespread and adaptable

carnivores and occurs throughout Pakistan (MacDonald & Reynolds

2008). The stone marten is common throughout Europe and Asia;

its range in Pakistan includes the mountainous areas in the north

and along the border with Afghanistan in the west (Tikhonov et al.

2008). Both red fox and stone martens are classified as species of

least concern on the IUCN Red List, whereas the snow leopard is

classified as endangered (IUCN 2012). In Pakistan, the snow leopard

range covers part of the mountainous areas in the north with a

countrywide population estimate of 200–420 individuals (Jackson

et al. 2008).
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COVARIATES

At each camera trap location, we recorded elevation, terrain feature

(cliff base, ridge/slope, valley/draw), habitat type (barren, forest/scrub,

pasture/grassland) and any potential carnivore sign (e.g. tracks, faeces,

scrapes) found in its vicinity. Study area (BNP, QNP, KKH and SHS)

was used as an additional predictor in the analysis to control for the col-

lection of characteristics that separated survey bouts spatially and in

time. Differences between survey years and seasons did not allow a reli-

able spatial comparison between SHS/KNP and BNP/QNP. Because

snow leopard was only photo-captured at a single camera trap station

in QNP and not at all in BNP, we only analysed data from KKH and

SHS for this species.

To evaluate whether olfactory attractants boost detectability, cam-

era traps were randomly assigned to one of three treatments: (i) castor-

based scent lure (containing beaver Castor canadensis castoreum; Eva-

nesce Lure, Kaatz Bros, Savanna, IL, USA), (ii) skunk-based scent lure

(skunk Mephitis mephitis anal scent gland; Magnum-Call Lure, Blac-

kie’s Blend, Glenmont, OH, USA) and (iii) no lures/attractants (con-

trol). We used commercial scent lures manufactured for North

American trappers targeting carnivores. At camera trap sites desig-

nated for lure application, a plaster tablet (diameter: 16 mm; thickness:

6 mm; USDA-Pocatello Supply Depot, Pocatello, ID, USA) soaked in

fish oil was placed in the centre of a cleared area (c. 75 cm diameter)

and lightly covered with loose soil or sand to reduce the chance of

detection and removal by birds. Plaster tablets were added as a short

range attractant to draw potentially reluctant carnivores into the view

of the camera. The designated scent lure (c. 3–5 mL) was applied as a

long-range attractant to vegetation or rock adjacent to the cleared area

at a height between 30 and 50 cm above the ground.

DEFIN IT IONS

Before proceeding with the description of the analytical approach, we

define the following variables:

• P = detection probability, the daily probability of photo-
graphic detection of the focal species at a camera trap station

at least once, conditional on the species being present.

• T = time to detection, the time (e.g. in hours or days) until
the first photographic detection of the focal species at a cam-

era trap station, conditional on the species being present.

• t0�5 = median time to detection, the time by which 50% of
camera trap stations with the focal species present have

made a photographic capture of that species.

• Pt = the probability of at least one photographic detection
of the focal species by a given time t after camera activation,

(a) (b) (c)

Fig. 1. Shaded relief map (top) showing four camera trap study areas (sectioned into 5 9 5 km grids) in relation to three national parks (solid

boundaries) in northern Pakistan. The images below the map are examples of camera trap photographs of the three species included in the analysis:

snow leopard (a), red fox (b) and stonemarten (c).
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conditional on the species being present. Alternatively, Pt

is the proportion of stations with at least one detection by
time t.

DETECTION PROBABIL ITY

We used single-species, single-season occupancy models to estimate

detection probability P (Q1) and the effect of site covariates (MacKen-

zie 2006; Q2). After constructing species-specific detection histories

based on daily detection/non-detection at each camera trap (Fig. 2), we

used function ‘occu’ in the R package unmarked (Fiske & Chandler

2011; RDevelopment Core Team 2012) to fit separate occupancymod-

els for each of the three focal species. We considered lure treatment,

elevation, study area, terrain feature, habitat type and the presence/

absence of potential sign of the focal species as covariates on P. The

same covariates, except lure type, were also considered as predictors of

occupancy (w). The need to set camera traps at locations that (i) were

likely places for carnivores to visit and (ii) were accessible on foot,

meant that the spatial distribution of camera traps was neither random

nor systematic. The objective of the present analysis was to obtain con-

ditional estimates of detectability and not to produce and compare

absolute occupancy or abundance estimates, for which spatially explicit

hierarchical models may be a more robust option (Royle et al. 2007).

However, to partially account for the likely non-independence in occu-

pancy between camera traps in each other’s vicinity, we considered as

an additional predictor onoccupancy the distance to the nearest camera

trap stationwith at least onedetectionof the focal species. Bothdistance

to the nearest camera trap with confirmed photographic capture and

elevation were standardized (mean = 0, SD = 1) and modelled using

smoothing splines with 2 d.f. (function ‘ns’ in R package ‘splines’),

because preliminary analysis suggested nonlinear relationships between

these variables and real parameters. We used AIC for model selection,

considering all possible combinations of terms, but limiting the maxi-

mum number of predictors on either real parameters to three. In cases

where several models were within ΔAIC 2 of the top model, we selected

the model with the fewest parameters for inference. We performed

goodness-of-fit tests with a parametric bootstrap and a chi-squared sta-

tistic followingMacKenzie (2006) andFiske&Chandler (2011).

TIME TO DETECTION

Concepts and methods associated with time-to-event analysis are

directly applicable to camera trapping. The measure of interest is the

time until some event (also referred to as ‘failure’ or ‘death’) occurs to

an individual. In our analysis, the individual for which the event occurs

is a camera trap station, and the event is the first photographic capture

of the focal species at that station. The follow-up period is the duration

of time for which individuals are monitored, that is, the time from cam-

era activation until takedown/deactivation. Censoring is an essential

concept in time-to-event analysis; when monitoring ceases of an indi-

vidual without having observed an event, we right-censor. Right-cen-

soring allows for the inclusion of data from camera traps that did not

Fig. 2. Conceptual diagram of the approach taken to analyse camera trap data using time-to-event statistics and occupancy models. Each row in

the graph to the far left represents the history of one camera trap station, with grey lines indicating time periods during which each station was active

(c. 10 days) and black marks representing photographic captures of the focal species. Camera trap data were compiled into time-to-event data and

detection histories (excerpts shown). Analytical steps (hierarchical analysis and time-to-event analysis) and their output are described in the text and

Appendix S1.
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detect the focal species by considering the time such camera traps were

available formaking a photographic detection.

We used Cox proportional hazards (CPH) models to confirm

empirically that patterns in time to detection matched patterns in

detection probability in terms of covariate effects (Q2). CPH models

estimate the multiplicative effect of covariates on the baseline hazard

(the instantaneous potential of detection), assuming only that hazards

are proportional, but without having to specify the shape of the under-

lying cumulative distribution function (Cox 1972; Venables & Ripley

2002; Appendix S1). However, simply using the time until the first

photo-capture of the focal species as the response and censoring all

sites without captures ignore the fact that there are two possible causes

for non-detection: the species either was present but missed, or was

not detected because it was truly absent. From the top occupancy

model that emerged during occupancy model fitting, we derived

empirical Bayes estimates of site-specific occupancy at each camera

trap location with functions ‘ranef’ and ‘bup’ in the R package

unmarked (Fiske & Chandler 2011). We then proceeded to use these

occupancy values (>0–1) as observation weights in the CPH regres-

sion, implemented through the ‘weights’ argument of the ‘coxph’ func-

tion in the R survival package (Therneau 2012). Covariate effects

estimates derived from the weighted CPH model can be interpreted as

effects on detectability conditional on presence, because sites less likely

to be occupied have a correspondingly smaller contribution during fit-

ting and hence smaller impact on the regression estimates. We used

simulations to confirm that the weighted CPH approach reliably esti-

mates conditional hazard ratios of detectability both qualitatively and

quantitatively under an occupancy scenario (Fig. S1, Appendix S2).

We fit species-specific CPH models using the same covariates identi-

fied in the top occupancy models (on detectability). Model diagnostics

were performed following Fox (2002), including tests for proportional-

ity of hazards using the ‘cox.zph’ function in the R survival package.

We used three steps to assess how the accumulation of photographic

evidence proceeded in time:

Step 1: We constructed empirical detectability curves (DC) to

visualize cumulative detection over time (Q3). Empirical DCs give

the probability that the first photo-capture of a focal species

occurs sometimes before t (time after camera activation) and are

equivalent to what are termed ‘cumulative incidence curves’ in

time-to-event analysis. In the absence of competing risks, that is,

when multiple events (photographic captures of different species)

are not mutually exclusive, empirical DCs are complements of

Kaplan–Meier (KM) survival curves. The latter are nonparamet-

ric maximum-likelihood estimates of survival over time (S(t);

Kaplan & Meier 1958; Venables & Ripley 2002; Appendix S1),

that is, the probability that the event of interest has not yet

occurred by time t, which can be calculated with the ‘survfit’ func-

tion in the R survival package. To construct empirical DCs that

were conditional on presence at a site, we included site-specific

occupancy estimates as observation weights during the calcula-

tion.

Step 2: We fit parametric survival models to the time to first detec-

tion to determine whether there was evidence for non-constant

detectability over time (Q3). We quantitatively compared the per-

formance (AIC) of the model assuming constant detection over

time (exponential cumulative distribution function) with models

representing four alternative cumulative distribution function

shapes that allow for non-constant detectability: Weibull (with

scale parameter 6¼ 1), Gaussian, log and log-logistic. All survival

models were fitted with the function ‘survreg’ in the R survival

package, with site-specific occupancy estimates as observation

weights. In addition to AIC-based model comparison, we visually

compared empirical DC (Step 1) with predictions from the model

assuming constant detectability over time (exponential DC).

Step 3: We used parametric survival models to a) estimate t0�5 as an
alternative means to compare detectability among species (Q1) and

b) predict Pt if we extended the camera trapping duration to

30 days (Q4). Both t0�5 and Pt assuming a 30-day camera trapping

duration were estimated using the exponential survival model fitted

separately to each species’ time-to-detection data (‘survreg’ func-

tion inR survival package).

Additional details about the analytical approach are provided in

Appendix S1 and an overview in Fig. 2. We again used simulations to

confirm that detectability, conditional on presence, was correctly repre-

sented by DCs constructed from observations weighted according to

their site-specific occupancy estimates (Fig. S2).

Results

We set 198 separate camera traps (BNP: 31, QNP: 47, KKH:

85; SHS: 35) for a total of 2 287 camera trap days. Of the three

focal species, red fox was the most frequently captured species

(8�6 capture trap days per 100 trap days and 2 055 photo-

graphs at 93 camera traps), followed by stone marten (2�6 cap-
ture trap days per 100 trap days and 520 photographs at 36

camera traps) and snow leopard (1�3 capture trap days per 100

trap days and 1 093 photographs at 23 camera traps).

DETECTION PROBABIL ITY

Occupancy analysis revealed species-specific differences in

detection probability and the covariates affecting detectability

(Table 1, Fig. 3).

Q1. In the areas where we photographically captured all

three species, P for snow leopard was noticeably lower than

that for red fox, but comparable in magnitude to P for stone

marten (Table 1).

Q2. For snow leopard, the strongest determinant of photo-

graphic detectability was the presence of potential sign indicat-

ing activity in the vicinity of the camera trap prior to set-up

(9�3 times greater odds, 95% CI: 2�2–39�9). Skunk-based lures

had a positive effect on P of red fox (2�6 times greater odds,

95% CI: 1�7–4�1), and castor-based lures were intermediate in

their effect (Fig. 3). Both snow leopard and red fox had lower

Table 1. Estimates of daily detection probability (P; from occupancy

models) and median time to first detection (t0�5; from survival models)

by species and study area (95%CI limits in parentheses)

Study

area Snow leopard Red fox Stonemarten

Detection probabilityP

KKH 0�037 (0�032–0�047) 0�163 (0�152–0�179) 0�048 (0�047–0�055)
SHS 0�036 (0�029–0�049) 0�181 (0�161–0�209) 0�032 (0�031–0�05)
BNP – 0�131 (0�116–0�154) 0�136 (0�127–0�153)
QNP – 0�072 (0�065–0�084) 0�099 (0�095–0�107)

Median time to first detection t0�5 (in days)
KKH 19�89 (11�99–32�99) 4�65 (3�43–6�32) 13�39 (6�97–25�73)
SHS 23�27 (10�46–51�8) 4�43 (2�79–7�03) 16�57 (5�34–51�38)
BNP – 7�18 (4�33–11�91) 5�19 (2�6–10�38)
QNP – 9�79 (6�17–15�54) 5�43 (3�33–8�87)
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odds of being detected by camera traps set on ridges/plateaus

than by camera traps set along the bases of cliffs; odds of sta-

tions set in draws/valleys were intermediate (Fig. 3). Study

area affected P of red fox and stone marten. Effects of predic-

tors retained in each species’ top occupancy model are shown

in Fig. 3, and results of model selection, in Table S1.

Hierarchical modelling also yielded species-specific esti-

mates of w and associated covariate effects. Although occu-

pancy itself was not the focus of the present study, site-specific

occupancy estimates were used as observation weights during

the time-to-event analysis and are shown in Fig. S3. Overall

occupancy estimates (Table S2) should be interpreted with

caution (e.g. as site/area use, rather than as occupation) due

to violation of closure assumptions caused by the likely obser-

vation of individuals with large home ranges at multiple sites.

TIME TO DETECTION

Q1. Patterns in median time to detection were consistent with

patterns in detection probability across species and study

areas: low P was associated with long t0�5 and vice versa

(Table 1). Species-specific DCs predicted with parametric sur-

vivalmodels trackedDCs based on estimates ofPobtained from

occupancymodels (Appendix S1), which is further empirical evi-

dence of the connection between the twomeasures of detection.

Q2. The results from the weighted CPH regressions closely

matched those from the occupancy analysis (Fig. 3), and simu-

lations confirmed that using occupancy estimates as observa-

tion weights in CPH regression led to reliable estimates of

covariate effects on hazards, conditional on presence (Fig. S1).

Q3. Comparison of empirical DCs (black lines, Fig. 4) with

DCs assuming an exponential survival model (red lines, Fig. 4)

gave little indication of systematic deviations from constant

detectability over time. In one case (red fox in BNP), the Wei-

bull cumulative distribution function resulted in a better fit

(DAIC = �4) than the exponential one. Simulations con-

firmed that empirical DCs constructed using occupancy esti-

mates as observation weights matched the DCs constructed

using perfect knowledge about occupancy (Fig. S2).

Q4.The proportion of stations that would detect a focal spe-

cies at least once during a 30-day camera trap period varied

dependent on the pattern in species- and area-specific detect-

ability. For example, for snow leopard, the species with the

lowest detection probability increasing the camera trapping

duration from 10 to 30 days in KKH would result in a pre-

dicted increase in Pt from 0�29 to 0�65, whereas for red fox and

stone marten, a corresponding extension of camera trapping

duration would lead to an increase in Pt from 0�78 to 0�99 and
0�4 to 0�79, respectively (Fig. 4).

Discussion

SPECIES-SPECIF IC DIFFERENCES IN DETECTABIL ITY

(Q1 )

Our results confirm the need to account for imperfect and

variable detectability when analysing camera trap and other

observation data (see also K�ery & Schaub 2012). It is tempting

to analyse camera trap data by comparing photographic cap-

ture rates and ignoring the hierarchical origin of the data.

However, comparisons of rates could be deceiving because sys-

tematic variation in detection probability will result in biased

estimates of differences (K�ery 2011). In our study, detection

probability varied between species and over several of the site

covariates that we evaluated (Fig. 3). Because occupancy var-

ied as well, models ignoring the hierarchical process would

have led to potentially erroneous predictions (Figs S1 and S2).

SITE SELECTION AND ATTRACTANTS AS

DETERMINANTS OF DETECTABIL ITY (Q2 )

Many species with the greatest conservation need are difficult

to detect and monitor. The key factor in determining detect-

ability in most field studies remains location; for carnivores,

this means selection of sites that lie along possible movement

paths, are near preferred terrain/habitat features and ideally

contain signs of use by carnivores or their prey. Determinants

of snow leopard detectability, the presence of sign and terrain

feature, are particularly noteworthy in the light of the interna-

tional interest in snow leopard monitoring and conservation

and the species’ notoriety for elusiveness (Jane�cka et al. 2011).

The nine-fold greater odds of photo-capturing snow leopards

at stations with snow leopard sign than without may seem triv-

ial in the context of occupancy studies (i.e. why not just use sign

data for determining occupancy in the first place), but are rele-

vant for photographic mark–recapture studies that distinguish

between individuals.

During camera trapping, enticements such as lures and baits

can boost the probability of a visit and thereby detectability.

We found that red foxes were more likely to be detected at

camera trap stations treated with lures. Lures can increase

detectability, but might also lead to a change in spatial sam-

pling units (by drawing animals in from a wider area) and to

non-constant detection probability over time (e.g. through ini-

tial attraction, followed by scent dissipation). During a camera

trap study ofMalagasy civets Fossa fossana, Gerber, Karpanty

& Kelly (2012) found that the application of lures did not bias

density estimation through effects on immigration and emigra-

tion; instead, it led to an increase in precision of the estimates

by increasing the number of recaptures. In addition to the ben-

efits of a larger sample size, more frequent and potentially

longer visits increase the chance ofmaking an individual identi-

fication, observing behaviour and reproductive status, and

provide greater opportunity to collect genetic samples at the

site. Furthermore, by shortening the time to first detection,

lures can help reduce survey durations and thereby help meet

closure assumptions and reduce costs.

DETECTION PROCESS OVER TIME (Q3 ) AND CAMERA

TRAPPING DURATION (Q4 )

Time to detection in our study showed little systematic devia-

tion from the exponential cumulative distribution function (i.e.

constant detectability), with the exception of red fox in BNP.
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Regardless of this finding, we encourage investigators to check

their camera trap data for non-constant detection probability

over time, because the shape of the DC could influence selec-

tion of the appropriate model for analysis as well as decisions

about effective survey length. For example, when hazards are

initially low due to avoidance, but then increase as the target

species becomes accustomed to the camera trap or, when

human scent has dissipated, lengthening the camera trapping

duration to include the period of elevated detection will

increase the average daily probability of detection during the

survey.

The duration forwhich a camera trap is kept active at a given

site is an important consideration when planning camera trap

studies (Hamel et al. 2012). Resource limitations (available

staff, time, camera traps) and analytical assumptions (e.g.

demographic closure in capture–recapture studies; Karanth,

Nichols &Kumar 2011) may favour shorter overall study peri-

ods, whereas the need to increase Pt and thereby the accuracy

and precision of parameter estimates may require longer cam-

era trapping durations (Hamel et al. 2012). Survival functions

and their complements constructed from camera trap data can

provide an analytical and visual tool to help with decisions

Fig. 3. Predictions for covariate effects on detectability estimated from top occupancy models (left column) and Cox proportional hazards regres-

sion (right column) for three carnivore species (grey bars: 95% CI). Panels in the left column show covariate effects on daily detection probability.

Panels in the right column show covariate effects on the log hazard ratio. For predictions of a given covariate effect, all remaining covariates are held

either at themean (continuous variables) or at an arbitrary level (categorical variables). The focus is on the relative position of the estimates, not their

absolute value. Vertical dashed lines in the study area effect plots indicate that surveys were implemented in different seasons and years in KKH/

SHS vs. BNP/QNP.
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Fig. 4. Detectability curves (DC) for three carnivore species in four study areas, showing the probabilityPt of at least one photographic detection by

a given time t, conditional on presence. Empirical DCs (solid back lines, with 95% confidence bands in grey) were estimated as the complement of

Kaplan–Meier survival curves, with camera trapsweighted according to their site-specific occupancy estimates. Bold red lines areDCs predictedwith

parametric survival models assuming constant detectability over time. Red arrows indicate the median time to detection (t0�5, pointing down) andPt

assuming 30 days of camera trapping (pointing left).
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about camera trappingduration consistentwith the recommen-

dation by Garrard et al. (2008) to use detectability curves for

determining effort needed during floral surveys. Hamel et al.

(2012) recommended a 30-day camera trapping duration at a

site when multiple species are targeted in one study, which

depending on the study area would lead to projected Pt

between 0�59 and 0�65 for snow leopard, 0�88 and 0�99 for red
fox and 0�72 and 0�98 for stone marten. Survival functions can

also help view the effect of covariates from a different perspec-

tive: for example, the median time to first detection of red fox

depends on the application of olfactory attractants, with direct

consequences for survey efficiency (Fig. 5).

ANALYTICAL CONSIDERATIONS

Important concepts and methods in time-to-event analysis,

such as survival functions, hazards and censoring, find direct

application during the analysis of camera trap data. Using a

Bayesian approach, Garrard et al. (2008) andMcCarthy et al.

(2013) combined an exponential failure time model with a

binomial component to account for the time to detection con-

ditional on presence, as well as non-detection due to true

absence during floral and faunal surveys. As an alternative

approach for modelling time to first detection conditional on

presence, we have weighted observations according to their

site-specific occupancy estimates during time-to-event analysis.

Although there are inherent benefits in integrating all compo-

nents of an analysis within a single framework/paradigm as

done by Garrard et al. (2008) and McCarthy et al. (2013),

there are several advantages associated with our approach.

These include the benefits of using nonparametric and semi-

parametric models that do not require that the shape of the

cumulative distribution function be specified, as well as access

to the built in functionality of the R survival package

(Therneau 2012). In addition, our approach is more accessible

for investigators who rely on frequentist methods for inference.

As our validation has shown, weighted DC construction and

CPH regression resulted in reliable conditional parameter esti-

mates, apparently unbiased with respect to the true parameter

and estimates obtained assuming perfect knowledge about

occupancy (Figs S1 and S2). Furthermore, predictions of

covariate effects (CPH models) and species-specific time to

detection (parametric survival models) showed strong corre-

spondence with results obtained from occupancy analysis.

Time-to-event analysis of camera trap data as described here

considers the first detection at each camera, whereas occu-

pancy or other forms of mark–recapture analysis use also sub-

sequent captures (albeit pooled into discrete occasions).

Recurrent event survival analysis (Cook & Lawless 2007), may

present a solution where this is a concern because it allows for

events that can occurmore than once.

Because the sample size available for analysis is directly

related to the magnitude of the real parameters (w and P), so is

our ability to detect and/or reliably quantify covariate effects.

The relationship between the magnitude of the real parameters

and statistical power should be considered when comparing

patterns in covariate effects between species, especially because

the absence of evidence of a significant effect cannot be taken

as evidence for the absence of an effect. Ironically, we can

expect to obtain less reliable and less detailed information on

factors influencing detection probability for rare and elusive

species where we could potentially gain the most from under-

standing and manipulating detectability (such as through site

selection or the use of attractants). In the extreme, we have to

accept that photographic captures of some species may be too

scarce to allow parameter estimation with useful precision.

Even if parameter estimation seems feasible, covariate effects

or potential deviations from model assumptions may be diffi-

cult to detect when sample sizes are low. For example, the com-

paratively small number of photographic captures of snow

leopard and stonemarten is a cause for cautionwhen interpret-

ing tests of proportionality of hazards (CPHmodels) or devia-

tions from the exponential cumulative distribution function

(parametric survival functions).

Conclusions

The technical developments and growing popularity of camera

traps have brought about an unprecedented amount of

detailed visual information about wildlife (O’Connell, Nichols

& Karanth 2011). Detectability, although a so-called nuisance

parameter, is nonetheless of considerable importance when it

comes to designing, analysing and interpreting camera trap

studies. Combining analytical tools that target different expres-

sions of detectability – detection probability and time to detec-

tion – can give a comprehensive picture of how photographic

evidence accumulates during camera trap studies and the fac-

tors determining detection. As a follow-up to our study, we

Fig. 5. Parametric detectability curves showingPt for red fox as a func-

tion of camera trapping duration. Predictions assuming constant

detectability over time were made for three different lure treatments.

Dashed vertical lines indicate the predicted median time to event (i.e.

foxes are detected at 50% of the stations at which they are present)

together with 95%CIs (shaded horizontal bars).
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suggest investigations that search for variation in the shape of

cumulative incidence of detection over time and evaluate its

implications for the design and analysis of camera trap data.
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