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Abstract

The woodland strawberry, Fragaria vesca, holds great promise as a model organism. It not

only represents the important Rosaceae family that includes economically important species

such as apples, pears, peaches and roses, but it also complements the well-known model

organism Arabidopsis thaliana in key areas such as perennial life cycle and the development

of fleshy fruit. Analysis of wild populations of A. thaliana has shed light on several important

developmental pathways controlling, for example, flowering time and plant growth, suggest-

ing that a similar approach using F. vesca might add to our understanding on the develop-

ment of rosaceous species and perennials in general. As a first step, 298 F. vesca plants

were analyzed using microsatellite markers with the primary aim of analyzing population

structure and distribution of genetic diversity. Of the 68 markers tested, 56 were polymor-

phic, with an average of 4.46 alleles per locus. Our analysis partly confirms previous classifi-

cation of F. vesca subspecies in North America and suggests two groups within the subsp.

bracteata. In addition, F. vesca subsp. vesca forms a single global population with evidence

that the Icelandic group is a separate cluster from the main Eurasian population.

Introduction

All species of Fragaria are area-specific or continentally endemic, apart from F. chiloensis and

the woodland strawberry, Fragaria vesca L. (2n = 2x = 14). F. vesca has a vast natural distribu-

tion throughout the Holarctic [1–4] (Fig 1), with the notable exception of the North Atlantic

islands of Greenland [5] and the Faroe Islands, as well as Svalbard where it has so far not been

found [6]. On the other hand, F. vesca is widespread in Iceland [7–9], where it can be found on

south-facing hillsides up to 400 MSL [8] and has been observed in the same regions at least

since the year 1771 [10]. Although Icelandic vascular plants originated primarily from Europe,

some are known to have originated from the North American continent [11]. However, the
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origin of the Icelandic strawberry population is uncertain. A comprehensive taxonomic study

of the American strawberry genus describes four subspecies of F. vesca in North America: F.

vesca subsp. bracteata, F. vesca subsp. vesca, F. vesca subsp. californica, and F. vesca subsp.

americana[4]. However, molecular analysis has suggested that F. vesca subsp. bracteata might

be split into two groups based on plastome sequences, which correspond with geography [12].

The proposed geographical distribution of the F. vesca species and subspecies is shown in Fig 1

[4,13,14]. Hybrids between subspecies could exist in the area where their distribution overlaps,

as seen in Fig 1.

Twenty-two wild species are recognized in the Fragaria genus [2–4], including the newly

discovered F. cascadensis [15]. In addition, three wild hybrids are known: F. × bifera, a hybrid

of F. vesca and F. viridis found in Europe [16], F. × bringhurstii [17], and F. × ananassa subsp.

cuneifolia. The Fragaria genus is one of ninety genera in the Rosaceae [18], a family that

includes many economically important species such as the octoploid dessert strawberry

(F. × ananassa), apple (Malus domestica), pears (Pyrus spp.), peach (Prunus persica), and roses

(Rosa spp.) [18], which together make the Rosaceae one of the most economically valuable of

all plant families [19].

F. vesca has repeatedly been proposed as a research model for the Rosaceae [20–22]. Argu-

ments for this include the fact that F. vesca is a diploid perennial species with a small, fully

sequenced genome (240 Mb [20] revised at 206 Mb [18]), an efficient genetic transformation

method is available [23], it can be propagated either by seeds or clonally via stolons or branch

crowns, and the seed-to-seed cycle is relatively short, only 12–16 weeks [24]. In addition, as a

maternal ancestor of F. × ananassa [3], F. vesca shares a substantial sequence identity with this

economically-important fruit crop. Although, the well-known model plant Arabidopsis thali-
ana does have a smaller genome and is already a favorite in plant research [25], it is usually an

annual unlike F. vesca and it does not suffice for research on perennial-specific traits and

development and ripening of fleshy fruit [26]. The wide geographical range of F. vesca from

sub-tropic areas to the arctic and up to 3000 MSL [27] increases its potential as a model for

research on adaptive traits. To understand these key traits and their regulation, it is of great

importance to analyze natural variability and its selective advantage in certain environments.

The value of naturally occurring genetic variation for basic research is already well demon-

strated through the use of wild Arabidopsis accessions [28, 29].

The use of wild accessions for the study of environmental adaptation requires the compre-

hensive understanding of the biogeographic patterns of the populations of interest. Large

numbers of microsatellite markers have been developed for Fragaria species [30–36], with

over 4000 SSR markers developed [33] since the sequencing of the F. vesca genome [20]. These

markers facilitate population genomic research in F. vesca. Furthermore, SSR markers devel-

oped in F. vesca have an observed transferability of over 90% to F. × ananassa [37], and they

have been used to construct linkage maps for F. × ananassa [33,35].

Strawberries have most likely been consumed by humans for thousands of years [2], but the

cultivation of the woodland strawberry is believed to date back only centuries, with the domes-

tication process started by the discovery of a perpetual flowering plant in the low Alps east of

Grenoble about 350 years ago [38]. The oldest registered cultivars ‘Rügen’ and ‘Baron Solema-

cher’, released in 1920 and 1935, respectively [39], are still available along with many others in

seed banks and stores. Domestication can greatly affect the distribution of both plants and ani-

mals, with domestic varieties known in some cases to return to the wild after human-mediated

long-distance dispersal, possibly affecting biogeographic patterns observed through molecular

analyses. For research aimed at elucidating biogeography signatures it is therefore important

to include samples representing available cultivars.

Biogeographic analysis of Fragaria vesca
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Fig 1. The natural geographical distribution of Fragaria vesca in the northern hemisphere and an overview of collection sites.

Included are subspecies F. vesca subsp. bracteata (yellow shading), F. vesca subsp. vesca (brown shading), F. vesca subsp. californica

(orange shading), and F. vesca subsp. americana (green shading). See supplementary S1 Table for detailed information on collection sites

including coordinates. A single collection site in Bolivia is excluded from the map. Based on a map created by David Eccles, username

’Gringer’, who has released this work into the public domain without any conditions. The map is available here: https://commons.wikimedia.

org/wiki/File:Worldmap_northern.svg.

https://doi.org/10.1371/journal.pone.0183384.g001
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Reduced diversity in crop plants compared to wild relatives is well recognized in cotton

(Gossypium hirsutum L.) [40], the potato (Solanum tuberosum L.) [41], and the common bean

(Phaseolus vulgaris L.) [42]. This domestication reduction in diversity is not universally true.

For example, apple (Malus domestica), a perennial crop plant, has not undergone any signifi-

cant loss in diversity during the last 800 years [43]. Moreover, maize contains about 60–80% of

the diversity of its ancestor teosinte [44, 45]. Also, einkorn wheat, one of the first domesticated

crops, has not undergone any considerable diversity reduction [46], and domesticated chili

peppers show only ~10% reduction in genetic diversity [47]. To effectively assess the reduction

of genetic diversity associated with domestication it is necessary to have a fair estimation of the

genetic diversity found in the wild relatives. To achieve this, genetic analyses of a collection of

wild accessions are needed.

Due to the loss of genetic diversity in crop species, their wild relatives have long been sug-

gested as a potentially valuable source of novel traits [48]. This has been confirmed on multiple

occasions, Maxted and Kell [49] reported 291 studies describing attempts to introgress desired

traits into 29 crop species from wild relatives and it has been suggested for strawberries by Lis-

ton et al. [2]. The trait of day neutrality was introgressed from F. virginiana subsp. glauca into

F. × ananassa [18, 50] and old cultivars have introgression from F.moschata and F. chiloensis
genomes in their pedigree [51]. However, in practice, the introgression of traits into a desired

cultivar through conventional crossing can be very time consuming–nearly impossible in spe-

cies of different ploidy such as in the case of F. vesca and F. × ananassa–with backcrossing and

phenotyping taking years or decades in some plant species. However, methods such as marker

assisted selection (MAS) or more recent genomic selection [52], and novel methods of genome

editing [53], promise to significantly speed up the use of such natural diversity.

F. vesca is known to possess traits of interest for resistance to both abiotic and biotic stress

[1, 4] as well as fruit aroma [54]. Novel traits from wild Fragaria species have been introgressed

into cultivars in strawberry breeding programs [1, 55]. Warschefsky et al. [48] proposed that

future work in using natural variation for breeding should focus on building a broad collection

of wild relatives and sequencing of their genomes. To increase our understanding of the bioge-

ography of F. vesca with the aim of furthering its use in genetic and genomic research and to

shed light on the origin of the Icelandic F. vesca population we undertook a population geno-

mic analysis of 295 F. vesca samples originating from Eurasia and America, using 56 SSR

markers.

Materials and methods

A global Fragaria vesca collection

Plants or berries were collected from a total of 274 locations in 31 countries and 16 states (US)

around the world (S1 Table) with the aim of creating a global collection representing the cur-

rent wild distribution of F. vesca. Despite our best efforts we were not able to fully cover the

current global distribution of introduced F. vesca, with samples missing from areas such as

Hawaii, New Zealand, Australia, southern Africa, Madagascar, the Canary Islands, and the

Cape Verde Islands, as well as several South American countries. Additionally, 26 cultivars

were included in the study, giving a total number of 298 plants. In total, 232 Eurasian plants

were analyzed (not including cultivars and outgroups), including 54 from Iceland, 37 acces-

sions originating from North America, one from South America, and two from Japan. Also,

two species other than F. vesca were included as outgroups: F. chinensis from China and

F. viridis from Sweden (both accessions came taxonomically identified from USDA Germ-

plasm Resources Information Network—GRIN). All sampling was done in accordance with

regional laws and regulations governing the collection of plant material for research purposes.

Biogeographic analysis of Fragaria vesca
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Accession numbers for material received from GRIN are listed in S1 Table. The distribution of

sampling sites for all wild samples is shown in Fig 1.

DNA isolation, marker amplification and fragment detection

Genomic DNA was extracted from homogenized young leaf tissue using the DNeasy 96 Plant

Kit or DNeasy Plant Mini Kit from QIAGEN1 (Valencia, CA). The DNeasy 96 Plant Kit pro-

tocol was modified for use with the available equipment. a Universal 320 centrifuge (Hettich

GmbH & Co.) with the maximum of 4000 RPM in a Hettich 1460 rotor. The amount of DNA

extracted with the DNeasy 96 Plant Kit protocol was measured using NANODROP 1000 (Thermo

Scientific).

Samples of 300 individuals (S1 Table) were analyzed using 68 microsatellite markers (S2

Table) [33, 56–58]. All markers used here are expressed simple sequence repeats (EST-SSR)

markers, which are, although reported to be less polymorphic than non-genic SSR markers, of

great value for population structure analysis due to their transferability between species (due

to the higher conservation of genic sequences) and the fact that they make up for the lower lev-

els of polymorphism, compared to non-genic markers, by being concentrated in gene-rich

regions [59]. The microsatellite markers were amplified using a TProfessional 384 thermocy-

cler (www.biometra.de) with a 5 μl reaction volume containing 0.6 ng of genomic DNA in 1X

PCR buffer (Bioline, London, UK), 3 mM MgCl2, 0.08U of BIOTAQ DNA polymerase (Bio-

line), 0.8 mM dNTPs, and 0.4 μM of each primer. A modified touchdown PCR protocol was

followed, as described by Sato et al. [60]. The PCR products were separated by an ABI 3730xl

fluorescent fragment analyzer (Applied Biosystems). The polymorphisms were investigated

using GeneMarker software (http://softgenetics.com/).

Analysis of genetic diversity and population structure

Descriptive statistics were calculated using GENALEX 6.501 [61, 62] for each microsatellite

marker, including the number of observations (N) for each marker, number of alleles (Na) per

locus, and both observed (Ho), and expected (He) heterozygosity. For a population-wide analy-

sis GENALEX 6.501 was used to calculate the average number of alleles per population (Nap),

number of effective alleles (Ne), number of private alleles (NPA), observed (Ho) and expected

(He) heterozygosity, and the fixation index (F = 1-(Ho/He)). GENALEX was also used for princi-

pal coordinate analysis (PCoA) and pairwise population Fst values (FST = 1- (average He/HT)).

Presence of null alleles was tested using FREENA [63]. Additional statistics were calculated in

POWERMARKER 3.25 [64], including the polymorphic information content (PIC) and the major

allele frequencies (MAF) for each marker. POWERMARKER was also used to construct an evolu-

tionary distance matrix based on Nei et al.’s DA distance method [65]. A phylogenetic tree of a

split network based on this matrix was drawn up using SPLITSTREE 4 [66]. MEGA version 5 [67]

was used to reconstruct a phylogenetic tree using the neighbor-joining method [68] with boot-

strap values.

To identify the number of populations and admixtures, the dataset was analyzed using the

admixture model of STRUCTURE 2.3.4 [69–72] and the Markov Chain Monte Carlo (MCMC)

method for estimation of probabilities. All loci were assumed to be independent and in linkage

equilibrium. Populations were not pre-described. All STRUCTURE runs were repeated 5 times for

each K from 1–20 for the whole dataset and for each K from 1–10 for the ‘American’ and ‘Eur-

asian’ data-sets. The MCMC method was run with a burn-in period of 50,000 and 10,000 repe-

titions. Other settings were by default. STRUCTURE HARVESTER [73] was used to find the optimal

number of clusters (K) for each dataset, where the average likelihood values K (L(K)) for each

Biogeographic analysis of Fragaria vesca

PLOS ONE | https://doi.org/10.1371/journal.pone.0183384 August 30, 2017 5 / 17

http://www.biometra.de
http://softgenetics.com/
https://doi.org/10.1371/journal.pone.0183384


run were used to find ΔK, i.e., the rate of change in lnPr(X|K), since the maximum value of L

(K) can give an overestimate of clusters [74].

Results

Descriptive statistics of microsatellite markers

Of the 68 markers amplified, 10 were monomorphic and therefore uninformative. In addition,

more than two alleles were repeatedly observed per sample for markers FVES2533 and

FVES0634. As this is not consistent with the diploid nature of F. vesca, these markers were

excluded from further analysis. Descriptive statistics for each of the remaining 56 markers

used are listed in Table 1. The mean number of observed individuals per marker (N) was

289.9. The 56 polymorphic markers had numbers of alleles ranging from 2–16 for all samples,

with a total of thirteen bi-allelic markers. A total of 250 alleles was observed for the 56 markers,

giving a mean number of 4.46 alleles per locus. The observed heterozygosity (Ho) ranged from

Table 1. Summary statistics of markers tested.

Marker N Na Ho He PIC Nulla MAF Marker N Na Ho He PIC Nulla MAF

FAES0093 295 4 0.034 0.085 0.084 0.60 0.956 FVES1201 294 3 0.003 0.007 0.007 0.50 0.997

FAES0208 294 4 0.010 0.069 0.068 0.85 0.964 FVES1213 294 7 0.065 0.455 0.410 0.86 0.707

FAES0293 295 2 0.003 0.003 0.003 0.00 0.998 FVES1230 295 2 0.000 0.007 0.007 1.00 0.997

FAES0357 291 2 0.000 0.163 0.149 1.00 0.911 FVES1313 289 5 0.017 0.406 0.372 0.96 0.751

FAES0376 294 2 0.000 0.007 0.007 1.00 0.997 FVES1356 295 2 0.000 0.007 0.007 1.00 0.997

FAES0465 288 5 0.000 0.028 0.027 1.00 0.986 FVES1362G 295 4 0.000 0.020 0.020 1.00 0.990

FAES0479 276 2 0.011 0.011 0.011 0.00 0.995 FVES1392 294 2 0.014 0.014 0.013 -0.01 0.993

FP0380 292 2 0.000 0.007 0.007 1.00 0.997 FVES1470 281 4 0.007 0.042 0.041 0.83 0.979

FP0488 260 8 0.019 0.122 0.119 0.84 0.937 FVES1621 295 2 0.000 0.007 0.007 1.00 0.997

FVES0109 291 16 0.206 0.797 0.780 0.74 0.393 FVES1640 295 5 0.051 0.297 0.257 0.83 0.820

FVES0128 294 9 0.109 0.504 0.422 0.78 0.624 FVES1711 295 2 0.000 0.007 0.007 1.00 0.997

FVES0233 293 5 0.020 0.207 0.188 0.90 0.884 FVES1724 293 7 0.089 0.361 0.314 0.75 0.775

FVES0381 285 7 0.032 0.095 0.093 0.67 0.951 FVES1793 294 2 0.000 0.007 0.007 1.00 0.997

FVES0392 295 4 0.075 0.423 0.348 0.82 0.708 FVES1816 295 3 0.125 0.124 0.119 -0.01 0.934

FVES0435 295 6 0.088 0.404 0.338 0.78 0.731 FVES1877 295 4 0.007 0.010 0.010 0.33 0.995

FVES0459 293 7 0.010 0.060 0.060 0.83 0.969 FVES1907 295 3 0.003 0.010 0.010 0.67 0.995

FVES0463 293 3 0.024 0.101 0.098 0.76 0.947 FVES2235 288 3 0.049 0.285 0.246 0.83 0.828

FVES0480 235 8 0.302 0.391 0.361 0.23 0.764 FVES2316 295 3 0.003 0.017 0.017 0.80 0.992

FVES0513 294 3 0.003 0.037 0.036 0.91 0.981 FVES2349 294 4 0.007 0.020 0.020 0.66 0.990

FVES0567 294 5 0.010 0.047 0.046 0.78 0.976 FVES2369 295 6 0.037 0.206 0.190 0.82 0.885

FVES0577 295 3 0.000 0.378 0.309 1.00 0.749 FVES2661 294 5 0.017 0.027 0.027 0.37 0.986

FVES0794 294 5 0.085 0.562 0.465 0.85 0.485 FVES2882 295 2 0.000 0.007 0.007 1.00 0.997

FVES0960 294 6 0.007 0.180 0.157 0.96 0.912 FVES2901 293 2 0.000 0.007 0.007 1.00 0.997

FVES0989 295 4 0.017 0.037 0.037 0.54 0.981 FVES3274 292 5 0.007 0.073 0.072 0.91 0.962

FVES1031 294 6 0.003 0.034 0.034 0.90 0.983 FVES3330 295 2 0.112 0.106 0.100 -0.06 0.944

FVES1070 294 4 0.003 0.024 0.024 0.86 0.988 FVES3346 271 5 0.697 0.491 0.397 -0.42 0.622

FVES1156 295 4 0.017 0.088 0.086 0.81 0.954 FVES3440 288 3 0.938 0.504 0.382 -0.86 0.517

FVES1160 242 7 0.446 0.478 0.418 0.07 0.676 FVES3693 288 10 0.417 0.662 0.625 0.37 0.523

Average 289.9 4.46 0.075 0.170 0.151 0.11 0.885

N, number of individuals analyzed for each marker; Na, average number of alleles for each marker; Ho, observed heterozygosity; He, expected

heterozygosity; PIC, polymorphism information content; Nulla, presence of null alleles; MAF, major allele frequency.

https://doi.org/10.1371/journal.pone.0183384.t001
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zero for thirteen markers to 0.938 for marker FVES3440with a meanHo of 0.075. The expected

heterozygosity (He) ranged from 0.003 for marker FAES0293 to 0.797 for marker FVES0109,

with a mean of 0.170. The polymorphic information content (PIC) ranged from 0.003 for

marker FAES0293 to 0.78 for marker FVES0109, with a mean of 0.151. The major allele fre-

quency (MAF) ranged from 0.393 for marker FVES0109 to 0.998 for marker FAES0293, with

an average of 0.885.

Of the 298 accessions in the collection, three samples, one F. vesca subsp. americana (ID 28)

and two Eurasian F. vesca subsp. vesca (ID numbers 145 and 146), were excluded from the

analysis due to a higher than expected number of alleles per marker. In these samples, the aver-

age number of alleles per locus was 2.4, 2.4 and 2.5, respectively, indicating that they might be

polyploids or the results of mixed samples. In addition two Icelandic samples were omitted

from analysis due to a labelling mistake.

Population structure and genetic diversity

Descriptive statistics for each proposed population are listed in Table 2. The highest mean

number of alleles, 1.98, was found in the Eurasian group (excluding Iceland) and the lowest

in the Japanese samples 1.08. F. vesca subsp. vesca showed the highest values for Ne = 1.26,

Ho = 0.11 andHe = 0.15. The highest frequency of private alleles, NPA = 0.30, was found in the

F. vesca subsp. bracteata ‘Rocky Mts’ group, with the ‘Pacific Coast’ group tied at 0.26 with the

Eurasian group.

The STRUCTURE admixture results for the whole dataset, including all wild individuals and

cultivars (n = 295), suggest that the collection should be split into two sub-populations, with

K = 2 (ΔK = 127.56) (S1 Fig and Fig 2A). This analysis groups cultivars with the Eurasian sam-

ples, while clearly separating the Eurasian and American samples. This is somewhat corrobo-

rated by the PCoA of all individuals, which shows a strong separation of the Eurasian and the

American samples (Fig 3A), while the American F. vesca subsp. vesca samples are either mixed

with the Eurasian samples or end up between the two groups (Fig 3A). Another PCoA shows

the cultivars overlapping with the central European samples (Fig 3B). STRUCTURE analysis with

all Eurasian samples including cultivars resulted in two clusters (K = 2), one containing all

wild samples and the other containing all cultivars, which is in line with the results of the

PCoA (Fig 3A). To further test for divergence within the Eurasian group, the analysis was per-

formed without the cultivars. This analysis on 228 Eurasian samples suggested the presence of

Table 2. Results of microsatellite analysis by populations.

N Nap Ne NPA Ho He F

F. vesca subsp. americana 5 1.29±0.07 1.18±0.06 0.11±0.04 0.06±0.02 0.10±0.02 0.41±0.08

F. vesca subsp. bracteata ‘Rocky Mts’ 7 1.76±0.12 1.39±0.07 0.30±0.08 0.09±0.02 0.19±0.03 0.49±0.06

F. vesca subsp. bracteata ‘Pacific Coast’ 13 1.53±0.11 1.22±0.05 0.26±0.07 0.09±0.02 0.12±0.02 0.26±0.06

F. vesca subsp. californica 4 1.20±0.06 1.15±0.05 0.03±0.02 0.08±0.03 0.09±0.02 0.05±0.10

Cultivars 26 1.48±0.12 1.14±0.04 0.03±0.02 0.04±0.02 0.08±0.02 0.59±0.07

Eurasian F. vesca subsp. vesca 176 1.98±0.21 1.23±0.07 0.26±0.08 0.06±0.02 0.11±0.02 0.42±0.06

Icelandic F. vesca subsp. vesca 52 1.52±0.11 1.14±0.05 0.06±0.03 0.05±0.02 0.07±0.02 0.41±0.08

Japanese F. vesca subsp. vesca 2 1.08±0.04 1.08±0.04 0.00±0.00 0.05±0.03 0.05±0.02 0.00±0.13

American F. vesca subsp. vesca 8 1.62 ±0.12 1.26±0.05 0.02±0.02 0.11±0.03 0.15±0.02 0.22±0.07

Total 1.41±0.03 1.16±0.02 0.09±0.01 0.10±0.01 0.23±0.03

N, number of individuals in each population; Na, average number of alleles over all markers; Ne, number of effective alleles; NPA, number of private alleles

unique to a single population; Ho, observed heterozygosity; He, expected heterozygosity; F, fixation index. Standard error (±SE) is shown for all averages.

https://doi.org/10.1371/journal.pone.0183384.t002
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two clusters (K = 2; ΔK = 28.13) (S1 Fig and Fig 2B), separating the Icelandic samples from the

rest. Again, the PCoA for the Eurasian samples (Fig 3B), which explains a total of 25.21% of

the variability on the first two axes, gives support to the STRUCTURE results, showing that the

Icelandic samples separate from the other Eurasian samples and are most divergent from the

Fennoscandian group, with some overlap with the cultivars and samples originating mostly

from central Europe and the UK, as can be seen on a phylogenetic tree between all individuals

(S2 Fig).

STRUCTURE analysis of the American samples (n = 37) suggests that five clusters (K = 5) is the

appropriate number (ΔK = 16.61) (S2 Fig) for the wild American samples (Fig 2C), with three

clusters consisting of previously identified subspecies and F. vesca subsp. bracteata split into

two clusters referred to here as ‘Pacific Coast’ and ‘Rocky Mts’ groups based on their geograph-

ical origin (Fig 2C). The PCoA analysis for the American samples (Fig 3C) explained a total of

32.71% of the variability on the first two axes and does lend some support to the STRUCTURE

results.

Fig 2. Results of STRUCTURE analyses. (A) Analysis of the whole data set including cultivars. (B) Eurasian

samples without the cultivars. (C) American samples only. The labels show the origin of samples based on

populations proposed by (Hilmarsson, 2015).

https://doi.org/10.1371/journal.pone.0183384.g002
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Nei et al.’s [65] DA distance was calculated for the groups presented here (S3 Table) and the

results presented in a network diagram (Fig 4). The results show a clear separation between

much of the American and the Eurasian samples, except for the American F. vesca subsp. vesca
samples which group close to the Eurasian samples.

Fig 3. Principal coordinate analysis of F. vesca microsatellite data. (A) Analysis of the whole data set,

including cultivars. (B) Eurasian samples with cultivars. (C) American samples only. The clusters suggested

based on the STRUCTURE analysis are color coded.

https://doi.org/10.1371/journal.pone.0183384.g003
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Discussion

In the study presented here a total of 68 EST-SSR markers, of which were 56 polymorphic,

were used to analyze a global collection of 295 F. vesca samples from 274 locations in 31 coun-

tries and 16 states (US). The diversity observed for each of the markers was relatively low, with

a mean number of alleles of only 4.5. These values were much lower than seen in some recent

studies on Rosaceae species such as the mean number of alleles of 18.7 observed in the almond

(Prunus dulcis (Mill.)) [75] and 10.8 in F. × ananassa [51], yet similar to other results observed

in F. vesca, where 4.9 was the mean number of alleles from 21 microsatellites in fifteen F. vesca
samples [32]. The question arises whether this reflects a poor choice of microsatellites or

whether this rather reflects low levels of genetic diversity in the populations under study. The

relative uniformity of alleles for each of the markers analyzed and the results of Hadonou et al.

[32] might suggest that the values seen here reflect low levels of genetic diversity in the species,

but it can be pointed out that although the average number of alleles was low, the most poly-

morphic marker revealed 16 alleles. The mean frequencies of null alleles for all the markers

Fig 4. A SplitsTree analysis based on genetic distance between groups. Groups are color coded as in Fig 3.

https://doi.org/10.1371/journal.pone.0183384.g004
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was 0.11. This could have been due to DNA quality leading to genotyping error, which would

also explain the nine markers that revealed two alleles but high major allele frequencies. The

selfing nature of F. vesca could also lead to an overestimate of null allele frequencies.

The mean observed heterozygosity (Ho) found here was 0.075 for the whole collection, con-

siderably lower than the average expected heterozygosity (He) of 0.170. These values are then

much lower than values seen, for example, in Prunus sibirica, a highly outcrossing species,

with values of Ho = 0.639 andHe = 0.774 [76]. One likely explanation for the discrepancy seen

between Ho andHe might be the existence of subpopulations within the global collection, that

is the North American subspecies, confirmed here through various means, such as STRUCTURE

analyses. When values for Ho andHe were compared for individual subpopulations suggested

here the observed heterozygosity was always lower than the expected heterozygosity, except for

the Japanese samples where they were equal (Table 2). The large difference within the F. vesca
subsp. bracteata ‘Rocky Mts’ group (Ho = 0.09, He = 0.19) is surprising considering the gyno-

dioecy within the group [12]. F. vesca is a self-compatible species and low levels of observed

heterozygosity have previously been reported [32, 77]. Low levels of heterozygosity could indi-

cate low cross-fertilization and high selfing rates, but might also be explained by the asexual

dispersal by means of stolons [12] or a Wahlund effect, as observed in the Siberian apricot

[76]. The low He seen here, especially in some groups, e.g. the Icelandic samples, could be the

result of a recent bottleneck since expansion leads to a reduced diversity [78] (Table 2). The

cultivar group exhibited low diversity with the highest fixation index of all groups F = 0.59

(Table 2). The PCoA showed the tight cluster of the individuals analyzed and its divergence

from the wild samples (S2 Fig). The Icelandic samples analyzed here were most closely related

to the cultivars (S3 Table and visualized in Figs 3B and 4 and S2 Fig), but overlapped also with

central and southern European samples.

The principal coordinate analyses performed here revealed a great difference between the

Eurasian (without Iceland) and American (without American F. vesca subsp. vesca) groups

(Fig 3) with genetic distances from 0.170–0.204 and Fst values from 0.194–0.354 (S3 Table). In

addition, the STRUCTURE analysis placed American and Eurasian samples into separate clusters

and a detailed analysis of American samples showed five clusters which consisted of the four

subspecies identified by Staudt [4] (Fig 2). The morphological diagnosis by Staudt did not fully

reveal this large difference between the endemic American subspecies and the subsp. vesca.

However, these results could complement the results of Njuguna [12] where subsp. bracteata
did split into two groups divided by the Great Basin in the western US, much as presented

here, possibly because of genetic variation in loci determining sexual phenotypes [79], but dif-

ferences in cytoplasmic haplotypes have been reported, with western populations dominated

by one chlorotype and populations from the Rocky Mts by another [12, 79]. No evidence of

hybrids between the subsp. bracteata and subsp. americana was revealed in the admixture

analyses as suggested by Staudt [4] and reported by Stanley et al. [79], but this is most likely

best explained by the limited sampling of the two subspecies in the current study. However,

there seem to be two hybrids between subsp. americana and subsp. vesca and one between

subsp. bracteata and subsp. vesca, as seen in both the admixture analyses (Fig 2C) and the

PCoA analyses (Fig 3A and 3C), and in all three clusters with subsp. vesca. Hybrids between

subsp. americana and subsp. vesca can be natural since their area of distribution in the north-

eastern United States overlap, but natural populations of subsp. bracteata are not known in

this region (Fig 1), although they could have been introduced as suggested by Stanley [79]. The

samples that were collected in America that group together with the European samples are

categorized as Fragaria vesca subsp. vesca (Fig 1). These samples were collected in the north-

eastern United States, where cultivars were already being grown at the beginning of the last

century [38] and therefore most likely introduced. The same conclusion can be made for the
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Japanese samples, as already suggested by Hultén [13], and the single Bolivian sample included

in the study. The American samples all came from the GRIN germplasm and they could repre-

sent greater levels of diversity on average than observed in nature; since what gets collected

and curated might be skewed in favor of phenotypically unusual individuals, leading to greater

genetic diversity, as noted by Chambers et al. [80]. The number of individuals and markers

affect the detection of clusters in STRUCTURE [74]. Some of the sample groups analyzed here

were very small; for example, the outgroups only contained single representatives of proposed

populations, samples from Japan and the F. vesca subsp. californica contained only two and

four samples, respectively. It should also be mentioned that because the Evanno method calcu-

lates the mean difference between the successive likelihood values of K, there is no ΔK value

for K = 1.

It is also important to mention that to maximize the accuracy of genetic distance calcula-

tions, the number of samples need to be 100 or more, although this also depends on the poly-

morphism of the markers used [81]. In many cases the sample collection analyzed here did not

fulfill this requirement, and further studies, with larger samples and more markers or even

whole genome sequencing, are therefore recommended.

It has been demonstrated that the admixture model implemented by STRUCTURE can detect

the most likely number of clusters even if the samples contain low genetic variation [71]. In

the Eurasian samples, where genetic variation was low, STRUCTURE revealed two clusters, sug-

gesting two genetic populations among the genotypes collected in Eurasia (Fig 2B), with the

grouping of the Eurasian samples consistent in all analytical methods used (Figs 2, 3 and 4).

Despite this it is important to note that in the PCoA of individual samples there was a clear

overlap between the two clusters, the Icelandic samples and those from the rest of Eurasia.

Based on our results, the origin of the Icelandic strawberry population was clearly Eurasian

and not American, but interestingly our analysis did not group the Icelandic samples with the

Fennoscandian samples but rather showed more genetic similarity with cultivars and central

European samples. This close relationship is also seen in the overlap of the two groups in the

PCoA (Fig 3B). A phylogenetic tree of individuals branches the Icelandic group off from the

rest of the Eurasian samples and shares a branch with most of the cultivars and some central

and southern European samples (S2 Fig). One possible explanation for these results might be

that the Icelandic strawberries represent a population descended from the same stock that

gave rise to the modern F. vesca cultivars. However, they cannot have been recently introduced

since they have been growing in the same locations for at least 250 years [10]. The possible

presence of F. viridis (as F. collina) in Iceland has been reported [82] but has not been conclu-

sively demonstrated and we found no evidence of F. viridis or of F. × bifera in this study.

The use of populations of crop wild relatives as research models has been suggested as an

approach to disseminating genetic pathways of importance to adaptation [29]. For such an

approach, a collection of wild material is of great importance, and bearing that in mind, we

gathered a global collection of F. vesca plants and compared them with cultivars of the same

species. Through our initial analysis of biogeography and genetic diversity within this world-

wide collection we have confirmed the previous classification of F. vesca into subspecies using

molecular markers, and we have shown that the cultivars chosen are homogeneous and group

together with the Eurasian samples. Our data also divide European subsp. vesca into two

groups, one consisting of an Icelandic group and some accessions from southern and central

Europe, and another consisting of the rest of the Europe, although not without overlap

between groups. The clear divergence between the Icelandic group and the Fennoscandian

does not correlate with results for other floral species in Iceland which are related to Nordic

groups [11]. We find no evidence for any population sub-structuring within the Icelandic pop-

ulation despite sourcing material from around the country. Further studies with more markers
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and possibly with a larger number of samples or samples focusing on certain geographical

areas are needed to define more detailed biogeographical patterns of F. vesca.
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