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ABSTRACT

The present study aims at improving the prediction of lean meat percentage (LMP) for pig

carcasses based on on-line measurements from the slaughterhouses using the ’Hennessy Grad-

ing Probe 7’ (HGP7) and auxiliary information such as gender and breed. The prediction

performance is evaluated using an empirical Bayes method capable of utilizing information

from a surrogate variable, i.e. LMP from computed tomography (CT).

HGP7 measures thicknesses of fat and meat layers. The HGP7 measurements of sub-

cutaneous fat, sirloin height and interior fat layer should be included as predictor variables

together with gender. For efficiency at the slaughter–line gender might be omitted.

The empirical Bayes method improved prediction precision only marginally compared

with the standard ordinary least squares method when applied to the full set of data. How-

ever, simulations show that the empirical Bayes method enables a considerable reduction of

the data sample size without appreciable loss of prediction precision.

3



1 Introduction

The lean meat percentage (LMP) is used as the primary classification variable for the quality

of pig carcasses in the European Union (EU). LMP is defined as the proportion of weight

of lean meat to the total weight of the carcass (Commission of the European Communities,

2008). Measuring the LMP is typically done using ultrasound or optical probes. Norwegian

slaughterhouses use the optical probe ’Hennessy Grading Probe 7’ (HGP7).

The data obtained from optical probes or ultrasound do not provide a direct measurement

of LMP, but are used as predictor variables in a regression equation of which the sole purpose

is LMP prediction. Due to rapid evolution in the pig population, and to maintain high public

confidence in on–line predictions of LMP, the prediction equation for LMP is updated on

a regular basis. In Norway this is done approximately every fifth year, including the years

2008 and 2013.

The parameters in the regression equation are estimated using a training sample of pig

carcasses where LMP is measured by at least one independent reference method. Until 1

January 2009, manual dissection (Walstra and Merkus, 1995) was the only method approved

as an official reference method by the EU–authorities. From this date, LMP estimates

from computerized tomography (CT) was approved as an offcial reference method for LMP

(Commission of the European Communities, 2008). Throughout this text, LMP–MD and

LMP–CT will denote LMP obtained by manual dissection and CT respectively.

EU regulations imposes requirements to prediction precision for LMP stating that: ’Grad-

ing methods shall be authorised only if the root mean squared error of prediction (RMSEP),

computed by a full cross-validation technique or by a test set validation on a representative

sample of at least 60 carcases, is less than 2,5. In addition, any outliers shall be included in

the calculation of RMSEP ’ (Commission of the European Communities, 2008).

Most countries use an equation which predicts LMP on a manual dissection scale. How-

ever, CT scanning is cheaper than manual dissection. Furthermore, the LMP–CT estimates

are believed to be more consistent, they are possible to replicate and they have a very high

correlation with LMP–MD (Vester-Christensen et al., 2009; Judas et al., 2007). Therefore

many countries use CT–dissection as their main reference method (Daumas and Monziols,

2011), usually supported by manual dissection for a subset of the carcasses.

The choice of method for estimating regression parameters is a trade–off between com-
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plexity and accuracy. We want a method obtaining regression parameters providing small

prediction errors for the whole population of pig–carcasses. On the other hand, we want

the method to be simple, and preferably to yield easily interpretable results. In this study,

we examine a totally data–driven empirical Bayes method (Gangsei et al., 2016) capable

of utilizing information from the additional observations of LMP–CT to improve regression

estimates for LMP–MD.

In addition, to find a suitable regression equation for LMP–MD based on the predictor

variables in question, this study aims at examining the relationship between sample sizes of

manual dissected and CT scanned carcasses and prediction precision for LMP–MD.

The program ’R’ (R Core Team, 2014), including the package ’bestglm’ (McLeod and

Xu, 2011), is used for statistical computing. The R code used in this study can be provided

upon request.

2 Material and Methods

2.1 Data

The data consist of CT scans of 465 Norwegian half pig carcasses of which 229 were scanned

in 2008 and 236 in 2013. The pigs were slaughtered at two different commercial Norwegian

abattoirs. The CT–scanning was performed by Danish Meat Research Institute (DMRI).

The carcasses were prepared, scanned and weighed in line with the description in Vester-

Christensen et al. (2009). Based on these CT–data DMRI predicted LMP–CT for all car-

casses using the method described in (Vester-Christensen et al., 2009).

The carcasses were stratified to 4×4 different classes based on weight and on–line slaugh-

terhouse HGP7 measurements to ensure data sampling across the entire range of carcasses.

The HGP7-probe penetrates the rind, and measures the thickness of subcutaneous fat (de-

noted ’Fat’), sirloin (’Meat’) and the interior fat layer (’Totif’) under the peritoneum. The

measurements are done at two specified locations, one behind the last rib and 8 cm from

the spine midline, and the other 12 cm further forward on the carcass, 6 cm from the spine

midline. For all carcasses on–line data from the HGP7, weight, gender (castrates or females)

and breed were registered.

A sample of the CT scanned carcasses were transferred to Animalia’s pilot plant in Oslo
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where manual dissection was carried out as described by Walstra and Merkus (1995), and

the LMP–MD was calculated using the formula according to Commission of the European

Communities (2006). A total of 86 carcasses were manually dissected, of which 66 were

dissected in 2008 and 20 in 2013.

The maximum number of primary predictor variables was seven, of which four were

continuous variables, Fat, Meat, Totif (from HGP7-measurement) and ’Weight’. Note that

Fat was the mean of the two fat–measurements, since they were highly correlated (ρ = .824),

whereas the measurements for Meat and Totif were single measurements from the foremost

measurement point. The correlations between the four continuous predictor variables were

low to moderate, i.e. in the range -0.49 until 0.48. In accordance with Gangsei et al. (2016)

continuous predictor variables, and the response variables, were centred prior to the analysis.

There were three factorial variables. ’Year’ had two levels, 2008 (n=229) and 2013

(n=236). The variable ’Gender’ had two levels, females (n=228) and castrates (n=237).

’Breed’ had three levels, Hampshire (LYHH) (n=69), Duroc (LYLD) (n=243) and Norhy-

brid (LYLY) (n=153), representing three different hybrids used in Norway. The maternal

line for all three hybrids were crossings between Norwegian Landrace and Yorkshire (denoted

LY). The paternal lines were pure Hampshire (HH), crossing between Norwegian Landrace

and Duroc (LD) and crossing between Norwegian Landrace and Yorkshire (LY) respectively.

In the appendix (A.1) summary statistics for LMP–MD, LMP–CT and the continuous pre-

dictor variables crossed over the factor variables Year and Breed are presented.

2.2 Model

In this paper we use notations in line with Gangsei et al. (2016). LMP–MD is a vector of

length n2 = 86 denoted yMD (corresponding to y2 in Gangsei et al. (2016)), and LMP–CT

is a vector of length n1 = 465, denoted yCT (corresponding to y1). Then the n1 × 2 matrix

Y1 contains a substantial number of unobserved LMP–MD’s.

The matrix X1 is an n1 × p matrix of predictor variables where the first column is the

unit vector. The next p−1 columns are the predictor variables. In some parts of the analysis

second–order interaction terms are included as extra predictor variables in X1.

The formal model is given in (1), where xi and yi denotes the ith row of X1 and Y1

respectively. Note the matrix-form of the regression–parameter (β = [βCT βMD]) and that
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the error–terms for each observation might be correlated with covariance matrix Σ.

yT
i

i.i.d.∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1 (1)

Gangsei et al. (2016) deals with this model in detail under an empirical Bayes inference.

Empirical Bayes methods uses the data to fit the prior distribution, including the hyperpa-

rametes, i.e. the parameters used in the prior distribution. In a strict Bayesian sense this is

’cheating’. However, in a number of situations the empirical Bayes strategies are beneficial,

since the resulting Bayesian (biased) parameter estimates often are better (in some senses)

than their unbiased counterparts (Carlin and Louis, 2008). One such case is linear regression,

where some common empirical Bayes strategies leads to shrinkage estimators highly related

to ridge regression estimators. In Gangsei et al. (2016) it is shown how this ’empirical Bayes

machinery’ might be used in a situation with a bivariate response variable with missing data

in order to increase prediction precision.

The denominator in the iconic Bayes theorem is known as the model evidence or the

marginal likelihood. It might be viewed as a normalizing constant that ensures that the pos-

terior distribution integrates to one over the model parameters. An alternative interpretation

for the model evidence is ’likelihood of data conditional on model and hyperparameters’. The

well–known Bayes factor for comparing two models is simply the ratio of their model evi-

dences. Thus, when the model evidence has an analytic solution, as is the case for the present

study, the natural (Bayesian) model selection method is to use model evidence (Kass and

Raftery, 1995).

Posterior means are used as point-estimates for β and Σ, and 95% Credibility intervals

are calculated by Monte Carlo sampling based on 104 simulations.

2.3 Model comparison

A total of 177 different combinations of predictor variables, denoted ’models’ in the following

paragraphs, were examined. These models included all 127 (= 27− 1) possible combinations

involving at least one of the predictor variables. Furthermore, 50 models involving interaction

terms including the four continuous primary variables Fat, Meat, Totif and Weight as extra

predictors were tested. These models were screened using BIC (Schwarz, 1978) as selection

criteria via the R-package ’bestglm’ (McLeod and Xu, 2011) for models using LMP–CT as
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a single response variable. The final model was selected within these 50 screened models

by examination of model evidence (Kass and Raftery, 1995) and ’RMSEP’ (root–mean–

squared–error of prediction).

Different models, and the difference between using the empirical Bayes method and or-

dinary least squares (OLS) based on the full observations, were compared by computing

RMSEP via leave-one-out cross-validation. If not stated otherwise RMSEP was based on

prediction results for manual dissection (LMP–MD).

To investigate the gain of choosing the empirical Bayes method utilizing the extra in-

formation from CT, over OLS, in situations with different combinations of sample sizes for

LMP–MD and LMP–CT, a resampling study was conducted on the model with the favoured

combination of predictor variables; Fat, Meat, Totif and Year. RMSEP was calculated based

on regression parameter estimates from OLS and the empirical Bayes method using sets of

data where n2 = 10, 15, 20, 30,. . ., 80 observations of LMP–MD were assumed known. The

subsets were sampled randomly from the real data on two restrictions; the sample should

contain at least 2 carcasses from each sex, and the overall average Fat value was to fall inside

the range of Fat–values in the sample.

For every subsample of LMP–MD the corresponding set of LMP–CT values were assumed

known. In addition n1−n2 = 0, 10, 15, 25, 50, 100, 200, 300 extra observations of LMP–CT

were assumed to be known, by random sampling from the real data. For all combinations

of n2 and n1 RMSEP was calculated using OLS, and the empirical Bayes method. The

calculations were based on a test set comprised by the 86− n2 (n2 = 86 corresponds to the

full set of data) observations of LMP–MD discarded from the sub-sample used for parameter

estimation. The process was repeated 500 times for every value of n2, except for n2 = 80

where the process was repeated 1000 times due to the small test set size for this value of n2.

3 Results

3.1 Prediction precision and model selection

As part of the preliminary work for this paper, the data were also analysed using two

alternative methods; two-stage least squares regression (2SLS) (Wooldridge, 2012, chap.15)

and as a random effect model. To use the random effects model we had to assume that
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σ12 > 0 and that σ11 = σ22. Both these methods utilize the full set of data. The unreported

results from these methods differed negligibly from the results obtained by the empirical

Bayes method.

The model referred to as ’the favoured model’, is the model where HGP7 variables and

Gender were used as predictor variables. Among the models not including interaction–

terms this model had the highest model evidence for hyperparameters; γ1 = 1.90, γ2 =

1.22, α1 = 2.06 and α2 = 2.65. The hyperparameters might be given an interpretation as

prior population size, see (Gangsei et al., 2016) for detailed interpretation. Table 1 shows

estimates for regression parameters using the favoured model. When interaction terms are

not included the favoured model minimizes RMSEP when using both OLS and the empirical

Bayes method. This model, and the model where Gender was omitted, are marked with

arrows in Fig. 1.

Models including Fat as a predictor variable show a clear pattern of having much higher

model evidence and lower values for RMSEP compared to models where Fat is excluded, c.f.

Fig. 1. Inclusion of Meat and Totif as predictor variables unambiguously improves the model

additionally. Among the factor variables Gender seems to be the only variable improving

the predictive precision for LMP–MD as it is the only factor variable in the favoured model

using model evidence as selection criteria. Furthermore, Gender is close to significant using

OLS (p=0.053). RMSEP decreased from 1.69 to 1.67 (OLS) and 1.67 to 1.63 (empirical

Bayes) when Gender was added as predictor variable.

Table 1 approx here.

Figure 1. approx here

When interaction terms were included as predictor variables, the model yielded no sub-

stantial improvement for prediction precision. A total of 13 models including interaction-

terms had marginally larger model evidence and 12 models had smaller RMSEP than the

favored model. The smallest RMSEP using interactions was 1.62 compared to 1.63 for the

favoured model.

LMP–MD and LMP–CT were highly correlated, ρ = .968 (n=86). The effect of using

the empirical Bayes method might be viewed as a way of borrowing strength from CT-

data for estimating the parameters associated with manual dissection. The high correlation

between LMP–MD and LMP–CT is exploited and increases the effective test–sample size.

Thereby the variance of prediction parameter estimates are reduced and prediction precision
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is increased.

Table 1 shows 95% Credible Intervals for parameters β and Σ for the favoured model.

Notice that the posterior distributions for the different elements of both β and Σ in general

depend on each other. This is analogous to the situation in OLS where cov β̂ = σ2 (X tX)
−1
.

The parameter σ22 = σMD is naturally interpreted as the expected variance for the

prediction error for LMP–MD conditional on known βMD and known values for the predictor

variables (X). Consequently, for the favoured model, the lower limit for expected RMSEP

was estimated to 1.63, i.e. the square root of posterior mean for σ22 (see Table 1). This

is equal to the observed RMSEP. However, do note that the empirical Bayes method is a

method specially designed to reduce prediction errors. Thus the parameter estimates, both

for β and for Σ are (very mildly) biased.

The conditional variance, i.e. conditional on known regression parameter and predictor

variables, of LMP–MD (σ22) was smaller than the conditional variance of LMP–CT (σ11) as

a 95% Credible Interval for the fraction σ22/σ11 was given by (0.57, 0.79), with a posterior

median at 0.67. This corresponds to higher observed RMSEP-values for LMP–CT, typically

around 1.9 for the best models.

3.2 Sufficient sample size

Figure 2 approx here.

Figure 2 shows the relationship between RMSEP and sample sizes for LMP–MD and

LMP–CT, using the two methods OLS and empirical Bayes. The figure shows that when

there were no additional observations for LMP–CT, OLS generated regression parameter

estimates just as good as, or even better than, the empirical Bayes method. However, when

additional observations of LMP–CT were present the empirical Bayes method generated

regression parameter estimates yielding increased prediction precision compared with OLS–

estimates.

4 Discussion

As the data structure with more observations for LMP–CT than LMP–MD is likely to be

a challenge in numerous countries inside EU it might be advantageous to include methods
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for analysing such data in ’Statistical handbook for assessing pig classification methods’

(Causeur et al., 2003). A prerequisite for such inclusion is that there exist suitable software,

like R–packages. Unfortunately a R–package for the empirical Bayes method applied in this

study is not yet available. For 2SLS and random effects models software exists (Henningsen

and Hamann, 2007; Pinheiro et al., 2015; Bates et al., 2015). Diggle et al. (1994) outlined a

method for analysing the model in (1) by frequentist principles.

The difference between the regression parameter estimates using the empirical Bayes

method and OLS was close to negligible. The favoured model, i.e. the model using HGP7-

variables and Gender as predictor variables stood out as the better model, independently of

method used for model selection (model evidence or RMSEP). The model omitting Gender as

a predictor variable performed almost as well as the favoured model, and has the advantage

of simpler data sampling since gender doesn’t have to be registered.

The signs of the regression parameter estimates are in line with prior expectations. A

thick Fat layer decreases predicted LMP, and oppositely a thick Meat layer increases expected

LMP. The inner layer of fat (Totif) is the least important predictor variable from the HGP7.

Its effect in the regression equation is likely to be severely affected by the other more dominant

predictor variables. Finally the results show that conditional to similar measurements for

HGP7-variables, females were expected to have a higher LMP than castrates.

When Year was included in the analysis the motive was not increased prediction precision

as we have no observations for years 2014, 2015 etc. in the training data. Thus it is not

possible to include Year as a predictor in the future. The motive for including Year in the

analysis was to see if any effect was present, effects that are not a result of the Year itself. Such

effects might have numerous explanations like differences in the manual– or CT–dissection

(for instance different butcher teams), development of the body composition in pigs (for

instance due to breeding/genetic effects) etc. As the effect of Year in the present study is

close to negligible it indicates that the validity of the prediction equation is applicable over

time. This interpretation is subject to considerable uncertainty as only two different years,

2008 and 2013, is involved in the study.

Omitting Gender as a predictor variable is in line with the principles used in the Nether-

lands, where the effect of gender on the prediction equation using HGP7 has been evaluated

in detail by Engel et al. (2006, 2012). Engel et al. (2012) was a study aiming at finding

robust methods for handling different proportions of females, castrates and males in the
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pig population. They found a significant effect of Gender, but ended up using a prediction

equations for HGP7 where Fat and Meat were the two only predictor variables, data for the

inner fat layer (Totif) was not used in their analysis. Engel et al. (2006, 2012) and Font i

Furnols and Gispert (2009) reported RMSEP at 2.24, 2.10 and 1.8 % units respectively, a

little larger than the RMSEP at 1.63, reported for Norway in the present study. In Font i

Furnols and Gispert (2009) Fat-O-Meater, an optical probe similar to HGP7, was used.

The results from this study show a significant effect of Gender as a predictor variable

for LMP–MD. Due to considerable extra costs if Gender is to be sampled for every car-

cass, models omitting Gender might be preferable. Since the bulk of pig farmers deliver a

close to equal proportion of females and castrates to slaughterhouses, omitting Gender as

a predictor variable will have minor effect on the total cash settlement between farmer and

slaughterhouse. However, the omission will lead to a bias where LMP, on average, will be

underestimated for females and overestimated for castrates.

The effect of Gender indicates differences between females and castrates regarding the

meat and fat distribution in the carcass. If these differences affect the profitability of the

possible processing methods, it might be profitable for slaughterhouses to register Gender.

Further analysis of such effects falls outside the scope of this study.

Since the distribution of fat and meat in the carcasses depends to some extent on the

gender, it is very likely that such dependencies might also occur between breeds, even if the

effect was ignorable for the three breeds evaluated in the present study.

An eventual effect of Breed, unlike Gender, would introduce a bias providing a systematic

effect, positive or negative, for different farmers and cooperatives using different breeds.

Since LMP differs between breeds, see appendix A.1, there is a consistent demand from

different cooperatives and farmers that the effect of Breed is to be tested and accounted

for in the prediction equation. Consequently, the ignorable effect of Breed demonstrated

for the present study does not rule out testing for this effect in forthcoming updates of the

prediction equation for LMP.

Furthermore, there seems to be very limited gain in including interaction terms. Such

inclusions make the models more complex, and thereby increase the possibility for substan-

tially biased prediction of carcasses having anomalous on–line measurement values. The non

usefulness of second order interaction terms strongly suggests that including higher order

interaction terms or quadratic terms would not be beneficial.
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The estimated values for the different elements of β were very similar for the estimates

regarding LMP–MD and LMP–CT, with exception for the intercept term, which was larger

for LMP–CT. The natural interpretation is that this difference reflects the difference of 6.3

percent units between average observed LMP–CT and observed LMP–MD.

Statistically, the expected value for RMSEP is the square root of the sum of ’squared

bias’ and ’error variance’ for the predicted values. For any given model, the only way to

reduce the expected value for RMSEP is to reduce ’squared bias’ as the (model specific)

’error variance’ is assumed to be fixed.

In the present case, with 86 observations of LMP–MD, and a fairly simple model including

only four predictor variables, the bulk of the prediction errors are due to the modelled error

variance, and not a result of biased regression parameters. Consequently, the empirical Bayes

method did not substantially improve prediction precision for LMP–MD in terms of RMSEP.

The usefulness of applying the empirical Bayes method, or other methods utilizing the

information from a surrogate variable, i.e. LMP–CT, depends heavily on the sample sizes of

observed LMP–MD and LMP–CT, and the covariance-matrix for the error terms (Σ). The

relationship between sample sizes of manually dissected carcasses, CT scanned carcasses and

RMSEP shown in Fig. 2 might be used to optimize sample sizes if the cost of sampling and

the gain of reduced expected prediction error is known. The empirical Bayes method might

be applied to heavily reduced sets of data without appreciable loss of prediction precision.

In situations where several breeds are present methods utilizing CT–data will be espe-

cially useful. Then the training set might be composed of a limited number of manually

dissected carcasses, and a larger number of CT scanned carcasses containing a sufficient

number of carcasses from all breeds.

Prior to looking at the results, we had expected higher precision for predicted LMP–CT

values compared with LMP–MD values, due to an assumption that CT is a more precise

method for predicting LMP than manual dissection. Evaluation of the manual dissection

method shows a generally high accuracy and reliability for the estimated LMP–MD (Nissen

et al., 2006), but also revealed some problematic issues, for instance a significant effect of

butcher for the estimated LMP–MD.

The results in this study show the opposite, that on–line measurements using HGP7 tend

to predict LMP–MD more precisely than LMP–CT. This is seen by evaluating the variances

for the errors, and by comparing RMSEPs for LMP–MD and LMP–CT. The pattern is
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evident even if the sample is restricted to the carcasses where both LMP–MD and LMP–

CT are observed. Thus, the non random sampling of carcasses for manual dissection does

not explain the observation. However, the difference might, at least partly, be explained

by the fact that the manual dissection method is a partial dissection method (Walstra and

Merkus, 1995), whereas CT performs a total dissection. Thus the measurements obtained

by the HGP7 on the back of the carcass might be better correlated with the partial manual

dissection than the full CT–dissection.

The estimate for σ22 = σMD, and the estimated RMSEP values indicates that the EU

specification of an RMSEP at maximum 2,5 is easily fulfilled using HGP7 on Norwegian

carcasses.

5 Conclusion

A model using four predictor variables, Fat, Meat, Totif (from the optical probe – HGP7)

and Gender, is simple and provides a high prediction precision well inside EU standards. The

three variables Year, Breed and Weight seems to be of minor or no importance for LMP–MD

prediction when combined with the HGP7 variables and Gender for the data set used in the

present study. This result should not be generalized without reservation. Inclusion of second

order interaction terms does not improve prediction precision substantially.

For analytical simplicity OLS-regression using input from the optical probe and Gender

is the better method and model. However, for practical simplicity, Gender might be omitted

without severe loss of prediction precision.

The drawback of OLS regression is its inability to utilize extra information from CT

scanned carcasses. In order to limit the needed sample size of manually dissected carcasses

regression methods utilizing information from CT might be applied to a training sample

with a low number of manually dissected carcasses, but a sufficiently large number of CT

scanned carcasses, yielding no loss or minor loss of prediction precision.
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A.1 Summary statistics for response and predictor variables

Table A.1 approx here

17



Table 1: 95% Credible Intervals, and posterior median and mean values, for the elements of

β and Σ using the favoured model.

βCT 2.5% 50% 97.5% Mean

Intercept 66.06 66.31 66.56 66.31

Fat -1.18 -1.11 -1.04 -1.11

Meat 0.07 0.10 0.13 0.10

Totif 0.06 0.11 0.16 0.11

Gender 0.19 0.56 0.94 0.56

βMD 2.5% 50% 97.5% Mean

Intercept 60.23 60.51 60.77 60.51

Fat -1.10 -1.03 -0.95 -1.03

Meat 0.07 0.10 0.13 0.10

Totif 0.08 0.13 0.18 0.13

Gender 0.31 0.71 1.12 0.71

Σ 2.5% 50% 97.5% Mean

σ11 (CT) 3.17 3.60 4.09 3.61

σ12 2.01 2.41 2.93 2.42

σ22 (MD) 2.28 2.67 3.12 2.68
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Table A1: Mean and standard deviation, in parenthesis, for LMP–MD (%), LMP–CT (%)

and the 4 continuous predictor variables (Fat (mm), Meat (mm), Totif (mm) and Weight

(kg)). Values distributed over the two levels for Year, i.e. 2008 and 2013, and the three

levels for Breed, i.e. Hampshire, Norhybrid and Duroc. The numbers nCT and nMD shows

sample sizes for CT scanned and manual dissected carcasses respectively.

2008 Hamp. Norhyb. Duroc All

nCT 37 75 117 229

nMD 10 20 36 66

LMP–CT 66.6 (3.1) 66.5 (4.1) 66.4 (3.3) 66.4 (3.5)

LMP–MD 60.5 (3.6) 60.6 (4.1) 60.1 (2.4) 60.3 (3.1)

Fat 11.9 (2.1) 12.5 (3) 12.4 (2.3) 12.3 (2.5)

Meat 57.9 (6.8) 54.9 (5.5) 56.1 (6) 56 (6)

Totif 12.7 (4.9) 12.6 (3) 10.6 (4.3) 11.6 (4.2)

Weight 81.1 (6) 82.1 (6.8) 78.4 (5.8) 80.1 (6.4)

2013 Hamp. Norhyb. Duroc All

nCT 32 78 126 236

nMD 10 0 10 20

LMP–CT 66.6 (2.6) 67.5 (4) 66.3 (3.7) 66.7 (3.7)

LMP–MD 60.6 (2.8) - 59.8 (3.5) 60.2 (3.1)

Fat 11.9 (2.2) 11.3 (2.8) 12.2 (2.7) 11.8 (2.7)

Meat 59.6 (6.2) 55.7 (6.1) 53.3 (7.1) 55 (7)

Totif 10.8 (3.7) 13 (4.2) 10.6 (3.9) 11.4 (4.1)

Weight 80.8 (6.6) 79.2 (8.6) 76.1 (7.6) 77.7 (8)

Both

years Hamp. Norhyb. Duroc All

nCT 69 153 243 465

nMD 20 20 46 86

LMP–CT 66.6 (2.9) 67 (4.1) 66.3 (3.5) 66.6 (3.6)

LMP–MD 60.5 (3.1) 60.6 (4.1) 60.1 (2.6) 60.3 (3.1)

Fat 11.9 (2.2) 11.9 (3) 12.3 (2.5) 12.1 (2.7)

Meat 58.7 (6.5) 55.3 (5.8) 54.7 (6.7) 55.5 (6.5)

Totif 11.8 (4.5) 12.8 (3.7) 10.6 (4.1) 11.5 (4.2)

Weight 80.9 (6.2) 80.6 (7.9) 77.2 (6.9) 78.9 (7.3)19
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Figure 1: Relationship between number of predictor variables and RMSEP, using the empiri-

cal Bayes method, for all 127 possible model-combinations including of the primary predictor

variables, and the 50 models including interaction-terms. Models omitting both Fat and Gen-

der as predictor variable are shown in the leftmost group. Models where Gender, but not Fat,

was included are shown in the second leftmost group. Models where Fat was included, but

where Meat and/or Totif were omitted are shown in the middle group. The second rightmost

group represents models where all HGP7-variables (Fat, Meat and Totif) were included, and

finally the rightmost group represents the 50 models where interaction terms were included.

Black colour shows models with one predictor variable, then the gradual transition to the

lightest grey represents 2,..., up to a maximum of 7 predictor variables. The two black ar-

rows points at the favoured model (right arrow) and the model where Gender is omitted (left

arrow).
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RMSEP vs. sample size for LMP−MD and LMP−CT.
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Figure 2: RMSEP for LMP–MD based on samples with varying number of observations

for LMP–MD and additional observations of LMP–CT. Each sample size combination for

LMP–MD and LMP–CT represent a ’line-crossing’ in the plane, and is represented with the

average RMSEP value for 500 (1000 for LMP–MD size at 80) different random samples of

LMP–MD and LMP–CT using the empirical Bayes model. Points represented by ’x’-s show

corresponding RMSEP–s using OLS. The dotted lines represent the difference (i.e. the gain)

of using the empirical Bayes method instead of OLS for each combination of sample-sizes for

LMP–MD and LMP–CT.
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