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Abstract

The separation of predictive and non-predictive (or orthogonal) information in linear regression

problems is considered to be an important issue in Chemometrics. Approaches including net

analyte preprocessing (NAP) methods and various orthogonal signal correction (OSC) methods

have been studied in a considerable number of publications. In the present paper we focus on

the simplest single response versions of some of the early OSC-approaches including Fearns OSC,

the O-PLS, the target projection (TP) and the PLS post-processing by similarity transformation

(PLS+ST). These methods are claimed to yield improved model building and interpretation alter-

natives compared to ordinary PLS, by �ltering "o�" the response-orthogonal parts of the samples

in a dataset. We point at some fundamental misconceptions that were made in the justi�cation

of the PLS-related OSC-algorithms, and explain the key properties of the resulting modelling.

Keywords: OSC; O-PLS; TP, PLS+ST, NAP.
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1 Introduction

The concept of orthogonal signal correction (OSC) with focus on applications to near-infrared

(NIR) spectra was introduced by Wold et al. [1]. Its motivation is taken from the fact that the

spectra representing the samples of a particular dataset often are contaminated by systematic

variation that is unrelated to the measured responses. The purpose of OSC as implemented

in the equivalent methods Orthogonal projections to latent structures (O-PLS) [2], PLS post-

processing by similarity transformation (PLS+ST) [4] and the Target projection (TP) method [5],

is to identify and eliminate so-called orthogonal variation in a dataset to achieve better models

and/or interpretations in multivariate calibration.

The goal of the present paper is to discuss and make it even clearer how these OSC-methods

work, and to give a rigorous explanation of why the entire OSC-concept may be both confusing and

super�uous. To be able to follow the given arguments, familiarity with some simple undergraduate

linear algebra is required. Concepts such as

� Orthogonality

� Vector space basis

� Matrix rank

� Projections onto subspaces

� The normal equations of ordinary least squares (OLS) regression

� The Gram-Schmidt orthogonalization process and the associated QR-factorization

� The singular value decomposition (SVD) of a matrix

are all assumed to be familiar. We also assume the mathematical equivalence between the various

PLS algorithms studied in [3] to be known (i.e. that the numerical di�erences between models pro-

duced by these algorithms are only due to truncation errors caused by �oating-point arithmetic).

References to PLS modelling will therefore focus on its mathematical properties only, with the

exception that we stress the importance of the y-de�ation that is often omitted.

The mathematical notation used below is mainly consistent with the standard chemometrics

notation for the PLS methodology. We will restrict ourselves to the single response case, i.e.

y ∈ Rn is a column vector, and the corresponding (n × p) data matrix X has n rows associated

with the number of samples, and p columns associated with the number of predictors.

In multiple linear regression modelling, the essentials of y-orthogonality can be understood by

inspecting Figure 1. It is well known that in a k-dimensional (1 < k ≤ n) subspace V ⊆ Rn for

approximating y (where V is spanned by the columns of X, or a set of linear combinations of

these columns as in PLS and principal component regression (PCR)), the orthogonal projection

ŷ accounts for exactly one dimension.

The remaining (k − 1) dimensions of V is spanned by (k − 1) additional vectors, and all of them

can be selected to be orthogonal to ŷ. Together with ŷ these additional vectors represent a basis
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Figure 1: The orthogonal projection ŷ of y(= ŷ+ r) onto the predictor subspace V occupies one
dimension, and the residual vector r is by de�nition orthogonal to the subspace V .

for the subspace V . Because the residual vector r = y − ŷ is orthogonal to V , any vector z ∈ V
orthogonal to ŷ is also orthogonal to y = ŷ + r (as a sum of two vectors both being orthogonal

to z). This observation means that a (k − 1)-dimensional subspace of V is spanned by the y-

orthogonal vectors. Note that any such y-orthogonal vector z ∈ V can always be represented as

a linear combination of the columns in X, i.e. z = Xw for some appropriate w ∈ Rp.
Exhaustive descriptions of particular OSC- or partial least squares (PLS) algorithms will not

be reproduced in the present paper, but a careful inspection and understanding of Figure 1 will

provide the reader with a �ying start to understanding the essential parts of the various OSC-

methodologies discussed below.

2 The de�nition of y-orthogonal information in OSC

The fundamental idea in [1] was to demonstrate that an appropriate modi�cation of the PLS

algorithm can eliminate systematic y-orthogonal parts in a data matrix X. In [1, section 5]

attention was drawn towards the possibility of identifying unit length vectors of weights w (‖w‖ =
1) were the corresponding vectors of scores t = Xw were required to be orthogonal to y, i.e.

tty = 0, (1)

together with the following motivating explanation:

"...Hence the OSC algorithm will be identical to the ordinary PLS algorithm except for the crucial

step of calculating the weights w. Normally, these are calculated as to maximize the covariance

between X and Y, but here they will instead be calculated as to minimize this covariance, i.e., to

get as close to orthogonality between t and Y as possible."[1]
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Equation (2) below is a direct extension of equation (1) showing that the y-orthogonal infor-

mation associated with the samples/spectra (the rows of X) is directly related to the weights w

de�ning the y-orthogonal scores:

For any y-orthogonal score vector t = Xw we have

tty = (Xw)ty = wtXty = wt(cw1) = 0⇔ wtw1 = 0, (2)

where the unit vector w1 = c−1Xty is the �rst loading weight vector of ordinary PLS, and

c = ‖Xty‖ is the required normalization constant. Equation (2) says that y-orthogonality of

t = Xw is equivalent to w1-orthogonality for the associated weight vector w de�ning the score

vector t.

It is well known that for a k-component PLS model, the associated matrix of unit loading

weights W = [w1 w2 ... wk] has orthogonal orthogonal columns, i.e. WtW = I (the identity

matrix). In particular, the vectors w2, ...,wk are all orthogonal to w1. Consequently the corre-

sponding non-orthogonal PLS scores

t?i = Xwi for 2 ≤ i ≤ k, (3)

are all y-orthogonal! This observation stands in stark contrast to the above quote from [1, section

5]. The fact that subsequent PLS components maximize the covariance between X and y only

in the de�ated sense of y (i.e. the residual y's) seems to have escaped the attention of both the

authors and referees.

One should note that de�ation of X with respect to the vector w1 yields the matrix

X̃ = X−Xw1w
t
1, (4)

of rank one less thanX. Clearly, the rows of X̃ arew1-orthogonal by construction. The X̃-columns

are all y-orthogonal because

X̃ty = Xty −w1w
t
1X

ty = cw1 −w1w
t
1(cw1) = cw1 − cw1 = 0. (5)

The de�ation in equation (4) is precisely the �rst de�ation step in the non-orthogonal scores PLS-

algorithm of Martens (see [3]), and this algorithm calculates both the loading weights in W and

the non-orthogonal scores in (3). Both Ergon [4] and Kemsley and Tapp [6] has earlier emphasized

the y-orthogonal property of the non-orthogonal PLS scores.

The various suggested algorithms and early applications [7]-[11] for doing OSC all concentrate

on y-orthogonality in the column space of X based on several alternative �lterings of the samples.

As pointed out in [10] and [12], the OSC methods are closely related to the net analyte preprocess-

ing (NAP) approach of Goicoechea and Olivieri [11], and there is an exact algorithmic equivalence

between the NAP and the direct orthogonalization (DO) method suggested by Andersson [8].

However, none of these papers consider the y-orthogonality of the non-orthogonal PLS-scores in

(3).

The NAP/DO approach derive a set of loading weights (not necessarily contained in the row
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space of X) representing phenomena considered to be irrelevant to the modelling of y as follows:

1. Project X onto the orthogonal complement of the subspace spanned by y to obtain

X̂ = X− y(yty)−1ytX = (I− y(yty)−1yt)X.

2. The columns of X̂ are clearly y-orthogonal, i.e. ytX̂ = 0 (but they are not necessarily

contained in the column space of X).

3. The (a) most dominant right singular (unit) vectors Pa from the SVD of X̂ are taken to

represent the irrelevant y-orthogonal phenomena somehow present in the data X.

4. The NAP/DO corrected data X? = X−XPaP
t
a = X(I−PaP

t
a) represent a row-projection

of X onto the orthogonal complement of the subspace spanned by Pa, i.e the X-data are

"blinded" w.r.t. the Pa-directions that are assumed to account for irrelevant information in

the particular modelling of y.

5. The modelling as well as subsequent model applications to new data is recommended to be

based on an initial "blinding" of the datapoints by using the row projection (I−PaP
t
a) as

indicated above.

The "blinding" part in step 4. above is essential. It assures that any resulting vector of regression

coe�cients (say b) obtained as a linear combination of the (Pa-orthogonal) rows in X?, is also

orthogonal to the irrelevant phenomena (interferents) represented by Pa, i.e. Ptab = 0. Note that

also the following holds:

X?b = X(I−PaP
t
a)b = Xb−XPa(P

t
ab) = Xb− 0 = Xb. (6)

Equation (6) says that the application of the model represented by b does not require the data

to be "blinded" w.r.t. the Pa-directions, because the blinding is already taken into account in

the regression coe�cients b. Preprocessing of future data points, by the "blinding" projection

(I−PaP
t
a) in applications of the model, is therefore super�uous.

Finally, we note that if Pa is a matrix of (a) apriori known and highly reliable interferents

(not necessarily obtained from the SVD of the present X̂-matrix) for the particular modelling

problem, the steps 1.-3. above could be ignored. When doing the modelling directly based on

the Pa-blinded data X? derived in step 4, the Pa-orthogonality of the regression coe�cients b

and equation (6) still holds. Therefore, new (raw) data points can be applied "unblided" with the

regression model.

2.1 Fearns OSC alternative

With reference to the de�nition of y-orthogonality in [1], Fearn [13] proposed �nding good y-

orthogonal pairs (t,w) by maximizing the squared norm ‖Xw‖2 subject to the requirements

‖w‖ = 1 and

tty = wtXty = 0. (7)
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By (2) the requirement (7) is equivalent to

wtw1 = 0. (8)

This observation slightly simpli�es some of the notation in [13], and shows that with w1 being the

unit vector proportional to Xty (i.e. w1 is identical to the �rst PLS vector of loading weights), the

maximization problem stated by Fearn corresponds to �nding the dominant right singular vector

of the w1-de�ated matrix X̃ de�ned in (4). Additional factors are given by the subsequent right

singular vectors of X̃ ordered by the associated singular values. The singular value decomposition

(SVD), or equivalently the principal component analysis (PCA), of X̃ therefore de�nes the desired

maximum variance y-orthogonal factors.

Now, assume that the desired f(≥ 1) right singular vectors of X̃ are denotedw2, w3, ...,wk(=f+1)

(here it is helpful to start the vector indexing from 2 and to de�ne k = f +1). From the de�nition

of X̃ in (4) and its associated singular value decomposition, it follows that the corresponding

y-orthogonal scores ti = Xwi = X̃wi (2 ≤ i ≤ k) are also mutually orthogonal (they are scaled

versions of the left singular vectors of X̃). The corresponding vectors of loadings are given by

pi = Xtti/(t
t
iti), and if we de�ne

W = [w2 ... wk], (9)

the associated �ltered data matrix is given by

Xo = X−TPt. (10)

Here, the y-orthogonal scoresT = XW = [t2 ... tk] and corresponding loadingsPt = (TtT)−1TtX =

[p2 ... pk]
t. Note that with these de�nitions we have Xt

oy = Xty = cw1 and PtW = I.

For regression purposes (see section 2.1.1), Fearns approach boils down to computing the �tted

values from a �nal scaling and projection of t1 = Xw1 onto the orthogonal complement of the

selected y-orthogonal left singular vectors accounting for the dominant variance in X̃.

2.1.1 Regression modelling details of Fearns approach

For regression purposes the score vector t1 = Xw1 (identical to the �rst PLS score vector) and

its �ltered version to with respect to the y-orthogonal scores T is considered, i.e.

to = Xow1 = (X−TPt)w1 = Xw1 −TPtw1 = t1 −T(TtT)−1TtXw1

= t1 −T(TtT)−1Ttt1 = (I−T(TtT)−1Tt)t1. (11)

Equation (11) shows that to is obtained by a Gram-Schmidt step projecting t1 onto the orthogonal

complement of the subspace spanned by the chosen f = k − 1 �rst left singular vectors of the y-

orthogonal matrix X̃.

By de�ning the �tted values ŷ as the appropriately scaled version of to, i.e. ŷ = αto = Xo(αw1)

(where the scalar α is the least squares solution of ato = y), the corresponding Xo-regression

coe�cients are

βo = αw1. (12)
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The latter means that βo is always a scaled version of the �rst weight vector w1 obtained by

traditional PLS modelling.

To compute the corresponding X-regression coe�cients β (associated with the original un�l-

tered measurements), we �rst note that there is an alternative useful expression for to, i.e.

to = Xow1 = Xw1 −XWPtw1 = X(I−WPt)w1. (13)

Thus, we also have

ŷ = Xoβo = Xβ, where β = (I−WPt)βo. (14)

Equation (14) shows that rather than �ltering the present X matrix (as well as new x-data points)

by multiplication with (I−WPt) from the right, it is su�cient to do a single �ltering of the Xo

regression coe�cients βo = aw1 by multiplication with (I −WPt) from the left to obtain the

regression coe�cients β to be applied for the original un�ltered data.

The regression coe�cients β in this case are clearly a linear combination including both w1 and

the W's in (9) that are associated with y-orthogonality. In contrast to the regression coe�cients

b in the NAP/DO modelling approach, the β of Fearns method is not "blind" w.r.t. the alleged

irrelevant phenomena in W that are associated with y-orthogonality.

2.2 The O-PLS of Trygg and Wold

Fearn both formulated and solved an optimization problem to justify his method (including a

solution to the 'new sample problem' issued in [1, section 5.2]). Nevertheless, Fearns solution to

the OSC-problem was soon overtaken by a heuristic approach, i.e. the patented O-PLS algorithm

of Trygg and Wold [2] that was introduced with the following explanation:

"...The proposed O-PLS method analyzes the disturbing variation in each regular PLS compo-

nent. The non-correlated variation in X is separated from the correlated variation, with the ad-

ditional bene�t that the non-correlated variation itself can be studied and analyzed. Removing

non-correlated variation in data prior to data modeling is not only interesting from a predictive

point of view, but the interpretational ability of resulting models also improves. Thus more infor-

mation and knowledge of a system can be retrieved and analyzed, and developed further."

O-PLS (with its o�springs proposed in [14] and [15]) soon became, and still is the most pop-

ular choice for OSC modeling and calibration, see Pinto et al. [16].

The O-PLS algorithm presented in [2, section 2.3] is a recipe for �ltering (preprocessing) theX-

data using slightly di�erent y-orthogonal scores and associated loading weights than those found by

Fearns approach. The original formulation of O-PLS does not provide a transparent procedure for

calculating a corresponding regression model (only the calculations for the y-orthogonal �ltering

factors and associated weights is described). The steps for calculating regression coe�cients are

instead left for a possible subsequent application of ordinary PLS to the �ltered X-data.

From later insights, in particular given by Ergon [4], Indahl [17] and the equations (2) and (3)

above, the most important characteristics of a k-component O-PLS model (including the calcula-

tion of regression coe�cients) are the following:
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An O-PLS model with k ≥ 2 components has sets of orthogonal weights {v1, ...,vk} and as-

sociated orthogonal scores {t1, ..., tk} where

� The weights v1 = −w2, ... ,vk−1 = −wk,vk = w1, where w1, ... ,wk are the ordinary

PLS-weights (according to Ergon [4]).

� The �rst (k− 1) score vectors {t1, ... , tk−1} are y-orthogonal, i.e. ttiy = 0 for 1 ≤ i ≤ k− 1,

and they span the same subspace as the non-orthogonal PLS-scores {Xw2, ... ,Xwk} (that
are y-orthogonal according to equation (3)).

� The y-orthogonal �ltering of X is

Xo = X−TPt = (I−T(TtT)−1Tt)X = X(I−V(PtV)−1Pt). (15)

In matrix notation, the y-orthogonal scores T = [t1 ... tk−1] satisfy the identity

T = XV(PtV)−1, (16)

where

V = [v1 ... vk−1] = −[w2 ... wk], (17)

and Pt = (TtT)−1TtX (according to Indahl [17, section 3]).

� The last (k-th) score vector tk = Xovk is obtained by a Gram-Schmidt step �ltering o� the

(k − 1) y-orthogonal factors in Xvk, i.e.

tk = (I−T(TtT)−1Tt)Xvk = Xovk, (18)

where I is the identity matrix.

� The complete set of scores {t1, ... , tk} coincide with the set of orthogonal vectors obtained

by an application of the Gram-Schmidt orthogonalization process (QR-factorization) with

the following sequence of non-orthogonal score vectors: Xv1, ..., Xvk (according to Indahl

[17, section 3 and appendix A.1]).

� The �tted values of an O-PLS model with (k − 1) y-orthogonal components is ŷ = αtk,

where α is the least squares solution of atk = y and from (18) the Xo-regression coe�cients

are

βo = αvk (= αw1). (19)

� From (15), (16) and (19) it follows that the �tted values can alternatively be expressed as

ŷ = Xo(αvk) = X(I−V(PtV)−1Pt)βo = Xβ, (20)

where the X-regression coe�cients

β = (I−V(PtV)−1Pt)βo (21)

9



coincide with the regression coe�cients obtained by a k-component application of ordinary

PLS to the (X,y)-data.

� The columns of T are orthogonal to Xo (by construction). Therefore the y-orthogonal scores

{t1, ... , tk−1} are also ŷ-orthogonal, i.e.

Ttŷ = TtXoβo = (TtX−TtTPt)βo

= (TtX−TtT(TtT)−1TtX)βo = (TtX−TtX)βo = 0. (22)

Because the eliminated T-part resulting in Xo is y-orthogonal, the identity Xt
oy = Xty = cw1

holds. PLS applied to the (Xo,y)-data will therefore produce w1 as the �rst vector of loading

weights, and then subsequent w's orthogonal to w1. By equation (2) these subsequent w's result

in y-orthogonal scores tw that should have been �ltered o� X (or equivalently o� Xvk) in the

�rst place. Consequently, the recommendation in [2] for applying ordinary PLS to the �ltered

data Xo is redundant.

Just like equation (14) in Fearns approach, we also see that rather than �ltering the present

X-matrix or new x-data points by multiplication with the matrix (I − V(PtV)−1Pt) from the

right, it is su�cient to do just the single �ltering of βo in (21) by multiplication with this particular

matrix from the left.

The model spaces spanned by the non-orthogonal scores {Xv1, ..., Xvk} and {Xw1 ... Xwk}
must necessarily coincide. Because the �rst set of vectors span the model space of O-PLS and the

second set span the model space of the ordinary PLS, the introduction of the O-PLS algorithm in

[2] is clearly super�uous from a model �tting point of view. The only di�erence between PLS and

O-PLS is that their common model space is represented by two alternative choices of orthogonal

score basis vectors T and associated P-loadings. Navigation between such alternative bases is

always a simple task. More on the technical details of the equivalence between ordinary PLS and

O-PLS is given in [17, section 3].

Finally we note that the X-regression coe�cient vector β of O-PLS (21) is a linear combi-

nation of the ordinary PLS loading weights w1, ...,wk where all except w1 are associated with

y-orthogonality. Unlike the regression coe�cients b from the NAP/DO modelling approach, the

β of O-PLS is not "blind" w.r.t. the alleged irrelevant phenomena to be associated with y-

orthogonality. Above, we saw that the same thing was true for Fearns method.

2.3 Ordinary PLS and y-orthogonality

In the Chemometrics community (as con�rmed by the above quote from Wold et al. [1, section 5]),

one usually describes ordinary PLS as a method maximizing of the covariance between X and y.

However, except for the �rst component, this is true only in the de�ated sense of X and y. In

terms of the unde�atedX, most PLS algorithms explicitly calculate the orthogonal loading weights

wi and corresponding non-orthogonal scores t1 = Xw1 and t?i = Xwi (2 ≤ i ≤ k, that are also

y-orthogonal) prior to a Gram-Schmidt step to assure mutual orthogonality of the scores.

Although O-PLS and PLS generate exactly the same structure from a dataset in terms of

subspaces, identical orthogonal loading weights (when ignoring di�erences in signs as indicated

above) [4], X-regression coe�cients and model �ts, the resulting "models" are equipped with
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very di�erent heuristics (proposed by the inventors of these methods) regarding both information

content and other interpretations.

In spite of the re-arrangement of the non-orthogonal PLS-scores prior to computing the or-

thogonal scores of O-PLS, there is really no rigorous justi�cation for two such interpretation

alternatives. In this context it should be noted that with k components, there are k! possible ways

of permuting the non-orthogonal scores Xw1, ...,Xwk, leading to k! di�erent orthogonal bases for

exactly the same subspace. If Tπ = [tπ(1) ... tπ(k)] is the orthogonal basis obtained by applying the

Gram-Schmidt procedure to the permuted (by some permutation π of the numbers 1, ..., k) non-

orthogonal scores Xwπ(1), ...,Xwπ(k), the associated matrix of loadings is Pπ = XtTπ(TπTπ)
−1.

This means that for each loading weight wi and associated (non-orthogonal) score Xwi there are

a large number of alternative associated scores tπ(i) (and corresponding loadings pπ(i) subject to

the widely accepted PLS/O-PLS interpretation heuristics) related to some orthogonal basis.

However, the order of deriving the loading weights w1, ...,wk inside the respective algorithms

is identical for both the PLS and the O-PLS. According to Wold et al. [18], these weight vectors

correspond to the conjugate (orthogonal) gradient directions for generating the solution of the

normal equations

XtXb = Xty (23)

associated with the OLS problem. By equation (2) their mutual orthogonality is equivalent to the

y-orthogonality of the non-orthogonal scores Xwi for i ≥ 2.

It should be noted that the presentation of the NIPALS PLS in [18] also included a de�ation

step for y. Björck [19] has criticized the omitted y-de�ation in the more recent applications of the

NIPALS PLS, because this introduces an unnecessary and possibly harmful loss of numerical pre-

cision in the resulting PLS-solutions. If the more recent algorithms derived from the NIPALS PLS

had not ignored the numerically favourable y-de�ation, one could rightfully wonder if inventions

such as the O-PLS algorithm would have been made at all.

Additional (non-orthogonal) components Xwi contributing to reducing the residual y, im-

proves the �t of the original y accordingly. The same vectors (or some particular orthogonal basis

derived from them) can not alternatively be taken as an explanation of what has nothing to do

with y without introducing a contradiction.

Regarding y-orthogonality of the non-orthogonal PLS scores, the sceptical reader is strongly

encouraged to compute the t?i = Xwi for i ≥ 2 (either from the NIPALS algorithm or directly by

the non-orthogonal and y-de�ating PLS algorithm of Martens) for any dataset to verify empirically

their y-orthogonality.

2.4 PLS+ST and the Target Projection

2.4.1 The PLS+ST

The PLS post-processing by similarity transformation (PLS+ST) proposed by Ergon [4] represent

an alternative way of computing the desired O-PLS score vector tk given in equation (18).

Let t1 = Xw1(= Xvk) and let T? = [Xw2 ... Xwk] be the matrix representation of the non-

orthogonal (and y-orthogonal) PLS-scores. To obtain an even simpler expression for the O-PLS

score vector tk, Ergon took advantage of the y-orthogonal part T?q2 of the expression for the
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�tted values in Martens non-orthogonal scores PLS. The resulting simpli�ed expression for the

�tted values is given by

ŷ = XWq = q1t1 +T?q2, (24)

where W = [w1 ... wk] is the matrix representation of the PLS loading weights. The regression

coe�cient vector q = [q1 qt2]
t is associated with the score vectors in (24), and the sub-vector

q2 = [q2 ... qk]
t represent the regression coe�cients associated with the (k− 1) y-orthogonal score

vectors. Ergon noted that the desired O-PLS score vector tk in (18) also can be expressed as

tk = q−1
1 ŷ = t1 + q−1

1 T?q2, (25)

where the last term in (25) represent the required y-orthogonal correction of t1.

From the de�nitions wPLS+ST = w1 + q−1
1

∑k
i=2 qiwi and W2 = [w2 ... wk], the PLS+ST

transformed loading weights and associated scores are given by WM = WM = [wPLS+ST W2]

and TM = XWM = [tk T?], respectively, where M =

[
1 0

q−1
1 q2 I

]
is the required transfor-

mation matrix with the inverse M−1 =

[
1 0

−q−1
1 q2 I

]
. By a simple manipulation of (24) we

have

ŷ = XW(MM−1)q = TMM−1q = TMqM = q1tk = q1XwPLS+ST , (26)

because the TM-regression coe�cients qM = (M−1q) = [q1 0 ... 0]t. The associated X-regression

coe�cients

β = Wq = q1wPLS+ST (27)

required for predictions of new x-data points, must necessarily coincide with the expression in

equation (21).

It should be noted that the (�rst) vector wPLS+ST of transformed loading weights is neither a

unit vector nor orthogonal to the other columns in WM, and that only the associated transformed

score vector (tk = XwPLS+ST ) is orthogonal to the other TM-columns (the y-orthogonal scores

T?).

Due to the non-orthogonalities in WM, the proposed notation in [4, equation 6] for the rank

k approximation Xk of X is quite confusing, i.e. Xk = tkw
t
1 +T?(W2 − q−1

1 w1q
t
2)
t, and

X = tkw
t
1 +T?(W2 − q−1

1 w1q
t
2)
t +E = Xk +E,

where E represent the residual part. Note that a much simpler expression for the approximation

part Xk is available, i.e.

Xk = TMM−1Wt = XWMM−1Wt = XWWt.

A compact view of the PLS+ST can be obtained directly by considering equation (27) for an

ordinary PLS model:

1. De�ne the desired vector of loading weights wPLS+ST = q−1
1 β
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2. The vector of �tted values

ŷ = Xβ = q1XwPLS+ST = q1tk = Hy, (28)

where H is the (symmetric) orthogonal projection onto the PLS model space (which is

spanned by the non-orthogonal scores XW = [t1 T?]).

3. Because the y-orthogonal columns of T? form a subset of the XW-columns, the projection

matrix H must satisfy HT? = T? and

ŷtT? = (Hy)tT? = yt(HT?) = ytT? = 0. (29)

Equation (29) shows that the y-orthogonal column vectors in T? are also ŷ- (and tk-) orthogonal.

The latter simply means that y-orthogonal �ltering of the �tted values ŷ (obtained by PLS) with

respect to T? to improve the prediction ability of a model, is just as sensible as sending a healthy

patient to ine�ective surgery.

2.4.2 The Target Projection (TP) method

The description of the PLS+ST method presented in [4, section 3] has no particular focus on

model interpretations. This is, however, included in the equivalent TP method. According to

Kvalheim [5], the vector of TP-loading weights is de�ned as the unit vector

wTP = ‖β‖−1β, (30)

and from (27) we have wTP = (q1‖β‖−1)wPLS+ST . The corresponding TP-score vector is given

by

tTP = XwTP (31)

= ‖β‖−1Xβ = ‖β‖−1ŷ,

and the associated vector of loadings often preferred for interpretations is

pTP = XttTP /(t
t
TP tTP ) = XttTP /‖tTP ‖2 (32)

= (‖tTP ‖2‖β‖)−1Xtŷ.

In the full rank OLS case (obtained by including the maximum number of PLS components), we

have ŷ = Xβ, where the regression coe�cient vector β is found by solving the associated normal

equations

XtXb = Xty(= cw1)

⇓ (33)

Xtŷ = Xty.

13



with respect to b. Thus for OLS, the normal equations (33) implies that the TP-loading vector

pTP in (32) is proportional to the familiar (�rst) PLS loading weight vector w1:

pTP = (‖tTP ‖2‖β‖)−1Xtŷ = (‖tTP ‖2‖β‖)−1Xty = c(‖tTP ‖2‖β‖)−1w1, (34)

where c = ‖Xty‖ is the normalization constant associated with w1. Kvalheim [5, equation 10]

recognized this relationship by an alternative route without noticing the underlying normal equa-

tions (33), and instead concluded:

"Thus, in the absence of truncation, the TP loadings are proportional to the PLS weights on the

�rst PLS component. This is an important result since w1 represents the normalized co-variance

vector between X and y (in variable space) ...

...The PLS weights on the �rst component, w1 might be a better choice for revealing the x-

variables most in�uential with respect to the response since the TP loadings, representing the

co-variances between the x-variables and the predicted response, converge towards these weights

(Equation (10)). However, as we shall see when we look further into this matter ... this choice is

still not optimal.

... one may conclude that the TP loadings are most appropriate for revealing the predictive

part of X. Alternatively, one may use the PLS weights w1 since the TP loadings converge towards

these weights when the variation in X is exhausted. However, none of these vectors represent an

optimal choice."[5].

Note that neither the OLS-regression coe�cient vector leading to the perfect �t of the right

hand side cw1 in the normal equations (33), nor the PLS-regression coe�cients in (21) approxi-

mately solving (33), are considered to be appropriate candidates for revealing the predictive part

of X(= [x1 ... xp]).

In [5], the more "optimal choice" is claimed to be obtained by the so-called selectivity ratios

(SR). Before stating the SR-de�nition, one should note that by introducing the diagonal scaling

matrix

Sc = ‖tTP ‖


‖x1‖−1 ... 0

...
. . .

...

0 ... ‖xp‖−1

 , (35)

the vector of so-called correlation loadings, rTP corresponding to the vector pTP of TP loadings,

is given by

rTP = ScpTP . (36)

The correlation between the i-th variable xi and ŷ, is of course identical to the correlation between

xi and tTP , and its value is ri = rTP (i), i.e. the i-th entry of the correlation loading vector rTP .

The selectivity ratio SRi of the i-th variable xi is de�ned in [5, equation 11] as the ratio between

the explained and the unexplained variances when regressing the i-th variable xi onto tTP . In

terms of the correlation ri, this de�nition is equivalent to

SRi = SR(r2i ) = r2i /(1− r2i ), (37)
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In [5] the SR de�nition is introduced with the following explanation:

"... Thus, the individual SRis are closely related to the correlation between the predictive part of an

x-variable and the response y, but division with the unexplained variance produces a more sensitive

measure than the correlation. Furthermore, the SR provides a bridge from the co-variance-based

TP loadings to a variance-independent measure without the deteriorative e�ect of noise from small

variables accompanying the scaling of the x-variables to unit variance. ..."

Note that the �rst sentence before the comma in the above quote is consistent with the mathe-

matical de�nition of the SRi only for OLS models. For PLS models, the correct relationship is to

the correlation between the x-variables and the �tted values ŷ (not y). The text after the comma

is misleading because the function

SR(t) = t/(1− t) (38)

from the de�nition (37) is strictly increasing for arguments t ∈ [0, 1), i.e. there is a one-to-one

correspondence in the relationship between the squared correlations and the selectivity ratios.

The second sentence in the quote is misleading by the same one-to-one correspondence, where no

moderation of spurious correlations (due to small x-variances) takes place.

The precise relationship between the TP loadings pTP in (32) and the SR-values, is given by

the correlation loadings rTP in (36) and the function SR(·) de�ned in (38). When approaching

full rank in the PLS-modelling (when getting close to the OLS-model) the entries of the vector

rTP will become close to the univariate correlations between y and the x-variables that can be

calculated directly from the data (prior to the regression modelling).

2.5 A second look at Fearns OSC alternative

The y-orthogonal matrix X̃ obtained by the de�ation in equation (4) is maximal in terms of rank,

and its rank is only one less than the rank of X. Therefore one might wrongly conclude that this

matrix represents the maximum amount of information (in terms of rank) not needed to model y.

However,

X1 = X− X̃ = Xw1w
t
1 (39)

is a (�ltered) matrix of rank 1 that accounts for the residual information inX not being orthogonal

to y. Regressing y onto the rank 1 matrix X1 results in a vector of �tted values that are propor-

tional to X1w1 = Xw1 = t1, and de�ation of X1 with respect to t1 results in a 0-matrix. Hence,

we are captured in the situation of an ordinary PLS model based on one component only. By

directly eliminating the W-directions (the entire row space of X̃) associated with y-orthogonality,

we throw away the information necessary to improve on the residual y's. Both Fearns method and

the O-PLS identi�es and use such W-directions (obtained by di�erent strategies though) in sub-

sequent order to obtain models comparable in both approach and performance to PCR and PLS,

respectively. Without using this possibility of correcting the initial t1 for its major y-orthogonal

components, that are associated with directions of signi�cant variance in the column space of X̃,

neither of the two methods would work beyond the �rst component (t1).

Because there is no general way of initially "guessing" a good score vector without signi�cant
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y-orthogonal components, a poorer "guess" (some linear combination of the X-columns - usually

t1 = Xw1) must be taken as the starting point. Reducing the y-residuals either

� by directly introducing components (Xw2, ...,Xwk) subsequent to t1 for obtaining better

projections of y, or

� by eliminating exactly the same (y-orthogonal) components from the y-orthogonal compo-

nent of t1

is just two sides of the same coin. In the de�ated sense of y, i.e. by continuing the modelling

process beyond the �rst component t1, the associated y-residual (ri−1) and the corresponding

component Xwi (2 ≤ i ≤ k) are of course not orthogonal, and an improved model �t is therefore

obtained.

As explained above, both Fearns OSC and the O-PLS are consistent with this strategy. Fearn

applies a selection of the dominant and y-orthogonal left singular vectors of X̃ into a PCR �avoured

solution. The O-PLS use the y-orthogonal PLS-scores. For both methods it must be stressed

that the subsequently derived y-orthogonal directions are not orthogonal to the corresponding

y-residuals (the Xwi's are non-orthogonal to the ri−1's for 1 ≤ i ≤ k). This explains precisely

how including more y-orthogonal directions in the model building is working when the y-de�ations

are ignored.

2.5.1 An informative computer experiment

In the �eld of chemometrics, there is a long tradition in modifying various established algorithms

(in particular the NIPALS PLS) as part of the research process towards new data analysis methods.

Several of the published OSC-modelling approaches have obviously evolved in this way.

According to this well established tradition, the readers are therefore encouraged to do some

relevant computer experiments. In particular you should try to verify that the �tting of a re-

sponse vector y can be approached by orthogonalizing an arbitrary initial guess with respect to

y-orthogonal directions as follows:

� Pick your favourite NIR- (or any other) dataset X with n rows, p columns and an associated

response vector y ∈ Rn (mean centring of y and the X-columns should be included).

� Generate a random vector w ∈ Rp and compute the corresponding random linear combina-

tion of the X-columns, i.e. t = Xw, as your initial ŷ-guess. Then adjust this t according

to:

1. Fearns strategy (improve t by subtracting its projection onto the �rst 10 left singular

vectors of the y-orthogonal matrix X̃ de�ned in (4) - use equation (11) where you

replace t1 with your random guess t).

2. PLS (improve t by subtracting its projection onto the subspace spanned by the �rst 10

y-orthogonal scores, i.e. t?2 = Xw2,...,t?11 = Xw11).

� Compute the correlation between y and the improved t in both cases.

� Repeat 1. and 2. starting with t1 = Xw1 as your initial ŷ-guess, and compare the correla-

tions.
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In all the cases above you should be able to observe that the proposed correlations are highly

similar.

3 Examples with y-orthogonality and imposed orthogonality

constraints in the sample space

3.1 A published case where the O-PLS idea actually fails to work

According to the introduction in [2], the OSC-issues being solved by the O-PLS are

"...remove systematic information in X not correlated to the modelling of y in order to achieve

better models in multivariate calibration. ...Its objective is to improve interpretations of PLS mod-

els and reduce model complexity. O-PLS provides a way to remove ... variability in X that is

orthogonal to y. The proposed O-PLS method analyzes the disturbing variation in each regular

PLS component. The non-correlated variation in X is separated from the correlated variation,

with the additional bene�t that the non-correlated variation itself can be studied and analyzed.

Removing non-correlated variation in data prior to data modeling is not only interesting from a

predictive point of view, but the interpretation ability of resulting models also improves. ..."

A simulated example given by Trygg and Wold [2, section 2.3.10] is intended to illustrate some of

the O-PLS capabilities, and it deserves a careful investigation:

In this example we consider two closely related data matrices X0, X1 (to obtain exact preci-

sion for those who like hand calculations, two extra digits have been included in each entry of X1)

and one response vector y:

X0 =


−1 −1
1 −1
−1 1

1 1

 , X1 =


−2.1825 −2.1825
1.8375 −0.1625
−0.4825 1.5175

0.8275 0.8275

 and y =


2

2

0

−4


Note that X1 is a corrupted version of X0 obtained by adding the y-orthogonal vector

torth = [−1.1825, 0.8375, 0.5175, −0.1725]t to the X0-columns, and that the identity Xt
0y =

Xt
1y = [−4,−8]t holds. According to the quoted introduction of [2], one might be tempted to

expect the O-PLS to eliminate the e�ects of the disturbances caused by the vector torth. On the

other hand, we know that ordinary least squares (OLS), PLS with two components (full rank),

O-PLS and Fearns method (both of full rank due to extraction and �ltering of the data with

respect to one y-orthogonal component) necessarily must result in identical models (i.e. identical

regression coe�cients).

For (X0,y), the vector of least squares regression coe�cients (found by all the four methods) is

b0 = [−1,−2]t. For (X1,y), the four methods also agree and the vector of least squares regression
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coe�cients is b1 = [0.083,−1.0758]t. The corresponding residual vectors

r0 = X0b0 − y and r1 = X1b1 − y

have norms ‖r0‖ = 2.0000 and ‖r1‖ = 3.9656, respectively. Consequently, the y-orthogonality

introduced by adding torth to the original X0-columns has lead to a poorer �t in the second model

obtained by both O-PLS, Fearns method and (of course) OLS.

In [2] however, it is wrongly claimed that O-PLS is able to remove the e�ect of y-orthogonal

(non-correlated) variation in X1! The problem here is that the introduced y-orthogonal vector

torth is neither contained in the column space of X0 nor in the column space of the corrupted

matrix X1, i.e. there is no w ∈ R2 so that the identity torth = X1w holds. Only external

information about the vector torth is really helpful in eliminating its in�uence to obtain a better

model �t in this particular case.

If external knowledge of torth were available, there would still be some subtle issues to clarify.

Subtraction of torth from the X1-columns is obviously not the same thing as a �ltering of the

X1-matrix to make its columns orthogonal to torth. Furthermore, in this particular example it is

easily shown that the vector torth is non-orthogonal even to the original X0-columns. Therefore,

orthogonalizing the X1-columns with respect to torth would not bring back the "uncontaminated"

X0. Instead we would obtain the following matrix:

X2 = (I− torth(t
t
orthtorth)

−1ttorth)X1 =


−0.3440 −0.6596
0.5354 −1.2411
−1.2871 0.8510

1.0957 1.0497

 . (40)

Note that X2 will also be the result of �ltering X0 in the same way (just replace X1 by X0 in

equation (40)), and that the �rst ordinary vectors of PLS loading weights for all these matrices

are identical, i.e. Xt
2y(= Xt

0y = Xt
1y) = [−4,−8]t.

Solving the (X2,y) regression problem by OLS or any of the methods PLS, O-PLS or Fearns

OSC (full rank versions) would result in the least squares regression coe�cients b2 = [−1.4908,−2.2546]t.
The corresponding residual norm in this case would be ‖X2b2 − y‖ = 0, i.e. a perfect �t.

The perfect �t (hardly intended when the example was prepared for [2]) is a mathematical con-

sequence of working with centered data: The two linearly independent X2-columns are orthogonal

to both the constant vector 1 = [1 1 1 1]t and torth (so is also y). Due to their linear indepen-

dence, the X2 columns together with the vectors 1 and torth represent a basis for R4. This means

that any vector in R4 (including y) can be represented as a linear combination of these four basis

vectors. Because y is orthogonal to both 1 and torth, both its coe�cients (coordinates) associated

with these vectors must be 0. Consequently, y is perfectly represented by a linear combination of

the two X2-columns!
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3.2 Model interpretations in least squares modelling is a challenging

task

Improved model interpretation is one of the most important "selling" points for the O-PLS method-

ology. Brown and Green [20], however, stressed that even for the relatively simple class of least

squares regression methods, model interpretation may be a challenging subject. It is indeed much

more challenging than what may be the impression from traditional chemometrics using PLS and

O-PLS.

It is in fact not too hard to derive orthogonal models that both �t (and predict) a dataset well.

In the example below we demonstrate this fact using a MATLAB benchmark dataset (available

fromMATLAB's Statistics and Machine Learning Toolbox [21] by the command: 'load spectra')

of NIR/octane measurements. A complete description of the dataset is given in [22].

We start by �nding the solution β̂ minimizing the constrained least squares problem

‖Xβ − y‖2 + λ‖L1β‖2, (41)

with λ = 0.1 and L1 denoting the discrete 1. derivative operator. The second term in (41)

penalizes roughness in the solution vector β̂. Note that in this case, β̂ is a linear combination of

rows in the augmented matrix

[
X√
λL1

]
.

With the solution β̂ at hand, we may seek an alternative PLS-based model where the regres-

sion coe�cient b̂ is constrained to be orthogonal to the solution β̂ of (41) (this can be done by

orthogonalizing the rows of X with respect to β̂ prior to the PLS modelling). The resulting or-

thogonal vector of regression coe�cients and scatter plots of the corresponding leave-one-out cross

validation (CV) predictions ŷcv are shown in Figure 2.

Note that neither b̂ nor β̂ are forced to be exact linear combinations of the original X-rows, but

both alternatives do work as intended for the original X-measurements. Although the two models

are almost indistinguishable from a predictive point of view (see the bottom part of Figure 2), it

seems quite impossible to provide a trustworthy interpretation simultaneously accounting for the

two orthogonal regression coe�cient vectors β̂ and b̂ (see the upper part of Figure 2).

4 Discussion

The example in section 3.1 shows very clearly that strange things can happen if the X-columns are

manipulated by some arbitrary y-orthogonal vector torth ∈ Rn not contained in the column space

of X. Even with exact knowledge of torth, our clues about the handling of new data points x ∈ Rp

for later predictions would be very limited. Unfortunately, extensions of the O-PLS methodology

such as the O2-PLS [14] and the OnPLS [15] cannot save us from this peculiar situation.

O-PLS, PLS+ST and TP have in common that they identify the subspace spanned by the

ordinary PLS scores, and that they introduce a new set of basis vectors for this subspace. In

all these alternatives, the (�rst) basis vector of real interest is chosen in the direction of the

�tted values ŷ (the other basis vectors are chosen to be orthogonal to both ŷ and y). In this
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Figure 2: Orthogonal regression coe�cients from Tikhonov-regularization (L1 and λ = 0.1) and
constrained PLS (7 components) giving similar predictions.

perspective, these equivalent methods seems to be super�uous constructions made to emphasize

(and interpret) y-orthogonality and/or to justify some simpli�ed model interpretation heuristics

based on the �tted values ŷ (in some scaled version) as the score vector of main interest.

In the user community of PLS-methodology, inspection of the so-called p-loadings resulting

from the NIPALS algorithm (and the O-PLS algorithm proposed in [2]) is considered as a vitally

important part of the model interpretation heuristics. The p-loadings relate to a particular or-

thogonal basis of the column subspace. As discussed in section 2.3, there are a large number of

possibilities (k! - including the two bases obtained by PLS and O-PLS) for choosing such bases

for the subspace spanned by the non-orthogonal PLS-scores. Each such possibility leads to a

particular matrix of associated p-loadings with a corresponding set of possible interpretations.

Linking an underlying non-orthogonal score vector Xwi to the orthogonal (in some basis) score

vector tπ(i) and the interpretations based on the associated pπ(i)-loading is clearly a risky and

ambiguous business, because of the large number of di�erent possibilities for obtaining the various

possible tπ(i)-scores.

The precise mathematical meaning of a loading vector p is most eaily seen by considering the

orthogonal projection of the X-columns onto the subspace spanned by the score vector t (of some

orthognal basis):

X̂ = t(ttt)−1ttX = tpt, (42)
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where pt = ttX/ttt by de�nition is the (transposed) vector of p-loadings associated with t. From

(42) the i-th entry pi of p clearly corresponds to the t-coordinate of the projected i-th column of

X. If t is chosen as a unit vector (i.e. ttt = 1, a choice corresponding to using an orthonormal

basis), we realize that the vector p(= Xtt) also corresponds to the direction maximizing the

(X, t)-covariance.

As a comment to the example in section 3.1, where the "arbitrary" y-orthogonal vector torth
was introduced, a simple projection argument shows that any of the p column vectors xi of X can

be projected onto y and expressed as

xi = ciy + ri, where rtiy = 0 (i.e. y-orthogonal) and ci ∈ R.

If some clever OSC algorithm where capable of eliminating all these y-orthogonal ri's (that are

not necessarily linear combinations of the X-columns), the resulting �ltered data matrix would

look like

Xoo = [c1y c2y ...cpy] = yct

where the only information inX not completely lost are the coe�cients ct = [c1 ...cp] = (yty)−1ytX

proportional to the covariances between y and the X-columns, i.e.

Xty = Xt
ooy.

In the introduction we emphasized that the present focus on OSC methods is restricted to the

single response case. In the multi-response case with Y ∈ Rn×q (q ≥ 2), an Y-orthogonal vector

is still de�ned as a linear combination t = Xw of the X-columns satisfying

ttY = wt(XtY) = 0, (43)

i.e. the vector w ∈ Rp of coe�cients is orthogonal to the subspace spanned by the columns of

XtY. Let's assume that the matrix W1 ∈ Rp×q represent an orthonormal basis for this subspace

(W1 can be obtained either by QR-factorization, or the "thin" SVD, of XtY). Then equation

(43) is equivalent to requiring wtW1 = 0. De�ation of X with respect to W1 results in the

Y-orthogonal matrix

X̃ = X− (XW1)W
t
1. (44)

Note that any algorithm (including the O2-PLS in [14]) �nding any Y-orthogonal vector t = Xw,

automatically �nds a linear combinations of the X̃-columns because Wt
1w = 0 by the remarks

after (43), and

t = Xw = Xw − (XW1)W
t
1w = X̃w (45)

by (44). In particular, the multi-response case described in Fearn [13], and the associated maxi-

mization problem, is solved by �nding the dominant right singular vector of X̃ in (44). Like in the

single response case discussed in section 2.1, the additional factors are given by the subsequent

right singular vectors ordered by the associated singular values.

For any linear regression method (single- or multiblock) modelling the q responses of Y by a k-

dimensional space V (assuming k > q), the �tted values Ŷ will account for q dimensions in V , and
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the Y-orthogonal vectors will account for the remaining (k−q) dimensions. By considering Figure

1 (ignore its sub-text) for this purpose, one may think of the q dimensions of Ŷ as collapsed into

the "line" spanned by Ŷ. The z then represents a vector in the (k − q)-dimensional (rather than

(k − 1)) subspace of Y-orthogonal vectors. Thus, for any single- or multiblock linear regression

method with one or several responses, the concept of Y-orthogonality is always available.

There is an important di�erence between the O-PLS and the NAP/DO approach in considering

the interferents (the vectors in Rp representing the phenomena explained as irrelevant to the

particular y of interest). In O-PLS the �ltered matrix Xo in (15) is obtained by multiplication of

X from the right hand side with the skew (oblique) projection matrix (I−V(PtV)−1Pt), where the

matrix V represent the irrelevant phenomena. Note that the rows of Xo are indeed orthogonal to

V because (I−V(PtV)−1Pt)V = 0. The problem is, however, that the Xo-regression coe�cients

βo in (19) are sensitive to the �ltering operation, i.e. (I − V(PtV)−1Pt)βo = β(6= βo), where

β is the ordinary PLS regression coe�cients according to equation (21). The latter means that

the entire �ltering of X into Xo is collapsed into β. Therefore, these regression coe�cients (and

not βo) must be applied to the original un�ltered data X. Although βo is "blind" to the V-

directions in X, it is unfortunately not orthogonal to the P-loadings, i.e. the skew projection

V(PtV)−1Ptβo 6= 0. The regression coe�cient vector β on the other hand, is a linear combination

of bothw1 and theV-vectors) and takes theV-directions in theX-rows into account for predicting

the analyte/phenomenon (represented by y) well. In the end, this means that considering (or even

interpreting) the V-vectors as real interferents must be incorrect. This is not the case with the

regression coe�cients b obtained from the NAP/DO approach described in section 2. Equation

(6) demonstrates that the proposed matrix Pa of interferents and corresponding directions in the

un�ltered X-rows do not interact with the regression coe�cients b.

Before a successful elimination of the e�ects of some (a) interferents/phenomena that are

potentially present in the sample signals (such as NIR-spectra), some kind of prior knowledge

on how to establish the particular Pa-matrix is required. Thereafter, elimination of the e�ects

associated withPa can either be obtained by "blinding" the samples (rows inX) with respect toPa
before modelling (as described in the NAP/DO approach above), or by constraining the regression

coe�cient vector b to be orthogonal to the interferents/phenomena in Pa as an integrated part

of the modelling.

Modelling with integration of such constraints can be managed well by the Tikhonov regular-

ization (TR) approach to linear regression model building. In the TR approach, elimination of

in�uence by the (a) disturbing interferents collected in Pa is handled as follows:

� De�ne the associated extended data matrix, response vector and regression problem as

Xe =

 X
√
µPta√
λI

 , ye =

 y

0a

0p

 and Xeb =

 Xb
√
µPtab√
λb

 =

 y

0a

0p

 = ye,

respectively. Here I is the p × p identity matrix,
√
µ and

√
λ are positive regularization

constants to be chosen according to the purpose of the modelling, and b is the unknown

solution of the augmented regression problem. Note that the extended data matrix Xe is

guaranteed to have full rank due to its bottom block
√
λI.
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� The least squares expression to be minimized w.r.t. b is the residual norm

‖Xeb−ye‖2 = ‖Xb−y‖2+µ‖Ptab−0a‖2+λ‖Ib−0p‖2 = ‖Xb−y‖2+µ‖Ptab‖2+λ‖b‖2,

where the parameters µ and λ are assumed to be �xed.

� By choosing µ to be (very) large, we see that the solution b̂ of the above least squares

problem can be forced to be as close to orthogonal to the columns of Pa as we like. An

appropriate choice of λ has the e�ect of preventing the squared norm ‖b̂‖2 of the regression
coe�cients from blowing up without an unnecessary sacri�ce of precision in the �tting Xb̂ of

y. The latter is well known as the bias-variance trade o� problem in ridge regression (RR).

� The normal equations and the associated unique OLS solution b̂ of the augmented system

are

Xt
eXeb = Xt

eye ⇔ (XtX+ µPtaPa + λI)b = Xty⇒ b̂ = (XtX+ µPtaPa + λI)−1Xty,

respectively. Note that no "blinding" or direct �ltering of the X-data takes place in TR.

The survey on the TR methodology given by Kalivas [23], is recommended as a more detailed

explanation on the necessities and possibilities available with this type of approach.

5 Conclusions (by points)

Is O-PLS correcting or confusing? The question was asked in the title of this paper, and answers

are provided by the following summary points:

1. The idea of OSC as proposed in [1] and the most popular algorithm for doing OSC (the O-

PLS proposed in [2]) were, according to the authors, to develop a methodology for improving

predictions and interpretations. The fact that ordinary PLS already works according to this

principle, i.e. by identifying subsequent components orthogonal to y for improving the model

�t, or equivalently reducing the residual y, was ignored by the authors of [1] and [2].

2. Single response models obtained by PLS and O-PLS are actually in one-to-one correspon-

dence because the algorithms are equivalent and �nd exactly the same subspace for �tting

the response y.

Conclusions of 1. and 2: Incorrect and confusing - there is no improvement in model �t

and predictions compared to PLS. The O-PLS also introduced alternative interpretation

heuristics, essentially building on the PLS-loading weights w2, ..., wk, that were in con�ict

with the traditional interpretation heuristics of PLS (building on the same loading weights).

By overlooking that the O-PLS is equivalent to the ordinary PLS, the O-PLS inventors

contributed to more confusion by introducing the alternative model interpretation heuristics.

3. An example in [2, section 2.3.9] being designed to demonstrate the capabilities of O-PLS,

fails in �ltering out the y-orthogonal information that was deliberately added to the X-

data. The example, with calculations done correctly (shown in section 3.1 above), actually

demonstrates the limitations of the entire OSC-idea.
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Conclusion: The desired orthogonal signal correction fails in removing the e�ects of y-

orthogonal factors from outside the column space of the desired X-data.

4. Figure 1 in the introduction shows that y-orthogonality is always present as a part of multiple

linear regression modelling. For the orthogonal projection Ŷ of Y ∈ Rn×q onto some k-

dimensional (q < k ≤ n) model space V ⊆ Rn, there are always (k − q) dimensions in V

that are orthogonal to both Ŷ and Y.

Conclusion: By realizing that this always is the case (in particular for OLS, PCR and PLS

with q = 1), much confusion regarding the meaning of Y-orthogonal �ltering in OSC could

have been avoided.

5. In the discussion part comparing the O-PLS and the NAP/DO approach, we were forced to

conclude that O-PLS cannot help us to �nd any real interferents. This is so because the only

possible choice of regression coe�cients applicable for the un�ltered data X, is the ordinary

PLS regression coe�cients β. This means that sensitivity of the V-directions de�ned in (17)

(and the associated non-orthogonal scores Xw2, ...,Xwk) is required from the X-regression

coe�cients to obtain a good �t of of y.

In section 2.3 the entire concept of y-orthogonality, as proposed in OSC and identi�ed by

O-PLS, is explained by its unfortunate ignorance of the always present y-residuals, and their

relevance for explaining the phenomenon/analyte associated with y. The fact that subse-

quent y-residuals are always non-orthogonal to the corresponding sequence of non-orthogonal

scores is ignored by OSC/O-PLS. The V-vectors de�ning these scores, are precisely the con-

jugate gradient directions required for subsequently reducing the y-residuals in the search for

a good model explaining the phenomenon/analyte represented by y. The missing de�ation

of y in the more recent implementations of the NIPALS PLS algorithm is probably the main

reason why unfortunate confusions regarding y-orthogonality in OSC has become so wide

spread.

Conclusion: Speaking of y-orthogonality and y-orthogonal components without requiring or-

thogonality in terms of the associated y-residuals is not good model interpretation practice.

Successful modelling including the context of "irrelevant" interferents/phenomena requires

some prior knowledge about how their associated directions can be identi�ed and represented.

Both NAP/DO and the described TR approach represent sound model building strategies

resulting in models that are "blinded" in the directions of the provided irrelevant phenom-

ena/interferents. Therefore, later �ltering of new datapoints are not required. The models

obtained by the O-PLS (and Fearns method) do not have this property - their X-regression

coe�cients are forced to be non-orthogonal to the alleged irrelevant directions.
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