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Abstract

The separation of predictive and non-predictive (or orthogonal) information in linear regression
problems is considered to be an important issue in Chemometrics. Approaches including net
analyte preprocessing (NAP) methods and various orthogonal signal correction (OSC) methods
have been studied in a considerable number of publications. In the present paper we focus on
the simplest single response versions of some of the early OSC-approaches including Fearns OSC,
the O-PLS, the target projection (TP) and the PLS post-processing by similarity transformation
(PLS+ST). These methods are claimed to yield improved model building and interpretation alter-
natives compared to ordinary PLS, by filtering "off" the response-orthogonal parts of the samples
in a dataset. We point at some fundamental misconceptions that were made in the justification
of the PLS-related OSC-algorithms, and explain the key properties of the resulting modelling.
Keywords: OSC; O-PLS; TP, PLS+ST, NAP.



1 Introduction

The concept of orthogonal signal correction (OSC) with focus on applications to near-infrared
(NIR) spectra was introduced by Wold et al. [1]. Its motivation is taken from the fact that the
spectra representing the samples of a particular dataset often are contaminated by systematic
variation that is unrelated to the measured responses. The purpose of OSC as implemented
in the equivalent methods Orthogonal projections to latent structures (O-PLS) [2], PLS post-
processing by similarity transformation (PLS+ST) [4] and the Target projection (TP) method [5],
is to identify and eliminate so-called orthogonal variation in a dataset to achieve better models
and/or interpretations in multivariate calibration.

The goal of the present paper is to discuss and make it even clearer how these OSC-methods
work, and to give a rigorous explanation of why the entire OSC-concept may be both confusing and
superfluous. To be able to follow the given arguments, familiarity with some simple undergraduate

linear algebra is required. Concepts such as

e Orthogonality

Vector space basis

Matrix rank

Projections onto subspaces

The normal equations of ordinary least squares (OLS) regression
e The Gram-Schmidt orthogonalization process and the associated QR-factorization
e The singular value decomposition (SVD) of a matrix

are all assumed to be familiar. We also assume the mathematical equivalence between the various
PLS algorithms studied in [3] to be known (i.e. that the numerical differences between models pro-
duced by these algorithms are only due to truncation errors caused by floating-point arithmetic).
References to PLS modelling will therefore focus on its mathematical properties only, with the
exception that we stress the importance of the y-deflation that is often omitted.

The mathematical notation used below is mainly consistent with the standard chemometrics
notation for the PLS methodology. We will restrict ourselves to the single response case, i.e.
y € R™ is a column vector, and the corresponding (n x p) data matrix X has n rows associated
with the number of samples, and p columns associated with the number of predictors.

In multiple linear regression modelling, the essentials of y-orthogonality can be understood by
inspecting Figure 1. It is well known that in a k-dimensional (1 < k < n) subspace V' C R™ for
approximating y (where V is spanned by the columns of X, or a set of linear combinations of
these columns as in PLS and principal component regression (PCR)), the orthogonal projection

y accounts for exactly one dimension.

The remaining (k — 1) dimensions of V' is spanned by (k — 1) additional vectors, and all of them

can be selected to be orthogonal to y. Together with y these additional vectors represent a basis



Here I‘t? =0 Because the residual ris
7Zr =0 orthogonal to V

YV —
zY =0 } z is Y-orthogonal
zY =0

1./is X (OLS) or T (PLS, PCR) etc..

Figure 1: The orthogonal projection y of y(=y + r) onto the predictor subspace V occupies one
dimension, and the residual vector r is by definition orthogonal to the subspace V.

for the subspace V. Because the residual vector r = y — y is orthogonal to V', any vector z € V'
orthogonal to ¥ is also orthogonal to y = y + r (as a sum of two vectors both being orthogonal
to z). This observation means that a (k — 1)-dimensional subspace of V' is spanned by the y-
orthogonal vectors. Note that any such y-orthogonal vector z € V' can always be represented as
a linear combination of the columns in X, i.e. z = Xw for some appropriate w € RP.

Exhaustive descriptions of particular OSC- or partial least squares (PLS) algorithms will not
be reproduced in the present paper, but a careful inspection and understanding of Figure 1 will
provide the reader with a flying start to understanding the essential parts of the various OSC-
methodologies discussed below.

2 The definition of y-orthogonal information in OSC

The fundamental idea in [1] was to demonstrate that an appropriate modification of the PLS
algorithm can eliminate systematic y-orthogonal parts in a data matrix X. In [1, section 5]
attention was drawn towards the possibility of identifying unit length vectors of weights w (||w|| =

1) were the corresponding vectors of scores t = Xw were required to be orthogonal to y, i.e.
t'y =0, (1)
together with the following motivating explanation:

"...Hence the OSC algorithm will be identical to the ordinary PLS algorithm except for the crucial
step of calculating the weights w. Normally, these are calculated as to mazimize the covariance
between X and Y, but here they will instead be calculated as to minimize this covariance, i.e., to

get as close to orthogonality between t and Y as possible."[l]



Equation (2) below is a direct extension of equation (1) showing that the y-orthogonal infor-
mation associated with the samples/spectra (the rows of X) is directly related to the weights w
defining the y-orthogonal scores:

For any y-orthogonal score vector t = Xw we have
tly = (Xw)'y = w'X'y = wi(cw;) = 0 & wiw; =0, (2)

where the unit vector w; = ¢ 'X'y is the first loading weight vector of ordinary PLS, and
¢ = ||X'y|| is the required normalization constant. Equation (2) says that y-orthogonality of
t = Xw is equivalent to wi-orthogonality for the associated weight vector w defining the score
vector t.

It is well known that for a k-component PLS model, the associated matrix of unit loading
weights W = [w; wa ... wi] has orthogonal orthogonal columns, i.e. W'W = I (the identity
matrix). In particular, the vectors wo, ..., wy are all orthogonal to w;. Consequently the corre-
sponding non-orthogonal PLS scores

t; = Xw; for 2 <i <k, (3)

are all y-orthogonal! This observation stands in stark contrast to the above quote from [1, section
5]. The fact that subsequent PLS components maximize the covariance between X and y only
in the deflated sense of y (i.e. the residual y’s) seems to have escaped the attention of both the
authors and referees.

One should note that deflation of X with respect to the vector w; yields the matrix
X =X - Xwwi, (4)

of rank one less than X. Clearly, the rows of X are w;-orthogonal by construction. The X-columns
are all y-orthogonal because

Xty = Xty — wiw X'y = cw; — wiwi(ewy) = cwy — ewy = 0. (5)

The deflation in equation (4) is precisely the first deflation step in the non-orthogonal scores PLS-
algorithm of Martens (see [3]), and this algorithm calculates both the loading weights in W and
the non-orthogonal scores in (3). Both Ergon [4] and Kemsley and Tapp [6] has earlier emphasized
the y-orthogonal property of the non-orthogonal PLS scores.

The various suggested algorithms and early applications [7]-[11] for doing OSC all concentrate
on y-orthogonality in the column space of X based on several alternative filterings of the samples.
As pointed out in [10] and [12], the OSC methods are closely related to the net analyte preprocess-
ing (NAP) approach of Goicoechea and Olivieri [11], and there is an exact algorithmic equivalence
between the NAP and the direct orthogonalization (DO) method suggested by Andersson [8].
However, none of these papers consider the y-orthogonality of the non-orthogonal PLS-scores in

The NAP /DO approach derive a set of loading weights (not necessarily contained in the row



space of X) representing phenomena considered to be irrelevant to the modelling of y as follows:

1. Project X onto the orthogonal complement of the subspace spanned by y to obtain

X=X-yy) 'y'X=1I-yk'y) 'y)X.

2. The columns of X are clearly y-orthogonal, i.e. ytf( = 0 (but they are not necessarily

contained in the column space of X).

3. The (a) most dominant right singular (unit) vectors P, from the SVD of X are taken to

represent the irrelevant y-orthogonal phenomena somehow present in the data X.

4. The NAP/DO corrected data X* = X — XP,P! = X(I - P,P?) represent a row-projection
of X onto the orthogonal complement of the subspace spanned by P,, i.e the X-data are
"blinded" w.r.t. the P,-directions that are assumed to account for irrelevant information in

the particular modelling of y.

5. The modelling as well as subsequent model applications to new data is recommended to be
based on an initial "blinding" of the datapoints by using the row projection (I — P,P?) as

indicated above.

The "blinding" part in step 4. above is essential. It assures that any resulting vector of regression
coefficients (say b) obtained as a linear combination of the (P,-orthogonal) rows in X*, is also
orthogonal to the irrelevant phenomena (interferents) represented by Py, i.e. Ptb = 0. Note that

also the following holds:
X*b =X(I-P,P!)b=Xb - XP,(P.b) = Xb — 0 = Xb. (6)

Equation (6) says that the application of the model represented by b does not require the data
to be "blinded" w.r.t. the P,-directions, because the blinding is already taken into account in
the regression coefficients b. Preprocessing of future data points, by the "blinding" projection
(I - P,P!) in applications of the model, is therefore superfluous.

Finally, we note that if P, is a matrix of (a) apriori known and highly reliable interferents
(not necessarily obtained from the SVD of the present X—matrix) for the particular modelling
problem, the steps 1.-3. above could be ignored. When doing the modelling directly based on
the P,-blinded data X* derived in step 4, the P,-orthogonality of the regression coefficients b
and equation (6) still holds. Therefore, new (raw) data points can be applied "unblided" with the

regression model.

2.1 Fearns OSC alternative

With reference to the definition of y-orthogonality in [1], Fearn [13] proposed finding good y-
orthogonal pairs (t,w) by maximizing the squared norm ||[Xw/|? subject to the requirements
[w] =1 and

t'y = w'X'y = 0. (7)



By (2) the requirement (7) is equivalent to
wiw; = 0. (8)

This observation slightly simplifies some of the notation in [13], and shows that with w; being the
unit vector proportional to X'y (i.e. w is identical to the first PLS vector of loading weights), the
maximization problem stated by Fearn corresponds to finding the dominant right singular vector
of the wi-deflated matrix X defined in (4). Additional factors are given by the subsequent right
singular vectors of X ordered by the associated singular values. The singular value decomposition
(SVD), or equivalently the principal component analysis (PCA), of X therefore defines the desired
maximum variance y-orthogonal factors.

Now, assume that the desired f(> 1) right singular vectors of X are denoted wo, ws, ..., Wi(=f+1)
(here it is helpful to start the vector indexing from 2 and to define k = f +1). From the definition
of X in (4) and its associated singular value decomposition, it follows that the corresponding
y-orthogonal scores t; = Xw; = Xw; (2 < i < k) are also mutually orthogonal (they are scaled
versions of the left singular vectors of X). The corresponding vectors of loadings are given by
pi = X';/(t!t;), and if we define

W = [ws ... wg], )

the associated filtered data matrix is given by
X, =X - TP, (10)

Here, the y-orthogonal scores T = XW = [t; ... t;] and corresponding loadings P* = (T'T) !T!X =
[P2 .- Px]t. Note that with these definitions we have X'y = X'y = cw; and P'W = 1.

For regression purposes (see section 2.1.1), Fearns approach boils down to computing the fitted
values from a final scaling and projection of t; = Xw; onto the orthogonal complement of the

selected y-orthogonal left singular vectors accounting for the dominant variance in X.

2.1.1 Regression modelling details of Fearns approach

For regression purposes the score vector t; = Xw; (identical to the first PLS score vector) and
its filtered version t, with respect to the y-orthogonal scores T is considered, i.e.

to = Xowl = (X — TPt)Wl = XW1 — Tthl = tl — T(TtT)*thle
=t; — T(T'T) 'T%%; = (I- T(T'T) ' THt;. (11)

Equation (11) shows that t, is obtained by a Gram-Schmidt step projecting t; onto the orthogonal
complement of the subspace spanned by the chosen f = k — 1 first left singular vectors of the y-
orthogonal matrix X.

By defining the fitted values ¥ as the appropriately scaled version of t,, i.e. y = at, = X,(aw;)
(where the scalar « is the least squares solution of at, = y), the corresponding X,-regression

coefficients are
B, = awy. (12)



The latter means that 3, is always a scaled version of the first weight vector w; obtained by
traditional PLS modelling.
To compute the corresponding X-regression coefficients 3 (associated with the original unfil-

tered measurements), we first note that there is an alternative useful expression for t,, i.e.
to = X0W1 = XW1 — XWthl = X(I - WPt)Wl. (13)

Thus, we also have
¥ = X,8, = X8, where 8 = (I- WP")3,. (14)

Equation (14) shows that rather than filtering the present X matrix (as well as new x-data points)
by multiplication with (I — WP?) from the right, it is sufficient to do a single filtering of the X,
regression coefficients 3, = aw; by multiplication with (I — WP?) from the left to obtain the
regression coefficients 3 to be applied for the original unfiltered data.

The regression coefficients 3 in this case are clearly a linear combination including both w; and
the W’s in (9) that are associated with y-orthogonality. In contrast to the regression coefficients
b in the NAP/DO modelling approach, the 3 of Fearns method is not "blind" w.r.t. the alleged

irrelevant phenomena in W that are associated with y-orthogonality.

2.2 The O-PLS of Trygg and Wold

Fearn both formulated and solved an optimization problem to justify his method (including a
solution to the 'new sample problem’ issued in [1, section 5.2]). Nevertheless, Fearns solution to
the OSC-problem was soon overtaken by a heuristic approach, i.e. the patented O-PLS algorithm
of Trygg and Wold [2] that was introduced with the following explanation:

"..The proposed O-PLS method analyzes the disturbing variation in each regular PLS compo-
nent. The non-correlated variation in X is separated from the correlated variation, with the ad-
ditional benefit that the non-correlated variation itself can be studied and analyzed. Removing
non-correlated variation in data prior to data modeling is not only interesting from a predictive
point of view, but the interpretational ability of resulting models also improves. Thus more infor-

mation and knowledge of a system can be retrieved and analyzed, and developed further.”

O-PLS (with its offsprings proposed in [14] and [15]) soon became, and still is the most pop-
ular choice for OSC modeling and calibration, see Pinto et al. [16].

The O-PLS algorithm presented in [2, section 2.3] is a recipe for filtering (preprocessing) the X-
data using slightly different y-orthogonal scores and associated loading weights than those found by
Fearns approach. The original formulation of O-PLS does not provide a transparent procedure for
calculating a corresponding regression model (only the calculations for the y-orthogonal filtering
factors and associated weights is described). The steps for calculating regression coefficients are
instead left for a possible subsequent application of ordinary PLS to the filtered X-data.

From later insights, in particular given by Ergon [4], Indahl [17] and the equations (2) and (3)
above, the most important characteristics of a k-component O-PLS model (including the calcula-
tion of regression coefficients) are the following:



An O-PLS model with k& > 2 components has sets of orthogonal weights {vi,...,v;} and as-

sociated orthogonal scores {ty, ..., tx} where

The weights vi = —wso, ... ,Vg_1 = —Wg,Vy = Wi, where wi, ... ,wj are the ordinary

PLS-weights (according to Ergon [4]).

The first (k — 1) score vectors {t1,... ,tx_1} are y-orthogonal, i.e. tly =0 for 1 <i < k—1,
and they span the same subspace as the non-orthogonal PLS-scores {Xwa, ... , Xwy} (that
are y-orthogonal according to equation (3)).

The y-orthogonal filtering of X is
X, =X -TP!'=(I-T(T'T) 'THX = X(I - V(P'V) 'P"). (15)
In matrix notation, the y-orthogonal scores T = [t1 ... t;—1] satisfy the identity
T =XV(P'V) (16)

where
V =[vy ... V1] = —[wa ... wg], (17)

and P! = (T'T)"!T!X (according to Indahl [17, section 3]).

The last (k-th) score vector ti, = X, vy is obtained by a Gram-Schmidt step filtering off the
(k — 1) y-orthogonal factors in Xwvy, i.e.

ty = (I—T(T'T)'THXv, = X, vy, (18)

where I is the identity matrix.

The complete set of scores {t1, ... ,tx} coincide with the set of orthogonal vectors obtained
by an application of the Gram-Schmidt orthogonalization process (QR-factorization) with
the following sequence of non-orthogonal score vectors: Xvy, ..., Xvy (according to Indahl
[17, section 3 and appendix A.1]).

The fitted values of an O-PLS model with (k — 1) y-orthogonal components is y = aty,
where « is the least squares solution of aty =y and from (18) the X,-regression coefficients
are

B, = avi (= awy). (19)

From (15), (16) and (19) it follows that the fitted values can alternatively be expressed as
y = Xo(avy) = X(I- V(P'V)"'P")8, = X3, (20)
where the X-regression coefficients

B=(1-V(P'V)"'P)3, (21)



coincide with the regression coefficients obtained by a k-component application of ordinary
PLS to the (X, y)-data.

e The columns of T are orthogonal to X, (by construction). Therefore the y-orthogonal scores

{t1,... ,tx—1} are also y-orthogonal, i.e.
T'y = T'X,8, = (T'X - T'TP")3,
= (T'X - T'T(T'T) " 'T'X)3, = (T'X — T'X)3, = 0. (22)

Because the eliminated T-part resulting in X, is y-orthogonal, the identity X'y = X'y = cw;
holds. PLS applied to the (X,,y)-data will therefore produce w; as the first vector of loading
weights, and then subsequent w’s orthogonal to wi. By equation (2) these subsequent w’s result
in y-orthogonal scores tw that should have been filtered off X (or equivalently off Xvy) in the
first place. Consequently, the recommendation in [2] for applying ordinary PLS to the filtered
data X, is redundant.

Just like equation (14) in Fearns approach, we also see that rather than filtering the present
X-matrix or new x-data points by multiplication with the matrix (I — V(P*V)~!P?) from the
right, it is sufficient to do just the single filtering of 3, in (21) by multiplication with this particular
matrix from the left.

The model spaces spanned by the non-orthogonal scores {Xvy, ..., Xvi} and {Xwy ... Xwy}
must necessarily coincide. Because the first set of vectors span the model space of O-PLS and the
second set span the model space of the ordinary PLS, the introduction of the O-PLS algorithm in
[2] is clearly superfluous from a model fitting point of view. The only difference between PLS and
O-PLS is that their common model space is represented by two alternative choices of orthogonal
score basis vectors T and associated P-loadings. Navigation between such alternative bases is
always a simple task. More on the technical details of the equivalence between ordinary PLS and
O-PLS is given in [17, section 3].

Finally we note that the X-regression coeflicient vector 8 of O-PLS (21) is a linear combi-
nation of the ordinary PLS loading weights wy, ..., wi where all except w; are associated with
y-orthogonality. Unlike the regression coefficients b from the NAP/DO modelling approach, the
B of O-PLS is not "blind" w.r.t. the alleged irrelevant phenomena to be associated with y-

orthogonality. Above, we saw that the same thing was true for Fearns method.

2.3 Ordinary PLS and y-orthogonality

In the Chemometrics community (as confirmed by the above quote from Wold et al. [1, section 5]),
one usually describes ordinary PLS as a method maximizing of the covariance between X and y.

However, except for the first component, this is true only in the deflated sense of X and y. In

terms of the undeflated X, most PLS algorithms explicitly calculate the orthogonal loading weights
w; and corresponding non-orthogonal scores t; = Xw; and tf = Xw; (2 < i < k, that are also
y-orthogonal) prior to a Gram-Schmidt step to assure mutual orthogonality of the scores.
Although O-PLS and PLS generate exactly the same structure from a dataset in terms of
subspaces, identical orthogonal loading weights (when ignoring differences in signs as indicated

above) [4], X-regression coefficients and model fits, the resulting "models" are equipped with
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very different heuristics (proposed by the inventors of these methods) regarding both information
content and other interpretations.

In spite of the re-arrangement of the non-orthogonal PLS-scores prior to computing the or-
thogonal scores of O-PLS, there is really no rigorous justification for two such interpretation
alternatives. In this context it should be noted that with k& components, there are k! possible ways
of permuting the non-orthogonal scores Xwr, ..., Xwy, leading to k! different orthogonal bases for
exactly the same subspace. If Ty = [t;(1) ... tz(1)] is the orthogonal basis obtained by applying the
Gram-Schmidt procedure to the permuted (by some permutation 7 of the numbers 1, ..., k) non-
orthogonal scores Xw (1), ..., XWr(1), the associated matrix of loadings is P, = X'T, (T, T,) L
This means that for each loading weight w; and associated (non-orthogonal) score Xw; there are
a large number of alternative associated scores t,(;) (and corresponding loadings p(;) subject to
the widely accepted PLS/O-PLS interpretation heuristics) related to some orthogonal basis.

However, the order of deriving the loading weights w1, ..., wy inside the respective algorithms
is identical for both the PLS and the O-PLS. According to Wold et al. [18], these weight vectors
correspond to the conjugate (orthogonal) gradient directions for generating the solution of the
normal equations

X'Xb = X'y (23)

associated with the OLS problem. By equation (2) their mutual orthogonality is equivalent to the
y-orthogonality of the non-orthogonal scores Xw; for ¢ > 2.

It should be noted that the presentation of the NIPALS PLS in [18] also included a deflation
step for y. Bjorck [19] has criticized the omitted y-deflation in the more recent applications of the
NIPALS PLS, because this introduces an unnecessary and possibly harmful loss of numerical pre-
cision in the resulting PLS-solutions. If the more recent algorithms derived from the NIPALS PLS
had not ignored the numerically favourable y-deflation, one could rightfully wonder if inventions
such as the O-PLS algorithm would have been made at all.

Additional (non-orthogonal) components Xw; contributing to reducing the residual y, im-
proves the fit of the original y accordingly. The same vectors (or some particular orthogonal basis
derived from them) can not alternatively be taken as an explanation of what has nothing to do
with y without introducing a contradiction.

Regarding y-orthogonality of the non-orthogonal PLS scores, the sceptical reader is strongly
encouraged to compute the t7 = Xw; for i > 2 (either from the NIPALS algorithm or directly by
the non-orthogonal and y-deflating PLS algorithm of Martens) for any dataset to verify empirically
their y-orthogonality.

2.4 PLS+ST and the Target Projection
2.4.1 The PLS+ST

The PLS post-processing by similarity transformation (PLS+ST) proposed by Ergon [4] represent
an alternative way of computing the desired O-PLS score vector tj given in equation (18).

Let t; = Xw1(= Xvy) and let T* = [Xws ... Xwy] be the matrix representation of the non-
orthogonal (and y-orthogonal) PLS-scores. To obtain an even simpler expression for the O-PLS

score vector tg, Ergon took advantage of the y-orthogonal part T*qs of the expression for the

11



fitted values in Martens non-orthogonal scores PLS. The resulting simplified expression for the
fitted values is given by
¥y = XWq = qit; + T*qa, (24)

where W = [w; ... wy] is the matrix representation of the PLS loading weights. The regression
coefficient vector q = [¢1 qb]' is associated with the score vectors in (24), and the sub-vector
Q2 = [g2 ... qx)! represent the regression coefficients associated with the (k — 1) y-orthogonal score

vectors. Ergon noted that the desired O-PLS score vector tj in (18) also can be expressed as
te=q, 'y =t + ¢ ' Ta, (25)

where the last term in (25) represent the required y-orthogonal correction of t;.

From the definitions wprsi st = w1 + qfl Zf:z ¢iw; and Wy = [wa ... wg], the PLS+ST
transformed loading weights and associated scores are given by Wy = WM = [wprsis7 W]
1

and Ty = XWyp = [t T*], respectively, where M = .
¢ 92 I

] is the required transfor-

1 0

. . By a simple manipulation of (24) we
—q q2 1

mation matrix with the inverse M~1 = l

have
¥y=XW(MM ')q=TuM 'q=Tmam = @ity = 1 XWprsyisT, (26)

because the Tps-regression coefficients gnv = (M ~1q) = [g; O ... 0]'. The associated X-regression
coefficients

B=Wq=qWprstsr (27)

required for predictions of new x-data points, must necessarily coincide with the expression in
equation (21).

It should be noted that the (first) vector wpp sy st of transformed loading weights is neither a
unit vector nor orthogonal to the other columns in Wy, and that only the associated transformed
score vector (ty = Xwprsisr) is orthogonal to the other Tys-columns (the y-orthogonal scores
T).

Due to the non-orthogonalities in Wy, the proposed notation in [4, equation 6] for the rank

k approximation Xy, of X is quite confusing, i.e. X; = tyw! + T*(W3 — ¢; "wiqh)?, and
X = twi + T*(Ws — ¢; 'wiqh)" + E = X, + E,

where E represent the residual part. Note that a much simpler expression for the approximation

part Xy is available, i.e.
X, = TMM 'W! = XWMM 'W! = XWW!

A compact view of the PLS+ST can be obtained directly by considering equation (27) for an

ordinary PLS model:

1. Define the desired vector of loading weights wprsysrm = g1 '3

12



2. The vector of fitted values
y=XB8=qXwprsyst = @1ty = Hy, (28)

where H is the (symmetric) orthogonal projection onto the PLS model space (which is

spanned by the non-orthogonal scores XW = [t; T*]).

3. Because the y-orthogonal columns of T* form a subset of the XW-columns, the projection
matrix H must satisfy HT* = T* and

y'T* = (Hy)'T* = y'(HT*) = y'T* = 0. (29)

Equation (29) shows that the y-orthogonal column vectors in T* are also y- (and tg-) orthogonal.
The latter simply means that y-orthogonal filtering of the fitted values y (obtained by PLS) with
respect to T* to improve the prediction ability of a model, is just as sensible as sending a healthy

patient to ineffective surgery.

2.4.2 The Target Projection (TP) method

The description of the PLS+ST method presented in [4, section 3| has no particular focus on
model interpretations. This is, however, included in the equivalent TP method. According to

Kvalheim [5], the vector of TP-loading weights is defined as the unit vector

wrp = |87 8, (30)

and from (27) we have wrp = (¢1]|8|| "} )Wprst+sr. The corresponding TP-score vector is given
by
tTp = XWTP (31)

= B8I7'X8 = 8]""y.
and the associated vector of loadings often preferred for interpretations is

prp = X'trp/(thptrp) = X'trp/|ltrp| (32)

= (Iltrpl?I8I) ™' X"y

In the full rank OLS case (obtained by including the maximum number of PLS components), we
have y = X3, where the regression coefficient vector 3 is found by solving the associated normal

equations
X'Xb = X'y(= cw)

13



with respect to b. Thus for OLS, the normal equations (33) implies that the TP-loading vector
prp in (32) is proportional to the familiar (first) PLS loading weight vector wy:

pre = ([trp 21817 X'y = (ltrp I*181) ' X"y = c(ltrp|*I8]) " w1, (34)

where ¢ = || X'y|| is the normalization constant associated with wi. Kvalheim [5, equation 10]
recognized this relationship by an alternative route without noticing the underlying normal equa-

tions (33), and instead concluded:

"Thus, in the absence of truncation, the TP loadings are proportional to the PLS weights on the
first PLS component. This is an important result since wy represents the normalized co-variance
vector between X and y (in variable space) ...

...The PLS weights on the first component, w1 might be a better choice for revealing the x-
variables most influential with respect to the response since the TP loadings, representing the
co-variances between the x-variables and the predicted response, converge towards these weights
(Equation (10)). However, as we shall see when we look further into this matter ... this choice is
still not optimal.

one may conclude that the TP loadings are most appropriate for revealing the predictive
part of X. Alternatively, one may use the PLS weights w1 since the TP loadings converge towards
these weights when the variation in X is ezhausted. However, none of these vectors represent an

optimal choice." 51,

Note that neither the OLS-regression coefficient vector leading to the perfect fit of the right
hand side ¢w; in the normal equations (33), nor the PLS-regression coefficients in (21) approxi-
mately solving (33), are considered to be appropriate candidates for revealing the predictive part
of X(=[x1 ... Xp])-

In [5], the more "optimal choice" is claimed to be obtained by the so-called selectivity ratios
(SR). Before stating the SR-definition, one should note that by introducing the diagonal scaling

matrix
Ix It .. 0

Sc = [trr S ; (35)
0 e IxlI7t

the vector of so-called correlation loadings, rrp corresponding to the vector prp of TP loadings,
is given by

rrp = ScpPrp. (36)

The correlation between the i-th variable x; and y, is of course identical to the correlation between

x; and tpp, and its value is r; = rpp(i), i.e. the i-th entry of the correlation loading vector ryp.

The selectivity ratio SR; of the i-th variable x; is defined in [5, equation 11] as the ratio between

the explained and the unexplained variances when regressing the i-th variable x; onto trp. In

terms of the correlation r;, this definition is equivalent to

SRi = SR(?) = 2/(1 - 12), (37)
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In [5] the SR definition is introduced with the following explanation:

"... Thus, the individual SR;s are closely related to the correlation between the predictive part of an
x-variable and the response y, but division with the unexplained variance produces a more sensitive
measure than the correlation. Furthermore, the SR provides a bridge from the co-variance-based
TP loadings to a variance-independent measure without the deteriorative effect of noise from small

variables accompanying the scaling of the x-variables to unit variance. ..."

Note that the first sentence before the comma in the above quote is consistent with the mathe-
matical definition of the SR; only for OLS models. For PLS models, the correct relationship is to

the correlation between the x-variables and the fitted values y (not y). The text after the comma

is misleading because the function
SR(t)=t/(1—-1t) (38)

from the definition (37) is strictly increasing for arguments ¢ € [0,1), i.e. there is a one-to-one
correspondence in the relationship between the squared correlations and the selectivity ratios.
The second sentence in the quote is misleading by the same one-to-one correspondence, where no
moderation of spurious correlations (due to small x-variances) takes place.

The precise relationship between the TP loadings prp in (32) and the SR-values, is given by
the correlation loadings rrp in (36) and the function SR(-) defined in (38). When approaching
full rank in the PLS-modelling (when getting close to the OLS-model) the entries of the vector
rrp will become close to the univariate correlations between y and the x-variables that can be

calculated directly from the data (prior to the regression modelling).

2.5 A second look at Fearns OSC alternative

The y-orthogonal matrix X obtained by the deflation in equation (4) is maximal in terms of rank,
and its rank is only one less than the rank of X. Therefore one might wrongly conclude that this
matrix represents the maximum amount of information (in terms of rank) not needed to model y.
However,

X; =X -X=Xww (39)

is a (filtered) matrix of rank 1 that accounts for the residual information in X not being orthogonal
to y. Regressing y onto the rank 1 matrix X; results in a vector of fitted values that are propor-
tional to X;w; = Xw; = tq, and deflation of X; with respect to t; results in a O-matrix. Hence,
we are captured in the situation of an ordinary PLS model based on one component only. By
directly eliminating the W-directions (the entire row space of X) associated with y-orthogonality,
we throw away the information necessary to improve on the residual y’s. Both Fearns method and
the O-PLS identifies and use such W-directions (obtained by different strategies though) in sub-
sequent order to obtain models comparable in both approach and performance to PCR and PLS,
respectively. Without using this possibility of correcting the initial t; for its major y-orthogonal
components, that are associated with directions of significant variance in the column space of X,
neither of the two methods would work beyond the first component (t;).

Because there is no general way of initially "guessing" a good score vector without significant
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y-orthogonal components, a poorer "guess" (some linear combination of the X-columns - usually
t; = Xw;) must be taken as the starting point. Reducing the y-residuals either

e by directly introducing components (Xws, ..., Xwy) subsequent to t; for obtaining better

projections of y, or

e by eliminating exactly the same (y-orthogonal) components from the y-orthogonal compo-
nent of t;

is just two sides of the same coin. In the deflated sense of y, i.e. by continuing the modelling
process beyond the first component ty, the associated y-residual (r;—;) and the corresponding
component Xw; (2 <1i < k) are of course not orthogonal, and an improved model fit is therefore
obtained.

As explained above, both Fearns OSC and the O-PLS are consistent with this strategy. Fearn
applies a selection of the dominant and y-orthogonal left singular vectors of X into a PCR flavoured
solution. The O-PLS use the y-orthogonal PLS-scores. For both methods it must be stressed
that the subsequently derived y-orthogonal directions are not orthogonal to the corresponding
y-residuals (the Xw,’s are non-orthogonal to the r;_1’s for 1 < ¢ < k). This explains precisely
how including more y-orthogonal directions in the model building is working when the y-deflations

are ignored.

2.5.1 An informative computer experiment

In the field of chemometrics, there is a long tradition in modifying various established algorithms
(in particular the NIPALS PLS) as part of the research process towards new data analysis methods.
Several of the published OSC-modelling approaches have obviously evolved in this way.
According to this well established tradition, the readers are therefore encouraged to do some
relevant computer experiments. In particular you should try to verify that the fitting of a re-
sponse vector y can be approached by orthogonalizing an arbitrary initial guess with respect to

y-orthogonal directions as follows:

e Pick your favourite NIR- (or any other) dataset X with n rows, p columns and an associated

response vector y € R (mean centring of y and the X-columns should be included).

e Generate a random vector w € RP and compute the corresponding random linear combina-
tion of the X-columns, i.e. t = Xw, as your initial y-guess. Then adjust this t according

to:

1. Fearns strategy (improve t by subtracting its projection onto the first 10 left singular
vectors of the y-orthogonal matrix X defined in (4) - use equation (11) where you

replace t; with your random guess t).

2. PLS (improve t by subtracting its projection onto the subspace spanned by the first 10

y-orthogonal scores, i.e. t5 = Xwa,...,tT; = Xwyg).
e Compute the correlation between y and the improved t in both cases.
e Repeat 1. and 2. starting with t; = Xw; as your initial y-guess, and compare the correla-

tions.
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In all the cases above you should be able to observe that the proposed correlations are highly

similar.

3 Examples with y-orthogonality and imposed orthogonality

constraints in the sample space

3.1 A published case where the O-PLS idea actually fails to work

According to the introduction in [2], the OSC-issues being solved by the O-PLS are

" ..remove systematic information in X not correlated to the modelling of y in order to achieve
better models in multivariate calibration. ...Its objective is to improve interpretations of PLS mod-
els and reduce model complezity. O-PLS provides a way to remove ... wvariability in X that is
orthogonal to y. The proposed O-PLS method analyzes the disturbing variation in each regular
PLS component. The non-correlated variation in X is separated from the correlated variation,
with the additional benefit that the non-correlated variation itself can be studied and analyzed.
Removing non-correlated variation in data prior to data modeling is not only interesting from a

predictive point of view, but the interpretation ability of resulting models also improves. ..."

A simulated example given by Trygg and Wold [2, section 2.3.10] is intended to illustrate some of

the O-PLS capabilities, and it deserves a careful investigation:

In this example we consider two closely related data matrices Xo, X1 (to obtain exact preci-
sion for those who like hand calculations, two extra digits have been included in each entry of X;)

and one response vector y:

-1 -1 —2.1825 —2.1825
1 -1 1.8375 —0.1625
X() = ) Xl = and y =
-1 1 —0.4825 1.5175
1 1 0.8275 0.8275 —4

Note that X; is a corrupted version of X, obtained by adding the y-orthogonal vector
toren, = [—1.1825, 0.8375, 0.5175, —0.1725]" to the Xo-columns, and that the identity X}y =
X!y = [-4,—8]" holds. According to the quoted introduction of [2], one might be tempted to
expect the O-PLS to eliminate the effects of the disturbances caused by the vector t,.;;. On the
other hand, we know that ordinary least squares (OLS), PLS with two components (full rank),
O-PLS and Fearns method (both of full rank due to extraction and filtering of the data with
respect to one y-orthogonal component) necessarily must result in identical models (i.e. identical
regression coefficients).

For (Xo,y), the vector of least squares regression coefficients (found by all the four methods) is

by = [-1, —2]%. For (X4,y), the four methods also agree and the vector of least squares regression
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coefficients is by = [0.083, —1.0758]*. The corresponding residual vectors
rg = Xobo -y and r = X1b1 -y

have norms ||ro|| = 2.0000 and ||r1]| = 3.9656, respectively. Consequently, the y-orthogonality
introduced by adding t,,;, to the original Xg-columns has lead to a poorer fit in the second model
obtained by both O-PLS, Fearns method and (of course) OLS.

In [2] however, it is wrongly claimed that O-PLS is able to remove the effect of y-orthogonal
(non-correlated) variation in X;! The problem here is that the introduced y-orthogonal vector
tortn is neither contained in the column space of X nor in the column space of the corrupted
matrix X;, i.e. there is no w € R? so that the identity to., = Xyw holds. Only external
information about the vector t,,: is really helpful in eliminating its influence to obtain a better
model fit in this particular case.

If external knowledge of t,,.;;, were available, there would still be some subtle issues to clarify.
Subtraction of t,.:, from the X;-columns is obviously not the same thing as a filtering of the
X;-matrix to make its columns orthogonal to t,,:;. Furthermore, in this particular example it is
easily shown that the vector t,;; is non-orthogonal even to the original Xg-columns. Therefore,
orthogonalizing the X;-columns with respect to t,,;; would not bring back the "uncontaminated"

Xj- Instead we would obtain the following matrix:

—0.3440 —-0.6596

0.5354 —1.2411
X, — I—tor tt to’r‘ —ltt X, = . 40
2= ( th(Cortntortn) ™ torn) Xa —~1.2871  0.8510 1)

1.0957  1.0497

Note that X5 will also be the result of filtering Xy in the same way (just replace X; by Xj in
equation (40)), and that the first ordinary vectors of PLS loading weights for all these matrices
are identical, i.e. Xby(= X}y = Xly) = [—4, —8]".

Solving the (X5, y) regression problem by OLS or any of the methods PLS, O-PLS or Fearns
OSC (full rank versions) would result in the least squares regression coefficients by = [—1.4908, —2.2546]".
The corresponding residual norm in this case would be || X3by —y|| =0, i.e. a perfect fit.

The perfect fit (hardly intended when the example was prepared for [2]) is a mathematical con-
sequence of working with centered data: The two linearly independent X5-columns are orthogonal
to both the constant vector 1 = [1 1 1 1]* and to4, (so is also y). Due to their linear indepen-
dence, the X5 columns together with the vectors 1 and t,.4;, represent a basis for R*. This means
that any vector in R* (including y) can be represented as a linear combination of these four basis
vectors. Because y is orthogonal to both 1 and t,,.¢, both its coefficients (coordinates) associated
with these vectors must be 0. Consequently, y is perfectly represented by a linear combination of

the two Xs-columns!
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3.2 Model interpretations in least squares modelling is a challenging
task

Improved model interpretation is one of the most important "selling" points for the O-PLS method-
ology. Brown and Green [20], however, stressed that even for the relatively simple class of least
squares regression methods, model interpretation may be a challenging subject. It is indeed much
more challenging than what may be the impression from traditional chemometrics using PLS and
O-PLS.

It is in fact not too hard to derive orthogonal models that both fit (and predict) a dataset well.
In the example below we demonstrate this fact using a MATLAB benchmark dataset (available
from MATLAB’s Statistics and Machine Learning Toolbox [21] by the command: ’load spectra’)
of NIR/octane measurements. A complete description of the dataset is given in [22].

We start by finding the solution 3 minimizing the constrained least squares problem
X8 —y|* + L8|, (41)

with A = 0.1 and L; denoting the discrete 1. derivative operator. The second term in (41)

penalizes roughness in the solution vector B Note that in this case, B is a linear combination of

rows in the augmented matrix [ X 1 .
VAL
With the solution B at hand, we may seek an alternative PLS-based model where the regres-
sion coefficient b is constrained to be orthogonal to the solution B of (41) (this can be done by
orthogonalizing the rows of X with respect to 3 prior to the PLS modelling). The resulting or-
thogonal vector of regression coeflicients and scatter plots of the corresponding leave-one-out cross

validation (CV) predictions ¥, are shown in Figure 2.

Note that neither b nor [3 are forced to be exact linear combinations of the original X-rows, but
both alternatives do work as intended for the original X-measurements. Although the two models
are almost indistinguishable from a predictive point of view (see the bottom part of Figure 2), it
seems quite impossible to provide a trustworthy interpretation simultaneously accounting for the

two orthogonal regression coefficient vectors ,fi and b (see the upper part of Figure 2).

4 Discussion

The example in section 3.1 shows very clearly that strange things can happen if the X-columns are
manipulated by some arbitrary y-orthogonal vector t,.+, € R™ not contained in the column space
of X. Even with exact knowledge of t,,.+, our clues about the handling of new data points x € RP
for later predictions would be very limited. Unfortunately, extensions of the O-PLS methodology
such as the O2-PLS [14] and the OnPLS [15] cannot save us from this peculiar situation.

O-PLS, PLS+ST and TP have in common that they identify the subspace spanned by the
ordinary PLS scores, and that they introduce a new set of basis vectors for this subspace. In
all these alternatives, the (first) basis vector of real interest is chosen in the direction of the

fitted values y (the other basis vectors are chosen to be orthogonal to both y and y). In this
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Figure 2: Orthogonal regression coefficients from Tikhonov-regularization (L; and A = 0.1) and
constrained PLS (7 components) giving similar predictions.

perspective, these equivalent methods seems to be superfluous constructions made to emphasize
(and interpret) y-orthogonality and/or to justify some simplified model interpretation heuristics
based on the fitted values y (in some scaled version) as the score vector of main interest.

In the user community of PLS-methodology, inspection of the so-called p-loadings resulting
from the NIPALS algorithm (and the O-PLS algorithm proposed in [2]) is considered as a vitally
important part of the model interpretation heuristics. The p-loadings relate to a particular or-
thogonal basis of the column subspace. As discussed in section 2.3, there are a large number of
possibilities (k! - including the two bases obtained by PLS and O-PLS) for choosing such bases
for the subspace spanned by the non-orthogonal PLS-scores. Each such possibility leads to a
particular matrix of associated p-loadings with a corresponding set of possible interpretations.
Linking an underlying non-orthogonal score vector Xw; to the orthogonal (in some basis) score
vector tr(;) and the interpretations based on the associated pr(;)-loading is clearly a risky and
ambiguous business, because of the large number of different possibilities for obtaining the various
possible t(;)-scores.

The precise mathematical meaning of a loading vector p is most eaily seen by considering the
orthogonal projection of the X-columns onto the subspace spanned by the score vector t (of some
orthognal basis):

X = t(t't) 't'X = tp, (42)
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where p! = t!X/t!t by definition is the (transposed) vector of p-loadings associated with t. From
(42) the i-th entry p; of p clearly corresponds to the t-coordinate of the projected i-th column of
X. If t is chosen as a unit vector (i.e. t't = 1, a choice corresponding to using an orthonormal
basis), we realize that the vector p(= X't) also corresponds to the direction maximizing the
(X, t)-covariance.

As a comment to the example in section 3.1, where the "arbitrary" y-orthogonal vector t,,4
was introduced, a simple projection argument shows that any of the p column vectors x; of X can

be projected onto y and expressed as
X; = ¢;y +r;, where rly =0 (i.e. y-orthogonal) and c¢; € R.

If some clever OSC algorithm where capable of eliminating all these y-orthogonal r;’s (that are
not necessarily linear combinations of the X-columns), the resulting filtered data matrix would
look like

Xoo = [a1y 2y ...cp¥] = yct

where the only information in X not completely lost are the coefficients ¢! = [c; ...c,] = (y'y) 'y'X

proportional to the covariances between y and the X-columns, i.e.
X'y = X5y

In the introduction we emphasized that the present focus on OSC methods is restricted to the
single response case. In the multi-response case with Y € R"*9 (¢ > 2), an Y-orthogonal vector

is still defined as a linear combination t = Xw of the X-columns satisfying
t'Y = w/(X'Y) =0, (43)

i.e. the vector w € RP of coefficients is orthogonal to the subspace spanned by the columns of
X'Y. Let’s assume that the matrix W; € RPX4 represent an orthonormal basis for this subspace
(W1 can be obtained either by QR-factorization, or the "thin" SVD, of X*Y). Then equation
(43) is equivalent to requiring w'W; = 0. Deflation of X with respect to Wy results in the
Y-orthogonal matrix

X =X - (XW;)Wt. (44)

Note that any algorithm (including the O2-PLS in [14]) finding any Y-orthogonal vector t = Xw,
automatically finds a linear combinations of the X-columns because Wiw = 0 by the remarks
after (43), and

t=Xw=Xw— (XW)Wiw=Xw (45)

by (44). In particular, the multi-response case described in Fearn [13], and the associated maxi-
mization problem, is solved by finding the dominant right singular vector of X in (44). Like in the
single response case discussed in section 2.1, the additional factors are given by the subsequent
right singular vectors ordered by the associated singular values.

For any linear regression method (single- or multiblock) modelling the ¢ responses of Y by a k-

dimensional space V' (assuming k > ¢), the fitted values Y will account for ¢ dimensions in V, and

21



the Y-orthogonal vectors will account for the remaining (k — ¢) dimensions. By considering Figure
1 (ignore its sub-text) for this purpose, one may think of the ¢ dimensions of Y as collapsed into
the "line" spanned by Y. The z then represents a vector in the (k — ¢)-dimensional (rather than
(k — 1)) subspace of Y-orthogonal vectors. Thus, for any single- or multiblock linear regression
method with one or several responses, the concept of Y-orthogonality is always available.

There is an important difference between the O-PLS and the NAP /DO approach in considering
the interferents (the vectors in RP representing the phenomena explained as irrelevant to the
particular y of interest). In O-PLS the filtered matrix X, in (15) is obtained by multiplication of
X from the right hand side with the skew (oblique) projection matrix (I-V (P*V)~1P?) where the
matrix V represent the irrelevant phenomena. Note that the rows of X, are indeed orthogonal to
V because (I—-V(P'V)~!P!)V = 0. The problem is, however, that the X,-regression coefficients
B3, in (19) are sensitive to the filtering operation, i.e. (I — V(P'V)™1P")3, = B(# 3,), where
B is the ordinary PLS regression coefficients according to equation (21). The latter means that
the entire filtering of X into X, is collapsed into 3. Therefore, these regression coefficients (and
not 3,) must be applied to the original unfiltered data X. Although 8, is "blind" to the V-
directions in X, it is unfortunately not orthogonal to the P-loadings, i.e. the skew projection
V(P'V)~'P!3, # 0. The regression coefficient vector 3 on the other hand, is a linear combination
of both w; and the V-vectors) and takes the V-directions in the X-rows into account for predicting
the analyte/phenomenon (represented by y) well. In the end, this means that considering (or even
interpreting) the V-vectors as real interferents must be incorrect. This is not the case with the
regression coefficients b obtained from the NAP /DO approach described in section 2. Equation
(6) demonstrates that the proposed matrix P, of interferents and corresponding directions in the
unfiltered X-rows do not interact with the regression coefficients b.

Before a successful elimination of the effects of some (a) interferents/phenomena that are
potentially present in the sample signals (such as NIR-spectra), some kind of prior knowledge
on how to establish the particular P,-matrix is required. Thereafter, elimination of the effects
associated with P, can either be obtained by "blinding" the samples (rows in X) with respect to P,
before modelling (as described in the NAP /DO approach above), or by constraining the regression
coefficient vector b to be orthogonal to the interferents/phenomena in P, as an integrated part
of the modelling.

Modelling with integration of such constraints can be managed well by the Tikhonov regular-
ization (TR) approach to linear regression model building. In the TR, approach, elimination of

influence by the (a) disturbing interferents collected in P, is handled as follows:

e Define the associated extended data matrix, response vector and regression problem as

X y Xb y
X, = \/,EPZ yYe= | 04 and X.b = \/ﬁsz = | 04 | =Ye
VI 0, Vb 0,

respectively. Here I is the p x p identity matrix, \/u and VA are positive regularization
constants to be chosen according to the purpose of the modelling, and b is the unknown
solution of the augmented regression problem. Note that the extended data matrix X, is
guaranteed to have full rank due to its bottom block v/AL
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e The least squares expression to be minimized w.r.t. b is the residual norm
[Xeb —yell” = [IXb =y + ullPeb — 04> + A[Tb — 0, = [ Xb — y||* + 1o Peb||* + Al[b||,

where the parameters p and A\ are assumed to be fixed.

e By choosing p to be (very) large, we see that the solution b of the above least squares
problem can be forced to be as close to orthogonal to the columns of P, as we like. An
appropriate choice of A has the effect of preventing the squared norm ||b||? of the regression
coefficients from blowing up without an unnecessary sacrifice of precision in the fitting XDb of

y. The latter is well known as the bias-variance trade off problem in ridge regression (RR).

e The normal equations and the associated unique OLS solution b of the augmented system

are
X!X.b=Xly, & (X'X + PP, + A)b = X'y = b = (X'X + uP' P, + A\I) ' X'y,

respectively. Note that no "blinding" or direct filtering of the X-data takes place in TR.

The survey on the TR methodology given by Kalivas [23], is recommended as a more detailed

explanation on the necessities and possibilities available with this type of approach.

5 Conclusions (by points)

Is O-PLS correcting or confusing? The question was asked in the title of this paper, and answers

are provided by the following summary points:

1. The idea of OSC as proposed in [1] and the most popular algorithm for doing OSC (the O-
PLS proposed in [2]) were, according to the authors, to develop a methodology for improving
predictions and interpretations. The fact that ordinary PLS already works according to this
principle, i.e. by identifying subsequent components orthogonal to y for improving the model
fit, or equivalently reducing the residual y, was ignored by the authors of [1] and [2].

2. Single response models obtained by PLS and O-PLS are actually in one-to-one correspon-
dence because the algorithms are equivalent and find exactly the same subspace for fitting

the response y.

Conclusions of 1. and 2: Incorrect and confusing - there is no improvement in model fit

and predictions compared to PLS. The O-PLS also introduced alternative interpretation
heuristics, essentially building on the PLS-loading weights ws, ..., wy, that were in conflict
with the traditional interpretation heuristics of PLS (building on the same loading weights).
By overlooking that the O-PLS is equivalent to the ordinary PLS, the O-PLS inventors

contributed to more confusion by introducing the alternative model interpretation heuristics.

3. An example in [2, section 2.3.9] being designed to demonstrate the capabilities of O-PLS,
fails in filtering out the y-orthogonal information that was deliberately added to the X-
data. The example, with calculations done correctly (shown in section 3.1 above), actually

demonstrates the limitations of the entire OSC-idea.
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Conclusion: The desired orthogonal signal correction fails in removing the effects of y-
orthogonal factors from outside the column space of the desired X-data.

. Figure 1 in the introduction shows that y-orthogonality is always present as a part of multiple

linear regression modelling. For the orthogonal projection Y of Y € R"*? onto some k-
dimensional (¢ < k < n) model space V C R", there are always (k — ¢) dimensions in V
that are orthogonal to both Y and Y.

Conclusion: By realizing that this always is the case (in particular for OLS, PCR and PLS
with ¢ = 1), much confusion regarding the meaning of Y-orthogonal filtering in OSC could

have been avoided.

. In the discussion part comparing the O-PLS and the NAP /DO approach, we were forced to

conclude that O-PLS cannot help us to find any real interferents. This is so because the only
possible choice of regression coefficients applicable for the unfiltered data X, is the ordinary
PLS regression coefficients 3. This means that sensitivity of the V-directions defined in (17)
(and the associated non-orthogonal scores Xws, ..., Xwy,) is required from the X-regression

coefficients to obtain a good fit of of y.

In section 2.3 the entire concept of y-orthogonality, as proposed in OSC and identified by
O-PLS, is explained by its unfortunate ignorance of the always present y-residuals, and their
relevance for explaining the phenomenon/analyte associated with y. The fact that subse-
quent y-residuals are always non-orthogonal to the corresponding sequence of non-orthogonal
scores is ignored by OSC/O-PLS. The V-vectors defining these scores, are precisely the con-
jugate gradient directions required for subsequently reducing the y-residuals in the search for
a good model explaining the phenomenon/analyte represented by y. The missing deflation
of y in the more recent implementations of the NIPALS PLS algorithm is probably the main
reason why unfortunate confusions regarding y-orthogonality in OSC has become so wide

spread.

Conclusion: Speaking of y-orthogonality and y-orthogonal components without requiring or-
thogonality in terms of the associated y-residuals is not good model interpretation practice.
Successful modelling including the context of "irrelevant" interferents/phenomena requires
some prior knowledge about how their associated directions can be identified and represented.
Both NAP/DO and the described TR approach represent sound model building strategies
resulting in models that are "blinded" in the directions of the provided irrelevant phenom-
ena/interferents. Therefore, later filtering of new datapoints are not required. The models
obtained by the O-PLS (and Fearns method) do not have this property - their X-regression

coefficients are forced to be non-orthogonal to the alleged irrelevant directions.
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