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Abstract

Algorithms for Partial Least Squares (PLS) modelling are placed into a sound theoretical
context focusing on numerical precision and computational e�ciency. NIPALS and other PLS
algorithms that perform de�ation steps of the predictors (X) may be slow or even compu-
tationally unfeasible for sparse and/or large-scale data sets. As alternatives we develop new
versions of the Bidiag1 and Bidiag2 algorithms. These include full reorthogonalization of both
score and loading vectors, which we consider to be both necessary and su�cient for numerical
precision. Using a collection of benchmark data sets, these two new algorithms are compared
to the NIPALS PLS and four other PLS algorithms acknowledged in the chemometrics litera-
ture. The provably stable Householder algorithm for PLS regression is taken as the reference
method for numerical precision. Our conclusion is that our new Bidiag1 and Bidiag2 algo-
rithms are the methods of choice for problems where both e�ciency and numerical precision
are important. The benchmark study shows that SIMPLS gives poor numerical precision even
for a small number of factors. Further, the non-orthogonal scores PLS, direct scores PLS,
and the improved kernel PLS are demonstrated to be numerically less stable than the best
algorithms. Prototype MATLAB-codes are included for the �ve PLS algorithms concluded to
be numerically stable on our benchmark datasets. Other aspects of PLS modelling, such as
the evaluation of the regression coe�cients, are also analyzed using techniques from numerical
linear algebra.

Keywords: PLS, NIPALS, Golub�Kahan Householder, Bidiag1, Bidiag2, Lanczos process,
bidiagonalization, stability, regression, de�ation, reorthogonalization.
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1 Introduction

The �rst rigorous description of a PLS algorithm was the NIPALS algorithm given in 1984
by Wold et al. [20]. Since then a great number of di�erent, but analytically equivalent,
PLS algorithms have been suggested in the literature. Even minor analytically equivalent
modi�cations of a PLS algorithm may give (very) di�erent computed results for the regression
coe�cients and �tted values. It is therefore important that all new PLS algorithms are tested,
preferably on a shared set of benchmark problems in the public domain. In 2009, Andersson [1]
presented a comparison of nine di�erent PLS algorithm with respect to speed and numerical
precision. The aim of the present paper is to follow up on Andersson's pioneering initiative,
but our evaluation di�ers in several aspects. We take the PLS algorithm based on Householder
transformations (HHPLS) as our reference algorithm. HHPLS is computationally slow but,
more importantly, has been proven by Björck [3] to be numerically stable in the mixed forward-
backward sense.

For sparse and/or large-scale data sets the de�ation steps of the predictors (X) as imple-
mented in the NIPALS PLS is slow and may even be computationally unfeasible. Wold et
al. [20] noted that in such situations the LSQR algorithm by Paige and Saunders [19] might
be an attractive alternative. LSQR builds on the Bidiag1 algorithm, a Lanczos-type (see [14])
bidiagonalization algorithm proposed in the seminal paper by Golub and Kahan [8]. Manne
[15] suggested instead using an adaption of the analytically equivalent Bidiag2 algorithm
(also proposed in [8]). Eldén [6] also focused on the equivalence between NIPALS PLS and
Bidiag2 for the purpose of exploring the shrinkage properties of PLS in comparison to princi-
pal component regression (PCR). Wu and Manne [21] commented on the numerical instability
problems associated with the Bidiag2-version of PLS but refrained from including stabilizing
reorthogonalization steps. In the survey by Andersson [1], where Bidiag2 was tested without
reorthogonalization, it was demonstrated to be fast but gave considerably poorer numerical
precision than the other algorithms.

The tested algorithms analyzed and tested in the present paper include the two most most
widely used choices for PLS-modelling�the NIPALS PLS algorithm by Wold et al. [20] and
the SIMPLS algorithm by deJong [5] as well as two new algorithms based on the Bidiag2 and
Bidiag1. These perform full reorthogonalization, which we consider essential for any successful
large scale application of PLS. Code for a stabilized version of Bidiag2 with reorthogonalization
of both the scores (T) and the weights (W) was also presented by Indahl [11, appendix A.5].

2 Mathematical preliminaries

Consider a linear model Xb = y, where X ∈ Rn×p and y ∈ Rn and the related least squares
problem

min ‖b‖2 subject to ‖Xb− y‖2 = min . (1)

Independent of the size and rank of X, this problem always has a unique solution b† called
the pseudoinverse solution characterized by the two conditions

X′Xb = X′y, b ∈ span(X′) ⊆ Rp, (2)

i.e., b† is the solution of the associated normal equations contained in the row subspace of X.
The PLS approximations bk, k = 1, 2, . . . to problem (1) can be de�ned as the estimates

generated by k steps of the NIPALS PLS algorithm. We prefer a de�nition of the approximate
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k-component PLS solutions to be independent of a particular algorithm and de�ne the PLS
approximation bk as the solution of the subproblem

min
b
‖Xb− y‖2, subject to b ∈ Kk(X

′X,X′y). (3)

Here Kk(X
′X,X′y) ⊆ Rp denotes the so called Krylov subspace1 spanned by the �rst k Krylov

vectors

X′y, (X′X)X′y, . . . , (X′X)k−1X′y, (4)

The corresponding residual vector r = y −Xbk ∈ Kk+1(XX′,y) ⊆ Rn, is contained in the
subspace spanned by the Krylov vectors

y, (XX′)y, (XX′)2y, . . . , (XX′)ky. (5)

An in�nite sequence of Krylov vectors is called a Krylov sequence. A Krylov sequence always
has a �rst vector that can be expressed as a linear combination of the preceding ones. Hence,
for some index K ≥ 1, it holds that the subspaces KK+1(X

′X,X′y) = KK(X′X,X′y). The
latter means that K is both the maximum rank for the particular Krylov subspaces and the
maximum number of possible PLS components for the particular (X,y)-dataset. It can be
shown (see [3]) that with this maximum number (K) of PLS components, the pseudoinverse
solution and the PLS solution coincide, i.e. bK = b†.

For 1 ≤ k < K PLS-components, the subproblems (3) have full rank and hence the corre-
sponding PLS solution bk is uniquely de�ned. Note that, although the pseudoinverse solution
b† is a linear mapping of y, the intermediate PLS approximations bk depend nonlinearly on
y in a non-trivial way, as explained in Elden [6, section 4].

In the context of exact arithmetic, there are two situations where the maximum number of
PLS steps K < rank(X) ≤ min{n,p}. The �rst situation is when X has one or more multiple
singular values; the second is when y is orthogonal to some left singular vectors of X. The
following lemma is proved in Björck [3]:

Lemma 2.1 Let X ∈ Rn×p have s distinct (possibly multiple) non-zero singular values σ1 >
σ2 > · · · > σs. Denote by ci the norm of the orthogonal projection of y onto the left singular

subspace corresponding to σi. Then, in exact arithmetic, PLS terminates with br, where r ≤ s
is the number of nonzero coe�cients ci.

Note that by Lemma 2.1, it is possible that PLS stops before rank(X) steps. For example,
if X equals the identity matrix, then PLS stops already after one step! In practice, PLS is
usually stopped well before the maximum number of terms have been computed.

Lanczos and conjugate gradient methods are closely related and are frequently referred to
as Krylov subspace methods. These methods were introduced in the early 1950s by Lanczos [14]
and Hestenes and Stiefel [10] for the purpose of solving large systems of linear equations and
eigenvalue problems. Today, Krylov subspace methods play a dominant role in nearly all sci-
enti�c computations; see Golub and O'Leary [9] for a survey on the fundamental developments
of the topic.

Orthogonal bases for the Krylov subspaces Kk(X
′X,X′y) and Kk(XX′,XX′y) play a

central role in PLS algorithms. They are uniquely de�ned until the PLS algorithm terminates.

1Named after the Russian mathematician Aleksei Nikolaevich Krylov (1863�1945), Maritime Academy of
St. Petersburg, who pioneered the use of such subspaces in scienti�c computing.
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In theory, they can be computed by applying Gram�Schmidt orthogonalization to the sequence
of Krylov vectors

X′y, (X′X)X′y, . . . , (X′X)k−1X′y, XX′y, (XX′)2y, . . . , (XX′)ky. (6)

It is well known that these sequences of Krylov vectors converge to the left and right singular
vectors, respectively of the largest singular value of X. Hence they rapidly become nearly
linearly dependent. Even when using double numerical precision computation with relative
numerical precision 10−16, there may be a complete loss of orthogonality after only few steps.
This is because the loss of orthogonality grows exponentially with the number of steps. This
will cause a corresponding loss of orthogonality as in the Gram�Schmidt process; see e.g.,
Björck [2, Section 2.3.5]. Indeed, loss of orthogonality in the computed basis vectors is the
most common cause of low numerical precision for several proposed PLS algorithms.

Krylov subspaces have a useful and important invariance property with respect to a change
of basis. Let T ∈ Rn×n and W ∈ Rp×p be any pair of square orthogonal matrices Then the
original system Xb = y is equivalent to the system Bz = q, where B = T′XW, z = W′b,
and q = T′y. The Krylov subspaces for the original and transformed system are related by

Kk(X
′X,X′y) = WKk(B

′B,B′q).

The PLS approximations for the original and transformed systems are related according to
bk = Wzk, where zk is the solution of the subproblem

min
z
‖Bz− q‖2, subject to z ∈ Kk(B

′B,B′q). (7)

If T and W are chosen as the matrices of left- and right singular vectors, respectively, then
B = Σ is diagonal. The transformed system in this case becomes Σ z = q, where

q = T′y, Σ =

(
Σ1 0
0 0

)
, Σ1 = diag(σ1, . . . , σr) > 0,

and r = rank(X) ≤ min{p,n}. Hence, if the SVD of X is known, then explicit expressions
for the PLS approximations, bk can be obtained. However, even computing a low rank PLS
approximation with this approach requires the full SVD of X. Hence, this relationship is
most interesting for the theoretical aspects of the PLS approximations. For real applications
it is more attractive to require B to be bidiagonal, since the corresponding orthogonal basis
matrices can be obtained by computationally fast forward recursions.

3 PLS Algorithms

3.1 The NIPALS PLS

The NIPALS PLS algorithm by Wold et al. [20] takes X0 = X, y0 = y, and for k = 1, 2, . . . ,
generates

µkwk = X′k−1yk−1, ρktk = Xk−1wk, (8)

(Xk,yk) = (I− tkt
′
k)(Xk−1,yk−1), (9)

where µk and ρk are normalizing constants. (The original NIPALS algorithm di�ers slightly
from this description in that only the weights wk are normalized. To be consistent with the
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algorithms considered below we also normalize the scores tk. This will not a�ect the numerical
precision of the algorithm and the extra computational overhead is negligible.) In (9) Xk−1
and yk−1 are de�ated by subtracting their orthogonal projections onto tk. This can also be
written as

(Xk,yk) = (Xk−1,yk−1)− tk(p
′
k, ηk), (10)

p′k = t′kXk−1, ηk = t′kyk−1. (11)

We note that if t′kXk−1wk 6= 0, then the rank of Xk is exactly one less than that of Xk−1.
Summing (10) and (11) and setting where Tk = (t1, . . . , tk), Pk = (p1, . . . ,pk), and qk =
(η1, . . . , ηk)

′ gives
X = TkP

′
k + Xk, y = Tkqk + yk. (12)

These relations hold to working numerical precision and do not rely on orthogonality. The
matrix TkP

′
k is a rank-k approximation to the data matrix X. The regression coe�cients are

bk = Wkzk, where zk is obtained by solving the linear system

(P′kWk)zk = qk. (13)

Orthogonal bases for the Krylov subspaces Kk(X
′X,X′y) and Kk(XX′,XX′y) are given by

the matrices
Tk = (t1, . . . , tk) and Wk = (w1, . . . ,wk), (14)

generated by (8)�(9); see Eldén [6, Proposition 3.1]).

3.2 The Householder bidiagonalization PLS

Golub and Kahan [8] gave a numerically stable algorithm for the bidiagonalization of a matrix
X using products of Householder re�ections (see [2, Section 2.3.1]) from left and right. After
k steps, the �rst k rows and columns are transformed to upper bidiagonal form

Bk =


ρ1 θ2

ρ2 θ3
. . .

. . .

ρk−1 θk
ρk

 . (15)

The �rst k left and right Householder transformations implicitly de�ne bases matrices Tk and
Wk for the Krylov subspaces. These matrices need not be formed explicitly and hence are
orthogonal by de�nition.

As in the NIPALS, the HHPLS algorithm performs explicit modi�cations of the (X,y)-data
in the intermediate calculations. Because the HHPLS is numerically stable in a strong sense
(Björck [3]), it is chosen as our reference algorithm. Note that the Householder reduction to
bidiagonal form is also the �rst step in standard algorithms for computing the SVD. Therefore,
the HHPLS gives at least as good precision for PLS, although SVD may provide more complete
information about the data matrix X.
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3.3 The Golub�Kahan Lanczos bidiagonalization for PLS

Golub and Kahan [8] also proposed an algorithm using a Lanczos-type recursive process for
the bidiagonalization of a given matrix, in which only matrix-vector products with the original
data X and X′ are used. This is highly advantageous when X is sparse or otherwise structured,
because such matrix-vector products may then be performed very e�ciently.

There are two alternative procedures for adaption of the Golub�Kahan Lanczos bidiago-
nalization to PLS:

The Bidiag2�procedure starts by computing

θ1w1 = X′y, ρ1t1 = Xw1, (16)

and then for i = 1, 2, . . . , it computes

θi+1wi+1 = X′ti − ρiwi, ρi+1ti+1 = Xwi+1 − θi+1ti. (17)

The scalars ρi and θi are normalizing constants and give the elements in the ith row of
the upper bidiagonal matrix Bk. The unit vectors wi and ti are the desired orthogonal
basis vectors for the corresponding Krylov subspaces Kk(X

′X,X′y) and Kk(XX′,XX′y),
respectively. We may rewrite the above recursion (16-17) as

Wk(θ1e1) = X′y, XWk = TkBk, X′Tk = WkB
′
k + θk+1wk+1e

′
k, (18)

where ek denotes the k-th unit vector. As noted in Indahl [11, equation (1)], the PLS X-
loadings are Pk = X′Tk. Hence, by left multiplication with the orthogonal scores matrix T′k
in the middle equation of (18), it follows that the bidiagonal matrix can be expressed as

Bk = P′kWk. (19)

The Bidiag1�procedure starts with

γ1u1 = y, α1w1 = X′u1, (20)

and then for i = 1, 2, . . . , computes

γi+1ui+1 = Xwi − αiui, αi+1wi+1 = X′ui+1 − γi+1wi. (21)

For i = 1, ..., k, the normalizing constants αi and γi+1 are elements in the i-th column of the
lower bidiagonal matrix

Ck =



α1

γ2 α2

γ3
. . .
. . . αk−1

γk αk

γk+1


. (22)

The recursion (20-21) may be rewritten in matrix form as

Uk+1(γ1e1) = y, XWk = Uk+1Ck, X′Uk+1 = WkC
′
k + αk+1wk+1e

′
k. (23)
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The vectors wi are the same as in Bidiag2, while ui and ei for i = 1, . . . , k are orthogonal basis
vectors for the Krylov subspace Kk(XX′,y) and the standard Euclidean basis, respectively.
Bidiag2 corresponds to the procedure originally given by Golub and Kahan, but either proce-
dure may be derived from the other by interchanging X and X′ and choosing the appropriate
starting vector; see Paige and Saunders [19].

The upper bidiagonal matrix Bk and the vectors ti in Bidiag2 can be obtained from
Ck and the ui using a sequence of Givens rotations (see [2, Section 2.3.1]). This process is
illustrated below for k = 2. We �rst rotate the �rst two rows in Ck to zero out the element
γ2. To preserve the product, we apply the same rotation to the corresponding columns in Uk.
After these operations we have obtained t1, ρ1, and θ1. Next we rotate rows 2 and 3 in the
(transformed) matrix Ck to zero out γ3 and again apply the same rotations to columns 2 and
3 in Uk. This will produce t2, ρ2, and θ2.

(u1,u2,u3)

α1

γ2 α2

γ3

 ⇒ (t1, ũ2,u3)

ρ1 θ2
0 α̃2

γ3

 ⇒ (t1, t2, ũ3)

ρ1 θ2
0 ρ2

0


Clearly, the Givens rotations can be interleaved with the recursions in Bidiag1. Because
y = γ1u1 the generation of the right-hand side vector qk in the linear system (13) also di�ers
from that in Bidiag2. A more complete description of the above process is given in the LSQR-
paper of Paige and Saunders [19]. However, in the LSQR-algorithm the basis vectors Tk are
not computed because they are not used.

In Bidiag1 and Bidiag2 the analytically orthogonal basis vectors are directly generated
from the two-term recursions and the Krylov vectors (6) are never formed. Still, there will be
a gradual loss of numerical orthogonality in the basis vectors. This loss is closely related to
the convergence of singular values of the bidiagonal matrices to the singular values of X. A
satisfactory analysis of this behavior is challenging, and was �rst given by Paige [18] nearly
twenty years after the publication of the Lanczos process in [14].

The original PLS-paper [20] recommended using LSQR in situations where the de�ation
of the predictors X in NIPALS is expensive. However, the LSQR algorithm is not directly
suitable as a PLS substitute for several reasons:

• LSQR is designed to be used for a di�erent purpose, namely for the e�cient solution of
large-scale least squares problems min ‖Xb− y‖2.

• LSQR does not save the vectors wi and ui. The iterations are continued even after
the orthogonality of the bases vectors have been completely lost. For ill-conditioned
problems LSQR can take many more than rank(X) iterations to converge.

• Several features included in LSQR, such as stopping criteria and condition estimation
are of less interest in the typical PLS modelling context, where comparatively few factors
are used.

Due to the inference purposes of PLS, the bases vectors tk and wk need to be saved and
their orthogonality preserved. This can be achieved by reorthogonalizing tk and wk against
all previous basis vectors t1, . . . , tk−1 and w1, . . . ,wk−1 as soon as they have been computed.
If we de�ne Tk−1 = [t1 t2 ... tk−1] and Wk−1 = [w1 w2 ... wk−1] the reorthogonalizations of
tk and wk can be expressed as tk = tk − Tk−1(T

′
k−1tk) and wk = wk −Wk−1(W

′
k−1wk),

respectively, followed by a normalization step. This adds an arithmetic cost of about 4(n+p)k2
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�ops for k factors and is usually a�ordable in typical applications of PLS (but not for the
problems traditionally solved by LSQR).

3.4 A note on matrix residuals

Although the NIPALS and the proposed alternative algorithms compute the same approximate
solutions bk they di�er in the way the residual of the data matrix is approximated. With the
Tk-matrix taken to be orthogonal, the data residuals Xk in NIPALS are given by

Xk = X−TkP
′
k = (I−TkT

′
k)X, (24)

i.e. a projection in the column space of X. For the Householder and Bidiag versions the
residual is obtained from the rank-k approximations X ≈ TkBkW

′
k. Using TkBk = XWk

we obtain the data residual

Ek = X− (TkBk)W
′
k = X− (XWk)W

′
k = X(I−WkW

′
k), (25)

i.e. a projection in the row space of X. See Indahl [11, Note 8] for a more detailed discussion
of the two X-approximation alternatives TkP

′
k and (TkBk)W

′
k.

It is a common assumption that the PLS data residuals Xk and Ek will always become small
when k → rank(X). The original "Algorithm PLS" in Wold et al. [20] says that the iterations
are to be continued until ‖(Xk,yk)‖ is small, where "small" in the numerical sense can be
decided upon by comparing the ratios ‖(Xk,yk)‖/‖(X,y)‖ to some pre-speci�ed positive
tolerance τ (0 < τ � 1). However, according to Lemma 2.1, there are circumstances where
PLS instead terminates after k � rank(X) steps independent of the magnitude of the ratio
‖(Xk,yk)‖/‖(X,y)‖.

In most practical applications of PLS one is primarily interested in good predictive perfor-
mance with respect to y. Some appropriate model validation�and�selection strategy should
therefore be preferred over the theoretical termination alternatives just mentioned. Cross
validation is a popular alternative often used with PLS.

4 Computing the regression coe�cients

After k steps of the Bidiag2 algorithm, the regression coe�cients are bk = Wkzk, where zk
satis�es the upper bidiagonal system

Bkzk = qk, qk = T′ky = (η1, . . . , ηk)
′. (26)

The bidiagonal system Bkzk = qk can be solved with minimum computational e�ort using
backsubstitution. But zk will di�er in all entries from zk−1 and computing bk = Wkzk has
to be done from scratch, which may be computationally expensive when dealing with large
modelling problems. In LSQR a more e�cient updating formula is used for bk that can
be applied also in the Bidiag1 and Bidiag2 algorithms presented here. If we de�ne Dk =
(d1, . . . ,dk) = WkB

−1
k , then

Wk = DkBk and bk = WkB
−1
k qk = Dkqk = bk−1 + ηkdk. (27)

For the �rst column we obtain d1 = (1/ρ1)w1, and the resulting vector of regression coe�cients
b1 = η1d1. For k > 1, the matrix identity in (27) can be expressed as

(Wk−1, wk) = (Dk−1, dk)

(
Bk−1 θkek−1
0 ρk

)
. (28)

9



Equating the �rst block columns shows that Wk−1 = Dk−1Bk−1. Hence the �rst k−1 columns
of Dk equal Dk−1. Because Dk−1ek−1 = dk−1 (the last column of Dk−1), equating the last
columns of Dk and Wk and solving for dk gives

dk = (wk − θkdk−1)/ρk, k > 1. (29)

Note that storing the entire matrix Dk is unnecessary (only the most recent iteration for the
column di−1 needs to be saved to compute the subsequent column di).

According to the bk updating rule given in (27) and the formula for dk in (29), the complete
updating formulas for the PLS regression coe�cients become

b1 = η1d1 = (η1/ρ1)w1,

bk = bk−1 + (ηk/ρk)(wk − θkdk−1), k > 1.
(30)

When coding in MATLAB it is possible to perform the vector updates (30) by using the
expression

b = cumsum(bsxfun(@times, W/B, y′ ∗ T), 2);

This executes very e�ciently, but it must be noted that the cumsum�construction (for cumu-
lative summation) is not available in most programming languages. It should also be noted
that using W ∗ inv(B) instead of W/B is not good programming practice, because the inverse
of the bidiagonal matrix B is a full matrix and calculating it will be an unnecessary waste of
both time numerical precision. We remark that many other alternatives for computing the
regression coe�cients have been suggested in the literature, but using (30) seems to be the
best choice in terms of speed and numerical precision.

The original NIPALS algorithm di�ers in that the regression coe�cients bk = Wkyk are
obtained from the linear system

(P′kWk)zk = qk, (31)

where P′kWk is treated as a full matrix. By uniqueness (see equation 19), it follows that
P′kWk analytically equals the bidiagonal matrix Bk. Due to loss of orthogonality in �oating-
point arithmetic the o�-bidiagonal entries usually appear as small but nonzero. Björck [3]
shows that neglecting all o�-bidiagonal entries in P′kWk leads to a loss of numerical precision,
because they compensate for the loss of orthogonality. However, the lower triangular elements
are of the order of unit roundo�, whereas the o�-bidiagonal elements in the upper triangular
part can be much larger. Therefore, in our NIPALS MATLAB-code (see section A.2 below)
P′kWk is treated as a full upper triangular matrix. Then the recursion (28) is still valid, and
we use the expression

beta = cumsum(bsxfun(@times, W/triu(P′ ∗ W), y′ ∗ T), 2);

for the evaluation of the coe�cients. If wanted, this can of course be rewritten as an equivalent
vector recursion.

5 The algorithms to be compared

The algorithms can be split into two groups depending on whether or not they �de�ate� the
data X and y as in the NIPALS and Householder algorithms or just use the data matrix X
and its transpose in matrix-vector operations.
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• Algorithms de�ating both X and y:

1. The mixed forward-backward stable reference method HHPLS by Björck [3] (accu-
rate but slow).

2. The original NIPALS by Wold et al. [20] with normalized scores (T) and weights
(W) conjectured to be stable in [3].

3. The non-orthogonal scores PLS by Martens [16].

• Additional algorithms considered to be stable in [1]:

4. SIMPLS by deJong [5] known as one of the fastest PLS algorithms according to [1].

5. Direct-Scores PLS (DSPLS) by Andersson - reported to be among the fastest PLS
algorithms in [1].

6. The Improved Kernel PLS (IKPLS) by Dayal and MacGregor [4] - reported to be
among the fastest PLS algorithms in [1].

• Algorithms without X-de�ation but including full reorthogonalization (all comparable
to the algorithms 4-6 in terms of speed):

7. Bidiag2 adapted from Golub and Kahan [8] including full reorthogonalization of
score- and loading vectors.

8. Bidiag1 adapted from Paige and Saunders [19] including full reorthogonalization of
score- and loading vectors.

9. The PLSHY - a hybrid bidiagonalization algorithm obtained by a minor modi�ca-
tion of Bidiag2 to include explicit y-de�ation.

Prototype MATLAB-code for the algorithms 1, 2 and 7�9 is included in the appendix. For
the other algorithms we use the MATLAB-code given by Andersson [1]. Manne [15] observed
that in the NIPALS algorithm de�ation of y is analytically unnecessary. Andersson [1] omits
this de�ation in his code as does several other authors. However, as shown by Björck [3], this
omission may substantially increase the loss of orthogonality in the basis vectors Tk and Wk

computed by NIPALS. Hence, our implementation of the NIPALS PLS performs de�ation of
y, as in the original algorithm [20], (NOTE: No particular stopping criterion is implemented
in the various algorithms. Deciding when to stop a PLS algorithm is problem dependent and
considered to be outside the scope of this paper.)

To improve the performance of MATLAB codes it is usually recommended to preallocate
arrays in order to avoid repeated resizing in loops. We found that preallocation actually
increased running times for our codes, which is why it is consistently omitted in all the
algorithms we present.

6 Data Sets

We will consider �ve real datasets and one constructed data set for the PLS-benchmark study:

1. The NIR/Octane measurements data set provided by Kalivas [12]. This is a MATLAB
example data set available from the Statistics and Machine Learning Toolbox by the
command: load spectra. Here X is a matrix of 60 gasoline samples measured at 401
NIR wavelengths and y is a vector of 60 corresponding chemical measurements of octane
numbers.
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2. The Beer data set in Nørgaard et al. [17]. X is a matrix of 60 samples measured at 926
NIR wavelengths and y is a vector of 60 corresponding extract measurements. The data
are available from the iToolbox at http://www.models.life.ku.dk/itoolbox

3. The Melter data set from Eigenvector Research, Inc. https://software.eigenvector.
com/toolbox/download/, accessible from the demo-version of the PLS_Toolbox. X is
a matrix of 300 samples measured at 20 temperatures in a Slurry Fed Ceramic Melter
(SFCM) and y is a vector of corresponding level-values. This data set was considered
in the EVRI-blog by Wise at http://www.eigenvector.com/evriblog/?p=268 called
�Accuracy of PLS algorithms� for comparing some of the PLS-algorithms considered in
Andersson [1].

4. The Small Round Blue Cell Tumors (SRBCT) microarray data set of Khan et al. [13].
X is a matrix of 63 samples measured at 2318 genes and y is a vector of class labels
from {1, 2, 3, 4} indicating various types of cancer. The data set can be downloaded from
Data Sets for "The Elements of Statistical Learning": http://statweb.stanford.edu/
$\sim$tibs/ElemStatLearn/data.html

5. The Ovarian Cancer case vs. high-risk control data set (WCX2 protein array experiment)
from the from the FDA-NCI Clinical Proteomics Program Databank http://home.ccr.

cancer.gov/ncifdaproteomics/ppatterns.asp This is a MATLAB example data set
available from the Bioinformatics Toolbox by the commands:

load ovariancancer, X = double(obs); y = strcmpi('Cancer',grp)*1;

X is a matrix of 216 samples where the ion intensity level is measured at 4000 speci�c
mass-charge values for each sample. y is a corresponding vector of class labels from
{0, 1} representing the case/control status.

6. The contrived data set from [3]. In this X is a 50 × 8 matrix with singular values
σi = 10−i+1, i = 1 : 8 and y = Xe, where e = (1, . . . , 1)′. This data set is generated by
the function [X,y] = testp(50,8); given in the appendix.

For each of the data sets 1�5 we also generated an associated poorly conditioned arti�cial data
set by computing the reduced SVD of the (uncentered) X-matrix and replacing its original r
(non-zero) singular values σ1 ≥ σ2 ≥ ... ≥ σr > 0 by a corresponding set of designed singular
values as follows:

• Let p1 > p2 > ... > pr be the r evenly spaced numbers (powers) from p1 = 3 to pr = −15.

• Replace the singular value σi by the value 10pi for i = 1, ..., r.

The purpose of the manipulated data sets is to challenge the numerical precision of the tested
algorithms with some nearly rank de�cient data matrices for detection of any potential insta-
bility.

7 Results
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From the �gures 1�2 below, we can compare the algorithms in terms of regression coe�cients
and �tted values for the datasets 1 and 5. The numerical precision of the computed regression
coe�cients bMeth and �tted values XbMeth is measured by the normwise relative di�erences

‖bHHPLS − bMeth‖2/‖bHHPLS‖2, ‖XbHHPLS −XbMeth‖2/‖XbHHPLS‖2
between the HHPLS and the other methods (Meth) for the various number of components.
Corresponding graphs for the datasets 2�4 (available as supplementary material) con�rm the
patterns shown in �gure 1 and 2.

With the exception of SIMPLS, the tested algorithms gave about the same numerical
precision in the regression coe�cients and �tted values for data sets 1�5. The instability of
SIMPLS was also noticed by Andersson [1]. de Jong [5, p. 258] remarks that "SIMPLS does
a similar job (as Bidiag2)" but starts from XX′y generating T and X′XX′y generating the
non-orthogonal weights V. This use of higher order Krylov vectors as the initial vectors is a
possible explanation of the observed loss of stability.

For Bidiag1 and Bidiag2 we also tried one-sided reorthogonalization, i.e., reorthogonalizing
only one set of basis vectors, either W or T. This was found to lead to a substantial loss
of numerical precision compared to full reorthogonalization (data not shown). Our results
indicate that for algorithms such as Bidiag1 and Bidiag2 that do not de�ate the data X and
y full reorthogonalization of the basis matrices W and T is both necessary and su�cient
for stability. This observation di�ers from the remark by Wu and Manne [21] that �Explicit
reorthogonalization . . . postpones the problems, but does not eliminate them�.

Method numerical precision

HHPLS: 5.6077e-11
SIMPLS: 2.7735e+04
nonorth scores PLS: 9.1559e-11
DSPLS: 0.0023
IKPLS: 1.5521e-04
NIPALS: 9.4026e-11
Bidiag1: 7.6880e-11
Bidiag2: 2.3657e-11
PLSHY: 9.3793e-11

Table 1: Numerical Precision of di�erent methods when applied to example data from
Björck [3].

The PLS problems generated by data sets 1�5 are all fairly well-conditioned, i.e., the
solution is not overly sensitive to small perturbations. This is natural, because PLS is a
regularization method that projects the original data onto subspaces of smaller dimensions.
The arti�cially ill-conditioned data sets shows problems also for nonorthogonal scores PLS
(red), DSPLS (orange) and the IKPLS (violet). The other methods cluster well with the
NIPALS (green) and indicate similar good stability properties.

As a complement, all algorithms were also tested on the contrived ill-conditioned data set
6 used by Björck [3]. For this data set the exact coe�cients b are known for A = 8. Table 1
shows the relative error in the regression coe�cients ‖b − bMeth‖2/‖b‖2 for the di�erent
algorithms. The results con�rms our conclusion, except that the previously observed lack of
stability for the nonorthogonal scores PLS did not show up.

13



For the the same ill-conditioned data set 6, Björck [3] showed that the NIPALS PLS
including y-de�ation gave a loss of orthogonality of the order 10−10 using double numerical
precision. When omitting the y-de�ation the loss of orthogonality increased to about 10−2.

In further tests on data set 6 with the NIPALS algorithm, we computed the norms NU
and NL of the o�-bidiagonal elements in the upper- and lower and triangular parts of PT

k Wk.
We found that NU = 6.4659e − 11, i.e., of the same size as the loss of orthogonality in the
basis vectors. However, NL = 1.0191e − 17, i.e., close to unit roundo� in double numerical
precision. This observation supports treating PT

k Wk in NIPALS PLS as an upper triangular
matrix. However, it should be pointed out that using the full matrix PT

k Wk gave a slightly
smaller error (2.2247e− 11) in the regression coe�cients for data set 6.

Method Run1 Run2 Run3 Run4 Run5 Mean % NIPALS

HHPLS: 3.45 3.34 3.36 3.31 3.34 3.36 435.2%
SIMPLS: 0.34 0.37 0.35 0.35 0.34 0.35 45.0%
nonorth scores PLS: 0.76 0.79 0.75 0.76 0.77 0.77 99.3%
DSPLS: 0.20 0.20 0.19 0.19 0.20 0.19 25.2%
IKPLS: 0.18 0.19 0.18 0.18 0.18 0.18 23.4%
NIPALS: 0.76 0.79 0.76 0.78 0.77 0.77 100.0%
Bidiag1: 0.18 0.18 0.18 0.18 0.18 0.18 23.2%
Bidiag2: 0.17 0.17 0.17 0.17 0.17 0.17 22.2%
PLSHY: 0.17 0.17 0.17 0.17 0.18 0.17 22.6%

Table 2: Five repeated runs of accumulated execution times (over the data sets 1�5) and
the associated mean values (in seconds) for all algorithms. The last column shows the mean
execution times in percent (%) of the NIPALS result.

Regarding computational e�ciency, Table 2 shows the accumulated execution times (for 5
repeated runs) over the collection of datasets (1�5, including both the original and manipulated
versions of each dataset) for all the considered algorithms. In the last column (based on the
mean of the �ve repeated runs), the mean execution time of the NIPALS algorithm is set to
100% to indicate a relative mean execution time for the other algorithms.
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Figure 1: The NIR/Octane measurements�data set 1. The original data shows problems with
the SIMPLS (blue). The manipulated data shows problems also for the non-orthogonal scores
PLS (red), the direct scores PLS (orange) and the improved kernel PLS (violet). The other
methods cluster well with the NIPALS PLS (green) and indicate similar stability properties.
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Figure 2: The Ovarian Cancer data�data set 5. The original data shows problems with the
SIMPLS (blue). The manipulated data shows problems also for the non-orthogonal scores
PLS (red). The other methods cluster well with the NIPALS PLS (green).
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8 Conclusions

In this paper we have performed tests on six benchmark data sets of several widely used
PLS algorithms as well as modi�ed versions of Bidiag1 and Bidiag2 with reorthogonalization
of both score and loading vectors. In previous tests by Andersson [1] the regression vectors
computed by Bidiag2 without reorthogonalization were imprecise, as were the score- and
loading vectors. In contrast, our new versions of Bidiag1 and Bidiag2 were among the best in
numerical precision of all our tested algorithms. Together with PLSHY, SIMPLS, DSPLS, and
IKPLS (that also do not de�ate the data) Bidiag1 and Bidiag2 were also among the fastest of
the tested algorithms (see table 2). Compared to the NIPALS and the nonorthogonal scores
PLS algorithms they were about four to �ve times faster on our benchmark data sets. As
Bidiag2 has the slightly simpler implementation it may be preferred over the Bidiag1.

Further laptop tests with some larger simulated datasets (matrices of dimensions 10000×
30000 and 30000 × 10000 with 100 extracted components) indicate that the NIPALS and
nonorthogonal scores PLS can be slower by almost a factor seven when compared to the
Bidiag2. For the smallest datasets we observed that that timings in the group of fast algorithms
could vary with as much as 30% by changing only minor details in the MATLAB code.
Therefore, one should consider the reported di�erences in timings to be relatively coarse
estimates. We also note that although MATLAB is a natural choice for prototyping algorithms,
a more realistic timings comparison should be done using implementations in C++ or Fortran.

Among the other algorithms tested, NIPALS (including y-de�ation) gave good numerical
precision and is therefore a good choice when speed is not important. SIMPLS gives poor
numerical precision even for a fairly small number of factors. The reorthogonalization proposed
by Faber and Ferré [7] improves its numerical precision considerably (data not shown), but even
with this modi�cation SIMPLS gave the worst numerical precision of our tested algorithms.
The IKPLS and DSPLS algorithms gave su�ciently good numerical precision on all the original
data sets 1�5, but on the arti�cially ill-conditioned test data their lack of numerical precision
compared to the better algorithms shows up.

We �nd that Bidiag2 with reorthogonalization and the related algorithm PLSHY are the
methods of choice for problems when both e�ciency and numerical precision are important.
These algorithms are also the recommended choices for doing PLS with sparse and structured
X-data, as the matrix multiplications in the equations (16) and (17) for such cases can be
implemented with particular e�ciently.

Model selection for PLS is often based on some s-fold cross-validation strategy. Our
experience with real datasets indicate that by choosing, say, s = 5 segments, the model
building and selection by the recommended bidiagonalization algorithms will be almost as
e�cient as doing just one single NIPALS model�tting (without the cross-validation).
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A Appendix with MATLAB code

A.1 The Golub Kahan Householder PLS

function [beta,W,T,B] = hhpls(X,y,A)

% -------------------------------------------------------------

% ----------------- Ake Bjorck 9/6-2016 -----------------------

% -------------------------------------------------------------

[n,p] = size(X);

X = [y'*X; X]; % Append row on top of X.

w = zeros(p,1); t = zeros(n,1);

B = zeros(A,2); % B stored by diagonals

% ---------------- Start bidiagonalization --------------------

for a = 1:A

% ----------Generate and apply right Householder reflection----

if a < p,

[w(a:p), X(a,a), theta] = hhgen(X(a,a:p)');

X(a+1:n+1,a:p) = hhapp(X(a,a),w(a:p),X(a+1:n+1,a:p)')';

X(a,a+1:p) = w(a+1:p)'; ar = a; % Save right HH vector

end

if a == p, theta = X(p,p); end,

B(a,2) = theta;

% ----------Generate and apply left Householder reflection-----

if a < n,

[t(a:n), X(a+1,a), rho] = hhgen(X(a+1:n+1,a));

X(a+1:n+1,a+1:p) = hhapp(X(a+1,a),t(a:n),X(a+1:n+1,a+1:p));

y(a:n) = hhapp(X(a+1,a),t(a:n),y(a:n));

X(a+2:n+1,a) = t(a+1:n); al = a; % Save left HH vector

end

if a == n, rho = X(n+1,n); end

B(a,1) = rho;

end

% ----------- Generate orthogonal matrices T and W -------------

W = eye(p,A); T = eye(n,A);

for a = A:-1:1

if a <= ar,

w(a:p) = [1; X(a,a+1:p)'];

W(a:p,a:A) = hhapp(X(a,a),w(a:p),W(a:p,a:A));

end

if a <= al,

t(a:n) = [1; X(a+2:n+1,a)];

T(a:n,a:A) = hhapp(X(a+1,a),t(a:n),T(a:n,a:A));

end

end

% -----------------Generate regression coefficients--------------

beta = zeros(p,A); s = 0; d = 0;

for a = 1:A
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d = (W(:,a) - B(a,2)*d)/B(a,1);

s = s + y(a)*d; beta(:,a) = s;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [u,beta,sigma] = hhgen(x)

% Constructs reflector H = I - beta*u*u' such that

% H*x = sigma*e_1, with sigma = ||x||_2, u_1 = 1.

% -----------------------------------------------------------------

u = x; sigma = norm(x);

u(1) = sigma + abs(x(1));

beta = u(1)/sigma;

if x(1) < 0, u(1) = -u(1);

else sigma = -sigma;

end

u = u/u(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = hhapp(tau,u,X)

% Applies Householder reflection

% (I - tau*u'*u)*X

% ----------------------------------------------------------

X = X - (tau*u)*(u'*X);

A.2 NIPALS with normalization

function [beta,W,T,P] = nipalsN(X,y,A)

% ----------------------------------------------------------

% --------------- Ake Bjorck 31/3-2016 ---------------------

% ----------------------------------------------------------

% ------------- Solution of the PLS1-problem ---------------

for a = 1:A

w = X'*y; w = w/norm(w); W(:,a) = w;

t = X*w; t = t/norm(t); T(:,a) = t;

% ------------------- Deflate X and y ----------------------

P(:,a) = X'*t; X = X - t*P(:,a)';

q(a) = y'*t; y = y - q(a)*t;

end

% ---------- Calculate regression coefficients -------------

beta = cumsum(bsxfun(@times,(W/triu(P'*W)), q),2);
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A.3 Bidiag2 with reorthogonalization

function [beta,W,T,B] = bidiag2(X,y,A)

% --------------------------------------------------------------

% ----------------- Ake Bjorck 9/6-2016 ------------------------

% --------------------------------------------------------------

B = zeros(A,2); % B stored by diagonals

w = X'*y; w = w/norm(w); W = w;

t = X*w; rho = norm(t); t = t/rho; T = t;

B(1,1) = rho;

d = w/rho; beta = (t'*y)*d;

% ---------------- Continue bidiagonalization ------------------

for a = 2:A

w = X'*t - rho*w; w = w - W*(W'*w); % Reorthogonalize w

theta = norm(w); w = w/theta; W(:,a) = w;

t = X*w - theta*t; t = t - T*(T'*t); % Reorthogonalize t

rho = norm(t); t = t/rho; T(:,a) = t;

B(a-1,2) = theta; B(a,1) = rho;

% --------------- Update regression coefficients ----------------

d = (w - theta*d)/rho;

beta(:,a) = beta(:,a-1) + (t'*y)*d;

end

A.4 Bidiag1 with reorthogonalization

function [beta,W,T,B] = bidiag1(X,y,A)

% --------------------------------------------------------------

% ------------------ Ake Bjorck 9/6-2016 -----------------------

% --------------------------------------------------------------

B = zeros(A,2); % B stored by diagonals

gamma = norm(y); t = y/gamma; T = t;

w = X'*t; alpha = norm(w); w = w/alpha;

W = w; d = w; reg = 0;

rhobar = alpha; phibar = gamma;

% ---------------- Start bidiagonalization --------------------

for a = 1:A

t = X*w - alpha*t; t = t - T*(T'*t); % Reorthogonalize t

gamma = norm(t); t = t/gamma; T(:,a+1) = t;

w = X'*t - gamma*w; w = w - W*(W'*w); % Reorthogonalize w

alpha = norm(w); w = w/alpha; W(:,a+1) = w;

% -------------- Construct and apply i:th Givens rotation ------

rho = norm([rhobar,gamma]);

cos = rhobar/rho; sin = gamma/rho;

theta = sin*alpha; rhobar = -cos*alpha;

phi = cos*phibar; phibar = sin*phibar;

G = [cos, sin; sin, -cos];

T(:,a:a+1) = T(:,a:a+1)*G;
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B(a-1,2) = theta; B(a,1) = rho;

% ------------- Update regression coefficients -----------------

reg = reg + (phi/rho)*d; beta(:,a) = reg;

d = w - (theta/rho)*d;

end

A.5 The hybrid PLS with reorthogonalization and y-de�ation

function [beta,W,T,B,q] = plsHy(X,y,A)

% ----------------------------------------------------------------

% -------------- Ulf Indahl 20/06-2016 ---------------------------

% ----------------------------------------------------------------

B = zeros(A,2); % B stored by diagonals

w0 = X'*y; w = w0/norm(w0);

t = X*w; rho = norm(t); t = t/rho; q(1) = y'*t;

W = w; T = t; B(1,1) = rho;

d = w/rho; beta(:,1) = (t'*y)*d;

y = y - t*q(1);

% -------------------- Solution of the PLS1-problem --------------

for a = 2:A,

w1 = X'*y; w = (w0-w1)/q(a-1) - rho*w; w0 = w1; % w = X'*t - rho*w;

w = w - W*(W'*w); theta = norm(w); w = w/theta; % Reorthogonalize & normalize w

t = X*w; t = t - T*(T'*t); % Reorthogonalize t %(t = X*w - theta*t;)

rho = norm(t); t = t/rho; q(a) = y'*t;

W(:,a) = w; T(:,a) = t;

B(a-1,2) = theta; B(a,1) = rho;

% ---------------- Update regression coefficients ----------------

d = (w - theta*d)/rho;

beta(:,a) = beta(:,a-1) + q(a)*d;

y = y - t*q(a); % Deflate y

end

A.6 Generate contrived datset 6

function [X,y] = testp(n,p);

% ----------------------------------------------------------------

% -------------- Ake Bjorck 03/10-2010 ---------------------------

% ----------------------------------------------------------------

for i = 1:p

z(i) = cos(4*pi*i/p);

sigma(i) = 10.^(1-i); % Generate singular values

end

for j = 1:n

w(j) = sin(4*pi*j/n);

end

%----------------- Normalize vectors w,z---------------------------

w = w'/norm(w); z = z'/norm(z);
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W = eye(n) - 2*w*w'; Z = eye(p) - 2*z*z';

X = W*[diag(sigma), zeros(p,n-p)]'*Z;

y = X*ones(p,1);
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