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Application of a Bayesian dominance 
model improves power in quantitative trait 
genome‑wide association analysis
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Abstract 

Background:  Multi-marker methods, which fit all markers simultaneously, were originally tailored for genomic 
selection purposes, but have proven to be useful also in association analyses, especially the so-called BayesC Bayes-
ian methods. In a recent study, BayesD extended BayesC towards accounting for dominance effects and improved 
prediction accuracy and persistence in genomic selection. The current study investigated the power and precision of 
BayesC and BayesD in genome-wide association studies by means of stochastic simulations and applied these meth-
ods to a dairy cattle dataset.

Methods:  The simulation protocol was designed to mimic the genetic architecture of quantitative traits as realisti-
cally as possible. Special emphasis was put on the joint distribution of the additive and dominance effects of causa-
tive mutations. Additive marker effects were estimated by BayesC and additive and dominance effects by BayesD. The 
dependencies between additive and dominance effects were modelled in BayesD by choosing appropriate priors. A 
sliding-window approach was used. For each window, the R. Fernando window posterior probability of association 
was calculated and this was used for inference purpose. The power to map segregating causal effects and the map-
ping precision were assessed for various marker densities up to full sequence information and various window sizes.

Results:  Power to map a QTL increased with higher marker densities and larger window sizes. This held true for both 
methods. Method BayesD had improved power compared to BayesC. The increase in power was between −2 and 8% 
for causative genes that explained more than 2.5% of the genetic variance. In addition, inspection of the estimates of 
genomic window dominance variance allowed for inference about the magnitude of dominance at significant asso-
ciations, which remains hidden in BayesC analysis. Mapping precision was not substantially improved by BayesD.

Conclusions:  BayesD improved power, but precision only slightly. Application of BayesD needs large datasets with 
genotypes and own performance records as phenotypes. Given the current efforts to establish cow reference popula-
tions in dairy cattle genomic selection schemes, such datasets are expected to be soon available, which will enable 
the application of BayesD for association mapping and genomic prediction purposes.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
With the advent of dense single nucleotide polymor-
phisms (SNP) panels, it has become possible to exploit 
linkage disequilibrium (LD) between SNPs and genes that 
are involved in complex or quantitative trait variation, 
with the aim to map genes that underlie trait variation 

and to predict genomic values [1]. Genome-wide asso-
ciation studies (GWAS) scan the genome systematically 
to identify SNPs that are significantly associated with the 
trait of interest. Various methods to conduct GWAS are 
available. Single-SNP analyses are widely used, where one 
SNP is tested at a time for significance. The SNP geno-
type is usually treated as a fixed effect in a mixed linear 
model. Correction for the effects of population structure 
is done by fitting simultaneously a random polygenic 
term in the model [2]. For each SNP, a test statistic and 
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an error probability for the trait association is obtained 
in a ‘frequentist’ manner, which can conveniently be used 
for post-GWAS analyses, such as false discovery rate 
calculations [3], or for meta-analyses, e.g. [4]. However, 
with dense SNP panels, the level of multiple-testing can 
be enormous, which needs a very stringent significance 
threshold in order to prevent an inflation of type one 
errors. In addition, the effect of a gene can be captured 
only in part by a single marker due to imperfect LD, 
but might be better explained by using jointly the SNPs 
that surround the gene. To overcome these problems, 
multi-marker methods have been proposed, which fit 
all SNPs simultaneously as random effects in the model 
[5]. These models were originally tailored for genomic 
prediction or selection purposes [6], but have proven to 
be useful also in association analyses [7]. The simulation 
study of Sahana et  al. [8] revealed that Bayesian multi-
marker association analysis has a higher power than 
single-SNP analysis. These authors used also a window-
based approach, where consecutive SNPs within 1  cM 
were used to build a window. Inference was drawn for 
each window by considering these window SNPs jointly. 
Legarra et al. [9] compared linkage and linkage disequi-
librium analysis (known as LDLA), single-marker mixed 
model association analysis, and Bayesian whole-genome 
association analysis using a real data structure. They did 
not report a clear superiority of one method, but recom-
mended to apply more than one method to real data.

In Bayesian analysis, inference on unknowns is drawn 
from their posterior distributions. Recently, Fernando 
and Garrick [5] and Fernando et  al. [10] developed a 
method to control false positive results in multi-marker 
Bayes GWAS, which can be straightforwardly imple-
mented in MCMC-based algorithms. This method con-
trols the proportion of false positives by calculating the 
posterior probability of association of a trait with each 
SNP or each window of consecutive SNPs.

To the best of our knowledge, the Bayesian models 
mentioned above consider only additive gene effects. 
However, dominance is a non-negligible source of com-
plex trait variation [11–13]. Bolormaa et  al. [14] used a 
large-scale experiment with about 10,000 bovine individ-
uals, which were phenotyped for 16 traits and genotyped 
with dense SNP panels. They conducted a GWAS using 
single-marker regression analysis and found many trait-
associated SNPs that had a dominance effect. Moreover, 
the estimated dominance variance across the traits was 
between 0 and 42% of the phenotypic variance, with a 
median of 5%. It is well known that additive and domi-
nance effects are dependent in a complicated manner 
[15], as described in the next section.

Verbyla et  al. [16, 17] proposed a Bayesian stochas-
tic search variable selection method, which was named 

BayesC by these authors. In a recent study, we extended 
this BayesC method by accounting for dominance, result-
ing in the BayesD method, with the three sub-models 
BayesD1, 2 and 3 [18]. These sub-models differ in the way 
dependencies between additive and dominance effects 
are modelled. Simulation studies showed that these mod-
els increased the accuracy of predicted genetic values 
by about 15%. Moreover, application on a real dairy cat-
tle dataset revealed that the use of these BayesD models 
increased the prediction accuracy of cow’s yield devia-
tions for milk fat yield compared to a G-BLUP analysis 
without dominance [19]. Hence, it seems worthwhile 
to investigate the use of BayesD models in association 
analyses also. Therefore, the aim of our study was to com-
pare the power and precision of BayesD and BayesC in a 
GWAS. The analysis was conducted on simulated data-
sets, using a protocol that simulated many segregating 
genes and accounted for the dependencies between addi-
tive and dominant gene effects. The models were also 
applied to a real dairy cattle dataset.

Methods
Simulation protocol
A forward simulation approach was used to generate a 
Fisher-Wright diploid population with a genome that 
consisted of one chromosome that was 1 Morgan (M) 
long. The mutation rate was 10−8/bp/meiosis. In total, 
1051 generations were generated. For the first 650 gen-
erations, the effective population size was Ne = 600, and 
then decreased to 100 in the following 350 generations, 
with a fast decline in the last generations. This decline 
was chosen in order to create an LD pattern as observed 
in bovine populations [20]. From generation 1000 to 
1051, the Ne remained constant at 100. In the last gen-
eration, the sample size was N = 1500. According to the 
scaling by Ne and genome length argument given in [21], 
a simulated population with an N of 1500 and an Ne of 
100 corresponds to a population of 45,000 individuals 
with a genome of 30 M, with an Ne of 100, or of 450,000 
individuals with an Ne of 1000. In total, ten populations 
were simulated. The average number of segregating SNPs 
(minor allele frequency (MAF) higher than 0.01) in the 
last generation was about 7k. From these 7k SNPs, 2k, 
1k and 0.5k SNPs were chosen based on a MAF higher 
than 0.03 and equal distances between SNPs. This cor-
responds to a marker density of 20Ne, 10Ne and 5Ne per 
Morgan. Scaling this to a population of individuals with 
a genome of 30 M and an Ne of 1000, it reflects marker 
densities of 600k, 300k, and 150k, respectively. If the Ne 
is equal to 100, this results in marker densities of 60k, 
30k, and 15k, respectively. Note that these scaling argu-
ments were derived for genomic predictions [21]. In our 
study, it was assumed that these scaling arguments also 
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approximately hold for GWAS using genomic prediction 
models.

For each population, five traits were simulated as fol-
lows. In the last generation, 15 of the 7k SNPs with a 
MAF higher than 0.05 were randomly selected as causal 
mutations. The minimum distance between two quanti-
tative trait loci (QTL) was 2  cM. The additive effect (a ) 
represents half the difference between the alternative 
homozygous genotypes and the dominance effect (d) rep-
resents the deviation of the heterozygous genotype from 
the mean of the two alternative homozygous genotypes. 
The distribution of the dominance coefficient h = d/|a| 
was assumed to be h ∼ N

(
0.2, 0.32

)
 [22]. The distribu-

tion of a was a|h ∼ N (0, exp (3h)) [15]. A scatterplot of 
these distributions is in Fig.  1, which shows that alleles 
with small additive effects had high variable dominance 
effects. As the size of the additive effect increased, the 
dominance coefficient was likely to become more posi-
tive and, on average, increased in size. Hence, on average, 
the genetic value of heterozygous genotypes was above 
the mean of the two alternative homozygous genotypes. 
Moreover, overdominance was a rare event. This pattern 
reflects the results of Caballero and Keightley [23], who 
found that genes with large additive effects likely have 
larger dominance coefficients. It is also in agreement with 
the well-known Kacser–Burns model [24], and with theo-
retical derivations about the contribution of dominance 
to the variation of quantitative traits [15].

From these simulated genotype values, the breeding 
values, dominance deviations, and genetic values of the 

individuals were calculated, following the derivations in 
Falconer and Mackay [25]. For an individual with geno-
type x (x representing the number of copies of the mutant 
allele at the causative mutation, x = 0, 1, or 2), the breed-
ing value (BV ) is:

where αj = aj +
(
qj − pj

)
dj is the substitution effect, pj 

the frequency of the mutant allele, qj = 1− pj , and Q is 
the number of simulated causative mutations (i.e. 15). 
The dominance deviation (DV ) is:

The genetic value (GV ) is:

The additive genetic variance was calculated as the 
variance of the BV  and the dominance variance as the 
variance of the DV . The residuals were sampled from a 
normal distribution with mean zero and a residual vari-
ance chosen such that the narrow sense heritability was 
equal to 0.3 for each trait. The mean (median) of the 
dominance variance as the proportion of the pheno-
typic variance was equal to 0.1 (0.08), but varied between 
0.01 and 0.29 across the simulated traits. The expected 
inbreeding depression was calculated as 

∑Q
j=1 2pjqjdj 

and was on average 0.023 times the phenotypic standard 
deviation across all simulated traits.

We simulated 50 replicates. For each replicate, we 
chose four marker densities, i.e. 7k, 2k, 1k, and 0.5k. The 
causal mutations were removed, except for the 7k data-
set. For this dataset, no selection on SNPs was conducted 
(except for MAF), and hence, it mimics a situation where 
the full sequence is known and the causative mutations 
are among the full set of SNPs.

Bayesian models
The three BayesD sub-models of Wellmann and Benne-
witz [18] differ in the way the complicated relationships 
between additive and dominance effects are modelled. 
Sub-model BayesD3 performed best in their simulation 
study, followed by BayesD2. However, BayesD2 showed 
better mixing properties in the MCMC analysis. Since 
the number of iterations is an issue in the application of 
these models, we used BayesD2 in this study, which will 
be thereafter named simply BayesD. BayesD1 was used 
in some preliminary analyses, in which it was slightly 

(1)BV (x) =

Q∑

j=1

(
xj − 2pj

)
αj ,

(2)DV (x) =

Q∑

j=1

−djxj
(
xj − 1− 2pj

)
− 2p2j dj .

(3)GV (x) =

Q∑

j=1

(
aj +

(
2− xj

)
dj
)
xj .
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Fig. 1  Scatterplot of the simulated joint distribution of the absolute 
value of additive effects (|a|) and dominance coefficients (h = d/|a|)
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less powerful than BayesD2 (Wellmann and Bennewitz, 
unpublished results). Therefore, it was not included in 
this study.

A full description of BayesD can be found in [18]. Only 
essential issues will be described here. The following gen-
eral linear regression model was applied for BayesD:

where y is the vector of the observations of the n indi-
viduals, 1n is a vector of n ones and µ is the general mean. 
Vector ã contains the random additive and vector d̃ the 
random dominance effects of the M SNPs. The SNP 
genotypes are coded as ‘0 0’, ‘0 1’, and ‘1 1’. X is a known 
N ×M matrix and contains the number of copies of 
1-alleles at the SNPs for each individual, i.e. the gene con-
tent. W is a known N ×M indicator matrix, which is 1 
if the individual is heterozygous at the SNP and 0 other-
wise. Errors E are assumed normally distributed. Let θ̃j 
be the effect of SNP j, with θ̃j =

(
ãj , d̃j

)
. It was assumed 

that the distribution of θ̃j is a mixture of two distribu-
tions (F) that differ only by a scaling factor ε. The form 
of the distribution F is described in detail in [18]. Condi-
tional on a Bernoulli-distributed indicator variable γj, we 
have θ̃j|γj ∼ γjF +

(
1− γj

)
εF . Thus, if γj = 1, the marker 

effect comes from the distribution that has the larger 
variance. The prior probability of a marker being impor-
tant (i.e. γj = 1) was pLD. The distribution of the absolute 
value of additive effects was assumed to follow a folded 
t-distribution. The distribution of the dominance effect 
was assumed normal conditional on the absolute additive 
effect. The prior distribution of the dominance effects 
was conditional on the additive effects and was specified 
such that the absolute additive effects and dominance 
coefficients (h = d/|a|) are independent, which implies 
that the probability that a dominance effect is much 
larger in magnitude than the additive effect is small. As 
a result, presence of overdominance (h > 1) is a rare but 
non negligible event. The prior probability of the sign of 
the additive effects depends on the allele frequency. This 
probability was chosen such that it is unlikely that the 
genetic variance of the gene is large. This is the assump-
tion made in BayesD, because selection has shifted allele 
frequencies away from values for which the contribu-
tion of a gene to the genetic variance is large [18]. This 
prior was not used in this study, because no selection was 
simulated.

For the joint posterior distribution and the Markov 
chain, which was generated by Gibbs sampling, see 
[18]. BayesD is an extension of the BayesC method of 
Verbyla et  al. [16, 17] towards accounting for domi-
nance. Hence, the model shown above was also applied 
for BayesC, but without the dominance term and 
assuming θ̃j = ãj.

y = 1nµ+ Xã +Wd̃ + E,

We chose ε = 0.01 and 2.5 degrees of freedom for the t
-distribution of the additive effects for both BayesC and 
BayesD. A single MCMC chain was run for 20,000 cycles, 
discarding the first 10,000 as burn-in, using the R-pack-
age BayesDsamples (can be obtained from R. Wellmann). 
Every 100th sample, the additive and dominance (only for 
BayesD) effects were stored for inference purposes. The 
simulated variance components and expected inbreeding 
depression were used in the models as input parameters. 
Parameter pLD was chosen such that the expected num-
ber of SNPs coming from the distribution with the larger 
variance approached the number of QTL when the size 
of the SNP panel approached the total number of SNPs 
in the genome. We used the following calculations for 
pLD for analysis of the simulated data. For t = 1, 2, 3, 4.8 , 
we have a marker density of M = 250× 2t, i.e. 0.5k, 1k, 
2k, and 7k. We chose pLD = 5.5× 0.7t × 15/M. This 
results in a pLD of 0.116, 0.040 and 0.014 for t =  1, 2, 
and 3 respectively, and 0.0021 for t = 4.8. This results in 
an average number of SNPs per QTL of 5.5× 0.7t = 3.85, 
2.70, 1.89 and 1 for t = 1, 2, 3 and 4.8 respectively. The 
same pLD was used for both Bayes models.

Inference of association
For inference of association, we used the posterior prob-
ability of the window association (WPPA) criterion pro-
posed by Fernando and Garrick [5] and Fernando et  al. 
[10], using a sliding window approach. The window size 
was varied between 0.25, 0.5, and 1 cM. For each of the 
stored estimates of the SNP effects from the MCMC 
chain in a window w, the genomic variance was com-
puted as follows:

where Hj = 2pjqj is the heterozygosity of SNP j, 
α̂J = âJ +

(
qj − pj

)
d̂J is the estimated substitution effect 

of SNP j, and âJ and d̂J are the corresponding estimated 
additive and dominance SNP effects. For BayesC, these 
computations were done without including estimated 
dominance effects, because they were not estimated in 
BayesC. Note that the estimated effects can be inserted 
into Eqs. (1) to (3) if estimated genomic breeding values, 
estimated genomic dominance deviations or estimated 
genetic values are of interest. The summation in Eqs. (1) 
to (3) is then over M SNPs instead of over Q causative 
mutations.

For each window, the ratio qw is calculated as:

where E(σ 2
gw
) =

∑
j∈w [HjE(α

2)+H2
j E(d

2)].

σ̂ 2
gw

=
∑

j∈w

[
Hjα̂

2
J +H2

j d̂
2
J )

]
,

qw = σ̂ 2
gw
/E

(
σ 2
gw

)
,
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Expectations E
(
α2

)
 and E

(
d2

)
 were derived under the 

assumption of an equal distribution of the total genetic 
variance across the genome, as shown in the “Appendix”. 
Ratios qw were computed for both BayesD and BayesC by 
using the same definition and calculation of E

(
σ 2
gw

)
 (i.e. 

the same value was used for both BayesC and BayesD). 
If qw > 1, this indicates the presence of a causative 
mutation within window w with an effect greater than 
expected under the assumption of an equal distribution 
of the genetic variance across the genome. Hence, causa-
tive mutations with effects below this expectation are in 
general not detectable. The posterior distribution of qw 
was approximated by the distribution of the qw obtained 
from the stored MCMC samples of the additive and dom-
inance effects. The WPPA was calculated by counting the 
number of samples for which qw > 1 and dividing this by 
the total number of samples saved. The following three 
levels of WPPA were considered: 0.85, 0.95, and 0.99. 
According to [5, 10], this controls the proportion of false 
positives (PFP) at ≤0.15, ≤0.05, and ≤0.01, respectively.

A causal gene is mapped if at least one window within 
a region of 1  cM surrounding the gene shows a WPPA 
above the threshold. For each simulated trait, power to 
map a causal gene was calculated by dividing the num-
ber of mapped causative genes by the number of simu-
lated causative genes that showed an effect greater than 
expected under the assumption that the genetic vari-
ance is distributed equally across the genome. Hence, 
very small causative genes were not counted. This guar-
antees that the upper bound of the power is 1, as it 
should be. From the definition of qw, it becomes clear 
that this would not be the case if all simulated causative 
genes were counted. In addition, power was calculated 
only for causative genes that explained more than 2.5% 
of the simulated genetic variance, which is denoted as 
large-power (L-power). Mapping precision was calcu-
lated for each simulated trait as the size of the genome 
around a mapped causative gene with significant sliding 
window(s).

Application to a real dataset
The models were also applied to a Fleckvieh dairy cattle 
dataset, which is described in detail by Ertl et al. [12]. In 
brief, the dataset included 1996 cows with yield devia-
tions (YD) for milk production and conformation traits. 
The YD observations were based on test-day observa-
tions adjusted for non-genetic effects, but not for the per-
manent environmental effect. The cows were genotyped 
with the Illumina BovineHD genotyping BeadChip. After 
quality control, 629,028 SNPs remained in the dataset. 
This dataset was a subset of the data used for predic-
tion purposes [19]. In that study, milk fat yield was cho-
sen to compare G-BLUP and BayesD with regard to their 

ability to predict a cow’s YD accurately. For this trait, it 
is known that the DGAT1 gene has a major effect in this 
population and dominance is important [12]. Therefore, 
this trait was also chosen in our study. The narrow sense 
heritability was equal to 0.47 and the dominance variance 
was equal to 0.18 as a proportion of phenotypic variance 
[12]. Parameter pLD was set to 0.05 and 2.5 degrees of 
freedom were chosen for the t-distribution of the addi-
tive effects [19].

Results
Simulated datasets
Results of the power evaluations from the simulated 
datasets are in Table  1. Standard deviations are also 
included in this table, from which the standard errors can 
be calculated, if desired. Power decreased as the WPPA 
level increased for all simulated configurations and for 
both methods, as expected. L-power was substantially 
higher (about 0.2 across all results) than power. This indi-
cates that it is very unlikely to find the numerous small 
simulated causative effects, even for low WPPA levels 
and with sequence data, as mimicked by the 7k dataset.

Power increased with SNP density. For example, 
for BayesC, a WPPA of 0.95 and a window size of 0.5, 
L-power was equal to 0.35, 0.39, 0.47, and 0.52 for SNP 
densities of 0.5k, 1k, 2k, and 7k, respectively. The same 
pattern was observed for BayesD.

Power also increased as window size increased. For 
example, L-power was equal to 0.42, 0.47, and 0.52 for 
window sizes of 0.25, 0.5 and 1 cM respectively (2k SNP 
density, 0.95 WPPA and BayesC). This pattern held true 
for all genetic configurations and for both methods.

Application of BayesD improved the power compared 
to BayesC for almost all genetic configurations. For 
example, for a WPPA of 0.95 and a window size of 1 cM, 
L-power of BayesC was equal to 0.35, 0.44, 0.52, and 0.55 
and that of BayesD was equal to 0.41, 0.5, 0.53, and 0.57 
for SNP densities of 0.5k, 1k, 2k and 7k, respectively. In 
general, it appeared that the superiority of BayesD over 
BayesC declined as SNP density increased. For a 7k SNP 
density, and a window size of 0.25, BayesC resulted in 
slightly greater power than BayesD.

Results of the evaluation of mapping precision are in 
Table  2. Because mapping precision was not affected 
by the WPPA level, except for some random fluctua-
tions (not shown), they are reported as means across all 
WPPA levels. By definition, the lower bound of precision 
was the window size and, thus, window size affected the 
precision. For example, for BayesC (2k SNP density and 
0.95 WPPA), a precision of 0.51, 0.93, and 1.75 cM was 
obtained for window sizes of 0.25, 0.5, and 1 cM, respec-
tively. Precision was improved, although only slightly, 
with an increase in SNP density. For example, for BayesC 
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and a window size of 0.5 cM, precisions of 1.1, 0.94, 0.93, 
and 0.91 cM were obtained for SNP densities of 0.5k, 1k, 
2k, and 7k, respectively. BayesD improved mapping pre-
cision only slightly and not in all cases. In general, pre-
cision was slightly better for BayesD for smaller window 

sizes. However, with a window size of 1  cM, precision 
was slightly better for BayesC. A remarkable outcome is 
that even with sequence data, the precision was substan-
tially higher than its lower bound. This held true for both 
methods.

Table 1  Power and  L-Powera as  a function of  the SNP density per  M, window size in  cM, window posterior probability 
of association (WPPA) and method (BayesC and BayesD)

Standard deviations are in parenthesis
a  L-Power denotes the power to detect a causal gene that explains more than 2.5% of the simulated genetic variance

WS window size

SNP density (k/M) WS WPPA BayesC BayesD

Power L-powera Power L-powera

0.5 0.25 0.85 0.261 (0.129) 0.441 (0.199) 0.282 (0.132) 0.475 (0.205)

0.95 0.201 (0.107) 0.347 (0.169) 0.217 (0.110) 0.362 (0.154)

0.99 0.144 (0.102) 0.249 (0.166) 0.175 (0.101) 0.300 (0.170)

0.5 0.85 0.267 (0.138) 0.445 (0.193) 0.280 (0.120) 0.480 (0.205)

0.95 0.205 (0.107) 0.349 (0.174) 0.230 (0.103) 0.388 (0.158)

0.99 0.151 (0.094) 0.260 (0.151) 0.192 (0.099) 0.336 (0.182)

1 0.85 0.279 (0.142) 0.467 (0.204) 0.298 (0.135) 0.500 (0.193)

0.95 0.214 (0.114) 0.352 (0.156) 0.241 (0.102) 0.410 (0.161)

0.99 0.167 (0.092) 0.285 (0.146) 0.199 (0.095) 0.343 (0.165)

1 0.25 0.85 0.265 (0.119) 0.452 (0.184) 0.290 (0.112) 0.500 (0.186)

0.95 0.210 (0.114) 0.365 (0.194) 0.241 (0.101) 0.415 (0.173)

0.99 0.193 (0.112) 0.337 (0.196) 0.180 (0.091) 0.315 (0.157)

0.5 0.85 0.291 (0.121) 0.495 (0.190) 0.321 (0.123) 0.551 (0.204)

0.95 0.228 (0.116) 0.394 (0.199) 0.265 (0.108) 0.454 (0.180)

0.99 0.192 (0.106) 0.334 (0.174) 0.198 (0.088) 0.344 (0.151)

1 0.85 0.316 (0.128) 0.538 (0.208) 0.341 (0.139) 0.580 (0.213)

0.95 0.259 (0.116) 0.438 (0.171) 0.291 (0.125) 0.497 (0.204)

0.99 0.216 (0.119) 0.369 (0.183) 0.227 (0.096) 0.388 (0.145)

2 0.25 0.85 0.285 (0.126) 0.481 (0.176) 0.299 (0.126) 0.501 (0.169)

0.95 0.247 (0.115) 0.423 (0.172) 0.245 (0.107) 0.419 (0.155)

0.99 0.216 (0.109) 0.367 (0.159) 0.214 (0.106) 0.325 (0.169)

0.5 0.85 0.332 (0.118) 0.561 (0.169) 0.343 (0.129) 0.571 (0.168)

0.95 0.276 (0.118) 0.469 (0.182) 0.284 (0.115) 0.476 (0.152)

0.99 0.234 (0.119) 0.395 (0.172) 0.221 (0.114) 0.376 (0.176)

1 0.85 0.348 (0.130) 0.586 (0.181) 0.371 (0.141) 0.618 (0.182)

0.95 0.312 (0.132) 0.522 (0.179) 0.318 (0.117) 0.532 (0.147)

0.99 0.245 (0.123) 0.406 (0.178) 0.248 (0.121) 0.420 (0.172)

7 0.25 0.85 0.307 (0.120) 0.518 (0.185) 0.301 (0.093) 0.505 (0.164)

0.95 0.273 (0.097) 0.467 (0.156) 0.263 (0.092) 0.449 (0.166)

0.99 0.259 (0.090) 0.435 (0.146) 0.256 (0.075) 0.393 (0.146)

0.5 0.85 0.356 (0.107) 0.602 (0.172) 0.369 (0.099) 0.615 (0.168)

0.95 0.309 (0.102) 0.518 (0.161) 0.312 (0.093) 0.531 (0.142)

0.99 0.270 (0.089) 0.459 (0.165) 0.273 (0.089) 0.460 (0.135)

1 0.85 0.378 (0.118) 0.636 (0.152) 0.394 (0.106) 0.657 (0.137)

0.95 0.329 (0.116) 0.551 (0.156) 0.339 (0.103) 0.567 (0.152)

0.99 0.281 (0.109) 0.465 (0.151) 0.279 (0.095) 0.472 (0.155)
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Real dataset
Plots of WPPA along the chromosomes are in Fig. 2 for 
a window size of 0.5 cM. For the two other window sizes 
(0.25 and 1 cM), similar plots were obtained, except that 
the peaks were somewhat more (less) pronounced with a 
window size of 1 cM (0.25 cM) (not shown). Both meth-
ods produced a clear signal on BTA14 at the chromo-
somal position where DGAT1 is located and a clear signal 
on chromosome 10, although this was below the thresh-
old levels used in this study. No other WPPA was above 
the threshold levels used in this study, which indicates 
that either no other genes with a larger effect are segre-
gating in this population, or the sample size of the data 
set is too small, or both.

Closer inspection of the WPPA plots revealed some 
differences between the two methods. BayesD produced 
several extra signals, although far below the threshold 
levels used in this study. Examples are on chromosomes 
6, 11, and 21. In addition, the average WPPA across the 
genome was slightly higher for BayesD than for BayesC. 
In Fig. 3, estimates of the window additive genetic vari-
ance of the window dominance variance are provided. 
From this figure it seems that not only the additive effects 
are spread across the genome, but also the dominance 
effects.

Discussion
Simulation protocol
Multi-marker Bayesian methods for association analyses 
were compared using simulated and real data. The simu-
lation protocol regarding genetic architecture followed 
our current understanding of quantitative traits with 
regard to number of segregating causal mutations and 

their additive and dominance effects. In a recent study 
[15], we conducted an in-depth theoretical analysis of 
the contribution of dominance to the variation of quan-
titative traits. One aim of that analysis was to develop a 
simulation protocol that models dominance gene effects 
that result in realistic genetic variance components and 
to validate this protocol with a sensitivity analysis. The 
current simulation protocol follows the recommenda-
tions given in that study.

Only one chromosome was simulated because the 
MCMC-based analyses were computationally demanding 
and replicated simulations were performed. It is possi-
ble that the power that would result from the simulation 
of multiple chromosomes would be somewhat reduced, 
but this would not alter the general findings of our study. 
However, the results obtained by using real data revealed 
that it is possible to also apply these methods in the case 
of genomes that consist of numerous chromosomes, and 
for which 630k SNPs are available. Due to the stochastic 
nature of the effects during the simulation of the traits, 
the dominance variance calculated as the proportion of 
the phenotypic variance ranged from 0.01 to 0.29, with 
a median of 0.08. These values are consistent with those 
reported by Bolormaa et al. [14], i.e. proportions from 0 
to 0.42, with a median of 0.05, and indeed also with the 
estimates obtained from the dairy cow dataset that was 
used here. For some simulated traits, dominance was 
not important at all, which is also the case for real quan-
titative traits. We favoured this stochastic approach of 
simulating dominance variance proportions instead of 
choosing fixed proportions, because this generalised the 
results obtained for typical quantitative traits instead of 
producing results that are valid only for a defined domi-
nance variance proportion.

BayesC versus BayesD
The results showed that method BayesD increased power 
to map QTL compared to BayesC in almost all analy-
ses because it uses dominance variance as an additional 
source of genetic variance. This increased power can also 
be deduced from the results of the analyses of the real 
dairy cow dataset (Fig.  2), where BayesD produced sev-
eral additional signals that were not found in the BayesC 
results.

Figure 4 shows the genetic effects and genetic variances 
of simulated causal mutations for a randomly chosen 
simulated trait for which dominance was important. Plots 
of the estimated window genomic variance across the 
chromosome and of the WPPA are also in Fig. 4. The two 
large causal mutations at positions 0.14 and 0.23 were 
detected with both methods (WPPA  >  0.95), although 
both showed a relatively large dominance variance and 
the estimate of genomic variance was substantially larger 

Table 2  Precision as a function of SNP density per M, win-
dow size in cM, and method (BayesC and BayesD)

Standard deviations are in parenthesis

WS window size

SNP density (k/M) WS BayesC BayesD

0.5 0.25 0.653 (0.223) 0.639 (0.219)

0.5 1.050 (0.275) 1.047 (0.245)

1 1.779 (0.283) 1.796 (0.259)

1 0.25 0.525 (0.130) 0.517 (0.095)

0.5 0.943 (0.138) 0.943 (0.152)

1 1.720 (0.215) 1.744 (0.182)

2 0.25 0.506 (0.138) 0.467 (0.085)

0.5 0.930 (0.125) 0.909 (0.121)

1 1.746 (0.184) 1.728 (0.157)

7 0.25 0.468 (0.042) 0.449 (0.046)

0.5 0.912 (0.074) 0.906 (0.075)

1 1.798 (0.120)) 1.802 (0.114)
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for BayesD than BayesC. For the causal mutations with a 
smaller effect size at positions 0.71 and 0.76, dominance 
was important and these mutations were only signifi-
cant with BayesD (WPPA > 0.95). For the mutation with 
a moderate effect size at position 0.85, dominance was 
not important and this mutation was only detected with 
BayesC (WPPA > 0.95). These examples illustrate the fol-
lowing general findings: mutations with a large effect are 
likely to be detected by both methods, mutations with 
a moderate effect and with dominance effects are more 
likely to be detected by BayesD, and those without domi-
nance by BayesC. Mutations with a small effect are not 
detected by either method. Hence, although the power of 
BayesD is generally higher than that of BayesC, the appli-
cation of both models will likely improve overall power.

Since dominance is an interaction effect of the two 
alleles at a locus, their effects are captured in the associa-
tion analysis by matched haplotype pairs, i.e. diplotypes. 
Diplotypes show a faster breakup around a focal point in 
the genome compared to haplotypes. Hence, BayesD was 

expected to improve the mapping precision as well, but 
the observed improvement was only small and was more 
pronounced for smaller window sizes.

For a high SNP density and a small window size, 
BayesC outperformed BayesD with regard to power. This 
intuitively unexpected result can be explained by the fact 
that, in BayesC one effect is estimated per SNP, whereas 
in BayesD two effects are estimated per SNP. Thus, with 
BayesD, the effect of a causative mutation may be spread 
over more very closely-linked SNPs than for BayesC, and 
some SNPs may even be outside the window, if the win-
dow size is small.

For BayesC, only the additive genetic variance and the 
residual variance need to be known, which can usually be 
estimated from the data with high precision. In BayesD, 
dominance variance and inbreeding depression also need 
to be known. With the use of genomic data it might be 
possible for most traits in most populations to estimate 
them precisely, at least for the dominance variance [12, 
13]. Common to both methods is the specification of 
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Fig. 2  Plot of window posterior probabilities of association (WPPA) obtained by BayesC (top) and BayesD (bottom), from the real data analyses



Page 9 of 13Bennewitz et al. Genet Sel Evol  (2017) 49:7 

the number of degrees of the t-distribution of the SNP 
effects. We chose relatively small degrees in order to 
obtain a heavy-tailed distribution and thus clearer asso-
ciation signals. In addition, parameter pLD, i.e. the prior 

probability that an SNP effect comes from the distribu-
tion with the large variance, needs to be specified. In this 
study, for the simulated datasets, this was specified under 
the assumption that the expected number of required 
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SNPs approaches the number of causative mutations 
when the size of the SNP panel approaches the total 
number of SNPs. Alternatively, the parameter could have 
been estimated from the data [26] but the current version 
of the MCMC algorithm does not include this option 
[18], or by using grid searches. In the real dataset, the 
input parameters were taken from an earlier study [19], 
in which these parameters were varied across a specified 
range of values. The parameters that need to be speci-
fied for the Bayesian methods are not needed in single-
marker GWAS implemented in linear mixed models. 
This makes the application of these models more conven-
ient and is probably one reason why these methods are 
more widely used.

False positive results
Our simulation study was not designed to determine 
whether the WPPA controls the proportion of false posi-
tives at the desired level. This hampered the compari-
son of WPPA between BayesC and BayesD in a formal 
way. Instead, we searched for elevated WPPA (at the 
lowest threshold level of 0.85 and even lower) in chro-
mosomal regions of about 10 cM that had no simulated 
causal mutation. In very exceptional cases, an elevated 
WPPA was observed in these regions without any dif-
ferences between BayesC and BayesD. Hence, it appears 
that WPPA controls the proportion of false positives in 
the simulation study at a low level for both methods. This 
might be due to the small number of degrees of freedom 
that was used for the t-distribution of the SNP effects, 
which allows large true effects to be detected, but small 
and spurious effects are regressed back to zero and, 
hence, are not detected. A larger number of degrees of 
freedom would probably have resulted in greater power 
but also in a larger number of false positives. From this, 
it became also obvious that the frequentist properties 
(power, false positive rate) of these methods remains 
somewhat unclear, because the WPPA criterion as imple-
mented in this study appeared to be a poor guide for the 
false positive rate.

Window approach
Instead of drawing inferences from SNPs in windows, the 
posterior probability of the effect of a specific SNP being 
drawn from the distribution with the larger variance 

could have been used for inference purposes. However, 
in the study of Sahana et al. [8], this resulted in reduced 
power, because the gene effects may be distributed over 
several consecutive SNPs and individual SNPs thus have 
a reduced power. Thus, the window approach is a logical 
consequence of applying multi-marker Bayesian methods 
for GWAS with dense SNP panels. Window size affected 
the power and precision in opposite directions, i.e. power 
increased with window but precision was lower for larger 
window sizes. Hence, there is a trade-off between these 
two criteria of success. An obvious solution would be to 
start with larger windows, e.g. of 1 cM, to find significant 
chromosomal regions that are associated with a trait and 
subsequently reduce window size to fine-map the causal 
mutations. With full sequence data, it can be assumed 
that the causal mutation is among the genotypes. Obvi-
ously, pinpointing the causal mutation within a fine-
mapped region is not possible with a window approach. 
In this case, it might be beneficial to use posterior prob-
abilities for individual SNPs [7], as well as other methods 
[27, 28]. Although complete sequence information for 
each individual was available in the 7k dataset, we did 
not attempt to detect the causal mutation within a fine-
mapped region.

A sliding-window-based approach was used by mov-
ing the window boundaries one SNP forward along the 
chromosome. This resulted in as many windows as SNPs 
included in the analysis, and also in the same number 
of WPPA, which are highly correlated for consecutive 
windows. Alternatively, the chromosome could have 
been divided into non-overlapping windows. This would 
reduce the number of windows but introduces the prob-
lem of arbitrarily setting the window boundaries. It is 
possible that such boundaries will break a chromosomal 
region that harbours a causative mutation into two or 
more distinct windows, which would reduce the power to 
map the mutation. The choice of windows deserves addi-
tional investigations that take the LD structure along the 
genome into account [29]. Another option would be to 
fit haplotypes [30]. This would also extend the inferences 
beyond a single SNP but the SNPs would be in strong LD.

Inferences were drawn by using the WPPA criterion 
and using estimates of genomic variance within windows. 
If inference on the importance of dominance is of inter-
est, the same criterion can be used by using estimates of 

(See figure on previous page.) 
Fig. 4  Simulated gene effects and BayesC and BayesD results for a single simulated trait. The top left panel shows the simulated additive and 
dominance effects of the 10 causative mutations with a non-negligible effect for a randomly chosen trait for which dominance was important. The 
top right panel shows the genetic variances of these simulated causative mutations. The two panels in the middle show the within-window genomic 
variances obtained by BayesC (left) and BayesD (right). The window posterior probability of association (WPPA) obtained from both methods are 
shown at the bottom. The positions of the 10 causative mutations are indicated by a circle
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dominance variance within windows. A straightforward 
strategy would be to map causative genes using esti-
mates of within-window genomic variance, as done in 
this study, and then test the importance of dominance 
by using the within-window estimate of dominance 
variance.

Large datasets are needed
Given that the scaling argument of [21] also holds at least 
approximately, for GWAS, large-scale populations were 
simulated when scaling towards a bovine genome of 30 M 
and an Ne of 100 or 1000. Results show that, even with 
these large datasets, power to find causative genes that 
explain more than 2.5% of the genetic variance (L-power 
in Table  1) is above 0.5 only in a few configurations. 
Hence, our findings show that large datasets are needed 
if also moderate and eventually small effect associations 
are to be detected. Results of the real data analyses sup-
port this as well. BayesD needs genotypes and trait meas-
urements from the same individual. In cattle, this means 
that cows need to be genotyped and this is becoming part 
of the routine genotyping strategy in many dairy cattle 
breeding organisations. Hence, it can be expected that 
such large-scale datasets that include genotyped cows 
will soon be available.

Conclusions
The application of BayesD for GWAS on simulated quan-
titative traits with realistic dominance effects resulted in 
increased power compared to BayesC. The increase in 
power was between −2 and 8% for causative genes that 
explain more than 2.5% of the genetic variance. This trend 
in increased power was also observed in the results from 
the real data analyses. In addition, by examining the within-
window estimates of genomic dominance variance, BayesD 
allows for inference about the magnitude of dominance 
effects at significant associations, which remains hidden in 
BayesC analyses. Mapping precision was, however, not sub-
stantially improved by BayesD. If the aim is to map muta-
tions with medium and small effects, large datasets that 
include several thousands of individuals are needed.
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Appendix
In this appendix, we show how to derive expectations E

(
α2

)
 

and E
(
d2

)
 under the assumption of an equal distribution of 

the additive genetic variance (VA) and of dominance variance 
(VD) across all SNPs M. Under this assumption, the expected 
additive genetic variance of a marker m can be denoted by 
E
(
VAm

)
= VA

M  and the expected dominance variance by 
E
(
VDm

)
=

VD
M . Furthermore, E

(
VAm

)
= E(2pq)× E

(
α2

)
 

and E
(
VDm

)
= E((2pq)2)× E

(
d2

)
. The expectation of 

2pq can be approximated by the mean of the heterozy-
gosity across all SNPs and is denoted by H̄ . Similarly, the 
expectation of (2pq)2 can be approximated by calculating 
the squared heterozygosity of each SNP and subsequently 
by taking the mean of this value across all SNPs. This is 
denoted as H2. Thus, E

(
α2

)
= VA

MH
 and E

(
d2

)
=

VD

MH2
, 

which was used for the calculation of qw in the main text.
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