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SUMMARY  

Genomic selection (GS) is increasingly being implemented in livestock, especially in the dairy 

cattle sector. While dairy cattle populations such as Holsteins have benefitted greatly from GS 

in the accuracy of evaluation due to their large reference population size and low effective 

population size (Ne), the impact of GS on numerically small breeds, sometimes with small 

reference population size and larger Ne, is much less. The overall aim of this research work 

was to explore strategies to improve the accuracy of genomic prediction in numerically small 

cattle breeds.  

Firstly, we conducted a  computer simulation in order to assess how much predictive ability is 

gained by using WGS data under varied QTL density (45 or 132 QTL/Morgan) and heritability 

(0.07 or 0.30) compared to different SNP densities with emphasis on diverged dairy breeds of 

small populations with large Ne (>100). Also assessed was the relative performance of a non-

variable selection method (SNP-BLUP) and a variable selection method (MixP). The use of 

WGS data for within-population predictions resulted in small to large increases in accuracy for 

lowly to moderately heritable traits when compared to the SNP densities. Depending on the 

heritability, marker and QTL density, the observed increase in accuracy was up to 13%. In 

comparison to the lowest simulated marker density, the increase was as much as 24-31%. The 

advantage of WGS data was more pronounced (7-92% increase in accuracy depending on the 

heritability, marker and QTL density, and time of divergence between populations) with a 

combined reference population across populations and when using MixP. While MixP 

outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL 

density increased to 132 QTL/Morgan. 

 Secondly, we evaluated an iterative method (referred to as GBC) that combines relationship 

information using the G-BLUP approach and LD between QTL and neighbouring SNPs using 

the BayesC approach for genomic prediction. The performance of GBC was compared to other 
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evaluation methods. Two datasets were utilized for the analysis: 1) imputed medium-density 

(50k; MD) SNP dataset based on Illumina Bovine50k BeadChip, containing 48,249 SNPs and 

3,244 records; and 2) imputed high-density (777k; HD) SNP dataset originating from the 

Illumina BovineHD chip and containing 539,665 SNPs and 3,164 records. With the MD SNP 

dataset, GBC showed an advantage over G-BLUP for all traits, while in comparison to MixP, 

accuracy was slightly lower. With the HD SNP dataset, GBC also performed better than G-

BLUP and slightly below that of MixP except for fat yield where it gave higher prediction 

accuracy than both methods. The results show that incorporating aspects of G-BLUP and 

BayesC in a single model can improve accuracy of genomic prediction over the commonly used 

method: G-BLUP. On the other hand, MixP showed higher accuracies than G-BLUP for all 

traits studied and in most cases slightly higher than GBC. 

Thirdly, we proposed and evaluated an approach to absorb phenotypic information on large 

numbers of ungenotyped animals into the mixed model equations of genotyped animals so that 

all information can be utilized in predictions. Predictions were then done using DYD (daughter 

yield deviations) or the resulting pseudo-records from absorption as response variables. These 

pseudo-records were calculated for the genotyped animals and their (ungenotyped) ancestors. 

The ungenotyped ancestors were included in the analysis by calculating their genotype 

probabilities. Two datasets were used for the analysis: 1) DYD dataset, i.e. a combination of 

DYD and genotype of 3,244 progeny-tested bulls; and 2) Absorbed dataset, i.e. a combination 

of absorbed records and genotype probabilities of 20,918 animals. With DYD as response 

variable, forward prediction accuracies ranged from 0.427 to 0.664 across the traits and 

evaluation methods. With absorbed records as response variable, accuracies ranged from 0.429 

to 0.667 across the traits and evaluation methods. Comparison of performance between DYD 

and the Absorbed dataset showed that differences in accuracy between both datasets were not 

statistically significant, but were on average slightly higher for the Absorbed dataset for A-
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BLUP, whilst the opposite was found for G-BLUP, GBC, and SS-GBLUP. In terms of bias, 

predictions based on the Absorbed dataset were generally less biased.
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SAMMENDRAG 

Genomisk seleksjon (GS) har i økende grad blitt implementert innen husdyravlen, særlig innen 

avl av melkefe. Populasjoner som Holstein har hatt gunstig effekt av GS gjennom bruk av data 

fra store referansepopulasjoner, kombinert med liten effektiv populasjonsstørrelse (Ne). På den 

annen side har den gunstige effekten av GS vært langt mindre uttalt for mindre tallrike 

populasjoner, men som potensielt kan ha større Ne enn Holstein. Hovedmålet med dette 

forskningsarbeidet var derfor å undersøke ulike strategier for å øke sikkerhet ved genomisk 

prediksjon for antallsmessig små storfepopulasjoner.  

Det første arbeidet var en simuleringsstudie for å undersøke muligheter for å øke 

prediksjonsevne ved bruk av helgenom-data ved varierende QTL tettheter (45 eller 132 

QTL/Morgan) og ulike arvegrader (0.07 eller 0.30) sammenliknet med bruk av SNP markører 

med varierende tetthet. Fokus var på divergerende melkeku-populasjoner med stor Ne (>100). 

Den prediktive evnen til enklere GS modeller uten variabelseleksjon (SNP-BLUP) ble 

sammenliknet med variabelseleksjons-modeller (MixP). Bruk av helgenom-data til innen-

populasjon prediksjon ga liten til betydelig økning i sikkerhet for lav- til høyarvelige 

egenskaper sammenlignet med SNP tettheter. Avhengig av arvegrad, markør- og QTL tetthet, 

økte sikkerheten opp til 13%. Sammenliknet med de laveste markørtetthetene var økningen i 

sikkerhet ved bruk av helsekvens så mye som 24-31%. Fordelen ved helgenom-data var mest 

uttalt ved bruk av referanse-data over populasjoner basert på MixP modellen (7-92% økning i 

sikkerhet avhengig av markør- og QTL-tetthet, og grad av divergens mellom populasjonene). 

MixP modellen var bedre enn SNP-BLUP ved 45 QTL/Morgan, mens SNP-BLUP var like god 

som MixP dersom QTL tetthet økte til 132 QTL/Morgan.  

I det andre arbeidet ble en iterativ metode (kalt GBC) evaluert. Metoden kombinerer slektskaps-

informasjon (via G-BLUP) og LD mellom QTL and SNP loci i nærheten (med BayesC 
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tilnærming) i genomisk prediksjon uten anvendelse av Monte Carlo sampling metodikk. 

Prediktiv evne til GBC ble sammenliknet med andre modeller. To datasett ble brukt i analysen: 

1) Imputert medium tetthet (50k, MD) SNP datasett basert på Illumina Bovine50k BeadChip, 

inneholdende 48,249 SNP loci og 3,244 fenotyper; og 2) Imputert høy-tetthets (777k; HD) SNP 

datasett basert på Illumina BovineHD chip, inneholdende 539,665 SNP loci og 3,164 fenotyper. 

Basert på MD SNP datasettet, ga GBC bedre sikkerhet enn G-BLUP for alle egenskaper, men 

noe lavere sikkerheter enn MixP. Basert på HD SNP datasettet, ga GBC også bedre sikkerheter 

enn G-BLUP, og litt lavere enn MixP unntatt for kg fett, der GBC ga bedre sikkerhet enn begge 

de to andre modellene. Resultatene viser at å inkorporere egenskaper ved modellene G-BLUP 

og BayesC i en enkelt modell (GBC) kan øke sikkerhet ved genomisk prediksjon over den mest 

brukte metoden: G-BLUP. På den annen side hadde MixP høyere sikkerhet enn G-BLUP for 

alle egenskaper som ble studert, og i de fleste tilfeller også noe høyere sikkerhet enn GBC. 

In en tredje studie ble det foreslått og evaluert en ny metode for å absorbere fenotypisk 

informasjon på store antall ikke-genotyperte dyr inn i likningene for genotyperte dyr, slik at all 

informasjon kan bli utnyttet i genomiske prediksjoner. Genetiske effekter av fedre ble predikert, 

der enten DYD (døtrenes gjennomsnittlige fenotypiske prestasjoner korrigert for ikke-genetiske 

effekter og effekt av mødre) eller pseudo-observasjoner fra absorpsjonen av ikke-genotyperte 

dyr ble brukt som responsvariable. Pseudo-observasjoner ble beregnet for genotyperte dyr og 

deres (ikke-genotyperte) avkom. Ikke-genotyperte stamfedre ble inkludert i analysen gjennom 

beregned genotype-sannsynligheter. To datasett ble brukt i analysen: DYD datasett, dvs. en 

kombinasjon av DYD og genotyper for 3,244 avkomsgranskede okser; og 2) Absorbert datasett, 

dvs. en kombinasjon av absorberte pseudo-observasjoner og genotype sannsynligheter for 

20,918 dyr. Med DYD som responsvariabel og genotyper av 3,244 avkomsgranskede okser 

varierte sikkerheten basert på fremtidige observasjoner fra 0.427 til 0.664 over egenskaper og 

evalueringsmetoder. Med absorberte fenotyper som responsvariabel varierte sikkerheten fra 
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0.429 til 0.667 over egenskaper og evalueringsmetoder. Forskjellene mellom DYD og det 

absorberte datasettet var ikke signifikante, men sikkerheten var i gjennomsnitt noe høyere for 

det absorberte datasettet for klassiske avlsverdiberegninger uten bruk av genetiske markører, 

men noe lavere for G-BLUP, GBC og SS-GBLUP (single-step G-BLUP). Prediksjoner basert 

på det absorberte datasettet hadde generelt mindre bias enn prediksjoner basert på DYD. 
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DNA - Deoxyribonucleic Acid 

DYD – Daughter Yield Deviations 

G-BLUP – Genomic Best Linear Unbiased Prediction 

GEBV – Genomic Estimated Breeding Value 

G-matrix – Genomic Relationship Matrix 

GS – Genomic Selection 

HD – High Density (777k) 

INDEL – Insertion and Deletion 

LD – Linkage Disequilibrium 

LE-MAS – Linkage Equilibrium Based Marker Assisted Selection 

MCMC – Markov Chain Monte Carlo  

Ne – Effective Population Size 

QTL – Quantitative Trait Loci 

RR-BLUP – Ridge Regression Best Linear Unbiased Prediction  

SNP – Single Nucleotide Polymorphism  

SS-GBLUP – Single-step Genomic Best Linear Unbiased Prediction 

TS – Traditional Selection 

WGS – Whole Genome Sequence 



 

 



 

XVII 
 

LIST OF PAPERS 

This thesis is based on the following manuscripts, which will be referred to in the text by their 

Roman numerals.   

I. O. O. M. Iheshiulor, J. A. Woolliams, X. Yu, R. Wellmann, T. H. E. Meuwissen. 

Within- and Across-breed Genomic Prediction Using Whole-genome Sequence 

and Single Nucleotide Polymorphism Panels 

(Submitted to Genetic Selection Evolution) 

 

II. O. O. M. Iheshiulor, J. A. Woolliams, M. Svendsen, T. Solberg, and T. H. E. 

Meuwissen. Comparison of Genomic Prediction Methods Using Medium- and 

High-density Single-nucleotide Polymorphism Datasets in Norwegian Red 

Cattle 

       (Manuscript)  

 

III. O. O. M. Iheshiulor, J. A. Woolliams, and T. H. E. Meuwissen. The Absorption of 

Large numbers of Ungenotyped Descendants in Genomic Predictions 

       (Manuscript)  



 

 



INTRODUCTION 

 

1 
 

1. GENERAL INTRODUCTION  

1.1. Genomic Selection  

Natural variations (environmental or at genome level) existing within livestock species, within 

a breed and within a population formed the basis for animal breeding and genetics (Eggen, 

2012). For decades, breeding value estimation of selection candidates depended on phenotype 

and pedigree (TS) without emphasis on the underlying genes acting on the trait. TS was 

successful especially for easy-to-measure production traits with high heritability (e.g. milk 

yield) and in animals having short generation interval with large numbers of offspring (e.g. 

chicken, fish). However, for traits with very low or low heritability (e.g. fertility), not easy-to-

measure traits (e.g. disease resistance), sex limited traits (e.g. calving ability), and animals 

having long generation interval, genetic progress is slow (Goddard and Hayes, 2007; Eggen, 

2012; Meuwissen et al., 2013).  

Animal breeding is today being revolutionised by Genomic Selection (GS). A selection method 

that allows selection of breeding animals on the basis of genetic value predicted with genetic 

markers covering the genome (Meuwissen et al., 2001). This advancement has been propelled 

by availability of statistical methodologies, discovery of large numbers of SNPs as well as 

availability of affordable dense genome-wide marker panels (Goddard et al., 2011; Meuwissen 

et al., 2013). On the other hand, its wide acceptance is due to its potential to improve selection 

accuracy while decreasing infrastructural costs, reducing generation intervals, and exploiting 

new sources of polymorphisms (Dekkers, 2004; Schaeffer, 2006) and thereby resulting in faster 

genetic progress. The unique features of GS that distinguishes it from other type of marker-

assisted selection (e.g. LE-MAS) are: 1) it’s based on markers covering the whole genome with 

an aim to use the best estimate of the effect of each marker and thereby resulting in the best 

estimate of the breeding value of individuals; 2) potentially all genetic variance are explained 

by markers; 3) assumes all QTL effects are explained by a set of markers that are in LD with 
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the QTL thereby maximizing the proportion of genetic variance explained by the SNP; 4) 

phenotypes of selection candidates (validation population) are not needed; 5) GEBV is the sum 

of SNP effects across the entire genome; (Goddard and Hayes, 2007; Meuwissen et al., 2013).  

GS was pioneered in the dairy cattle sector because of its potential to achieve high accuracy for 

non-phenotyped bulls, thereby reducing generation intervals through reducing the need for 

progeny testing. This has been implemented using panels of SNPs distributed over the genome 

and various commercial bovine SNP chips are available with densities ranging from 3k to 777k 

(HD). So far, results of several GS studies in livestock show that GEBVs can be significantly 

more accurate than that from TS (see review, Meuwissen et al. (2013)). Dairy cattle populations 

such as Holsteins have benefitted greatly from GS in the accuracy of evaluation due to their 

large reference population and low Ne, but the impact of GS on numerically small breeds (e.g. 

Norwegian Red), sometimes with larger Ne, is much less. This is often exacerbated by a greater 

emphasis on functional traits in these breeds and typically, such traits have lower heritabilities 

than production traits. 

1.2. Factors Driving the Accuracy of Genomic Predictions  

GS enables the selection of young animals thereby reducing generation intervals especially in 

cattle breeding. Hence, accuracy of breeding values is of key importance for successful 

application of GS. Many factors influence the accuracy of GS. They are: 1) size of the reference 

population; 2) level of LD between markers and QTL (related to Ne i.e. small Ne, high LD and 

vice versa); 3) marker density; 4) level of relationship between reference and validation 

population; 5) heritability of the trait under investigation; 6) genetic architecture of the trait; 

and 7) prediction method; (Meuwissen et al., 2001; Calus et al., 2008; Solberg et al., 2008; 

Goddard, 2009; Hayes et al., 2009; Luan et al., 2009; Meuwissen, 2009; Coster et al., 2010; 

Daetwyler et al., 2010; Habier et al., 2010; Wientjes et al., 2013). The aforementioned authors 

and a lot of others have shown that improving most of these factors results in increased accuracy 
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of GS.  It is also important to note that these factors differ between within- and across- breed 

predictions. Across-breed predictions suffer much more from low across population LD than 

within-breed predictions. The reasons why across-breed predictions are less accurate are 

explained in detail in the next section.  

1.3. Across- and Multi- Breed Prediction 

One of the major factors affecting accuracy of GS is the size of reference population (Hayes et 

al., 2009; Daetwyler et al., 2010). Accuracy increases with increasing numbers of reference 

animals (Goddard, 2009). Numerically small dairy populations are faced with the problem of 

small reference populations. To ameliorate the problem of insufficient reference population 

animals, pooling of related breeds has been proposed.  However it has not been very successful 

due to: 1) non-persistent SNP-QTL LD across populations; 2) low genetic relationships between 

populations; 3) difference in allele substitution effects across populations which results in 

difference in genetic variance; 4) QTL segregating in one population may not be segregation in 

the other population, thereby resulting in differences in the genetic variance explained by that 

QTL across populations; (De Roos et al., 2009; Goddard and Hayes, 2009; Hayes et al., 2009; 

Habier et al., 2010; Clark et al., 2012; Wientjes et al., 2013; Wientjes et al., 2015). In studies 

where prediction equations have been setup in one population and then used to predict GEBVs 

of animals in another population, zero or close to zero accuracies have been reported. While in 

the case of multi-breed reference population using 50k or 777k, only slight improvements in 

prediction accuracy have been reported (e.g.  (Erbe et al., 2012; Zhou et al., 2013; Hoze et al., 

2014; Zhou et al., 2014a; Zhou et al., 2014b)). This has resulted in GS being focused more on 

within breeds/populations predictions. The use of WGS data for genomic prediction in these 

populations maybe a way to improve accuracy since it will contain all possible variants 

including the causal mutations. 
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1.4. Whole Genome Sequence Dataset  

To date, the HD (777k) SNP panel is the most dense panel in the dairy cattle sector, however 

much increase in prediction accuracy has not been observed in the transition (by either 

genotyping or imputation) from 50k to HD. Solberg et al. (2011) and Su et al. (2012) compared 

the use of HD to the 50k SNP panel and reported small or no gain in accuracy or gains for only 

some traits. Hence, we need to move beyond SNPs to capturing all possible variations (rare or 

common) in a population. With the present trends of advancement in next generation 

sequencing technologies as well as decreasing cost of DNA re-sequencing, WGS data on large 

numbers of individuals maybe within reach. Currently the 1000 genome bull project provides 

a platform for possible imputation of sequence data on (densely) genotyped animals (Hayes et 

al., 2012). Its availability provides new opportunities for GS especially in the area of across- or 

multi- breed predictions. WGS data differs fundamentally from current dense SNP-panel data 

in that the causative mutations are included, and offers more than just SNPs,  i.e. also Indels, 

CNV and other polymorphisms may be included. If all individuals in a population could be 

sequenced, all the genomic variants (including causal mutations) in the population could be 

captured which invariably explains more of the variation. Hence, predictions would no longer 

have to completely depend on LD between SNPs and QTL and this could lead to increased 

accuracy of GS (Meuwissen and Goddard, 2010; Hayes et al., 2014). In situations of incomplete 

LD, and considering the fact that marker density alongside LD between QTL and SNP has an 

important effect on the accuracy of GS, use of WGS data could improve GS since it does not 

need to rely on LD between flanking markers and QTL thereby providing better signals even 

in across  diverged population prediction (Calus et al., 2008; De Roos et al., 2009; Goddard, 

2009; Harris and Johnson, 2010). In the case of across-breed predictions, the use of WGS data 

would reduce or remove reliance on SNP-QTL associations, which may not persist across the 

breeds being evaluated (Hayes et al., 2014). 
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1.5. Genomic Prediction Methods  

Unlike the traditional animal breeding where consensus exist on methods for estimating 

breeding values, the era of GS is confronted with a variety of methods and no consensus exist 

on which is the best approach. GS methods can be broadly classified into two groups: variable 

and non-variable selection methods (Daetwyler et al., 2010). G-BLUP which has been shown 

be equivalent to RR-BLUP (Meuwissen et al., 2001; Habier et al., 2007; VanRaden, 2008) is a 

typical example of the non- variable selection method while the Bayesian methods (e.g. 

BayesA/B/C etc.) and others make up the variable selection methods. A major difference 

between methods lies in their assumptions about the marker effects, and details of each method 

have been reviewed by (Neves et al., 2012; De Los Campos et al., 2013). While simulation 

studies have shown the variable selection methods to have an edge over the non-variable 

selection methods, much difference has not been observed in empirical studies except in cases 

where major genes control the trait (e.g. the DGAT1 gene in bovine, which controls fat 

percentage). As shown by Daetwyler et al. (2010) the numbers of QTL in relation to the 

structure of the genome plays a major role in this discrepancy.  

Presently, a good number of GS methods focus on genotyped individuals and involves multiple-

step procedures in estimation of breeding values (Legarra et al., 2009; Christensen and Lund, 

2010; Meuwissen et al., 2011). However, it is not common that all individuals in a given 

population are genotyped. The need to accommodate both genotyped and un-genotyped 

individuals led to the single-step method that combines pedigree and genomic information via 

a special relationship matrix called H-matrix (i.e. a combination of the A-matrix and G-matrix) 

(Legarra et al., 2009; Christensen and Lund, 2010). Legarra et al. (2014) have reviewed the 

performances so far as well as the drawbacks of single-step approach in real data.  
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Generally, in practical implementation of GS, G-BLUP is used for estimation of breeding 

values because of its simplicity and low computational demands. However, methods that are 

more efficient are needed in-order to take advantage of: 1) the different information sources in 

genomic data; 2) thousands of phenotyped but ungenotyped animals in the population; 3) multi-

breed reference populations; and 4) WGS dataset since it would contain much more variants 

than the present SNP dataset. 
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2. AIM AND OUTLINE OF THIS THESIS    

The overall aim of this thesis was to explore strategies to improve the accuracy of genomic 

prediction in numerically small cattle breeds.  The specific objectives were to: 

 Evaluate the benefit of WGS data relative to different SNP densities under varied 

genetic architectures and genetic models for the estimation of breeding values in small 

populations 

  Investigate the effect of simultaneously exploiting relationship information and linkage 

disequilibrium on accuracy of genomic prediction compared to focusing on relationship 

information or linkage disequilibrium 

 Evaluate how to utilize ungenotyped animals in the population for genomic prediction  

Following the specific objectives: 

 Paper I assessed how much predictive ability is gained by using WGS data under varied QTL 

density and heritability compared to different SNP densities with emphasis on diverged dairy 

breeds of small populations with large Ne (>100). Also assessed was the relative performance 

of a non-variable selection method and a variable selection method. 

Paper II evaluated an iterative method (referred to as GBC) that combines relationship 

information using the G-BLUP approach and LD between QTL and neighbouring SNPs using 

the BayesC approach for genomic prediction. GBC performance was compared to other 

evaluation methods using 50k and HD SNP panels. 

Paper III proposed and evaluated an approach to absorb phenotypic information on large 

numbers of ungenotyped animals into mixed model equations of genotyped animals so that all 

information can be utilized in predictions. Predictions were then done using either DYD’s or 

the resulting pseudo-records from absorption as response variables. 
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3. BRIEF SUMMARY OF PAPERS   

3.1. PAPER I  

Within- and Across-breed Genomic Prediction Using Whole-genome Sequence and 

Single Nucleotide Polymorphism Panels 

With decreasing costs, and current advances in next generation sequencing technologies, WGS 

data on large number of individuals is within reach. Its availability provides new opportunities 

for GS and these need to be explored. Hence, this simulation study investigated how much 

predictive ability is gained by using WGS data under varied QTL density (45 or 132 

QTL/Morgan) and heritability (0.07 or 0.30) compared to different SNP densities with emphasis 

on diverged dairy cattle breeds of small populations. Relative performance of SNP-BLUP, and 

MixP (a method that fits a mixture of two normal distributions for SNP effects using the Pareto 

principle) was also evaluated. Genomic predictions were based on within and across population 

predictions as well as using multi-breed reference populations. 

Main results:  

 WGS data for within-population genomic prediction resulted in small to large increases 

in accuracy for lowly - moderately heritable traits.  

 Up to 13% increase in accuracy was observed depending on the heritability, marker and 

QTL density. In comparison to the lowest simulated marker density, the increase was 

as much as 24-31%.  

 The advantage of WGS data was more pronounced with reference populations 

combined across breeds and when using MixP.  

 While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as 

MixP when QTL density increased to 132 QTL/Morgan.  
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Conclusion  

Genomic prediction in numerically small cattle populations could benefit from a combination 

of WGS data, multi-breed reference populations, and variable selection methods. 
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3.2. PAPER II:  

Comparison of Genomic Prediction Methods Using Medium-density and High-density 

Single-nucleotide Polymorphism Datasets in Norwegian Red Cattle 

GS enables the selection of young animals thereby reducing generation intervals especially in 

cattle breeding programs. Hence, accuracy of breeding values is of key importance for 

successful application of GS. Presently, many methods are available for genomic prediction, 

and they can be broadly classified into two groups: variable and non-variable selection methods. 

Both methods are presently treated as distinct approaches. Thus, this study evaluated an 

iterative method (called GBC) that incorporates aspects of both methods and compares its 

performance to A-BLUP, G-BLUP, and MixP. Prediction methods were evaluated using 

Imputed 50k and HD SNP dataset. 

Main results: 

 With the 50k SNP dataset, GBC was more accurate than G-BLUP for all traits while in 

comparison to MixP, it was slightly less accurate.   

 With the HD SNP dataset, GBC also performed better than G-BLUP and slightly better 

than  MixP, except for fat yield where it performed better than both methods.  

 MixP outperformed G-BLUP in all traits studied and was slightly better than GBC in 

most cases. 

 A-BLUP, which is pedigree-based, yielded significantly less accurate results in 

comparison to the genomic methods.    

 Generally, the results show that incorporating aspects of both non-variable and variable 

selection methods can improve accuracy of genomic prediction over commonly used 

method, G-BLUP. 
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Conclusion  

GBC is quite a flexible tool in the sense that it simultaneously incorporates aspects of variable 

and non-variable models, thereby exploiting family relationship while also accounting for genes 

of large effects. MixP on the hand seems to strike a good balance between genes of large and 

small effects using the Pareto principle. The application of both methods in genomic prediction 

merits further exploration. 
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3.3. PAPER III 

The Absorption of Large Numbers of Ungenotyped Descendants in Genomic Predictions 

The utilization of all available information could lead to more accurate and less biased 

predictions. SS-GBLUP exploits all available information, however, its extension to the 

variable selection models is not straightforward. Thus, we evaluated an absorption approach 

that absorbs phenotypic information of large numbers of ungenotyped animals into the mixed 

model equations of genotyped animals in-order to enable the utilization of all information in 

variable selection methods of genomic prediction. Various prediction methods (including 

variable selection method) were implemented using DYD’s or the resulting pseudo-records 

from absorption as response variables. 

Main results:  

 With DYD dataset, the evaluation methods performed as follows: A-BLUP (0.427 – 

0.491)< G-BLUP (0.575 – 0.652)< GBC (0.580 – 0.664).  

 With Absorbed dataset, the evaluation methods performed as follows: A-BLUP (0.429 

– 0.511)< SS-GBLUP (0.558 – 0.656)<GBC (0.561 – 0.665)<G-BLUP (0.565 – 0.667).  

 Comparison of performance between using DYD and Absorbed dataset showed that 

differences in accuracy between the both datasets were not statistically significant, but 

were on average slightly higher for the Absorbed dataset for A-BLUP, whilst the 

opposite was found for G-BLUP, GBC, and SS-GBLUP. In terms of bias, predictions 

based on the Absorbed dataset were generally less biased.  

Conclusion 

An approach to absorb phenotypic information on large numbers of ungenotyped animals into 

mixed model equations of genotyped animals was proposed and evaluated. On the Absorbed 
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dataset obtained from absorption, the methods performed as follows: A-BLUP<SS-

GBLUP<GBC<G-BLUP. Implementation of a variable selection method for genomic 

prediction on the Absorbed dataset did not show an extra advantage.  Overall, the utilization of 

all available information led to less biased predictions.
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4. GENERAL DISCUSSION  

In recent years, GS has been implemented in livestock, especially in the dairy cattle sector. 

While dairy cattle populations such as Holsteins have benefitted greatly from GS in the 

accuracy of evaluation due to their large reference population size and low Ne, the impact of 

GS on numerically small breeds, sometimes with small reference population size and larger Ne, 

is much less. This thesis explored possibilities to increase accuracy of genomic prediction in 

numerically small dairy cattle breeds. However, the findings can be applied to other breeds or 

populations. In Paper I, a combination of WGS data, multi-breed reference populations, and 

variable selection methods, were found to give substantial increases in accuracy of genomic 

prediction compared to the SNP panels. In Paper II, GBC (a method that incorporates aspects 

of G-BLUP and BayesC approaches) improved accuracy of genomic prediction over the 

commonly used method, G-BLUP. MixP (a method that fits a mixture of two normal 

distributions for SNP effects using the Pareto principle) outperformed G-BLUP for all traits 

studied and performed slightly better than GBC in most cases. In Paper III, absorption of 

millions of phenotypic information on ungenotyped animals into mixed model equations of 

genotyped animals and their ancestor did not result in an extra gain in accuracy but led to less 

biased predictions.  

This general discussion will address in addition to the evaluated possibilities, other way(s) to 

increase accuracy of genomic prediction in numerically small breeds, including their possible 

challenges.   

4.1. Maximizing the Accuracy of Genomic Prediction  

Achieving a prediction accuracy close to 1 is the target for genomic prediction. This is yet to 

be achieved, even with the increasing marker densities (50k to HD and in the near future WGS 

data on large numbers of individuals will be available). For production traits (often moderately 

to highly heritable), prediction accuracies have not exceeded 0.84 (Pryce and Daetwyler, 2012; 
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Ducrocq and Wiggans, 2014), while for health and functional traits (often lower heritability), 

prediction accuracies are even much lower. Marker densities have increased drastically, and 

numbers of genotyped animals are rising sharply. Increasing marker density results in higher 

LD between SNPs and QTL, however, it also results in an increased number of uninformative 

SNPs and a linear function of the uninformative SNPs may predict random errors in the 

reference phenotypes (Harris and Johnson, 2010). So in order to maximize accuracy, reference 

population size has to be increased considerably. This is quite important because having large 

numbers of reference animals would mean having sufficient phenotypic data to detect causative 

mutations and to distinguish their effects from random noise (De Roos, 2011). The Holstein 

breed due to their global presence is more fortunate than the numerically small breeds with 

respect to reference population size. And this has resulted in higher prediction accuracies than 

achieved by numerically small breeds. However, there is still a need for improvement in 

prediction accuracy in both the Holstein population and the numerically small breeds. Increased 

reference population size among other factors will be instrumental to improving or achieving a 

prediction accuracy close to 1.     

Assuming that marker density is high enough to capture all genetic variance, the amount of 

phenotyping and genotyping needed to maximize or obtain a prediction accuracy close to 1 

under varied numbers of reference population size, heritability, and Ne is shown in Figure 1. 

Calculations are based on theoretical expectations of Daetwyler et al. (2008) and Daetwyler et 

al. (2010), i.e. 𝑟 =  √𝑁ℎ2 (𝑁ℎ2 + 𝑀𝑒)⁄ , where 𝑁 is the size of the reference population (i.e. 

phenotyped and genotyped individuals), ℎ2  is the heritability of the trait and 𝑀𝑒 is the effective 

number of chromosome segments calculated as 𝑀𝑒 =  2𝑁𝑒𝐿 ln(4𝑁𝑒𝐿)⁄ , (Goddard, 2009), 

where 𝑁𝑒 is the effective population size and 𝐿  is the length of chromosome. From Figure 1, it 

can be seen generally that with increasing numbers of phenotyped and genotyped animals, 

accuracy of prediction increased too. The degree of increase in accuracy of prediction also 
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depended on  𝑁𝑒 and ℎ2 of the trait. The scenario of  𝑁𝑒 = 100 represents the Holstein 

population and   𝑁𝑒 >100 represents the numerically small breeds. While about 5,000 

phenotyped and genotyped animals are required to obtain appreciable accuracies of prediction 

for the moderate to highly heritable traits, 10,000 or more are required to obtain an accuracy 

close to 1. In the case of lowly heritable traits, a lot more phenotyped and genotyped animals 

are required.  Such huge reference population sizes are not easy to assemble especially in 

numerically small breeds. Hence, the need for strategies to increase their reference population 

size and possibly increase accuracy of predictions. Proposed strategies are discussed in 

subsequent sections.  

4.1.1. Multi-breed Reference Populations  

The first possibility of increasing reference population size in numerically small breeds is by 

combining reference populations of breeds that are genetically related (De Roos et al., 2009). 

For instance in the Nordic countries, a combination of Norwegian Red, Swedish Red, Finnish 

Ayrshire, and Danish Red since they have been reported to share relationships from previous 

semen exchange programs (Bett et al., 2010; Olsen et al., 2011; Zhou et al., 2014a). Although 

combining related breeds sounds quite appealing, it has not been very successful compared to 

within-breed predictions when using SNP panels due to the reasons mentioned in the general 

introduction (section 1.3). As reported by several studies (e.g. Zhou et al. (2013); Hoze et al. 

(2014); Zhou et al. (2014a); Zhou et al. (2014b)) and Paper I, only slight or no improvement 

in prediction accuracy was achieved using the SNP panels. In addition, Paper I of this thesis 

under different scenarios showed that higher prediction accuracy could be obtained when using 

a combination of WGS data and multi-breed reference population in comparison to using the 

SNP panels.  

WGS data differs from SNP data in the sense that it contains all genomic variants (causative 

mutations included) and this makes it less dependent on SNP-QTL associations, which may not 
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persist across-breeds. The presence of the causative mutations in WGS data enhances the 

possibility of picking up similar causative mutations segregating between populations and also 

having comparable effects (Hayes et al., 2014), while combining related breeds increases the 

reference population size. Hence, the observed substantial increase in accuracy of prediction. 

The simulated dataset in Paper I was based on the scaling argument of (Meuwissen, 2009; 

Meuwissen and Goddard, 2010), hence, only 1 chromosome of 1 Morgan was simulated. So to 

translate the results to real application, larger numbers of reference animals would be required. 

For numerically small populations, this can be achieved through combining reference 

populations of related breeds. Since the sequencing of thousands of animals is still not cheap, 

it is recommended to sequence key ancestors or the most prominent animals and then impute 

the rest of the population that are sparsely genotyped up to sequence (Hayes et al., 2013). 

Strategies for selecting individuals to be sequenced or densely genotyped can be found in Druet 

et al., 2014 and Xijiang et al., 2014. 

4.1.2. Combined Bull and Cow Reference Populations 

 In dairy cattle breeding, the bulls have more impact than the cows and provide high predictive 

accuracy as a result of the large amount of information from their daughters averages (Calus, 

2010; Jimenez-Montero et al., 2012). To this effect, GS as well as genotyping has focused more 

on bulls. However, the number of bulls available especially in the numerically small breeds are 

likely not enough to constitute a sufficiently large reference population. Possibly all available 

bulls have been genotyped but there is still a need to increase the reference population. The cow 

population is often larger than that of the bulls and thus, can be used to make up the reference 

population and possibly increase prediction accuracy. Inclusion of cows could also provide 

more information for the lowly heritable traits such as health and functional traits as well as 

novel traits (Calus et al., 2013a; Egger-Danner et al., 2014). However, to maximize the expected 
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gain from a combination of bulls and cows in the reference population, some issues have to be 

resolved. 

Cow evaluations are much less accurate than those of progeny-tested bulls (Wiggans et al., 

2011; Ding et al., 2013; Su et al., 2015). In a cow’s evaluation, yield deviations are often used 

as the phenotypic information while in the case of the bulls, DYD’s or de-regressed proofs are 

often used. While yield deviations are based on a weighted average of the cow’s own 

performances adjusted for all effects other than the genetic effect, DYD’s on the other hand are 

based on the average performance of each bull’s daughters, adjusted for all fixed and non-

genetic random effects of the daughters and genetic effects of their mates (VanRaden and 

Wiggans, 1991; Liu et al., 2004). Hence, the first issue that arises when combining bulls and 

cows in the reference population is how to combine both information sources. Measures 

deployed thus far to handle this issue includes:  1) considerably increasing the information from 

cows by genotyping and including a large number of cows to the bull reference population (Su 

et al., 2015); 2) fitting a bivariate model where the analyzed trait is measured only on a cow or 

a bull reference population, or recorded on both (for details see Calus et al. (2013b)); 3) 

adjustment of the mean and variance of cow Mendelian sampling component (i.e. EBV minus 

parent average) to be similar to those of bulls (for details see Wiggans et al. (2011)). The 

approach of Su et al. (2015) has been evaluated in Danish Jersey population, that of Calus et al. 

(2013b)  in Holstein population from 4 countries, and that of Wiggans et al. (2011) in Holstein 

and Jersey population in USA.  All 3 studies and others reported an increased prediction 

accuracy when genotyped cows were added to bulls reference population. The absorption 

approach in Paper III is also a way to utilize bulls and cows information in a single reference 

population. The absorbed records which results from the absorption process are based on 

traditional EBV’s and their reliabilities and information sources are weighted accordingly. 

Thus, the issue of difference in information between the bulls and cows is properly accounted 
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for. Further investigations possibly comparing these mentioned strategies to clarify the optimal 

way to jointly utilize bulls and cows information in a single reference population, would be 

beneficial, both for increasing prediction accuracy as well as producing unbiased genomic 

predictions. 

A second issue that might arise when using combined cow and bull reference population is 

double counting of contributions of the cows. This situation arises when cows are included with 

their phenotypes in the analyses, and at the same time contribute to the DYD of the bulls that 

are included in the analysis (Calus et al., 2013b). Such situation could result in biased or 

overestimation of predictions (Calus et al., 2013b; Su et al., 2015). As a remedy, both authors 

recommended that either daughters of included bulls should be removed from the data or DYD 

should be estimated excluding information of daughters that are included as cows in the 

analysis. 

Although genotyping costs are decreasing, genotyping all or thousands of animals in the 

population is still not cheap and economically viable, and the genotyping of historical animals 

may be impossible, if no DNA was preserved. Therefore, the third issue that arises with 

including cows to the reference population is which cow(s) should be genotyped.  Jimenez-

Montero et al. (2012) evaluated five different female-selective genotyping strategies (i.e. 

random selection, two-tailed selection by yield deviations, two-tailed selection by breeding 

value, top yield deviation selection, and top breeding value selection) to increase the accuracy 

of genomic prediction in populations that have a limited number of bulls with a large number 

of progeny. They concluded that for small cattle populations, the two-tailed selection strategies 

(i.e. genotyping cows on both tails of the distribution based on preferably yield deviations but 

breeding values can also be used in the case of high heritability traits) were advantageous while 

the random selection strategy was advised for larger populations. A two-tailed selection strategy 

enables a better representation of the entire herd or population and removes any possible bias 
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that might arise because of preferential treatment (Buch et al., 2012; Calus et al., 2013b; 

Thomasen et al., 2014). Jimenez-Montero et al. (2013) demonstrated that the selection and 

inclusion of cows with high estimated breeding values or yield deviations resulted in the lowest 

prediction accuracy, while Dassonneville et al. (2012) demonstrated that inclusion of elite 

females in the reference population led to overestimated predictions for production traits due to 

biased phenotypes, although this may depend on the breeding value estimation method. So, in 

essence, it may be advantageous that the cows genotyped should be a representation of the 

entire population. In addition to that, it is also important that the relationship between animals 

in the reference population be minimized, while the relationship between animals in the 

reference and selection candidates should be maximized (Buch et al., 2012; Pszczola et al., 

2012; Thomasen et al., 2014). Maximizing the genetic relationship between reference and 

selection candidates results in increased accuracy of genomic prediction (Habier et al., 2007).  

An alternative to densely genotyping all selected cows, would be to densely genotype some 

cows while the remaining are sparsely genotyped and then imputed up to high density. This 

approach will lead to reduced genotyping costs and enable that more cows are genotyped. 

Several strategies for prioritizing animals for dense genotyping have been evaluated by Xijiang 

et al. (2014). They concluded that methods such as MCA and MCG, which minimize the 

conditional genetic variance of the target animals, using either the pedigree-based relationship 

matrix (MCA), or a genomic relationship matrix based on sparse marker genotypes (MCG) 

were optimal procedure for prioritizing animals for dense genotyping.  

4.1.3. Utilization of Ungenotyped Individuals  

An area of genomic prediction currently receiving much attention is the utilization of 

information from ungenotyped animals alongside genotyped animals in prediction. This has 

become of interest because: 1) it is not common that all animals in a population are genotyped; 

2) there are a lot more phenotyped animals than genotyped animals; and 3) exploiting all 
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available information could lead to more accurate and less biased predictions since no 

information is lost. On the other hand, for lowly heritable traits, and numerically small 

populations the utilization of all available information is beneficial. SS-GBLUP enables the 

utilization of all available information (Legarra et al., 2009; Christensen and Lund, 2010). It 

simultaneously combines information of both genotyped and ungenotyped animals by 

integrating genomic, pedigree, and phenotype information. Quite a number of studies have 

shown SS-GBLUP to result in slightly higher prediction accuracy and most importantly, less 

biased predictions. In Paper III, SS-GBLUP yielded similar results to other genomic prediction 

methods on an absorbed dataset.  

Just like SS-GBLUP, the absorption approach proposed and evaluated in Paper III, enables the 

utilization of all available information. As an extra, variable and non-variable selection methods 

based genomic prediction can be implemented on the resulting data from the absorption process. 

The absorption approach being a prelude to genetic analysis enables us to circumvent dealing 

with thousands or millions of records from ungenotyped animals during genetic analysis. Thus, 

it reduces the computational burden in the sense that it enables genetic analysis to focus only 

on genotyped animals and their ancestors while still making use of the all information from 

their descendants. 

4.2. Genomic Prediction Methods 

The importance of prediction methods in GS cannot be overemphasized considering that the 

effects of thousands of SNPs (millions in the case of WGS data) have to be estimated accurately 

with a much smaller number of phenotypic records. While G-BLUP, which is commonly used 

because of it uncomplicated nature and low computational demand assumes that the a-priori 

variance of SNP effects is equal, the variable selection methods (such as BayesA/B/C/R etc.) 

assume that most SNPs have small or zero effects and a few have large effects.  
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As we move towards across-breed prediction (i.e. using a multi-breed reference population) 

especially for the numerically small breeds and the availability of WGS data on large numbers 

of individuals, prediction methods would prove very useful in achieving the intended aim, 

which is increased prediction accuracy. In the case of across-breed prediction, relationships as 

well as LD is expected to weaken depending on how long populations have diverged. While in 

the case of using WGS data for genomic prediction, the effects of millions of variants would 

need to be accurately estimated. In both cases, G-BLUP is unlikely to be optimal since: 1) it 

focuses more on exploiting family relationships in a given population (Habier et al., 2007; 

Odegard and Meuwissen, 2014; Odegard et al., 2014);  and 2) it’s a-priori assumption of equal 

variance makes it difficult for a single SNP to capture the effect of a causative mutation rather 

the effects are distributed across many SNPs not minding whether they are informative or 

uninformative (Hayes et al., 2014).  

Alternatively, variable selection methods are expected to be more accurate since: 1) they are 

much more able to utilize LD information than G-BLUP (Habier et al., 2007); and 2) their a-

priori assumption of SNP effects allows that most SNPs have small or zero effects and only a 

few have large effects. This approach not only makes that the focus is on picking up and 

utilizing SNPs with large effects or the actual causative mutation but it also enables that the 

effects of causative mutations are not distributed  across several SNPs in moderate LD with the 

causative mutation (Hayes et al., 2014). Studies using either a multi-breed reference population 

or WGS data have reported an increased prediction accuracy from variable selection methods 

over G-BLUP (Meuwissen and Goddard, 2010; Clark et al., 2011; Erbe et al., 2012; Hoze et 

al., 2014; MacLeod et al., 2014; Zhou et al., 2014a). In Paper I, we showed that variable 

selection method performed better than G-BLUP using WGS data and a multi-breed reference 

population.  
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Despite the fact that studies have shown the variable selection methods to give (slightly) higher 

prediction accuracy than G-BLUP, they are not commonly used in routine genetic evaluations. 

The reason being that most variable selection methods are based on MCMC algorithms, which 

makes them quite time consuming and computational demanding. Alternatives to the MCMC 

based variable selection methods are iterative methods such as fastBayesB (Meuwissen et al., 

2009), MixP (Yu and Meuwissen, 2011), and emBayesR (Wang et al., 2015). The authors have 

tested the methods on both simulated and real data. All methods were reported to perform better 

than G-BLUP in terms of prediction accuracy and similar to BayesB and BayesR, respectively. 

In terms of computational time, the non-MCMC based were much faster than the MCMC based 

methods, however, comparable to G-BLUP. In this thesis, MixP outperformed G-BLUP in 

Paper I and Paper II. Results from Paper II and Paper III also shows that incorporating 

aspects of G-BLUP and BayesC into a single model improved accuracy of prediction over G-

BLUP in some cases. Hence, we conclude that for routine genomic evaluations, the iterative 

variable selection methods can be considered, although they need to be further developed for 

multi-trait evaluations since routine genomic evaluations are often multi-trait. 
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5. CONCLUSIONS  

Genomic selection offers great opportunities to further increase the rate of genetic progress in 

livestock and plants. Accurate predictions are essential for its successful implementation. 

Improving or maximizing the accuracy of genomic prediction is possible, however, its success 

depends on a combination of factors.  

To maximize the accuracy of genomic predictions in numerically small breeds: 

 Increased reference population size is crucial and this can be done by combining 

reference populations of genetically related breeds or including genotyped cows to the 

reference population. The utilization of phenotyped but ungenotyped animals is also an 

option. 

 Higher marker density such as WGS data will be essential for the use of combined 

reference populations, since the across population LD between markers and QTL 

extends only across short distances. WGS data will remove or reduce dependencies on 

marker - QTL association since the causative mutations are in the data. 

 Variable selection methods are highly needed in this era of increasing marker density 

and more animals being genotyped since G matrices hardly improve by marker densities 

beyond ~1000 SNPs per Morgan, whereas variable selection methods focus on causal 

variants or those in very high LD.
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6. FURTHER RESEARCH  

Paper I was based on simulated WGS data, however, soon, imputed WGS data on large 

numbers of individuals will be available. This large volume of data will be both computationally 

demanding and statistically challenging. Hence, more robust and efficient genomic prediction 

methods are required.  

Large reference populations are a necessity for high accuracy of genomic prediction and 

pooling of related breeds is an option to achieve this. A combination of multi-breed reference 

and WGS data was shown to be quite beneficial in this thesis. This needs to be empirically 

evaluated as WGS data become available across related cattle breeds.   

Including genotyped cows to the reference population may also increase the reference 

population. A challenge is that cow evaluations are much less accurate than progeny-tested 

bulls. Therefore, further investigations possibly comparing the strategies mentioned under 

general discussion (section 4.1.2.) to identify the optimal way to jointly utilize bulls and cows 

information in a single reference population, would be beneficial, both for increasing prediction 

accuracy as well as producing unbiased genomic prediction. 

Genomic prediction utilizes genetic relationship among individuals and LD between SNPs and 

QTL as information sources. Paper II showed that methods explicitly accounting for both 

information sources slightly improved accuracy of prediction. This should be further 

investigated especially in situations where reference populations and validation individuals are 

distantly related. 

Simultaneous use of all available information is gradually becoming the trend in genomic 

prediction. Paper III on average did not show an extra gain in accuracy but less biased 

predictions were obtained using all available information. In situations, with very different 
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selection histories of the selection candidates, biases of GEBV estimations may themselves 

reduce the accuracy of GS, since the GEBV of some candidates may be differently biased than 

that of others. Further empirical studies are needed on how best to utilize the rapidly growing 

number of genotyped animals and millions of ungenotyped animals in variable selection based 

genomic prediction. 
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Figure 1 Expected accuracy of prediction under different effective population size (Ne), reference population size, and heritabilities 
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Abstract 

Background 

Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide 

polymorphisms (SNPs). However with the decreasing costs of and current advances in next-

generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of 

individuals is within reach. Availability of such data provides new opportunities for genomic 

selection, which need to be explored. 

Methods 

This simulation study investigated how much predictive ability is gained by using WGS data 

under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 

QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, 

with emphasis on divergent dairy cattle breeds with small populations. The relative 

performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection 

method with a mixture of two normal distributions (MixP) were also evaluated. Genomic 

predictions were based on within-population, across-population, and multi-breed reference 

populations. 

Results 

The use of WGS data for within-population predictions resulted in small to large increases in 

accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on 

SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was 

more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL 

densities, and time of divergence between populations) with a combined reference population 

and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP 

was as good as MixP when QTL density increased to 132 QTL/Morgan. 
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Conclusions  

Our results show that, genomic predictions in numerically small cattle populations would 

benefit from a combination of WGS data, a multi-breed reference population, and a variable 

selection method. 

Background 

Genomic selection (GS) is becoming the standard approach to generate genetic progress in 

livestock. It was pioneered in the dairy cattle sector because of its potential to achieve high 

accuracy for non-phenotyped animals, thereby reducing generation intervals by reducing the 

need for progeny-testing. It has been implemented through the use of panels of SNPs (single-

nucleotide polymorphisms) that are distributed over the whole genome, and various commercial 

bovine SNP chips are available, with densities ranging from 3k to 777k (high-density (HD) 

panels). So far, results of several GS studies in livestock that have been summarized in [1] show 

that genomic estimated breeding values (GEBV) can be significantly more accurate than EBV 

based on phenotypes. Dairy cattle such as the Holstein have greatly benefitted from GS through 

increases in the accuracy of GEBV resulting from a large reference population and low effective 

population size (Ne). However, the impact of GS on numerically small breeds, sometimes with 

larger effective population sizes, is much less significant. This is often exacerbated by the fact 

that greater emphasis is put on functional traits in these breeds, which typically have lower 

heritabilities than production traits. Solberg et al. [2] and Su et al. [3] have compared the use of 

HD to 54k SNP chips and reported small or no increases in accuracy of GEBV or increases 

only for some traits. Pooling animals from related breeds has been proposed as an option to 

overcome the small size of reference populations but has not been very successful due to non-

persistent associations between SNPs and QTL (quantitative trait loci) across breeds 

(populations), or inconsistent linkage disequilibrium (LD) between SNPs and QTL across 

populations [4-6]. 
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As a consequence of these results, progress in the genomic evaluation of dairy cattle has been 

largely based on the use of 54k SNP panels and primarily restricted to evaluations within breeds. 

However, new opportunities for GS will arise from the rapid advances in next-generation 

sequencing technologies e.g. [7], with whole-genome sequence (WGS) data becoming available 

for large numbers of individuals. Such data need to be explored for their potential in across-

breed evaluations. WGS data differ fundamentally from the current data obtained with dense 

SNP chips because all variants, such as SNPs, indels, copy number variants (CNV), etc., are 

included. Since all variants, both rare and common, are captured for a population, WGS data 

could provide more precise signals for causative mutations, both within and across families; 

hence predictions would no longer have to completely rely on linkage disequilibrium (LD) 

between SNPs and QTL. Consequently, WGS data could lead to more accurate genomic 

predictions. In the case of across-breed predictions, the use of WGS data could reduce or 

remove the need to rely on associations between SNPs and QTL which may not persist across 

the breeds being evaluated [8]. 

Although Meuwissen and Goddard [9] reported an advantage of WGS data over dense SNP 

data using simulated data, their results were restricted to within-population predictions and to 

a small number of QTL/Morgan. Therefore, the advantages of WGS data for across-breed 

predictions and divergent small populations remain largely unknown. Hence, the first objective 

of this study was to assess how much predictive ability is gained by using WGS data under 

varied QTL densities and trait heritabilities compared to different SNP densities, with emphasis 

on divergent dairy breeds with small populations and large effective population sizes (> 100). 

Secondly, we assessed the relative performance of the use of a non-variable selection method 

(SNP-based best linear unbiased prediction (SNP-BLUP)) and a variable selection method 

(MixP; [10]) for genomic prediction. 
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Methods 

Scaling of the simulated populations 

GS generally requires large training populations, and thus the simulation and analysis of WGS 

data (with millions of SNPs), which comprise many large and replicated populations over many 

generations, are computationally prohibitive. In this study, we followed the scaling argument 

used and tested by [11, 9], which is based on the equation developed by [12, 13] for expected 

accuracy of genomic prediction. According to [12, 13], the accuracy of genomic prediction 

depends on the parameter λ = Th2 ML⁄ , where T is the number of individuals with genotypes 

and phenotype in the training data, h2 is the heritability of the trait, M is the effective number 

of loci per Morgan (~2Ne), and L is the genome size in Morgan. If we scale the genome size 

down from 30 to 1 Morgan, and simultaneously reduce the training population size by a factor 

of 30,  remains constant and, thus, the accuracy of prediction will not be affected. E.g. a large-

scale simulation with 6000 training animals with 30-Morgan genomes, yields approximately 

the same accuracy of genomic prediction as a training population of 200 animals with a 1-

Morgan genome, which requires less computer resources. 

Simulation of whole-genome sequence data 

The parameters used in the simulation of the genome and population structure are summarized 

in Table 1. The simulation was based on a forward-in-time approach. A Fisher-Wright idealized 

population was simulated [14], with a mutation rate of 10-8 per bp per meiosis, assuming 1 Mb 

per cM and a historical effective population (Ne) size of 200. The simulation was conducted 

for a minimum of 1950 or 1990 generations, to create a mutation-drift-recombination 

equilibrium. Previous studies have shown that this is sufficient to establish equilibrium [15, 16]. 

At each generation, a breeding pool of 100 males and 100 females was generated, and mating 
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proceeded with random sampling of a sire and a dam for each offspring. Therefore, mutation 

and drift were the only two evolutionary forces considered. 

To simulate two diverged populations, the population was split into two to represent separate 

breeding populations, Population A and Population B. This divergence took place after either 

1950 or 1990 generations and each of the populations was simulated for a further T generations 

(T = 50 or 10), such that each population was propagated for 2000 generations. Hence, SNP 

mutations that occurred after 1950 or 1990 generations were specific to each population. After 

the divergence, only within-subpopulation matings occurred (i.e. there was no exchange of 

genetic material between sub-populations), with a Ne of 200 for each sub-population. At 

generation 2000, census size was increased to 500 individuals in each population. Among these 

500 individuals, 200 were randomly sampled and phenotypes were generated to form a 

reference population for estimation of marker effects, while the remaining 300 individuals were 

used to form a validation population, for which breeding values were predicted from their 

genotypes. 

QTL densities and datasets 

The mutation-drift process resulted on average 4648 variants that were distributed across a 1-

Morgan chromosome with a minor allele frequency (MAF) higher than 0.02 and a standard 

deviation of the number of variants of 125. All variants were treated as SNPs. Among the SNPs 

generated, 45 or 132 loci were randomly sampled and designated as causative QTL, which 

resulted in 4603 or 4516 remaining SNPs. For each population, there were on average 45 (132) 

randomly sampled QTL SNPs. All SNPs, including the QTL represented the WGS data. 

Different SNP densities were then created by randomly sampling without replacement from the 

non-QTL loci. These panels contained 3000, 2000, 1000, or 200 SNPs and were named data 



 

7 
 

data3000, data2000, data1000, or data200, respectively. These densities are equivalent to 90K, 

60K, 30K, and 6K SNP panels for a 30-Morgan bovine genome. 

Genetic and phenotypic values 

Two traits, with heritabilities of 0.30 and 0.07, were simulated for each scenario. Since for 

quantitative traits, a large proportion, typically more than half, of the total genetic variance is 

additive and responsible for most of the genetic variation within a population [14, 17], we 

assumed only an additive genetic model. An allelic effect (aj´) was assigned to the reference 

allele (allele “1”) of each QTL by sampling effects from a normal distribution. After sampling, 

their effects were standardized to achieve a total genetic variance of 1, by 𝑎𝑗 = 

 𝑎𝑗
´ √∑ 2𝑝𝑘(1 − 𝑝𝑘)(𝑎𝑘

´ ) 2𝑘  ⁄ , where subscripts k and j denote the k-th and j-th QTL, the 

summation is over all QTL, and 𝑝𝑘 is the within-population frequency of allele “1” of the k-th 

QTL. Then, the total genetic value for individual i was calculated as: 

𝑔𝑖 = ∑ 𝑥𝑖𝑗𝑎𝑗 

𝑁𝑄𝑇𝐿

𝑗=1

, 

where 𝑥𝑖𝑗 is the number of alleles “1” that individual i carries at locus j. Phenotypes were 

generated by adding environmental effects drawn from a normal distribution with a mean of 

zero and variance such that heritability was 0.30 or 0.07 in generation 2000 within each 

population. 

Design of evaluations with reference and validation populations 

In Scenario 1, predictions were calculated within population A using its own reference 

population of 200 individuals, with the remaining 300 individuals from the same population 

used for validation. In Scenario 2, across-population predictions were calculated for population 



 

8 
 

B using the reference population of population A to predict the breeding value of individuals in 

the validation population of B. In Scenario 3, predictions were based on a multi-breed reference 

population after combining the reference populations of A and B to reach a total number of 400 

individuals. Validation was performed within-breed, using 300 individuals from population A. 

This Scenario 3 can occur in practice when breeders of populations A and B combine their 

reference populations, with the aim of increasing accuracy for their own population. In Scenario 

4, we checked the impact of increasing the reference population of A in Scenarios 1 and 2 by 

increasing its size to 400 and validating it by predicting breeding values in either A or B and 

comparing it to multi-breed estimation of SNP effects. 

Estimation methods and data analysis 

Two methods were used to estimate SNP effects in the reference population: SNP-BLUP and 

MixP [10]. SNP-BLUP estimates the effects of SNPs by best linear unbiased prediction [18] 

and was implemented using a ridge regression model of the SNP effects that is equivalent to 

model 2 of VanRaden [19]. MixP is similar to BayesC [20] except that SNPs with small effects 

are assumed to explain part of the genetic variance instead of having no effect. Therefore, MixP 

assumes that SNP effects come from a mixture of two normal distributions [10], i.e. one with a 

large variance (𝜎1
2) and one with a small variance (𝜎2

2). The distribution of the total genetic 

variance (Vg) over the ‘large’ SNPs and the ‘small’ SNPs followed the Pareto principle (hence 

the P in MixP), such that 𝑥% of the SNPs with the largest effects are responsible for 

(100 − 𝑥)% of the genetic variance. Given the prior for the mixing frequency (𝜋 =  𝑥 100)⁄  

and using the Pareto principle, the variances of the large and small SNP effects are respectively: 

𝜎1
2 = 

(1−𝜋)𝑉𝑔

𝜋𝑁𝑚

𝜎2  
2 =  

𝜋𝑉𝑔
(1−𝜋)𝑁𝑚

}, 
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where 𝑁𝑚 is the total number of genotyped SNPs, such that 𝑁𝑚(𝜋𝜎1  
2 + (1 − 𝜋)𝜎2

2) =  𝑉𝑔. The 

π value used for MixP was set to 𝑁𝑄𝑇𝐿 𝑁𝑚⁄  (i.e. number of QTL simulated vs. number of SNPs 

used). A preliminary study on the optimal values of  revealed that values around 𝑁𝑄𝑇𝐿 𝑁𝑚⁄  

were close to optimal and that deviations from this value hardly affected the accuracy of 

genomic prediction.  

The linear model used to estimate SNP effects for both SNP-BLUP and MixP approaches was 

as follows: 

𝐲 = μ + ∑ 𝑿𝒋𝑏𝑗 + 𝐞

𝑁𝑚

𝑗=1

,  

where y is a Nx1 vector of phenotypes; µ is the overall mean; 𝑁𝑚  is the total number of 

genotyped SNPs; 𝐗𝐣 is a Nx1 vector of the N standardized SNP genotypes, i.e. 𝐗𝐣 =

 
−2𝑝𝑗

√2𝑝𝑗(1−𝑝𝑗)
,

1−2𝑝𝑗

√2𝑝𝑗(1−𝑝𝑗)
, 𝑜𝑟 

2(1−𝑝𝑗)

√2𝑝𝑗(1−𝑝𝑗)
  depending on the genotype of individuals i “0 0”, “1 0”, 

or “1 1”, respectively and 𝑝𝑗 is the allele frequency of SNP j; 𝑏𝑗 is the effect of the j-th SNP 

genotype; and e is a Nx1 vector of environmental effects assumed to be distributed as N(0, 𝐈𝜎𝑒
2). 

For the SNP-BLUP approach, 𝑏𝑗 is assumed to follow the distribution N(0, 𝜎𝑏
2), where 𝜎𝑏

2 is the 

SNP variance (𝜎𝑔
2 𝑁𝑚⁄ ), and for the MixP, each 𝑏𝑗is N(0, 𝜎1

2) with probability π, or 𝑏𝑗 is N(0, 

𝜎2
2) with a probability (1-π). The simulated genetic and environmental variances were used as 

parameters in SNP-BLUP and MixP. MixP used the Iterative Conditional Expectation (ICE) 

algorithm of Meuwissen et al. [21]. Full details of MixP are provided in [10]. 

After estimating SNP effects, the GEBV (𝑔�̂�)of the validation individuals (i.e. the individuals 

having only genotypic records) was predicted as: 



 

10 
 

�̂�𝑖 = ∑ 𝑋𝑖𝑗�̂�𝑗 ,

𝑁𝑚

𝑗=1

 

where 𝑋𝑖𝑗 is the standardized SNP genotype of individual i for SNP j; and 𝑏�̂� is the estimate of 

the SNP effect. The correlation between true (𝑔𝑖) and estimated genetic value (𝑔�̂�) was used as 

a measure of the accuracy of prediction.  

Replication strategy 

Simulation procedures were replicated 30 times. Propagation of populations A and B over 2000 

generations was repeated 30 times with T = 10 and 45 QTL, and 30 times with T = 10 and 132 

QTL. A further 60 full replications of the populations were carried out with T = 50, equally 

divided between 45 and 132 QTL. Genomic evaluation procedures were then carried out on 

each of these 120 replicates. The same 120 replicates were used for h2 = 0.07 and 0.30 by 

resampling the phenotypes. Thus, the results are means of 30 replicates for each T (10 or 50) 

by QTL number (45 or 132) by heritability (0.07 or 0.30) combination. Standard errors were 

computed as the standard deviation of the accuracies across the 30 replicates, divided by √30. 

Results 

Simulated populations 

Allele frequencies and QTL variances (2pqa2) differed between populations (A and B). As an 

example, Fig. 1 shows the distribution of allele frequencies for one of the simulated replicates 

(scenario of 45 QTL/Morgan and T = 10 or 50) for both populations, while Fig. 2 and 3 show 

the QTL variances. Some SNPs and QTL were fixed in both populations (result not shown). 

Figure 4 shows the average LD in the WGS dataset, measured as the squared correlation (r2) 

between adjacent SNPs and the persistency of LD phase of adjacent SNPs between the two 

populations at different times of divergence, measured as the correlation between the two 
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populations of the phased LD, r, of marker pairs. LD ranged from ~0.36 to 0.40 at genomic 

distances of 0 to 50 kb, respectively, and this trend was similar in both populations. At a 

genomic distance of 100 kb, LD dropped to about 0.25. As expected, LD decreased further with 

increasing genomic distance between SNPs (Fig. 4). Persistence of r for adjacent SNPs between 

populations was equal to ~0.85 at 50 kb for the scenario with T = 10 and ~0.65 for T = 50. This 

implies that LD of very close SNPs was more persistent between the two populations at T = 10 

than at T = 50. A gradual decline in r was observed with increasing genomic distance. For 

data3000 to data1000, r2 and r were lower (especially for data1000) as a result of the decreasing 

SNP density and increasing inter-SNP distance (result not shown). This also affected r2 and r 

results for data200. The average inter-SNP distances were equal to 21, 33, 50, 100 and 496 kb 

for the WGS data and data3000 to data200, respectively. 

Scenario 1: Genomic predictions within population A 

Accuracies of predictions for population A based on different datasets, trait heritabilities (h2), 

and QTL densities, using SNP-BLUP and MixP are in Tables 2 and 3. 

Effect of dataset 

Use of WGS data resulted in a 1 to 31 % increase in accuracy across the different SNP densities. 

In all cases, the lowest accuracies were found with the lowest SNP density, i.e. data200, while 

the highest accuracies were obtained with WGS data. The observed differences in accuracy 

between the WGS data and data1000 up to data3000 were quite small compared to that between 

the WGS data and data200. 

Effect of heritability and QTL density 

Accuracy was higher for the trait with a high heritability (0.30) and when QTL density was low. 

Increasing the QTL density from 45 to 132 per Morgan led to a decrease in accuracy regardless 
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of trait heritability, however, this decrease was greater for the trait with a heritability of 0.07 

(Tables 2 and 3). 

Effect of evaluation method 

The relative superiority of the two methods depended on QTL density and on trait heritability. 

At 45 QTL/Morgan, MixP was slightly superior to the SNP-BLUP method, however, the 

differences between both methods became smaller when the number of QTL increased to 132. 

The two methods achieved very similar accuracy for the trait with a low heritability (0.07) and 

132 QTL/Morgan. 

Tables 2 and 3 also show the relative performance of the two methods when using WGS data. 

Higher accuracies were observed when using MixP, especially at low QTL density. At a density 

of 45 QTL/Morgan, accuracy increased by 6.0 and 4.4 % with MixP compared to SNP-BLUP 

for heritabilities of 0.30 and 0.07, respectively, while at a density of 132 QTL/Morgan, accuracy 

increased only slightly by 0.9 and 0.3 %, respectively. Based on these results, it follows that the 

predictive ability of MixP decreases as the QTL densities increase, because MixP is not able to 

fully identify SNPs with larger effects, while the predictive ability of SNP-BLUP is less 

affected by increasing QTL densities because it assumes that all SNPs have equal variance. 

Scenario 2: Across-population genomic predictions  

Table 4 summarizes the accuracies obtained for the different datasets using SNP-BLUP and 

MixP when the populations have diverged for T generations. The prediction equation from 

population A was used to estimate GEBV for population B. In summary, Table 4 shows that, 

for population A, prediction accuracy was significant only when WGS data was used and 

accuracies were close to zero with the SNP densities. 
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At T = 10, prediction accuracies were significantly lower compared to those obtained when 

reference and validation individuals originated from the same population. Depending on the 

evaluation method and QTL density, accuracies ranged from 0.39 to 0.48 when heritability was 

0.30 and when WGS data were used, while accuracies were close to zero with the SNP densities, 

(Table 4). For the trait with heritability equal to 0.07, accuracies ranged from 0.21 to 0.29 when 

WGS data were used, while accuracies were again close to zero with the SNP densities. 

At T = 50, prediction accuracies were also significantly lower compared to those obtained when 

reference and validation originated from the same population and at T = 10. Accuracies ranged 

from 0.24 to 0.36 with heritability equal to 0.30 and from 0.17 to 0.20 for heritability equal to 

0.07 when WGS data were used in the different scenarios, while accuracies were close to zero 

when using the SNP densities. Accuracy was highest (0.36) when the trait had heritability 0.30 

and when using MixP at a density of 45 QTL/Morgan. 

In general, increasing QTL density from 45 to 132 per Morgan, as well as time of divergence 

from 10 to 50 generations, led to a decrease in accuracy, which was even greater for a trait with 

a low heritability. MixP was relatively superior to SNP-BLUP when using WGS data in all 

cases with a density of 45 QTL/Morgan but SNP-BLUP was as good as MixP for greater QTL 

densities. 

Scenario 3: Multi-breed genomic predictions 

Accuracies of multi-breed predictions when populations diverged for T generations are in Table 

5. The reference population comprised 200 individuals from each population A and B. 

Generally, adding 200 individuals from population B to the reference of population A led to a 

substantial increase in accuracy when using WGS data. Across SNP densities, accuracies were 

more or less similar to those obtained for within-population predictions (see Tables 2 and 3). 

Prediction accuracies with data200 were always lower than those of the other datasets; a very 
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small increase in accuracy was observed when going from data1000 to data2000 and data3000, 

while it was much larger with WGS data. The dataset, heritability, QTL density, time of 

divergence, and evaluation method, all had an effect on the accuracy of prediction. 

At T = 10, a multi-breed reference population using WGS data led to a greater increase in 

accuracy than that obtained for within- or across-population predictions. Depending on the 

evaluation method and QTL density, accuracies ranged from 0.65 to 0.71 with heritability equal 

to 0.30 when WGS data were used, while they ranged from 0.41 to 0.60 with the SNP densities. 

For the trait with heritability equal to 0.07, accuracies ranged from 0.41 to 0.53 when WGS 

data were used, while they ranged from 0.22 to 0.41with the SNP densities. 

At T = 50, a multi-breed reference population using WGS data also led to an increase in 

accuracy compared to within- or across-population predictions but the increase in accuracy was 

lower than that obtained at T = 10. With WGS data, accuracies ranged from 0.61 to 0.68 with 

heritability equal to 0.30 and from 0.37 to 0.48 with heritability equal to 0.07 for the different 

scenarios. With the SNP densities, accuracies ranged from 0.41 to 0.59 and from 0.24 to 0.41 

for heritabilities of 0.30 and 0.07, respectively. 

In summary, increasing QTL density from 45 to 132 per Morgan and time of divergence from 

10 to 50 generations led to a decrease in accuracy, although its magnitude depended on trait 

heritability and the evaluation method. With a density of 45 QTL/Morgan, MixP was superior 

to SNP-BLUP when using WGS data but SNP-BLUP was as good as MixP when the QTL 

density increased to 132 QTL/Morgan. Accuracy was highest, i.e. 0.71 for the trait with 

heritability equal 0.30 at 45 QTL/Morgan and using MixP when populations had diverged for 

10 generations. 
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Scenario 4: Impact of size of the single-breed versus the multi-breed reference 

population 

Table 6 shows the impact of using either a single- (200 or 400 individuals) or multi- breed 

reference population on the accuracy of genomic prediction. The impact of increasing the 

reference population size in the case of across-breed prediction was also analyzed but since the 

results followed the same trend as those in Table 4, they were not included in Table 6. Multi-

breed estimation of SNP effects with WGS data at either 10 or 50 generations of divergence 

resulted in higher accuracy than when using 200 single-breed individuals. However, single-

breed predictions resulted in higher accuracies than multi-breed predictions when equal 

numbers of reference individuals (400) were used. 

Discussion  

This study examined the accuracy of genomic prediction for within-population, across-

population, and multi-breed reference populations. WGS data, various SNP densities, QTL 

densities, trait heritabilities, and GEBV estimation methods were used. Results show that the 

use of WGS data would lead to increased accuracy of genomic prediction for low to moderately 

heritable traits. Increases in accuracy from using WGS data were much greater with a multi-

breed reference population but remained substantial in across-population scenarios. For within-

population predictions, the use of WGS data compared to data3000 increased accuracy by 3.1 

and 3.3 % (SNP-BLUP) and by 5.7 and 5.9 % (MixP) for traits with heritabilities equal to 0.30 

and 0.07, respectively, at 45 QTL/Morgan. With 132 QTL/Morgan, these figures decreased to: 

1.2 and 4.5 % (SNP-BLUP) and to 1.4 and 4.5 % (MixP). Expanding the reference population 

with animals from another population (breed) and using WGS data resulted in a remarkable 

increase in accuracy compared to that achieved by within-population prediction. With SNP 

densities, only a minor or no increase in accuracy was observed. In general, MixP had an 

advantage over SNP-BLUP at low QTL density, but this advantage decreased as QTL density 
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increased, probably due to the many QTL with smaller effects. With many QTL with smaller 

effects, the MixP method was less able to pinpoint the SNP(s) that best explained the QTL. 

Within-population genomic predictions 

WGS data are not yet available on large numbers of individuals but it should lead to greater 

accuracies of genomic prediction. Presently, the 1000-bull genomes project [22] makes it 

possible to impute WGS data on (densely) genotyped animals. It is expected that with WGS 

data, possibly all variants (including causative mutations) in a population will be captured, 

which means that genomic prediction does not need to rely completely on LD between SNPs 

and causative mutations. In all the scenarios investigated, the use of WGS data showed a clear 

advantage over the use of different SNP densities. Depending on trait heritability, marker 

density (data1000 to data3000), and QTL density, the observed increase in accuracy when using 

WGS data for within-population prediction was as high as 13 %. For the lowest SNP density 

(i.e. data200), the increase reached 24 to 31 %. These results follow the same upward trend in 

accuracy as observed by Meuwissen and Goddard [9].  

In their simulation study, VanRaden et al. [23] excluded the causative mutations but increased 

the numbers of SNPs from 54k to 500k and reported a gain in accuracy of only 1.6 %. A 

simulation study by Druet et al. [24] under the neutral model (i.e. when QTL allele frequencies 

followed the same distribution as other variants in the sequence) found accuracies to increase 

by only 1.4 % when comparing WGS data with a SNP panel. When the same authors, assumed 

that the causative mutations all had low MAF, using the WGS data (real/imputed) improved the 

accuracy of genomic prediction by up to 30 %. Thus, depending on the scenario assumed, there 

are agreements and differences of our results with the study of [24]. These differences, in results 

especially for the neutral model, may be because Druet et al. [24] used a much denser SNP 

panel (14 2385 SNPs on a 50 Mb genome) and their accuracies were already very high, i.e. 
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around 0.9, which left little room for improvement. On a general note, Druet et al. [24] used a 

smaller genome (50 Mb with five 10-Mb chromosomes), an effective population size of ~100 

and a large reference population of 1021 individuals. The small(er) effective population size 

leads to extensive LD and a substantially smaller number of effective chromosome segment 

effects to be estimated, hence better predictions and higher accuracies [25].  

In dairy cattle, Hayes et al. [8] used imputed WGS data from the 1000-bull genomes project 

and observed a 2 % increase in prediction accuracy compared to HD data. Our results differ 

from those of Hayes et al. [8]. This difference is probably explained by the fact that Hayes et 

al. [8] used an imputed WGS data, in which case the accuracy of prediction depends in part on 

how accurately the common and rare variants are imputed. Variants with a MAF higher than 5 

% were imputed with an accuracy of about 0.7 to 0.9, while with a MAF lower than 5 %, 

imputation accuracy rapidly declined [8]. With accurate imputation of common variants, an 

extra 2 % increase in accuracy of genomic prediction was observed [8], which suggests that if 

all variants (common and rare) are accurately imputed, a higher accuracy of genomic prediction 

would be expected with WGS data. As reported by Druet et al. [24], accuracy of genomic 

prediction could be improved by 2 to 30 % depending on the trait. In inbred Drosophila 

melanogaster, Ober et al. [26] observed no advantage of using WGS data over dense SNP data 

for genomic prediction. They also reported no difference in prediction performance of SNP-

BLUP and BayesB. Their results could be due to: (1) a very large effective population size 

(~8700), which resulted in a large number of effective chromosome segments (~2000) effects 

to be estimated; and (2) a small reference population size of about 120. According to [27, 24, 

8, 9] the availability of large datasets is important to improve accuracy of genomic prediction 

even when using sequence data. 
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In general, the observed increase in accuracy obtained with WGS data can be attributed to the 

fact that it is not necessary to completely rely on LD between flanking markers and the QTL. 

However, at a density of 132 QTL/Morgan, MixP and SNP-BLUP performed similarly, which 

suggests that, in this case, MixP partly relied on LD even when WGS data was used. This means 

that at high QTL densities (which might be realistic), the ability of MixP to pinpoint the 

individual QTL with small effects decreases and then relies on LD between SNPs and QTL. 

According to Meuwissen et al. [18], accuracy of genomic prediction depends on the SNP 

density and on the LD between SNPs and QTL in order to maximize the proportion of genetic 

variance explained by the SNPs. However, with WGS data, predictions no longer depend (or at 

least to a large extent do not) on associations between SNPs and QTL because causative 

mutations are included in the data and are possibly captured and used in the analysis [27]. 

Meuwissen and Goddard [9] demonstrated that even with higher SNP densities, an extra gain 

in accuracy is obtained when including the causative mutations. 

Across-population genomic predictions 

Using a reference population (A) to predict GEBV of another population (B) resulted in a 

significant decrease in accuracies compared to within-population predictions, especially at T = 

50 generations of divergence between populations (Table 4). Nonetheless, the across-

population accuracies that were obtained using WGS data were substantially higher than with 

SNP densities, for which accuracies were close or equal to zero. Our results are consistent with 

the literature [6, 28, 29]. Possible reason(s) for the poor results obtained when SNP densities 

were used could be due to non-persistent associations between SNPs and QTL across 

populations or inconsistent LD between SNPs and QTL across populations [4-6]. Furthermore, 

it has been shown that, as the genetic distance between individuals of the reference and 

validation populations increases, the accuracy of prediction decreases [30, 4, 31, 32]. 

Differences in allele substitution effects between populations result in differences in genetic 
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variance and this could impact predictions across populations [33]. Also, a QTL that segregates 

in one population may not segregate in the other population, thereby resulting in differences in 

the genetic variance explained by that QTL between populations (see Fig. 2 and 3). The 

observed differences in QTL variance between populations result directly from differences in 

allele frequencies, since non-additive effects were not simulated. The use of WGS data suffers 

much less from changes in LD since it does not need to completely rely on LD between SNPs 

and QTL. Furthermore, the presence of QTL in the WGS data increases the probability of 

picking up similar QTL that segregate between populations and that have comparable effects 

[8]. This may explain why substantially better results were obtained when WGS data was used 

for across-population prediction, although the accuracies were lower compared to within-

population prediction. In summary, the WGS and SNP data differ in the sense that all variants 

(causative mutations included) are included in the WGS data, which makes it less dependent 

on LD, while SNP data fully depends on LD. 

Multi-breed genomic predictions 

One of the key factors that affect accuracy of genomic prediction is the number of reference 

animals [25, 6]. Accuracy increases as the number of reference animals increases because the 

amount of phenotypic data becomes sufficient to detect causative mutations and to distinguish 

their effects from random noise [27]. Numerically small dairy populations are faced with the 

problem of a small reference population. Therefore, using a multi-breed reference population 

could be an option. Our study showed that adding individuals from a second population 

(population B) to the reference population yielded substantially higher accuracies of GEBV for 

population A when using WGS data (Table 5). The observed increase in accuracy was greater 

when the populations had diverged for 10 generations compared to 50 generations, which 

indicates that relatedness between populations plays a role and should be taken into account 

when considering a multi-breed reference population for genomic prediction. With the SNP 
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densities that we used, the use of a multi-breed reference population resulted in similar 

accuracies as those obtained with a single-breed reference population (Table 6). When using 

equal numbers of reference individuals (400) for multi-breed and single-breed genomic 

prediction, the single-breed reference population resulted in higher accuracies than the multi-

breed reference population (Table 6). Hence, the higher accuracies obtained when using a multi-

breed reference population with WGS data can be attributed to: (1) a greater number of 

reference animals; and (2) the inclusion of causative mutations, which enhances the possibility 

of picking up similar QTL that segregate between populations and that have comparable effects 

[8]. The authors of [8] also pointed out that multi-breed prediction using WGS data leads to 

more accurate predictions because causative mutations that segregate among populations are 

captured and used in predictions. According to De Roos [27], the maximum benefit of WGS 

data can be obtained if the number of reference individuals is increased accordingly. Meuwissen 

[11] also reported that large reference datasets are needed in order to take full advantage of 

high-density markers. So far, at least to the best of our knowledge, no study (real or simulation) 

has evaluated the use of WGS data for multi-breed genomic prediction. However in an 

imputation study, Bouwman and Veerkamp [34] reported greater imputation accuracy (0.83) 

when using a multi-breed reference population to impute genotypes from a high-density SNP 

panel (777k) to WGS, compared to an imputation accuracy of 0.70 when using a single-breed 

reference population. This shows the benefit of using a multi-breed reference population when 

reference populations are small. Our study shows that with WGS data and a sufficient number 

of reference animals, higher genomic prediction accuracies are reached for low to moderately 

heritable traits. 

Impact of QTL density 

In practice, the number of causative mutations that underlie a trait is not known [35]. Thus, we 

studied two different QTL densities (45 and 132 QTL/Morgan) to investigate the impact of 
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QTL density. We observed that, as the QTL density increased from 45 to 132 (i.e. 1350 or 3960 

QTL for a 30-Morgan genome), accuracy decreased markedly. This decrease in accuracy is 

consistent with results from other simulation studies [35, 25, 9, 10]. As explained by Meuwissen 

and Goddard, [9], QTL effects and opportunities for their detection become smaller with 

increasing QTL density, resulting in less accurate GEBV. It should be noted that in spite of the 

decrease in accuracy when going from 45 to 132 QTL/Morgan, WGS data still resulted in higher 

accuracies than the SNP densities. 

Evaluation method 

The availability of WGS data for a large number of individuals would provide a large amount 

of information for genomic prediction. These data would contain millions of variants and it 

would be necessary to estimate their effects accurately. Therefore, we examined the relative 

performance of SNP-BLUP and a variable selection method with a mixture of two normal 

distributions, MixP. The results showed that MixP outperformed SNP-BLUP at a density of 45 

QTL/Morgan and also resulted in higher accuracies with WGS data. However, as QTL density 

increased, accuracy decreased for both methods but MixP still yielded higher accuracies. At a 

density of 132 QTL/Morgan and for a trait with a low heritability (0.07), both methods gave 

very similar accuracies, which means that for lowly heritable traits that are controlled by a large 

number of QTL, SNP-BLUP is as good as MixP. Studies by [35, 25, 9, 10] also demonstrated 

that when the number of QTL became large, the advantage of allowing for large SNP effects 

decreased. In such a situation, SNP-BLUP, which assumes a normal distribution with equal 

variance for all SNP effects, performs as well as variable selection methods. With real data, the 

performance of these two methods have been reported to be quite similar [36, 3] for most traits. 

However for traits known to be controlled by a small number of major genes (e.g. diacylglycerol 

O-acyltransferase 1 (DGAT1), which is involved in the control of fat percentage in dairy cattle), 

Cole et al. [37] and VanRaden et al. [38] reported that variable selection methods outperformed 
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SNP-BLUP. Thus, the method used for genomic prediction is important and the superiority or 

relative performance of the methods depends on the genetic architecture that underlies the trait 

[25]. 

Assumptions and implications 

Using the scaling argument of [11, 9], the results presented here were obtained for scenarios 

with only one chromosome, and 45 (132) QTL and 4648 variants on average, whereas WGS 

data in cattle would cover the 30 bovine chromosomes and contain millions of variants and 

thousands of QTL. The number of SNPs that was simulated (4648 SNPs/Morgan) was much 

lower than that in real cattle WGS data (~10 to 20 million SNPs/30 Morgan = 0.3 to 0.6 million 

SNPs/Morgan). This is probably due to the relatively small historical effective population size 

of 200 used in this study, whereas historical population sizes in cattle were much larger 

(although current effective sizes are small). This results in blocks with high LD being much 

shorter in real WGS data than in the data used for our study. On the one hand, this is beneficial 

for the real WGS data since it will be easier to pinpoint the QTL (fewer SNPs are in real high 

LD with the QTL), but on the other hand, the number of SNPs to choose from increases 

dramatically, making it more difficult for variable selection methods to select the right set of 

SNPs. The small number of variants included in our study made the use of WGS data less 

challenging for genomic prediction; dealing with millions of variants, as in the case of real 

WGS data, would be a challenge [8], coupled with an increased number of uninformative 

variants which might impact accuracy of prediction. Therefore, it would be very beneficial to 

reduce the amount of uninformative variants as much as possible. Biological information (e.g. 

coding/regulatory regions and gene sets in that are most likely to harbour mutations affecting 

traits of interest) that is obtained via (1) the analysis of genome annotation and (2) atlases of 

bovine gene expression, can be used to prioritize and identify a subset of variants that can then 

be used to impute densely genotyped animals up to sequence and or genomic prediction [8]. In 
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essence, maximizing the accuracy of genomic prediction by using WGS data would very much 

rely on how well informative variants are exploited and not necessarily on the number of 

variants. 

In our study, we assumed that WGS data contain all causative mutations but that may not be 

the case in practice, because (rare) SNPs may be missed during (stringent) data filtering or if 

relatively few individuals are sequenced with limited coverage and the remaining individuals 

are imputed using SNP chip data. However, for across-breed predictions, the results in Table 4 

suggest that it is essential to include the causative mutations in the data and thus (over-) 

stringent filtering of WGS should be avoided. Finally, when dealing with WGS data, methods 

that are either able to pinpoint the causative mutations or allow a few variants that are in real 

high LD to capture the effects of causative mutations and not smear there effects across multiple 

variants that are in moderate LD with the QTL would be very instrumental to achieving 

sustained accuracy of genomic prediction across generations [8]. 

In both the simulation and analysis of data in this study, we assumed only additive genetic 

effects because it is the most important source of genetic variance and they reflect the actual 

breeding value of an animal [14, 17]. Furthermore, according to [9] the effect of dominance 

deviations (the simplest non-additive effects) on the accuracy of genomic prediction using WGS 

data is: (1) if there are a few QTL with large effects (three per Morgan), these are poorly 

modelled by the additive genomic prediction models; (2) if there are many QTL with small 

effects (more than 30 per Morgan), the non-additive effects are much smaller and blend with 

the residual effects, which results in virtually the same accuracy of total genetic value as when 

gene effects were purely additive (at equal narrow sense heritability).  

In our case, epistatic interactions may result in differences in additive effects between the 

breeds. If the correlation of the additive effects of QTL between breeds is 0.9 (instead of 1 as 
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assumed here), the accuracy of across-breed genomic prediction would be reduced by 10 %. In 

the case of multi-breed genomic prediction, the reduction in accuracy of prediction would be 

less than 10 % (depending on the breed contributions).  

We chose to only simulate QTL with a MAF higher than 0.02, which eliminates very rare QTL 

that may have occurred in only one of the populations, and thus the accuracies of across-breed 

predictions were favoured. However, very rare QTL would probably not contribute much to the 

accuracy of prediction, because the genomic prediction models would not detect them. 

Conclusions 

This study shows that use of WGS data can increase accuracy of genomic prediction for low to 

moderately heritable traits in small populations. This increase in accuracy with WGS data 

depended on QTL density, the size of the reference population and the evaluation method used. 

In the absence of a sufficiently large reference population, aggregation of breeds that share 

close ancestral ties is an option to increase the reference population size and improve accuracy 

of genomic prediction. The use of WGS data was especially beneficial for multi-breed 

predictions and when a variable selection method was used. Thus, to take full advantage of a 

multi-breed reference population, WGS data, large reference sets and variable selection 

methods are required. 
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Figures 

Figure 1 Distribution of allele frequencies in populations A and B at 10 and 50 generations 

of divergence. 

A_10 (B_10) and A_50 (B_50) refers to different times of divergence (T= 10 or 50) between 

both the two populations. The plots are the result of one replicate. SNP alleles that were fixed 

in both populations were excluded.
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Figure 2 QTL variance for one of the replicates of populations A and B at 10 and 50 generations of divergence. 

QTL variance was calculated as 2pqa2. QTL that were fixed in both populations were excluded. Pop_A and Pop_B refers to populations A and B 

at T= 10 or 50 generations of divergence, respectively.
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Figure 3 Distribution of QTL variance for populations A and B at 10 and 50 generations of divergence. 

QTL variance was calculated as 2pqa2. A_10 (B_10) and A_50 (B_50) refer to different times of divergence (T= 10 or 50) between both 

populations. The plots are the result of one replicate. QTL that were fixed in both populations were excluded. 
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Figure 4 Linkage disequilibrium (r2) and persistency of phase (r) as a function of genomic distance. 

(a) Average linkage disequilibrium (LD) between SNPs estimated according to [39]. Pop_A_10 and Pop_B_10 refer to divergence of populations 

A and B by 10 generations while _50 refers to divergence by 50 generations. 

(b) Persistency of LD phase (i.e. the correlation of LD between populations A and B, [40]). Calculations are within populations A and B at different 

times of divergence (T= 10 or 50). Values are binned at an interval of 50 kb. The plots are the result of one replicate of simulated WGS data. 

Calculations were done with PLINK [41].
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Tables 

Table 1 Population structure and parameters used in the simulation 

Number of chromosomes 1 

Genome length 1 Morgan 

Mutation rate 10-8/bp/meiosis 

Effective population size (Ne) 200 

Recombination Haldane map function 

QTL density 45 or 132 / Morgan 

QTL effects Normal distribution 

Number of generations 1,950 + 50 or 1,990 + 10 

Heritability 0.30 and 0.07 
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Table 2 Accuracy of genomic prediction (±se) for a trait with heritability 0.30 for 

population A based on SNP-BLUP or MixP using the different datasets 

 45 QTL/Morgan 132 QTL/Morgan 

Dataset Accuracy % decrease Accuracy % decrease 

SNP-BLUP 

WGS data 0.596 (± 0.015)  0.582 (± 0.014)  

data3000 0.578 (± 0.016) 3.0 0.575 (± 0.014) 1.2 

data2000 0.576 (± 0.014) 3.4 0.568 (± 0.014) 2.4 

data1000 0.564 (± 0.014) 5.4 0.555 (± 0.015) 4.6 

data200 0.473 (± 0.015) 20.0 0.468 (± 0.014) 19.6 

MixP 

WGS data 0.632 (± 0.018)  0.587 (± 0.014)  

data3000 0.598 (± 0.018) 5.4 0.579 (± 0.014) 1.4 

data2000 0.591 (± 0.015) 6.5 0.573 (± 0.014) 2.4 

data1000 0.579 (± 0.015) 8.4 0.562 (± 0.015) 4.3 

data200 0.484 (± 0.016) 23.4 0.465 (± 0.014) 20.8 

Accuracy of prediction was measured as the correlation between simulated true and predicted genetic values in 

the validation dataset  

% decrease in accuracy of prediction relative to that obtained with WGS data
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Table 3 Accuracy of genomic prediction (±se) for a trait with heritability 0.07 for 

population A based on SNP-BLUP or MixP using the different datasets 

 45 QTL/Morgan 132 QTL/Morgan 

Dataset Accuracy % decrease Accuracy % decrease 

SNP-BLUP 

WGS data 0.413 (± 0.024)  0.347 (± 0.019)  

data3000 0.400 (± 0.023) 3.1 0.332 (± 0.019) 4.3 

data2000 0.394 (± 0.021) 4.6 0.326 (± 0.019) 6.1 

data1000 0.377 (± 0.023) 8.7 0.326 (± 0.019) 6.1 

data200 0.326 (± 0.021) 20.6 0.273 (± 0.016) 21.1 

MixP 

WGS data 0.431 (± 0.028)  0.348 (± 0.019)  

data3000 0.407 (± 0.025) 5.6 0.333 (± 0.019) 4.3 

data2000 0.404 (± 0.023) 6.3 0.327 (± 0.019) 6.0 

data1000 0.382 (± 0.024) 11.4 0.328 (± 0.019) 5.7 

data200 0.338 (± 0.023) 21.6 0.276 (± 0.016) 20.7 

Accuracy of prediction was measured as the correlation between simulated true and predicted genetic value in 

the validation dataset 

% decrease in accuracy of prediction relative to that obtained with WGS data 
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Table 4 Accuracy of across-population genomic prediction (se) for heritability 0.30 or 

0.07 when populations have diverged for T (10 or 50) generations: population A 

(reference) and population B (validation) based on SNP-BLUP or MixP using the 

different datasets 

 h2 = 0.30 h2 = 0.07 

 T = 10 T = 50 T = 10 T = 50 

Dataset SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP 

45 QTL/Morgan 

WGS data 0.396 

(0.017) 

0.482 

(0.023) 

0.276 

(0.021) 

0.360 

(0.030) 

0.270 

(0.018) 

0.286 

(0.022) 

0.171 

(0.023) 

0.197 

(0.029) 

data3000 -0.004 

(0.015) 

0.008 

(0.016) 

0.000 

(0.022) 

0.026 

(0.023) 

0.015 

(0.016) 

0.015 

(0.017) 

-0.003 

(0.019) 

-0.003 

(0.018) 

data2000 0.001 

(0.018) 

0.001 

(0.027) 

0.001 

(0.017) 

-0.002 

(0.017) 

0.030 

(0.018) 

0.032 

(0.018) 

-0.003 

(0.017) 

-0.017 

(0.023) 

data1000 0.020 

(0.019) 

0.009 

(0.019) 

-0.023 

(0.019) 

-0.005 

(0.020) 

-0.013 

(0.015) 

-0.017 

(0.015) 

-0.009 

(0.014) 

-0.005 

(0.015) 

data200 0.001 

(0.013) 

-0.010 

(0.015) 

-0.030 

(0.021) 

-0.012 

(0.017) 

0.002 

(0.021) 

-0.001 

(0.022) 

-0.034 

(0.021) 

-0.044 

(0.026) 

132 QTL/Morgan 

WGS data 0.392 

(0.021) 

0.403 

(0.021) 

0.238 

(0.019) 

0.246 

(0.019) 

0.209 

(0.016) 

0.211 

(0.015) 

0.186 

(0.018) 

0.186 

(0.019) 

data3000 0.022 

(0.017) 

0.025 

(0.017) 

0.049 

(0.023) 

0.052 

(0.015) 

0.005 

(0.016) 

0.005 

(0.017) 

-0.018 

(0.019) 

-0.018 

(0.019) 

data2000 0.013 

(0.017) 

0.021 

(0.019) 

-0.003 

(0.017) 

-0.004 

(0.017) 

-0.026 

(0.014) 

-0.018 

(0.012) 

0.001 

(0.015) 

0.001 

(0.015) 

data1000 0.022 

(0.017) 

0.028 

(0.018) 

-0.001 

(0.017) 

-0.002 

(0.017) 

0.009 

(0.017) 

0.009 

(0.017) 

0.017 

(0.018) 

0.019 

(0.017) 

data200 0.005 

(0.017) 

0.003 

(0.015) 

-0.022 

(0.014) 

-0.019 

(0.015) 

0.002 

(0.014) 

0.005 

(0.017) 

-0.005 

(0.017) 

-0.005 

(0.017) 

Accuracy of prediction was measured as the correlation between simulated true and predicted genetic value in 

the validation dataset 
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Table 5 Accuracy of genomic prediction (se) for heritability 0.30 or 0.07 using a multi-

breed reference population when populations have diverged for T (10 or 50) generations, 

based on SNP-BLUP or MixP using the different datasets 

 h2 = 0.30 h2 = 0.07 

 T = 10 T = 50 T = 10 T = 50 

Dataset SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP 

45 QTL/Morgan 

WGS data 0.654 

(0.013) 

0.710 

(0.015) 

0.627 

(0.013) 

0.675 

(0.019) 

0.475 

(0.021) 

0.525 

(0.025) 

0.448 

(0.023) 

0.480 

(0.028) 

data3000 0.578 

(0.016) 

0.602 

(0.018) 

0.571 

(0.016) 

0.592 

(0.019) 

0.404 

(0.023) 

0.414 

(0.024) 

0.398 

(0.024) 

0.409 

(0.026) 

data2000 0.571 

(0.015) 

0.574 

(0.016) 

0.564 

(0.016) 

0.558 

(0.017) 

0.400 

(0.022) 

0.414 

(0.025) 

0.387 

(0.022) 

0.390 

(0.024) 

data1000 0.552 

(0.017) 

0.551 

(0.019) 

0.546 

(0.017) 

0.549 

(0.017) 

0.376 

(0.022) 

0.377 

(0.023) 

0.368 

(0.022) 

0.367 

(0.022) 

data200 0.424 

(0.017) 

0.406 

(0.017) 

0.428 

(0.019) 

0.423 

(0.021) 

0.281 

(0.019) 

0.273 

(0.019) 

0.295 

(0.020) 

0.289 

(0.021) 

132 QTL/Morgan 

WGS data 0.647 

(0.011) 

0.662 

(0.011) 

0.612 

(0.014) 

0.624 

(0.014) 

0.410 

(0.016) 

0.412 

(0.017) 

0.370 

(0.018) 

0.374 

(0.019) 

data3000 0.569 

(0.012) 

0.573 

(0.013) 

0.573 

(0.015) 

0.576 

(0.015) 

0.343 

(0.016) 

0.345 

(0.016) 

0.332 

(0.019) 

0.332 

(0.020) 

data2000 0.568 

(0.012) 

0.570 

(0.013) 

0.565 

(0.015) 

0.567 

(0.015) 

0.341 

(0.018) 

0.341 

(0.018) 

0.331 

(0.019) 

0.330 

(0.019) 

data1000 0.537 

(0.012) 

0.536 

(0.012) 

0.542 

(0.016) 

0.521 

(0.015) 

0.313 

(0.013) 

0.313 

(0.013) 

0.322 

(0.019) 

0.321 

(0.020) 

data200 0.427 

(0.017) 

0.416 

(0.017) 

0.430 

(0.014) 

0.411 

(0.014) 

0.233 

(0.017) 

0.224 

(0.017) 

0.246 

(0.016) 

0.237 

(0.017) 

Accuracy of prediction was measured as the correlation between simulated true and predicted genetic value in 

the validation dataset
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Table 6 Accuracy of genomic prediction (se) for a trait with heritability 0.30 based on 

single- and multi-breed reference populations (RP) obtained with SNP-BLUP or MixP 

using the different datasets 

 Single-breed Multi-breed 

 RP = 200 RP = 400 RP = 400 

   T = 10 T = 50 

Dataset SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP SNP-BLUP MixP 

45 QTL/Morgan 

WGS data 0.596 

(0.015) 

0.632 

(0.018) 

0.696 

(0.014) 

0.736 

(0.017) 

0.654 

(0.013) 

0.710 

(0.015) 

0.627 

(0.013) 

0.675 

(0.019) 

data3000 0.578 

(0.016) 

0.598 

(0.018) 

0.681 

(0.013) 

0.719 

(0.015) 

0.578 

(0.016) 

0.602 

(0.018) 

0.571 

(0.016) 

0.592 

(0.019) 

data2000 0.576 

(0.014) 

0.591 

(0.015) 

0.679 

(0.013) 

0.713 

(0.014) 

0.571 

(0.015) 

0.574 

(0.016) 

0.564 

(0.016) 

0.558 

(0.017) 

data1000 0.564 

(0.014) 

0.579 

(0.015) 

0.668 

(0.013) 

0.697 

(0.014) 

0.552 

(0.017) 

0.551 

(0.019) 

0.546 

(0.017) 

0.549 

(0.017) 

data200 0.473 

(0.015) 

0.484 

(0.016) 

0.566 

(0.014) 

0.576 

(0.016) 

0.424 

(0.017) 

0.406 

(0.017) 

0.428 

(0.019) 

0.423 

(0.021) 

132 QTL/Morgan 

WGS data 0.582 

(0.014) 

0.587 

(0.014) 

0.691 

(0.011) 

0.702 

(0.012) 

0.647 

(0.011) 

0.662 

(0.011) 

0.612 

(0.014) 

0.624 

(0.014) 

data3000 0.575 

(0.014) 

0.579 

(0.014) 

0.681 

(0.010) 

0.688 

(0.011) 

0.569 

(0.012) 

0.573 

(0.013) 

0.573 

(0.015) 

0.576 

(0.015) 

data2000 0.568 

(0.014) 

0.573 

(0.014) 

0.670 

(0.012) 

0.677 

(0.012) 

0.568 

(0.012) 

0.570 

(0.013) 

0.565 

(0.015) 

0.567 

(0.015) 

data1000 0.555 

(0.015) 

0.562 

(0.014) 

0.654 

(0.012) 

0.665 

(0.012) 

0.537 

(0.012) 

0.536 

(0.012) 

0.542 

(0.016) 

0.521 

(0.015) 

data200 0.468 

(0.014) 

0.465 

(0.014) 

0.568 

(0.013) 

0.563 

(0.013) 

0.427 

(0.017) 

0.416 

(0.017) 

0.430 

(0.014) 

0.411 

(0.014) 

Accuracy of prediction was measured as the correlation between simulated true and predicted genetic value in 

the validation dataset 
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INTERPRETIVE SUMMARY 

Accuracy of genomic breeding values is of key importance for successful application of 

genomic selection. Presently, the variable and non-variable selection methods for genomic 

prediction are treated as distinct approaches. The aim of this study was to evaluate a method 

that incorporates aspects of both approaches. Comparisons are made with the commonly used 

genomic-BLUP, which does not select variables, and a variable selection method that fits a 

mixture of two normal distributions for single-nucleotide polymorphism effects using the 

Pareto principle.  The results show that simultaneously incorporating aspects of both methods 

can improve accuracy over genomic-BLUP whilst being comparable to other variable selection 

methods. 

ABSTRACT 

The aim of this study was to evaluate the implementation of an iterative method (called GBC) 

that incorporates aspects of genomic-BLUP (G-BLUP) and BayesC for genomic predictions. 

Its relative performance was compared to pedigree-BLUP, G-BLUP, and MixP (a method that 

fits a mixture of two normal distributions for SNP (single-nucleotide polymorphism) effects 

using the Pareto principle). Two datasets were available for the analysis: 1) imputed medium-

density (50K; MD) SNP dataset based on Illumina Bovine50K BeadChip, containing 48,249 

SNPs and 3,244 records; and 2) imputed high-density (777K; HD) SNP dataset originating 

from the Illumina BovineHD chip and containing 539,665 SNPs and 3,164 records. Daughter 

yield deviations (DYD) were used as the response variables and the study was performed on 

somatic cell count, fat yield, milk yield, and protein yield. Accuracy of prediction was 

measured as correlations between DYD and predicted values, divided by the square root of the 

average reliability of the DYD. With the MD SNP dataset, GBC showed an advantage over G-

BLUP for all traits, while in comparison to MixP, accuracy was slightly lower.  With the HD 
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SNP dataset, GBC also performed better than G-BLUP and slightly below that of MixP except 

for fat yield where it gave higher prediction accuracy than both methods. The results show that 

incorporating aspect of G-BLUP and BayesC in a single model can improve accuracy of 

genomic prediction over the commonly used method: G-BLUP. On the other hand, MixP 

showed higher accuracies than G-BLUP for all traits studied and in most cases slightly higher 

than GBC. Thus, GBC is quite a flexible tool in the sense that it simultaneously incorporates 

aspects of G-BLUP and BayesC for genomic prediction, thereby exploiting family relationship 

while simultaneously accounting for genes of large effects. MixP on the hand seems to strike 

a good balance between genes of large and small effects using the Pareto principle. The 

application of both methods in genomic prediction merits further exploration. 

Key words: genomic prediction, single-nucleotide polymorphism, Pareto principle, 

Norwegian Red 

INTRODUCTION 

Genomic selection (GS) is increasingly implemented as a means of estimating the genetic 

values of animals and plants. It is useful for predicting an individual’s genetic risk of 

developing a complex disease or breeding values for parents to breed the next generations 

(Meuwissen et al., 2001; De Roos et al., 2009; Goddard et al., 2011). Hence, accuracy of 

breeding values is of key importance for successful application of GS (Goddard and Hayes, 

2009; Luan et al., 2009; Lund et al., 2014). GS adoption has been propelled by two key factors: 

1) the availability of high-density genotyping that is presently tending toward whole-genome 

sequencing and 2) the availability of statistical methods for estimation of breeding values. The 

latter is still ongoing and so far, no consensus on which is the best approach has been 

established.  Presently, many methods are available for genomic prediction (GP), and they can 

be broadly classified into two groups: variable and non-variable selection methods (Daetwyler 
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et al., 2010). The G-BLUP is a typical example of a non-variable selection method while the 

Bayesian methods (e.g. BayesB) and others are variable selection methods, which are usually 

implemented by Markov Chain Monte Carlo (MCMC) algorithms. A major difference between 

methods lies in their prior assumptions about the marker effects, and the methods have been 

reviewed in detail by Neves et al. (2012) and De Los Campos et al. (2013). Currently, these 

methods are independently implemented and results from most empirical studies have shown 

both methods to yield similar prediction accuracies. In contrast, simulation studies reported 

significant differences between methods (e.g. Meuwissen et al. (2001); Meuwissen (2009)). 

This has been resolved by Daetwyler et al. (2010) where it was demonstrated that the numbers 

of QTL (quantitative trait loci) in relation to the structure of the genome was a major factor in 

this discrepancy. 

 Genomic prediction have been demonstrated to utilize two sources of information, i.e. 

genetic relationship among individuals and LD between SNPs and QTL (Habier et al., 2007). 

Both information sources are utilized differently by current GP methods (i.e. G-BLUP and 

variable selection methods). G-BLUP through the genomic relationship matrix (G) exploits all 

relationship information in a given population more comprehensively than the pedigree-based 

relationship (A matrix) (Habier et al., 2007; Odegard and Meuwissen, 2014; Odegard et al., 

2014). On the other hand, variable selection methods are much more able to utilize LD 

information than G-BLUP (Habier et al., 2007) and LD enables mapping of QTL. Thus, 

methods that would exploit genetic relationship and LD might help increase prediction 

accuracy. 

Here we develop an iterative method (referred to as GBC) that combines relationship 

information using the G-BLUP approach and LD between QTL and neighbouring SNPs using 

the BayesC (Habier et al., 2011) approach for genomic prediction. Predictions from GBC were 

compared to A-BLUP (i.e. traditional BLUP which is pedigree based), G-BLUP, and MixP 
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(Yu and Meuwissen, 2011), using real data from a dairy population of genotyped sires. MixP 

fits a mixture of two normal distributions for SNP effects using the Pareto principle. In 

simulation studies, MixP has been shown to yield higher accuracies than G-BLUP (Yu and 

Meuwissen, 2011; Iheshiulor et al., 2014; Yu et al., 2014). Its performance in real data was 

also evaluated here.  

MATERIALS AND METHODS 

Phenotypes.  Daughter yield deviations (DYD; VanRaden and Wiggans (1991); Liu et al. 

(2004)) from 2013 routine genetic evaluations on 3,244 Norwegian Red bulls were used for 

genomic prediction of three production traits (Fat yield, KgF; Milk yield, KgM; and Protein 

yield, KgP) and one health indicator trait (somatic cell count, SCC).  The DYD are an estimate 

of the average performance of each bull’s daughters, corrected for all fixed and non-genetic 

random effects of the daughters and genetic effects of their mates, and were calculated for each 

trait. Calculation of reliabilities of DYD followed Fikse and Banos (2001), i.e. (𝑟𝐷𝑌𝐷
2 =

𝑑𝑒 (𝑑𝑒 + 𝐾),⁄  where 𝑑𝑒 is the effective number of daughters and 𝐾 =  (4 −  ℎ2) ℎ2⁄  ). The 

average effective number of daughters was 173 with a standard deviation of ~34. The 

heritabilities (0.136 - 0.277) and reliabilities of DYD (0.858 - 0.927) that are used by GENO 

SA for routine genetic evaluations (www.geno.no) are presented in Table 1. 

SNP Data. Two sets of imputed SNP data on 3,244 (3,164) progeny-tested Norwegian Red 

bulls were kindly provided by GENO SA (www.geno.no) for the analyses. A total of 2,450 

bulls were genotyped with the 25K Affymetrix chip (Affymetrix Inc., Santa Clara, CA), 1,650 

were genotyped with the Illumina Bovine50K  BeadChip (Illumina Inc., San Diego, CA), while 

856 of the bulls were genotyped with both chips. Also genotyped were 384 bulls with the 777K 

Illumina BovineHD chip (Illumina Inc., San Diego, CA). Bulls genotyped with the 25K 

Affymetrix chip were imputed to 50K (i.e. 25K/50K) and afterwards to 777K (i.e. 
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25K/50K/777K). Genotype imputation was performed by CIGENE (www.cigene.no). 

Imputation procedures applying Beagle package (Browning and Browning, 2009) and other in-

house developed software are described by Solberg et al. (2011) . Quality control involved: 

removal of animals with an individual call rate <97%; deletion of SNP with a call rate <25%; 

pedigree relationships between parent and offspring were set to missing if they exceeded 

Mendelian error threshold of >1%; SNPs with an overall Mendelian error rate >2.5% were 

deleted; then, for parent-offspring relationships with Mendelian errors <1%, genotypes for that 

loci were set to missing; finally, SNPs with minor allele frequency <0.05 were discarded.  

Following this, the 50K (777K) dataset contained 48,249 (539,665) SNP for a total of 3,244 

(3,164) Norwegian Red bulls. The 50K SNP dataset is hereafter referred to as medium-density 

(MD) SNP dataset and the 777K referred to as high-density (HD) SNP dataset. For both 

datasets, SNPs on the X chromosome were not included.  

Reference and Validation Dataset. The reference set comprised of 3,091 animals for the 

MD SNP dataset and 3,040 animals for the HD SNP dataset. Reference animals were born 

between 1965 and 2005. The validation scheme was based on forward predictions following a 

standard animal breeding selection scheme. Hence, validation dataset consisted of the youngest 

sires born between 2007 and 2008. The 124 youngest sires having more than 100 daughters 

with lactation records were used for validation. As a check of relationship, based on the 

genomic relationship according to VanRaden (2008), four measures of genomic relatedness 

were calculated between each animal in the validation set and the animals in the reference 

population (Table 2) following Clark et al. (2012) and Daetwyler et al. (2013). The four 

measures of genomic relatedness calculated includes: 1) an animal’s mean relationship with 

the reference population (meanRel); 2) its maximum relationship (Relmax); 3) its average top 

5 relationships (Rel5), and 4) its average top 10 relationships (Rel10). 

http://www.cigene.no/
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Statistical Analyses 

Analysis of Data. Three prediction methods, G-BLUP, MixP, and GBC, were implemented 

for genomic prediction.  

G-BLUP. The G-BLUP model (Meuwissen et al., 2001; VanRaden, 2008) used to predict 

GEBV was as follows: 

                  𝒚 = 𝟏𝜇 + 𝒁𝒈 + 𝒆,                                                                                                        [1] 

where y is a vector of records; 1 is a vector of ones; μ is the overall mean; 𝒁 is a design matrix  

that maps the records to genomic values; 𝒈 is a vector of genomic values assumed to follow a 

multivariate normal distribution MVN(0,G𝜎𝑔
2), where G  is the genomic relationship matrix and 

𝜎𝑔
2 is the genetic variance; and 𝒆 is the vector of residuals, assumed to follow a multivariate 

normal distribution MVN(0,𝜎𝑒
2 ). G was calculated, following Method 1 of VanRaden (2008), 

as G = 𝑴𝑴′/2 ∑ 𝑝𝑗 (1 − 𝑝𝑗), and 𝑀𝑖𝑗 = 𝑥𝑖𝑗 −  2𝑝𝑗 , where 𝑥𝑖𝑗 is the genotype of animal 𝑖 for 

SNP 𝑗, with 𝑥𝑖𝑗 = 0, 1 or 2 for reference homozygote, heterozygote and alternative homozygote 

respectively, and 𝑝𝑗 is the allele frequency of SNP 𝑗. 

MixP. MixP assumes that SNP effects come from a mixture of two normal distributions 

which differ in variances, i.e. one with a large variance (𝜎1
2) and the other with small variance 

(𝜎2
2)  (Yu and Meuwissen, 2011). The distribution of the total genetic variance (Vg) over the 

‘large’ and the ‘small’ SNPs is according to the Pareto principle so that 𝑥% of the SNPs with 

the largest effects cause (100 − 𝑥)% of the genetic variance. Given the prior value (π) for the 

mixing frequency (𝜋 =  𝑥 100)⁄  and using the Pareto principle, the variances of the large and 

small SNP effects are respectively:   

                   
𝜎1

2 = 
(1−𝜋)𝑉𝑔

𝜋𝑁𝑚

𝜎2  
2 =  

𝜋𝑉𝑔
(1−𝜋)𝑁𝑚

},                                                                              [2] 
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where 𝑁𝑚 is the number of SNPs, such that 𝑁𝑚(𝜋𝜎1  
2 + (1 − 𝜋)𝜎2

2) =  𝑉𝑔. The π values used 

were estimated from the dataset via a search between 1% and 30% to get the optimal π values. 

MixP uses the Iterative Conditional Expectation (ICE) algorithm of Meuwissen et al. (2009). 

A detailed description of the MixP method is provided in Yu and Meuwissen (2011). The model 

to describe the records, based on SNP effects is as follows:     

          𝒚 = 1𝜇 + 𝒁𝐌𝐪 + 𝐞 ,                                                                                                        [3] 

where y is a vector of records; 1 is a vector of ones; μ is the overall mean; 𝑴 is the design 

matrix of standardized SNP genotypes as in the calculation of 𝑮 above; 𝒒 is the vector of SNP 

effects (𝑞𝑖), and e is the vector of residuals. The model assumed that 𝑞𝑖 ~ N(0, 𝜎1
2) with 

probability π or 𝑞𝑖 ~ N(0, 𝜎2
2) with a probability (1 - π). Given the estimates of SNP effects, 

the genetic value for the validation animals was calculated as the sum of all estimated SNP 

effects multiplied with the standardized SNP genotypes.  

GBC. The GBC fits simultaneously a polygenic effect (as in G-BLUP) and a BayesC effect 

(Habier et al., 2011) using the ICE  algorithm (Meuwissen et al., 2009), which includes a 

correction for the uncertainty of the other SNP effects when deciding whether SNP ‘i’ has an 

effect or not as described by Wang et al. (2015). The polygenic term is expected to capture the 

part of the breeding value that is explained by relationships between the animals and co-

segregation of alleles within the families, whilst the BayesC term is expected to pick-up the 

LD between SNPs and major genes. The model of analysis used by GBC, based on fitting G-

BLUP and SNPs with large effects is thus: 

             𝒚 = 1𝜇 + 𝒁𝒈 + 𝒁𝐌𝐐𝐪 + 𝐞 ,                                                                                                       [4] 

where y is a vector of records; 1 is a vector of ones; μ is the overall mean; 𝒁 is a design matrix  

that maps the records to genomic values; 𝒈 is vector of polygenic effects (i.e. G-BLUP aspect 

of the model) with distributional assumptions as described above for G-BLUP, 𝑴 is a design 
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matrix of standardized SNP genotypes as defined in Equation 1 above, 𝒒 is the vector of SNP 

effects (𝑞𝑖), and 𝒆 is the vector of residuals; Q is a diagonal matrix with 1 on the diagonal if 

the SNP has a large BayesC effect (with prior probability ) and 0 if it has no such effect (with 

prior probability (1-)). In the ICE algorithm the elements of 𝑸 are obtained using the posterior 

probabilities (i.e. prior probability times likelihood) that the SNP has large effect. The starting 

prior (π) probability of a SNP having large effects was 1%; however the program estimates the 

optimal π. The G-BLUP term was implemented as described in the G-BLUP section. The 

BayesC term was implemented as described in the MixP section, except that here the ‘small’ 

SNPs had genetic variance 0, whereas the ‘large’ genes were assumed to have a variance of 

0.01g
2. Because fitting many ‘small’ SNP effects is equivalent to fitting a GBLUP term (e.g. 

Habier et al., 2007), the core difference between the GBC and MixP model is the variance 

assumed for the ‘small’ (i.e. the GBLUP term) and ‘large’ SNPs, which was in MixP assumed 

to follow the Pareto principle (Equation [2]).  

A-BLUP. The A-BLUP ignores genomic information and relies on pedigree information 

from ancestors using a numerator relationship matrix (A). Using the data set, with the genomic 

information excluded, and the pedigree, A-BLUP predictions of EBV were obtained. The 

analysis was carried out using ASReml version 3.0 package (Gilmour et al., 2009).  

Predictive Ability. A primary criterion used for the evaluation of the performances of the 

methods was the predictive ability (also referred to as accuracy of predictions (𝑟)), calculated 

as the correlation between the predicted values i.e. GEBV or EBV (in the case of traditional 

BLUP) and DYD, divided by the square root of the average reliability of the DYD (√𝑟𝐷𝑌𝐷
2 ) . 

The bias of predictions was measured as the regression of DYD on the predicted values. A 

regression coefficient of 1 denotes no bias, <1 implies that the spread of the (G)EBVs is too 

large, and >1 implies a too low spread of GEBVs. Standard errors of the prediction accuracies 
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and the regression coefficients on the DYD were computed using bootstrapping with the R-

package (R Core Team, 2015). The bootstrapping procedure involved sampling with 

replacement of the GEBVs 10,000 times. For each bootstrap sample, the (G)EBVs were 

correlated to the DYD. Standard errors were computed from the 10,000 bootstraps of estimated 

accuracies and regression coefficients. A Hotelling-Williams test (Steiger, 1980) for dependent 

correlations was used to determine whether differences between the validation correlations 

using alternative methods were statistically significant. 

RESULTS AND DISCUSSION 

Genomic Relatedness of Validation to Reference Individuals 

Table 2 shows the average genomic relatedness within reference individuals and of validation 

to reference individuals based on both datasets. Estimated genomic relatedness based on MD 

SNP dataset was similar to that based on HD SNP dataset. Overall mean relationship (meanRel) 

was 0.03, while maximum estimated genomic relationship (Relmax) between the validation 

and reference population was ~0.5, suggesting that some animals in the validation were closely 

related to the reference population (i.e. their sire is in the reference population). In the case of 

Rel5 and Rel10, genomic relatedness estimates of 0.29 and 0.24, respectively were obtained. 

Based on Relmax and Rel5 (10), we can generally say, our validation set shares a certain degree 

of relationship with the reference population. On one hand, this is beneficial in the sense that 

accurate predictions could be expected. Several studies have shown this to be true (e.g. Habier 

et al. (2007); Meuwissen (2009); Habier et al. (2010)). On the other hand, the latter authors and 

others also demonstrated that accuracies obtained when validation and reference individuals 

are considerably related tend to decay across generations as relationship decreases. 
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Medium Density Versus High Density SNP Dataset 

Accuracies of predictions for the youngest sires based on the MD and HD SNP datasets are 

presented in Table 3. In almost all cases, there was no advantage of HD SNP dataset over the 

MD SNP dataset. On average across all traits, prediction accuracies ranged between 0.679 to 

0.704 for MD SNP dataset and 0.678 to 0.692 for HD SNP dataset.  Overall, higher prediction 

accuracies were observed for the production traits (i.e. KgF, KgM, and KgP) than for the health 

indicator trait, SCC.  

The LD between markers and QTL is known to affect accuracy of GP (Meuwissen et al., 

2001). LD structure is largely dependent on effective population size (Ne) (Goddard and Hayes, 

2009). This means that for populations with large Ne, LD is expected to be large and vice-versa 

for populations with small Ne. The degree of LD in Norwegian Red cattle is low in comparison 

to Holstein due to the relative large Ne (>100) (Solberg et al., 2011). So, to better capture LD’s 

in this population, HD SNP panels have been suggested (Solberg et al., 2011).  Although, LD 

was not examined in this study, previous studies (e.g. Calus et al. (2008); Solberg et al. (2008); 

Meuwissen (2009)) have shown that with increased maker density, much stronger LD between 

markers and QTL are realized. Such is expected to lead to increased accuracy of prediction 

when using HD SNP dataset, however in this present study an increase was not observed across 

all traits studied. This result agrees with previous studies such as Erbe et al. (2012), Su et al. 

(2012) and VanRaden et al. (2013) who reported little or no gain or even a decrease in accuracy 

when going from 50K to HD SNP dataset. While increasing marker density leads to increased 

SNP-QTL associations, it also leads to increased number of uninformative SNPs and linear 

functions of the uninformative SNPs may predict random errors in the reference phenotypes 

(Harris and Johnson, 2010; VanRaden et al., 2013). Another possible explanation for the lack 

of benefit of HD over MD SNP dataset could be due to the size of the reference population. In 

both datasets, the reference population comprised of ~3,000 individuals, but the number of 
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SNPs increased about 11 times more (i.e. 50K to HD). Increasing SNP density without 

proportionally increasing the reference population decreases the chance of accurately detecting 

causative mutations and to distinguish their effects from random noise (De Roos, 2011). Thus, 

increasing SNP density without increasing reference population might lead to diminishing 

return (VanRaden et al., 2011). Therefore, to take full advantage of high-density markers or 

even the commonly used 50K SNP density, large reference populations are needed (Goddard 

and Hayes, 2009; Meuwissen, 2009; Daetwyler et al., 2010; VanRaden et al., 2011).  

Prediction Methods 

 Table 3 also shows the accuracies of predictions using alternative prediction methods. A-

BLUP, which is pedigree based was less accurate than the genomic methods. The improvement 

of GS methods over A-BLUP was statistically significant using the Hotelling-Williams test 

(P<0.05). Within the GS methods, G-BLUP had significantly lower accuracy relative to GBC 

and MixP only for KgF when using the HD dataset. With A-BLUP, accuracies across the 4 

traits ranged between 0.437 – 0.586 with the highest accuracy observed for KgF. With G-

BLUP, GBC, and MixP, accuracies ranged between 0.602 – 0.750 (MD SNP dataset) and 0.568 

– 0.759 (HD dataset), with the highest accuracy again observed for KgF. G-BLUP gave slightly 

higher accuracy (0.594) than GBC (0.568) for SCC when using the HD dataset. GBC gave the 

highest accuracy only for KgF (0.759, HD dataset). MixP resulted in the highest accuracy 

across all traits for both datasets except for KgM when using HD SNP dataset. Apart from the 

aforementioned, we observed that GBC and MixP were frequently, slightly superior to the G-

BLUP regardless of the dataset. Except for KgF when using the HD dataset, none of the 

observed differences was significant.  

The significantly higher prediction accuracies of GS methods over A-BLUP is in part due 

to improved predictions of the Mendelian sampling component of the breeding values, which 

accounts for half the additive genetic variance among animals (Daetwyler et al., 2007). The 
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performance of MixP is in agreement with the studies of Yu and Meuwissen (2011) and 

Iheshiulor et al. (2014). For GBC, we anticipated that by fitting a genomic polygenic term next 

to BayesC SNP effects, both models would complement each other: the G-BLUP term mainly 

picking up effects that could be explained by linkage analysis (Habier et al., 2007), and the 

BayesC term picking up close LD between SNPs and genes. Consequently, we expected GBC 

to result in a high GP accuracy, however this was not observed convincingly. GBC performed 

always slightly better than G-BLUP and slightly inferior to MixP, except for KgF using the 

HD dataset where it performed better than both methods. A possible explanation could be that 

the modelled LD blocks surrounding the major genes were large and were also reasonably well 

captured by G-BLUP (Daetwyler et al., 2010). In addition, a considerable level of relationship 

exist in the dataset (Table 2). In that case, GBC results in a performance that is only slightly 

better than G-BLUP. As mentioned in the Methods section, MixP and GBC are somewhat 

similar models, differing mainly in their prior variances assumptions for large and small SNPs. 

If the Pareto principle based division of variances across large and small SNPs is appropriate, 

the MixP would yield best results. The GBC model assumes that there are some genes with 

large effect with variance ~0.01𝜎𝑔
2, which seems to be mainly true for KgF, as is known from 

the literature (Grisart et al., 2002).  

The regression coefficients in Table 4 are a measure of bias of the EBV predictions. Except 

for the trait SCC where regression coefficients were below 1 (0.847 – 0.894), it was above 1 

for the other 3 traits across the methods. This means that for the production traits, GEBVs were 

deflated while for SCC, GEBVs were inflated. In NRF, there is strong selection pressure 

against directly recorded mastitis. Since mastitis is quite highly correlated to SSC, and we did 

not include mastitis in our GP models, biased genomic predictions might have been expected 

for SSC. However, considering the fact that the regression coefficients from the A-BLUP 
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method did not differ from those of other methods, one may attribute the biases to the data sets 

rather than the (genomic) breeding value estimation methods.           

SNP Effects: GBC and MixP 

A key difference between GBC and MixP lies in the way both methods estimate SNP effects. 

GBC fits a BayesC like prior for the SNPs with large effects assuming an estimated fraction π 

of the SNPs having large effects and uses a G-BLUP component for the SNPs with small effects 

(i.e. polygenic effects). MixP on the other hand fits a mixture of two normal distributions where 

a fraction (π x 100%) of the SNPs have large effects  and explain a fraction (1 - π) of the genetic 

variance while (1 – π) x 100% of the SNPs have small effects and explain a fraction π of the 

genetic variance. As an example, the SNP effects estimated by GBC and MixP using the MD 

SNP dataset are presented in Figures 1 and 2. Especially for the production traits, both methods 

behaved differently in the number of SNPs with effects and the magnitude of effects. For KgF, 

GBC picked up 2 SNPs with large effects on chromosome 5 and 12. The rest of the SNP effects 

were substantially shrunk towards zero. The same SNPs were observed to have large effects 

with MixP, however, several other SNPs with small to moderate effects were also observed by 

this method. For KgM, a similar trend was observed with both methods identifying SNPs on 

chromosome 6, 12, and 28 as regions with large effects. Chromosome 6 was also identified by 

both methods as a region with large effects on KgP. We did not try to identify candidate genes 

underlying these regions, as this was outside the scope of our study. A recent study by Raven 

et al. (2014) reported QTL affecting KgF on chromosomes 5 and 12 and QTL affecting KgM 

and KgP on chromosome 6. There was a general tendency that GBC yielded large effects to 

very few SNPs while MixP identified many more SNPs with moderate to large effects. This 

implies that, with GBC, only markers in high LD with the QTL pick up the major gene effects 

while the rest are treated as polygenic effects.  MixP captured SNPs with moderate to large 

effect and in addition allowed neighboring SNPs to be associated with the traits. The observed 
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differences in prediction accuracies between both methods is a reflection of how genomic 

regions with large effects are treated. The ability of MixP to assign effects to SNPs with small 

to moderate effects may explain why MixP outperformed GBC in terms of accuracy of GP for 

some of the traits studied. It seems that, if the interest is on identifying QTL then GBC yields 

clearer QTL signals. Although the actual and prior distribution of SNP effects remains 

unknown, the results of this study indicate that the assumed prior distribution for SNP effects 

in MixP tends to yield somewhat higher accuracy than the assumptions underlying GBC.   

CONCLUSIONS 

We introduced GBC, which incorporates aspects of G-BLUP and BayesC approaches for 

genomic prediction. The method was evaluated using imputed MD and HD SNP datasets and 

its performance compared to A-BLUP, G-BLUP, and MixP. GBC showed (slight) advantage 

over G-BLUP for all traits and performed slightly inferior to MixP in terms of prediction 

accuracy. Only for KgF when using the HD SNP dataset did GBC perform better than both 

methods which agrees with the fact that KgF is known to be controlled by few genes with large 

effects. MixP outperformed G-BLUP for all traits studied and showed slight advantage over 

GBC in most cases. In conclusion, GBC is quite a flexible tool in the sense that it 

simultaneously incorporates aspects of variable and non-variable models for genomic 

prediction, thereby exploiting family relationships while also accounting for genes of large 

effects. MixP on the hand seems to strike a good balance between genes of large and small 

effects based on the Pareto principle.  
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TABLES 

Table 6 Heritability (h2), reliability (𝒓𝑫𝒀𝑫
𝟐 )1 of DYD2, number of animals with phenotype 

and genotype per dataset3 

                                                                                                           Number of animals 

Trait ℎ2 𝑟𝐷𝑌𝐷
2  MD SNP dataset HD SNP dataset 

Somatic cell count (SCC) 0.136 0.858 3,244 3,164 

Fat yield (KgF) 0.213 0.906 3,244 3,164 

Milk yield (KgM) 0.277 0.927 3,244 3,164 

Protein yield (KgP) 0.235 0.915 3,244 3,164 

1𝑟𝐷𝑌𝐷
2 = 𝑑𝑒 (𝑑𝑒 + 𝐾),⁄  where 𝑑𝑒 is the effective number of daughters and 𝐾 =  (4 −  ℎ2) ℎ2⁄  

2DYD = daughter yield deviation 

3MD SNP dataset = imputed dataset based on Illumina Bovine50K BeadChip; HD = imputed dataset 

based on 777K Illumina BovineHD (Illumina, San Diego, CA) 
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Table 2 Average (SD) genomic relatedness1 of validation to reference individuals based 

on both datasets2 

  MD SNP dataset  HD SNP dataset 

Relatedness meanRel Relmax Rel5 Rel10 meanRel Relmax Rel5 Rel10 

Within reference 0.03 

(0.01) 

0.49 

(0.04) 

0.34 

(0.05) 

0.30 

(0.05) 

0.03 

(0.01) 

0.47 

(0.05) 

0.33 

(0.05) 

0.29 

(0.05) 

Between 

validation and 

reference 

0.03 

(0.00) 

0.48 

(0.09) 

0.29 

(0.05) 

0.24 

(0.05) 

0.03 

(0.00) 

0.47 

(0.07) 

0.29 

(0.05) 

0.24 

(0.05) 

1Genomic relatedness: meanRel =  average relationships ((1 𝑁𝑃) ∑ 𝑟𝑒𝑙(𝑖, 𝑗)),
𝑁𝑝

𝑗=1
⁄  where 𝑁𝑃 is the 

number of individuals in the reference population, 𝑟𝑒𝑙(𝑖, 𝑗) is the relationship between validation 𝑖 and 

reference individual 𝑗; Relmax = maximum relationship between validation individual 𝑖 and reference 

individual 𝑗; Rel5 =  average of top 5 relationships ((1 5) ∑ 𝑟𝑒𝑙(𝑖, 𝑗)),5
𝑗=1⁄  top 5 refers to the 5 largest 

(𝑖, 𝑗); Rel10 = average of top 10 relationships ((1 10) ∑ 𝑟𝑒𝑙(𝑖, 𝑗))10
𝑗=1⁄ , top 10 refers to the 10 largest 

(𝑖, 𝑗) 

2MD SNP dataset = imputed dataset based on 50K Illumina BeadChip; HD = imputed dataset based on 

777K Illumina BovineHD (Illumina, San Diego, CA) 
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Table 3 Accuracy1 (SE2) of the predicted values for the youngest sires based on MD and 

HD SNP dataset3 and different prediction methods4 

Trait5 A-BLUP6 G-BLUP GBC7 MixP7 

MD SNP data     

    SCC   0.437 (0.082)   0.602 (0.066)   0.607 (0.065)   0.638 (0.058) 

    KgF   0.586 (0.062)   0.716 (0.049)   0.731 (0.047)   0.750 (0.042) 

    KgM   0.527 (0.064)   0.705 (0.051)   0.719 (0.048)   0.727 (0.046) 

    KgP   0.496 (0.073)   0.695 (0.053)   0.696 (0.051)   0.701 (0.049) 

  Average 0.512 0.679 0.688 0.704 

     

HD SNP data     

    SCC   0.437 (0.082)   0.594 (0.063)   0.568 (0.067)   0.595 (0.063) 

    KgF   0.586 (0.062)   0.709 (0.047)   0.759 (0.042)   0.740 (0.044) 

    KgM   0.527 (0.065)   0.721 (0.048)   0.725 (0.047)   0.736 (0.044) 

    KgP   0.496 (0.073)   0.687 (0.050)   0.691 (0.049)   0.694 (0.044) 

  Average 0.512 0.678 0.684 0.692 

    

1Accuracy =  
𝑐𝑜𝑟𝑟(𝐷𝑌𝐷,(𝐺)𝐸𝐵𝑉)

√𝑟𝐷𝑌𝐷
2

  

2SE = √1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 𝑛 − 2⁄ , where n is the number of individuals 

3MD SNP dataset = imputed dataset based on Illumina Bovine50K BeadChip; HD = imputed dataset 

based on 777K Illumina BovineHD (Illumina, San Diego, CA) 

4A-BLUP: traditional BLUP using pedigree-based relationship matrix; G-BLUP: genomic BLUP using 

genomic-based relationship matrix; GBC: an iterative method that fits a G-BLUP next to SNP effects 

with a BayesC prior; MixP: a variable selection method that fits a mixture of two normal distributions 

for SNP effects using the Pareto principle 

5SCC = somatic cell count; KgF = fat yield; KgM = milk yield; KgP = protien yield 

6A-BLUP results is same under MD and HD SNP dataset 

7With MD SNP dataset, optimal π values (i.e. proportion of SNP having large effects) when using GBC 

(MixP) was 20% (10%) for SCC, 1% (15%) for KgP, and 10% (10%) for KgF and KgM. With HD SNP 

dataset, optimal π values when using GBC (MixP) was 1% (10%) for SCC, 20% (1%) for KgF, and 1% 

(1%) for KgM and KgP.
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Table 4 Bias1 (SE2) of the predicted values for the youngest sires based on MD and HD 

SNP dataset3 and different prediction methods4 

Trait5 A-BLUP G-BLUP GBC MixP 

MD SNP data     

    SCC   0.887 (0.168)                 0.882 (0.110)                    0.880 (0.109)                  0.894 (0.103)     

    KgF   1.376 (0.164)                1.277 (0.119)                    1.221 (0.113)                 1.516 (0.127) 

    KgM   1.646 (0.239)                 1.532 (0.148)                   1.392 (0.136)                  1.875 (0.166) 

    KgP   1.537 (0.254)                 1.509 (0.159)                   1.286 (0.100)                  1.660 (0.169)           

     

HD SNP data     

    SCC   0.887 (0.168)                 0.847 (0.108)                    0.886 (0.103)                  0.852 (0.110)     

    KgF   1.376 (0.164)                1.265 (0.112)                    1.320 (0.110)                 1.610 (0.131) 

    KgM   1.646 (0.239)                 1.520 (0.143)                   1.554 (0.144)                  1.936 (0.173) 

    KgP   1.537 (0.254)                 1.503 (0.163)                   1.605 (0.153)                  1.825 (0.184)           

1Bias: measured as the regression of DYD on the predicted values 

2SE: computed from 10,000 bootstrap samples 

3MD SNP dataset = imputed dataset based on Illumina Bovine50K BeadChip; HD = imputed dataset 

based on 777K Illumina BovineHD (Illumina, San Diego, CA) 

4A-BLUP: traditional BLUP using pedigree-based relationship matrix; G-BLUP: genomic BLUP using 

genomic-based relationship matrix; GBC: an iterative method that fits a G-BLUP next to SNP effects 

with a BayesC prior; MixP: a variable selection method that fits a mixture of two normal distributions 

for SNP effects using the Pareto principle.  

5SCC = somatic cell count; KgF = fat yield, KgM = milk yield; KgP = protien yield.
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FIGURES 

 

Figure 2 SNP effects estimated using GBC and MixP for SCC, and KgM.  

Shown is the absolute value of SNP effect estimates (y-axis) from the MD SNP dataset (based 

on 54K Illumina BeadChip). X-axis is ordered by chromosomes from 1-29. SCC = somatic cell 

count, and KgM = milk yield. Note the changed y-axis scale for each graph. Absolute values of 

SCC was scaled by 10,000, while KgM was scaled by 1000. Scaling was just for plotting 

purpose.
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Figure 2 SNP effects estimated using GBC and MixP for KgF, and KgP.  

Shown is the absolute value of SNP effect estimates (y-axis) from the MD SNP dataset (based 

on 54K Illumina BeadChip). X-axis is ordered by chromosomes from 1-29. KgF = fat yield, 

and KgP = protein yield. Note the changed y-axis scale for each graph.
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INTERPRETIVE SUMMARY 

Single-step genomic-BLUP exploits all available information, however, it extension to the 

variable selection model is not straightforward. We evaluated an absorption approach that 

absorbs phenotypic information on large number of ungenotyped animals into genotyped 

animals in-order to enable the utilization of all information in variable selection methods of 

genomic prediction. We implemented a variable selection method for genomic prediction on 

the Absorbed dataset. The results did not show an extra gain of using a variable selection 

method. Overall, the utilization of all available information led to less biased predictions. 

ABSTRACT 

The aim of this study was to evaluate an absorption approach that absorbs phenotypic 

information on large numbers of ungenotyped animals into the mixed model equations of 

genotyped animals in-order to enable the utilization of all information in variable selection 

methods of genomic prediction. Two datasets were available for the analysis: 1) DYD dataset, 

i.e. a combination of DYD (daughter yield deviations) and genotype of 3,244 progeny-tested 

bulls; and 2) Absorbed dataset, i.e. a combination of absorbed records and genotype 

probabilities of 20,918 animals. The absorbed records resulted from the absorption of 

phenotypic information on ungenotyped descendants (4,022,179) into the mixed model 

equations of genotyped animals. LDMIP was used to generate the genotype probabilities for 

ungenotyped ancestors. Data on milk yield, fat yield, protein yield, and somatic cell count, 

were analysed using pedigree-BLUP (A-BLUP), genomic-BLUP (G-BLUP), single-step-

GBLUP (SS-GBLUP), and GBC (a method that fits a  G-BLUP and a BayesC term in the 

model). With DYD as response variable, forward prediction accuracies ranged from 0.427 to 

0.664 across the traits and evaluation methods. With absorbed records as response variable, 

accuracies ranged from 0.429 to 0.667 across the traits and evaluation methods. Comparison 
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of performance between DYD and the Absorbed dataset showed that accuracies were on 

average slightly higher for the Absorbed dataset for A-BLUP, whilst the opposite was found 

for G-BLUP, GBC, and SS-GBLUP, although differences were not statistically significant. 

Predictions based on Absorbed dataset were generally less biased. Although we were able to 

implement a variable selection method for genomic prediction on the Absorbed dataset, our 

results did not show an extra advantage of using the variable selection method GBC. Overall, 

the utilization of absorbed data and thus all available information led to less biased predictions. 

The use of Absorbed data in combination with alternative genomic prediction methods was 

discussed, and it was concluded that it might be especially useful in combination with marker 

based single step genomic predictions. 

Key words: genotyped animal, ungenotyped animal, genomic prediction, absorption of 

phenotype 

INTRODUCTION 

Presently, most genomic prediction methods focus mainly on genotyped animals, involve 

multiple-step procedures in estimation of genomic breeding values (GEBV), and often use 

daughter yield deviations (DYD) as response variable  (Legarra et al., 2009; Christensen and 

Lund, 2010; Meuwissen et al., 2011). However, many animals in livestock populations are 

ungenotyped. And for these animals, phenotypic information or estimated breeding values 

might be available. The availability of animals with phenotypes but no genotypes offers an 

opportunity to enlarge the reference dataset for genomic prediction. In addition, utilization of 

all available information could lead to more accurate and less biased predictions (Legarra et 

al., 2014) . The single-step method combines pedigree and genomic information via a special 

relationship matrix called H-matrix (i.e. numerator relationship matrix (A-matrix) plus 

genomic relationship matrix (G-matrix)) (Legarra et al., 2009; Misztal et al., 2009; Christensen 
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and Lund, 2010). The above approach referred to as ssGBLUP accommodates ungenotyped 

animals thereby ensuring that all available phenotypic information are utilized in genomic 

prediction. Because ssGBLUP involves the blending of G and A, it is important that they are 

both scaled to the same base population in-order to avoid biased predictions (Forni et al., 2011; 

Meuwissen et al., 2011). To this end, Meuwissen et al. (2011) proposed an approach in which 

the missing genotypes are imputed by linkage analysis instead of by A-matrix based regression 

coefficients. The modified single-step of Meuwissen et al. (2011) resulted in a higher accuracy 

and virtually unbiased GEBV in a simulation study and in a national Norwegian Red dataset 

(Meuwissen et al., 2015) as compared to the original single-step method. Genomic-BLUP 

based single-step methods have received much attention both in theory and its evaluation in 

real data (e.g. Aguilar et al. (2010); Forni et al. (2011); Koivula et al. (2012); Li et al. (2014); 

Lourenco et al. (2015)). Variable selection methods, such as BayesB, have been developed in 

theory but hardly used in practice (Legarra and Ducrocq (2012); Fernando et al. (2014); Liu et 

al. (2014)). These and other approaches have been reviewed by Legarra et al. (2014), however, 

the resulting equations showed convergence problems.  

Here we propose and evaluate an approach to absorb phenotypic information on a large 

number of ungenotyped animals into mixed model equations of genotyped animals. This 

approach results in a pseudo response variable, which reflect the information from non-

genotyped animals more completely than DYD’s. These pseudo-records can then be utilized 

for genomic prediction with variable or non-variable selection methods. Genomic predictions 

were done using either response variables, DYDs or the resulting pseudo-records from 

absorption.   
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MATERIALS AND METHODS  

SNP Data. An imputed SNP data on 3,244 progeny-tested Norwegian Red bulls were kindly 

provided by GENO SA (www.geno.no) for the analyses. A total of 2,450 bulls were genotyped 

with the 25K Affymetrix chip (Affymetrix Inc., Santa Clara, CA), 1,650 were genotyped with 

the Illumina Bovine50K  BeadChip (Illumina Inc., San Diego, CA), while 856 of the bulls were 

genotyped with both chips. Bulls genotyped with the 25K Affymetrix chip were imputed to 

50K (i.e. 25K/50K). Genotyping and imputation was performed by CIGENE (www.cigene.no). 

Imputation was by the Beagle package (Browning and Browning, 2009) and other in-house 

developed software as described by Solberg et al. (2011) . Quality control involved: removal 

of animals with an individual call rate <97%; deletion of SNP with a call rate <25%; pedigree 

relationships between parent and offspring were set to missing if they exceeded the Mendelian 

error threshold of >1%; SNPs with an overall Mendelian error rate >2.5% were deleted; then, 

for parent-offspring relationships with Mendelian errors <1%, genotypes for that loci were set 

to missing; finally, SNPs with minor allele frequency <0.05 were discarded.  Following this, 

the 50K dataset contained 48,249 SNP for a total of 3,244 Norwegian Red bulls. SNPs on the 

X chromosome were not included.  

Genotyped Animals and Their Ancestors (GA-set). The GA-set is an enlarged dataset 

comprising of both animals genotyped with 50K and their ancestors. In total 20,918 animals. 

The pedigree comprised of 20,918 animals, of which 5 generations of ancestors preceded the 

genotyped animals and 19 generations in total. Included in the pedigree are 4,401 founders, 

and 16,517 non-founders. While there were 18,357 animals with progeny, 2,561 animals had 

no progeny in the GA-set. Genotype probabilities for the ungenotyped animals in the GA-set 

were generated with the LDMIP program (Meuwissen and Goddard, 2010), without making 

use of the information on linkage between the markers. In this case the LDMIP algorithm 
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reduces to a segregation analysis which was found to be more accurate in datasets with 

relatively few genotyped animals (Meuwissen et al., 2015). 

Absorption of Phenotypic Information of Ungenotyped Animals into GA-set Animals. We 

define a D-set of animals (a total of 4,022,179 animals), which are all none-GA-set animals, 

and are thus ungenotyped animals that have also no genotyped descendants. Generally, D-set 

animals are descendants of the GA-set. The information (records) on the D-set animals will be 

used by absorbing their mixed model equations (MME) into those of the GA-set animals.  

We first assume only pedigree relationships (𝑨 matrix) for the absorption of the D-set. After 

absorption of D-set equations and fixed and other random effects equations, the mixed model 

equations (MME) for the GA-set animals may be written as: 

      (𝑴 + 𝑨−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝒅                                                                                                      [1a] 

where 𝑬𝑩𝑽𝐺𝐴 are the EBV of the GA-set animals;  is the variance ratio 𝜎𝑒
2 𝜎𝑎

2⁄ ; 𝑴 is the 

information matrix resulting from the absorption; and 𝒅 is the right-hand-side resulting from 

the absorption process. We will not write out the exact form of 𝑴 and 𝒅 here, since they depend 

on the fixed and random effects in the model. We will however assume that the information 

matrix, 𝑴, can be approximated by a diagonal matrix, such that the same 𝑬𝑩𝑽𝐺𝐴 and 

reliabilities result as for the complete data set. The 𝑬𝑩𝑽𝐺𝐴 and their reliabilities were assumed 

known (e.g. from a national pedigree based breeding value evaluation). Hence, we will 

approximate 𝑴 by a diagonal matrix 𝑾. In addition, we will write the right hand side 𝒅 as 𝒅 =

𝑾𝒚𝒂, where 𝒚𝑎 are absorbed records resulting in the desired 𝑬𝑩𝑽𝐺𝐴. Thus the MME for the 

absorbed records 𝒚𝑎 with weights 𝑑𝑖𝑎𝑔(𝑾) are: 

      (𝑾 + 𝑨−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝒂                                                                                                      [1b] 
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The weights 𝑾, that give the same reliabilities as for the complete data (𝐺𝐴 + 𝐷 set), from 

(national) evaluations, are derived in the Appendix. The right-hand-side 𝒅 is obtained by 

multiplying (𝑾 + 𝑨−1𝜆) times the known 𝑬𝑩𝑽𝐺𝐴 (from large-scale evaluations). Finally, the 

absorbed records 𝒚𝑎 are obtained as 𝑾−1𝒅 = 𝒚𝑎, which requires that all weights are positive.  

Second, we consider genomic relationships for the GA-set animals, and note that the 

absorption of D-set animals is not affected by the known marker genotypes since the D-set 

animals have no marker information, nor have their descendants (Meuwissen and Goddard, 

1999), as is also shown in the Appendix. Accounting for the known marker information results 

thus in the absorbed G-BLUP equations: (𝑾 + 𝑮−1𝜆)𝑮𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝑎, where 𝑾 and 𝒚𝑎 are 

the same as for the 𝑨 matrix based equations. Due to the equivalence of G-BLUP and SNP-

BLUP, the equations (1b) may also be solved by SNP-BLUP or by a Bayesian model for the 

estimation of SNP effects (e.g. BayesB/C/R). It may be noted that by the absorption of the D-

set animals (often many millions of animals) all information included in their phenotypes is 

utilized.  

Reference and Validation Dataset. The reference set comprised of 3,091 animals in the 

case of only progeny-tested bulls and 20,765 animals in the case of the absorbed dataset. 

Reference animals were born between 1965 and 2005. The validation scheme was based on 

forward predictions following a standard animal breeding selection scheme. Hence, the 

validation dataset consisted of the youngest sires born between 2007 and 2008. The 153 

youngest sires having more than 100 daughters with lactation records were used for validation. 

Statistical Analyses 

For the sake of convenience, a combination of DYD and genotype of the 3,244 progeny-

tested bulls is referred to as “DYD dataset”; while a combination of absorbed records and 

genotype probabilities of the GA-set animals is referred to as “Absorbed dataset”.  Four 
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evaluation methods (G-BLUP, SS-GBLUP, GBC, and A-BLUP) in-total were implemented 

for prediction of breeding values of animals in the validation set. In the case of the DYD 

dataset, G-BLUP, GBC, and A-BLUP, were implemented using DYD’s as the response 

variable and the variance components estimated from the dataset. In the case of the Absorbed 

dataset, all four methods were implemented using absorbed records as the response variable 

and the variance components provided from routine genetic evaluations of Norwegian Red 

Cattle population. The traits analyzed were milk yield (KgM), fat yield (KgF), protein yield 

(KgP), and somatic cell count (SCC). The heritabilities (0.136 - 0.277) of the traits and number 

of records are shown in Table 1, and are as used in NRF national evaluations. 

G-BLUP and SS-BLUP. The G-BLUP and SS-GBLUP model used to predict GEBV was 

as follows: 

                  𝒚 = 𝟏𝜇 + 𝒁𝑔 + 𝒆,                                                                                                        [2] 

where y is a vector of (pseudo) records; 1 is a vector of ones; μ is the overall mean; 𝒁 is a 

design matrix  that maps the records to genomic values; 𝒈 is a vector of genomic values 

assumed to follow a multivariate normal distribution MVN(0,G𝜎𝑔
2), where G  is the genomic 

relationship matrix and 𝜎𝑔
2 is the genetic variance; and 𝒆 is the vector of residuals, assumed to 

follow a multivariate normal distribution MVN(0,𝐖−1𝜎𝑒
2 ), where 𝑾 equaled the identity 

matrix for the DYD’s or contained the weights of the absorbed records. G was calculated, 

following Method 1 of VanRaden (2008), as G = 𝑿𝑿′/2 ∑ 𝑝𝑗 (1 − 𝑝𝑗), and 𝑋𝑖𝑗 =  𝑥𝑖𝑗 −  2𝑝𝑗, 

where 𝑥𝑖𝑗 is the genotype of animal 𝑖 for SNP 𝑗, with 𝑥𝑖𝑗 = 0, 1 or 2 for reference homozygote, 

heterozygote and alternative homozygote respectively, and 𝑝𝑗 is the allele frequency of SNP 𝑗.  

The 𝑮 in the case of the Absorbed dataset is a relationship matrix at the gametic level, referred 

here as 𝑮𝑳𝑫𝑳𝑨 matrix because it is based on a combination of relationship information from 

linkage analysis (LA) and linkage disequilibrium (LD) (Meuwissen et al., 2015). 𝑮𝑳𝑫𝑳𝑨 was 
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constructed as detailed in Meuwissen et al. (2015) using genotype probabilities since some of 

the GA-set animals were ungenotyped. Following Meuwissen et al. (2015):   𝑮𝑳𝑫𝑳𝑨 =

𝑺(𝑫�̃�𝑫 +  ∆�̃�∆)𝑺′ 2⁄ , where 𝑫 is a diagonal matrix with elements 1 √(�̃�𝑖𝑖)⁄  when �̃�𝑖𝑖 > 1 or 

1 elsewhere; ∆ is a diagonal matrix with elements √(1 − �̃�𝑖𝑖) when �̃�𝑖𝑖 < 1 or 0 elsewhere; 

�̃� is the pedigree based gametic relationship matrix; 𝑺 is a design matrix indicating which 

gametes belong to which animals that reduces the gametic relationship matrix 𝑫𝑮𝑫 + ∆�̃�∆ to 

an animal relationship matrix of size number of animals squared; �̃� is a matrix of gametic 

relationship: �̃� = 𝑿𝒈𝑿𝒈′ ∑𝑗𝑝𝑗(1 − 𝑝𝑗),⁄   where 𝑿𝒈  is a matrix of standardized genotypes, i.e. 

𝑋𝑔𝑖𝑗
 is the probability of a ‘1’ allele of gamete 𝑖 at marker 𝑗 expressed as a deviation from its 

mean, which is the frequency (𝑝𝑗) of  the ‘1’ allele (𝑋𝑔𝑖𝑗
 = [prob(“1”allele) - 𝑝𝑗]). 

Implementation of SS-GBLUP was as described in Legarra et al. (2009); Misztal et al. 

(2009); Christensen and Lund (2010). Genetic values were assumed to follow a normal 

distribution, N(0,H𝜎𝑔
2) where 𝑯 is the relationship matrix combining both SNP marker and 

pedigree information: 𝑯 =  [
𝑮𝜔 𝑮𝜔𝑨11

−1𝑨12

𝑨21 𝑨11
−1𝑮𝜔 𝑨21𝑨11

−1𝑮𝜔𝑨11
−1𝑨12 + 𝑨22 −  𝑨21𝑨11

−1𝑨12

], where 

𝑨 is pedigree relationship matrix portioned as 𝑨 =  [
𝐴11 𝑨12

𝐴21 𝑨22
]  with subscript 1 for genotyped 

animals and 2 for ungenotyped animals and 𝐺𝜔 = (1 − 𝜔)𝐺 +  𝜔𝐴11, where 𝜔 is the relative 

weight on 𝑮 and 𝑨 when forming the combined relationship matrix. G was calculated, 

following Method 1 of VanRaden (2008) as described above. The inverse of 𝑯 was 𝑯−1 =

 [𝑮𝜔
−1 − 𝑨11

−1 0
0 0

] +  𝑨−1. Unlike Gao et al. (2012) and Koivula et al. (2012), 𝜔 was set to zero 

in this study since a preliminary study on a range of 𝜔 values (0 to 0.30) revealed insignificant 

effect on the accuracy of genomic prediction in our data. In addition, 𝜔 was set to zero in-order 

to make the 𝑯 matrix comparable to other relationship matrix in this study that also considered 
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that the markers could explain all genetic variance. SS-GBLUP was implemented in DMU 

(Madsen and Jensen, 2013) using the  G-ADJUST option  which adjust elements in the genomic 

relationship so that average of diagonal elements and average of off-diagonal elements equal 

the same averages in the additive relationship for the genotyped animals.  

GBC. The GBC fits simultaneously a polygenic effect (as in G-BLUP) and a BayesC effect 

(Habier et al., 2011) using the ICE  algorithm (Meuwissen et al., 2009), which includes a 

correction for the uncertainty of the other SNP effects when estimating the effect of SNP ‘i’ as 

described by Wang et al. (2015). The polygenic term is expected to catch the part of the 

breeding value that is explained by relationships between the animals and co-segregation of 

alleles within the families, whilst the BayesC term is expected to pick-up the LD between SNPs 

and major genes. The model of analysis used by GBC, based on fitting G-BLUP and SNPs 

with large effects is thus: 

           𝒚 = 1𝜇 + 𝒁𝒈 + 𝒁𝐗𝐐𝐪 + 𝐞 ,                                                                                                       [3] 

where y is a vector of records; 1 is a vector of ones; μ is the overall mean; 𝒁 is a design matrix  

that maps the records to genomic values; 𝒈 is vector of polygenic effects (i.e. G-BLUP aspect 

of the model) with distributional assumptions as described above for G-BLUP, 𝑿 is a design 

matrix of standardized SNP genotypes as used for the calculation of G above, 𝒒 is the vector 

of SNP effects (𝑞𝑖), and 𝒆 is the vector of residuals; Q is a diagonal matrix with 1 on the 

diagonal if the SNP has a large BayesC effect (with prior probability ) and 0 if it has no such 

effect (with prior probability (1-)). In the ICE algorithm the elements of Q are obtained using 

the posterior probabilities (i.e. prior probability times likelihood) that the SNP has large effect. 

The starting prior (π) probability of a SNP having large effects was 1%. The G-BLUP term 

was implemented as described in the G-BLUP section. The BayesC term was implemented as 

described in Habier et al., 2007, except that here the ‘small’ SNPs had a non-zero genetic 
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variance, whereas the ‘large’ genes were assumed to have a variance of 0.01g
2. Because fitting 

many ‘small’ SNP effects is equivalent to fitting a GBLUP term (e.g. Habier et al., 2007), the 

core difference between the GBC and BayesC model is the variance assumed for the ‘small’ 

SNPs (i.e. the GBLUP term) which is in BayesC assumed to have zero effects. 

A-BLUP. The A-BLUP ignores genomic information and relies on pedigree information 

from ancestors using a numerator relationship matrix (A). Using the data set, with the genomic 

information excluded, and the pedigree, A-BLUP predictions of EBV were obtained. The 

analysis was carried out using ASReml version 3.0 package (Gilmour et al., 2009).  

Predictive Ability. Accuracy of prediction (𝑟) was calculated as the correlation between the 

predicted values i.e. GEBV or EBV (in the case of traditional BLUP) and DYD, divided by the 

square root of the average reliability of the DYD (√𝑟𝐷𝑌𝐷
2 ) of the reference animals . 

Calculation of reliabilities of DYD was according to Fikse and Banos (2001), i.e. (𝑟𝐷𝑌𝐷
2 =

𝑑𝑒 (𝑑𝑒 + 𝐾),⁄  where 𝑑𝑒 is the effective number of daughters and 𝐾 =  (4 −  ℎ2) ℎ2⁄  ). The 

average effective number of daughters was 173 with a standard deviation of ~34. The bias of 

predictions from the different evaluation methods was measured as the regression of DYD on 

their predicted values. A regression coefficient of 1 denotes no bias, <1 implies that extreme 

high (low) values of the (G)EBV over- (under-) predict the realized phenotypes, and vice versa 

a regression coefficient of >1. Standard errors of the prediction accuracies and the regression 

coefficients on the DYD were computed using bootstrapping with the R-package (R Core 

Team, 2015). The bootstrapping procedure involved sampling with replacement of the 

(G)EBVs 10,000 times. For each bootstrap sample, the (G)EBVs were correlated to the DYD. 

Standard errors were computed from the 10,000 bootstraps of estimated accuracies and 

regression coefficients.   
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RESULTS AND DISCUSSION 

Accuracy of Prediction using DYD as Response Variable 

The accuracies of predictions, as well as regression coefficients of DYD on predicted values 

for the different evaluation methods, using DYD as response variable are presented in Table 2. 

The accuracies ranged from 0.427 to 0.664 across the traits and evaluation methods, with A-

BLUP (0.427 – 0.491), which is pedigree based yielding less accurate predictions in 

comparison to genomic approaches. While GBC (0.580 – 0.664) yielded more accurate 

predictions than G-BLUP (0.575 – 0.652). In all of the scenarios, highest accuracy was 

observed for KgF, while the lowest was observed for SCC. Generally, higher accuracies were 

obtained for production traits (i.e. KgF, KgM, KgP) as compared to the health indicator trait, 

SCC. This is not surprising because SCC (like other health traits) has a lower heritability, which 

impacts the accuracy of prediction. Several studies, e.g. Moser et al. (2009) and Luan et al. 

(2009), also observed higher accuracy of genomic prediction for highly heritable traits than for 

lowly heritable traits. According to  Goddard and Hayes (2009) more phenotypic information 

would prove very useful in order to increase prediction accuracy for SCC and other lowly 

heritable traits.   

G-BLUP and GBC yielded similar accuracies. GBC, a method that fits a polygenic term (i.e. 

G-BLUP) next to BayesC SNP effects, had a small advantage over G-BLUP across all four 

traits studied. On average, the increase in accuracy using GBC was 1%. A possible explanation 

for the small advantage of GBC over G-BLUP could be that the modelled LD blocks 

surrounding the major genes for the traits were large and were also reasonably well captured 

by G-BLUP (Daetwyler et al., 2010). Another possible explanation is that the few SNPs (Figure 

1) with moderate to large effects explain a relatively small amount of the genetic variance 

relative to that explained by all the SNPs with small effects. In this situation, GBC’s result in 

a performance that is only slightly better than G-BLUP, since it gives extra weight to the SNPs 
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with large effects. The observed results are in accordance with what has been reported in other 

studies. For instance, Su et al. (2012) reported 0.5% increase in reliability when using a 

Bayesian mixture model with 2 normal distributions on Holstein cattle data, but no increase 

was observed on Nordic Red Dairy cattle.   

The regression coefficient of EBV on masked DYD’s measures the degree of bias of 

prediction (Table 2). For an unbiased prediction, this regression coefficient should be 1. As 

shown in Table 2, the regression coefficients followed a similar trend across the evaluation 

methods. Although the regression coefficients deviated substantially from 1, only few of these 

deviations were borderline significant (deviation > 2 standard errors). The latter occurred for 

KgM, but here the bias was biggest for A-BLUP, which is known to be an unbiased EBV 

estimator. Since selection is mostly for KgM, the biases are thus most likely due to selections 

that are not accounted for in the DYD data.        

Accuracy of Prediction using Absorbed Records as Response Variable 

The accuracies and bias of predictions for the different evaluation methods using the 

absorbed records as response variable are presented in Table 3. Accuracy of prediction ranged 

between 0.429 to 0.667 across the traits and evaluation methods, with A-BLUP (0.429 – 0.511) 

giving lower accuracies as compared to G-BLUP, SS-GBLUP, and GBC. G-BLUP (0.565 – 

0.667) using 𝐺𝐿𝐷𝐿𝐴 yielded slightly more accurate predictions than SS-GBLUP (0.558 – 0.656) 

and GBC (0.561 – 0.665) across the four traits. However, the accuracies of prediction obtained 

using GBC were much closer to those of G-BLUP than SS-GBLUP to G-BLUP. Except for 

KgM, GBC resulted in slightly better predictions than SS-GBLUP. As previously observed, 

the highest accuracy was obtained for KgF, while the lowest was for SCC. In addition, higher 

accuracies were obtained for production traits as compared to health indicator trait, SCC.  

The regression coefficients for the production traits ranged from 0.982 to 1.076 when using 

A-BLUP (Table 3), which suggests that A-BLUP is unbiased as is also known from theory. 
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Thus, the approximate absorption of the D-set animals results in a reduced data set, that seems 

to account for the selections that took place within the D-set animals. The genomic models also 

yielded unbiased EBV, although their regression coefficients tended to be smaller than 1, 

especially for KgP. For SSC, the A-BLUP regression coefficient of 0.828 deviates substantially 

from 1, but the difference is not statistically significant. This substantial deviation is probably 

because SSC is strongly correlated to mastitis, and there is strong direct selection for mastitis 

resistance in NRF cattle, which is not picked-up by the current single trait model for SSC. 

Similarly the genomic prediction models yielded small regression coefficients for SSC varying 

between 0.795 and 0.835.  

Previous studies (e.g. Gao et al. (2012); Koivula et al. (2012); Li et al. (2014)) based on de-

regressed proofs as the response variable and the 𝑯 matrix as the relationship matrix have 

reported that SS-GBLUP performed slightly better than G-BLUP. However, a recent study by 

Meuwissen et al. (2015) showed that G-BLUP with an alternative relationship matrix (𝐺𝐿𝐷𝐿𝐴; 

based on linkage analysis and linkage disequilibrium information) performed slightly better 

than SS-GBLUP. In the present study, G-BLUP using the absorbed record and 𝑮𝐿𝐷𝐿𝐴 yielded 

on average 0.7% higher accuracy than SS-GBLUP which used 𝑯 matrix. Suggesting that in a 

case of large dataset with relatively few genotyped animals (3,244 out of 20,918 in this study), 

utilization of 𝑮𝐿𝐴𝐿𝐷 matrix could be at least equally accurate than the 𝑯 matrix. The large 

number of ungenotyped animals in the Absorbed dataset might have affected the performance 

of SS-GBLUP. 

The key objective of this study was to implement a variable selection method of genomic 

prediction given a dataset composed of genotyped and ungenotyped animals. This objective 

was achieved, however, the accuracies of predictions were very similar to that of G-BLUP 

(Table 3). This was not expected since GBC had a small advantage over G-BLUP when using 

DYD’s as response variable and actual genotypes. A possible reason for the reduced accuracy 
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of GBC versus GBLUP is that with the Absorbed dataset, GBC was not able to capture SNPs 

with moderate or large effects, due to the large scale use of genotype probabilities instead of 

actual genotypes. A check on the estimated SNP effects showed that with the DYD dataset, 

there were clear indications of SNPs with moderate or large effects for most of the traits 

studied, while with the Absorbed dataset, no clear indications were seen (Figure 1 and 2). The 

latter suggests that the LD between SNP genotype probabilities and the QTL is substantially 

lower than the LD between actual SNP genotypes and the QTL.    

Comparison of DYD and Absorbed Dataset 

A comparison of Table 2 and 3 shows that differences in accuracy between the DYD and 

the Absorbed dataset, although not statistically significant, were on average slightly higher for 

the Absorbed dataset for A-BLUP, whilst the opposite was found for G-BLUP, GBC, and SS-

GBLUP (where the latter was compared to GBLUP in Table 2, since in Table 2 there were no 

missing genotypes). It seems that the large-scale use of genotype probabilities reduced the 

accuracies of the genomic selection methods, whereas for the analysis of the DYD dataset, 

actual genotypes were used. Currently, genotyped cows are entering the reference population, 

which may favor the use of absorbed records instead of DYD’s, since genotype cows introduce 

complications with respect to the weighting of DYD’s (information content on cows and bulls 

are very different), and double counting (a genotyped cow may enter the data directly and as 

part of a DYD). 

The use of Absorbed data was tested here in combination with a limited number of genomic 

prediction methods. However, it may be applied in combination with any kind of genomic 

prediction method, that can handle ungenotyped ancestors, and/or in situations where the 

ungenotyped ancestors may be neglected (e.g. if they are few and/or old). For instance, for the 

marker based single step method of Fernando et al. (2014), which can fit Gibbs-sampling based 

variable selection models, the use of Absorbed data may be computationally very 
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advantageous. In situations where there are K millions of ungenotyped descendants, the 

Absorbed data would eliminate their equations and thus eliminate the need for a K million 

times M matrix of genotype probabilities that would enter every cycle of the Gibbs-chain, and 

thus greatly reduces the computational speed of this method.   

CONCLUSIONS 

An approach to absorb phenotypic information of large numbers of ungenotyped animals 

into mixed model equations of genotyped animals was proposed and evaluated. A-BLUP, G-

BLUP, SS-BLUP, and GBC (a variable selection method), methods of evaluation was 

implemented on the resulting dataset. The methods performed as follows A-BLUP<SS-

GBLUP<GBC<G-BLUP.  We were able to implement a variable selection method for genomic 

prediction on the Absorbed dataset, however, our results did not show an extra advantage of 

using a variable selection method.  Overall, the utilization of all available information led to 

less biased predictions. 
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APPENDIX 

Approximation of the Absorption Matrix 𝑾 

Absorption When Using 𝑨 Matrix. We will consider here that the absorption of pedigree 

relationship (𝑨 matrix) based mixed model equations (MME), where descendants of genotyped 

animals (D-set) are absorbed into the equations for genotyped animals and their ancestors (GA-

set). The absorbed MME are described by: 

(𝑴 + 𝑨−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝒅  

where 𝑬𝑩𝑽𝐺𝐴 are the EBV of the GA-set animals;   is the variance ratio 𝜎𝑒
2 𝜎𝑎

2⁄ ; 𝑴 is the 

information matrix resulting from the absorption; and 𝒅 is the right-hand-side resulting from 

the absorption process. Here we will derive an approximation for 𝑴 called 𝑾, which is 

assumed a diagonal matrix. The above equations can thus be seen as MME for GA-set animals 

with absorbed records 𝒚𝑎 = 𝑾−1𝒅, and weights 𝑑𝑖𝑎𝑔(𝑾). We further assume that 𝑬𝑩𝑽𝐺𝐴 and 

their reliabilities, 𝑟2, are known, e.g. from a large-scale (national) pedigree-based genetic 

evaluation.   

The algorithm to approximate the weights 𝑑𝑖𝑎𝑔(𝑾) = 𝒘 of the absorbed records is: 

Step 0: Translate reliabilities 𝑟2 into an effective number of records: 𝑛𝑒𝑖 = 𝜆𝑟𝑖
2 (1 − 𝑟𝑖

2)⁄ ; and 

set 𝑤𝑖 = 𝑛𝑒𝑖  for all GA animals 𝑖. 

Step 1: Estimate approximate reliabilities 𝑟𝑎𝑖
2  using as weights for own performance records 𝑤𝑖 

and the algorithm of Tier and Meyer (2004). Using their notation, the Tier and Meyer algorithm 

splits its estimate of the total effective number of records (𝐹𝑖) into a term due to 

parents, ∑ 𝐸𝑗
∗

𝑗  (where summation is over the known parents 𝑗); a term due to offspring, ∑ 𝐸𝑙𝑙  

(where summation is over offspring 𝑙 within the GA-set); and a term due to own records 𝐷𝑖 
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(which equals our weight 𝑤𝑖); 𝐸𝑗
∗ is the information / effective number of records due to parent 

j; and 𝐸𝑙 is the information / effective number of records due to offspring 𝑙.  

Step 2: The weights of the own records 𝑤𝑖 are updated such that the total effective number of 

records equal 𝑛𝑒𝑖 which are known from the reliabilities (Step 0). Specifically the weights are 

updated by: 

                                               𝑤𝑖 = 𝑛𝑒𝑖 − (∑ 𝐸𝑗
∗

𝑗 + ∑ 𝐸𝑙𝑙 ) 

If 𝑤𝑖 ≤ 0, set 𝑤𝑖 = 10−6 (the avoidance of 𝑤𝑖 = 0 is explained below). If these updated 𝑤𝑖 are 

sufficiently close to the previous weights, the algorithm stops. Otherwise, go to step 1 (i.e. 

recalculate information from parents and offspring using the new weights).   

Given the weights 𝑾 from the above algorithm, the absorbed right-hand-side 𝒅 can be 

calculated as (assuming known 𝑬𝑩𝑽𝑮𝑨): 

𝒅 = (𝑾 + 𝑨−𝟏𝜆)𝑬𝑩𝑽𝐺𝐴  

and absorbed record 𝒚𝑎 can be calculated as: 

𝒚𝒂 = 𝑾−𝟏𝒅 

The latter requires that the weight 𝑑𝑖𝑎𝑔(𝑾) are positive, which explains the above mentioned 

avoidance of 𝑤𝑖 = 0. The MME of the absorbed records 𝒚𝒂, with weights 𝑑𝑖𝑎𝑔(𝑾) are thus: 

(𝑾 + 𝑨−1𝜆)𝑮𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝑎 

which result in the same EBV and reliabilities as the large scale (national) evaluations. Below 

we will show that for the current situation, where descendants D-set are absorbed into their 

ancestors GA-set, the absorption matrix 𝑾 (or 𝑴) and the right-hand-side 𝒅 do not depend on 

the availability of genomic relationships for the GA-set animals. Thus, in case we have a 

genomic relationship matrix G for the GA set animals, the MME become:   
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(𝑾 + 𝑮−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝑎 

where 𝑾 and 𝒅 = 𝑾𝒚𝒂 are the same as for the pedigree based MME. 

Absorption When Using 𝑮 Matrix for GA-set Animals. Following Meuwissen and Goddard 

(1999), we will show that 𝑾 and 𝒅 do not depend on 𝑮 or 𝑨 being used as relationship matrix 

for the GA-set (the D-set animals are assumed ungenotyped). For this, we will consider 

Henderson (1976) rules to set up the inverse of the relationship matrix of the GA and D set 

animals. For the genetic value of D-set animal 𝑖 we write: 

                                                 𝑢𝐷𝑖 = 1
2⁄ 𝑢𝑠 + 1

2⁄ 𝑢𝑑 + 𝑑𝐷𝑖  

where subscript s (d) denote the sire (dam) of animal 𝑖 (which may be within the D or GA set); 

and 𝑑𝑖 is the Mendelian sampling deviation with variance 𝑉𝑎𝑟(𝑑𝐷𝑖) = 1
2⁄  (for simplicity we 

ignore inbreeding here). The genetic values of the GA-set animals are not splitted in a sire and 

dam component (since they are explained by marker data), and modelled entirely by the 

deviation component, i.e. by definition 𝑢𝐺𝐴𝑖 = 𝑑𝐺𝐴𝑖, and 𝑉𝑎𝑟(𝒖𝐺𝐴) = 𝑉𝑎𝑟(𝒅𝐺𝐴) = 𝑮. In 

matrix form, the breeding values of the GA and D set animals can be modelled as: 

[
𝑰𝒖𝐺𝐴

𝑰𝒖𝐷
] = [

𝟎 𝟎
𝑹 𝑺

] [
𝒖𝐺𝐴

𝒖𝐷
] + [

𝒅𝐺𝐴

𝒅𝐷
] 

where R is a matrix with element (𝑖, 𝑗) equal 1
2⁄  when 𝑗 is a (GA-set) parent of 𝑖 and 0 

otherwise; and S is a matrix with element (𝑖, 𝑗) equal 1 2⁄  when 𝑗 is a (D-set) parent of 𝑖 and 0 

otherwise. These equations may be rewritten as:  

𝑻𝒖 = 𝒅 
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where 𝑻 = [
𝑰 𝟎

−𝑹 𝑰 − 𝑺
] and 𝒅 = [

𝒅𝐺𝐴

𝒅𝐷
]. Thus, 𝒖 = 𝑻−𝟏𝒅, and 𝑉𝑎𝑟(𝒖) = 𝑮𝑎𝑙𝑙 =

𝑻−1𝑉𝑎𝑟(𝒅)(𝑻−1)′, where 

                                                       𝑉𝑎𝑟(𝒅) = 𝑫 = [
𝑮 0

0
1

2
𝑰]     

We need the inverse of 𝑮𝒂𝒍𝒍, i.e. 𝑮𝑎𝑙𝑙
−1 = 𝑻′𝑫−1𝑻, where: 

𝑫−𝟏 = [𝑮−𝟏 0
0 2𝑰

] 

And writing out 𝑻′𝑫−1𝑻 gives: 

𝑮𝑎𝑙𝑙
−1 = [

𝑮−1 + 2𝑹′𝑹 −2𝑹′(𝑰 − 𝑺)

−2(𝑰 − 𝑺′)𝑹 2(𝑰 − 𝑺′)(𝑰 − 𝑺)
] 

Now, absorption of the D-set equations into the GA-set involves the terms −2𝑹′(𝑰 −

𝑺),−2(𝑰 − 𝑺′)𝑹, and 2(𝑰 − 𝑺′)(𝑰 − 𝑺), which all stem from Henderson’s rules and do not 

involve any genomic relationships 𝑮. Thus, the absorption process is identical (and based on 

pedigree relationships) whether the GA-set relationships are based on markers or on pedigree.  
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TABLES 

Table 7 Heritability (h2), reliability (𝒓𝑫𝒀𝑫
𝟐 )1 of DYD2, number of animals with phenotype 

and genotype per dataset3 

                                                                                                           Number of animals 

Trait ℎ2 𝑟𝐷𝑌𝐷
2  DYD  dataset Absorbed dataset 

Somatic cell count (SCC) 0.136 0.855 3,244 20,918 

Fat yield (KgF) 0.213 0.904 3,244 20,918 

Milk yield (KgM) 0.277 0.925 3,244 20,918 

Protein yield (KgP) 0.235 0.912 3,244 20,918 

1𝑟𝐷𝑌𝐷
2 = 𝑑𝑒 (𝑑𝑒 + 𝐾),⁄  where 𝑑𝑒 is the effective number of daughters and 𝐾 =  (4 −  ℎ2) ℎ2⁄  

2DYD = daughter yield deviations 
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Table 2 Accuracy1 (±SE2) and bias (±SE) of the predicted values for the youngest sires 

based DYD dataset and different prediction methods3 

Trait4 A-BLUP G-BLUP GBC 

Accuracy    

    SCC   0.444 (±0.076)   0.575 (±0.065)   0.580 (±0.065) 

    KgF   0.491 (±0.070)   0.652 (±0.054)   0.664 (±0.053) 

    KgM   0.437 (±0.074)   0.616 (±0.059)   0.637 (±0.057) 

    KgP   0.427 (±0.078)   0.601 (±0.058)   0.604 (±0.057) 

    

Bias    

    SCC   0.922 (±0.160)                 0.811 (±0.101)                    0.812 (±0.100)                

    KgF   1.161 (±0.172)                1.158 (±0.115)                    1.139 (±0.110)               

    KgM   1.335 (±0.242)                 1.317 (±0.149)                   1.279 (±0.133)                

    KgP   1.240 (±0.243)                 1.223 (±0.148)                   1.187 (±0.139)                

1Accuracy =  
𝑐𝑜𝑟𝑟(𝐷𝑌𝐷,(𝐺)𝐸𝐵𝑉)

√𝑟𝐷𝑌𝐷
2

  

2SE = √1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 𝑛 − 2⁄ , where n is the number of individuals 

3A-BLUP: traditional BLUP using pedigree-based relationship matrix; G-BLUP: genomic BLUP using 

genomic-based relationship matrix; GBC: an iterative method that fits a G-BLUP next to SNP effects 

with a BayesC prior 

4SCC = somatic cell count; KgF = fat yield; KgM = milk yield; KgP = protien yield. 
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Table 3 Accuracy1 (±SE2) and bias (±SE) of the predicted values for the youngest sires 

based Absorbed dataset and different prediction methods3 

Trait4 A-BLUP G-BLUP SS-GBLUP GBC 

Accuracy     

    SCC   0.429 (±0.079)   0.581 (±0.058)   0.572 (±0.061)   0.579 (±0.058) 

    KgF   0.511 (±0.067)   0.667 (±0.051)   0.656 (±0.053)   0.665 (±0.051) 

    KgM   0.450 (±0.069)   0.577 (±0.062)   0.577 (±0.065)   0.574 (±0.064) 

    KgP   0.463 (±0.072)   0.565 (±0.065)   0.558 (±0.067)   0.561 (±0.066) 

     

Bias     

    SCC   0.828 (±0.150)                 0.835 (±0.106)                    0.795 (±0.105)                  0.802 (±0.101)     

    KgF   0.982 (±0.136)                0.997 (±0.091)                    0.961 (±0.097)                 0.966 (±0.089) 

    KgM   1.076 (±0.181)                 0.925 (±0.113)                   0.937 (±0.122)                  0.901 (±0.112) 

    KgP   1.033 (±0.175)                 0.847 (±0.111)                   0.842 (±0.118)                  0.826 (±0.109)           

1Accuracy =  
𝑐𝑜𝑟𝑟(𝐷𝑌𝐷,(𝐺)𝐸𝐵𝑉)

√𝑟𝐷𝑌𝐷
2

  

2SE = √1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 𝑛 − 2⁄ , where n is the number of individuals 

3A-BLUP: traditional BLUP using a pedigree-based relationship matrix; G-BLUP: genomic BLUP 

using genomic-based relationship matrix; SS-GBLUP: single-step genomic BLUP using a combination 

of pedigree and genomic relationship matrix; GBC: an iterative method that fits a G-BLUP next to SNP 

effects with a BayesC prior 

4SCC = somatic cell count; KgF = fat yield; KgM = milk yield; KgP = protien yield 
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FIGURES 

Figure 3 SNP effects based on DYD dataset using GBC method.  

Shown is the absolute value of SNP effect estimates (y-axis) from DYD dataset (i.e. a 

combination of daughter yield deviations and actual genotypes). X-axis is ordered by 

chromosomes from 1-29. Traits are: SCC = somatic cell count, KgF = fat yield, KgM = milk 

yield, and KgP = protein yield. Note the changed y-axis scale for each graph. Absolute values 

of SCC was scaled by 10,000, while KgM was scaled by 1000. Scaling was just for plotting 

purpose.
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Figure 2 SNP effects based on Absorbed dataset using GBC method.  

Shown is the absolute value of SNP effect estimates (y-axis) from Absorbed dataset (i.e. a 

combination of absorbed record and genotype probabilities). X-axis is ordered by chromosomes 

from 1-29. Traits are: SCC = somatic cell count, KgF = fat yield, KgM = milk yield, and KgP 

= protein yield. Note the changed y-axis scale for each graph. Absolute values of SCC was 

scaled by 10,000, while KgM was scaled by 1000. Scaling was just for plotting purpose.



 

 

 


