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PREFACE 

Here at NMBU, previously Norwegian College of Agriculture, we pride ourselves in keeping 

sustainability close at heart at heart at all times. Norway may perhaps be one of the 

wealthiest countries in the world (per capita), giving the option to rely on import to supply 

the population with food. However, in my opinion, with great wealth comes a responsibility 

to develop knowledge and technology to ensure a sustainable future for the rest of the world, 

as well as for ourselves.  

As I grew up on a farm, I have heard my father talk repeatedly of how it is important to know 

when to sow, when to fertilize, which pesticides to use and when to harvest. To know this, 

one must know the soil in the field, keep an eye on the weather and continuously inspect the 

field for pests of any kind. To me, this is the very essence of precision agriculture – increasing 

the ability to apply the right amount of effort at the right time.  

I was excited when I found a subject for my thesis that allowed me to pursue my passion for 

agriculture and sustainability as well as to learn more about remote sensing and precision 

agriculture. Although I have had only the bare minimum of courses in programming and 

statistics, I thought that this was an excellent opportunity to learn more on these subjects.  

I would like to give a great thanks to my supervisor, associate professor Ingunn Burud, for 

providing me with the fundamental codes for image processing, guiding me through the 

process of data analysis, and for being understanding and patient with my lack of previous 

knowledge on the subject. Also, thanks to my parents, who both helped nurture my 

fascination for science from a young age, and whose wisdom remind me to always try to see 

the bigger picture. Thanks to my bro Jan Vegard for helping me get into the concept of coding, 

to Runa, for helping me get up in the morning, and to Erling, for figuratively giving me a kick 

in the behind when he figured I was slacking off.  

Finally, thanks to all the people I had the pleasure of meeting during my years at NMBU. 

You all made my time as a student so much more interesting, fun and and rewarding and I 

feel I have grown a lot as a person. 

 

 

Sign: _________________________ 

Gudbrand Askvig 

Ås, IMT/NMBU 01.12.16  
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ABSTRACT 
 

With the human population still on the rise, it is important to continue developing technology 

for agriculture that will allow us produce enough food for the entire population. An important 

part of this is to become able to perform early detection of pathogens, as this will both reduce 

crop losses and reduce necessary amount of pesticide.  

This study was conducted to investigate methods involving hyperspectral image analysis for 

early detection and discrimination of powdery mildew on three greenhouse plants; cucumber, 

strawberry and tomato. Two separate experiments were conducted, one with a VNIR 

hyperspectral camera (400-1000 nm) and one with a SWIR hyperspectral camera (1000-2500 

nm). For each plant type, multiple healthy and infected samples were scanned and analysed. 

The study had difficulty achieving a conclusive detection of powdery mildew with previously 

developed spectral disease indices. Results might improve if more appropriate methods for 

pre-processing and data filtering are applied.  

Principal component analysis (PCA) was performed in an attempt to identify informative 

spectral bands, and a PCA including a 1st derivative 2nd order polynomial Savitzky-Golay 

algorithm showed that wavelengths around 700-730 nm contributed the bulk of loadings, and 

thus >90% of the variation in an image with healthy and mildew-infected areas. This  

Parallel to the analysis performed in MATLAB, the graphical hyperspectral software Scyven 

was used as a supporting tool, and some comparisons were made to evaluate its usefulness 

as a tool for high precision scientific experiments. Though this proved useful for a beginner 

in the field of hyperspectral image analysis, its limitations makes it unsuitable for analysing 

the large image files used in this study.  
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SAMMENDRAG 

Verdens befolkning vokser stadig, og det er viktig at vi forsetter å utvikle ny 

landbruksteknologi for å kunne fôre befolkningen i årene framover. Å ha evnen til å oppdage 

sykdommer og skadedyr på tidlig stadium vil være en viktig del av dette, da tidlig deteksjon 

både vil hindre tap av avling og redusere nødvendig mengde plantevernmidler.  

Denne studien har hatt som formål å undersøke hvorvidt bruk av hyperspektral bildeanalyse 

kan brukes for tidlig deteksjon av meldugg på tre ulike drivhusvekster; agurk, jordbær og 

tomat. To ulike forsøk ble gjennomført, hvert forsøk med hver sin type hyperspektrale 

kamera. Det første forsøket tok i bruk et VNIR-kamera som tar bilder i 400-1000 nm, og det 

andre brukte et SWIR-kamera som tar bilder i 1000-2500 nm. For begge forsøk ble det tatt 

bilder av flere syke og friske planter for hver sort, som senere ble analyser i programvare.  

Det viste seg vanskelig å oppnå konkluderende resultater ved bruk av tidligere utviklede 

indekser for deteksjon av plantesykdommer. Dette kunne muligens blitt forbedret ved bruk 

av bedre tilpasset dataprosessering.  

Prinsipalkomponentanalyse ble utført i et forsøk på å identifisere informative bølgelengder. 

Analyse med en førstederivert Savitzky-Golay-algoritme av andre orden viste at bølgelengder 

rundt overgangen mellom rødt og infrarødt lys bidro til hoveddelen av vektingen til første 

prinsipalkomponent. Denne prinsipalkomponenten forklarte igjen over 90% av variansen I 

den nye datamatrisen.  

Parallells med analysen som ble foretatt i MATLAB, ble programmet Scyven brukt som 

støttende hjelpemiddel. Samtidig ble det gjort noen sammenligninger for å finne ut hvorvidt 

dette programmet kunne brukes til denne typen eksperiment. Det viste seg at selv om 

programmet fungerte som en amatørvennlig introduksjon til hyperspektral bildeanalyse, 

hadde det enkelte begrensninger som gjorde det lite egnet til denne studien.  
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1  INTRODUCTION 

1.1 Background for the study 

This section will introduce the topics covered in this work. This will include a brief 

introduction to the evolution of agriculture in general and some of its challenges, as well as 

precision agriculture and the use of drones and remote sensing.  

 

1.1.1 Motivation 

“The greatest shortcoming of the human race is our inability to understand the exponential 

function.” This is a quite famous quote by A. A. Bartlett; professor emeritus of physics at the 

University of Colorado at Boulder and known for his talks on sustainable growth [1]. Already 

in the late 1700s, Thomas Malthus noticed that an increase in food production only led to an 

increase in population, meaning that there would always be a shortage of food for the lower 

classes of society [2]. In essence, both these statements claim that the growth of the human 

population must eventually come to a halt, because there will simply not be enough arable 

land available to grow crops.  

In theory, one could increase the amount of arable land, but this often comes at the cost of 

removing forest areas. This is often considered undesirable, as forests play a vital part in the 

binding of CO2. Furthermore, Norway is a cold, weathered rock with only 2.2% arable land 

area [3], making it even more important to cultivate the available soil in the best way 

possible.  

 

1.1.2 The evolution of agriculture 

The proverb “necessity is the mother of invention” opposes the somewhat pessimistic views 

of Bartlett and Malthus, mentioned in the previous section. Agriculture has seen a couple of 

major technological revolutions, including (but not limited to) invention of the plough, 

implementation of mechanized tools and the ability to create genetically modified organisms 

(GMOs).  Humankind has developed ways to increase crop yield by breeding crops with higher 

yield per acre, developing bigger and more time efficient farming machines and inventing 

artificial fertilizer and pesticides. However, many of these come with a cost. Bigger machines 

mean more soil compaction. Intensive cultivation leads to soil depletion and excessive use of 

chemicals have a wide variety of consequences. 
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1.1.3 Chemical free pest control 

Pest control has always been a major part of growing crops. Some early recordings include 

descriptions of the Sumerians’ use of sulphur compounds to control insects and mites, as well 

as the Roman ritually where they burned straw, fish guts, dung or animal horns to battle 

mildew and blight [4]. Unfortunately, many pest have a nasty habit of developing immunities 

to certain types of pesticide, and many chemicals used for pest control can be harmful to 

humans or the environment surrounding the field. Therefore, a chemical free form of pest 

control would have many benefits.  

Of course, chemical free pest control is just as ancient as agriculture itself, simple examples 

being cats to counter mice, and manually weed out plants that undesired in the field. 

However, as the fields have grown in size, many such methods have been impractical for 

some time. Recently, advances in machine vision and automated robots could once again 

make mechanical weeding a valid alternative for some types of crops. For example, the 

RoboCrop InRow Weeder from Garford Farm Machinery Ltd [5] uses video image analysis to 

locate both crop and weed in real-time, and a robot arm uproots the weed while leaving the 

crops unharmed.  

For other pests, such as fungi, mechanical methods are impractical, and researchers are 

searching for new solutions. A patent by A. Michaloski [6], as well as several newer studies, 

shows that exposure to UV-radiation has a suppressing effect on different kinds of powdery 

mildew [7] [8] [9]. To suppress the fungi at an early stage, and thereby prevent sporulation 

and spread, one could either continuously expose the crops to UV-radiation, or apply a 

detector system to determine where and when to apply UV.  

 

1.1.4 Precision Agriculture 

The goal of precision agriculture is to optimize returns while preserving resources. As this 

implies reduced use of i.e. fertilizer and pesticide, it would also mean a reduction of the 

negative environmental impact from industrialized agriculture. GPS-assisted machinery can 

improve driving patterns, reducing both fuel consumption and soil compression. Automated 

lightweight robots using machine vision can perform weeding or harvesting, and tractor 

manufacturers like Case are developing autonomous full size tractors that could handle 

heavier tasks, like ploughing [10]. As UAVs (commonly referred to as “drones”), sensors and 

computing power becomes cheaper and more available, it enables the farmer to gather more 

information about his crops. He will then have a better chance of making good decisions with 

respect to where and when to apply agricultural input for maximum effect [11].  
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1.2 Spectral imaging 

Spectral imaging as well as multi- and hyperspectral sensors will be explained in more detail 

in chapter 2, and this section will mainly focus on presenting existing applications and 

potential future uses, as well as how it will be applied in this study. 

 

1.2.1 Fields of application 
Ever since Joseph von Fraunhofer discovered black absorption lines in the solar spectrum, 

physicists and chemists has used spectroscopy to both classify stars and identify different 

elements or substances. Spectral imaging combines spectroscopy and photography and 

grants the ability to analyse the spectrum of each pixel within a single image. Each pixel can 

then be classified based on the shape and/or intensity of its spectrum. Being a powerful tool 

for classification, spectral imaging is already widely used in a number of fields, including 

astronomy, geology, military applications, medicine, food quality control and agriculture [12].  

 

1.2.2 Spectral imaging in agriculture 

An example is the Yara N-Sensor, which measures the chlorophyll levels in crops in real-time 

using a multispectral sensor. By automatically and strategically varying the amount of 

fertilizer spread, the use of N-sensor has reportedly increased the yield in cereal crops by 3%, 

while reducing the amount of applied fertilizer by 13% [13]. The WeedSeeker from AgriOptics 

New Zealand LTD use a multispectral sensor to detect weeds and apply herbicide only where 

needed. AgriOptics proclaim that the WeedSeeker can reduce the costs of weed-control 

chemicals by an impressive 90% [14]. 

A key element in reducing the necessary amount of pesticide is early detection and 

classification of pathogens in the crops. Several studies has found that hyperspectral imaging 

shows great promise in the detection of diseases like mildew in a variety of crops, examples 

being maize [15], cucumber [16], grapes [17] and date fruit [18].  

 

1.3 Research objectives 

The overarching goal of this thesis is to investigate the possibility of using spectral data to 

early detect and identify powdery mildew on cucumber-, strawberry- and tomato plants. 

Relevant previously developed methods found will be tested, and PCA will be used to identify 

informative wavelengths in the images taken. Primary tools will be MATLAB, PLS_Toolbox 

and Scyven. The study will not go into subjects like multivariate image regression, artificial 

neural nets, support vector machines or other forms of machine learning.  

  



      

  

 Gudbrand Askvig Page 4 
 

 

2 THEORY AND FORMULAS 

This chapter will address the theory and technologies necessary to perform this study. The 

first section will explain the concepts of spectral imaging, technologies and methods for 

acquiring these images and the nature of spectral image data. Section 2.2 will give a brief 

introduction to how powdery mildew affects the infected plants, how plants defend 

themselves from such attacks, and how this could affect the optical properties of the plant. 

Section 2.3 will introduce the statistical tools used to process said data, and section 2.4 will 

cover some results from similar experiments.  

 

2.1 Multi- and hyperspectral imaging 

As light of different wavelengths hits an object, it is absorbed, reflected, transmitted and 

scattered in certain ways determined by the chemical composition of the object. The rate of 

reflection is what determines what colour we perceive. A red apple reflects mostly red light, 

while absorbing light of the other visible wavelengths. The human eye has three types of 

sensory cells called rods that are sensitive red, green and blue light. As each cell is 

stimulated, it sends a signal to our brain, which process the information into an image, aka, 

what we “see”.  Quite similarly, consumer grade 3-channel RGB-cameras regularly uses a 

Bayer filter, which uses an array of red-, green- and blue filtered sensing elements, or sensels. 

The light intensity at each sensel is combined with the intensities from surrounding sensels 

to create a vector with three dimensions. Each dimension represents one type of filter (or 

channel), namely red, green and blue for RGB-cameras. Hence, for each pixel in an image is 

a 3D-vector that tells our computer the RGB colour values in that pixel.  

 

Figure 2-1: Illustration of a Bayer filter and the interpolation process to aquire RGB color values for every pixel. 
Found at http://www.colorizemedia.com/detalhe_tecnologia.php?pag=53  

http://www.colorizemedia.com/detalhe_tecnologia.php?pag=53
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With multi- and hyperspectral imaging, it is possible to detect variations in light reflectance 

outside the visible spectrum. As mentioned in chapter 1, this can be a powerful tool for 

determining the chemical composition of objects in the image.  

 

2.1.1 Methods of spectral imaging 

One way to create an image with wavelengths different from those observable to the human 

eye is to replace the RGB-filters with filters of other wavelengths. A disadvantage of this 

method is that for each type of filter added to the filter array, the spatial resolution of the 

image is reduced. This lack of precision implies that this method is suboptimal for research 

applications that require high precision.  

There are several other methods for creating multispectral images, including multi-layered 

sensors, filter wheels, spectral scanners and interferometers. Although only the spectral 

scanner will be covered in this study, the data generated from each of these sensor types 

would be quite similar. This will be explained in section 2.1.2.  

Figure 2-2 illustrates the optical scheme for a spectral scanner. The sensor captures a single 

line of pixels, and a spectrum is recorded for each pixel in the line. To get a full image, the 

sensor records continuously while either the camera or the object to be recorded moves is 

moved along an axis perpendicular to the scan line. This is often referred to as “push broom 

scanning” (illustrated in Figure 2-3), and this is the method that will be used in this study.  

 

Figure 2-2: Optical scheme for an imaging spectrometer. 
Found at: http://home.uni-leipzig.de/strahlen/web/general/de_index.php?goto=measurements  

http://home.uni-leipzig.de/strahlen/web/general/de_index.php?goto=measurements
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2.1.2 Spectral data 

While an RGB image has three colour values 

per pixel, multi- and hyperspectral images 

can have many more. Similar to RGB 

cameras, for or each pixel there is an n-

dimensional vector, where n is the number of 

spectral bands available to the sensor. 

Although there is no clear defining border 

between multi- and hyperspectral, a 

multispectral sensor typically have 3-10 

relatively broad spectral bands, while a 

hyperspectral sensor can have hundreds of 

narrower bands [19] and thus higher spectral resolution. Figure 2-4 illustrates a 

hyperspectral dataset as a datacube, with two spatial and one spectral dimension. Each value 

in this 3D data matrix represents the reflection of a given wavelength in a given pixel.  

 

Figure 2-4: Example of a hyperspectral datacube with two spatial and one spectral dimension. 
Found at: http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_terinformatika/ch04s04.html 

 

Although the data is indeed recorded in a 3D matrix, the order of a hyperspectral image is 

not truly three dimensional, as pointed out by Burger in [20]. The reason for this is that the 

data has two spatial dimensions, meaning each data point in the matrix is given by location 

vs location vs wavelength. This means that a hyperspectral image can be unfolded to create 

a two dimensional dataset, with only one spatial dimension and the spectral dimension, 

which allows for second order analysis procedures [20]. This will be further explained in 

section 2.3. 

 

Figure 2-3: Hyperspectral imaging with the push 
broom-principle. Found at: 
https://www.resonon.com/knowledge_base.html  

http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_terinformatika/ch04s04.html
https://www.resonon.com/knowledge_base.html
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2.2 Measuring plant health from spectral data 

Various diseases have different symptoms, in plants as well as in animals. A basic 

understanding of plant physiology could therefore be beneficial in order to have some idea of 

what to expect from the reflectance spectra of sick plants vs healthy ones. Moreover,  

 

2.2.1 Plant physiology and effects of powdery mildew infections 

Powdery mildew is a collective term for plant diseases caused by a variety of fungi from the 

order Erysiphales [21]. Symptoms include white, powdery fungal growth on the lead surfaces 

and stems, and sometimes the fruit. Figure 2-5a show a heavily infected grape leaf, while 

Figure 2-5b show the fungus on a microscopic level with round spores attached to long 

conidiophores.  

         

Figure 2-5 a and b: Mildew infected grape leaves, makro (left) and microscope view (right). Found at 
https://www.agric.wa.gov.au/table-grapes/powdery-mildew-grapevines-western-australia 

Being a parasitic organism, the fungus grows on the surface of the leaves. Here, they 

penetrate the epidermal cells (the outermost cell layer of the leaf, see Figure 2-6) and extract 

water and nutrients from the host, which usually results in a slowed rate of photosynthesis 

in the host leaf [22] [23]. Put in simple terms, the plant is more concerned about defending 

itself than performing its day-to-day tasks of performing photosynthesis and gathering 

energy. In addition, the very presence of the fungi blocks out a portion of sunlight, and the 

“attack” also affects the ability of the stomata to perform gas exchange, both of which 

weakens the host leaf.  

https://www.agric.wa.gov.au/table-grapes/powdery-mildew-grapevines-western-australia
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Most plants have several defence mechanisms 

to protect itself from pathogens. The first line 

of defence is usually the cell wall itself, forming 

a physical barrier as well as containing a 

variety of chemical defence mechanisms [24]. 

However, as some pathogens have evolved to 

either tear down or bypass these mechanisms, 

the plants can apply the scorched earth-tactics, 

or “hypersensitive response” (HR). As cells in 

the infected area commit suicide, the plant 

seeks to limit or deny pathogen access to water 

and nutrients, thereby limiting the pathogens 

ability to survive and reproduce. This local 

water deficiency could be a way to tell if a plant is sick, as water has two characteristic 

absorption bands around 1400 and 1900 nm [25], and the absorption rate for a sick plant 

could deviate from that of a healthy plant. This is especially true for necrotrophic pathogens, 

which outright kills the host cells to access nutrients.  

 
Figure 2-7 a and b: Light interaction with leaf tissue (a) and colonization strategies for fungal pathogens (b). 

Modified from (Mahlein 2016) 

Mahlein (2016) [26] points out that powdery mildew infections has a “relatively low impact 

on tissue structure and chlorophyll composition during early infection”, as powdery mildew 

is a biotrophic fungus and does not trigger HR in the same degree as some other pathogens. 

However, it does produce fungal structures on the leaf surface, which can influence the optical 

properties in the affected areas.  

 

 

Figure 2-6: Illustration of the cellular composition of 
a leaf. 
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2.2.2 Spectral vegetation indices 

As mentioned in chapter 1, several studies has shown that spectral data has high potential 

for detecting diseases in crops. However, spectral data in its raw form is difficult to interpret. 

Spectral vegetation indices (SVIs) uses the relationships between the reflectance of a few 

selected wavelengths to express specific physiological parameters. This is usually presented 

as a value ranging from -1 to +1 or 0-1. A collection of SVIs can be found on [27], and Table 

2-1 from [28] presents a table over which index is suitable for different types of applications.  

 
Table 2-1:  Examples of spectral vegetation indices and their applications. 
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Two such indices, listed below, were used early in this study, namely the Mofified Chlorophyll 

Absorption Ratio Index Improved (MCARI2) from [29] and the Modified Red Edge 

Normalized Difference Vegetation Index (MRENDVI) from [30] (featured as “modified 

Normalized Difference index, or mNDindex).  

 

𝑀𝐶𝐴𝑅𝐼2 =
1.5[2.5(𝑅800 − 𝑅670) − 1.3(𝑅800 − 𝑅550)

√(2 ∙ 𝑅800 + 1)2 − (6 ∙ 𝑅800 − 5 ∙ √𝑅670) − 0.5  

 

 

 

(2-1) 

𝑀𝑅𝐸𝑁𝐷𝑉𝐼 =
𝑅750 − 𝑅705

𝑅750 + 𝑅705 − 2 ∙ 𝑅445
 

 

 

(2-2) 

As in Table 2-1, R indicates relative reflection at the wavelength indicated by the subscripts. 

It should be mentioned that the primary function of both these indices is to estimate 

chlorophyll content. The previously section stated that early stage mildew infection has a low 

impact on chlorophyll levels, and therefore these two indices should be of little practical value 

to this study. However, that literature was not obtained before MCARI2- and MRENDVI-

analysis was already complete, so they will still be mentioned in the results section.  

 

2.3 Statistics – Dimensionality reduction and PCA 

As mentioned, hyperspectral data can be quite overwhelming if not processed or reduced in 

some way. The aforementioned spectral indices provide one way of simplifying spectral data, 

but their use imply that it is known which spectral bands contain useful information. This 

section will cover the statistical tools used to obtain this information, as well as other 

methods to classify data.  

For discriminating between two materials, the “useful information” is the portion of the data 

that has the greatest deviation between the two classes. In the case of this study, the useful 

information will be the spectral bands that has the greatest deviation in reflectance when 

comparing healthy and infected plants. In contrast, the wavelengths that has the same 

reflection for both healthy and infected plants are of no interest, as they do not provide us 

with information to separate the two plants. There idea of removing the non-informative 

variables in data is often referred to as dimensionality reduction. 

PCA was developed as a tool to find the greatest variance in datasets by studying the 

eigenvectors of the covariance in the data matrix. For readers not familiar with the method, 

introductions are provided by multiple sources, e.g. [31] and [32]. In short, the data is rotated 

onto a new dimensional space where the principal components are the new dimensions. A set 

of data has equally many principal components as it has variables, and the first principal 

component (PC1) will be the vector that spans the greatest variance in the data. This is 

illustrated in Figure 2-9, where a group of individuals is classified based on three different 

genes. The same samples are just as effectively classified using only the first two principal 
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components. The third component is of little informational value, and can be ignored, thus 

reducing the dimensionality of the data. As hyperspectral images can have several hundreds 

of variables, in the form of spectral bands, and PCA can potentially reduce this to a handful 

of more useful principal components.  

Burger explains the process in [20], but a short summary is presented here. As mentioned in 

section 2.1.2, when performing PCA on hyperspectral images, the image is first unfolded into 

a 2D-matrix X as illustrated in Figure 2-8. The following rotation of the data matrix onto the 

new dimensional space results in a bi-linear decomposition, also illustrated in Figure 2-8. 

The decomposed vectors, namely the loadings (column vectors P) and scores (row vectors T) 

are found in decreasing order of importance, so that the first loading vector, p1, is the loading 

vector that accounts for the most variance in the data structure, p2 second most, etc.  

 

 

 

Figure 2-8: A hyperspectral image unfolded (left) and decomposed into scores, loadings and residuals (right). 
The loadings are the projections of the PCA factors onto the original variables, and the scores are projections of 

samples onto the PCA factors. 
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Figure 2-9: A three dimensional dataset can be reduced down to two principal components without severe loss of 
information. http://www.nlpca.org/pca_principal_component_analysis.html 

 

2.4 Results from previous similar studies 

In 2010, Rumpf used a collection of SVIs as parameters to not only determine if a plant is 

healthy or ill, but also discriminate between different diseases, which has not yet been proven 

possible using a single SVI [33]. Mahlein and Rumpf later developed specific spectral disease 

indices (SDIs) to detect Cerospora leaf spot, sugar beet rust and powdery mildew in sugar 

beets [34], shown in equations (2-3) to (2-6).  

Although disease detection at early stages of infection proved difficult due to only minor 

change in leaf reflectance, Mahlein and Rumpf claims that “SDIs will improve and simplify 

plant disease detection based on hyperspectral data.” Figure 2-10, taken from [26], illustrates 

variations in the reflectance spectra of barley leaves when infected with net blotch, rust and 

powdery mildew. The spectra demonstrate obvious differences, making it quite intuitive that 

it should be possible to do some discriminating analysis on it. 

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 − 𝑖𝑛𝑑𝑒𝑥(𝐻𝐼): 
𝑅534 − 𝑅698

𝑅534 + 𝑅698
−

1

2
∙ 𝑅704 

(2-3) 

𝐶𝑒𝑟𝑜𝑠𝑝𝑜𝑟𝑎 𝑙𝑒𝑎𝑓 𝑠𝑝𝑜𝑡 − 𝑖𝑛𝑑𝑒𝑥(𝐶𝐿𝑆): 
𝑅698 − 𝑅570

𝑅698 + 𝑅570
− 𝑅734 

(2-4) 

𝑆𝑢𝑔𝑎𝑟 𝑏𝑒𝑒𝑡 𝑟𝑢𝑠𝑡 − 𝑖𝑛𝑑𝑒𝑥(𝑆𝐵𝑅𝐼): 
𝑅570 − 𝑅513

𝑅570 + 𝑅513
+

1

2
∙ 𝑅704 

(2-5) 

𝑃𝑜𝑤𝑑𝑒𝑟𝑦 𝑚𝑖𝑙𝑑𝑒𝑤 − 𝑖𝑛𝑑𝑒𝑥(𝑃𝑀𝐼): 
𝑅520 − 𝑅584

𝑅520 + 𝑅584
+ 𝑅724 

(2-6) 

http://www.nlpca.org/pca_principal_component_analysis.html
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The HI and PMI indices will be used in this study to investigate if these indexes could also 

be applied to other plants, despite being developed by studying sugar beet leaves.  

Further supporting the potential for discriminating diseases are studies done by Eady et.al. 

to classify different serotypes of Salmonella enterica [35] [36]. Here, informative spectral 

bands were identified using PCA, and these were used for classification by the use of SVM.   

 

 

Figure 2-10: Spectral reflectance signatures for barley leaves diseased with net blotch, rust and powdery 
mildew. From Mahlein (2016). 
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3 EXPERIMENTS 

3.1 Equipment 

3.1.1 Plant Samples 

The samples for both experiments were acquired from NMBU's own Center for Plant 

Research in Controlled Climate (SKP). Healthy leaves of cucumber, tomato and strawberry 

were collected from their respective greenhouses, and mildew infected leaves were collected 

from isolated containment chambers. Samples were divided into the four categories listed 

below, and examples from the different “infected”-categories cate shown in Figure 3-1:  

- Healthy: Green, happy plant. Used for control.  

- Infected, early stage: mildew barely, if at all detectable by the human eye 

- Infected, intermediate stage: mildew easily visible, but not completely dominant.  

- Infected, late stage: majority of leaf covered in spores 

For the VNIR-experiment, four samples were taken for each plant type; two healthy control 

samples, one with early stage infection and one with intermediate infection.  

For the SWIR-experiment, nine samples were taken for each plant; three healthy control 

samples, three intermediately infected, one with late stage infection and two samples were 

mildew was placed directly in agar in an attempt to observe the fungi without the leaf. 

A sample would be placed in a closed petri dish with an appropriate agar, administered by 

staff engineers at SKP. The petri dishes themselves were of the disposable plastic type, as 

we did not have glass dishes available. Special care was always taken to not accidentally 

infect the healthy control samples with mildew.  

   

Figure 3-1: Early, intermediate and late stages of mildew infection on strawberry leaves (left to right, 
respectively). The spores are barely detectable in the early stage, and are marked by two red circles. 
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3.1.2 Optics, lighting and rig 

Cameras 

Both of the two experiments used hyperspectral cameras 

from Specim, Spectral Imaging Ltd.  

The first experiment used the VNIR-model. This camera 

use a silicon sensor, and has a spectral range of 390-1020 

nm. The scan line is 1312 pixels wide, and each pixel has 

900 spectral bands.  

The second experiments used a SWIR camera with a 

spectral range of 930-2530 nm. The scan line is 320 pixels 

wide, and each pixel has 256 spectral bands.  

In both experiments, the camera in question was mounted 

in a fixed position, lens facing downward, as seen in Figure 

3-2.  

 

Lighting  

Three lamps were used for the experiments; two wall 

mounted lamps and a single standing lamp 

The SWIR-experiment included the two wall mounted 

lamps, as shown in Figure 3-4.  

The VNIR-experiment utilized all three light sources, with 

the standing lamp positioned approximately at the position 

of the camera in Figure 3-4.  

 

Spectralon rod  

Spectralon is a white polymer material with reflectance 

values generally above 99% over a range from 400 nm to 

1500 nm [37]. The intensity of light emitted by the artificial 

light sources will vary with wavelength, and the spectralon 

rod his will be used to obtain a white reference for reflection 

(~100% reflection for all wavelengths).  

 

Lift rig and petri dish mount  

To ensure that a given plant sample would be placed in the exact same position from one day 

to another, a plastic cross was glued to the bottom of every samples petri dish. A plastic 

Figure 3-3: 3D-printed plastic mount 
for the petri dishes. 

Figure 3-2: The SWIR-camera is shown 
in the top of the picture, looking down 

at the sample and spectralon.  
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mount, shown in Figure 3-3, was designed and 3D-printed so that the crosses on the petri 

dishes could only fit in the centre of the mount, with one possible orientation.  

The mount was fastened to an adjustable height platform, which in turn was mounted on a 

linear actuator.  

 

Linear actuator 

The cameras both capture images using the push broom-scanning principle presented in 

chapter 2, and therefore requires that either the camera or the sample is moved along a line 

perpendicular to the scan line in order to record the second spatial dimension. This was 

achieved by the use of a ball screw actuator, and the entire system is shown in Figure 3-4.  

 

 

Figure 3-4: The setup with linear actuator, lift, petri dish mount, spectralon rod and two lamps. Camera not 
visible in top of picture.  

 

Camera software  

Both cameras and the linear actuator were connected to a computer with software provided 

by the camera manufacturer, namely Specim DAQ Solution Software v.3.62. This software 

was used to adjust settings for spectral and spatial binning, framerate, exposure time and 

scan speed of the actuator. Real time visualisation of the scanned image as well as sensor 

saturation was also provided.  
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For each scan, the software would output two files to disk; a big .raw-file containing the 

recorded values, and a smaller .hdr-file (header, more specifically ENVI-format), containing 

metadata. This metadata include the used settings and a list of the wavelengths 

corresponding to each spectral band (i.e. band 1 = 392 nm for the VNIR-camera), i.a..  

 

3.1.3 Software: MATLAB and PLS/MIA-toolbox 

MATLAB by MathWorks Inc. is a matrix-based programming platform optimized for 

engineering and scientific problems [38]. A library of prebuilt toolboxes contain tools for many 

standardized applications, an example being the PLS_Toolbox from Eigenvector Research 

Inc. [39], which will be used to solve many of the statistical tasks in this study.   

The software versions used are listed below; 

- MATLAB R2016b, v9.1.0 

- PLS_toolbox v8.2.1 

 

3.1.4 Software: Scyllarus and Scyven 

Scyllarus TM is a set of tools for processing hyperspectral data, developed by Australia based 

Data 61, formerly NICTA (National Information and Communications Technology Ltd) and 

CSIRO (Commonwealth Scientific and Industrial Research Organisation) [40]. The visual 

analysis program Scyven (Scyllarus Visual Environment) will be used in early analysis to get 

a general idea of how the spectral signatures in the image looks like. Scyven also has its own 

functions for performing material classification, PCA i.a. However, being a simplified 

graphical interface, it has some limitations, primarily with respect to using the spectralon as 

a 100% reflectance area. This software will therefore only be used to perform simple, early 

inspection of the images, as well as experimenting with different methods for illuminance 

estimation, pre-processing etc. The software version used was 1.2.0.  

 

3.2 Acquiring data 

 

3.2.1 Calibrations 

The camera settings were found primarily by trial and error, and is listed in Table 3-1. In 

order to achieve a high spatial resolution, the sample would ideally be placed as close to the 

sensor as possible (while still fitting the entire sample within the image), by raising the 

adjustable platform. However, this would present a problem with illumination, as the two 

XXX-lamps would have to be angled in such a way that they would shed light directly onto 
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the sensor and severely oversaturate it. Thus, a compromise was made with regard to spatial 

resolution, and the positioning of the lamps and exposure times were adjusted in parallel to 

achieve maximum illumination without over-saturating the sensors. Spectral binning of the 

VNIR camera was set to 4, thus reducing the spectral resolution from 900 to 200 bands, 

implying a wavelengths delta of ~3 nm per band. The reason for this was to avoid 

impractically big data files, and 3 nm per band was assumed to be precise enough. The 

spectral resolution of the SWIR camera was already at ~6 nm per band, and spectral binning 

was not deemed necessary. Using a print of a chessboard pattern, scan speeds were calibrated 

to avoid that the image was stretched in either direction.  

Table 3-1: Camera settings for the two experiments. 

 VNIR camera settings SWIR camera settings 

Spectral Bin 4 1 

Spatial Bin 1 1 

Framerate 20 ms 20 ms 

Exposure 25 ms 0.8 ms 

Scan speed 3.18 mm/s 9.20 mm/s 

Scan length 180 mm 180 mm 

 

A black reference was achieved by scanning for a couple of seconds with the shutter closed at 

the end of each picture, and this area would be used to remove background noise and correct 

pixel-to-pixel variations in the sensor itself. The impact of this correction can be seen in 

Figure 3-5.  

 

Figure 3-5: Corrected and uncorrected spectralon irradiance spectra in the VNIR-area. 
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3.2.2 Taking the pictures 

VNIR-samples 

One picture was taken for each sample nearly every day for 14 days. Days 5, 11 and 12 was 

not included because of lab accessibility during weekends. With the given settings, each 

image was saved as an 1194x1312x200 data cube.  

SWIR-samples  

A slightly different approach was used for the SWIR-samples, as only one picture was taken 

for each sample instead of taking pictures over several days. With given settings, each image 

was saved as a 416x320x256 data cube.  

In both cases, files were given unique, recognizable names, i.e. TH2_Day01 would imply 

“Tomato, Healthy sample #2 at Day 1”. Samples were stored openly (though in their 

respective petri dishes) in a dark room at room temperature.  

 

 

3.3 Data analysis 

 

3.3.1 Early inspection with Scyven 

To get a simple visualisation of the data, a few selected images were loaded into Scyven and 

analysed using some of its standard functions. The built-in tools were used run images 

through a series of processes, listed below. To map the accuracy of the software, this would 

later be compared with the corresponding results from the analysis done in MATLAB.  

- Pre-processing: reduce noise by spatial or spectral filters. 

- Illuminant estimation: an estimation of the spectral density of external light sources. 

- Reflectance recovery: calculates relative spectral reflection in the image. 

- Material discovery: materials are found and clustered according to reflectance spectra. 

- Principal Component Analysis: performs PCA on the reflectance cube.  

First off, different regions in an image were observed to investigate how different settings 

and circumstances affected the illuminant estimation, material classification and PCA. One 

picture was chosen for each spectral category (VNIR and SWIR), and three different regions 

were selected from each picture. The regions are illustrated in Figure 3-6, and [x, y] ranges 

indicating the spatial pixel coordinates used to crop them from the original images are listed:  
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Figure 3-6: Illustration of the cropped areas from VNIR (left) and SWIR (right) tomato leaf samples. The white 
spectralon can be seen in the top of the picture, as well as the black reference line in the bottom. Blue, black and 

red rectangles respectively mark "complete sample", "spectralon" and "leaf" areas. 

- Complete sample and spectralon ([301:1150, 401:900] and SWIR: [46:360, 61:245]) 

- Spectralon area (VNIR: [301:420, 451:890] and SWIR: [46:165, 61:245])  

- Infected leaf w/ white mildew spots ([756:915, 451:890] and SWIR: ([256:288, 151:215]) 

For pre-processing, three of the four available alternatives were tested. Primarily, the default 

filter size of 5 was used, but sizes 7 and 9 were also tested in some cases.  

- No filter  

- Central Moving Average (CMA) (spectral filter)  

- Savitzky-Golay (SavGol) (spectral filter) 

Similarly, six different built-in methods for illuminant estimation were tested: 

- NICTA  

- Finlayson and Schaefer 

- Grey Edge 

- Grey World 

- Shade of Grey 

- White Patch 
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After a sensible illuminant was recovered, 

strategical points were inspected to identify 

differences in the reflective spectra of 

healthy and infected areas. The built-in 

PCA-tool was also applied to aid in the 

selection of such points.  

A spectral library was created by selecting 

different areas and labelling them with their 

respective material, namely spectralon, 

healthy leaf, mildew (both lightly and 

heavily infected), red plastic and black tape 

as shown in Figure 3-7. This library would 

then be saved and used for classification in 

different images.  

 

NB! 

By visually inspecting irradiance at each 

band in Scyven, it was not possible to 

observe any mildew at all in the SWIR 

images. They will therefore not be given 

much attention further in the study. 

  

Figure 3-7: Selected polygons for material classification. 
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3.3.2 Importing and extracting data into MATLAB 

Images were imported into the MATLAB workspace with the readenvihdr-function (see 

Appendix B) written at NMBU. Data was extracted with the HySpec_Analysis algorithm 

(Appendix A), which is a modified version of a program also written at NMBU. In short, the 

program would load raw data into a 3D-matrix, and use the black reference line and areas 

from the spectralon to, respectively, subtract sensor errors and normalize a “white” value in 

order to represent data as relative reflectance instead of measured irradiance.  

Furthermore, sample areas would be selected for further analysis by simply cropping the 

data matrix, as the full images contained much irrelevant data, i.e. areas showing the red 

plastic mount or black duct tape. The program also contains code to unfold the three-

dimensional data matrix into 2D, in order to be processed as 2nd order data by PLS-toolbox.  

Finally, the program contained code for calculating four of the spectral vegetation- and 

spectral disease indices presented in chapter 2, namely the MCARI2 and MRENDVI indices 

from section 2.2.2, and the “healthy-index” and “powdery mildew-index” from section 2.4.  

 

3.3.3 Analysis with SVI and SDIs in MATLAB 

By applying the spectral index-equations on each pixel in a sample area, the 200 spectral 

bands was reduced down to a single index. Thus, new images were created where the value 

of each pixel was the calculated spectral index. Three areas were analysed; a small area that 

seemed green and healthy, a small area heavily infected, and a bigger area with both healthy 

and infected areas. The intention of this was to establish a basis for what index values to 

expect in healthy and infected areas, and then use this information to classify such areas in 

the larger sample image.  

In addition, both healthy and infected leaves were studied over time to investigate how the 

MCARI2 and MRENDVI indices changed over time.  

It should be noted that analysis with SVI and SDI are only done for the VNIR-images, as the 

wavelengths used to calculate the indices are all 800 nm or below.  

 

3.3.4 Identifying informative bands with PCA in MATLAB 

A sample area would be unfolded into a spectral-by-spatial 2D-matrix and loaded into 

PLS_Toolbox. Pre-processing was done with a first derivative, 2nd order Savitzky-Golay 

algorithm.   
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4 Results and discussion 

 

4.1 Early data from Scyven 

 

4.1.1 Illuminant recovery 

Illuminant spectra were recovered using the NICTA-method and three different pre-

processing methods; no filter, CMA and SavGol. The spectra recovered from the spectralon 

area are shown in Figure C-1 to Figure C-3, and the curves demonstrate slight differences in 

estimated illuminant, CMA smoothing the curve notably more than SavGol, the latter only 

smoothing slightly compared to the unfiltered spectrum. For the spectralon area, most of the 

different methods for illuminant recovery demonstrated only small differences in estimated 

illuminant spectrum. For Gray World- and Shades of Gray- methods, the spectra were 

identical. The Gray Edge-method stood out, however, as seen in Figure C-4.  

When studying the more complex, full sample image, the choice of recovery method had a 

greater impact on the resulting illuminant spectrum. The spectra resulting from using the 

NICTA- or Finlayson & Schaefer- methods were quite similar to those found when studying 

the spectralon, while Gray Edge-, Gray World- and Shades of Gray-methods differentiated 

from spectralon results. The spectrum from the White Patch-method appear to be cut off by 

a threshold at power value 0.09. These results are shown in Figure C-5 to Figure C-8.  

Attempts to recover an illuminant spectrum from the leaf area proved even more difficult. A 

curious discovery was the fact that the NICTA-method was unable to estimate an illuminant 

spectrum using SavGol pre-processing unless the filter size was set to 7. Even more curiously, 

it was found that the opposite was true when studying the full sample image; filter size 5 and 

9 worked, but size 7 produced the same flat power spectrum as 5 and 9 did for the leaf area. 

In any case, the Gray Edge-method again stood out from the rest. NICTA-, Gray World/Shade 

of Gray- and White Patch-methods gave similar results, although very different from those 

found in the two previous images.  

 

4.1.2 Illuminant recovery – section discussion 

The factor that had the biggest impact on the illuminance curve, was the chosen area, and if 

that area contained a part of the spectralon. From the quite large variation in the spectra, is 

clear that the presence of a reference area have an impact on the way Scyven’s estimates the 

illuminant. It was attempted to save the illuminant recovered while only observing the 

spectralon, but the exported CSV-file containing the spectrum would not be re-loaded into 

the software correctly. The error message is shown in Figure 4-3. This meant it was necessary 

to choose between two evils. To study a big image that included the spectralon would result 
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in an estimated illuminant that seemed ok, but also a lot of irrelevant data that would greatly 

affect PCA. The other option was to study an area with only leaf or mildew pixels, that would 

contain little irrelevant data, but the illuminant would then be estimated incorrectly, and 

the reflectance likewise.  

Another observation was that illumination 

was not uniform along the vertical axis of the 

image, shown by PC1 in Figure 4-2 and the 

variation in the spectrum shown in Figure 4-1. 

This seems reasonable, since the standing 

lamp illuminated the sample from the right 

side of the image. This would mean there will 

be errors related to position in x-direction. 

 

 

 

 

 

 

Figure 4-3: Error message received when attempting to import illuminant spectrum.  

Figure 4-2: PC1 over an area of the spectralon 
show that reflectance vary with vertical position. 

Figure 4-1: Irradiance spectrum for an area of the 
spectralon. 
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4.1.3 PCA and analysis of spectrum shapes 

Figure 4-4 and Figure 4-5 respectively shows colour representations of scores for PC1 and 

PC2 from the selected leaf area. Three points of interest, shown in Figure 4-5, were selected 

in order to see if there was any difference in reflectance when studying the entire sample 

picture or just the selected area. These reflectance spectra are shown in Figure 4-6, and there 

is a clearly observable difference between the spectra depending on if the only sample area 

or the full image was used for calculation illuminance. In either cases, infected areas seem to 

have a less steep slope in the red edge area, and both healthy and infected areas show a 

reflection that is greater than that of the spectralon for wavelengths above ~780 nm.  

 

 

Figure 4-4: Colour representation of scores in PC1 from the selected area. 

 

 

Figure 4-5: Colour representation of scores in PC2 from the selected area, with areas of interest marked with 
numbers 1-3. 
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Figure 4-6: Reflectance spectra for selected points of interest while looking at either sample area or full picture. 

 

4.1.4 PCA and spectrum shapes – section discussion 

It should be noted that, by studying a small area with only leaf and mildew, the PCA was 

performed using an incorrectly estimated illuminant. However, the areas with high scores in 

PC2 are indeed covered with mildew, so it can be assumed that this principal component 

contain some useful information.  

The fact that reflection is greater that spectralon is highly unlikely, due to the spectralon’s 

reflective properties. However, it is possible that this is linked to the non-uniformity of 

illumination, pointed out in section 4.1.2, and that an extreme value on the more strongly 

illuminated right side could “outshine” a mean spectralon spectrum on the darker left side.  

However, one thing that does agree with results from previous studies, is that mildew 

infected areas have a higher reflection ratio than healthy areas in the visible part of the 

spectrum, but lower reflection above 700-720 nm [41].  
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4.1.5 Classification with Linear Spectral Unmixing and SVM 

Figure 4-7 show areas classified as mildew infected after material classification was 

performed using the generated spectral library. In Figure 4-8, a class for “lightly infected” 

areas was included to investigate how well the software could tell detect degrees of infection. 

Figure 4-9 to Figure 4-12 show results the same analysis on cucumber and strawberry leaves. 

     

Figure 4-7: Classification performed on an infected tomato leaf with the integrated Spectral Unmixing (left) and 
SVM-functions (right) in Scyven. Blue colouring indicate that an area is classified as mildew infected. 

     

Figure 4-8: Classification performed on an infected tomato leaf with the integrated Spectral Unmixing (left) and 
SVM-functions (right) in Scyven. Cyan colouring indicate that an area is classified as mildew infected, while 

blue colouring indicate lightly infected areas.  
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Figure 4-9: Classification performed on an infected cucumber leaf with the integrated Spectral Unmixing (left) 
and SVM-functions (right) in Scyven. Blue colouring indicate that an area is classified as mildew infected. 

    

Figure 4-10: Classification performed on an infected cucumber leaf with the integrated Spectral Unmixing (left) 
and SVM-functions (right) in Scyven. Cyan colouring indicate that an area is classified as mildew infected, while 

blue colouring indicate lightly infected areas.  
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Figure 4-11: Classification performed on an infected strawberry leaf with the integrated Spectral Unmixing 
(left) and SVM-functions (right) in Scyven. Blue colouring indicate that an area is classified as mildew infected.    

   

Figure 4-12: Classification performed on an infected strawberry leaf with the integrated Spectral Unmixing 
(left) and SVM-functions (right) in Scyven. Cyan colouring indicate that an area is classified as mildew infected, 

while blue colouring indicate lightly infected areas. 
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4.1.6 Classification – Section discussion  

By comparing the classifications with the physical samples, it is apparent that the methods 

within Scyven does indeed work to some extent. A reoccurring situation is that it mistakes 

either shadowy areas or parts of the petri dish as mildew. An attempt was made to define 

more classes, such as shadowy leaf and shadowy plastic, in order to get more precise 

classification, but result was rather that more shadowy areas would be mistaken for mildew, 

as well as the other way around.  

 

4.2 Analysis in MATLAB 

 

4.2.1 Spectral index results  

For each of the VNIR-images, twelve points were selected, and MCARI2 MRENDVI indices 

were calculated. The result is visualised on Figure 4-13. MCARI2 show a tendency to decrease 

slightly over time.  

 

Figure 4-13: MCARI2 (left) and MRENDVI (right) values for the twelve sample points on plant JI2. 

 

Table 4-1 shows scores on HI and PMI for small selected areas; one heavily infected of 30x30 

pixels and one without visible signs of infection of 50x50 pixels. Both were unfolded in order 

to more easily observe the index at each pixel.  
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Table 4-1: Healthy and infected areas and their scores on HI and PMI 

 Health index Mildew index 

Healthy 

Leaf 

 
 

Infected 

leaf 

  

 

The HI lies between 0 and -0.2, with a notable dip down to -0.6, regardless if the sample area 

is healthy or infected. Similarly, PMI lies between 0.55 and 0.35, regardless the state of the 

sample area. Figure 4-14 shows MCARI2 and MRENDVI values represented as pixels in the 

larger sample image from which they were calculated. Higher index value equals brighter 

pixel. An obvious difference is apparent between the two.  

 

  

Figure 4-14: Image visualisation of MCARI2 (left) and MRENDVI (right). 
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Figure 4-15: Image visualisation of PMI (left) and the difference between PMI and HI (right). 

Figure 4-15 show PMI, and also PMI when the HI was subtracted from each respective pixel. 

The most notable result from this was that the small hole down to the red plastic became 

visible, and the “veins” in the leaf came out more clearly. The areas covered with mildew also 

became slightly brighter and more visible. 

 

4.2.2 Spectral indexes – section discussion 

The result from this section was somewhat disappointing, as none of them seem to produce 

any conclusive results with respect to identify the presence of mildew. A surprising result 

was that the MCARI2-index seemed to detect mildew relatively well, while the PMI worked 

rather poorly, even when paired with the HI.  

One possible reason for lack of conclusive results from Mahlein and Rumpf’s indices could be 

that the wavelengths used in the SDIs were selected based on test done on sugar beet leaves. 

Still, errors in the present experiment seem just as (if not more) likely. Author’s limited 

experience with the equipment, as well as lack of knowledge on statistical tools for extracting 

valuable data prior to this study are also major factors that might have reduced the precision 

of the performed experiments.  

 

4.2.3 PCA results 

The resulting loadings and score plots can be found in Appendix E. 

Each VNIR image from day 1 was loaded into MATLAB. A sample area was selected that 

covered as much leaf area as possible. For all samples, PC1 explained >90% of the variance 

in the image, and the loading plot for PC1 had a notable peak just above band #100. Closer 

inspections revealed that the band which contributed maximum loading varied slightly from 

sample to sample, between 103 (708 nm) for healthy cucumber, and 108 (723 nm) for diseased 

tomato.  

Looking at the score plots, it can be seen that infected plants show a notably greater span on 

the scores in PC1.   
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4.3 Closing reflections 

The previous discussion sections have focussed primarily on their respective topics. Some 

sources for error that have not been mentioned these previous section shall therefore be 

covered here. As an experiment that rely on high precision, a small error could disturb the 

results quite a lot. Such a simple thing as getting the right focus on the camera proved to be 

a small challenge, as the focus wheel needed to be turned manually to adjust focus, while 

looking at the computer screen to see when the focus was perfect. With the given position of 

camera and computer, this proved difficult for a single individual. Other hardware-related 

errors revolved around illumination and the spectralon. Adjusting distance and angle of the 

lamps  

A practical note on Scyven is that the software requires a lot of processing power, and it was 

even prone to crash while loading big image files (700 MB). It also took far more time to load 

an image into Scyven (~10 min) than when loading into MATLAB (~1 min). Studying the 

Windows Task Manager while loading an image showed that memory use by Scyven would 

slowly increase (>1MB/s) until the entire image was loaded onto memory, before dropping 

after loading was complete and Scyven again became responsive.  

However, as a tool for very simple, early analysis like visual inspection of different reflection 

rates, it works quite nicely. It also serves well as an introductory software for someone 

starting with hyperspectral analysis.  
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5 Conclusion and further research 

The study had difficulty achieving a conclusive detection of powdery mildew with previously 

developed spectral disease indices. Results might improve if more appropriate methods for 

pre-processing and data filtering are applied.  

When a Savitzky-Golay transformation algorithm (1st derivative, 2nd order polynomial) was 

applied, PCA showed that wavelengths around 700-730 nm contributed the bulk of loadings, 

and thus >90% of the variation in the (now transformed) image with healthy and mildew-

infected areas. This points to the fact that there should be some useful information in this 

region of the spectrum.  

To develop a complete method for discrimination and classification of plant diseases, more 

tools likely needs to be implemented. Such tools could include some form of artificial 

intelligence (or machine learning) like support vector machines or artificial neural networks.  

The graphical spectral analysis software Scyven proved useful for simple, preliminary 

studies, but issues regarding illuminant recovery and a high demand for memory makes it 

less suitable for studies that require high precision and/or analysis of large images.  

Even though no conclusive results were found in this study, the field of spectral show great 

promise, as demonstrated by many previous studies.  
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A -  HySpec_Analysis-program 
 

FileName='Day01_T_S2'; 
%Day = 1; 

  

  
%-------------------------- Importing raw data ---------------------------- 
thdr = readenvihdr([FileName '.hdr']); 
Data_RAW = multibandread([FileName 

'.raw'],[str2num(thdr.lines),str2num(thdr.samples),str2num(thdr.bands)],'uint

16',0,thdr.interleave,'ieee-le'); 
  NumberOfLines = str2num(thdr.lines); 
  NumberOfSamples = str2num(thdr.samples); 
  NumberOfBands = str2num(thdr.bands); 
  Wavelengths = str2num(thdr.Wavelength)'; 

   
%imtool(Data_RAW(:,:,80),[])  %Shows whole image, radiance at band 80 

  

  

  
%------------------------- Black/white references -------------------------   

  
% Creating black reference 
Data_CorrB = 

zeros(str2num(thdr.lines),str2num(thdr.samples),str2num(thdr.bands)); 
ref_black = squeeze(mean(Data_RAW(NumberOfLines-9:NumberOfLines,:,:),1)); 
for i = 1:NumberOfLines 
  Data_CorrB(i,:,:) = squeeze(Data_RAW(i,:,:))-ref_black;    %Correcting for 

black 
end 

  
% Creating white reference 
Data_CorrBW = 

zeros(str2num(thdr.lines),str2num(thdr.samples),str2num(thdr.bands)); 
ref_white = squeeze(mean(Data_CorrB(316:415,:,:),1))';    
for i=1:NumberOfLines 
   for j=1:NumberOfBands 
        Data_CorrBW(i,:,j) = Data_CorrB(i,:,j)./ref_white(j,:);   % Correcting 

for white 
   end 
end 
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B -  readenvihdr-function 
 

function [hdr]= readenvihdr(filename) 
%Read in header. 
[fid,msg] = fopen(filename,'rt'); 

  
if fid<0 
  error(msg) 
end 

  
frewind(fid); 
hcell = {''}; 

  
while ~feof(fid) 
  hcell = [hcell {fgetl(fid)}]; 
end 
fclose(fid); 

  
%Remove first empty cell. 
hcell = hcell(2:end); 
i = 1; 

  
flines = strfind(hcell,'='); %Lines with field names. 
hinfo = []; 

  
while i <= length(hcell) 
  if ~isempty(flines{i}) 
    %Field name. 
    fname = strtrim(hcell{i}(1:flines{i}-1)); 
    fname = strrep(fname,' ','_'); 
    fname = genvarname(fname); 
    if i==length(hcell) || ~isempty(flines{i+1}) 
      %Value is contained on single line. 
      myval = strtrim(hcell{i}(flines{i}+1:end)); 
      i = i+1; 
    elseif ~isempty([flines{i+2:end}]) 
      %Multiline value but not the end. Find the next field name line and 
      %create value from lines in between. 
      j = i+2; 
      while j<length(hcell) 
        if ~isempty(flines{j}) 
          %Found next field line. 
          loc = j; 
          break 
        else 
          j = j+1; 
        end 
      end 
      myval = [hcell{i:j-1}]; 
      myval = myval(strfind(myval,'{')+1:strfind(myval,'}')-1); 
      i = j; 
    else 
      %Value is rest of cell array. 
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      myval = [hcell{i:end}]; 
      myval = myval(strfind(myval,'{')+1:strfind(myval,'}')-1); 
      i = length(hcell); 
    end 
    hinfo.(genvarname(fname)) = myval; 
  else 
    i = i+1; 
  end 
end 
hdr=hinfo; 
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C -  Scyven illuminant spectra 

 

Figure C-1: Illuminance spectra recovered from spectralon area, NICTA-method, unfiltered. 

 

Figure C-2: Illuminance spectra recovered from spectralon area, NICTA-method, CMA-filter 
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Figure C-3: Illuminance spectra recovered from spectralon area, NICTA-method, SavGol-filter. 

 

Figure C-4: Illuminance spectra recovered from spectralon area, Gray Edge-method, SavGol-filter. 
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Figure C-5: Illuminance spectra recovered from full sample area, NICTA-method, SavGol-filter. 

 

Figure C-6: Illuminance spectra recovered from full sample area, Gray Edge-method, SavGol-filter. 
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Figure C-7: Illuminance spectra recovered from full sample area, Gray World-method, SavGol-filter. 

 

Figure C-8: Illuminance spectra recovered from full sample area, White Patch-method, SavGol-filter. 
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Figure C-9: Illuminance spectra recovered from leaf area, NICTA-method, SavGol(7)-filter. 

 

Figure C-10: Illuminance spectra recovered from leaf area, Grey Edge-method, SavGol-filter. 



      

  

 Gudbrand Askvig Page IX 
 

 

D -  VNIR Samples Areas 
 

 

 

Figure D-1: Locations of sample areas on cucumber leaves. 
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Figure D-2: Locations of sample areas on strawberry leaves. 
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Figure D-3: Locations of sample areas on tomato leaves. 
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E -  PCA scores and loadings  

 

 

Figure E-1: Loading plot and scores for cucumber, healthy #1  
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Figure E-2: Loading plot and scores for cucumber, infected #2  
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Figure E-3: Loading plot and scores for strawberry, healthy #1  
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Figure E-4: Loading plot and scores for strawberry, infected #2  
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Figure E-5: Loading plot and scores for tomato, healthy #1 
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Figure E-6: Loading plot and scores for tomato, infected #2 



  


