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Sammendrag

I strømførende kabler med flere elektriske ledende materialer vil disse lederne p̊avirke
hverandre gjennom elektromagnetiske felt. Dette kan føre til at ledere som i ut-
gangspunktet ikke er tiltenkt å være spenningssatt kan f̊a induserte spenninger og
strømmer.

Nexans, som er en verdensledende aktør innen produksjon av kraftkabler, pro-
duserer det som kalles kraft-navlestrengskabler. Disse kraft-navlestrengskabelene
best̊ar av mange typer ledende elementer, slik som kraftfaser (høyspent), st̊alrør,
elektriske elementer (lavspent) og armering rundt fiberoptiske elementer. I tillegg
ligger det beskyttende st̊alarmering snodd rundt hele navlestrengskabelen.

Grunnet dette store antallet ledende elementer som ligger svært tett pakket,
der noen ledere fører store strømmer ved høye spenninger, er det viktig å kunne
forutsi niv̊aet p̊a eventuelle spenninger og strømmer som blir indusert. En komplis-
erende faktor er ogs̊a at kraftelektronikk, eller andre ulineære komponenter plassert
før eller etter kraft-navlestrengskabelen, kan føre til at overharmoniske spenninger
og strømmer introduseres i kraftsystemet. Problemstillingen for denne masteropp-
gaven, gjennomført ved Teknisk Analysesenter ved Nexans i Halden, er derfor å
utvikle et dataprogram der en bruker kan beregne strømmer og spenninger i et
hvert ledende element i en vilk̊arlig kraft-navlestrengskabel, med mulighet for å
utføre overharmonisk analyse.

Den bakenforliggende modellen som presenteres i denne oppgaven best̊ar av to
deler; den første bestanddelen er den analytiske løsningen til telegraflikningene for
flerledere; den andre bestanddelen er en klassisk formulering av impedans- og ad-
mittansmatriser for kabler.

Det tilhørende dataprogrammet er skrevet i Python. Slik det er idag kan en
bruker modellere en kraft-navlestrengskabel med brukerspesifiserte kraftfaser, met-
allrør og omgivelser, og med vilk̊arlige termineringer i hver ende.

Dataprogrammet er validert ved sammenlikning med analytiske beregninger,
simuleringer i elementmetode-programmet Flux2D og med målinger utført p̊a en
navlestrengskabel.

De to første valideringsmetodene er i svært god overensstemmelse med program-
pakken, selv om noen avvik observeres mot Flux2D, grunnet at modellen frem-
lagt i oppgaven ikke modellerer nærhetseffekter. Det er ikke implementert noen
fysisk riktig formulering av armeringen til kraft-navlestrengskabelene, noe som er
utslagsgivende i sammenlikninger med målinger. Parametertilpasning øker her ov-
erensstemmelsen.
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Abstract

In current carrying cables with multiple electrical conductors, there will be interac-
tions between the conductors due to electromagnetic fields. Not all of these conduc-
tors are excited by an external voltage source, but unintended voltages and currents
can arise through electromagnetic induction.

Nexans, as one of the worlds leading cable manufacturers, produce what is called
power umbilicals. These power umbilicals contain a variety of different conductors,
such as high-voltage power phases, steel tubes, low-voltage electrical elements and
armour surrounding fiber optic elements. In addition, a steel armour is placed
around the power umbilical for mechanical protection.

Due to a large number of tightly packed conductors, where some carries sub-
stantial currents at high voltage, it is crucial to be able to predict the magnitude
of the voltage and currents that may be induced in the different conductors. A
complicating matter is that the existence of power electronics placed at one or both
ends of the power umbilical, can heavily distort the voltages and currents due to
injection of harmonic content. The problem at hand for this thesis, conducted at
the Technical Analysis Center at Nexans in Halden, is therefore to develop a com-
puter program where a user can calculate currents and voltages in every conducting
element inside an arbitrary power umbilical. Additionally, a user should be able to
conduct harmonic analysis.

The underlying model of the computer program can be viewed as having two
main parts; The first constituent is the analytical solution to the multiconductor
transmission line telegrapher’s equations. The second constituent is a classic formu-
lation of the impedance- and admittance matrices for cables.

The accompanying computer program is written in Python. As of now, a user
can model a power umbilical with user specified power phases, metal tubes and
surroundings, and with arbitrary terminations at each end.

The computer program and the model is validated against analytical methods,
simulations in the finite element software Flux2D, and lastly, against comparisons
with measurements conducted on a power umbilical.

The two former methods are in good agreement with the simulations in the com-
puter program, even though some deviations are observed in comparison to Flux2D,
due to the proposed model not being aware of proximity effects. No formulation
for the armour of power umbilicals is implemented, which is prominent when com-
paring simulations with measurements. Best fit parameters are found to yield lower
deviations.
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1. Introduction

With the most accessible offshore oil and gas resources being depleted, the offshore
industry is forced further from shore and into deeper waters. As the reservoirs
become increasingly more difficult to reach, the requirements for the technology
used in production facilities are gradually becoming more stringent. An important
part of every offshore oil and gas production facility is the power system, both
topside and subsea.

The topside system, if located offshore, generates power by the use of gas turbine-
driven synchronous generators. These generators supplies power to loads on the
platform, as well as to the subsea power system. The power generated is trans-
mitted through step-out cables to the subsea distribution system, where switchgear
on the seabed connects and distributes power to various loads. The tendency in
new facilities is to have increasingly longer step-out cable lengths and more of the
equipment installed subsea, rather than topside.

It is not only electric power that needs to be delivered to the subsea system.
Signal transfer and communication with equipment on the seabed is also needed,
as well as transportation of fluids, e.g. for injection into the production stream in
order to optimize production.

As of now a smaller, but still relevant application, is related to wind turbines
in offshore wind farms. Aside from needing power cables to transmit the produced
power to the utility grid, the wind turbines also need communication and sensory
equipment for controlling the turbines rotor speed, blade angle, temperature, hy-
draulics and so on.

In both cases it will generally be more expensive to install numerous, several
kilometers long cables and/or pipes. A motivation for a single cable which provides
all the needed consumables is therefore present.

For Nexans, which is one of the world’s largest cable manufacturers, the concept of
umbilical cables emerged in the early nineties, with the first delivery being a steel
tube umbilical in 1993. Since then over 1800 kilometers of umbilical cable has been
supplied by Nexans, with a variety of different designs and intended applications.

The name ”umbilical” originates from the umbilical cord of embryos and fetuses,
but in the engineering sense, an umbilical is simply a cable or hose supplying con-
sumables of more than one type to a given load, e.g. a hose supplying a diver with
air and communication is considered an umbilical.

Nexans generally divides their umbilicals into two groups - control- and power
umbilicals. The control umbilicals usually contain low-voltage electrical elements for
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control systems, steel tubes for transportation of fluids and/or fiber optical cables
used for communication and distributed temperature sensing (DTS). Power umbili-
cals may contain all of the elements in a control umbilical, but in addition it contains
high-voltage power cables.

The power umbilicals produced by Nexans vary in size, number of elements and
design. It may or may not contain steel tubes, it may contain 3, 6 or 9 power
phases, which may be screened or unscreened, with the power phases twisted either
in the same or different layers, et cetera. Although these variations may seem small
and insignificant to people outside the cable industry, they can heavily impact the
mechanical, electrical and thermal properties of the cables.

A general computational tool in which a power umbilical can be somewhat
quickly specified and analyzed is desired by Nexans. The goal for this thesis is
therefore to establish a general electromagnetic model for power umbilical systems
implemented in a computer program.

1.1 Scope of work

The main goal for this thesis will be to develop an electromagnetic model for power
umbilical systems. The model will be implemented in a accompanying computer
program package written in Python. With the computer program, a user will for
example be able to calculate currents and voltages in each conducting element in a
power umbilical at any point along its length.

The model will be general and applicable to numerous power umbilicals, and as
a mean of verification a few worked examples will be presented.

The model will be based on what is known as the telegrapher’s equations for mul-
ticonductor transmission lines, which is a set of linear first-order partial differential
equations used for describing long transmission lines and power cables. An analyt-
ical solution to these equations can be found. This means that one can solve a set
of algebraic equations, instead of numerically solving a set of differential equations.
The difficult task, however, is to determine the electrical parameters for the cables.

Inspired by Gustavsen et al. (2009), the program package will contain a library
with different types of elements that are commonly used in power umbilicals. The
user can choose from the library which elements to include, specifying parameters
related to electrical properties, placement, size of conductors, and so on. The user
may also add new elements to the library if needed. The computer program will
output different data and plots that are of relevance to the user. The computer
program will also allow a user to input predetermined electrical parameters.

An important part of the computer program is that a user should be able to
conduct harmonic analyses on power umbilical systems, where the response of the
power umbilical to a known harmonic spectrum can be found.
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2. Theory

2.1 Subsea power systems

Offshore oil- and gas reservoirs can be located several kilometres away from the
topside processing- and storage units. Thus, the extraction of gas- or crude oil
requires transportation over long distances through pipelines. To boost the rate of
production, enhance recovery and to cope with pressure drops along these pipelines,
compressors and pumps driven by electrical motors may be installed on the seabed
to elevate pressure levels. These pumps and compressors are parts of what is referred
to as the subsea processing units.

As with any power system, the three main parts of the subsea power system is
the source, the distribution equipment and the load.

The source of electrical power for the subsea power system is the topside power
system. This can either be an autonomous power system placed on platforms or
the on-shore utility grid. If located on platforms, the power is produced by large
gas-turbine driven synchronous generators.

Depending on cable length and network topology, the source for the subsea power
system has a nominal voltage ranging from a few kV up to 145 kV. The upper voltage
limit arises due to the use of dry-mate connectors used in the termination of cables.
If wet-mate connectors are used, the upper voltage limit is 36 kV. The fundamental
frequency is either 50 or 60 Hz.

The connection between the topside power system and the subsea power system
is the step-out cable. The step-out cables can be up to 200 kilometres long, being
either a more traditional three-core power cable or a power umbilical. Depending on
the length of the cable, there may be installed step-up and step-down transformers
on the sending and receiving end of the cable, respectively. Since power umbilicals
used as step-out cables is the main focus of this thesis, the details in the design of
power cables and umbilicals will be dealt with in detail in the upcoming sections.

The electrical motors driving the subsea processing units are the main load of
the subsea power system, with nominal voltages of ≤ 6.6 kV. The mechanical power
rating of the gas compressors can be several megawatts, such as the 12.5 MW gas
compressor used in Ormen Lange or the two 11.5 MW compressors used in the
Åsg̊ard Subsea Gas Compression system. Condensate pumps have mechanical power
ratings up to a few megawatts. To operate these motors in a flexible and controlled
manner, variable speed drives (VSDs) are used. VSDs are usually placed topside, but
in the future the trend will be to place them subsea (Garvik 2015). The operating
voltages and power ratings of the VSDs must match the ratings of the equipment
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Figure 2.1: Example of a subsea power system with topside variable speed drives
and a long step-out cable delivering electrical power to motors on the seabed.

M
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VSDstopside subseaHV 50/60 Hz
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Figure 2.2: Example of a future subsea power system with subsea variable speed
drives and a long step-out cable delivering electrical power to motors on the seabed.

connected to it.
As a mean of power factor correction and voltage regulation, static var compen-

sators (SVCs) may be installed.

In Fig. 2.1 a typical subsea network topology is depicted in a single-line diagram.
This topology has topside VSDs and a long step-out cable. On the far left, the subsea
power system is fed by the topside system with high voltage and a fundamental
frequency of either 50 or 60 Hz. To reduce the amount of harmonics in the topside
power system, multi-winding transformers are connected to the VSDs, which again
connects to a step-up transformer. The power is then transferred through a long
step-out cable. On the seabed, the step-down transformers feed the electrical motors
connected to subsea processing units. Note that there are two three-phase circuits
in the step-out cable of Fig. 2.1. This could, for example, be the inner and outer
circuit of the power umbilical depicted in Fig. 2.5.

Fig. 2.1 represents a traditional subsea power system, while Fig. 2.2 shows
an example of what topologies will probably look like in future subsea power sys-
tems. Here, the VSDs are placed subsea. Note that both the traditional and modern
topology can have short step-out cables instead, where step-down and step-up trans-
formers can be left-out for economical reasons.

The existence of power electronics in subsea power systems cause injection of
harmonic content. In Chapter 5 the effect harmonic content may have on power
umbilicals will be studied.
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2.1.1 Power cables

Modern cross-linked polyethylene (XLPE) insulated cables have been around for the
last 50 years or so. They are usually designed in approximately the same manner,
with the same type of elements. In Fig. 2.3 a typical single-core (SC) power cable is
depicted. A three-phase supply may consist of three separate SC cables, or it may
be in the form of what is called a three-core cable. A three-core cable can either be
surrounded by an armour comprised of twisted steel wires, or a solid metallic tube.
The latter is called a pipe-type (PT) cable. A PT cable can be seen in Fig. 2.4. For
the upcoming description of a power cable, the reader can use Fig. 2.3 as reference.

The conductor carries the electrical current. In power cables it is usually made
of either aluminum or copper. The material used depends on several factors such as
conductivity, cost, weight, tensile strength etc. Even though the conductor depicted
in Fig. 2.3 is solid, conductors may also be stranded. Stranded conductors provide
a mean of dealing with unwanted electromagnetic effects, and is typically used in
cables with a larger cross-sectional area.

Surrounding the conductor is a thin semi-conducting layer. The purpose of
this semi-conducting layer is to smooth out any irregularities on the surface of the
conductor. This is necessary to avoid any spikes in the electric field strength around
any bumps or voids, and to avoid partial discharges over small gaps. The semi-
conducting material is similar to the insulating material, but is heavily doped with
carbon to make it conducting.

The insulation isolates the conductor from any other conducting material. The
insulation must be able to withstand the SC cable’s electrical field under both under
normal operation nor during transient voltage spikes. Traditionally the insulation
of power cables consisted of oil-impregnated sheets of paper. While cables with
this type of insulation is still produced, extruded XLPE insulation is more com-
mon. XLPE is considered to be more environmentally friendly, and it also has the
advantage that it can withstand temperature up to 90 °C, compared to 60 °C for
paper-insulation.

Surrounding the insulation is another layer of semi-conductive material, with the
outer layer serving the same purpose as the inner.

To minimize the electromagnetic fields surrounding the cable, thus preventing
crosstalk with other equipment and conductors, a metallic screen is often used in
high-voltage power cables. The screen can be made of different metals, and may be
stranded or massive.

Armour and sheaths function as mechanical stiffeners and protects the vital parts
of the cable from the surrounding environment. They also serve as insulation for
the metallic screen.
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Figure 2.3: A single-core XLPE insulated power cable.
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Figure 2.4: A pipe-type power cable consisting of three single-core cables.

2.1.2 Power umbilicals

A power umbilical is in many situations used as a step-out cable in subsea power
systems, with one of the reasons being that it is economical to decrease the number
of pipelines and/or cables connecting the topside system to the subsea system.

An example of a power umbilical produced by Nexans is shown in Fig. 2.5. The
power to the subsea processing units are delivered through the power phases, which
are essentially SC cables, and hence their design is similar to that of power cables
explained in the previous section. The power phases may have a metallic screen, even
though this is not the case of the power phases in Fig. 2.5. The example umbilical
consists of two three-phase arrangements, naturally referred to as the inner and
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Figure 2.5: A power umbilical produced by Nexans.

outer circuit.
The umbilical also have several electrical quad cables. These cables are generally

used for control applications, and normally have a voltage rating up to a few kV.
Each electrical quad is either operated as a two- or four-wire transmission line,
depending on the application. Due to a much lower voltage rating, the design of the
electrical quads differ from power cables. General ”guidelines” in design still apply,
such as semi-conducting layers to ensure a radially uniform electric field, or the use
of some kind of dielectric as insulating material.

There are steel duplex tubes in the umbilical that serve various purposes, e.g.
carrying fluids that are injected into the production stream in order to optimize
production. They are made of super-duplex steel and are fitted with a high-density
polyethylene (HDPE) sheath.

A small drain wire can be seen at the center of the cable, providing a low-
resistance path for common mode currents. Two fiber optic elements are also present
in the inner twisting layer, which are used for signal and communication purposes.
The fiber optic elements have their own armour, to increase mechanical strength
and prevent breakage.

The outer grey stranded ring enclosing all cable elements is the armour, which
functions as a mechanical stiffener. The armour can be made of a variety of different
steels. Surrounding the armour is a HDPE sheath.

Although not shown in Fig. 2.5, polyethylene filler elements are placed around
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the elements inside the power umbilical, to make sure that all elements stay put.
Often, these are hollow.

In addition to the elements in the power umbilical, there are a few things that
should be noted in the implementation of power umbilicals as step-out cables.
Firstly, during operation, the areas surrounding the elements in Fig. 2.5 and in-
side the hollow filler elements (not shown) are flooded by seawater. This is to avoid
the cable being crushed by the immense pressure at large depths. Secondly, all
non-excited elements in the umbilicals such as the steel duplex tubes or armour are
either grounded in each end or left open. More often than not they are grounded,
to avoid any voltages from arising in these elements.

Which elements included in Nexans’ power umbilicals vary, and Fig. 2.5 is only
one specific example.

2.2 General method for electromagnetic modelling

of transmission lines

Most of the theory that will be presented in this section can be found in Paul (2008).

2.2.1 Electrical parameters

Any given cross section of a conductive transmission line (TL) is defined by four
electrical parameters known as the primary line constants. These parameters are
resistance, inductance, conductance and capacitance, and are usually denoted r,
l, g and c respectively. Whenever these parameters are mentioned with lower-case
symbols in this thesis, they are referred to as per unit length, unless otherwise stated.

For a two-conductor transmission line, these parameters are scalars. For TLs or
cables with n + 1 conductors, the conductor parameters are given in matrices with
dimensions n× n, as will be shown in section 2.2.2.

Resistance

The resistance of a conductive material will depend on whether direct or alternat-
ing current is running through it. The per unit length dc resistance of a uniform
conductor with conductivity σ and cross-sectional area A is given as

rdc =
1

σA
[Ω/m] (2.1)

The resistance of metals vary with temperature. For adequately small temperature
variations a linear dependence is assumed, and the dc resistance at temperature T
in Celsius is found as

rdc(T ) = rdc, 20 °C(1 + αT (T − 20◦C)) [Ω/m] (2.2)

where rdc, 20 °C is the conductor resistance at 20 °C and αT is the temperature coef-
ficient of resistance with units °C−1.
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A uniform conductor carrying a dc current will have a uniform current distribu-
tion, but this is not the case for uniform conductors carrying ac currents. Instead
the current distribution will become increasingly more nonuniform as the electrical
frequency increases, with current migrating towards the surface of the conductor.
This phenomenon is known as the skin effect. The net result of the skin effect on
resistance is that the effective current-carrying cross-sectional area of the conduc-
tor decreases, and hence the resistance increases according to Eq. (2.1). A more
in-depth explanation of skin effect is given in section 2.3.2.

Another effect that causes the resistance of conductors carrying ac currents to
increase is the proximity effect, which is prominent for closely packed conductors.
Due to electromagnetic effects, the current-density inside two or more conductors in
close proximity will be nonuniform, which will yield an increase in resistance due to
a decrease in the effective current-carrying area.

There are several ways to model these effects, ranging from analytical to empirical
methods. In this thesis, however, modelling of proximity effects will be omitted.

Conductance

Conductance of TLs exist both between conductors and between conductors and
ground. Conductance accounts for current leakage through dielectrics, and is a
measure of how easily conduction current can pass through it, i.e. conductance is
the inverse of resistance.

Ohm’s law for transverse current flow is therefore given as

g =
It
V

[S/m] (2.3)

where It is the per unit length transverse conduction current flowing through the
dielectric and V is the electric potential difference between two conductors or two
conductors and ground. More formal definitions in terms of electromagnetic field
theory are available in relevant literature (Paul 2008).

Inductance

Consider a closed circuit consisting of a conductor carrying a current I and its
return-conductor. The open surface S enclosed by the circuit will be penetrated by
a magnetic field B, called the magnetic flux density, which is created by the flowing
currents. The magnetic flux Ψ that penetrates S is given by

Ψ =

∫∫

S

B · dS

If the material surrounding the conductors is linear, then there exists a linear rela-
tionship between Ψ and I, with the constant of proportionality L given as

L =
Ψ

I
[H]

which is the inductance of the circuit given in henrys. The per unit length inductance
l can then be found by finding the resulting magnetic flux from a segment with length
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∆z as

l =
Ψ

I∆z
=
ψ

I
[H/m] (2.4)

where ψ is the per unit length magnetic flux.
As explained above the magnetic flux lines can cut the surface enclosed by the

circuit itself, but they can also cut through surfaces enclosed by other, neighbouring
circuits. The former is related to self-inductance and the latter to mutual-inductance.
The self-inductance of a circuit i is

li =
ψi
Ii

(2.5)

where ψi is the per unit length magnetic flux through the circuit loop due to current
Ii flowing (in the same loop). If there exists another neighbouring circuit j with
current Ij, the mutual-inductance of i due to j is

lij =
ψi
Ij
|Ii=0 (2.6)

where ψi is the magnetic flux through circuit i due to current Ij when Ii is set to
zero.

Capacitance

Capacitance of a transmission line is due to differences in electric potentials between
conductors, or between conductors and ground. The per unit length capacitance of
a conductor holding a charge q per unit length at voltage V , is given in farads per
meter as

c =
q

V
[F/m] (2.7)

where q is in units coulombs per meter. The above equation can then be used
to determine the capacitance between two conductors or between a conductor and
ground. The former is obtained if V is taken as the voltage between two conductors
at interest and the latter if V is taken as the voltage-to-neutral.

Transmission lines excited with an ac voltage will cause the conductors to have
varying electrical potentials, and therefore varying charge distribution. This sinu-
soidally varying charging and discharing of the conductors is called the charging
current, and will flow even if the transmission line is open-circuited. This is due to
capacitance being a shunt admittance, just as conductance. The difference is that
the capacitance admits a displacement current rather than a conduction current.

10



2.2.2 Distributed parameters model and the telegrapher’s
equations

For transmission lines longer than a certain length, the classical lumped parameter
circuit model do not yield sufficiently accurate results. In reality, the circuit elements
are distributed continuously along the transmission lines. Distributed parameters
models will first be derived for a two-conductor transmission line and then for a
general multiconductor transmission line (MTL) with n+ 1 conductors.

Two-conductor transmission line

Consider the circuit shown in Fig. 2.6. The circuit represents a small segment of
a transmission line with length ∆z and per unit length parameters r, l, g and c.
Applying Kirchhoff’s voltage law (KVL) on the outer loop of this circuit yields

V (z, t)− r∆zI(z, t)− l∆z∂I(z, t)

∂t
− V (z + ∆z, t) = 0

or

−V (z + ∆z, t)− V (z, t)

∆z
= rI(z, t) + l

∂I(z, t)

∂t

Taking the limit as ∆z → 0 in the above equation gives

−∂V (z, t)

∂z
= rI(z, t) + l

∂I(z, t)

∂t
(2.8)

Which is the first telegrapher’s equation. By using Kirchhoff’s current law (KCL)
on the upper node, one gets

I(z, t)− I(z + ∆z, t)− g∆zV (z + ∆z, t)− c∆z∂V (z + ∆z, t)

∂t
= 0

Rearranging and taking the limit as ∆z → 0 once more yields the second telegra-
pher’s equation

−∂I(z, t)

∂z
= gV (z, t) + c

∂V (z, t)

∂t
(2.9)

Equations (2.8) and (2.9) form a set of two coupled, first-order partial differen-
tial equations (PDEs). Together, they describe the voltage and current on a two-
conductor transmission line or cable.

Multiconductor transmission line

Transmission lines will often consist of more than two conductors. Typical examples
are signal cables used in electronics, three-phase power systems or power umbilicals
- the topic of this thesis. In the general case, a multiconductor transmission line
(MTL) with n conductors and a reference conductor is said to consist of n+ 1 con-
ductors. The reference conductor is the conductor to which all potential differences
are referenced, which is usually taken to be the neutral conductor or ground.
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Figure 2.6: Distributed parameters circuit model for a two-conductor transmission
line.
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Figure 2.7: Distributed parameters circuit model for a MTL with
1, 2, ..., i, ..., j, ..., n conductors and a reference conductor.
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Not all of these conductors are excited by an external voltage source, but due to
electromagnetic induction, conduction current leakage and capacitive effects, cur-
rents and voltages can arise in elements that were not intended to carry such. This
phenomenon is known as crosstalk.

A distributed circuit model for a multiconductor transmission line with n + 1
conductors is shown in Fig. 2.7 above. The i-th conductor has a series impedance
consisting of a resistance ri∆z, inductances lij∆z and a shunt admittance consisting
of conductances gij∆z and capacitances cij∆z, with j = 1, 2, ..., n. The reference
conductor has a resistance r0∆z. Using KVL on the outer loop consisting of the
i-th conductor and the reference conductor, gives

Vi(z, t)− ri∆zIi(z, t)−
n∑

k=1

lik∆z
∂Ik
∂t
− Vi(z + ∆z, t)− r0∆z

n∑

k=1

Ik = 0

Rearranging, dividing by ∆z and taking the limit as ∆z → 0 gives

∂Vi(z, t)

∂z
= −riIi(z, t)−

n∑

k=1

(r0Ik(z, t) + lik
∂Ik(z, t)

∂t
)

which is the first telegrapher’s equation for the i-th conductor in Fig. 2.7. Then
applying KCL to the i-th conductor

Ii(z, t)− Ii(z + ∆z, t)−
n∑

k=1
k 6=i

gik∆z(Vi(z, t)− Vk(z, t))− gii∆zVi(z, t)

−
n∑

k=1
k 6=i

cik∆z
∂(Vi(z, t)− Vk(z, t))

∂t
− cii∆z

∂Vi(z, t)

∂t
=

Ii(z, t)− Ii(z + ∆z, t)−
n∑

k=1

gik∆zVi(z, t) +
n∑

k=1
k 6=i

gik∆zVk(z, t)

−
n∑

k=1

cik∆z
∂Vi(z, t)

∂t
+

n∑

k=1
k 6=i

cik∆z
∂Vk(z, t)

∂t
= 0

Following the same procedure as for the first telegrapher’s equation for the i-th
conductor, one gets

∂I(z, t)

∂t
= −

n∑

k=1

gikVi(z, t) +
n∑

k=1
k 6=i

gikVk(z, t)−
n∑

k=1

cik
∂Vi(z, t)

∂t
+

n∑

k=1
k 6=i

cik
∂Vk(z, t)

∂t

which is the second telegrapher’s equation for the i-th conductor in Fig. 2.7. The
MTL telegrapher’s equations describing the voltages and currents on the n conduc-
tors can be written in matrix notation as
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−∂V(z, t)

∂t
= (R + L

∂

∂t
)I(z, t) (2.10)

−∂I(z, t)

∂t
= (G + C

∂

∂t
)V(z, t) (2.11)

where V = (V1 V2 ... Vn)t, I = (I1 I2 ... In)t and the matrices are given as

R =




(r1 + r0) r0 · · · r0

r0 (r2 + r0) · · · r0
...

...
. . .

...
r0 r0 · · · (rn + r0)


 (2.12)

L =




l11 l12 · · · l1n
l12 l22 · · · l2n
...

...
. . .

...
l1n l2n · · · lnn


 (2.13)

G =




∑n
k=1 g1k −g12 · · · −g1n

−g12

∑n
k=1 g2k · · · −g2n

...
...

. . .
...

−g1n −g2n · · · ∑n
k=1 gnk


 (2.14)

C =




∑n
k=1 c1k −c12 · · · −c1n

−c12

∑n
k=1 c2k · · · −c2n

...
...

. . .
...

−c1n −c2n · · · ∑n
k=1 cnk


 (2.15)

since L, G and C are symmetric for isotropic media, as can be proven by energy
conservation (Paul 2008). Equations (2.10) and (2.11) will for n + 1 conductor be
a set of 2n coupled first-order partial differential equations, with R, L, G and C
being of dimensions n× n.

Applicability of the telegrapher’s equations

The distributed parameters circuits shown in Fig. 2.6 and 2.7 were presented without
giving possible underlying assumptions any thought. As always, it is important to
know the limits of the governing mathematical model, and so the applicability of
the telegrapher’s equations will be discussed briefly.

The fundamental underlying assumption of the telegrapher’s equations is that
the electromagnetic fields surrounding the conductors in a transmission line have
a transverse electromagnetic (TEM) structure, i.e. that the electric- and magnetic
fields parallel to the conductors are zero. For certain ideal transmission lines consist-
ing of conductors with infinite conductivity, this can be shown to be exact. Although
it is an assumption for real conductors, many transmission line structures can be
said to propagate in TEM mode without introducing a significant error.
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One could analyze transmission lines without assuming a TEM field structure,
but this would mean one would have to abandon the circuit-analysis concept com-
pletely, because one would not be able to uniquely define voltages and currents
in transmission lines. For example, for the voltage between two conductors to be
uniquely determined, the line integral

∫

C

E · dl (2.16)

would have to be path-independent for any curve C in a certain transverse plane, i.e.
the electric field E would have to be equal to the gradient of the electric potential
V . This is not the case if, for example, a time-varying longitudinal magnetic field
exists, because this would add to the electric field a term according to Faraday’s
law.

If a line is expected to support a TEM field structure, the assumptions Ez = 0
and Bz = 0 outside the conductors are imposed, and it can be shown that the
transverse plane fields Exy and Bxy fullfill Maxwell’s equations for static fields, and
so voltages and currents can be uniquely defined (Ramo, Whinnery, and Duzer
1994).

To assure that the the mode of propagation in a transmission line is actually TEM
or close to it, the cross section of the transmission line must be electrically small for
reasons related to retardation. In short, this means that the largest dimension of
a transmission line cross-section, for example conductor spacing or radii of armour,
must be much smaller than the wavelength of the propagating TEM fields. For
practical transmission line designs, this is usually achieved with negligible errors
(Paul 2008).

There are, in addition to the above, a number of other properties of real-world
transmission lines that violate the basic assumption of a TEM field structure, but
it is generally assumed that these violations do not introduce significant errors.

2.2.3 General solution in frequency domain

Consider the currents and voltages exciting a transmission line to be time-harmonic,
that is, they are on the form

V(z, t) = Re{v(z)ejωt}
I(z, t) = Re{i(z)ejωt}

where the entries in v(z) and i(z) are phasor quantities, j is the imaginary constant,
ω is the electrical angular frequency and t is time. In this case it can be beneficial
to Fourier-transform Eqs. (2.10) and (2.11) and analyze the set of equations in
frequency domain. The telegrapher’s equations in the frequency domain are given
as

−dv(z)

dz
= Zi(z) (2.17)

−di(z)

dz
= Yv(z) (2.18)
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where Z and Y are the impedance- and admittance matrix, respectively, given as

Z = R + jωL (2.19)

Y = G + jωC (2.20)

Equations (2.17) and (2.18) form a set of 2n coupled first-order ordinary dif-
ferential equations (ODEs). The two equations can easily be decoupled from each
other. By differentiating (2.17) and substituting into (2.18) and vise versa for (2.18)
into (2.17) leads to the result

−d
2v(z)

dz2
= ZYv(z) (2.21)

−d
2i(z)

dz2
= YZi(z) (2.22)

where it is assumed that Z and Y are invariant of z, meaning that Eqs. (2.21)
and (2.22) are valid only for uniform lines. Note that although (2.21) is decoupled
from (2.22), the current and voltage of a conductor are not yet decoupled from the
currents and voltages of other conductors. Motivated by the wish to completely
decouple the currents and voltages on the conductors, modal matrices TV and TI

of dimensions n× n are introduced in the transformations

v(z) = TV vm(z)

i(z) = TIim(z)

where subscript m denote mode voltages and currents. By substituting these trans-
formations into Eqs. (2.21) and (2.22), Paul (2008) shows that the general solutions
to Eqs. (2.21) and (2.22) are given by

v(z) = TV (e−Λzv+
m + eΛzv−m) (2.23)

i(z) = TI(e
−Λzi+m − eΛzi−m) (2.24)

where e±Λz is the matrix exponential and Λ2 a diagonal matrix

Λ2 = T−1
I YZTI = T−1

V ZYTV (2.25)

i.e. the columns of TV and TI contain the eigenvectors of ZY and YZ respectively,
and Λ2 contain their eigenvalues.

The general solution presented above needs 4n boundary conditions to form
a specific solution, which are represented by v±m and i±m. A relation between the
voltages and currents at the boundaries can be established, and so the number of
boundary conditions can be reduced to 2n. By substituting Eq. (2.24) into Eq.
(2.18) and left multiplying with Y−1 yields

v(z) = ZcTI(e
−Λzi+m + eΛzi−m)

where Zc is the defined to be the characteristic impedance matrix of MTLs and is
equal to

Zc = Y−1TIΛT−1
I (2.26)
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so the final form of the solution to the MTL telegrapher’s equations and the one
that will be used onward is

v(z) = ZcTI(e
−Λzi+m + eΛzi−m) (2.27)

i(z) = TI(e
−Λzi+m − eΛzi−m) (2.28)

with 2n unspecified boundary conditions. How to specify and implement those will
be dealt with in the upcoming section.

2.2.4 Boundary conditions

To form a specific solution to the MTL equations, one needs to specify and include
the boundary or terminal conditions. That is, specify what happens in terms of
currents and voltages at both ends of the MTL. This is done by representing both
the sources and loads as Thévenin equivalents, by using Thévenin’s theorem.

Given a general MTL with n+1 conductors and length `, we denote the sending
end of the MTL as the source end, while the receiving end is denoted the load end.
This notion is just for practical purposes - both ends can contain electrical machines
and both ends can contain electrical loads. Let the source be placed at z = 0, while
the load is placed at z = `. Then the 2n source- and load Thévenin equivalents are
given as

v(z = 0) = vS − ZSi(z = 0) (2.29)

v(z = `) = vL + ZLi(z = `) (2.30)

where the n×1 vector vS contain the source voltages and the n×n matrix ZS is the
impedance matrix for the source. The second equation with subscript L is for the
load, and is in full analogy to the source Thévenin equivalent. By evaluating Eqs.
(2.27) and (2.28) at z = 0 and z = ` and substitute the results into Eqs. (2.29) and
(2.30) one gets the matrix equations contained in one system as

[
(ZC + ZS)TI (ZC − ZS)TI

(ZC − ZL)TIe
−Λ` (ZC + ZL)TIe

Λ`

] [
i+m
i−m

]
=

[
vS
vL

]
(2.31)

as shown in (Paul 2008). Solving these matrix equations yields the necessary 2n
boundary conditions. If, on the other hand, one wishes to model the load as current
sources, Northon equivalents can be used. By following the same procedure as above,
the 2n boundary conditions can be found by simultaneously solving

[
(YSZC + In)TI (YSZC − In)TI

(YLZC − In)TIe
−Λ` (YLZC + In)TIe

Λ`

] [
i+m
i−m

]
=

[
iS
iL

]
(2.32)

where In is the n×n identity matrix, YS and YL are the source- and load admittance
matrices, and iS and iL contain the source- and load current sources, respectively.
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(b) Series RLC circuit impedance.

Figure 2.8: Series RLC circuit and impedance plot with L = 1 H and C = 1 F. R
as shown in (b).
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(b) Parallel RLC circuit impedance.

Figure 2.9: Parallel RLC circuit and impedance plot with L = 1 H and C = 1 F.
R as shown in (b).

2.3 Other relevant topics

2.3.1 RLC circuits and resonance

A phenomenon existing in circuits with a resistance R, inductance L and capacitance
C is resonance. Since a power cable consists of all three elements (in a distributed
form), resonance will occur at certain frequencies. In electrical circuit theory, one
differentiates between series- and parallel resonance. Analyzing the simple RLC
circuits shown in Fig. 2.8 and 2.9 can aid in building intuition and understanding
of more complex resonance phenomena in cables.

By plotting the input impedance, i.e. the impedance seen by the source, as a
function of frequency, one can clearly see the effect of resonance. Series resonance
gives a decrease in network impedance, while parallel resonance gives an increase.
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For a constant current driven parallel circuit, Ohm’s law predicts that voltage
amplification will occur at resonance, and visa versa for current amplification in a
constant voltage driven series circuit.

The circuits of Fig. 2.8 and 2.9 have only one resonance frequency. On the
other hand, a power cable can bee seen as a interconnection of an infinite amount of
RLC elements in a distributed parameters model, and will therefore have an infinite
amount of resonance frequencies.

Even though the cables are only excited by a fundamental frequency, higher order
current harmonics can occur. This means that if current harmonics of a certain order
corresponds to e.g. a parallel resonance frequency of the cable, voltage amplification
may happen.

By noting that resonance occur when the phase angle is zero, it can be shown
that the resonance frequency for the series circuit is

fres =
1

2π

1√
LC

(2.33)

while for the parallel circuit, resonance occurs when

fres =
1

2π

√
1

LC
−
(R
L

)2

(2.34)

and thus, for a constant resistance, an increase in L and C means that resonance
will occur at lower frequencies.

2.3.2 Skin effect

As mentioned briefly in section 2.2.1, a conductor carrying an ac current will have
a non-uniform current distribution, with increasingly more of the current flowing in
the out most part of the conductor. A mathematical treatment of this phenomenon
will be given in this section.

In Appendix A, it is shown that the longitudinal electric field inside a circular
conductor with radius R is described by the modified Bessel’s equation

1

ρ

d

dρ

[
ρ
d(Ez(ρ))

dρ

]
−m2Ez(ρ) = 0 (2.35)

where

m =
√
jωµσ =

1 + j

δ
(2.36)

is the reciprocal of the complex penetration depth of the conductor, and δ is the skin
depth equal to

δ =

√
2

ωµσ
(2.37)

To give some physical intuition about the skin depth, the outer part of the conductor
can be studied, where ρ ≈ R. The modified Bessel’s equation then reduces to the
ODE

d2(Ez(ρ))

dρ2
−m2Ez(ρ) = 0 (2.38)
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which has the general solution

Ez(ρ) = Ae−mρ +Bemρ (2.39)

or, approximately, since m >> 1 in a good conductor for high frequencies

Ez(ρ) ≈ Bemρ (2.40)

where B is determined from the surface value of the electric field, so that the electric
field inside the conductor near the surface is given by

Ez(ρ) = E|sem(ρ−R) = E|se
1+j
δ

(ρ−R) (2.41)

or, for the current density, since Jz = σEz

Jz(ρ) = J |se
1+j
δ

(ρ−R) (2.42)

and therefore, at a depth equal to one skin depth, ρ = R− δ, gives the value for the
current density

Jz(R− δ) = J |s · 1/e1+j (2.43)

and so the skin depth of the conductor is the depth at which the current density
(and also the electric field intensity) has fallen to a value of 1/e of its surface value.

The skin depth is dependent on the reciprocal of the square root of the frequency,
as given by Eq. (2.37), and hence the current will be increasingly more confined to
the outer part of the conductor as frequency increases.

2.3.3 Surface impedance

As discussed in the previous section, current migrates towards the surface of the
conductor when frequency increases. Since the current density is equal to σE, this
leads to the conclusion that the electric field vanishes in the interior of a conductor
when frequency increases.

For high frequencies, current will reside purely on the surface of the conductor.
To have a definition of impedance that is applicable for all frequencies, the term
surface impedance is introduced. The per unit length surface impedance is defined
as the ratio of the electric field intensity at the surface E|s of the conductor to the
total current I carried by the conductor,

z =
E|s
I

(2.44)
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3. Electromagnetic modelling of
power umbilical systems

The overall goal of this chapter is to utilize the analytical solution of the multicon-
ductor transmission line telegrapher’s equations, given by Eqs. (2.27) and (2.28)
as

v(z) = ZcTI(e
−Λzi+m + eΛzi−m)

i(z) = TI(e
−Λzi+m − eΛzi−m)

to calculate voltages and currents at each z coordinate along the cable length for
various frequencies f . The mathematical aspect of finding a specific solution when
Z, Y and boundary conditions are known is a relatively straight forward implemen-
tation of the theory presented in section 2.2.3. Therefore, it will only be dealt with
when presenting algorithms in Chapter 4.

The main challenge in cable modelling is determining the series impedance and
shunt admittance matrices Z and Y. The entries in these matrices can, for example,
be found by using analytic formulas. Another approach would be using numerical
methods, such as Finite-Element Methods (FEM) (Gustavsen et al. 2009) or the
more recently proposed Method of Moments - Surface Operator (MoM-SO) (Patel,
Gustavsen, and Triverio 2013a, Patel, Gustavsen, and Triverio 2013b, Patel and
Triverio 2016). Or, naturally, the entries can also be obtained experimentally.

As briefly explained in Chapter 1, and as will be be dealt with more thoroughly
in the upcoming Chapter 4, a goal for this thesis is to establish a computer program
where users can construct a power umbilical by picking elements from a pre-existing
library (or expand the library if new elements needs to be included). Due to the
limited extent of this thesis, and since analytic formulas are available for elements
in a power umbilical, an analytic approach will be taken.

The usual approach for assembling the series impedance and shunt admittance
matrices from analytical formulas is credited to the classical paper from Ametani
(1980), which is the formulation that will be used in this thesis. This general for-
mulation for Z and Y, as well as formulas used for their respective entries will be
presented in this chapter.

Due to varying applications, some information about the nomenclature used
onward should be given. Ametani (1980) studies a pipe-type cable, i.e. a tubular
conducting pipe enclosing single-core cables. Since power umbilicals have armours
comprised of stranded steel wires, and not tubular pipes, the term ”pipe” will not be
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applied. Instead, the term surroundings will be used, and can refer to seawater, air
or any other surrounding medium. Furthermore, since a power umbilical can have
constituents that are not single-core cables, the term element will be used when
presenting the model, as has been done earlier in this text when describing power
umbilicals.

Lastly, before the model is presented, some general simplifications and assump-
tions are made that one needs to be aware of:

1. Armour is neglected

2. Layers in power umbilicals must be modelled individually

3. Power umbilicals are placed in infinite, homogeneous surroundings

4. The space inside power umbilicals around the elements is homogeneous

5. Saturation of steel is neglected

6. Proximity effect between elements is neglected

7. Dielectric losses are neglected

8. Electrical quads and fiber optic elements are neglected

9. The eccentric position of elements inside the power umbilical does not affect
its internal impedance

10. Conducting seawater inside flooded power umbilicals is neglected

The reader may wonder about some of these simplifications and assumptions.
The 1st simplification is due to the pipe-type formulation of Ametani (1980) be-
ing a nonphysical formulation for the armour of power umbilicals, which is usually
comprised of steel wires. The 2nd simplification is due to the twisting of the inner
and outer layer in different directions. Since each layer consists of a balanced three
phase circuit with currents summing to zero, it will not lead to a net induced cur-
rent or voltage in other layers, when averaged over one pitch length. For the 5th

simplification, the reader is referred to Ametani (1980). For the 7th simplification,
the conductance is assumed to be of smaller significance, but can be added to the
model later. For the 10th simplification, the reader should note the large difference
in resistivity between metals (∼ 10−8 Ωm) and seawater (∼ 10−1 Ωm).

Note that Ametani (1980) does actually provide two formulations for pipe-type
armour; one where the pipe-thickness is assumed infinite, and one where it is as-
sumed finite. Since power umbilicals have armour made of stranded steel wires, a
finite pipe-type formulation to represent the armour would be nonphysical. The
infinite pipe-thickness formulation was applied instead, which is used to effectively
model any media surrounding the power umbilicals such as air or seawater.
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Table 3.1: Notation for radii of elements in power umbilicals.

Power phase w/ screen Power phase w/o screen Steel duplex tube

r1 core radius core radius 0
r′1 inner semi-con outer radius inner semi-con outer radius 0
r′2 insulation radius insulation radius 0
r2 screen inner radius outer semi-con outer radius tube inner radius
r3 screen outer radius equal to r2 tube outer radius
r4 equal to r3 equal to r2 HDPE sheath radius

r1

r2

r3

r4

r′1r′2

Figure 3.1: Cross section of a general element in a power umbilical with both core
and metallic screen/tube. Conductors are depicted in light gray, semi-conducting
layers in darker gray, and insulation/sheaths in white.

3.1 Formulation of parameter matrices

As mentioned above, the formulation of Z and Y will be that of Ametani (1980),
but with a power umbilical instead of a pipe-type cable, and elements instead of
single-core cables. The formulation will now be presented, by considering a set of m
general elements placed inside a cylinder with an infinitely large outer radii, which
represents the surroundings. A depiction of this with general elements i and j can
be seen in Fig. 3.2, and a detailed drawing of a general element can be seen in Fig.
3.1.

The geometry of any element in a power umbilical can be derived from the one
depicted in Fig. 3.1. If, for example, the screen sheath with radius r4 is removed,
the result is a power phase with a metallic screen. If the screen with outer radius r3

is removed as well, one is left with a power phase without a metallic screen.
If one instead chooses to remove the core with radius r1, inner semi-conducting

layer with radius r′1, core insulation with radius r′2 and outer semi-conducting layer
with radius r2, one is left with a geometry representing a steel duplex tube with a
HDPE sheath.

As will become clear in the following sections, the governing formulas for
impedance and admittance for the different elements are numerous, but they are
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also common for the different types of elements in a power umbilical. For this rea-
son, the complete mathematical model will be presented for the general case shown
in Fig. 3.1, and models for the specific elements in a power umbilical will be derived
from it.

The radius shown in Fig. 3.1 will refer to different values depending on the
element at interest. In Table 3.1, an overview of the notation is given.

θij

dj

di

i-th element

j-th element

rp

Figure 3.2: A power umbilical with outer radius rp and with an infinite surrounding
medium.

3.1.1 Series impedance matrix

For a power umbilical with m general elements as depicted in Fig. 3.2, the n × n
impedance matrix can be found as the sum of two components as

Z = Zinternal + Zg (3.1)

where Zinternal is the internal impedance matrix describing each element inside the
power umbilical, and Zg describes how the elements interact with each other with
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respect to the surrounding media. They have the general form

Zinternal =




Zint1 0 . . . 0
0 Zint2 . . . 0
...

...
. . .

...
0 0 . . . Zintm


 (3.2)

Zg =




0 Zg12 . . . Zg1m

Zg12 0 . . . Zg2m
...

...
. . .

...
Zg1m Zg2m . . . 0


 (3.3)

where the diagonal elements of Zinternal are sub-matrices describing each element.
For the i-th element in Fig. 3.2 consisting of a core and a metallic screen/tube, the
sub-matrix takes the form

Zinternal i =

[
zcci zcsi
zcsi zssi

]
(3.4)

where zcci is the core self-impedance, zssi is the screen/tube self-impedance and zcsi
is the mutual impedance between the core and the screen/tube. They are given as

zcci = zc outer + zcs ins + zs inner + zs outer + zsg ins + zg inner − 2zs mutual (3.5)

zssi = zs outer + zsg ins + zg inner (3.6)

zcsi = zs outer + zsg ins + zg inner − zs mutual (3.7)

where all the terms are related to the i-th element and represent the following

zc outer impedance of core surface

zcs ins impedance of core-screen/tube insulation

zs inner impedance of screen/tube inner surface

zs outer impedance of screen/tube outer surface

zs mutual mutual impedance between screen/tube inner and outer surface

zsg ins impedance of screen/tube insulation-surrounding media

zg inner impedance of surrounding media inner surface

The sub-matrices in Zg describe the interaction between the elements. For the
i-th and j-th element in the power umbilical, when both consists of a core and
screen/tube, the sub-matrix is given as

Zgij =

[
zgij zgij
zgij zgij

]
(3.8)

where all entries are equal and describe the mutual impedance between the i-th
and j-th element with respect to the surrounding medium. The dimensions of these
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sub-matrices are dependent on the number of conductors the i-th and j-th element
consists of, but the entries remains the same.

All the impedances in the above formulation are governed by analytical formulas,
which will be given in the coming pages. The reader should recall that the radii
denoted rk, where k = 1, 1′, 2, 2′, 3 and 4, depend on what element is at interest,
and the reader is therefore referred to Table 3.1 as guidance. The reciprocal of the
complex penetration depth, introduced in section 2.3.2, is given by Eq. (2.36) as

m =
√
jωµσ =

√
jωµ

ρ

The surface impedance of the core outer surface, zc outer, is derived in Appendix A
and is given by Eq. (3.9) as

zc outer =
ρcmc

2πr1

I0(mcr1)

I1(mcr1)
(3.9)

where

ρc core resistivity

mc reciprocal of core complex penetration depth

In(x) modified Bessel function of the first kind and order n

The core-screen insulation impedance is purely due to an inductive coupling existing
between currents flowing in the core and the screen. It is given by Eq. (3.10) as

zcs ins =
jωµ

2π
ln
r2

r1

(3.10)

where

µ permeability of core-screen insulation

The impedance of the metallic screen/tube inner- and outer surface, and the mutual
impedance between them, are derived in Schelkunoff (1934) and given by Eqs. (3.11),
(3.12) and (3.13), respectively, as

zs inner =
ρsms

2πr2

I0(msr2)K1(msr3) + I1(msr3)K0(msr2)

I1(msr3)K1(msr2)− I1(msr2)K1(msr3)
(3.11)

zs outer =
ρsms

2πr3

I0(msr3)K1(msr2) + I1(msr2)K0(msr3)

I1(msr3)K1(msr2)− I1(msr2)K1(msr3)
(3.12)

zs mutual =
ρs

2πr2r3

1

I1(msr3)K1(msr2)− I1(msr2)K1(msr3)
(3.13)

where
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ρs screen/tube resistivity

ms reciprocal of screen complex penetration depth

In(x) modified Bessel function of the first kind and order n

Kn(x) modified Bessel function of the second kind and order n

As was the case for the core-screen/tube insulation impedance, the screen/tube-
surrounding medium insulation impedance is purely due to an inductive coupling
between the screen/tube outer surface and surrounding medium. It accounts for the
eccentric position of the elements and is given in F. F. d. Silva and Bak (2013) as

zsg ins =
jωµ0

2π

(
µ1 ln

(r4

r3

)
+ µ2 ln

(rp
r4

[1−
( d
rp

)2

]
))

(3.14)

where

µ1 relative permeability of the screen/tube sheath

µ2 relative permeability of the insulation between the screen/tube sheath and the
surrounding media

rp power umbilical outer radius

d distance from center of power umbilical to center of element

The surface impedance of the surrounding media is derived in Brown and Rocamora
(1976) and given by

zginner =
jωµ

2π

[
K0(mprp)

mprpK1(mprp)
+ 2

∞∑

n=1

( d
rp

)2n 1

n(1 + µp) +mprp
Kn−1(mprp)

Kn(mprp)

]
(3.15)

where

µ permeability of the surrounding medium

mp reciprocal of surrounding medium complex penetration depth

µp relative permeability of the surrounding medium

rp power umbilical outer radius

d distance from center of power umbilical to center of element

Kn(x) modified Bessel function of the second kind and order n
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The entries in the surrounding medium mutual impedance sub-matrices describe the
mutual impedance between the i-th and j-th element in a power umbilical. They
are given by Brown and Rocamora (1976) as

zgij =
jωµ0

2π

[
ln

rp√
d2
i + d2

j − 2didj cos θij
+

µp
mprp

K0(mprp)

K1(mprp)

+
∞∑

n=1

(didj
r2
p

)n
cos (nθij)

[ 2µp

n(1 + µp) +mprp
Kn−1(mprp)

Kn(mprp)

− 1

n

]]
(3.16)

where

rp power umbilical outer radius

d distance from center of umbilical to center of element

θ angle between two conductors

µp relative permeability of surrounding medium

mp reciprocal of complex penetration depth of surrounding medium

Kn(x) modified Bessel function of second kind and order n

Note that in the above expression, j outside the first square bracket is the imaginary
unit, whilst all other appearances of j refers to conductor j.

Sub-matrices for specific elements

While the entries for Zg are given by the same formula for all types of conductors,
namely Eq. (3.16) above, the sub-matrices in the internal impedance matrix Zinternal

is dependent on the type of element at interest.
For a power phase with a metallic screen, the formulation of its internal impedance

sub-matrix is identical to that for a general element in a power umbilical, with the
exception that the first term on the right hand side of Eq. (3.14) vanishes.

For a power phase without a metallic screen, the internal impedance sub-matrix
reduces to

Zinternal sub =
[
zcc
]

(3.17)

where
zcc = zc outer + zcs ins + zsp ins + zp inner (3.18)

where, once more, the first term on the right hand side of Eq. (3.14) vanishes.
For steel duplex tubes there is no core conductor, and the internal impedance

sub-matrix reduces to
Zinternal sub =

[
zss
]

(3.19)

where
zss = zs outer + zsp ins + zp inner (3.20)
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3.1.2 Shunt admittance matrix

The admittance matrix Y for a power umbilical with infinite surrounding medium
can be found as

Y = jωP−1 (3.21)

where P is the potential coefficient matrix given by

P = Pinternal + Pg (3.22)

where P−1 = C, Pinternal is the internal potential coefficient matrix describing each
element inside the power umbilical, and Pg describes how the elements interact with
each other through capacitive couplings.

Generally, both terms on the right hand side of Eq. (3.22) have to be considered.
In power umbilicals, however, the out-most layer of each element can be considered to
be grounded at any point along its length. This is due to this layer being in physical
contact with a low-resistance ground path through common semi-conducting layers.
Therefore, transverse electric fields exists only in the dielectrics concentric to each
element, with no electric field between two elements in a power umbilical. This
means there is no capacitive coupling between two elements inside a power umbilical,
and the potential coefficient matrix reduces to

P = Pi (3.23)

where Pinternal is a diagonal matrix

Pinternal =




Pint1 0 . . . 0
0 Pint2 . . . 0
...

...
. . .

...
0 0 . . . Pintm


 (3.24)

for m elements inside a pipe. For the i-th general element, the sub-matrix Pint i has
the form

Pint i =

[
pci + psi psi
psi psi

]
(3.25)

where

pci potential coefficient of the core

psi potential coefficient of the screen/tube

The potential coefficients are also governed by analytic formulas. The potential
coefficient of the core and the screen/tube is governed by Eqs. (3.26) and (3.27),
respectively, as

pci =
1

2πε1
ln
r′2
r′1

(3.26)

psi =
1

2πε2
ln
r4

r3

(3.27)

where
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ε1 permittivity of core-screen insulation

ε2 permittivity of the screen/tube sheath

Note that between conductors in electrical quads, there will be capacitive cou-
plings, and hence Pg is not zero. If electrical quads are to be implemented in the
model at a later time, it will be necessary to formulate Pg.

Sub-matrices for specific elements

Just as was the case for the internal impedance sub-matrices, the shape of the
internal potential coefficient sub-matrices changes depending on the type of element
it is describing.

For a power phase with a metallic screen produced by Nexans, there is never
placed any dielectric sheath outside the screen. So for both power phases with and
without screens, the internal coefficient sub-matrix reduces to only one element

Pinternal sub =
[
pc
]

(3.28)

with the potential-coefficient pc given by Eq. (3.26).
For steel duplex tubes there exists no core, and hence the potential coefficient

sub-matrix in this cases reduces to

Pinternal sub =
[
ps
]

(3.29)

where the potential-coefficient ps is given by Eq. (3.27).
Since that for both power phases and for steel duplex tubes, the internal poten-

tial coefficient sub-matrices reduce to matrices of dimensions 1 × 1, and hence the
potential-coefficient matrix P is diagonal. This means that instead of finding the
potential-coefficient matrix and perform a matrix inversion, one can merely find the
capacitance matrix directly, by noting that when P is a diagonal matrix

C = P−1 =




c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cm


 (3.30)

where the diagonal entries are the self-capacitances of the elements, given by the
reciprocal of either Eq. (3.26) or (3.27) depending on element type.

3.2 Modelling of terminations

The terminations of power umbilicals are generally implemented by Eqs. (2.31)
or (2.32), as presented in section 2.2.4. What equation to use will depend on the
termination of a specific umbilical and on what phenomena one wishes to study.
There are, perhaps, a few situations that might need specific attention.

Conducting elements in the umbilicals, such as metallic screens on power phases,
duplex steel tubes, armour around fiber optic elements, etc. are either grounded or
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left open-circuited at each terminations. When using the Thévenin representation
in Eq. (2.31), the grounding of a conductor, for example at the sending end, is
represented by vs = 0 and zs = 0. If the conductor is left open, the impedance is
taken as infinity. Since infinity is not a well-defined number, the implementation of a
open-circuited element will simply involve setting the impedance equal to a number
much larger than the impedance of the conductor itself.

A numerically more ”refined” method would be to utilize the Northon representa-
tion implemented in Eq. (2.32) to model open-circuited elements, i.e. terminations
with zero shunt admittance.

There might be situations where it is necessary to model the terminations as a
mix of voltage- and current sources, but implementing this is left to future develop-
ment and is beyond the scope of this thesis.
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4. Computer implementation

In this chapter the computer implementation of the model from the preceding chap-
ter will be presented. The program package, referred to as UmbSim, is written in
Python 2.7 and is based partially on an object-oriented approach. Although not
followed rigidly, most of the source code is written in accordance with the PEP-8
style guide. The complete source code for the program package can be found in
Appendix B.

There are both up- and downsides to object-oriented programming. A loss of
speed may be one of the downsides, but since the number of elements in a power um-
bilical are few, the number of operations needed to be done are few (for a computer,
that is), and thus the computation time is expected to be relatively short.

The reason for choosing an object-oriented approach is that the mathematical
model and the physicality of cable modelling fits well into several of the features of
object-oriented programming.

First of all, inheritance is a concept that is both intuitive and will minimize code
duplication in the program, due to how the elements are described in the preceding
chapter. The general element in a power umbilical in Fig. 3.1 can naturally take
the role as a super-class, as shown in the class structure of Fig. 4.1. That is, power
phases, steel duplex tubes and all the other elements can be seen as a sub-class of
the general element.

Also, due to the intuitive structure and low duplicity of object-oriented program-
ming, it is also advantageous when it comes to maintaining or modifying existing
code, or when doing further development. The UmbSim package is in no way com-
pleted by the work of this thesis, and development should be able to be picked up
by other developers.

class GeneralElement

class PowerPhase class SteelTubeclass FiberOpticElementclass ElectricalQuad

Figure 4.1: Class structure in the system.py module for the elements in a power
umbilical.
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As the proposal for the topic of this thesis was put forth by Nexans, they had
several requests on routines and functionality of the program package. Among these
were

• User should be able to model any power umbilical

• User should be able to model any termination situation

• Voltage, current and impedance plots of both magnitude and angle for any
element in a power umbilical, at any position and frequency should be available

• Program should include routines for calculating maximum voltage on and cur-
rent in any element

• Program should include routines for studying systems with harmonic content

• Program should include routines for finding both series- and parallel resonance
frequencies for impedance

• Program should include routines for running simulations from pre-determined
parameter matrices, which, for example, could be obtained through measure-
ments

4.1 The UmbSim package

The UmbSim package consists of three modules: system.py, simulation.py and
solver.py. The most important aspects of each module, and the interplay between
them, will be described in this section. Firstly, a description of how a user would
inteact with UmbSim is given.

Currently, there is no graphic user interface for UmbSim. To define a certain
system with a source, a power umbilical and a load, the user start by creating
an empty Python script and importing the system.py module from the UmbSim
package. An example of how to define a power umbilical cable with three power
phases without screens and three steel duplex tubes are shown in Listing 4.1. All
input values have to be given in SI-units.

When studying a specific system, the user first specifies geometrical and electro-
magnetic properties for the elements in the power umbilical by using the
set parameters() method from the system.py module. When parameters for the
elements are set, the user can define what elements to include and the terminations
at each end. Then, instances of the Umbilical, Source and Load classes can be
created.

Docstrings are available in the source code of the UmbSim package, for a full de-
scription of the available functionality. In Appendix B the source code for UmbSim
is given.
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1 import cmath , math
2 import numpy as np
3 from UmbSim import system
4
5 # Define power phases, steel duplex tubes and surroundings ("pipe")

6 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
7 ’ d inne r s emi con ’ : 13 .5 e−03,
8 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
9 ’ d oute r s emi con ’ : 37 .9 e−03,
10 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
11 ’ s c r e en ’ : Fa l se })
12
13 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 12 .7 e−03,
14 ’ d outer ’ : 15 .62 e−03,
15 ’ d sheath ’ : 19 .02 e−03,
16 ’ rho tube ’ : 8e−07,
17 ’ s t e e l mu r ’ : 32})
18
19 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
20 ’ rho p ipe ’ : 0 . 3 ,
21 ’ mu r p ’ : 1})
22
23 # Define cable length

24 c ab l e l e ng th = 31 e03
25
26 # Elements with respective positions (in polar coordinates (metres,

degrees))

27 e lements = [ [ ’ power phase ’ , ( 22 . 3 e−03, 0) ] ,
28 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
29 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ,
30 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 60) ] ,
31 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 180) ] ,
32 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 300) ] ]
33
34 # Define phasor rotation operator a, rms phase voltage V and number

of conductors n

35 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
36 V = 36 e03 / math . s q r t (3 )
37 n = 6
38
39 # Source

40 vs = np . array (1 , a ∗∗ 2 , a , 0 , 0 , 0 ] ) . t ranspose ( ) ∗ V
41 Rs = Ls = np . z e r o s ( ( n , n) )
42
43 # Load

44 v l = np . z e r o s ( ( n , 1) )
45 Rl = np . diag ( [ 6 0 , 60 , 60 , 0 , 0 , 0 ] )
46 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
47
48 # Create instances

49 umb i l i c a l = system . Umbi l i ca l ( elements , c ab l e l e ng th )
50 source = system . Source ( vs , Rs , Ls )
51 load = system . Load ( vl , Rl , Ll )

Listing 4.1: Example of input file from user.
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4.1.1 system.py

The system.py module is the implementation of how the system is described, i.e.
power umbilicals, sources and loads. The main task of the system.py module is to
calculate the per unit length impedance- and admittance matrices Z and Y, as well
as the termination impedance matrices ZS and YL.

In terms of the computer implementation, the source and load is described en-
tirely by the Source and Load classes, respectively. The Umbilical class manages
all elements inside a power umbilical, by creating instances for each element, as well
as for the mutual couplings between elements. All these instances are systematically
placed into a nested-list referred to as the instance matrix, and from the instance
matrix, the impedance- and admittance matrices are calculated. As an example, the
system.impedance matrix() method in the system.py module follow Algorithm 1
below.

Algorithm 1: The system.impedance matrix() method for finding Z

Data: instance matrix, frequency f , number of conductors n
Result: impedance matrix Z

1 Create Z as an empty n× n NumPy array
2 forall elements in instance matrix do
3 Calculate impedance sub-matrix at frequency f
4 Place entries from sub-matrix into correct entries in Z

5 return Z

The algorithm is very simple, but the code is a bit more complicated due to the
handling of indexes and the calculation for the impedance sub-matrices for each
element.

Notice that the instances need only be created once. This is also true for the
entries of the capacitance matrix, which are independent of frequency, and hence the
admittance matrix is then simply calculated as jωC. The entries in the impedance
matrix Z, however, are frequency dependent and needs to be calculated for each
frequency.

4.1.2 solver.py

The main task of the solver.py module is to determine the specific solutions v(z)
and i(z) for a specific system at a certain frequency. If this is done for a single
frequency, it is a simple task to extend the functionality to allow for a range of
frequencies to be simulated.

The solution at frequency f is mainly computed through the solver.solution()
method. The method is an implementation of Algorithm 2, which follows directly
from the theory presented in Chapter 2.

The 1st step in Algorithm 2 is accomplished by using the NumPy routine for
linear algebra, with the method np.linalg.eig(A) which takes a square array A

as input and returns the eigenvalues and right-hand side eigenvectors. The number
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Algorithm 2: The solver.solution() method for finding v(z) and i(z)

Data: Z, Y, ZS, ZL, vS, vL and ` as input from system.py

Result: i, v and/or z as NumPy arrays
1 Eigendecompose YZ to find TI and Λ2

2 Determine the 2n coefficients contained in i+m and i−m from Eq. (2.31)
3 Evaluate v(z) and/or i(z) in Eqs. (2.27) and (2.28), respectively, for each

desired z in 0 ≤ z ≤ `
4 return i, v or z

of columns in the returned arrays i, v or z are determined by the number of con-
ductors in the system, whilst the number of rows is determined by the number of z
coordinates the user wishes to compute the solution for.

4.1.3 simulation.py

The main task of the simulation.py module is to provide users access to output
data from specific solutions, either through NumPy arrays or visualizing plots.

When running simulations, a user can choose between solutions for current, volt-
age or impedance. This can done for either 1) A single frequency for a number of
desired positions along the power umbilical, or for 2) A single position and for a
number of frequencies. For example, to plot the input impedance as seen by the
source, a user could add the following code to Listing 4.1.

51 # Continued from Listing 4.1

52
53 from UmbSim import s imu la t i on
54
55 # Simulation instance

56 sim = s imu la t i on . S imulat ion (umb, s ou r c e i n s t , l o a d i n s t )
57
58 # Define frequencies at interest and position

59 f a r r a y = np . l i n s p a c e (0 , 5000 , 200)
60 z = 0
61
62 # Get input impedance spectrum for power phase 1 (element no. 0)

63 impedance = sim . p l o t s o l u t i o n ( f a r r ay , z , 0 , ’ z ’ )

Listing 4.2: Code for simulating the input

In the above listing, the solution was requested through the method

sim.plot solution(frequency array, position, element, type)

where element refers to an element number corresponding to an index in the
elements list defined in Listing 4.1. Since Python counts from 0, valid inputs
in this example would be a number from 0 to 5. The type argument is a string,
being either ’v’, ’i’ or ’z’, depending on whether the solution for voltage, current
or impedance is wanted.
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5. Example problems and valida-
tion

Both an electromagnetic model for power umbilicals and an accompanying computer
program, named UmbSim, have been presented in the two preceding chapters. A few
worked example problems will now be presented, where the results from simulations
in UmbSim will be validated against different methods. These methods are

1. Analytical methods

2. Flux2D

3. Measurements

Analytic methods will be applied to simple power umbilicals that exhibit a cyclic
symmetric structure. This will serve a purpose of validating the implementation of
the solution algorithms in the solver.py module. The analytical methods will
use impedance and admittance values calculated by the system.py module, and
will therefore not help validate whether the underlying model provides reasonable
results.

Therefore, UmbSim results will also be compared to simulations provided by
Nexans. These are simulations where the example problems are modelled and sim-
ulated in the finite element software Flux2D. As the name implies, Flux2D is only
able to model two dimensional problems, but by using a combination of field- and
circuit-analysis, it is possible to capture longitudinal effects. The general idea is
that a long cable or power umbilical is represented as a series of several nominal pi
equivalent circuits. To use this circuit representation, it is necessary to calculate the
values of the per phase per unit length resistance and inductance in these circuits.
This is achieved by finite element analysis of a cross section of the power umbili-
cal at interest, which Flux2D does by solving the appropriate electromagnetic field
equations. Then, using these obtained values in the circuit representation, voltages
and currents at discrete positions along the length of the cable can be computed.
For example, if a model uses a series of 10 nominal pi circuits (which is the case for
the example problems in this chapter), the voltage and currents can be calculated
at the sending end, the load end and at eight longitudinal positions along the cable.

As a last validation, and to test the limits of UmbSim, simulation results will
be compared to measurements performed on a power umbilical. The measurements
are also provided by Nexans.

39



Figure 5.1: Umbilical A.

5.1 Case study - Umbilical A

The first power umbilical that will be modelled is the 31 km long Umbilical A,
whose cross section depicted in Fig. 5.1. Umbilical A is twisted in two layers,
naturally referred to as the inner- and outer layer. Both layers have 36 kV three-
phase circuits made up by unscreened power phases with 95 mm2 stranded copper
conductors. Data for the power phases is given in Table 5.1.

The inner layer of Umbilical A additionally have two steel duplex tubes and a
fiber optic element. The fiber optic element will be neglected, but data for the steel
duplex tube is given in Table 5.2. The green colored parts inside Umbilical A are
HDPE filler elements, which make sure that the elements stay in their respective
positions.

Other general data for the umbilical, such as outer radius and data for the
surrounding seawater is given in Table 5.3.

If values for µ and ε for specific materials are not listed in tables, they are taken
as µ0 and ε0, respectively, or, they are not of interest when modelling.

The terminations for Umbilical A is given in Table 5.4. Note that the steel
duplex tubes are grounded in both ends, which is common practice to avoid any
high voltage from arising.
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1
2
3
4
5

Figure 5.2: One of the
power phases in Umbilical
A.

Table 5.1: Data for the power phases in Umbilical A.

Power phase Diameter [mm]
1 conductor, 95 mm2 stranded Cu 11.5
2 semi-conducting screen, XLPE 13.5
3 insulation, XLPE 29.5
4 semi-conducting screen, XLPE 32.9
5 semi-conducting polyethylene 37.9

Electrical properties Value
εr of XLPE 2.4
dc resistance of conductor (20 °C) 0.193 Ω/km

1
2

Figure 5.3: One of the
steel duplex tubes in Um-
bilical A.

Table 5.2: Data for the steel duplex tubes in Umbilical A.

Duplex Diameter [mm]
1 steel duplex tube, ID=12.7 mm 15.62
2 HDPE sheath 19.02

Electrical properties Value
εr of HDPE 2.3
µr of duplex steel 32
Resistivity of duplex steel (20 °C) 8 · 10−7 Ωm

Table 5.3: Various data for
Umbilical A and surroundings.

Umbilical A
Length 31 km
Outer diameter 189 mm
µ inside umbilical µ0

Surroundings
µ seawater µ0

ρ seawater 0.3 Ωm

Table 5.4: Terminations for the elements in
Umbilical A.

Source end
Power phase line-to-line voltage 36 kV
Frequency 50 Hz
Phase sequence positive
Steel duplex tubes grounded
RS for power phases 0
LS for power phases 0

Load end (nominal)
Steel duplex tubes grounded
RL for power phases 60 Ω
LL for power phases 0.3 H
No voltage sources
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Figure 5.4: The first approach in modelling Umbilical A, referred to as Umbilical
A1. Light blue represents infinite surrounding seawater.

5.1.1 Example A1

The first attempt at modelling in UmbSim will include only the inner three-phase
circuit of Umbilical A. Figure 5.4 depicts a cross section of the power umbilical
for this first example, referred to as Umbilical A1. Notice that due to the limits
of the model, as mentioned in Chapter 3, the power umbilical will be modelled as
unarmoured.

The terminations at the source- and load end of the power umbilical is given in
Table 5.4. In addition to modelling with nominal load, situations where the power
phases are either left open or short-circuited at the load end will be analyzed as
well.

UmbSim simulation

By defining Umbilical A1 and the corresponding terminations in Python scripts,
simulations can be ran. The scripts are found in Appendix C.1. Figures 5.5 and 5.6
show plots for the input impedance, voltage- and current magnitudes with different
load end terminations. The per phase per unit length parameters at 50 Hz are given
in Table 5.6, and the dc limit impedance magnitudes for the different terminations
are given in Table 5.5.

In Fig. 5.5 both series- and parallel resonance phenomena are observed. Notice
that both series resonance (magnitude minima) and parallel resonance (magnitude
maxima) occur at an angle equal to 0°. Also, the impedance maxima magnitudes
decrease with frequency, as is in agreement with the study of the parallel RLC circuit
in section 2.3.1.

The source end voltages in Fig. 5.6 are observed to always be equal to 36/
√

3, as
they are supposed to. The voltage at the load end in the short-circuited situation is
zero, and the current at the load end in the open end situation is zero, as one would
expect.
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(a) Magnitude, nominal load.
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(b) Angle, nominal load.
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(c) Magnitude, open load end.
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(d) Angle, open load end.
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(e) Magnitude, shorted load end.
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(f) Angle, shorted load end.

Figure 5.5: UmbSim simulations of input impedance spectra for Umbilical A1
power phases with different terminations.

Table 5.5: dc limit input impedance from Figs. 5.5a, c and e.

Load end termination Input impedance [Ω]
Nominal load 65.983
Open end 105

Shorted end 5.983
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(a) Phase voltage, nominal load.
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(b) Phase current, nominal load.

0 5 10 15 20 25 30
z [km]

20.78

20.79

20.80

20.81

20.82

20.83

20.84

20.85

20.86

V
o
lt

a
g
e
 m

a
g
n
it

u
d
e
 [

kV
]

(c) Phase voltage, open load end.
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(d) Phase current, open load end.
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(e) Phase voltage, shorted load end.
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(f) Phase current, shorted load end.

Figure 5.6: UmbSim simulations of rms voltage- and current magnitudes along
power phases at 50 Hz for Umbilical A1.

Table 5.6: Per unit length parameters of Umbilical A1 at 50 Hz.

Parameter Value
resistance 0.193 Ω/km
inductance 0.431 mH/km
capacitance 0.171 µF/km
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Comparison with analytical calculations

Since this first example consist of few elements and has a symmetrical arrangement,
quite a few analytical exercises can be done to help verify various aspects of Umb-
Sim. Furthermore, since both the positive sequence voltage sources and loads are
symmetric, the power umbilical can be modelled entirely by a positive sequence per
phase circuit.

dc limit input impedance A first check is the value of the impedance magni-
tudes in the dc limit of Figs. 5.5a. c and e. The numerical values from UmbSim
simulations are given in Table 5.5, which all match qualitatively well with intuition.

For the open end in Fig. 5.5c the dc limit input impedance is equal to 105 Ω. The
reason for this is that the implementation of a open-circuit termination in UmbSim
is implemented as RL = 105 and LL = 0. This value is large enough, relative to
impedance of the power phases, to be considered as infinite. Physically speaking, it
is intuitive that the input impedance with open load end would approach infinity,
as the shunt admittance goes to zero in the dc limit.

In the nominal load or shorted situation shown in Figs. 5.5a and e, the in-
put impedance takes on finite values in the dc limit. The short-circuited situation
yields the dc resistance of the conductor. By evaluating it analytically from the per
unit length resistance rdc from Table 5.5 multiplied with the length ` of the power
umbilical, one finds that

Rdc = rdc` = 5.983 Ω

which is identical to the value in Table 5.5. For the nominal load situation, one
would expect the value

Rdc = rdc` +RL = 65.983 Ω

which is also identical to the tabular value.

Charging current In the situation of an open load end, the only current that flows
in the power phases is due to the path through the shunt admittance. The current
flowing in one of the power phases is then given by the telegrapher’s equation

−di(z)

dz
= jωcv(z) (5.1)

since there is no capacitive coupling between the power phases. Since the line is left
open circuited, the current flowing at adequately low frequencies is small, and thus
the voltage along the length of the cable can be assumed constant and equal to the
source phase voltage vs,

−di(z)

dz
= jωcvs (5.2)

Furthermore, the boundary condition

i(z = `) = 0 (5.3)

must hold. Solving the ODE in Eq. (5.2) and imposing the boundary condition
yields the specific solution

i(z) = jωcvs(`− z) (5.4)

45



which should be valid for relatively low frequencies. The per unit length capacitance
is found from Table 5.6. Then, at 50 Hz, the current drawn from the source has the
value

i(z = 0) = jωcvs` = j34.6 A (5.5)

which is purely capacitive and with a magnitude that coincides well with Fig. 5.6d.
Also, from Fig. 5.12d, one sees that a low frequencies, the input impedance has a
phase angle of -90 degrees, which corresponds to a capacitive reactance.

Voltage with open load end If one denotes the power phases 1, 2 and 3, the
voltage v1(z) on phase 1 is given by the telegrapher’s equation

−dv1(z)

dz
= zsi1(z) +

3∑

k=2

zmik(z) (5.6)

where zs and zm are the per unit length internal impedance of phase 1 and the mutual
impedance between two phases, respectively. The mutual impedances are equal due
to the power phases having equilateral spacing. Positive sequence excitation of the
power phases means the currents have a 120° phase shift between them, so that

i2(z) = a2i1(z)

i3(z) = ai1(z)

where a is the phasor rotation operator ej
2π
3 . By using the relation 1 + a + a2 = 0,

Eq. (5.6) can be written as

−dv1(z)

dz
= (zs − zm)i1(z) = (r + jωl)i1(z) (5.7)

where r and l are the per unit length resistance and inductance from Table 5.6,
respectively. By taking the derivative of the above equation and substituting in Eq.
(5.1) one separates the telegrapher’s equations and gets

d2v1(z)

dz2
= γ2v1(z) (5.8)

where γ =
√

(r − jωl)jωc. Equation (5.8) has the general solution

v1(z) = v+e−γz + v−eγz (5.9)

which is Eq. (2.23) in scalar form. The specific solution is found by imposing the
boundary conditions

v1(z = 0) = vs (5.10)

dv1(z = `)

dz
= 0 (5.11)

which holds since the load end is left open. The specific solution is then given as

v1(z) = vs

[(
1− 1

1 + e2`γ

)
e−γz +

1

1 + e2`γ
eγz
]

(5.12)
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Figure 5.7: rms voltage along power phase with open load end at 50 Hz for (a) 31
km and (b) 100 km versions of Umbilical A1.

The result from the UmbSim simulation of the 31 km version of Umbilical A1 is
plotted together with Eq. (5.12) in Fig. 5.7a. Since the voltage does not change
much across the cable (only about a 70 V drop over 31 km), another situation should
be analyzed. Equation (5.12) evaluated at z = ` gives

v(z = `) = 2vs
eγ`

1 + e2γ`
(5.13)

To find the dominating terms in the above equation a series expansion can be
done. By noting that γ` << 1 for low frequencies and retaining only first order
terms,

v(z = `) ≈ vs(
γ`

2
+ 1) (5.14)

or
v(z = `)

vs
≈ γ`

2
+ 1 (5.15)

which means that, for example, increasing the line length should yield an increase in
the difference between the source- and load end voltage. UmbSim and the analytical
result of Eq. (5.12) is compared in Fig. 5.7b for a power umbilical with the same
cross section as Umbilical A1, but with a length of 100 km. The percentage difference
of the UmbSim result with respect to the analytical result is plotted in Fig. 5.8a
and b. The difference is practically zero, as it should be, since UmbSim is an
implementation of the exact analytical solution.

The observed voltage rise at the receiving end of cables in open-circuited situa-
tions is a well-known phenomenon called the Ferranti effect (F. F. d. Silva and Bak
2013).
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(a) 31 km.
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Figure 5.8: Percentage difference between UmbSim and analytical calculations for
the voltage along power phase for (a) 31 km and (b) 100 km versions of Umbilical
A1. Open load end termination.

Input impedance Since it is adequate to describe the system by a per phase
representation, the solution of the MTL telegrapher’s equation reduces to

v(z) = ZC(i+e−γz + i−eγz) (5.16)

i(z) = i+e−γz − i−eγz (5.17)

where ZC is the characteristic impedance and γ the propagation constant, which are
equal to

ZC =

√
r + jωl

jωc
(5.18)

γ =
√

(r + jωl)jωc (5.19)

under the assumption that conductance through the insulation is zero.
The input impedance as a function of frequency is found in UmbSim as

v(z = 0)/i(z = 0). This corresponds to the situation when

Zin(ω) =
v(z = 0)

i(z = 0)
= ZC

i+ + i−

i+ − i− (5.20)

from evaluating Eqs. (5.16) and (5.17) at z = 0. The two undetermined coefficients
i+ and i− are found from the Dirichlet boundary conditions

v(z = `) = iLZL (5.21)

i(z = `) = iL (5.22)

where iL is the current flowing through the load impedance ZL. Substituting these
boundary conditions into the general solutions of Eqs. (5.16) and (5.17), the unde-
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Figure 5.9: Comparison between UmbSim and analytical methods of input
impedance magnitude spectrum for Umbilical A1 with nominal load.

termined coefficients i+ and i− are found as

i+ =
1

2
iLe

γ`(
ZL
ZC

+ 1) (5.23)

i− =
1

2
iLe
−γ`(

ZL
ZC
− 1) (5.24)

Substituting these into Eq. (5.20) yields

Zin(ω) = ZC
(eγ` + e−γ`)ZL

ZC
+ (eγ` − e−γ`)

(eγ` − e−γ`)ZL
ZC

+ (eγ` + e−γ`)
(5.25)

= ZC
cosh (γ`)ZL + sinh (γ`)ZC
sinh (γ`)ZL + cosh (γ`)ZC

(5.26)

= ZC
ZL + ZC tanh (γ`)

ZC + ZL tanh (γ`)
(5.27)

by recognizing the hyperbolic functions. By plotting Eq. (5.27) along with, e.g.
Fig. 5.5a, the plot of the input impedance magnitude in Fig. 5.9 is produced.
They are in good agreement, as again is to be expected due to UmbSim being an
implementation of the exact solution.
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Figure 5.10: Input impedance magnitude spectrum of Umbilical A1 with nominal
load. Comparison beetween UmbSim and Flux2D simulations.

Comparison with Flux2D

The comparison between UmbSim and analytical methods in the preceding sec-
tion serves the purpose of validating the implementation of the solver.py and
simulation.py modules. Since, however, both UmbSim and the analytical ap-
proach use the impedance- and admittance matrices computed in the system.py

module, it does not verify the implementation, nor the precision, of the power um-
bilical impedance- and admittance formulation.

For this reason, UmbSim will also be compared with simulations ran in Flux2D.
The input impedance obtained from UmbSim and Flux2D are plotted together in
Fig. 5.10, for Umbilical A1 with nominal load. As can be seen, UmbSim and Flux2D
corresponds well for frequencies < ∼2.5 kHz. After this, deviations can be seen to
increase with frequency. This is thought to be due to the underlying 10 nominal pi
model implemented in Flux2D, which does not capture longitudinal effects precisely.
This deviation is more prominent for longer cables and higher frequencies.

Additional comparisons with Flux2D will be done in upcoming example prob-
lems.
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Figure 5.11: Umbilical A2 surrounded by infinite seawater.

5.1.2 Example A2

In the next example, the power umbilical shown in Fig. 5.11 will be studied, referred
to as Umbilical A2. Notice that the fiber optic cable present in Umbilical A has been
replaced with another steel duplex tube. The reason for this is to retain symmetry
in the power umbilical, which means it is still sufficient to analyze it per phase.
Also, as before, the power umbilical is modelled as armourless.

The source- and load end terminations are the same as for Umbilical A, and are
given in Table 5.4.

UmbSim simulations

Umbilical A2 along with terminations are defined in a Python script, which can be
found in Appendix C.2. Figure 5.12 show simulated input impedance spectra, while
Fig. 5.13 show voltages- and currents along power phases at 50 Hz, respectively.

As earlier, resonance phenomena are observed in the impedance spectra, but
the parallel resonance peaks for Umbilical A2 are more heavily damped than for
Umbilical A1.
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(a) Magnitude, nominal load.
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(b) Angle, nominal load.
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(c) Magnitude, open load end.
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(d) Angle, open load end.

0 1000 2000 3000 4000 5000
Frequency [Hz]

0

200

400

600

800

950

Im
p
e
d
a
n
ce

 m
a
g
n
it

u
d
e
 [

Ω
]

(e) Magnitude, shorted load end.
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(f) Angle, shorted load end.

Figure 5.12: UmbSim simulations of input impedance spectra for Umbilical A2
power phases with different terminations.
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(a) Phase voltage, nominal load.
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(b) Phase current, nominal load.
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(c) Phase voltage, open load end.
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(d) Phase current, open load end.
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(e) Phase voltage, shorted load end.
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(f) Phase current, shorted load end.

Figure 5.13: UmbSim simulation of voltage- and current magnitudes along power
phases at 50 Hz for Umbilical A2.

Table 5.7: Per unit length parameters of Umbilical A2 power phases at 50 Hz.

Parameter Value
resistance 0.194 Ω/km
inductance 0.431 mH/km
capacitance 0.171 µF/km
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Run time

To see what parts of UmbSim is the most time consuming, the script for Example
A2 was profiled (without the code related to plotting) 1. This resulted in a total run
time of 4.418 s, with the most time consuming methods from the profiling given in
Table 5.8. Together, they comprise over 70 % of the total run time. This is due to

1. Their governing expressions, Eqs. (3.16) and (3.15) are complicated, involving
partial sums of infinite series of complicated expressions

2. Their call count is large; 3000 for zpm() and 1200 for zpinner()

For the first reason, the number of terms included in the partial sum could affect
computation time drastically. By inspection it seems that they converge the slowest
for elements that are close to the surroundings inner surface. The mutual impedance
also seems to converge the slowest when there is a 45° angle between two elements.
By plotting these to equations as a function of the number of terms n included in
the partials sums, Figs. 5.14a and b are produced. As default in UmbSim, n is
set to 25, which might be unnecessary high. The rate of convergence could change,
however, if the surrounding’s parameters change.

As for the call counts, they can grow rather large, since the zpm() is called for
each mutual coupling between conductors. The number of calls can be found by
considering a power umbilical withN conductors. For each conductor to have mutual
couplings with all other conductors requires it to have N − 1 mutual couplings.
Since there are N conductors the number of mutual couplings are N(N − 1), but
the impedance matrix is symmetric, and so the number of times the zpm() method
has to be called is

Call count zpm() =
N(N − 1)

2
(5.28)

For 6 conductors as was the case with Example A2, zpm() had to be called 15
times for each frequency. If, for example, one were to model the outer layer of the
power umbilical depicted in Fig. 2.5, it would be a total of 22 conductors (counting
electrical quads), which means that the number of times zpm() would have to be
called is 231 per frequency, or 46200 times for 200 frequencies.

In some texts, there have been some concern to, by the author’s impressions, com-
putation time due to the transformation matrix TI and the diagonal matrix Λ2

being frequency dependent, which means YZ have to be diagonalized for each fre-
quency (Paul 2008; F. F. d. Silva and Bak 2013). As can be seen from Table 5.8,
the diagonalization is done through NumPy’s linalg.eig() method, which returns
the eigenvalues and -vectors of a matrix. It is called exactly 200 times - the num-
ber of frequencies simulated, but it takes very little time compared to the methods
discussed above - only 48 ms out of a total simulation time of 4418 ms.

1The simulations are ran on a low-to-medium performance laptop by 2017 standard, with an
Intel Core i5-5200 CPU and 8 GB RAM
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Figure 5.14: Eqs. (3.16) and (3.15) plotted with increasing number of terms n in
the partial sums.
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Comparison with analytical calculations

To test UmbSim’s handling of steel duplex tubes, an analytical formula where the
duplex steel voltage is calculated for low frequencies is derived.

Duplex voltage at low frequencies Assume that the induced current in a steel
duplex tube is only due to the three power phases. That is, the contribution from
currents flowing in the other two steel duplex tubes is neglible. Then the voltage on
the steel duplex tube, with subscript 1, is given by the first telegrapher’s equation

−dv1(z)

dz
= (r11 + jωl11)i1(z) + jω

4∑

k=2

l1kik(z) (5.29)

where l1k is the mutual inductance between the steel duplex tube and ik(z) is the
current in the k-th power phase, respectively. Likewise, the change in current in the
steel duplex tube is governed by the second telegrapher’s equation

−di1(z)

dz
= jωc1v1(z) (5.30)

Taking the derivative of Eq. (5.29) yields

−d
2v1(z)

dz2
= r11

di1
dz

+ jω
4∑

k=1

l1k
dik(z)

dz
(5.31)

where it is assumed that the power umbilical is uniform along its length. For low
frequencies, the induced voltage in the duplex is low, so that the current can be
assumed constant with respect to z. Hence,

−d
2v1(z)

dz2
= jω

4∑

k=2

l1k
dik(z)

dz
(5.32)

The current derivative on these power phases is described by the second telegrapher’s
equation as

−dik(z)

dz
= jωcvk(z) (5.33)

for all three phases, since the power phases have equal capacitance. Inserting Eq.
(5.33) into (5.32) gives

−d
2v1(z)

dz2
= ω2c

4∑

k=2

l1kvk(z) (5.34)

Since two of the conductors have the same distance to the duplex and hence the
same inductance, and using the fact that the voltages are in positive sequence gives

−d
2v1

dz2
= ω2c(l12 + a2l13 + al13)v(z) (5.35)
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where v(z) is the magnitude of the phase voltage and a = ej
2π
3 . Since a2 + a = −1,

−d
2v1

dz2
= ω2c(l12 − l13)v(z) (5.36)

where v(z) needs to be determined. For low frequencies, in the dc limit, the teleg-
rapher’s equations for a power phase is written as

dv(z)

dz
= −ri (5.37)

so there is a linear drop in voltage along the power phase. Since the load is purely
resistive at dc, the current drawn must be equal to

is =
vs

r` +RL

(5.38)

and hence the change in voltage along the power phase is

dv(z)

dz
= − r

r` +RL

vs ≈ −61 V/km (5.39)

One could solve Eq. (5.37) and use the solution to solve for the steel duplex tube
voltage, but since the voltage drop is relatively small across the length of the power
phase, a mean value for the power phase voltage is taken

v(z) ≈ v̄ = v(z =
`

2
) = 19.8kV (5.40)

so the general solution of Eq. (5.36) is given as

v1(z) = −1

2
ω2c(l12 − l13)v̄z2 + C1z + C2 (5.41)

where C1 and C2 are constants yet to be determined. Since the duplex is grounded
at both ends, v1(0) = v1(`) = 0. By imposing the boundary conditions, the specific
solution then becomes

v1(z) = −1

2
ω2c(l12 − l13)v̄(z2 − z`) (5.42)

which is the equation for a parabola. Plots of the magnitude of the duplex voltage
achieved from both the analytical solution and UmbSim are given in Fig. 5.15. The
deviation is quite small, which indicates that the assumptions are valid, and that
the implementation of steel duplex tubes in UmbSim appears to be correct.

58



0 5 10 15 20 25 30
z [km]

0

1

2

3

4

5

6

V
o
lt

a
g
e
 m

a
g
n
it

u
d
e
 [

V
]

UmbSim

Analytical

Figure 5.15: rms voltage along one of the steel duplex tubes in Umbilical A2 at
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Figure 5.16: Input impedance magnitude spectrum of Umbilical A2 with nominal
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Comparison with Flux2D

Figure 5.16 shows the input impedance spectrum for Umbilical A2, from both Umb-
Sim and Flux2D simulations. As earlier, they coincide well for low frequencies, but
for higher frequencies there is a horizontal shift of the impedance curves. This is
again thought to be due to the inaccuracies of the 10 nominal pi model implemented
in Flux2D.

To check if the deviation between UmbSim and Flux2D is due to differences in the
calculated per unit length parameter values, a very short version (1 m) of Umbilical
A2 were modelled in both programs. A short cable means that the capacitance is
negligible, and the per unit length resistance and inductance can be found from the
real- and imaginary part of the input impedance, respectively. Plots for the per unit
length resistance and inductance are given in Fig. 5.17a and 5.17b, respectively. The
difference in r and l is expected, as Flux2D includes proximity effects, which would
effectively yield an increase in resistance and a decrease in inductance. However,
this does not explain the observed shift in the impedance spectra, as will become
clear in the following paragraphs.

Since resonance frequencies occur at values proportional to 1√
lc

, and c is equal

for both programs (0.17 µF/km), only the difference in inductance values would
yield a shift in frequency. However, since the per unit length inductance is higher
for UmbSim than for Flux2D, it should mean that the resonance frequencies of
UmbSim should be shifted to the left of the resonance frequencies of Flux2D in
Fig. 5.16. This is clearly not true, since UmbSim is actually shifted to the right of
Flux2D.

Therefore, since

1. The solver.py and simulation.py modules are validated against analytical
methods with practically negligible errors

and

2. The expected shift between impedance curves due to differences in per unit
length parameters between UmbSim and Flux2D contradicts the observed shift

it is concluded that the shift in frequency is due to the weakness in the ability of the
10 nominal pi model implemented in Flux2D to capture longitudinal effects beyond
the first series resonance.

To verify this, a corrected input impedance spectrum from Flux2D can be pro-
duced. By using the exact formula for the input impedance, namely Eq. (5.27),
along with the Flux2D per unit length resistance and inductance values, the plot
in Fig. 5.18 is produced. The errors are now solely due to proximity, and are also
smaller than before the correction. The left horizontal shift of the UmbSim curve
with respect to Flux2D, and a slight dampening of the Flux2D parallel impedance
resonance peaks, fits well with what one would expect from proximity effects.
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Figure 5.17: Comparison of UmbSim and Flux2D simulations of per phase per
unit length resistance and inductance for Umbilical A2.
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5.1.3 Example A3 - Harmonic analysis

The International Electrotechnical Commission (IEC) standard 61000-2-4 gives rec-
ommendations for the maximum acceptable amount of harmonic content in a point
of common coupling (PCC) in a power system. The standard is further divided into
classes, in which a subsea power system can be regarded as belonging to Class 2
(Norsk Elektroteknisk Komite 2002). In Table 5.9 the maximum recommended val-
ues of the harmonic voltages of order h are given as percentages of the fundamental.
Figure 5.19 gives a visualization of this spectrum.

In addition to maximum limits for each harmonic, the standard also gives rec-
ommendations for the maximum total harmonic distortion (THD) for the voltage.
Voltage THD is a measure of the amount of harmonic content in the system voltage
and is given as

THDV =

√√√√
50∑

h=2

(
vh
v1

)2 · 100% (5.43)

where vh is the magnitude of the harmonic voltage of order h (Mohan, Undeland,
and Robbins 2003). IEC 61000-2-4 recommends the voltage THD at a PCC to be
no more than 8 %, but if the system voltage had harmonic content according to
Table 5.9, the THD would be 11.55 %, which exceeds the maximum limit.

An important aim for this thesis is that one should be able to study the effect
harmonic content would have on a system. Built-in routines are not included as
of now, but scripts can be written manually to analyze such situations. Although
an unrealistic scenario, it would be interesting to study the response of Umbilical
A2 if a distorted voltage defined by the values in Table 5.9 were applied to the
source end. This can be done by the principle of superposition, by looping over
each harmonic component (with sending end voltage magnitude as defined in IEC
61000-2-4). Then, finding the systems response to each harmonic (rms currents and
voltages) and in the end computing the sums

vk(z) =

√√√√v2
1(z) +

50∑

h=2

v2
h(z) (5.44)

ik(z) =

√√√√i21(z) +
50∑

h=2

i2h(z) (5.45)

would yield the rms voltage and current in the k-th conductor in the power umbilical
in response to every applied harmonic.

It is important to know the sequence of the harmonic voltage sources. For all
voltage harmonics, the magnitude of each phase voltage source vsh is equal, but the
direction of rotation or the phase shift between them will vary. For example, for the
1st harmonic, the voltage source is in positive sequence as usual, i.e.

vs1 = (vs1, vs1a
2, vs1a)t
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Table 5.9: Harmonic voltage limits at point of common coupling as recommended
by IEC 61000-2-4 Class 2.

Odd non-triplen harmonics Triplen harmonics Even harmonics
Harmonic order h vh [%] Harmonic order h vh [%] Harmonic order h vh [%]

5 6 3 5 2 2
7 5 9 1.5 4 1
11 3.5 15 0.4 6 0.5
13 3 21 0.3 8 0.5
17 2 27 - 45 0.2 10 0.5

19 - 49 x1 - - 12 - 50 x2

x1 = 2.27 · (17/h) - 0.27
x2 = 0.25 · (10/h) + 0.25

2 6 10 14 18 22 26 30 34 38 42 46 50
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Figure 5.19: Limits of harmonic voltages as defined by IEC 61000-2-4 Class 2.

while for the 2nd harmonic, the voltages is in negative sequence

vs2 = (vs2, vs2a, vs2a
2)t

and for the 3rd harmonic, there is no phase shift between the three voltage sources,
so the voltage source is written as

vs3 = (vs3, vs3, vs3)t

and then the 4th harmonic is in positive sequence, the 5th in negative sequence, the
6th in zero sequence, and so on. Therefore, for every harmonic h the voltage source
vector with correct sequence can be represented by

vsh = vsh(1, a
2h, ah)t (5.46)

since a3 = 1.
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It is also important to describe the load correctly for the three sequences. For
this example problem, the loads seen by the positive- and negative sequence loads
are assumed equal, although this might not be the case for rotating machines. The
zero sequence, however, will see an open-circuited load end, as would be the case for
a step-down transformer with an isolated neutral. Therefore, the per phase loads
are given as

R+
L = R−L = 60 Ω

L+
L = L−L = 0.3 H

R0
L = 105 Ω

L0
L = 0

where superscripts +, − and 0 denote positive, negative and zero sequence impedance,
respectively.

UmbSim simulation

The harmonic analysis on Umbilical A2 is performed by running the script in Ap-
pendix C.3. Umbilical A2 is defined as in the preceding example, but code for
modelling the above scenario with inclusion of voltage harmonics is written as well.

The simulation produces the rms voltages and currents along the length of Um-
bilical A2 for both power phases and steel duplex tubes, which can be seen in the
plots of Figs. 5.20 to 5.23.

As is to be expected, the harmonic content effectively leads to a voltage rise on
the power phase. The difference between the distorted voltage and the fundamental
increases along the length of the cable, from around 150 volts at the sending end to
a difference of around 600 volts at the receiving end.
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Figure 5.20: rms voltage on a power phase along Umbilical A2 when a harmonic
voltage spectrum as defined by the limits in IEC 61000-2-4 Class 2 is applied at the
source end.
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Figure 5.21: rms current in a power phase along Umbilical A2 when a harmonic
voltage spectrum as defined by the limits in IEC 61000-2-4 Class 2 is applied at the
source end.
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Figure 5.22: rms voltage on a steel duplex tube along Umbilical A2 when a har-
monic voltage spectrum as defined by the limits in IEC 61000-2-4 Class 2 is applied
at the source end.
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Figure 5.23: rms current in a steel duplex tube along Umbilical A2 when a har-
monic voltage spectrum as defined by the limits in IEC 61000-2-4 Class 2 is applied
at the source end.
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Comparison with analytical calculations

Due to the number of terms involved in the harmonic analysis, there are not many
analytical exercises that are realistic to perform. Nevertheless, a simple check related
to the distortion of the voltage can be calculated.

From the IEC 61000-2-4 Class 2 spectrum, the THDV of the source is found to
be 11.55 %. The source voltage should have a magnitude equal to

vs =

√√√√v2
s1 +

50∑

h=2

v2
sh = vs1

√√√√1 +
50∑

h=2

v2
sh

v2
s1

= vs1

√
1 + THD2

V = 1.0066vs1

which coincides well with UmbSim, which gives an output of 20.923 kV at z = 0,
which is an increase of 0.666 % relative to the fundamental source voltage.
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Figure 5.24: Umbilical B.

5.2 Case study - Umbilical B

The second case study that will be modelled in UmbSim is the 42 km long power
umbilical in Fig. 5.24, for ease of reference denoted Umbilical B.

Its inner layer consists of a 24 kV three-phase power phase circuit with 95 mm2

conductors. It also has three fiber optic elements and a neutral wire placed at the
center of the power umbilical. As for Umbilical A, the fiber optic elements are
neglected, but data for the inner circuit power phases are found in Table 5.10.

The outer layer consists of a 12 kV three-phase power phase circuit with 50 mm2

conductors. It also has two duplex steel tubes placed next to the upper two power
phases. Adjacent to the last power phase is a HDPE bolt, which has no conducting
parts. Data for the outer circuit power phases and for the steel duplex tubes are
found in Table 5.11 and 5.12, respectively.

Both the power phases of the inner- and outer circuit have solid conductors and
are without metallic screens. Umbilical B also have HDPE filler elements (in green)
and stranded steel wires as armour. Some general data for Umbilical B and its
surroundings are given in Table 5.15.

As earlier, if µ and/or ε are not given for a specific parts of the power umbili-
cal, their value is either taken as their respective values in free space, or they are
irrelevant when modelling.

The measurements on Umbilical B are performed separately on the inner- and
outer circuit. When measuring on one circuit, its sending end is excited by a positive
sequence voltage source with some magnitude. The other circuit is then left open in
both ends. After the measurements are conducted, the terminations are reversed.
The terminations for both situations are given in Tables 5.13 and 5.14
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Figure 5.25: One of the
power phases in the inner
layer of Umbilical B.

Table 5.10: Data for the inner layer power phases in
Umbilical B.

Power phase Diameter [mm]
1 conductor, 95 mm2 solid Cu 10.9
2 semi-conducting screen, XLPE 12.9
3 insulation, XLPE 24.2
4 semi-conducting screen, XLPE 27.2
5 semi-conducting polyethylene 31.9

Electrical properties Value
εr of XLPE 2.4
dc resistance of conductor (20 °C) 0.193 Ω/km
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Figure 5.26: One of the
power phases in the outer
layer of Umbilical B.

Table 5.11: Data for the outer layer power phases in
Umbilical B.

Power phase Diameter [mm]
1 conductor, 50 mm2 solid Cu 7.7
2 semi-conducting screen, XLPE 9.7
3 insulation, XLPE 16.8
4 semi-conducting screen, XLPE 19.8
5 semi-conducting polyethylene 25.7

Electrical properties Value
εr of XLPE 2.4
dc resistance of conductor (20 °C) 0.387 Ω/km

1

2

Figure 5.27: One of the
steel duplex tubes in Um-
bilical B.

Table 5.12: Data for the steel duplex tubes in Umbilical B.

Duplex Diameter [mm]
1 steel duplex tube, ID=19.05 mm 21.65
2 HDPE sheath 25.7

Electrical properties Value
εr of HDPE 2.3
µr of duplex steel 32
Resistivity of duplex steel (20 °C) 8 · 10−7 Ωm
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Table 5.13: Terminations for the elements in Umbilical B when measuring on the
outer circuit.

Source end
Outer circuit power phase line-to-line voltage 12 kV
Frequency 0 - 5 kHz
Phase sequence positive
Inner circuit power phases open
Steel duplex tubes open
RS for outer circuit power phases 0
LS for outer circuit power phases 0

Load end (nominal)
Outer circuit power phases open
Inner circuit power phases open
Steel duplex tubes open

Table 5.14: Terminations for the elements in Umbilical B when measuring on the
inner circuit.

Source end
Inner circuit power phase line-to-line voltage 24 kV
Frequency 0 - 5 kHz
Phase sequence positive
Outer circuit power phases open
Steel duplex tubes open
RS for inner circuit power phases 0
LS for inner circuit power phases 0

Load end (nominal)
Outer circuit power phases open
Inner circuit power phases open
Steel duplex tubes open

Table 5.15: Various data for Umbilical B and surroundings.

Umbilical B
Length 42 km
Outer diameter 148 mm
µ inside umbilical µ0

Surroundings
µ air µ0

ρ air 1.3 ·1014 Ωm
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Figure 5.28: Umbilical B1.

5.2.1 Example B1

First, the outer circuit of Umbilical B will be modelled, referred to as Umbilical B1.
As explained in Chapter 3, the inner circuit will be neglected when modelling the
outer circuit. As earlier, armour will be neglected.

Notice that since Umbilical B1 has an unsymmetrical design with only two steel
duplex tubes, all three phases must be studied explicitly to give a full representation
of the power umbilical. The three phases will be referred to as phase 1, 2 and 3,
respectively, starting from the rightmost power phase and counting counterclockwise.

The terminations for Example B1 is given in Table 5.13.

UmbSim simulation

By running the script in Appendix C.4, input impedance spectra are generated for
each phase in the outer power circuit. Plots of both magnitude and angle are given
in Figs. 5.29a to f.

As can be seen from the plots, none of the input impedance spectra are equal,
which is expected.

The impedance magnitude spectrum that has the highest maxima is phase 3 -
which lies furthest away from duplex steel tubes. Hence, the impact of the steel
duplex tubes on phase 3 is small. Phase 1 is slightly more damped than phase 3,
and slightly less damped that phase 2. Again, this can be understood from noting
that the distance from phase 1 to the steel duplex tube adjacent to phase 2 is larger
than the distance between phase 2 and the steel duplex tube adjacent to phase 1.
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(a) Magnitude, phase 1.
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(b) Angle, phase 1.
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(c) Magnitude, phase 2.
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(d) Angle, phase 2.
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(f) Angle, phase 3.

Figure 5.29: UmbSim simulation of input impedance spectra for Umbilical A2
power phases.
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Comparison with measured values

By conducting a frequency sweep on the power umbilical the input impedance spec-
tra for all three phases can be obtained. The measurements, provided by Nexans,
are plotted together with the input impedance magnitudes from UmbSim. The plots
can be seen in Fig. 5.30.

In these plots, the limits of UmbSim become evident. The simulated spectra only
fit well with the measured values for frequencies < ∼ 800 Hz. At higher frequencies
they deviate in terms of both magnitude and horizontal alignment.

UmbSim has been validated to handle power phases and steel duplex tubes
relatively well in preceding example problems. Therefore, the observed deviation at
relatively low frequencies is likely due to the lack of armour in the UmbSim model,
as well as some contribution from UmbSim’s neglecting of proximity effects. The
presence armour in the form of steel wires with a high permeability would effectively
dampen the parallel resonance peaks.

Even though a pipe-type representation of the armour is physically wrong, it
is interesting to see if UmbSim is able reproduce the measured impedance plots
by varying the parameters and finding a best fit. By letting the surroundings be
modelled as an infinite steel pipe with a resistivity equal to that of the steel wires
of 2·10−7 Ωm and varying the relative permeability µr, the input impedance plots
for phase 3 in Fig. 5.31 is created. A best fit for phase 3 is found for µr ≈ 15.
More values for µr than those shown in Fig. 5.31 are simulated, but are for practical
purposes not shown.

For all six plots the parallel resonance peaks are damped in comparison with Fig.
5.30c. This is due to the lower resistivity of the armour, which allows for currents
to flow in it, and hence dampens the input impedance maxima.

The input impedance of all three power phases with the best-fit armour perme-
ability is plotted in Fig. 5.32. All three plots show an improvement in comparison
to Fig. 5.30. The UmbSim simulation is in good agreement with measurements on
phase 1 and 2 for frequencies up to around 1500 Hz. After this, descrepancies are
evident. It seems that the combination of power phases adjacent to steel duplex
tubes and armour leads to a high damping and a decrease in inductance, that Umb-
Sim does not predict. The latter phenomena, and possibly the first, is explained by
proximity effects, which UmbSim does not account for.
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Figure 5.30: Umbilical B1 input impedance magnitude spectra for the three power
phases. Comparison between UmbSim and measured values provided by Nexans.
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(a) µr = 1.
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(b) µr = 5.
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(c) µr = 10.
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(d) µr = 15.
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(e) µr = 20.
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(f) µr = 25.

Figure 5.31: UmbSim simulations of input impedance magnitude spectra for phase
3 in Umbilical B1 with varying values for armour relative permeability µr. Armour
resistivity used for all plots is 2 · 10−7 Ωm. Comparison with measured values
provided by Nexans.
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Figure 5.32: UmbSim simulation of Umbilical B1 input impedance magnitude
spectra for the three power phases with µr = 15 and ρ = 2 ·10−7 Ωm for the armour.
Comparison with measured values provided by Nexans.
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Figure 5.33: Umbilical B2.

5.2.2 Example B2

The last worked example will be modelling the inner circuit of Umbilical B. This
power umbilical, referred to as Umbilical B2, is depicted in Fig. 5.33. First, both
the armour and the outer circuit is neglected, and the power umbilical is placed in
air with properties as given in Table 5.15. Then modelling a best fit situation as in
Example B1 will be done.

Contrary to Umbilical B1, Umbilical B2 has a cyclic symmetric design, and so it
can be represented fully by studying only one of the three phases. The terminations
for these power phases are given in 5.14.

UmbSim simulation

By running the script in Appendix C.4, per phase input impedance spectra are
generated for the inner power circuit. Plots of magnitude and angle are given in
Figs. 5.29a and b.
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Figure 5.34: UmbSim simulation of input impedance spectrum for Umbilical B2.
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Comparison with measurements

Measurements conducted on the inner power circuit are provided by Nexans as well.
Both measured input impedance magnitude and angle are plotted together with the
simulation results from UmbSim. The plots can be seen in Fig. 5.35.

The UmbSim simulations are in a much better agreement with the measured
values for the inner circuit than for the outer, with the magnitude spectrum having
a relatively small discrepancy for frequencies up to ∼2300 Hz. The better agreement
of the simulation of the inner circuit compared to the outer is to be expected, as the
armour is further from the inner power circuit and thus will have a lesser influence
on the response of the power phases.

However, the neglecting of both armour and proximity effects are prominent in
the UmbSim results. By representing the surroundings of Umbilical B2 by an infinite
steel pipe with a resistivity of 2 ·10−7 Ωm and using the best fit relative permeability
found in the previous example of 15, the plots in Fig. 5.36 are acquired. Again, the
best fit permeability yields an improvement of the simulated spectrum.

It is also likely that the neglecting of the fiber optic elements has a substantial
effect on the spectra. The modelling of these would yield a decrease in inductance of
the power phases. This would appear in the input impedance spectra for Umbilical
B2 as more heavily damped parallel resonance peaks, and a right horizontal shift of
the line plots, which would probably lead to a better agreement between UmbSim
and measured values.
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Figure 5.35: Umbilical B2 input impedance spectrum. Comparison between Umb-
Sim and measured values provided by Nexans.
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Figure 5.36: Umbilical B2 input impedance spectrum with µr = 15 and ρ =
2 · 10−7 Ωm used for the infinite surrounding pipe. Comparison with measured
values provided by Nexans.
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6. Concluding remarks and future
work

The proposal for this thesis was put forward by Nexans, which wanted a computer
program able to predict voltages and currents arising on elements not excited by a
voltage source, and to allow a user to conduct harmonic analyses on power umbilical
systems.

In this thesis, an electromagnetic model and the computer implementation of it,
called UmbSim, has been proposed and validated. The underlying model can be
viewed as a combination of two main constituents

1. The analytical solution to the multiconductor telegrapher’s equations

2. A general formulation of impedance- and admittance matrices

These two constituents are well-known and utilized in cable modelling, both
separately and in combination, for example in Electromagnetic Transients Programs
(EMTPs) (Dommel 1986; Martinez-Velasco 2010). The formulation of the parameter
matrices is not necessarily that of Ametani (1980), which is the case for EMTP-ATP
(Prikler and Høidalen 2009).

The application of the combination of 1. and 2. specifically to power umbilical
systems seems novel, but as discussed in Chapter 3, a power umbilical is merely a
collection of variations of the general element in Fig. 3.1. The novelty is that it
is quite unusual for power cables (for signal cables it is more common) to have the
high number and variety of elements in a single enclosure, as power umbilicals do.

6.1 The electromagnetic model and simulations

For the majority of differential equations encountered in mathematical modelling,
there are no analytical solutions available. There is, however, an analytical solution
to the telegrapher’s equations. The choice to use the analytical solution, instead
of applying numerical methods for solving the differential equations, seems natural.
Instead of solving the differential equations by, i.e. finite-element methods, the
problem reduces to solving a set of algebraic equations instead. Generally, this will
lead to shorter computation time.

The general formulation for impedance and admittance matrices of Ametani
(1980) is presented in literature on cable modelling, for example in Martinez-Velasco
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(2010) and F. F. d. Silva and Bak (2013), and parts of the formulation is also
commonly used for validating other methods used in cable modelling (Gustavsen et
al. 2009). It does, however, have some weaknesses, as seen in the previous chapter.
The two prominent observed weaknesses are related to

• Proximity effects

• Modelling of armour comprised of steel wires

There could be some more subtle weaknesses due to the simplifications listed in the
beginning of Chapter 3, but these are of less concern, as the two major issues are in
focus. For these two prominent weaknesses, some observations were made from the
results presented in Chapter 5.

The first is that the formulation of impedance and admittance matrices of
Ametani (1980) is not proximity-aware. The deviation due to the lack of mod-
elling of proximity effects is observed in Fig. 5.18, where UmbSim were compared
to Flux2D. The discrepancies are prominent for higher frequencies. Based on this
observation, proximity effects should not be neglected.

The second prominent weakness observed in the example problems is a lack in
capability to model armour comprised of steel wires. The substantial influence of
the armour is observed in Example B1 and B2 in the previous chapter, and shows
that armour clearly can not be neglected. Since fiber optic elements are neglected,
this is also thought to contribute to the observed discrepancies.

By varying the values of the relative permeability of the surroundings and setting
the resistivity of the surroundings equal to that of steel, a best fit approximation in
terms of input impedance spectra was found for phase 3 in Umbilical B1, see Fig.
5.32. This best fit approximation was used to simulate the input impedance spectra
for the other phases of Umbilical B1, as well as for the power phases in Umbilical
B2. The best fit simulations were in better agreement with measurements than the
unarmoured simulation, but substantial discrepancies are still observed.

6.1.1 Further development of the model

There are some weaknesses in the electromagnetic model that should be addressed

• Proximity effects

• Modelling of armour wires

• Modelling fiber optic elements and and electrical quads

Proximity effects

There are several analytic approaches that could make the proposed model for power
umbilicals proximity aware (Kane 1994; Kane, Ahmad, and Auriol 1995; D. d. Silva,
Femaindez, and Rivas 2006). They could possibly be relatively simple to include in
UmbSim, but a more detailed study must be conducted before conclusions can be
drawn.
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Modelling of armour wires

Even though the best fit permeability applied to Examples B1 and B2 are found to
yield relatively good results for one specific case, it would be interesting to see if the
infinite pipe-thickness representation (or the finite pipe-thickness representation)
could be tweaked to model a stranded armour adequately well. This could for
example be done by estimating the effective permeability of the stranded armour
by applying magnetic circuit theory and finding the perturbed resistivity of the
stranded armour if it were to be represented as a pipe.

A physically more correct solution would be to use an analytic formulation of
the impedance of these armour wires, as proposed by Hatlo et al. (2015). In this
formulation, the twisting of the armour wires is taken into account. Numerically this
would perhaps be a more difficult task, due to the large number of armour wires.

Modelling fiber optic elements and and electrical quads

The model should also include formulations for armour of fiber optic elements and
electrical quad cables.

The armour of the fiber optic elements could be modelled similar to steel du-
plex tubes, but with no insulating plastic sheath, as they are in a semi-conductive
material which provides a good path for transverse currents.

The electrical quads on the other hand can be viewed as a collection of four
core conductors, which can be derived directly from a set of the general elements
presented in Chapter 3. For electrical quads there are electric fields between their
conductors, and hence the capacitance matrix will not be diagonal.

Other topics

A simple algorithm to model a known harmonic voltage spectrum has been applied
to Example A3, which can be tweaked to instead model a known harmonic current
spectrum, e.g. if one wants to model a non-linear load such as diode bridge rectifiers
or other power electronic converters.

6.2 The computer program package

The program package that has been developed, called UmbSim, has worked well
when modelling the example problems in the previous chapter; It is easy to use and
has an intuitive structure. However, it is still considered to be in developmental
stage, even though the most important parts are established.

Note that although not all of the functionality requested by Nexans (listed in the
beginning of Chapter 4) have been implemented, most of them are simple to include,
such as finding resonance frequencies, or finding maxima of voltages and currents.
What areas of UmbSim to focus on has been discussed with Nexans in parallel with
development, and therefore this functionality has not been implemented as of yet.

Even though tests are not written for the program package, most of the func-
tionality of UmbSim have been tested through the example problems.
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The model only includes formulations for power phases and steel duplex tubes,
but the source code has been written based on the most general formulation of the
impedance- and admittance matrices, to accommodate further development.

6.2.1 Further development of the program package

The main functionality and core purpose of UmbSim is established, but the program
package is still in early development. There are some clear weaknesses present, and
to accommodate these some areas of focus for further development are proposed.

First of all, based on the code profiling in Example A2, it is advised that some
optimization is applied to the zpm() and zpinner() methods in the system.py

module. Some proposed solutions are

• Cythonizing zpm() and zpinner().

• Methods that dynamically sets the number of terms in the partial sums in
zpm() and zpinner

• zpinner() is a function of the eccentric distance. If other elements have the
same eccentric distance, zpinner() does not need to be calculated for each
element.

• Implementing algorithms for checking if a power umbilical has a cyclic sym-
metric structure. Then, zpm() would not have to be calculated for each mutual
coupling.

Secondly, a user of UmbSim is required to have some knowledge of Python. It
is therefore proposed that a Graphic User Interface for UmbSim could be created,
e.g. in Tkinter or some other package available in Python.

Thirdly, the simulation.py module is very simple and provides only a limited
number of different plots and outputs. Therefore, more functionality should be
added to simulation.py. Before this is done, a user can choose to extract the data
from simulations as NumPy arrays, and write separate code for whichever analysis
one might need to conduct.

Some reported occurrences show the importance of conducting harmonic analysis
of power umbilical systems, and therefore built-in functionality for this could be
included, where different scenarios could be simulated.

Also, in this thesis, the focus of analysis has been on analysis in frequency domain
and steady-state. In the future, UmbSim could be expanded to allow for analysis
in time domain and for transient analysis.
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A. Surface impedance of a solid
conductor

In this appendix, the formula for the surface impedance of a solid, cylindrical con-
ductor will be derived. Consider Maxwell’s curl equations

∇× E = −∂B

∂t
(A.1)

∇×H = J + JD (A.2)

where E is the electric field intensity, B is the magnetic flux density, H is the
magnetic field intensity, J is the conduction current and JD is the displacement
current.

Let a solid, cylindrical conductor placed concentrically to the z-axis carry a
current I. For a good conductor, displacement currents are negligible, so the above
equations become

∇× E = −∂B

∂t
(A.3)

∇×B = µσE (A.4)

where the relations H = µB and J = σE are used, with µ and σ being the per-
meability and the conductivity of the conductor, respectively. Let the current be
time-harmonic, so that Maxwell’s equation take on the time-harmonic form

∇× Es = −jωBs (A.5)

∇×Bs = µσEs (A.6)

where subscript s denote that the components of the vector fields are phasor quan-
tities.

Further noting that there is only a longitudinal electric field inside the wire, and
only a transverse, azimuthal magnetic field, so that, in cylindrical coordinates

Es = Ez(ρ)az (A.7)

Bs = Bφ(ρ)aφ (A.8)
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where az and aφ are the unit vector in the z and azimuthal φ direction, respectively.
Then the only remaining components of Eqs. (A.5) and (A.6) are

dEz(ρ)

dρ
= jωBφ(ρ) (A.9)

1

ρ

d(ρBφ(ρ))

dρ
= µσEz(ρ) (A.10)

which are coupled. By substituting Eq. (A.9) into (A.10) to eliminate Bφ(ρ), one
gets the ordinary differential equation

1

ρ

d

dρ

[
ρ
d(Ez(ρ))

dρ

]
−m2Ez(ρ) = 0 (A.11)

where
m =

√
jωµσ (A.12)

is the reciprocal of the complex penetration depth of the conductor. Equation (A.11)
is known as the modified Bessel’s equation and has the general solution

Ez(ρ) = AI0(mρ) +BK0(mρ) (A.13)

where A and B are undetermined coefficients, I0 is the modified Bessel function of
the first kind and zeroth order and K0 is the modified Bessel function of the second
kind and zeroth order. The second of these goes to infinity when ρ → 0, so B = 0
is chosen and the electric field is given by

Ez(ρ) = AI0(mρ) (A.14)

The accompanying magnetic field inside the conductor is given by substituting the
solution above into Eq. (A.9) to get

Bφ(ρ) =
mA

jω
I1(mρ) (A.15)

where I1 is the modified Bessel function of the first kind and first order. Note that
to get this result, the relation I ′0(x) = I1(x) has been used along with the chain rule.

The surface impedance of the conductor with radius r1 is now defined to be
the surface value of the electric field divided by the total current flowing in the
conductor, that is

zc outer(ω) =
Ez(r1)

I
(A.16)

where I is found from the integral form of Ampere’s law as

µI = µIenc = r1Bφ(r1)

∮
dφ = 2πr1Bφ(r1) (A.17)

Hence, the surface impedance of a circular conductor is given by

zc outer =
jωµ

2πr1m

I0(mr1)

I1(mr1)
(A.18)

or

zc outer =
ρcm

2πr1

I0(mr1)

I1(mr1)
(A.19)

where ρc is the resistivity of the conductor and is equal to the reciprocal of σ.
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B. UmbSim

B.1 system.py

1 # -*- coding: utf -8 -*-

2
3 """

4 This module in UmbSim handles the system consisting of a source , a power

5 umbilical and a load. The main task of system.py is to calculate the impedance

6 and admittance matrix at a frequency f. A user interacts with this module

7 by

8
9 * Defining the geometric and electromagnetic properties of elements and

10 the surroundings through the set_parameters () methods

11 * Creating instances of source , power umbilical and load

12 * Retrieving Z and Y matrices if needed

13
14 et cetera.

15 """

16
17 a u t h o r = ’ Martin Hovde ’
18 e m a i l = ’ martin . hovde@nmbu . no or hovde . martin@gmail . com ’
19
20 import math
21 import cmath
22 import numpy as np
23 import s c ipy . cons tant s as sc
24 import s c ipy . s p e c i a l as s s
25
26
27 class PredeterminedParametersUmbi l ica l ( object ) :
28 """

29 If parameter matrices are predetermined , use this class instead of

30 PowerUmbilical to create an instance of the power umbilical.

31 """

32
33 def i n i t ( s e l f , l ength=None , L=None , C=None , R=None ) :
34 """

35 :param length: Length of power umbilical

36 :param L: Predetermined inductance matrix

37 :param C: Predetermined capacitance matrix

38 :param R: Predetermined resistance matrix

39 """

40 s e l f . l ength = length i f l ength else None
41 s e l f . L = L i f L else None
42 s e l f .C = C i f C else None
43 s e l f .R = R i f R else None
44
45 def impedance matrix ( s e l f , f ) :
46 """

47 Calculates impedance matrix at frequency f.

48 :param f: Frequency

49 :return: Per unit length impedance matrix

50 """

51 return s e l f .R + 1 j ∗ 2 ∗ sc . p i ∗ f ∗ s e l f . L
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52
53 def admittance matr ix ( s e l f , f ) :
54 """

55 Calculates admittance matrix at frequency f.

56 :param f: Frequency

57 :return: Per unit length admittance matrix

58 """

59 return 1 j ∗ 2 ∗ sc . p i ∗ f ∗ s e l f .C
60
61
62 class Umbi l i ca l ( object ) :
63 """

64 Class of power umbilical. Creates instances of all elements and stores them

65 in a matrix.

66 """

67
68 def i n i t ( s e l f , e lements , l ength ) :
69 """

70 :param elements: Nested list of elements in power umbilical given as

71
72 [’power phase ’, position] or

73 [’steel tube ’, position]

74
75 with position = (d, rho) [metres , degrees]

76 :param length: Length of power umbilical

77 """

78 s e l f . e lements = elements
79 s e l f . n = s e l f . m a t r i c e s s i z e
80 s e l f . l ength = length
81 s e l f . i n s tance mat r i x = s e l f . e l ement in s tance mat r i x
82 s e l f .C = s e l f . capac i tance matr ix
83
84 def impedance matrix ( s e l f , f ) :
85 """

86 Calculates impedance matrix at frequency f.

87 :param f: Frequency

88 :return: Per unit length impedance matrix

89 """

90 z mat = np . z e r o s ( shape=( s e l f . n , s e l f . n ) , dtype=np . complex )
91 p , k = 0 , 0
92 for i , row in enumerate( s e l f . i n s tance mat r i x ) :
93 for j in range ( i +1) :
94 z sub = s e l f . i n s t ance mat r i x [ i ] [ j ] . impedance ( f )
95 i f z sub . s i z e > 1 :
96 m, n = z sub . shape
97 else :
98 m, n = 1 , 1
99 z mat [ p : p+m, k : k+n ] = z sub

100 i f i != j :
101 z mat [ k : k+n , p : p+m] = z sub .T
102 k += n
103 k = 0
104 p += m
105 return np . array ( z mat )
106
107 def admittance matr ix ( s e l f , f ) :
108 """

109 Calculates admittance matrix at frequency f.

110 :param f: Frequency

111 :return: Per unit length admittance matrix

112 """

113 return 2 j ∗ sc . p i ∗ f ∗ s e l f .C
114
115 @property
116 def m a t r i c e s s i z e ( s e l f ) :
117 """

118 Calculates the dimensions of the impedance and admittance matrix.

119 :return: Dimension of impedance and admittance matrix.

120 """

121 n = 0
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122 for elem in s e l f . e lements :
123 i f elem [ 0 ] == ’ power phase ’ and PowerPhase . params [ ’ s c r e en ’ ] :
124 n += 2
125 else :
126 n += 1
127 return n
128
129 @property
130 def e l ement in s tance mat r i x ( s e l f ) :
131 """

132 Creates a matrix (nested list) with instances of each element in

133 the power umbilical.

134 :return: Element instance matrix

135 """

136 n = len ( s e l f . e lements )
137 inst mat = [ [ 0 for in range (n) ] for in range (n) ]
138
139 for i , elem in enumerate( s e l f . e lements ) :
140 i f elem [ 0 ] == ’ power phase ’ :
141 inst mat [ i ] [ i ] = PowerPhase ( elem [ 1 ] )
142 e l i f elem [ 0 ] == ’ s t e e l tube ’ :
143 inst mat [ i ] [ i ] = SteelTube ( elem [ 1 ] )
144 else :
145 raise ValueError ( ’ Element does not e x i s t in l i b r a r y ’ )
146
147 for i , elem in enumerate( s e l f . e lements ) :
148 for j in range ( i +1) :
149 i f i != j :
150 inst mat [ i ] [ j ] = inst mat [ j ] [ i ] = MutualCoupling (
151 inst mat [ i ] [ i ] , in s t mat [ j ] [ j ] )
152 return in s t mat
153
154 @property
155 def capac i tance matr ix ( s e l f ) :
156 """

157 Calculates the capacitance matrix for the power umbilical.

158 :return: Capacitance matrix

159 """

160 p matrix = np . z e r o s ( shape=( s e l f . n , s e l f . n ) )
161 k = 0
162 for i , in enumerate( s e l f . i n s tance mat r i x ) :
163 p sub = s e l f . i n s t ance mat r i x [ i ] [ i ] . p o t c o e f f
164 m = len ( p sub )
165 i f m > 1 :
166 p matr ix [ k : k + m, k : k + m] = p sub
167 else :
168 p matr ix [ k , k ] = p sub
169 k += m
170 return np . l i n a l g . inv ( p matr ix )
171
172
173 class Pipe ( object ) :
174 """

175 Class of surroundings ("pipe").

176 """

177
178 params = { ’ mu r p ’ : 1 ,
179 ’ rho p ipe ’ : 0 . 3 ,
180 ’ d p ipe ’ : 80e−03}
181
182 def i n i t ( s e l f , n=25) :
183 """

184 :param n: Upper limit of partial sum in Eqs. (3.15) and (3.16)

185 """

186 s e l f . r p i = s e l f . params [ ’ d p ipe ’ ] / 2
187 s e l f . n = n
188
189 def zp inner ( s e l f , f , d ) :
190 """

191 Given by Eq. (3.15).
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192 :param f: Frequency

193 :param d: Eccentric position of element

194 :return: Impedance of pipe inner surface

195 """

196 mu r p = s e l f . params [ ’ mu r p ’ ]
197 m p = s e l f . m pipe ( f )
198 w = 2 ∗ sc . p i ∗ f
199
200 # Modified Bessel function K

201 k 0 r p i = s s . kv (0 , m p ∗ s e l f . r p i )
202 k 1 r p i = s s . kv (1 , m p ∗ s e l f . r p i )
203
204 z p i 1 = (1 / (m p ∗ s e l f . r p i ) ) ∗ ( k 0 r p i / k 1 r p i )
205
206 z p i 2 = 2 ∗ sum ( [ ( ( d / s e l f . r p i ) ∗∗ (2 ∗ k ) ) ∗ (
207 1 . / ( k ∗ ( 1 . + mu r p ) + m p ∗ s e l f . r p i ∗
208 ( s s . kv (k−1, m p ∗ s e l f . r p i ) / s s . kv (k , m p ∗ s e l f . r p i ) ) ) )
209 for k in range (1 , s e l f . n+1) ] )
210 return ( (1 j ∗ w ∗ sc . mu 0 ∗ mu r p ) / (2 ∗ sc . p i ) ) ∗ ( z p i 1 + z p i 2 )
211
212 @classmethod
213 def s e t paramete r s ( c l s , parameters ) :
214 """

215 Allows users to set parameters for surroundings.

216 :param parameters: Dictionary with parameters

217 :return: None

218 """

219 i f any( k not in c l s . params for k in parameters . i t e r k e y s ( ) ) :
220 raise KeyError ( ’New parameters not a l lowed . ’ )
221 i f not a l l ( type ( v ) i s int or type ( v ) i s f loat for v in
222 parameters . i t e r v a l u e s ( ) ) :
223 raise ValueError ( ’ Parameter va lue s must be numbers . ’ )
224 c l s . params . update ( parameters )
225
226 def m pipe ( s e l f , f ) :
227 """

228 Given by Eq. (2.36).

229 :param f: Frequency

230 :return: Reciprocal of pipe’s complex penetration depth

231 """

232 return cmath . s q r t ( (2 j ∗ sc . p i ∗ f ∗ sc . mu 0) / s e l f . params [ ’ rho p ipe ’ ] )
233
234
235 class MutualCoupling ( Pipe ) :
236 """

237 Class of mutual couplings. Describes how two elements interact through

238 mutual impedances with respect to the surroundings inner surface.

239 """

240
241 def i n i t ( s e l f , e l em i , e l em j ) :
242 """

243 :param elem_i: Instance of element i

244 :param elem_j: Instance of element j

245 """

246 Pipe . i n i t ( s e l f )
247 s e l f . e l em i = e l em i
248 s e l f . e l em j = e l em j
249 s e l f . t h e t a i j = s e l f . e l em i . phi − s e l f . e l em j . phi
250
251 def impedance ( s e l f , f ) :
252 """

253 Calculates the mutual impedance sub -matrices with correct dimensions.

254 :param f: Frequency

255 :return: Mutual impedance sub -matrix as array

256 """

257 zpm = s e l f . zpm( f )
258 impedance = [ [ zpm for in range ( s e l f . e l em j . sub mat s i z e ) ]
259 for in range ( s e l f . e l em i . sub mat s i z e ) ]
260 return np . array ( impedance )
261
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262 def zpm( s e l f , f ) :
263 """

264 Given by Eq. (3.16).

265 :param f: Frequency

266 :return: Mutual impedance with respect to surroundings inner surface

267 """

268 w = 2 ∗ sc . p i ∗ f
269 d i = s e l f . e l em i . d
270 d j = s e l f . e l em j . d
271 m p = s e l f . m pipe ( f )
272
273 # Modified Bessel functions I and K

274 k 0 r p i = s s . kv (0 , m p ∗ s e l f . r p i )
275 k 1 r p i = s s . kv (1 , m p ∗ s e l f . r p i )
276
277 zpm1 = math . l og ( s e l f . r p i / math . s q r t (
278 d i ∗∗2 + d j ∗∗ 2 − 2 ∗ d i ∗ d j ∗ math . cos ( s e l f . t h e t a i j ) ) )
279
280 zpm2 = s e l f . params [ ’ mu r p ’ ] ∗ (1 / (m p ∗ s e l f . r p i ) ) ∗ \
281 ( k 0 r p i / k 1 r p i )
282
283 zpm3 = sum ( [ ( ( d i ∗ d j ) / ( s e l f . r p i ∗∗ 2) ) ∗∗ k ∗ math . cos (
284 k ∗ s e l f . t h e t a i j ) ∗ ( (2 ∗ s e l f . params [ ’ mu r p ’ ] ) / (
285 k ∗ ( 1 . + s e l f . params [ ’ mu r p ’ ] ) + m p ∗ s e l f . r p i ∗ (
286 s s . kv ( k − 1 , m p ∗ s e l f . r p i ) /
287 s s . kv (k , m p ∗ s e l f . r p i ) ) ) − f loat (1 ) / k )
288 for k in range (1 , s e l f . n+1) ] )
289
290 zpm = ((1 j ∗ w ∗ sc . mu 0) / (2 ∗ sc . p i ) ) ∗ (zpm1 + zpm2 + zpm3)
291 return zpm
292
293
294 class GeneralElement ( object ) :
295 """

296 Abstract class of a general element in a power umbilical.

297 """

298
299 def i n i t ( s e l f , p o s i t i o n ) :
300 """

301 :param position: Position as (d, rho) [metres , degrees]

302 """

303 s e l f . d = p o s i t i o n [ 0 ]
304 s e l f . phi = math . rad ians ( p o s i t i o n [ 1 ] )
305 s e l f . p ipe = Pipe ( )
306
307 def zcoute r ( s e l f , r1 , f ) :
308 """

309 Given by Eq. (3.9).

310 :param r1: Core radius

311 :param f: Frequency

312 :return: Impedance of core outer surface

313 """

314 rho = s e l f . c o n d u c t o r r e s i s t i v i t y
315 m c = s e l f .m( f , rho )
316 i 0 = s s . i v (0 , m c ∗ r1 )
317 i 1 = s s . i v (1 , m c ∗ r1 )
318 zcoute r = ( ( rho ∗ m c ) / (2 ∗ sc . p i ∗ r1 ) ) ∗ ( i 0 / i 1 )
319 return zcoute r
320
321 def z c s i n s u l ( s e l f , r1 , r2 , f ) :
322 """

323 Given by Eq. (3.10).

324 :param r1: Core radius

325 :param r2: Outer semi -con layer outer radius

326 :param f: Frequency

327 :return: Impedance of core -screen insulation

328 """

329 w = 2 ∗ sc . p i ∗ f
330 z c s i n s u l = ((1 j ∗ w ∗ sc . mu 0) / (2 ∗ sc . p i ) ) ∗ math . l og ( r2 / r1 )
331 return z c s i n s u l
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332
333 def z s i n n e r ( s e l f , r2 , r3 , f ) :
334 """

335 Given by Eq. (3.11).

336 :param r2: Screen inner radius

337 :param r3: Screen outer radius

338 :param f: Frequency

339 :return: Impedance of screen ’s inner surface

340 """

341 rho = s e l f . params [ ’ r ho s c r e en ’ ]
342 m s = s e l f .m( f , rho )
343
344 # Modified Bessel functions In and Kn

345 i 0 r 2 = s s . i v (0 , m s ∗ r2 )
346 i 1 r 2 = s s . i v (1 , m s ∗ r2 )
347 i 1 r 3 = s s . i v (1 , m s ∗ r3 )
348 k 0r2 = s s . kv (0 , m s ∗ r2 )
349 k 1r2 = s s . kv (1 , m s ∗ r2 )
350 k 1r3 = s s . kv (1 , m s ∗ r3 )
351 z s i n n e r = ( ( rho ∗ m s ) / (2 ∗ sc . p i ∗ r2 ) ) \
352 ∗ ( ( i 0 r 2 ∗ k 1r3 + i 1 r 3 ∗ k 0r2 ) /
353 ( i 1 r 3 ∗ k 1r2 − i 1 r 2 ∗ k 1r3 ) )
354 return z s i n n e r
355
356 def zsmutual ( s e l f , r2 , r3 , r e s i s t i v i t y , f ) :
357 """

358 Given by Eq. (3.12).

359 :param r2: Screen - or steel tube inner radius

360 :param r3: Screen - or steel tube outer radius

361 :param resistivity: Resistivity of screen - or steel tube

362 :param f: Frequency

363 :return: Mutual impedance between screen inner and outer surface.

364 """

365 rho = r e s i s t i v i t y
366 m s = s e l f .m( f , rho )
367
368 # Bessel functions

369 i 1 r 2 = s s . i v (1 , m s ∗ r2 )
370 i 1 r 3 = s s . i v (1 , m s ∗ r3 )
371 k 1r2 = s s . kv (1 , m s ∗ r2 )
372 k 1r3 = s s . kv (1 , m s ∗ r3 )
373 zsmutual = ( rho / (2 ∗ sc . p i ∗ r2 ∗ r3 ) ) ∗ (
374 1 / ( i 1 r 3 ∗ k 1r2 − i 1 r 2 ∗ k 1r3 ) )
375 return zsmutual
376
377 def z sou t e r ( s e l f , r2 , r3 , r e s i s t i v i t y , f ) :
378 """

379 Given by Eq. (3.13).

380 :param r2: Screen - or steel tube inner radius

381 :param r3: Screen - or steel tube outer radius

382 :param resistivity: Resistivity of either screen or steel tube

383 :param f: Frequency

384 :return: Impedance of screen/steel tube outer surface

385 """

386 m s = s e l f .m( f , r e s i s t i v i t y )
387
388 # Modified Bessel functions In and Kn

389 i 0 r 3 = s s . i v (0 , m s ∗ r3 )
390 i 1 r 2 = s s . i v (1 , m s ∗ r2 )
391 i 1 r 3 = s s . i v (1 , m s ∗ r3 )
392 k 0r3 = s s . kv (0 , m s ∗ r3 )
393 k 1r2 = s s . kv (1 , m s ∗ r2 )
394 k 1r3 = s s . kv (1 , m s ∗ r3 )
395
396 z s cou t e r = ( ( r e s i s t i v i t y ∗ m s ) / (2 ∗ sc . p i ∗ r3 ) ) \
397 ∗ ( ( i 0 r 3 ∗ k 1r2 + i 1 r 2 ∗ k 0r3 ) /
398 ( i 1 r 3 ∗ k 1r2 − i 1 r 2 ∗ k 1r3 ) )
399 return z s cou t e r
400
401 def z s p i n s u l ( s e l f , r3 , r4 , f ) :
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402 """

403 Given by Eq. (3.14).

404 :param r3: Screen - or steel tube outer radius

405 :param r4: Sheath outer radius

406 :param f: Frequency

407 :return: Impedance of insulation between screen/steel tube and ’

408 surrounding medium

409 """

410 w = 2 ∗ sc . p i ∗ f
411 r p i = s e l f . p ipe . r p i
412
413 z s p i n s u l = ((1 j ∗ w ∗ sc . mu 0) / (2 ∗ sc . p i ) ) ∗ \
414 (math . l og ( r4 / r3 ) + math . l og ( ( r p i / r4 ) ∗ 1 −
415 ( s e l f . d / r p i ) ∗∗ 2) )
416 return z s p i n s u l
417
418 def zp inner ( s e l f , f ) :
419 """

420 Given by Eq. (3.15).

421 :param f: Frequency

422 :return: Impedance of surrounding medium inner surface

423 """

424 zp inner = s e l f . p ipe . zp inner ( f , s e l f . d )
425 return zp inner
426
427 def z c p i n s u l ( s e l f , r1 , f ) :
428 """

429 Given as the sum of Eq. (3.10) and last term on RHS of Eq. (3.14).

430 :param r1: Core radius

431 :param f: Frequency

432 :return: Impedance between core and inner surface of surrounding medium

433 """

434 w = 2 ∗ sc . p i ∗ f
435 r p i = s e l f . p ipe . r p i
436 z c p i n s u l = ((1 j ∗ w ∗ sc . mu 0) / (2 ∗ sc . p i ) ) ∗ \
437 math . l og ( ( r p i / r1 ) ∗ (1 − ( s e l f . d / r p i ) ∗∗ 2) )
438 return z c p i n s u l
439
440 @classmethod
441 def s e t paramete r s ( c l s , parameters ) :
442 """

443 Allows users to set parameters for elements in a power umbilical.

444 :param parameters: Dictionary with parameters

445 :return: None

446 """

447 i f any( k not in c l s . params for k in parameters . i t e r k e y s ( ) ) :
448 raise KeyError ( ’New parameters not a l lowed . ’ )
449 c l s . params . update ( parameters )
450
451 @staticmethod
452 def m( f , rho ) :
453 """

454 Given by Eq. (2.36).

455 :param f: Frequency

456 :param rho: Resistivity of material

457 :return: Reciprocal of complex penetration depth

458 """

459 return cmath . s q r t ( (2 j ∗ sc . p i ∗ f ∗ sc . mu 0) / rho )
460
461
462 class PowerPhase ( GeneralElement ) :
463 """

464 Class of power phases.

465 """

466
467 params = { ’ e p s i l o n r i n s ’ : 2 . 4 ,
468 ’ mu r ins ’ : 1 ,
469 ’ s c r e en ’ : False ,
470 ’ c o r e d c r e s i s t a n c e ’ : 0 .001935 ,
471 ’ rho cu ’ : 1 .84 e−08,
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472 ’ rho s c r e en ’ : 8 .98 e−08,
473 ’ d core ’ : 1 .15 e−02,
474 ’ d inne r s emi con ’ : 1 .35 e−02,
475 ’ d c o r e i n s u l a t i o n ’ : 2 .99 e−02,
476 ’ d oute r s emi con ’ : 3 .33 e−02,
477 ’ d s c r e en ’ : 3 . 5 e−02,
478 ’ d s c r e e n i n s u l a t i o n ’ : 5e−05}
479
480 def i n i t ( s e l f , p o s i t i o n ) :
481 """

482 :param position: Position as (d, rho) [metres , degrees]

483 """

484 GeneralElement . i n i t ( s e l f , p o s i t i o n )
485 s e l f . sub mat s i z e = 2 i f s e l f . params [ ’ s c r e en ’ ] else 1
486 s e l f . r1 = s e l f . params [ ’ d core ’ ] / 2
487 s e l f . r1marked = s e l f . params [ ’ d inne r s emi con ’ ] / 2
488 s e l f . r2 = s e l f . params [ ’ d oute r s emi con ’ ] / 2
489 s e l f . r2marked = s e l f . params [ ’ d c o r e i n s u l a t i o n ’ ] / 2
490 s e l f . r3 = s e l f . params [ ’ d s c r e en ’ ] / 2
491 s e l f . p o t e n t i a l c o e f f i c i e n t = s e l f . p o t c o e f f
492
493 @property
494 def c o n d u c t o r r e s i s t i v i t y ( s e l f ) :
495 """

496 Calculates the resistivity of the conductor as if it were massive

497 with radius r1.

498 :return: Resistivity

499 """

500 return s e l f . params [ ’ c o r e d c r e s i s t a n c e ’ ] ∗ sc . p i ∗ s e l f . r1 ∗∗ 2
501
502 @property
503 def p o t c o e f f ( s e l f ) :
504 """

505 Given by Eq. (3.26).

506 :return: Potential coefficient sub -matrix for core or core -screen

507 """

508 pc = (1 / (2 ∗ sc . p i ∗ s e l f . params [ ’ e p s i l o n r i n s ’ ] ∗ sc . e p s i l o n 0 ) ) \
509 ∗ math . l og ( s e l f . r2marked / s e l f . r1marked )
510 return np . array ( [ pc ] )
511
512 def impedance ( s e l f , f ) :
513 """

514 Calculates the internal impedance sub -matrix for power phase.

515 :param f: Frequency

516 :return: Internal impedance sub -matrix as array

517 """

518 zcoute r = s e l f . z coute r ( s e l f . r1 , f )
519 i f s e l f . params [ ’ s c r e en ’ ] :
520 z c s i n s u l = s e l f . z c s i n s u l ( s e l f . r1 , s e l f . r2 , f )
521 z s i n n e r = s e l f . z s i n n e r ( s e l f . r2 , s e l f . r3 , f )
522 zsmutual = s e l f . zsmutual ( s e l f . r2 , s e l f . r3 ,
523 s e l f . params [ ’ r ho s c r e en ’ ] , f )
524 z sou t e r = s e l f . z s ou t e r ( s e l f . r2 , s e l f . r3 , s e l f . params [ ’ r ho s c r e en ’ ] ,
525 f )
526 z s p i n s u l = s e l f . z s p i n s u l ( s e l f . r3 , s e l f . r3 , f )
527 zp inner = s e l f . zp inner ( f )
528
529 z11 = zcoute r + z c s i n s u l + z s i n n e r + zsout e r + z s p i n s u l + zp inner \
530 − 2 ∗ zsmutual
531 z12 = zsout e r + z s p i n s u l + zpinner − zsmutual
532 z22 = zsout e r + z s p i n s u l + zpinner
533 return np . array ( [ [ z11 , z12 ] , [ z12 , z22 ] ] )
534 else :
535 z c p i n s u l = s e l f . z c p i n s u l ( s e l f . r1 , f )
536 zp inner = s e l f . zp inner ( f )
537
538 z11 = zcoute r + z c p i n s u l + zp inner
539 return np . array ( [ z11 ] )
540
541
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542 class SteelTube ( GeneralElement ) :
543 """

544 Class of steel duplex tubes.

545 """

546
547 params = { ’ s t e e l mu r ’ : 32 ,
548 ’ e p s i l o n r sheath ’ : 2 . 3 ,
549 ’ rho tube ’ : 8e−07,
550 ’ d inne r ’ : 12 .7 e−03,
551 ’ d outer ’ : 15 .62 e−03,
552 ’ d sheath ’ : 1 .902 e−02}
553
554 def i n i t ( s e l f , p o s i t i o n ) :
555 """

556 :param position: Position as (d, rho) [metres , degrees]

557 """

558 GeneralElement . i n i t ( s e l f , p o s i t i o n )
559 s e l f . sub mat s i z e = 1
560 s e l f . r2 = s e l f . params [ ’ d inne r ’ ] / 2
561 s e l f . r3 = s e l f . params [ ’ d outer ’ ] / 2
562 s e l f . r4 = s e l f . params [ ’ d sheath ’ ] / 2
563 s e l f . p o t e n t i a l c o e f f i c i e n t = s e l f . p o t c o e f f
564
565 @property
566 def p o t c o e f f ( s e l f ) :
567 """

568 Given by Eq. (3.27).

569 :return: Potential coefficient sub -matrix for steel duplex tubes.

570 """

571 p = (1 / (2 ∗ sc . p i ∗ sc . e p s i l o n 0 ∗ s e l f . params [ ’ e p s i l o n r sheath ’ ] ) ) \
572 ∗ math . l og ( s e l f . r4 / s e l f . r3 )
573 return np . array ( [ p ] )
574
575 def impedance ( s e l f , f ) :
576 """

577 Calculates the internal impedance sub -matrix for steel duplex tubes.

578 :param f: Frequency

579 :return: Internal impedance sub -matrix as array

580 """

581 z s t = s e l f . z s ou t e r ( s e l f . r2 , s e l f . r3 , s e l f . params [ ’ rho tube ’ ] , f ) + \
582 s e l f . z s p i n s u l ( s e l f . r3 , s e l f . r4 , f ) + s e l f . zp inner ( f )
583 return np . array ( [ z s t ] )
584
585
586 class FiberOpticElement ( GeneralElement ) :
587 pass
588
589
590 class Elect r i ca lQuad ( GeneralElement ) :
591 pass
592
593
594 class Source ( object ) :
595 """

596 Class for the source end of power umbilicals.

597 """

598
599 def i n i t ( s e l f , vs , Rs , Ls ) :
600 """

601 :param vs: Voltage sources in source end

602 :param Rs: Resistance in source end

603 :param Ls: Inductance in source end

604 """

605 s e l f . vs = vs
606 s e l f . Rs = Rs
607 s e l f . Ls = Ls
608
609 def Zs ( s e l f , f ) :
610 """

611 Calculates the source end impedance matrix.
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612 :param f: Frequency

613 :return: Source end impedance matrix

614 """

615 return s e l f . Rs + 2 j ∗ sc . p i ∗ f ∗ s e l f . Ls
616
617
618 class Load ( object ) :
619 """

620 Class for the load end of power umbilicals.

621 """

622
623 def i n i t ( s e l f , vl , Rl , Ll ) :
624 """

625 :param vl: Voltage sources in load end

626 :param Rl: Resistance in load end

627 :param Ll: Inductance in load end

628 """

629 s e l f . v l = v l
630 s e l f . Rl = Rl
631 s e l f . Ll = Ll
632
633 def Zl ( s e l f , f ) :
634 """

635 Calculates the load end impedance matrix.

636 :param f: Frequency

637 :return: Load end impedance matrix

638 """

639 return s e l f . Rl + 2 j ∗ sc . p i ∗ f ∗ s e l f . Ll
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B.2 solver.py

1 # -*- coding: utf -8 -*-

2
3 """

4 This module calculates the specific solution to the multiconductor telegrapher ’s

5 equations. It can calculate the solution at either

6
7 * A single frequency and for number of positions along the power umbilical

8 or

9 * A single position for a nuber of frequencies

10
11 depending on what the user wants to calculate. The user can interact with this

12 module by using the solution_single_f () or solution_single_z () method to extract

13 the solution as NumPy arrays.

14 """

15
16 a u t h o r = ’ Martin Hovde ’
17 e m a i l = ’ martin . hovde@nmbu . no or hovde . martin@gmail . com ’
18
19 import numpy as np
20
21
22 def s o l u t i o n s i n g l e f ( frequency , z array , umbi l i ca l , source , load , s o l t y p e ) :
23 """

24 Calculates the solution to the multiconductor telegrapher ’s equations along

25 a power umbilical for one frequency.

26
27 :param frequency: Frequency

28 :param z_array: 1D array with positions along power umbilical

29 :param umbilical: Instance of power umbilical

30 :param source: Instance of source

31 :param load: Instance of load

32 :param sol_type: string as ’v’, ’i’ or ’z’

33 :return: nD array with voltage , current or impedance for one frequency

34 and all positions in z_array

35 """

36 params tuple = so lut ion params ( frequency , umbi l i ca l , source , load )
37 s o l u t i o n l i s t = [ s o l u t i o n ( z , params tuple , s o l t y p e ) for z in z a r ray ]
38 return np . array ( s o l u t i o n l i s t )
39
40
41 def s o l u t i o n s i n g l e z ( f r equency array , z , umbi l i ca l , source , load , s o l t y p e ) :
42 """

43 Calculates solutions to the multiconductor telegrapher ’s equations for

44 a power umbilical at one position for frequencies in frequency_array.

45
46 :param frequency_array: 1D array with frequencies

47 :param z: A position along umbilical , float or integer

48 :param umbilical: Instance of power umbilical

49 :param source: Instance of source

50 :param load: Instance of load

51 :param sol_type: String as ’v’, ’i’ or ’z’

52 :return: nD array with voltage , current or impedance for one positions and

53 all frequencies in frequency_array

54 """

55 num freqs , num conductors = len ( f r equency ar ray ) , len ( load . v l )
56 s o l u t i o n a r r a y = np . z e r o s ( ( num freqs , num conductors ) , dtype=np . complex )
57 for i , f in enumerate( f r equency ar ray ) :
58 params tuple = so lut ion params ( f , umbi l i ca l , source , load )
59 s o l u t i o n a r r a y [ i ] = s o l u t i o n ( z , params tuple , s o l t y p e )
60 return s o l u t i o n a r r a y
61
62
63 def s o l u t i o n ( z , params tuple , s o l t y p e ) :
64 """

65 Calculates the solution for a frequency at position z.

66 :param z: A position along power umbilical

67 :param params_tuple: Tuple with ZC, Ti , lambda_vec , ipos and ineg
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68 :param sol_type: String as ’v’, ’i’ or ’z’

69 :return: Solution for voltage , current or impedance

70 for a frequency f at position z.

71 """

72 Zc , Ti , lambda vec , ipos , ineg = params tuple
73 i f s o l t y p e == ’ v ’ :
74 vo l tage = Zc . dot ( Ti ) . dot (np . d iag (np . exp(− lambda vec ∗ z ) ) . dot ( ipo s ) +
75 np . diag (np . exp ( lambda vec∗z ) ) . dot ( ineg ) )
76 return vo l tage
77 e l i f s o l t y p e == ’ i ’ :
78 cur rent = Ti . dot (np . diag (np . exp(− lambda vec ∗ z ) ) . dot ( ipo s ) −
79 np . diag (np . exp ( lambda vec ∗ z ) ) . dot ( ineg ) )
80 return cur rent
81 e l i f s o l t y p e == ’ z ’ :
82 vo l tage = ( Zc . dot ( Ti ) . dot (np . diag (np . exp(− lambda vec ∗ z ) ) . dot ( ipo s ) +
83 np . diag (np . exp ( lambda vec ∗ z ) ) . dot ( ineg ) ) )
84 cur rent = Ti . dot (np . diag (np . exp(− lambda vec ∗ z ) ) . dot ( ipo s ) −
85 np . diag (np . exp ( lambda vec ∗ z ) ) . dot ( ineg ) )
86 impedance = vo l tage / cur rent
87 return impedance
88 else :
89 raise ValueError ( ’ Need to s p e c i f y v or i , e i t h e r \ ’ i \ ’ , \ ’ v\ ’ or \ ’ z \ ’ ’ )
90
91
92 def so lut ion params ( f , umbi l i ca l , source , load ) :
93 """

94 Calculates characteristic impedance matrix , transformation matrix Ti,

95 square -root of diagonal matrix (square -root of eigenvalues) and finds the

96 undetermined coefficients i+ and i-.

97
98 :param f: Frequency

99 :param umbilical: Instance of power umbilical

100 :param source: Instance of source

101 :param load: Instace of load

102 :return: Tuple with Zc , Ti , lambda_vec , ipos , ineg

103 """

104 Z , Y, Zs , Zl = ca l c param matr i c e s ( f , umbi l i ca l , source , load )
105 vs , vl , l ength = source . vs , load . vl , u m b i l i c a l . l ength
106 lambdasquared , Ti = np . l i n a l g . e i g (Y. dot (Z) )
107 lambda vec = np . s q r t ( lambdasquared )
108 lambda mat = np . diag ( lambda vec )
109 Zc = np . l i n a l g . inv (Y) . dot ( Ti ) . dot ( lambda mat ) . dot (np . l i n a l g . inv ( Ti ) )
110
111 exp neg l = np . diag (np . exp(− lambda vec ∗ l ength ) )
112 e x p p o s l = np . diag (np . exp ( lambda vec ∗ l ength ) )
113
114 BCM = np . vstack ( ( np . hstack ( ( ( Zc + Zs ) . dot ( Ti ) , ( Zc − Zs ) . dot ( Ti ) ) ) ,
115 np . hstack ( ( ( Zc − Zl ) . dot ( Ti ) . dot ( exp neg l ) ,
116 ( Zc + Zl ) . dot ( Ti ) . dot ( e x p p o s l ) ) ) ) )
117 v = np . append ( vs , v l )
118 i = np . l i n a l g . s o l v e (BCM, v )
119 ipos , ineg = np . s p l i t ( i , 2)
120 return Zc , Ti , lambda vec , ipos , ineg
121
122
123 def ca l c param matr i c e s ( f , umbi l i ca l , source , load ) :
124 """

125 Calculates the per unit impedance - and admittance matrix for the power

126 umbilical , and the source - and load impedance matrices.

127
128 :param f: Frequency

129 :param umbilical: Instance of power umbilical

130 :param source: Instance of source

131 :param load: Instance of load

132 :return: Tuple with Z, Y, Zs, Zl

133 """

134 Z = u m b i l i c a l . impedance matrix ( f )
135 Y = u m b i l i c a l . admittance matr ix ( f )
136 Zs = source . Zs ( f )
137 Zl = load . Zl ( f )
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138 return Z , Y, Zs , Zl
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B.3 simulation.py

1 # -*- coding: utf -8 -*-

2
3 """

4 This module is the main module a user interacts with when simulating a specific

5 system. The user can either request the solution in the form of

6
7 * Line plots

8 * NumPy arrays

9
10 for voltage , current or impedance. Either for a single position z and an array

11 of frequencies , or vice versa.

12 """

13
14 a u t h o r = ’ Martin Hovde ’
15 e m a i l = ’ martin . hovde@nmbu . no or hovde . martin@gmail . com ’
16
17
18 import s o l v e r
19 import numpy as np
20 import matp lo t l i b . pyplot as p l t
21
22
23 class Simulat ion ( object ) :
24 """

25 Class for simulating a system consisting of a power umbilical , source and

26 load.

27 """

28
29 def i n i t ( s e l f , umbi l i ca l , source , load ) :
30 """

31 :param umbilical: Instance of power umbilical

32 :param source: Instance of source

33 :param load: Instance of load

34 """

35 s e l f . u m b i l i c a l = u m b i l i c a l
36 s e l f . source = source
37 s e l f . load = load
38
39 def p l o t s o l u t i o n ( s e l f , f , z , elem , s o l t y p e ) :
40 """

41 Method for graphing a line plot for voltage , current or impedance.

42 Either:

43 frequency f scalar and position z array

44 frequency f array and position z scalar

45 :param f: Frequency

46 :param z: Position

47 :param elem: Element to plot solution for. Integer from 0 to number of

48 conductors - 1

49 :param sol_type: ’v’, ’i’ or ’z’

50 :return: Line plot

51 """

52
53 i f np . i s s c a l a r ( f ) and np . i s s c a l a r ( z ) :
54 raise TypeError ( ’ f and z cannot both be s c a l a r s . ’ )
55
56 i f not np . i s s c a l a r ( f ) and not np . i s s c a l a r ( z ) :
57 raise TypeError ( ’ f and z cannot both be 1D arrays . ’ )
58
59 i f np . i s s c a l a r ( f ) and not np . i s s c a l a r ( z ) :
60 s o l u t i o n = s o l v e r . s o l u t i o n s i n g l e f ( f , z , s e l f . umbi l i ca l ,
61 s e l f . source ,
62 s e l f . load , s o l t y p e ) [ : , elem ]
63 p l t . p l o t ( z / 10 ∗∗ 3 , np . abso lu t e ( s o l u t i o n ) , c o l o r=’ k ’ , l i n ew id th =2)
64 p l t . x l a b e l ( ’ z [km] ’ )
65 e l i f not np . i s s c a l a r ( f ) and np . i s s c a l a r ( z ) :
66 s o l u t i o n = s o l v e r . s o l u t i o n s i n g l e z ( f , z , s e l f . umbi l i ca l ,
67 s e l f . source ,
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68 s e l f . load , s o l t y p e ) [ : , elem ]
69 p l t . p l o t ( f , np . abso lu t e ( s o l u t i o n ) , c o l o r=’ k ’ , l i n ew id th =3)
70 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
71
72 i f s o l t y p e == ’ v ’ :
73 p l t . y l a b e l ( ’ Voltage [V] ’ )
74 e l i f s o l t y p e == ’ i ’ :
75 p l t . y l a b e l ( ’ Current [A] ’ )
76 else :
77 p l t . y l a b e l ( r ’ Impedance [ $\Omega$ ] ’ )
78 p l t . show ( )
79
80 def s o l u t i o n ( s e l f , f , z , s o l t y p e ) :
81 """

82 Finds solution for voltage , current or impedance.

83 Either:

84 frequency f scalar and position z array

85 frequency f array and position z scalar

86 :param f: Frequency

87 :param z: Position

88 :param sol_type: ’v’, ’i’ or ’z’

89 :return: Voltage , current or impedance as NumPy array

90 """

91 i f np . i s s c a l a r ( f ) and not np . i s s c a l a r ( z ) :
92 s o l u t i o n = s o l v e r . s o l u t i o n s i n g l e f ( f , z , s e l f . umbi l i ca l ,
93 s e l f . source ,
94 s e l f . load , s o l t y p e )
95 e l i f not np . i s s c a l a r ( f ) and np . i s s c a l a r ( z ) :
96 s o l u t i o n = s o l v e r . s o l u t i o n s i n g l e z ( f , z , s e l f . umbi l i ca l ,
97 s e l f . source ,
98 s e l f . load , s o l t y p e )
99 else :

100 raise ValueError ( ’ z and f cannot both be s c a l a r or 1D−ar rays ! ’ )
101 return s o l u t i o n
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C. Scripts for example problems

C.1 Example A1

UmbSim simulations and comparison with analytical calculations

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A1

5 Script for:

6 * Simulating nominal load

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 import matp lo t l i b
15 import matp lo t l i b . pyplot as p l t
16 from UmbSim import system , s o l v e r
17 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 18})
18
19
20 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
21 ’ d inne r s emi con ’ : 13 .5 e−03,
22 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
23 ’ d oute r s emi con ’ : 37 .9 e−03,
24 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
25 ’ s c r e en ’ : Fa l se })
26
27 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
28 ’ rho p ipe ’ : 0 . 3 ,
29 ’ mu r p ’ : 1})
30
31 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
32 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
33 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ]
34
35 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
36 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
37 vs = np . array ( [ 1 , a ∗∗ 2 , a ] ) . t ranspose ( ) ∗ V
38 n = 3
39 Rs = Ls = np . z e r o s ( ( n , n) )
40 v l = np . z e r o s ( ( n , 1) )
41 Rl = np . diag (np . repeat (60 , n) )
42 Ll = np . diag (np . repeat ( 0 . 3 , n ) )
43
44 c a b l e l e n g t h = 31 e03
45
46 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
47 umb2 = system . Umbi l i ca l ( elements , 1)
48 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
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49 l o a d i n s t = system . Load ( vl , Rl , Ll )
50
51 z = 0
52 f s t e p = 20
53 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 1000)
54 f a r r a y = np . arange ( 0 . 0 0 1 , 5∗10∗∗3 + f s t e p , f s t e p )
55
56
57 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
58 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
59 ang le = np . ang le ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
60 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
61
62 pul impedance = s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb2 , s o u r c e i n s t ,
63 system . Load ( vl , Rs , Rs) , ’ z ’ ) [ : , 0 ]
64 R, X = pul impedance . r ea l , pul impedance . imag
65 L = X / (2 ∗ math . p i ∗ f a r r a y )
66
67 def z i n ( f , r , l ) :
68 w = 2 ∗ math . p i ∗ f
69 c = 1.7080454 e−10
70
71 gamma = cmath . s q r t ( ( r + 1 j ∗ w ∗ l ) ∗ 1 j ∗ w ∗ c )
72 Z c = cmath . s q r t ( ( r + 1 j ∗ w ∗ l ) / (1 j ∗ w ∗ c ) )
73 Rl = 60
74 Ll = 0 .3
75 Z L = Rl + 1 j ∗ w ∗ Ll
76 z i n = Z c ∗ ( ( Z L + Z c ∗ cmath . tanh (gamma ∗ c a b l e l e n g t h ) ) /
77 ( Z c + Z L ∗ cmath . tanh (gamma ∗ c a b l e l e n g t h ) ) )
78 return abs ( z i n )
79
80 vo l tage = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
81 ’ v ’ ) [ : , 0 ]
82 cur rent = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
83 ’ i ’ ) [ : , 0 ]
84
85 z = vo l tage [ 0 ] / cur rent [ 0 ]
86 r = z . r e a l
87 l = z . imag / (2 ∗ math . p i ∗ 50)
88 print ’ r : ’ , r , ’ l : ’ , l
89
90 z i n a r r a y = np . v e c t o r i z e ( z i n ) ( f a r r ay , R, L)
91 y1 = p l t . p l o t ( f a r r ay , z i n a r r a y , ’ ko ’ ,
92 l i n ew id th =3, l a b e l=’ Ana ly t i c a l ’ , markevery=8, ms=8)
93 y2 = p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
94 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
95 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
96 p l t . xl im ( [ 0 , 5 .05 e03 ] )
97 p l t . yl im ( [ 0 , 1000 ] )
98 p l t . l egend ( )
99 p l t . show ( )

100
101 y1 = p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
102 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
103 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
104 p l t . xl im ( [ 0 , 5 .05 e03 ] )
105 p l t . yl im ( [ 0 , 9 50 ] )
106 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
107 p l t . show ( )
108
109 y1 = p l t . p l o t ( f a r r ay , ang le ∗ 180 / math . pi , c o l o r=’ k ’ , l i n ew id th =3)
110 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
111 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
112 p l t . xl im ( [ 0 , 5 .05 e03 ] )
113 p l t . yl im ([−92 , 9 2 ] )
114 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
115 p l t . show ( )
116
117 y2 = p l t . p l o t ( z a r r ay / 10∗∗3 , np . abso lu t e ( vo l tage ) / 10∗∗3 , c o l o r=’ k ’ ,
118 l i n ew id th =3, l a b e l=’UmbSim ’ )
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119 p l t . x l a b e l ( ’ z [km] ’ )
120 p l t . y l a b e l ( ’ Voltage magnitude [kV ] ’ )
121 p l t . xl im ( [ 0 , 3 1 ] )
122 p l t . s a v e f i g ( ’ A r e s u l t p h a s e v o l t a g e 5 0 h z . pdf ’ )
123 p l t . show ( )
124
125 y2 = p l t . p l o t ( z a r r ay / 10∗∗3 , np . abso lu t e ( cur rent ) , c o l o r=’ k ’ , l i n ew id th =3,
126 l a b e l=’UmbSim ’ )
127 p l t . x l a b e l ( ’ z [km] ’ )
128 p l t . y l a b e l ( ’ Current magnitude [A] ’ )
129 p l t . xl im ( [ 0 , 3 1 ] )
130 p l t . s a v e f i g ( ’ A r e s u l t p h a s e c u r r e n t 5 0 h z . pdf ’ )
131 p l t . show ( )

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A1

5 Script for:

6 * Simulating open load end

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 import matp lo t l i b
15 import matp lo t l i b . pyplot as p l t
16 from UmbSim import system , s o l v e r
17 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 18})
18
19
20 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
21 ’ d inne r s emi con ’ : 13 .5 e−03,
22 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
23 ’ d oute r s emi con ’ : 37 .9 e−03,
24 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
25 ’ s c r e en ’ : Fa l se })
26
27 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
28 ’ rho p ipe ’ : 0 . 3 ,
29 ’ mu r p ’ : 1})
30
31 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
32 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
33 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ]
34
35 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
36 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
37
38
39 vs = np . array ( [ 1 , a ∗∗ 2 , a ] ) . t ranspose ( ) ∗ V
40 n = 3 # Number of conductors

41 Rs = Ls = Ll = np . z e r o s ( ( n , n) )
42 v l = np . z e r o s ( ( n , 1) )
43 Rl = np . diag (np . repeat (1 e07 , n) )
44
45 c a b l e l e n g t h = 31 e03
46
47 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
48 umb2 = system . Umbi l i ca l ( elements , 1)
49 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
50 l o a d i n s t = system . Load ( vl , Rl , Ll )
51
52 z = 0
53 f = 50
54 f s t e p = 20
55 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 1000)
56 f a r r a y = np . arange ( 0 . 0 0 1 , 5∗10∗∗3 + f s t e p , f s t e p )
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57
58
59 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
60 l o a d i n s t , ’ z ’ ) )
61 ang le = np . ang le ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
62 l o a d i n s t , ’ z ’ ) )
63
64 print sum( impedance [ : , 0 ] − impedance [ : , 1 ] ) / len ( impedance [ : , 0 ] ) , \
65 sum( impedance [ : , 2 ] − impedance [ : , 1 ] ) / len ( impedance [ : , 0 ] ) , \
66 sum( impedance [ : , 2 ] − impedance [ : , 0 ] ) / len ( impedance [ : , 0 ] )
67
68 vo l tage = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
69 l o a d i n s t , ’ v ’ ) [ : , 0 ] )
70 cur rent = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
71 l o a d i n s t , ’ i ’ ) [ : , 0 ] )
72
73 C = umb2 . capac i tance matr ix [ 0 ] [ 0 ]
74 z matr ix = umb2 . impedance matrix ( f )
75 R = ( z matr ix [ 0 ] [ 0 ] . r e a l − z matr ix [ 0 ] [ 1 ] . r e a l )
76 L = ( z matr ix [ 0 ] [ 0 ] . imag − z matr ix [ 0 ] [ 1 ] . imag ) / (2 ∗ math . p i ∗ f )
77 print ’C ’ , C, ’L ’ , L , ’R ’ , R
78
79
80 def v ( f , r , c , l , z ) :
81 w = 2 ∗ math . p i ∗ f
82 gammasqrd = ( r + 1 j ∗ w ∗ l ) ∗ 1 j ∗ w ∗ c
83 gamma = cmath . s q r t ( gammasqrd )
84 vs = 36 e03 / math . s q r t (3 )
85 l ength = c a b l e l e n g t h
86 alpha = 1 / (1 + cmath . exp (gamma ∗ l ength ∗ 2) )
87 return vs ∗ ((1− alpha ) ∗ cmath . exp(−gamma ∗ z ) + alpha ∗ cmath . exp (gamma ∗
88 z ) )
89
90 y1 = p l t . p l o t ( f a r r ay , impedance [ : , 0 ] , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
91 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
92 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
93 p l t . xl im ( [ 0 , 5 .05 e03 ] )
94 p l t . yl im ( [ 0 , 9 50 ] )
95 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
96 p l t . show ( )
97
98 y1 = p l t . p l o t ( f a r r ay , ang le [ : , 0 ] ∗ 180 / math . pi , c o l o r=’ k ’ , l i n ew id th =3,
99 l a b e l=’UmbSim ’ )

100 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
101 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
102 p l t . xl im ( [ 0 , 5 .05 e03 ] )
103 p l t . yl im ([−92 , 9 2 ] )
104 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
105 p l t . show ( )
106
107 # Percentage error

108 f i g , ax = p l t . subp lo t s ( )
109 v a n a l y t i c a l = abs (np . v e c t o r i z e ( v ) ( f , R, C, L , z a r r ay ) )
110 p l t . p l o t ( z a r r ay / 10∗∗3 , ( v a n a l y t i c a l − vo l tage ) ∗ 100 / v a n a l y t i c a l ∗ 10∗∗5 ,
111 c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’ Ana ly t i c a l ’ )
112 p l t . x l a b e l ( ’ z [km] ’ )
113 p l t . y l a b e l ( r ’ D i f f e r e n c e [ $10ˆ{−5}$ %] ’ )
114 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
115 p l t . show ( )
116
117 # UmbSim and analytical plotted together

118 f i g , ax = p l t . subp lo t s ( )
119 p l t . p l o t ( z a r r ay / 10∗∗3 , vo l t age / 10∗∗3 , c o l o r=’ k ’ , l i n ew id th =3,
120 l a b e l=’UmbSim ’ )
121 v a n a l y t i c a l = abs (np . v e c t o r i z e ( v ) ( f , R, C, L , z a r r ay ) )
122 p l t . p l o t ( z a r r ay / 10∗∗3 , v a n a l y t i c a l / 10∗∗3 , c o l o r=’ k ’ , l i n e s t y l e=’− ’ , ms=9,
123 marker=’ o ’ , l i n ew id th =3, markevery =500 , l a b e l=’ Ana ly t i c a l ’ )
124 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
125 p l t . x l a b e l ( ’ z [km] ’ )
126 p l t . y l a b e l ( ’ Voltage magnitude [kV ] ’ )
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127 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
128 p l t . l egend ( l o c =2)
129 p l t . show ( )
130
131 y2 = p l t . p l o t ( z a r r ay / 10∗∗3 , current , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
132 p l t . x l a b e l ( ’ z [km] ’ )
133 p l t . y l a b e l ( ’ Current magnitude [A] ’ )
134 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
135 p l t . s a v e f i g ( ’ A r e s u l t p h a s e c u r r e n t 5 0 h z . pdf ’ )
136 p l t . show ( )

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A1

5 Script for:

6 * Simulating shorted load end

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 import matp lo t l i b
15 import matp lo t l i b . pyplot as p l t
16 from UmbSim import system , s o l v e r
17 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 18})
18
19 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
20 ’ d inne r s emi con ’ : 13 .5 e−03,
21 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
22 ’ d oute r s emi con ’ : 37 .9 e−03,
23 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
24 ’ s c r e en ’ : Fa l se })
25
26 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
27 ’ rho p ipe ’ : 0 . 3 ,
28 ’ mu r p ’ : 1})
29
30 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
31 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
32 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ]
33
34 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
35 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
36 n = 3
37 vs = np . array ( [ 1 , a ∗∗ 2 , a ] ) . t ranspose ( ) ∗ V
38 Rs = np . z e r o s ( ( n , n) )
39 Ls = np . z e r o s ( ( n , n) )
40 v l = np . z e r o s ( ( n , 1) )
41 Rl = np . diag (np . z e r o s (n) )
42 Ll = np . diag (np . z e r o s (n) )
43
44 c a b l e l e n g t h = 31 e03
45
46 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
47 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
48 l o a d i n s t = system . Load ( vl , Rl , Ll )
49
50 z = 0
51 f s t e p = 20
52 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 1000)
53 f a r r a y = np . arange ( 0 . 0 0 1 , 5∗10∗∗3 + f s t e p , f s t e p )
54
55
56 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
57 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
58 ang le = np . ang le ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
59 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
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60
61 vo l tage = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
62 ’ v ’ ) [ : , 0 ]
63 cur rent = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
64 ’ i ’ ) [ : , 0 ]
65
66 p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3)
67 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
68 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
69 p l t . xl im ( [ 0 , 5 .05 e03 ] )
70 p l t . yl im ( [ 0 , 9 50 ] )
71 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
72 p l t . show ( )
73
74 p l t . p l o t ( f a r r ay , ang le ∗ 180 / math . pi , c o l o r=’ k ’ , l i n ew id th =3)
75 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
76 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
77 p l t . xl im ( [ 0 , 5 .05 e03 ] )
78 p l t . yl im ([−92 , 9 2 ] )
79 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
80 p l t . show ( )
81
82 p l t . p l o t ( z a r r ay / 10∗∗3 , np . abso lu t e ( vo l tage ) / 10∗∗3 , c o l o r=’ k ’ , l i n ew id th =3)
83 p l t . x l a b e l ( ’ z [km] ’ )
84 p l t . y l a b e l ( ’ Voltage magnitude [kV ] ’ )
85 p l t . xl im ( [ 0 , 3 1 ] )
86 p l t . s a v e f i g ( ’ A r e s u l t p h a s e v o l t a g e 5 0 h z . pdf ’ )
87 p l t . show ( )
88
89 y2 = p l t . p l o t ( z a r r ay / 10∗∗3 , np . abso lu t e ( cur rent ) , c o l o r=’ k ’ , l i n ew id th =3)
90 p l t . x l a b e l ( ’ z [km] ’ )
91 p l t . y l a b e l ( ’ Current magnitude [A] ’ )
92 p l t . xl im ( [ 0 , 3 1 ] )
93 p l t . s a v e f i g ( ’ A r e s u l t p h a s e c u r r e n t 5 0 h z . pdf ’ )
94 p l t . show ( )

Comparison with Flux2D

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A1

5 Script for:

6 * Comparison with Flux2D

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 import matp lo t l i b
15 import matp lo t l i b . pyplot as p l t
16 from UmbSim import system , s o l v e r
17
18
19 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
20 ’ d inne r s emi con ’ : 13 .5 e−03,
21 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
22 ’ d oute r s emi con ’ : 37 .9 e−03,
23 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
24 ’ s c r e en ’ : Fa l se })
25
26 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
27 ’ rho p ipe ’ : 0 . 3 ,
28 ’ mu r p ’ : 1})
29
30 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
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31 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
32 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ]
33
34 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
35 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
36 n = 3
37 vs = np . array ( [ 1 , a ∗∗ 2 , a ] ) . t ranspose ( ) ∗ V
38 Rs = np . z e r o s ( ( n , n) )
39 Ls = np . z e r o s ( ( n , n) )
40 v l = np . z e r o s ( ( n , 1) )
41 Rl = np . diag (np . repeat (60 , n) )
42 Ll = np . diag (np . repeat ( 0 . 3 , n ) )
43
44 c a b l e l e n g t h = 31 e03
45
46 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
47 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
48 l o a d i n s t = system . Load ( vl , Rl , Ll )
49
50 z = 0
51 f s t e p = 20
52 f a r r a y = np . arange (1 , 5∗10∗∗3 + f s t e p , f s t e p )
53
54 in data = np . l oadtx t ( ’ impedance data mar ius on ly power phases . txt ’ , sk iprows =0)
55 f array m , impedance m = in data [ : , 0 ] , i n da ta [ : , 1 ]
56
57 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
58 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
59
60 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
61 y1 = p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
62 y2 = p l t . p l o t ( f array m , impedance m , c o l o r=’ k ’ , marker=’ o ’ , ms=9, l i n ew id th =0,
63 l a b e l=’ Flux2D ’ )
64 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
65 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
66 p l t . xl im ( [ 4 5 , 5 . 1 e03 ] )
67 p l t . yl im ( [ 0 , 1000 ] )
68 p l t . l egend ( )
69 p l t . show ( )
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C.2 Example A2

UmbSim simulations

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A2

5 Script for:

6 * Plotting input impedance spectra

7 * Plotting voltage and current at 50 Hz for different terminations

8 """

9
10 a u t h o r = ’ Martin Hovde ’
11 e m a i l = ’ martin . hovde@nmbu . no ’
12
13 import cmath , math
14 import numpy as np
15 import matp lo t l i b
16 import matp lo t l i b . pyplot as p l t
17 from UmbSim import system , s o l v e r
18 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 18})
19
20
21 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
22 ’ d inne r s emi con ’ : 13 .5 e−03,
23 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
24 ’ d oute r s emi con ’ : 37 .9 e−03,
25 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
26 ’ s c r e en ’ : Fa l se })
27
28 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 1 .27 e−02,
29 ’ d outer ’ : 1 .562 e−02,
30 ’ d sheath ’ : 1 .902 e−02,
31 ’ rho tube ’ : 8e−07,
32 ’ s t e e l mu r ’ : 32})
33
34 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
35 ’ rho p ipe ’ : 0 . 3 ,
36 ’ mu r p ’ : 1})
37
38 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
39 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
40 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ,
41 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 60) ] ,
42 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 180) ] ,
43 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 300) ] ]
44
45 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
46 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
47 n = 6 # No. of conductors

48 vs = np . array ( [ 1 , a ∗∗ 2 , a , 0 , 0 , 0 ] ) . t ranspose ( ) ∗ V
49 Rs = np . z e r o s ( ( n , n) )
50 Ls = np . z e r o s ( ( n , n) )
51 v l = np . z e r o s ( ( n , 1) )
52 Rl = np . diag ( [ 6 0 . , 6 0 . , 6 0 . , 0 , 0 , 0 ] )
53 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
54
55 c a b l e l e n g t h = 31 e03
56
57 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
58 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
59 l o a d i n s t = system . Load ( vl , Rl , Ll )
60
61 z = 0
62 f = 50
63 f s t e p = 25
64 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 400)
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65 f a r r a y = np . arange (1 , 5∗10∗∗3 + f s t e p , f s t e p )
66
67 # Nominal load

68 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
69 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
70 p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3)
71 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
72 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
73 p l t . yl im ( [ 0 , 9 50 ] )
74 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
75 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
76 p l t . show ( )
77
78 vo l tage = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
79 l o a d i n s t , ’ v ’ ) [ : , 0 ] )
80 f i g , ax = p l t . subp lo t s ( )
81 p l t . p l o t ( z a r r ay / 10∗∗3 , vo l t age / 10∗∗3 , c o l o r=’ k ’ , l i n ew id th =3)
82 p l t . x l a b e l ( ’ z [km] ’ )
83 p l t . y l a b e l ( r ’ Voltage magnitude [kV ] ’ )
84 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
85 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
86 p l t . show ( )
87
88 cur rent = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
89 l o a d i n s t , ’ i ’ ) [ : , 0 ] )
90 f i g , ax = p l t . subp lo t s ( )
91 p l t . p l o t ( z a r r ay / 10∗∗3 , current , c o l o r=’ k ’ , l i n ew id th =3)
92 p l t . x l a b e l ( ’ z [km] ’ )
93 p l t . y l a b e l ( r ’ Current magnitude [A] ’ )
94 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
95 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
96 p l t . show ( )
97
98 # Open load end

99 Rl = np . diag (np . array ( [ 1 e7 , 1e7 , 1e7 , 0 , 0 , 0 ] ) )
100 Ll = np . z e r o s ( ( n , n) )
101 l o a d i n s t = system . Load ( vl , Rl , Ll )
102
103 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
104 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
105 p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3)
106 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
107 p l t . yl im ( [ 0 , 9 50 ] )
108 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
109 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
110 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
111 p l t . show ( )
112
113 vo l tage = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
114 l o a d i n s t , ’ v ’ ) [ : , 0 ] )
115 f i g , ax = p l t . subp lo t s ( )
116 p l t . p l o t ( z a r r ay / 10∗∗3 , vo l t age / 10∗∗3 , c o l o r=’ k ’ , l i n ew id th =3)
117 p l t . x l a b e l ( ’ z [km] ’ )
118 p l t . y l a b e l ( r ’ Voltage magnitude [kV ] ’ )
119 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
120 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
121 p l t . show ( )
122
123 cur rent = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
124 l o a d i n s t , ’ i ’ ) [ : , 0 ] )
125 f i g , ax = p l t . subp lo t s ( )
126 p l t . p l o t ( z a r r ay / 10∗∗3 , current , c o l o r=’ k ’ , l i n ew id th =3)
127 p l t . x l a b e l ( ’ z [km] ’ )
128 p l t . y l a b e l ( r ’ Current magnitude [A] ’ )
129 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
130 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
131 p l t . show ( )
132
133 # Shorted load end

134 Rl = np . z e r o s ( ( n , n) )
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135 Ll = np . z e r o s ( ( n , n) )
136 l o a d i n s t = system . Load ( vl , Rl , Ll )
137
138 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
139 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
140 p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =3)
141 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
142 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
143 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
144 p l t . show ( )
145
146 vo l tage = np . a sbo lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
147 l o a d i n s t , ’ v ’ ) [ : , 0 ] )
148 f i g , ax = p l t . subp lo t s ( )
149 p l t . p l o t ( z a r r ay / 10∗∗3 , vo l t age / 10∗∗3 , c o l o r=’ k ’ , l i n ew id th =3)
150 p l t . x l a b e l ( ’ z [km] ’ )
151 p l t . y l a b e l ( r ’ Voltage magnitude [kV ] ’ )
152 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
153 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
154 p l t . show ( )
155
156 cur rent = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
157 l o a d i n s t , ’ i ’ ) [ : , 0 ] )
158 f i g , ax = p l t . subp lo t s ( )
159 p l t . p l o t ( z a r r ay / 10∗∗3 , current , c o l o r=’ k ’ , l i n ew id th =3)
160 p l t . x l a b e l ( ’ z [km] ’ )
161 p l t . y l a b e l ( r ’ Current magnitude [A] ’ )
162 ax . g e t y a x i s ( ) . g e t ma jo r f o rmat t e r ( ) . s e t u s e O f f s e t ( Fa l se )
163 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
164 p l t . show ( )

Comparison with analytical calculations

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A2

5 Script for:

6 * Comparing duplex voltage at 50 Hz for analytical and UmbSim

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 from UmbSim import system , s o l v e r
15 import matp lo t l i b
16 import matp lo t l i b . pyplot as p l t
17 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
18
19 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
20 ’ d inne r s emi con ’ : 13 .5 e−03,
21 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
22 ’ d oute r s emi con ’ : 37 .9 e−03,
23 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
24 ’ s c r e en ’ : Fa l se })
25
26 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 1 .27 e−02,
27 ’ d outer ’ : 1 .562 e−02,
28 ’ d sheath ’ : 1 .902 e−02,
29 ’ rho tube ’ : 8e−07})
30
31 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
32 ’ rho p ipe ’ : 0 . 3 ,
33 ’ mu r p ’ : 1})
34
35 e lements = [ [ ’ power phase ’ , ( 21 . 88 e−03, 0) ] ,
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36 [ ’ power phase ’ , ( 21 . 88 e−03, 120) ] ,
37 [ ’ power phase ’ , ( 21 . 88 e−03, 240) ] ,
38 [ ’ s t e e l tube ’ , ( 31 . 32 e−03, 60) ] ,
39 [ ’ s t e e l tube ’ , ( 31 . 32 e−03, 180) ] ,
40 [ ’ s t e e l tube ’ , ( 31 . 32 e−03, 300) ] ]
41
42 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
43 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
44 n = 6 # Number of conductors

45 vs = np . array ( [ 1 , a ∗∗ 2 , a , 0 , 0 , 0 ] ) . t ranspose ( ) ∗ V
46 Rs = np . z e r o s ( ( n , n) )
47 Ls = np . z e r o s ( ( n , n) )
48 v l = np . z e r o s ( ( n , 1) )
49 Rl = np . diag ( [ 6 0 . , 6 0 . , 6 0 . , 0 , 0 , 0 ] )
50 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
51
52 c a b l e l e n g t h = 31 e03
53
54 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
55 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
56 l o a d i n s t = system . Load ( vl , Rl , Ll )
57
58 f = 50
59 z s t e p = 20
60 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 200)
61
62 vo l tage = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
63 l o a d i n s t , ’ v ’ ) [ : , 4 ] )
64
65 z mat = umb. impedance matrix (50)
66 c = umb. capac i tance matr ix [ 0 ] [ 0 ]
67 l = ( z mat [ 4 ] [ 0 ] − z mat [ 4 ] [ 1 ] ) . imag / (2 ∗ math . p i ∗ f )
68
69 w = 2 ∗ math . p i ∗ f
70
71
72 def v a n a l y t i c a l ( z ) :
73 v = abs ( 0 . 5 ∗ w ∗∗ 2 ∗ c ∗ l ∗ 19 .8 ∗ 10∗∗3 ∗ ( z ∗∗2 − z ∗ c a b l e l e n g t h ) )
74 return v
75
76
77 v o l t a g e a n a l y t i c a l = np . v e c t o r i z e ( v a n a l y t i c a l ) ( z a r r ay )
78 y1 = p l t . p l o t ( z a r r ay / 10∗∗3 , vo l tage , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
79 y2 = p l t . p l o t ( z a r r ay / 10∗∗3 , v o l t a g e a n a l y t i c a l , ’ ko ’ , ms=9, l i n ew id th =0,
80 markevery=10, l a b e l=’ Ana ly t i c a l ’ )
81 p l t . x l a b e l ( ’ z [km] ’ )
82 p l t . y l a b e l ( ’ Voltage magnitude [V] ’ )
83 p l t . xl im ( [ 0 , 3 1 ] )
84 p l t . l egend ( )
85 p l t . show ( )

Comparison with Flux2D

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A2

5 Script for:

6 * Input impedance spectrum comparison with Flux2D

7 """

8
9 a u t h o r = ’ Martin Hovde ’

10 e m a i l = ’ martin . hovde@nmbu . no ’
11
12 import cmath , math
13 import numpy as np
14 import matp lo t l i b
15 import matp lo t l i b . pyplot as p l t
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16 from UmbSim import system , s o l v e r
17 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
18
19 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
20 ’ d inne r s emi con ’ : 13 .5 e−03,
21 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
22 ’ d oute r s emi con ’ : 37 .9 e−03,
23 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
24 ’ s c r e en ’ : Fa l se })
25
26 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 1 .27 e−02,
27 ’ d outer ’ : 1 .562 e−02,
28 ’ d sheath ’ : 1 .902 e−02,
29 ’ rho tube ’ : 8e−07})
30
31 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
32 ’ rho p ipe ’ : 0 . 3 ,
33 ’ mu r p ’ : 1})
34
35 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
36 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
37 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ,
38 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 60) ] ,
39 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 180) ] ,
40 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 300) ] ]
41
42 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
43 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
44 n = 6 # Number of conductors

45 vs = np . array ( [ [ 1 ] , [ a ∗∗ 2 ] , [ a ] , [ 0 ] , [ 0 ] , [ 0 ] ] )
46 Rs = Ls = np . z e r o s ( ( n , n) )
47 v l = np . z e r o s ( ( n , 1) )
48 Rl = np . diag ( [ 6 0 . , 6 0 . , 6 0 . , 0 , 0 , 0 ] )
49 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
50
51 c a b l e l e n g t h = 31 e03
52
53 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
54 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
55 l o a d i n s t = system . Load ( vl , Rl , Ll )
56
57 z = 0
58 f s t e p = 20
59 f a r r a y = np . arange (1 , 5∗10∗∗3 + f s t e p , f s t e p )
60
61 in data = np . l oadtx t ( ’ example B impedance data marius . txt ’ , sk iprows =0)
62 f array m , impedance m = in data [ : , 0 ] , i n da ta [ : , 1 ]
63
64 impedance = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t ,
65 l o a d i n s t , ’ z ’ ) [ : , 0 ] )
66
67 y1 = p l t . p l o t ( f a r r ay , impedance , c o l o r=’ k ’ , l i n ew id th =2, l a b e l=’UmbSim ’ )
68 y3 = p l t . p l o t ( f array m , impedance m , ’ ko ’ , ms=9, l i n ew id th =0, l a b e l=’ Flux2D ’ )
69 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
70 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
71 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
72 p l t . l egend ( )
73 p l t . show ( )

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A2

5 Script for:

6 * Comparing per unit length parameters from Flux2D with UmbSim

7 * Comparing corrected input impedance spectra from Flux2D with UmbSim

8 """

9
10 a u t h o r = ’ Martin Hovde ’
11 e m a i l = ’ martin . hovde@nmbu . no ’
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12
13 import cmath , math
14 import numpy as np
15 import matp lo t l i b
16 import matp lo t l i b . pyplot as p l t
17 from UmbSim import system , s o l v e r
18 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
19
20 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
21 ’ d inne r s emi con ’ : 13 .5 e−03,
22 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
23 ’ d oute r s emi con ’ : 37 .9 e−03,
24 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
25 ’ s c r e en ’ : Fa l se })
26
27 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 1 .27 e−02,
28 ’ d outer ’ : 1 .562 e−02,
29 ’ d sheath ’ : 1 .902 e−02,
30 ’ rho tube ’ : 8e−07})
31
32 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
33 ’ rho p ipe ’ : 0 . 3 ,
34 ’ mu r p ’ : 1})
35
36 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
37 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
38
39 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
40 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
41 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ,
42 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 60) ] ,
43 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 180) ] ,
44 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 300) ] ]
45
46 vs = np . array ( [ [ 1 ] , [ a ∗∗ 2 ] , [ a ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ∗ V
47 Rs = Ls = np . z e r o s ( ( 6 , 6) )
48 v l = np . z e r o s ( ( 6 , 1) )
49 Rl = np . diag ( [ 6 0 , 60 , 60 , 0 , 0 , 0 ] )
50 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
51
52 c a b l e l e n g t h = 1
53
54 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
55 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
56 l o a d i n s t = system . Load ( vl , Rl , Ll )
57
58 z = 0
59 f s t e p = 20
60 f a r r a y = np . arange (1 , 5∗10∗∗3 + f s t e p , f s t e p )
61
62 in data = np . l oadtx t ( ’ ex B R L marius . txt ’ , sk iprows =1)
63 f d a t a = np . l oadtx t ( ’ ex B 10 km duplex vo l tage . txt ’ )
64 R m, L m = in data [ : , 0 ] , i n da ta [ : , 1 ]
65 f ar ray m = f d a t a [ : , 0 ]
66
67
68 impedance = s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t , l o a d i n s t ,
69 ’ z ’ ) [ : , 0 ]
70 R = impedance . r e a l ∗ 10 ∗∗ 3
71 X = impedance . imag
72 L = X / (2 ∗ math . p i ∗ f a r r a y ) ∗ 10 ∗∗ 6
73
74
75 def z i n ( f , r , l ) :
76 w = 2 ∗ math . p i ∗ f
77 c = 1.7080454 e−10
78
79 gamma = cmath . s q r t ( ( r + 1 j ∗ w ∗ l ) ∗ 1 j ∗ w ∗ c )
80 Z c = cmath . s q r t ( ( r + 1 j ∗ w ∗ l ) / (1 j ∗ w ∗ c ) )
81 Z L = 60 + 1 j ∗ w ∗ 0 .3
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82 z i n = Z c ∗ ( ( Z L + Z c ∗ cmath . tanh (gamma ∗ c a b l e l e n g t h ) ) /
83 ( Z c + Z L ∗ cmath . tanh (gamma ∗ c a b l e l e n g t h ) ) )
84 return abs ( z i n )
85
86
87 z invec = np . abso lu t e (np . v e c t o r i z e ( z i n ) ( f array m , R m / 10∗∗3 , L m / 10∗∗6) )
88 p l t . p l o t ( f array m , z invec , ’ ko ’ , ms=9, l i n ew id th =0, l a b e l=’ Flux2D ’ )
89 p l t . p l o t ( f a r r ay , np . abso lu t e ( impedance ) , ’ k ’ , l i n ew id th =3, l a b e l=’UmbSIm ’ )
90 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
91 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
92 p l t . yl im ( [ 0 , 9 50 ] )
93 p l t . y t i c k s ( [ 0 , 200 , 400 , 600 , 800 , 95 0 ] )
94 p l t . xl im ( [ 1 , 5 . 1 e03 ] )
95 p l t . l egend ( )
96 p l t . show ( )
97
98 p l t . p l o t ( f a r r ay , R, c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
99 p l t . p l o t ( f array m , R m, c o l o r=’ k ’ , l i n ew id th =3, l i n e s t y l e=’−− ’ , l a b e l=’ Flux2D ’ )

100 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
101 p l t . y l a b e l ( r ’ Res i s tance [ $\Omega$/km] ’ )
102 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
103 p l t . l egend ( l o c =2)
104 p l t . g r i d ( True )
105 p l t . show ( )
106
107 p l t . p l o t ( f a r r ay , L , c o l o r=’ k ’ , l i n ew id th =3, l a b e l=’UmbSim ’ )
108 p l t . p l o t ( f array m , L m , c o l o r=’ k ’ , l i n ew id th =3, l i n e s t y l e=’−− ’ , l a b e l=’ Flux2D ’ )
109 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
110 p l t . y l a b e l ( r ’ Inductance [mH/km] ’ )
111 p l t . xl im ( [ 0 , 5 . 1 e03 ] )
112 p l t . l egend ( )
113 p l t . g r i d ( True )
114 p l t . show ( )
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C.3 Example A3

1 # -*- coding: utf -8 -*-

2
3 """

4 Example A3 - Harmonic Analysis

5
6 Harmonic analysis of Umbilical A2 with voltage source as defined from the limits

7 of the harmonic spectrum as recommended in the IEC 61000-2-4 Class 2 standard.

8 """

9
10 a u t h o r = ’ Martin Hovde ’
11 e m a i l = ’ martin . hovde@nmbu . no ’
12
13 import math , cmath
14 import numpy as np
15 import matp lo t l i b
16 import matp lo t l i b . pyplot as p l t
17 from UmbSim import system , s o l v e r
18 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
19
20 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 11 .5 e−03,
21 ’ d inne r s emi con ’ : 13 .5 e−03,
22 ’ d c o r e i n s u l a t i o n ’ : 29 .5 e−03,
23 ’ d oute r s emi con ’ : 37 .9 e−03,
24 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
25 ’ s c r e en ’ : Fa l se })
26
27 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 1 .27 e−02,
28 ’ d outer ’ : 1 .562 e−02,
29 ’ d sheath ’ : 1 .902 e−02,
30 ’ rho tube ’ : 8e−07})
31
32 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 189e−03,
33 ’ rho p ipe ’ : 0 . 3 ,
34 ’ mu r p ’ : 1})
35
36 e lements = [ [ ’ power phase ’ , ( 2 2 . 3 e−03, 0) ] ,
37 [ ’ power phase ’ , ( 22 . 3 e−03, 120) ] ,
38 [ ’ power phase ’ , ( 22 . 3 e−03, 240) ] ,
39 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 60) ] ,
40 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 180) ] ,
41 [ ’ s t e e l tube ’ , ( 32 . 34 e−03, 300) ] ]
42
43 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
44 V = 36 ∗ 10 ∗∗ 3 / math . s q r t (3 )
45 n = 6 # Number of conductors

46 vs = np . array ( [ 1 , a ∗∗ 2 , a , 0 , 0 , 0 ] ) . t ranspose ( ) ∗ V
47 Rs = Ls = np . z e r o s ( ( n , n) )
48 v l = np . z e r o s ( ( n , 1) )
49 Rl = np . diag ( [ 6 0 . , 6 0 . , 6 0 . , 0 , 0 , 0 ] )
50 Ll = np . diag ( [ 0 . 3 , 0 . 3 , 0 . 3 , 0 , 0 , 0 ] )
51
52 c a b l e l e n g t h = 31 e03
53
54 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
55 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
56 l o a d i n s t = system . Load ( vl , Rl , Ll )
57
58
59 def x 1 (h) :
60 return abs ( ( 2 . 2 7 ∗ ( 1 7 . / h) − 0 . 2 7 ) ) / 100
61
62
63 def x 2 (h) :
64 return abs ( ( 0 . 2 5 ∗ ( 1 0 . / h) + 0 . 2 5 ) ) / 100
65
66
67 def h a r m o n i c v o l t a g e l i s t ( ) :
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68 h l i s t = [ False , 1 , 0 . 02 , 0 . 05 , 0 . 01 , 0 . 06 , 0 . 005 , 0 . 05 , 0 . 005 ,
69 0 .015 , 0 . 005 , 0 . 035 , False , 0 . 03 , False , 0 . 004 , False ,
70 0 . 02 , False , False , False , 0 . 0 0 3 ]
71 v o l t a g e l i s t = [ ]
72 for h in range (1 , 51) :
73 i f h <= 21 :
74 i f h l i s t [ h ] :
75 v o l t a g e l i s t . append ( h l i s t [ h ] )
76 e l i f not h % 3 and h % 2 :
77 # Triplen

78 v o l t a g e l i s t . append ( 0 . 0 0 2 )
79 e l i f not h % 2 :
80 # Even

81 v o l t a g e l i s t . append ( x 2 (h) )
82 else :
83 # Odd non -triplen

84 v o l t a g e l i s t . append ( x 1 (h) )
85 e l i f h > 21 :
86 i f not h % 3 and h % 2 :
87 # Triplen

88 v o l t a g e l i s t . append ( 0 . 0 0 2 )
89 e l i f not h % 2 :
90 # Even

91 v o l t a g e l i s t . append ( x 2 (h) )
92 else :
93 # Odd non -triplen

94 v o l t a g e l i s t . append ( x 1 (h) )
95 return v o l t a g e l i s t
96
97 v harmonic = np . array ( h a r m o n i c v o l t a g e l i s t ( ) ) ∗ 100
98 THD = math . s q r t (sum( v harmonic [ 1 : ] ∗∗ 2) )
99 print ’ Voltage t o t a l harmonic d i s t o r t i o n i s ’ , THD, ’% at the sending end . ’

100
101
102 p l t . bar (range (2 , 51) , v harmonic [ 1 : ] , 0 . 3 , c o l o r=’ k ’ , a l i g n=’ cent e r ’ )
103 p l t . xl im ( [ 1 , 5 1 ] )
104 p l t . x t i c k s (np . arange (2 , 51 , 4) )
105 p l t . yl im ( [ 0 , 7 ] )
106 p l t . x l a b e l ( r ’ Harmonic order $h$ ’ )
107 p l t . y l a b e l ( r ’ $\mathrm{v} h$ as percentage o f fundamental [%] ’ )
108 p l t . show ( )
109
110 f fundamenta l = 50
111 f harmonic = np . arange (1 , 51) ∗ f fundamenta l
112 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 300)
113
114 v sqrd = np . z e r o s ( (300 , 6) , dtype=np . complex )
115 i s q r d = np . z e r o s ( (300 , 6) , dtype=np . complex )
116 v s o u r c e s q r d = 0
117
118 for h , f in enumerate( f harmonic ) :
119 vs = np . array ( [ 1 , a ∗∗ (2 ∗ (h+1) ) , a ∗∗ (h+1) , 0 , 0 , 0 ] ) . t ranspose ( ) ∗ \
120 V ∗ v harmonic [ h ] / 100
121 v s o u r c e s q r d += vs [ 0 ] ∗∗ 2
122 l o a d i n s t = system . Load ( vl , Rl , Ll )
123 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
124 vh = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
125 l o a d i n s t , ’ v ’ ) )
126 ih = np . abso lu t e ( s o l v e r . s o l u t i o n s i n g l e f ( f , z ar ray , umb, s o u r c e i n s t ,
127 l o a d i n s t , ’ i ’ ) )
128
129 v sqrd += vh ∗∗ 2
130 i s q r d += ih ∗∗ 2
131
132
133 v = np . s q r t ( v sqrd )
134 i = np . s q r t ( i s q r d )
135 v source = np . s q r t ( v s o u r c e s q r d )
136 print ’The RMS source vo l tage due to harmonic content i s ’ , \
137 abs ( v source / 10∗∗3) , ’kV . ’
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138 print ’ which i s ’ , abs ( v source − V) / V ∗ 100 , \
139 ’% higher than the fundamental source vo l tage . ’
140
141 vs = np . array ( [ [ 1 ] , [ a ∗∗ 2 ] , [ a ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ∗ V
142 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
143 v 1 = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
144 ’ v ’ )
145 i 1 = s o l v e r . s o l u t i o n s i n g l e f (50 , z array , umb, s o u r c e i n s t , l o a d i n s t ,
146 ’ i ’ )
147
148 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
149
150 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( v [ : , 3 ] ) , c o l o r=’ k ’ , l i n ew id th =4,
151 l a b e l=r ’ $\ s q r t {v 1 ˆ2 + \sum {h=2}ˆ{50} v h ˆ2}$ ’ )
152 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( v 1 [ : , 3 ] ) , c o l o r=’ k ’ , l i n e s t y l e=’−− ’ ,
153 l i n ew id th =3, l a b e l=’ Fundamental ’ )
154 p l t . x l a b e l ( ’ z [km] ’ )
155 p l t . y l a b e l ( ’ Voltage magnitude [V] ’ )
156 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
157 p l t . l egend ( l o c =2)
158 p l t . show ( )
159
160 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( v [ : , 0 ] / 10∗∗3) , c o l o r=’ k ’ , l i n ew id th =3,
161 l a b e l=r ’ $\ s q r t {v 1 ˆ2 + \sum {h=2}ˆ{50} v h ˆ2}$ ’ )
162 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( v 1 [ : , 0 ] / 10∗∗3) , c o l o r=’ k ’ , l i n e s t y l e=’−− ’ ,
163 l i n ew id th =3, l a b e l=’ Fundamental ’ )
164 p l t . x l a b e l ( ’ z [km] ’ )
165 p l t . y l a b e l ( ’ Voltage magnitude [kV ] ’ )
166 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
167 p l t . l egend ( )
168 p l t . show ( )
169
170 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( i [ : , 3 ] ) , c o l o r=’ k ’ , l i n ew id th =4,
171 l a b e l=r ’ $\ s q r t { i 1 ˆ2 + \sum {h=2}ˆ{50} i h ˆ2}$ ’ )
172 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( i 1 [ : , 3 ] ) , c o l o r=’ k ’ , l i n e s t y l e=’−− ’ ,
173 l i n ew id th =3, l a b e l=’ Fundamental ’ )
174 p l t . x l a b e l ( ’ z [km] ’ )
175 p l t . y l a b e l ( ’ Current magnitude [A] ’ )
176 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
177 p l t . l egend ( l o c =1)
178 p l t . show ( )
179
180 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( i [ : , 0 ] ) , c o l o r=’ k ’ , l i n ew id th =3,
181 l a b e l=r ’ $\ s q r t { i 1 ˆ2 + \sum {h=2}ˆ{50} i h ˆ2}$ ’ )
182 p l t . p l o t ( z a r r ay / 10∗∗3 , abs ( i 1 [ : , 0 ] ) , c o l o r=’ k ’ , l i n e s t y l e=’−− ’ ,
183 l i n ew id th =3, l a b e l=’ Fundamental ’ )
184 p l t . x l a b e l ( ’ z [km] ’ )
185 p l t . y l a b e l ( ’ Current magnitude [A] ’ )
186 p l t . xl im ( [ 0 , c a b l e l e n g t h / 10∗∗3 ] )
187 p l t . l egend ( l o c =4)
188 p l t . show ( )
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C.4 Example B1 and B2

1 # -*- coding: utf -8 -*-

2
3 """

4 Example B1 and B2

5 Script for:

6 * Input impedance simulation of Umbilical B1 and B2

7 * Comparison with frequency sweep measurements (in air and best fit)

8 """

9
10 a u t h o r = ’ Martin Hovde ’
11 e m a i l = ’ martin . hovde@nmbu . no ’
12
13 import cmath , math
14 import numpy as np
15 import matp lo t l i b
16 import matp lo t l i b . pyplot as p l t
17 from UmbSim import system , s o l v e r
18 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 24})
19
20 i n n e r c i r c u i t = False
21
22 i f i n n e r c i r c u i t :
23 # Inner circuit

24 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 10 .9 e−03,
25 ’ d inne r s emi con ’ : 12 .9 e−03,
26 ’ d c o r e i n s u l a t i o n ’ : 24 .2 e−03,
27 ’ d oute r s emi con ’ : 27 .2 e−03,
28 ’ c o r e d c r e s i s t a n c e ’ : 1 .93 e−04,
29 ’ s c r e en ’ : Fa l se })
30 else :
31 # Outer circuit

32 system . PowerPhase . s e t paramete r s ({ ’ d co re ’ : 7 . 7 e−03,
33 ’ d inne r s emi con ’ : 9 . 7 e−03,
34 ’ d c o r e i n s u l a t i o n ’ : 16 .8 e−03,
35 ’ d oute r s emi con ’ : 19 .8 e−03,
36 ’ c o r e d c r e s i s t a n c e ’ : 3 .87 e−04,
37 ’ s c r e en ’ : Fa l se })
38
39 system . SteelTube . s e t paramete r s ({ ’ d inne r ’ : 19 .05 e−03,
40 ’ d outer ’ : 21 .65 e−03,
41 ’ d sheath ’ : 25 .7 e−02,
42 ’ rho tube ’ : 8e−07})
43
44 # rho air: 1.3e14

45 # rho armour: 2e-7

46 # best fit mu_r: 15

47
48 system . Pipe . s e t paramete r s ({ ’ d p ipe ’ : 136e−03,
49 ’ rho p ipe ’ : 2e−7,
50 ’ mu r p ’ : 15})
51
52 a = cmath . exp (1 j ∗ 2 ∗ math . p i / 3)
53 i f i n n e r c i r c u i t :
54 V = 12 e03 / math . s q r t (3 )
55 e lements = [ [ ’ power phase ’ , ( 1 8 . 5 e−03, 0) ] ,
56 [ ’ power phase ’ , ( 18 . 5 e−03, 120) ] ,
57 [ ’ power phase ’ , ( 18 . 5 e−03, 240) ] ]
58
59 vs = np . array ( [ 1 , a ∗∗ 2 , a ] ) . t ranspose ( ) ∗ V
60 n = 3
61 Rs = Ls = np . z e r o s ( ( n , n) )
62 v l = np . z e r o s ( ( n , 1) )
63 Rl = np . diag ( [ 1 . 0 e10 , 1 . 0 e10 , 1 . 0 e10 ] )
64 Ll = np . z e r o s ( ( n , n) )
65 else :
66 V = 24 e03 / math . s q r t (3 )
67 e lements = [ [ ’ power phase ’ , ( 4 7 . 5 e−03, 0) ] ,
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68 [ ’ power phase ’ , ( 47 . 5 e−03, 120) ] ,
69 [ ’ power phase ’ , ( 47 . 5 e−03, 240) ] ,
70 [ ’ s t e e l tube ’ , ( 47 . 5 e−03, 32) ] ,
71 [ ’ s t e e l tube ’ , ( 47 . 5 e−03, 152) ] ]
72
73 vs = np . array ( [ 1 , a ∗∗ 2 , a , 0 , 0 ] ) . t ranspose ( ) ∗ V
74 n = 5
75 Rs = np . diag ( [ 0 , 0 , 0 , 1e07 , 1 e07 ] )
76 Ls = np . z e r o s ( ( n , n) )
77 v l = np . z e r o s ( ( n , 1) )
78 Rl = np . diag (np . repeat (1 e07 , 5) )
79 Ll = np . z e r o s ( ( n , n) )
80
81 c a b l e l e n g t h = 42 e03
82
83 umb = system . Umbi l i ca l ( elements , c a b l e l e n g t h )
84 s o u r c e i n s t = system . Source ( vs , Rs , Ls )
85 l o a d i n s t = system . Load ( vl , Rl , Ll )
86
87 z = 0
88 f s t e p = 15
89 f a r r a y = np . arange ( 0 . 1 , 5∗10∗∗3 + f s t e p , f s t e p )
90 z a r ray = np . l i n s p a c e (0 , cab l e l eng th , 50)
91
92 impedance = s o l v e r . s o l u t i o n s i n g l e z ( f a r r ay , z , umb, s o u r c e i n s t , l o a d i n s t ,
93 ’ z ’ )
94
95 in data L1 = np . l oadtx t ( ’L1 . txt ’ , sk iprows =1)
96 in data L2 = np . l oadtx t ( ’L2 . txt ’ , sk iprows =1)
97 in data L3 = np . l oadtx t ( ’L3 . txt ’ , sk iprows =1)
98 i n d a t a i n n e r = np . l oadtx t ( ’ Inner . txt ’ , sk iprows =1)
99 i n d a t a a n g l e = np . l oadtx t ( ’ I nne r ang l e . txt ’ , sk iprows =1)

100
101 f a r ray L1 , impedance L1 = in data L1 [ : , 0 ] , in data L1 [ : , 1 ]
102 f a r ray L2 , impedance L2 = in data L2 [ : , 0 ] , in data L2 [ : , 1 ]
103 f a r ray L3 , impedance L3 = in data L3 [ : , 0 ] , in data L3 [ : , 1 ]
104 f a r r a y i n n e r , impedance inner = i n d a t a i n n e r [ : , 0 ] , i n d a t a i n n e r [ : , 1 ]
105 f a r r a y a n g l e , impedance angle = i n d a t a a n g l e [ : , 0 ] , i n d a t a a n g l e [ : , 1 ]
106
107 i f i n n e r c i r c u i t :
108 p l t . p l o t ( f a r r a y i n n e r , impedance inner , ’ ko ’ , ms=9, l i n ew id th =0,
109 l a b e l=’ Measured ’ )
110 p l t . p l o t ( f a r r ay , np . abso lu t e ( impedance [ : , 0 ] ) , c o l o r=’ k ’ , l i n ew id th =3,
111 l a b e l=’UmbSim ’ )
112 p l t . xl im ( [ 0 , 5 .05 e03 ] )
113 p l t . yl im ( [ 0 , 3 00 ] )
114 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
115 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
116 p l t . l egend ( )
117 p l t . show ( )
118
119 p l t . p l o t ( f a r r a y a n g l e , impedance angle , ’ ko ’ , ms=9, l i n ew id th =0,
120 l a b e l=’ Measured ’ )
121 p l t . p l o t ( f a r r ay , np . ang le ( impedance [ : , 0 ] , deg=True ) , c o l o r=’ k ’ ,
122 l i n ew id th =3, l a b e l=’UmbSim ’ )
123 p l t . xl im ( [ 0 , 5 .05 e03 ] )
124 p l t . yl im ([−92 , 9 2 ] )
125 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
126 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
127 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
128 p l t . l egend ( )
129 p l t . show ( )
130
131 else :
132 # L3 impedance

133 p l t . p l o t ( f a r ray L1 , impedance L1 , ’ ko ’ , ms=9, l i n ew id th =0,
134 l a b e l=’ Measured ’ )
135 p l t . p l o t ( f a r r ay , np . abso lu t e ( impedance [ : , 2 ] ) , c o l o r=’ k ’ , l i n ew id th =3,
136 l a b e l=’UmbSim ’ )
137 p l t . xl im ( [ 0 , 5 .05 e03 ] )
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138 p l t . yl im ( [ 0 , 3 00 ] )
139 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
140 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
141 p l t . l egend ( )
142 p l t . show ( )
143
144 p l t . p l o t ( f a r r ay , np . ang le ( impedance [ : , 2 ] , deg=True ) , c o l o r=’ k ’ ,
145 l i n ew id th =3, l a b e l=’L3 UmbSim ’ )
146 p l t . xl im ( [ 0 , 5 .05 e03 ] )
147 p l t . yl im ([−92 , 9 2 ] )
148 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
149 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
150 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
151 p l t . show ( )
152
153 # L2 impedance

154 p l t . p l o t ( f a r ray L3 , impedance L3 , ’ ko ’ , ms=9, l i n ew id th =0,
155 l a b e l=’ Measured ’ )
156 p l t . p l o t ( f a r r ay , np . abso lu t e ( impedance [ : , 1 ] ) , c o l o r=’ k ’ , l i n ew id th =3,
157 l a b e l=’UmbSim ’ )
158 p l t . xl im ( [ 0 , 5 .05 e03 ] )
159 p l t . yl im ( [ 0 , 3 00 ] )
160 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
161 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
162 p l t . l egend ( )
163 p l t . show ( )
164
165 p l t . p l o t ( f a r r ay , np . ang le ( impedance [ : , 1 ] , deg=True ) , c o l o r=’ k ’ ,
166 l i n ew id th =3, l a b e l=’L3 UmbSim ’ )
167 p l t . xl im ( [ 0 , 5 .05 e03 ] )
168 p l t . yl im ([−92 , 9 2 ] )
169 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
170 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
171 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
172 p l t . show ( )
173
174 # L1 impedance

175 p l t . p l o t ( f a r ray L2 , impedance L2 , ’ ko ’ , ms=9, l i n ew id th =0,
176 l a b e l=’ Measured ’ )
177 p l t . p l o t ( f a r r ay , np . abso lu t e ( impedance [ : , 0 ] ) , c o l o r=’ k ’ , l i n ew id th =3,
178 l a b e l=’UmbSim ’ )
179 p l t . xl im ( [ 0 , 5 .05 e03 ] )
180 p l t . yl im ( [ 0 , 3 00 ] )
181 p l t . y l a b e l ( r ’ Impedance magnitude [ $\Omega$ ] ’ )
182 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
183 p l t . l egend ( )
184 p l t . show ( )
185
186 p l t . p l o t ( f a r r ay , np . ang le ( impedance [ : , 0 ] , deg=True ) , c o l o r=’ k ’ ,
187 l i n ew id th =3, l a b e l=’L3 UmbSim ’ )
188 p l t . xl im ( [ 0 , 5 .05 e03 ] )
189 p l t . yl im ([−92 , 9 2 ] )
190 p l t . y t i c k s ([−90 , −45, 0 , 45 , 9 0 ] )
191 p l t . y l a b e l ( r ’ Impedance ang le [ deg $\degree$ ] ’ )
192 p l t . x l a b e l ( ’ Frequency [ Hz ] ’ )
193 p l t . show ( )
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D. Data from Flux2D simulations

Example A1 - Input impedance magnitude

Frequency [Hz] Impedance [Ohm]

50.0 139.36775320766677

151.0204081632653 551.9703347939185

252.0408163265306 152.94121392485675

353.0612244897959 87.93286799579393

454.0816326530612 58.32623624669673

555.1020408163265 39.9767621474468

656.1224489795918 26.692993571331428

757.1428571428571 16.155287336914025

858.1632653061224 7.6945909444820195

959.1836734693877 5.585224412697793

1060.204081632653 12.33617164933038

1161.224489795918 20.783590451909078

1262.244897959184 30.295704409089474

1363.265306122449 41.45564906045452

1464.285714285714 55.43948432717584

1565.30612244898 74.54691217301325

1666.326530612245 103.90646924636619

1767.34693877551 157.1714770331526

1868.367346938775 272.74193765947973

1969.387755102041 344.91633602538025

2070.408163265306 189.43985388632734

2171.428571428572 110.66768843777275

2272.448979591837 71.85268827445401

2373.469387755102 48.658502662857835

2474.489795918367 32.82068534071507

2575.510204081633 21.0818822863667

2676.530612244898 12.359812906751493

2777.551020408163 8.26971984244208

2878.571428571428 11.5777803142151

2979.591836734694 18.222712568793288

3080.612244897959 25.945001590819075

3181.632653061225 34.62696704229518

3282.65306122449 44.73568626626895

3383.673469387755 57.19967467434129

3484.69387755102 73.76689588228275

3585.714285714286 98.00506121483431

3686.734693877551 137.74714415635208

3787.755102040816 204.9870411707839

3888.775510204082 239.33242325838035

3989.795918367347 157.32573292897058

4090.816326530612 94.79024912617467

4191.836734693878 60.08389646824316

4292.857142857143 38.776197839833394

4393.877551020408 24.465946689965275

4494.897959183673 14.971208895579698

4595.918367346939 11.268794933449277

4696.938775510204 14.24563107528464

4797.959183673469 20.29360186689406

4898.979591836735 27.36359611006874

5000.0 35.17877551828574
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Example A2 - Input impedance
magnitude

Frequency [Hz] Impedance [Ohm]

50.0 139.53915948276466

151.0204081632653 551.7126711255376

252.0408163265306 152.6730692090333

353.0612244897959 87.51432306668777

454.0816326530612 57.76411382954133

555.1020408163265 39.27905246965687

656.1224489795918 25.876577687800474

757.1428571428571 15.285861585124074

858.1632653061224 7.198929408954162

959.1836734693877 7.0729072696565405

1060.204081632653 14.3767167002659

1161.224489795918 23.179934246038158

1262.244897959184 33.16510137742479

1363.265306122449 44.99989472028993

1464.285714285714 59.995897774972306

1565.30612244898 80.70093177315

1666.326530612245 112.59187208534213

1767.34693877551 168.06113120321982

1868.367346938775 255.7896789449046

1969.387755102041 243.41792921136835

2070.408163265306 150.71433827268933

2171.428571428572 96.08558262930543

2272.448979591837 65.03132488521153

2373.469387755102 45.13910041760394

2474.489795918367 31.178906878171095

2575.510204081633 21.00769945957011

2676.530612244898 14.321336495495773

2777.551020408163 12.550842687661762

2878.571428571428 15.909294199827011

2979.591836734694 21.90784112194882

3080.612244897959 29.1852181916912

3181.632653061225 37.5642318300734

3282.65306122449 47.37617727660693

3383.673469387755 59.326147868495404

3484.69387755102 74.5929695611362

3585.714285714286 94.9216210535999

3686.734693877551 121.56653544156195

3787.755102040816 147.68211172272012

3888.775510204082 146.5487202946855

3989.795918367347 114.22166363521421

4090.816326530612 80.95529938056978

4191.836734693878 56.81937049644893

4292.857142857143 40.118689973575655

4393.877551020408 28.692118868293015

4494.897959183673 21.662072792979888

4595.918367346939 19.09977490138983

4696.938775510204 20.62356013963441

4797.959183673469 24.793046612402396

4898.979591836735 30.415062276226806

5000.0 37.01926932914991

Example A2 - Resistance and induc-
tance

R [Ohm/km] L [mH/km]

0.193361049 0.430792423

0.199158838 0.429852062

0.209888104 0.428225141

0.224394799 0.426212778

0.241706248 0.424021664

0.261079982 0.421769483

0.281943076 0.419524644

0.303853727 0.417330399

0.326483071 0.415214616

0.349599559 0.413193815

0.373050409 0.411275723

0.396741991 0.409461545

0.420621863 0.407748012

0.444664035 0.406129091

0.468857777 0.404597288

0.493200011 0.40314458

0.517690102 0.401763023

0.54232689 0.400445125

0.567106836 0.399184044

0.592023595 0.397973672

0.617067527 0.396808644

0.642226152 0.395684307

0.667484397 0.394596659

0.692825331 0.393542284

0.718230282 0.392518279

0.743679883 0.391522187

0.769153651 0.39055193

0.794631537 0.389605758

0.820093222 0.388682189

0.845518771 0.387779974

0.870889275 0.386898052

0.896186298 0.386035521

0.921392403 0.385191607

0.946491388 0.384365646

0.971468166 0.383557058

0.996308515 0.382765334

1.020999439 0.38199002

1.045529701 0.381230711

1.069888679 0.380487037

1.094066804 0.379758653

1.118056154 0.379045242

1.141849175 0.378346498

1.165439645 0.377662133

1.188822845 0.376991869

1.211993889 0.376335432

1.234949155 0.375692556

1.257686587 0.375062983

1.280203724 0.374446451

1.302499034 0.373842705

1.32457184 0.373251491
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E. Data from measurements

Example B1
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Example B2
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