
  INTERPRETIVE SUMMARY 1 

Genomic predictions of fertility related disorders. Haugaard et al pages 000. The aim was 2 

to examine whether including information from later lactations improves accuracy in prediction 3 

of genomic breeding values for fertility related disorders in Norwegian Red. Health records 4 

from >6 million lactations of 2.4 million cows were analyzed. Genomic breeding values for 5 

cystic ovaries, metritis, retained placenta and silent heat were predicted based on first lactation 6 

only and by using information from lactations 1-5. Including later lactations improved accuracy 7 

of genomic breeding values for cystic ovaries, retained placenta and silent heat, while no 8 

obvious advantage in accuracy was found for metritis.  9 
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ABSTRACT 26 

The aim was to investigate whether including information from later lactations improves 27 

accuracy of genomic breeding values for the 4 fertility related disorders cystic ovaries, retained 28 

placenta, metritis and silent heat. Data consisted of health records from 6,015,245 lactations 29 

from 2,480,976 Norwegian Red cows, recorded from 1979 to 2012. These were daughters of 30 

3,675 AI-bulls. The mean frequency of these disorders for cows in lactation 1-5 ranged from 31 

0.6% to 2.4% for cystic ovaries, 1.0% to 1.5% for metritis, 1.9% to 4.1% for retained placenta 32 

and 2.4% to 3.8% for silent heat. Genomic information was available for all sires, and the 312 33 

youngest bulls were used for validation. After standard editing of a 25k/54k SNP dataset that 34 

was imputed both ways, a total of 48,249 SNP loci was available for genomic predictions. 35 

Genomic breeding values were predicted using univariate GBLUP for first lactation only 36 

(GEBV-1) and for the first 5 lactations (GEBV-S), and multivariate GBLUP with 5 lactations 37 

for each disorder was also used for genomic predictions (GEBV-M). Correlations between EBV 38 

for the 4 traits in 5 lactations with GEBV-1, GEBV-S and GEBV-M were compared. Accuracy 39 

ranged from 0.47 and 0.51 for cystic ovaries, 0.50 to 0.74 for retained placenta, 0.21 to 0.47 for 40 

metritis and 0.22 to 0.60 for silent heat. Including later lactations in a multitrait G-BLUP 41 

improved accuracy of GEBV for cystic ovaries, retained placenta and silent heat, while for 42 

metritis no obvious advantage in accuracy was found. 43 

Keywords:  44 
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INTRODUCTION 46 

 47 

In a progeny testing scheme, only first lactation information from the daughters is available 48 

when the bulls get their first official proofs. The frequency of fertility related disorders such as 49 

cystic ovaries (CO), retained placenta (RP) and metritis (MET) however, often increases as 50 

the cow gets older (Haugaard and Heringstad, 2013). This implies that potentially valuable 51 

information is not yet available at the time when the elite sires are selected. With the 52 

introduction of genomic selection, information from later lactations may more easily be utilized 53 

as the reference population includes older bulls with information from daughters of all ages.  54 

 55 

Some of the factors affecting the accuracy of genomic predictions are the size of the reference 56 

population, heritability of the trait, quality and number of available phenotypes, population 57 

structure and effective population size, and the density of the genomic markers (Hayes et al., 58 

2009). Functional traits, such as fertility and health, have low heritability and show lower 59 

accuracy in genomic predictions compared to production traits (Luan et al., 2009; Zhou et al., 60 

2014).  Few populations record direct health traits, though recently several countries have 61 

started recording health traits as well as production traits in contract herds (Gernand et al., 2012) 62 

or in the main population (e.g. Koeck et al., 2012; Egger-Danner et al., 2012). In the 63 

Scandinavian countries, disease records have been collected for more than 30 years, and direct 64 

health traits (e.g. mastitis) are included in routine genetic evaluations. Fertility related disorders 65 

have so far not been included in the routine genetic evaluations in Norway, except RP which is 66 

included in “other diseases”, a trait with 2% relative weight in the current total merit index for 67 

Norwegian Red. Fertility related disorders is a disease category that has increased somewhat in 68 

frequency the recent years. The number of cows treated for any fertility related disorders per 69 



cow-year (incidence rate) increased from 6.6% in 2008 to 8.5% in 2013 (Norwegian Cattle 70 

Health Services, 2014) and inclusion in the breeding scheme may therefore become desired. 71 

 72 

The main aim was to examine whether including information from later lactations would 73 

increase accuracy of genomic predictions for fertility related disorders in Norwegian Red. 74 

Accuracy of genomic predictions based on data from first lactation only vs. using lactations 1 75 

to 5 was compared. More than 30 years of health recordings of the 4 most common fertility 76 

related disorders; CO, RP, MET and silent heat (SH) were used.  77 

 78 

MATERIAL AND METHODS 79 

 80 

Data  81 

Records on calving and health (veterinary treatments of disease) from 2,480,976 cows calving 82 

from January 1979 through December 2012 and sired by Norwegian Red AI bulls were 83 

extracted from the Norwegian Dairy Herd Recording System. Information on CO, RP, MET 84 

and SH from the first 5 lactations were used. The four disorders were chosen as these are the 85 

most frequent fertility related disorders in Norway. Cows without first lactation records in the 86 

dataset were omitted, and the cows had to be 20 to 36 months old at first calving and have 87 

reasonable calving intervals (280-500 d) thereafter. The traits were defined as binary 88 

(0=healthy, 1=affected) for each disorder in each lactation. For RP the veterinary treatment had 89 

to occur within the first 5 days after calving, whereas for the other disorders all health records 90 

within a lactation were used. The overall mean frequency of each disorder in each lactation is 91 

presented in Table 1. The mean frequency varied from 0.6% (CO in 1st lactation) to 4.1% (RP 92 

in 5th lactation). Only daughters of bulls with at least 150 first lactation daughters were included 93 

in the dataset. There were a total of 26,858 animals in the pedigree file which consisted of the 94 



3,675 bulls with daughters in the dataset and their dams and sires traced back as far as possible, 95 

back to the 1950’s. 96 

 97 

Genomic information was available for all 3,675 sires where 2,165 were genotyped with the 98 

Affymetrix25K SNP chip and 1,967 were genotyped with the Illumina55K SNP chip. 457 of 99 

the sires were genotyped with both. An imputed 25k/54k SNP dataset (imputed both ways, 100 

imputation procedure described in Solberg et al., 2011) after standard editing had 48,249 SNP 101 

loci that was used for genomic predictions.  102 

 103 

Daughter-yield-deviations 104 

Daughter-yield-deviations (DYD) of the reference population were used as response variable 105 

for the genomic predictions. These were estimated using a subset containing only records from 106 

lactations starting before January 1st 2008. The 3,363 bulls with at least 150 first lactation 107 

daughters in this sub-dataset were included in the reference population, while the youngest 312 108 

bulls that by January 1st 2008 did not have 150 first lactation daughters was defined as the 109 

validation set. The mean number of first lactation daughters per sire in the reference population 110 

and validation set was 675 daughters (min 150; max 10,197) and 227 daughters (min 150; max 111 

2,742) respectively.  112 

 113 

Each of the 4 fertility related disorders was analyzed separately using linear sire models to 114 

predict parameters for calculation of DYD using the subdataset, and to predict EBV using the 115 

full dataset for comparison with GEBV from the genomic predictions. For MET and SH the 5 116 

lactations were analyzed as genetically correlated traits in multivariate models. CO was 117 

analyzed treating the 5 lactations as repeated records in a univariate repeatability model. A 118 

repeatability model was also used for RP in lactation 2 to 5, while RP in the first lactation was 119 



analyzed as a correlated trait in a bivariate model. The choice of models was based on Haugaard 120 

and Heringstad (2013). For CO the systematic effects were year-season of calving (132 levels, 121 

seasons defined as January-March, April-June, July-September and October-December) and 122 

age at calving in months (76 single month classes).  For MET the systematic effects were year-123 

season of calving and twinning, recorded as 1 (single calf) or 2 (two or more calves). For RP 124 

the systematic effects were year-season of calving, twinning and calving interval in the previous 125 

lactation, divided into 6 categories: 1) ≤325 days, 2) 325-340 days, 3) 341-355 days, 4) 356-126 

370 days, 5) 371-400 days and 6) >400 days. For SH the systematic effects were year-season 127 

of calving and calving interval in the previous lactation. Herd and sire were treated as random 128 

effects in all models. Single-trait analyses of the first lactation for each disorder were also 129 

performed. Solutions from the linear models of the reduced datasets were then used to calculate 130 

DYD to be used as response variable in the genomic predictions described below, where DYD 131 

is the average performance of the bulls daughters subtracted for all systematic and non-genetic 132 

random effects. All linear analyses were done using the DMU4-program in DMU (Madsen and 133 

Jensen, 2007). Heritability for all traits used in the analyses is presented in Table 2.  134 

 135 

Accuracy of genomic predictions 136 

Direct genomic breeding values (GEBV) were predicted in 3 different ways:  137 

1) GEBV-1 - single trait GBLUP using DYD from first lactation only as response variable,  138 

2) GEBV-S - single trait GBLUP using DYD from each of the 5 lactations separately as 139 

response variable 140 

3) GEBV-M - multi trait GBLUP using DYD from the 5 lactations simultaneously as response 141 

variable. For MET the 5-variat GBLUP analyses did not converge, so only the first 4 lactations 142 

was used in a 4-variat GBLUP.  143 



These analyses were performed using DMUAI in DMU (Madsen and Jensen, 2010). In matrix 144 

notation, the model can be written as y=1μ + Zg + e, where y is the response variable DYD, 1 145 

is a vector of ones, μ is the overall mean, g is a vector of genomic breeding values, Z is the 146 

incidence matrix of g and e is the residuals. It was assumed that var(g)=G0⊗G and 147 

var(e)=R⊗D, where G is the genomic relationship matrix and D is a diagonal matrix containing 148 

weighting factors for the residuals. G0 and R is the corresponding scalar (GEBV-1 and GEBV-149 

S) or 5x5 (GEBV-M) matrices, containing the genetic and residual (co)variance.  150 

 151 

The genomic relationship matrix was calculated using the program Gmatrix (Su and Madsen, 152 

2012), constructed by method 1 of Van Raden (2008). Accuracy of genomic predictions was 153 

calculated as the correlation between GEBV for the 312 sires in the validation set and their 154 

EBV obtained from the full dataset. In the GEBV-S and GEBV-M approach, EBV for each 155 

lactation was correlated with GEBV of the same lactation, whereas in the GEBV-1 approach, 156 

EBV for all five lactations was correlated to the GEBV from the first lactation. The correlations 157 

were based only on those bulls in the validation set with daughters in the respective lactation, 158 

meaning that the validation set for lactations 4 and 5 were smaller (265 and 169 bulls, 159 

respectively) than for lactations 1, 2 and 3 (312 bulls). Regression analyses were used to 160 

validate whether GEBV over- or underpredict the genetic merit for the fertility related disorder 161 

in each case. 162 

 163 

RESULTS AND DISCUSSION 164 

 165 

Accuracy 166 

Accuracy of genomic predictions ranged from 0.22 to 0.54 for GEBV-1, from 0.21 to 0.74 in 167 

GEBV-S and 0.24 to 0.74 in GEBV-M (Table 3).These accuracies were in the upper range of 168 



those previously reported for functional traits in Norwegian Red. Luan et al. (2009) and 169 

Svendsen (pers.comm) found accuracies for various production and health traits in Norwegian 170 

Red in the range 0.15 - 0.41 and 0.16 - 0.77, respectively. In both studies, health and fertility 171 

traits showed lower accuracies than production traits, and the highest accuracies among 172 

functional traits were 0.46 for mastitis (Svendsen, pers.comm) and 0.43 for calving ease (Luan 173 

et al., 2009). Compared to the present study, Luan et al. (2009) analyzed fewer bulls (500) with 174 

fewer SNP (25K). These are factors that affect the results of the genomic predictions, and can 175 

explain the differences in the results. Ødegård et al. (2014) presented accuracies of GEBV for 176 

claw health in Norwegian Red ranging from 0.29 to 0.32, which were lower than accuracies in 177 

the present study. As claw health is a novel trait in Norwegian Red, with records available since 178 

2004 (disease records from claw trimming), the limited size of the reference population and low 179 

reliability of the response variable may be a reason for the lower accuracies of Ødegård et al. 180 

(2014) compared to the present study.  181 

 182 

The accuracy of CO was 0.47 and 0.51 for GEBV-1 and GEBV-S, respectively (Table 3), 183 

indicating that using information from only the first lactation gave slightly lower accuracy than 184 

using information from all 5 lactations. High genetic correlations, above 0.90, between CO in 185 

the 5 first lactations (Haugaard and Heringstad, 2013) indicates that the disorder is genetically 186 

the same across lactations. Therefore, it seems reasonable that using information from one 187 

lactation to predict the others is a possibility.   188 

 189 

For RP, the differences between GEBV-1 and GEBV-S were larger than for CO (Table 3). For 190 

1st-lactation RP, the accuracy was the same in both scenarios (0.50), while for 2-5 lactation RP  191 

the accuracy was lower in GEBV-1 than in GEBV-S (0.51 vs 0.74). The highest accuracies 192 

were acquired from using the GEBV-M approach with 0.55 and 0.74 for 1st and 2-5 lactation, 193 



respectively.  In all three approaches, the accuracy for RP was lower in first lactation than in 194 

second to fifth lactation.  195 

 196 

For MET, the lowest accuracy was obtained from the GEBV-M approach, and accuracies 197 

decreased with increasing lactation number, from 0.47 in the first lactation to 0.21 in the fifth 198 

lactation (Table 3). The accuracies from the GEBV-S approach  was similar but slightly higher 199 

than for the GEBV-M approach, while the overall highest accuracies was obtained with the 200 

GEBV-1 approach, ranging from 0.39 to 0.47. Among the 4 fertility related disorders, MET 201 

had the lowest mean frequency and the same level across lactations (Table 1). Estimates of 202 

variance components and EBV for MET were therefore less accurate, especially in the later 203 

lactations where information was sparse (Haugaard and Heringstad, 2013). However, the 204 

genetic correlations between MET in first lactation and MET in later lactations were moderate 205 

(0.51-0.67) (Haugaard and Heringstad, 2013). It was therefore not expected that first lactation 206 

was as good a predictor of later lactations as that lactations itself (GEBV-1 vs GEBV-S/GEBV-207 

-M, Table 3).   208 

 209 

For SH the accuracy was approximately the same in all 3 approaches for first lactation (Table 210 

3), but while the accuracies decreased with increasing parity for the GEBV-1 and GEBV-S 211 

approaches, the accuracies increased slightly with increasing parity for the GEBV-M approach.  212 

SH had the highest mean frequency among the 4 disorders (Table 1), but decreasing with 213 

increasing parity.  214 

 215 

In general, accuracy of genomic predictions increased when using information from all 216 

lactations, and the highest accuracies were obtained by using the GEBV-M approach for most 217 

of the fertility related disorders. The exception was MET, where the highest accuracy was 218 



obtained by using the first lactation to predict all lactations (GEBV-1). For SH, the GEBV-M 219 

approach gave higher accuracies, but it varied between lactations which was better of the 220 

GEBV-1 and GEBV-S approach. Among the fertility related disorders, the highest accuracy 221 

was obtained for RP. This may be due to the structure of the model (repeatability model), but 222 

also because this is the disorder that probably has few false negatives as it is easy to discover 223 

and demands veterinary attention. MET and SH are more troublesome disorders that can be 224 

difficult to discover and therefore probably have more false negatives. Regarding SH, cows 225 

may be culled instead of being treated or the disorder is unnoticed and therefore not treated, 226 

and many false negatives may occur.  227 

 228 

Regression analyses were used to validate whether GEBV over- or underpredict the genetic 229 

merit.  The regression coefficients with their standard errors are given in Table 3. Regression 230 

coefficients larger than 1 indicate that genetic merit is underpredicted by GEBV, while b-values 231 

lower than 1 indicate overprediction. Table 3 shows large variation between traits and 232 

approaches, with b-values ranging from 0.18 to 2.63. Indications of serious underprediction (b-233 

values>2) were found for MET2 and MET4 when using single trait GBLUP (GEBV-S). Using 234 

GEBV based on first lactation to predict later lactations (GEBV-1) tended to overpredict genetic 235 

merit (b-values<1) for MET and SH. Traits analyzed by a repeatability model, CO and RP2-5, 236 

tended to underpredict genetic merit, The exception was CO in the GEBV-S approach which 237 

b-value, in addition to the regression coefficients for SH1 and RP1 in all three approaches, was 238 

closest to 1.  239 

 240 

Assumptions and limitations 241 

The present study used a relatively small validation set, containing approximately 10% of the 242 

total number of genotyped bulls. The validation bulls were the youngest, and some of them did 243 



not have daughters in the latest lactations, which reduced the validation set further. It would be 244 

possible to include more bulls in the validation set, but then the reference population would be 245 

reduced.   246 

 247 

In the present study the youngest bulls were defined as the validation set and the oldest bulls 248 

were in the reference population. This is how genomic selection would appear in practice. For 249 

the reference population all data after a cut-off date was removed, pretending they had not yet 250 

happened.  In this scheme no sires would be predicted by their sons, as would happen in a full 251 

cross validation study.  252 

 253 

Another issue is the precision of EBV for the 4th and 5th lactation in the validation set. As some 254 

of the bulls did not have 5th lactation daughters, the validation set was smaller for these traits. 255 

Also, the number of daughters per bull was lower in the later lactations. Consequently, the 256 

precision of the bulls EBV is less accurate than in the 1st lactation. The accuracy in the 4th and 257 

5th lactation is therefore based on a smaller validation set with less precise EBV. A solution 258 

could be to set a limit on a minimum of e.g. 150 daughters in the 5th lactation in the validation 259 

set, but this would decrease the validation set drastically. 260 

 261 

An important question is which EBV and GEBV to compare. In the present study, EBV for 262 

each lactation and disorder was correlated with the GEBV of the same lactation or with GEBV 263 

for the first lactation. The latter is a measure of how well 1st lactation GEBV predict the later 264 

lactations. Another approach could be to use GEBVs from the 5 first lactations (together or 265 

separately) to predict the 1st and perhaps the 2nd lactation of the disorder. Which method to 266 

choose depends on the aim of the scheme; to reduce susceptibility to fertility related disorders 267 



in the 1st and 2nd lactations, or to breed for a cow with reduced susceptibility to fertility related 268 

disorders over many lactations?   269 

 270 

Implementation 271 

Health data, including veterinary treatment of fertility related disorders, from more than 30 272 

years are available. Haugaard and Heringstad (2013) estimated heritabilities on the underlying 273 

scale of CO, MET, RP and SH between 0.03 and 0.14. The present study shows accuracies of 274 

GEBV in the upper range of what was previously reported for traits with similar heritabilities 275 

for Norwegian Red. Reliability of GEBV for these fertility related disorders are expected to 276 

be higher than the reliability of parent average EBV (at the time of birth of the bull calf) and 277 

lower than the reliability of EBV after progeny testing. Genetic evaluation of these fertility 278 

related disorders can therefore be implemented in the breeding scheme for Norwegian Red 279 

with at least as precise evaluations as other health traits.  280 

 281 

CONCLUSIONS 282 

Accuracy of genomic predictions for fertility related disorders were in the upper range of those 283 

previously reported for functional traits in Norwegian Red. Including later lactations improved 284 

accuracy of GEBV for CO, RP and SH, while no obvious advantage in terms of accuracy was 285 

found for MET. 286 

 287 
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Table 1.  Number of records and mean frequency of cystic ovaries (CO), retained placenta 353 

(RP), metritis (MET) and silent heat (SH) in lactation 1-5 in the full dataset.  354 

 355 

  Frequency1, % 

Lactation 

number 

No of records CO % RP % MET % SH % 

1 2,480,976 0.6 1.9 1.5 3.8 

2 1,645,094 1.4 2.5 1.0 2.9 

3 1,021,604 2.0 3.1 1.1 2.8 

4 576,709 2.3 3.6 1.2 2.6 

5 290,862 2.4 4.1 1.2 2.4 

Overall 6,015,245     

1 Frequency of at least one veterinary treatment  356 



Table 2: Heritability of fertility related disorders used for prediction of EBV.  357 

 358 

Trait1 Heritability2 

CO1-5 0.009 

  

RP1 0.008 

RP2-5 0.010 

  

MET1 0.002 

MET2 0.001 

MET3 0.001 

MET4 0.001 

MET5 0.002 

  

SH1 0.005 

SH2 0.002 

SH3 0.002 

SH4 0.002 

SH5 0.002 

1CO was analyzed with the 5 lactations as repeated records in a univariate repeatability model. 359 

RP in lactation 2 to 5 were analyzed as repeated records in a repeatability model, together with 360 

RP in the first lactation as a correlated trait in a bivariate model.  MET and SH were analyzed 361 

with 5 lactations as genetically correlated traits in multivariate models. 362 

2 h2 = (4*σ2
sire)/(σ

2
sire + σ2

herd + σ2
residual), where h2 is the heritability, and σ2

sire,  σ
2

herd, σ
2

residual 363 

is the sire variance, herd variance and residual variance, respectively. Estimated variance 364 



components were larger than their standard errors, and standard error for σ2
sire was <0.00001 365 

for all traits.   366 



Table 3: Correlation (SE1) between EBV for cystic ovaries (CO), retained placenta (RP), 367 

metritis (MET) and silent heat (SH) in lactations 1-5, with genomic predictions based on 368 

first lactations only (GEBV-1) or 5 lactations (GEBV-S and GEBV-M)  369 

  Genomic predictions 

Trait2 GEBV-13 GEBV-S 4 GEBV-M5 

CO1-5 0.47 (0.05) 0.51 (0.05) --- 

    

RP1 0.50 (0.05) 0.50 (0.05) 0.55 (0.05) 

RP2-5 0.51 (0.05) 0.74 (0.04) 0.74 (0.04) 

    

MET1 0.47 (0.05) 0.47 (0.05) 0.45 (0.05) 

MET2 0.41 (0.05) 0.46 (0.05) 0.39 (0.05) 

MET3 0.43 (0.05) 0.23 (0.06) 0.30 (0.05) 

MET4 0.39 (0.05) 0.28 (0.05) 0.24 (0.06) 

MET5 0.46 (0.05) 0.21 (0.06) --- 

    

SH1 0.54 (0.05) 0.54 (0.05) 0.54 (0.05) 

 SH2 0.40 (0.05) 0.50 (0.05) 0.57 (0.05) 

SH3 0.34 (0.05) 0.51 (0.05) 0.58 (0.05) 

SH4 0.22 (0.06) 0.57 (0.05) 0.60 (0.05) 

SH5 0.35 (0.05) 0.22 (0.06) 0.60 (0.05) 

1SE was calculated as√(1 − 𝑟2)/(𝑛 − 2) , where r is the correlation and n is the number of 370 

individuals.  371 

2CO was analyzed with the 5 lactations as repeated records in a univariate repeatability model. 372 

RP in lactation 2 to 5 were analyzed as repeated records in a repeatability model, together with 373 



RP in the first lactation as a correlated trait in a bivariate model.  MET and SH were analyzed 374 

with 5 lactations as genetically correlated traits in multivariate models. 375 

3EBV for the five lactations of a disorder correlated to the GEBV of the first lactation of the 376 

same disorder, GEBV estimated from a single trait GBLUP 377 

4EBV correlated with GEBV of the same lactation for the same disorder, GEBV estimated from 378 

a single trait GBLUP 379 

5EBV correlated with GEBV of the same lactation for the same disorder, GEBV estimated from 380 

a multitrait GBLUP  381 



Table 4: Predicted b-values (SE) from regression analyses of EBV and GEBV 382 

Trait1 GEBV-12 GEBV-S 3 GEBV-M4 

CO1-5 1.70 (0.18) 0.91 (0.09) - 

    

RP1 0.87 (0.09) 0.87 (0.09) 0.83 (0.07) 

RP2-5 1.81 (0.17) 1.50 (0.08) 1.43 (0.07) 

    

MET1 0.53 (0.06) 0.52 (0.06) 0.56 (0.06) 

MET2 0.27 (0.03) 2.63 (0.28) 0.36 (0.05) 

MET3 0.38 (0.04) 0.41 (0.10) 0.32 (0.06) 

MET4 0.36 (0.05) 2.66 (0.52) 0.24 (0.06) 

MET5 0.68 (0.08) 0.69 (0.18) --- 

    

SH1 0.91 (0.08) 0.91 (0.08) 0.88 (0.08) 

SH2 0.41 (0.05) 0.87 (0.09) 0.71 (0.06) 

SH3 0.32 (0.05) 0.74 (0.07) 0.66 (0.05) 

SH4 0.18 (0.05) 0.84 (0.07) 0.58 (0.04) 

SH5 0.23 (0.04) 0.99 (0.25) 0.56 (0.04) 

1CO was analyzed with the 5 lactations as repeated records in a univariate repeatability model. 383 

RP in lactation 2 to 5 were analyzed as repeated records in a repeatability model, together with 384 

RP in the first lactation as a correlated trait in a bivariate model.  MET and SH were analyzed 385 

with 5 lactations as genetically correlated traits in multivariate models. 386 

2b-value from regression between EBV for the five lactations of a disorder and GEBV of the 387 

first lactation of the same disorder, GEBV estimated from a single trait GBLUP 388 



3b-value (SE) from regression between EBV and GEBV of the same lactation for the same 389 

disorder, GEBV estimated from a single trait GBLUP 390 

4 b-value from regression between EBV and GEBV of the same lactation for the same disorder, 391 

GEBV estimated from a multitrait GBLUP 392 

 393 




