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ABSTRACT2

Random networks of integrate-and-fire neurons with strong current-based synapses can,3
unlike previously believed, assume stable states of sustained asynchronous and irregular firing,4
even without external random background or pacemaker neurons. We analyze the mechanisms5
underlying the emergence, lifetime and irregularity of such self-sustained activity states. We6
first demonstrate how the competition between the mean and the variance of the synaptic7
input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the8
synaptic coupling strength, the system can become bistable: In addition to the quiescent state,9
a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation.10
Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point11
can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of12
the population-rate fluctuations and the size of the basin of attraction of the nontrivial rate fixed-13
point determines the onset and the lifetime of self-sustained activity states. During self-sustained14
activity, individual neuronal activity is moreover highly irregular, switching between long periods15
of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic16
weights and the finite time constant of synaptic and neuronal integration, and can actually serve17
to stabilize the self-sustained state.18
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1 INTRODUCTION

The sustained activity of populations of spiking neurons, even in the absence of external input, is21
observed in many circumstances, amongst them spontaneously active neurons in cell cultures (see, e.g.,22
Marom and Shahaf (2002); Wagenaar et al. (2006)), in vitro slice preparations (see, e.g., Plenz23
and Aertsen (1996); Mao et al. (2001); Cossart et al. (2003); Shu et al. (2003)) and even in toto24
preparations of whole brain parts, such as cortical slabs (Burns and Webb, 1979; Timofeev et al., 2000)25
or the entire hippocampus (Ikegaya et al., 2013). Another prominent phenomenon in this context is the26
existence of up and down states in striatum and cortex, i.e., states in which neurons switch between two27
preferred membrane potentials: In the so-called down-state membrane potentials are close to the resting28
value, corresponding to a quiescent state, while in the so-called up-states membrane potentials are at a29
depolarized level that allows for the emission of spikes. These states are observed both in vivo (Steriade30
et al., 1993, 2001) and in vitro (Sanchez-Vives and McCormick, 2000; Cossart et al., 2003; Shu et al.,31
2003). Finally, the persistent activation of groups of neurons is a key element of working memory, the so-32
called delay activity, which is commonly observed in the prefrontal cortex of awake behaving monkeys33
during active memory tasks, where animals have to remember a presented stimulus after it is removed34
(Goldman-Rakic, 1995).35

Several possible explanations of how neuronal networks can generate and sustain activation of36
subpopulations of neurons have been put forward in the past, amongst them persistent activation by37
thalamo-cortical and cortico-cortical loops, intrinsic cellular bistability, or attractor states of local38
recurrent networks (Wang, 2001; Compte, 2006). Especially the latter idea inspired a lot of research39
in the framework of spiking neuronal networks (e.g., Compte et al. (2000, 2003a,b); Brunel (2003);40
Holcman and Tsodyks (2006); Compte (2006); Renart et al. (2007); Vogels and Abbott (2005);41
Kumar et al. (2008); Destexhe (2009)) and neural-field models (e.g., Wilson and Cowan (1972, 1973);42
Amari (1977); Laing and Chow (2001); Coombes (2005)). One important element required for stable43
persistent activation in network models is strong excitatory feedback, while inhibition is needed to keep44
the system from entering a state of run-away excitation.45

Of particular interest is the question of what constitutes the minimal cortical architecture to generate46
sustained activity states, especially states that stay active even without additional external or non-local47
input. Griffith (1963) already presented a general proof of principle that abstract networks of excitatory48
and inhibitory neurons can stably sustain states of persistent ongoing activity. Kumar et al. (2008), Vogels49
and Abbott (2005), and El Boustani and Destexhe (2009) showed, moreover, how balanced random50
networks of leaky integrate-and-fire (LIF) neurons with conductance-based synapses can sustain states51
of elevated rate in the absence of external input. This is due to a non-monotonic input-output firing-rate52
function resulting from the shunting of membrane-potential fluctuations and a modulation of the effective53
membrane time constants (Kuhn et al., 2004).54

In most of these models, attractor states are characterized by rather constant individual firing rates and55
homogeneous population activity. In experimental investigations of sustained states in prefrontal cortex56
during working memory (Marder et al., 1996; Wang, 2001; Compte et al., 2003a; Compte, 2006;57
Druckmann and Chklovskii, 2012) and also up-states (Shu et al., 2003), however, it is observed that58
individual neurons vary a lot in their relative contribution to the local population activity over time, with59
periods of both silence and elevated rates, while the compound activity persists. A computational model60
of self-sustained activity should reproduce this pronounced irregularity in the spike times of individual61
neurons.62

Here, we demonstrate that LIF neurons with current-based synapses can sustain highly irregular activity63
at moderate rates provided the coupling between them is sufficiently strong (see also the preprint by64
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Gewaltig (2013)). That strong weights indeed occur in neuronal networks was demonstrated in thorough65
experimental investigations that showed that distributions of synapse strength J in cortex are log-normally66
distributed, with many weak and some very strong synapses leading to postsynaptic-potential (PSP) peak-67
amplitudes of up to a few millivolts (see e.g. Song et al., 2005; Lefort et al., 2009; Avermann et al.,68
2012). The same was observed for inter-pyramidal synapses in hippocampus (Ikegaya et al., 2013). These69
few but strong synapses suffice to allow self-sustained asynchronous-irregular (SSAI) activity, provided70
the relative inhibitory strength g is in the right range. Teramae et al. (2012) and Ikegaya et al. (2013)71
have studied similar effects in networks of neurons with conductance-based synapses. Here, we show by72
numerical simulations that there is a distinct transition in the g-J-plane above which the system jumps to73
very large, virtually infinite lifetimes of persistent activity, and thus appears to become stable.74

We demonstrate by simple arguments how the competition between the mean and variance of the75
neuronal input as a function of synaptic strength leads to a non-monotonic firing-rate transfer in the76
network. Thus, by increasing the synaptic coupling strength the system can become bistable, and in77
addition to the quiescent state a second stable fixed point at moderate firing rates, the SSAI state, can78
emerge by a saddle-node bifurcation. The population activity in this SSAI state is characterized by79
inherent population fluctuations and highly irregular spiking of individual neurons.80

We show that the high irregularity in the activity of individual cells is induced by the large fluctuations81
of the neuronal input currents which keep the membrane potential far away from threshold for long times82
and induce firing at close to maximal rate when there is a large occasional suprathreshold transient. Hence,83
the firing-rate activity of individual neurons is basically binary. In particular, it demonstrates that highly84
irregular individual neuron firing and stable sustained activity states are indeed compatible and do not85
necessitate extra sources of variability, such as additional external noise or cellular bistability.86

The substantial population fluctuations on the other hand lead to a constant perturbation of the network87
activity from the SSAI-attractor. We show how taking this into account in a simple escape rate model can88
explain the observed lifetimes of the persistent activation as a function of the network coupling parameters89
g and J : If the fluctuations are too strong, the system can escape the basin of attraction and activity90
spontaneously breaks down, while for other g-J-pairs the escape probability becomes very small and the91
system is virtually stable on biologically relevant time scales.92

The paper is organized as follows: In Section 2 we will shortly outline the neuron and network model as93
well as the data analysis techniques used in this paper. In Section 3.1 we present the essential features of94
the SSAI-state in strongly coupled networks, and then explain the mechanism underlying its emergence95
and irregularity in Section 3.2. Section 3.3 discusses the effect of synaptic weight distributions on the96
emergence of SSAI. In Section 3.4 we show how a stochastic rate model can capture the distribution of97
lifetimes observed in simulations, and in Section 4 we finally summarize and discuss our results.98

2 MATERIAL & METHODS

2.1 NETWORK MODEL

We study balanced random networks (van Vreeswijk and Sompolinsky, 1996; Brunel, 2000) ofN leaky99
integrate-and-fire (LIF) neurons with current-based synapses. Each network is composed ofNE excitatory100
and NI = γNE inhibitory neurons. Throughout the article, we assume γ = 1/4; see Tables 5.1 and 5.2101
for a concise summary of models and parameters following Nordlie et al. (2009). The network topology102
is random, i.e., all neurons are connected independently with equal probability ε ∈ [0, 1], irrespective of103
their identity.104
Though all results we present below hold for a very broad class of balanced random networks, all neurons105
in the simulations presented here received the same number of excitatory and inhibitory synapses, i.e.,106
CE = εNE and CI = εNI , respectively. Here, we will use ε ∈ {0.01, 0.1} which spans connection107
probabilities observed in local cortical networks.108
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Finally, we assume that the coupling strength is parametrized by the peak-amplitude Jij of the109
postsynaptic potential (PSP) that is evoked in a neuron i in response to incoming spikes, such that110

Jij =

J if the presynaptic neuron j is excitatory,
−gJ if the presynaptic neuron j is inhibitory,
0 if the synapse j → i does not exist

. (1)

We emphasize that the main results do not crucially depend on the network density or the fine details of111
the weight and degree distribution.112

2.2 NEURON MODEL

The dynamics of the subthreshold membrane potential Vi(t) of neuron i is linear and governed by113

τmV̇i(t) = −Vi(t) +RmIsyn,i(t− d) +RmIext,i(t) (2)

with membrane time constant τm, membrane resistance Rm, a finite transmission delay d, the total114
synaptic input current Isyn,i resulting from the local-network activity, and the external current Iext,i(t).115
The synaptic input current is given by the linear superposition of post-synaptic currents, i.e., Isyn,i(t) =116 ∑

j∈Pre[i]

∑
k PSCij(t − tj,k), where Pre[i] denotes the set of presynaptic neurons of neuron i, and k117

denotes the k-th spike emission of neuron j ∈ Pre[i]. The post-synaptic current PSCij(t) is given by118

PSCij(t) = A(Jij)
t

τsyn
e1−t/τsyn H(t) , (3)

resulting in a post-synaptic potential119

PSPij(t) =
RmA(Jij)e

τmτsyn

(
e−t/τm − e−t/τsyn

(1/τsyn − 1/τm)2
− te−t/τsyn

1/τsyn − 1/τm

)
H(t) , (4)

Here, τsyn is the synaptic time constant, whereas A(Jij) denotes the respective current amplitude needed120
to evoke a PSP of maximal amplitude Jij , cf. Eqn. (1). H(·) denotes the Heaviside function. The current121
amplitude A(J) can be computed numerically or in a closed form by using the Lambert-W-function. For122
fixed Jij , the current amplitude A(Jij) is a function of Rm, τm and τsyn.123

To initially activate the network, in Figs. 1–4, 10 and 11, external currents Iext,i(t) (i ∈ [1, N ]) are124
modeled as shot-noise processes (Papoulis and Pillai, 2002) resulting from independent realizations of125
an inhomogeneous Poisson process with rate126

νext(t) =

{
νext if tstim,on < t ≤ tstim,off
0 else , (5)

and a filter kernel as defined by Eqn. 3. Note that in these cases the external input is only delivered during127
the period t ∈ (tstim,on, tstim,off].128

In Figs. 5C,D and 6A, we use external Poisson processes of constant rate filtered by kernels of the form129
Eqn. 3 to drive the network over the whole duration of the simulation in order to mimic a network situation130
with uncorrelated stationary input spike trains, see discussion in Sec. 3.2.2.131

Whenever V (t) = Vthr, the neuron emits a spike and is reset to V (t+) = Vres < Vthr. The neuron is132
then absolute refractory for some time τref and clamped at Vres during this period. We emphasize that even133
though here synapses with finite time constants are used, all results do not depend on this and generalize,134
e.g., to networks of neurons with instantaneous δ-shaped synaptic currents. Parameters used in network135
simulations are specified individually and summarized in Table 5.2. All simulations were carried out with136
NEST (Gewaltig and Diesmann, 2007).137
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2.3 DATA ANALYSIS

2.3.1 Lifetime For each parameter pair (g, J) we performed k = 10 simulations with different random138
realizations of the network. The lifetime T of the self-sustained activity is then defined as follows: For139
each of the 10 network realizations we determine the time t at which activity seizes after the external140
input was turned off at tstim,off − d, where d is the synaptic delay. We find that for given parameters g141
and J the survival time of the self-sustained activity after turning off the external input is approximately142
exponentially distributed (Fig. 1). We thus obtain T by fitting e−(t−tstim,off)/T to this data (see Fig. 1).

Figure 1. Population activity in single trials and trial averaged activity. The individual colored traces (red, yellow, purple) show the population activity
while the neurons receive external excitatory input for t ∈ [tstim,on, tstim,off] (here tstim,on = 0 and tstim,off = 1000 ms) and after (t > tstim,off) for g =

4.4, J = 1.1 mV. The trial averaged population activity (averaged over 100 simulations with the same parameters) is depicted in gray. The black curve shows
an exponential fit with estimated exponential constant T = 487 ms that we define as the lifetime (see text). Other parameters: N = 125 000, ε = 0.01,
Vthr = 20 mV, Vres = 0 mV, Rm = 80 MΩ, τm = 20 ms, τsyn = 0.5 ms, τref = 2 ms, d = 1.5 ms.

143

2.3.2 Population rate The population rate is estimated by the temporal average of the population spike144
count per time bin ∆t = 0.5 ms, i.e.,145

ν(t) =

bttot/∆tc∑
l=1

∑N
i=1 χ [i, l]

∆t
, (6)

where ttot is the total time interval under consideration, and χ[i, l] is a function that returns the number of146
spikes of neuron i in time bin l. To obtain the average firing rate, we compute147

ν̄ = E[〈ν(t)〉] (7)

where E[.] denotes the average across network realizations and 〈.〉 denotes the temporal average.148

2.3.3 Coefficient of variation of inter-spike intervals To estimate the coefficient of variation (CV) of149
inter-spike intervals (ISI), we compute the ISI of n = 500 neurons, if they spiked at least twice during the150
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time interval ttot under consideration. To obtain the average CV, the individual151

CV[ISIi] =

√
〈ISI2

i 〉 − 〈ISIi〉2

〈ISIi〉
(8)

are computed and averaged over all neurons i ∈ 1, . . . , n, i.e.,152

CV =
1

n

n∑
i=1

CV[ISIi] . (9)

2.3.4 Pairwise correlations To estimate the pairwise correlations between neurons, we removed the153
stimulus period tstim = tstim,off − tstim,on, see Sec. 2.3.1, and the initial transient after that stimulus period154
from the spike train data, that were then binned in time bins of size h. h was set such that there would155
be on average 2.5 spikes in each bin, but constrained to h ≥ 10 ms. The resulting time series Si(t) were156
centralized, i.e., the mean was subtracted, such that S̄i(t) = Si(t) − 〈Si(t)〉. Then the auto-covariance157
functions Ai(τ) = 〈S̄i(t)S̄i(t + τ)〉 and cross-covariance functions Cij(τ) = 〈S̄i(t)S̄j(t + τ)〉 were158
evaluated at time lag τ = 0. The individual resulting correlation coefficients cij are given by159

cij =
Cij(0)√

Ai(0)Aj(0)
. (10)

The correlation coefficients cij were computed for a neuron population of size n = 500 and then averaged160
over this subpopulation in order to produce the average correlation coefficient c̄, i.e.,161

c̄ =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

cij . (11)

2.3.5 Network response function The spiking activity of the network is inherently fluctuating and162
chaotic. To estimate the response function of the network we thus assume that the instantaneous population163
rate ν(t) at time t is a function of the rate ν(t− δt) at a previous time t− δt plus noise, with δt = 1.5 ms,164
or analogously165

ν(t+ δt)− ν(t) = ∆ν(ν(t)) + ξ(t), (12)
where the noise ξ(t) is assumed to be a stationary process. To estimate the response function ∆ν(ν), the166
instantaneous network rate, calculated in time bins ti of size ∆t = 0.5 ms, was binned into nb = 40 bins167
of equal size δν, and for each bin νj , the average response was calculated as168

∆ν(νj) = 〈ν(ti + δt)〉ν(ti)∈νj − νj , (13)

where the average is taken over all i such that ν(ti) was in the bin centered on νj , i.e., νj − 1
2δν ≤169

ν(ti) < νj + 1
2δν. The data from k = 10 simulations with different random realizations of the network170

was aggregated into one average response function.171

2.4 ABELES MODEL

In many simplified integrate-and-fire neuron models that receive temporally fluctuating input current from172
a pool of presynaptic neurons, the probability to emit a spike is determined by two key properties of this173
integrated input: its mean and variance with respect to the firing threshold. In essence, the output rate of174
such a neuron will depend on the probability that the free membrane potential is suprathreshold.175
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This is the essence of models as proposed in Abeles (1982) and Amit and Brunel (1997). The176
membrane potential distribution in absence of a threshold (free membrane potential Vfree) can often be177
approximated by a Gaussian178

P (Vfree, µ, σ) =
1√
2πσ

e
−(µ−Vfree)

2

2σ2 , (14)

where µ = µ[Vfree] and σ = σ[Vfree] are the mean and standard deviation of the free membrane potential.179
The area under the Gaussian above firing threshold can then be related to the firing probability f(µ, σ) in180
the following way:181

f(µ, σ) =
1√
2πτ

∫ ∞
Vthr−µ
σ

e−x
2/2 dx , (15)

where τ denotes a characteristic memory time constant, e.g., the membrane time constant.182

3 RESULTS

We investigate the transition in the dynamic behavior that random networks of inhibitory and excitatory183
LIF neurons undergo when the synaptic coupling strength J is increased. For small J , the network needs184
permanent external drive to remain active (Brunel, 2000). Depending on the strength of this external185
drive and the synaptic coupling parameters g and J , spiking activity can be asynchronous and irregular186
(Fig. 2A). For sufficiently large J , however, the network can stay active even in the absence of external187
drive, i.e. for Iext = 0. Spiking is much more irregular in this self-sustained regime and population activity

Figure 2. Externally driven (A) and self-sustained asynchronous-irregular activity (B). Spiking activity of a subset of 500 randomly selected neurons (top
panels) and instantaneous population-averaged firing rate (“population activity”; bin size 0.5 ms; bottom panels). A: J = 0.1 mV, g = 4.2, [tstim,on, tstim,off] =

[−1000, 1000] ms. B: J = 1.0 mV, g = 4.2, [tstim,on, tstim,off] = [−1000, 0] ms. Other parameters as in Fig. 1.

188
is characterized by pronounced fluctuations (Fig. 2B). In the present paper, we investigate the mechanisms189
underlying the emergence, the spike-train irregularity, and the lifetime of self-sustained asynchronous-190
irregular (SSAI) activity .191

3.1 CHARACTERISTICS OF SELF-SUSTAINED ACTIVITY IN RANDOM LIF NETWORKS
WITH STRONG SYNAPSES

To characterize the dynamical features of the SSAI state, we first analyze the lifetime, firing rate,192
irregularity and correlations in dependence of coupling strength J and relative inhibition g, here for193
network size of N = 1.25× 105 with connection probability ε = 0.01.194
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The lifetime of the SSAI increases rapidly from zero to more than 1000 seconds (i.e., networks stay195
active for the whole duration of the simulation) within a narrow band in the parameter space spanned by g196
and J , see Fig. 3A. This transition band becomes wider, i.e., more gradual in terms of J , as g is increased,197
indicating a more shallow transition between transient and stable self-sustained activation. The rate of198
the persistent activity is typically between 20 and 50 s−1, increasing to 400 s−1 when excitation becomes199
dominant at g < 4, see Fig. 3B.

Figure 3. Lifetime (A) and firing rate (B) of SSAI. Dependence of the SSAI lifetime (A) and mean firing rate (B) (cf. Eqn. (7)) on the synaptic weight J
and the relative strength g of inhibition. Lifetimes and mean firing rates were measured after the external input was turned off. Data represent averages over 10

network realizations. White curves in A mark saddle-node bifurcations obtained from the diffusion approximation of the LIF neuron (see Brunel (2000) and
Eqn. S1 in the supplementary material with input current mean and variance derived from Eqn. (17); dotted curve) and from the Abeles-type two-state model
(19) (dashed; with rmax = 1/2τref, see Sec. 3.4.1). Other parameters as in Fig. 1.

200

Fig. 4A, moreover, demonstrates that during SSAI the coefficient of variation (CV) of inter-spike201
interval (ISI) are typically substantially higher than unity, meaning that spike trains are more irregular202
than a Poisson process, while Fig. 4B shows that pairwise spike-train correlations– indicating residual203
synchrony– decrease for longer lifetimes, especially in the region of large g and J .204

In summary, for wide regions of the g-J-parameter space, network activity is sustained without external205
drive for long time periods, the firing rates are in an intermediate range and spiking activity is highly206
irregular and asynchronous. In the next section, we suggest a simple mechanism for the emergence of207
SSAI.208

3.2 BASIC MECHANISM UNDERLYING SELF-SUSTAINED ASYNCHRONOUS-IRREGULAR
ACTIVITY

Several earlier studies suggested that the self-sustained asynchronous-irregular activation we observe209
here is impossible in balanced random networks with current-based synapses (Kumar et al., 2008;210
El Boustani and Destexhe, 2009). To resolve this apparent contradiction, we now analyze the membrane211
potential dynamics in the SSAI-state. This will lead us to a reduced Abeles-type model, cf. Eqn. (15), that212
demonstrates the basic mechanism, i.e., the trade-off between the mean and the variance of the input of213
the neurons, underlying the occurrence of self-sustained activity.214

3.2.1 Large membrane potential fluctuations induce highly irregular spiking Inspection of the215
membrane potential traces of neurons in SSAI states reveals that they fluctuate strongly (on the order216
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Figure 4. Spike-train irregularity (A) and pairwise correlations (B) in the SSAI-state. Dependence of the mean coefficient of variation CV, see Eqn. (9),
of the inter-spike intervals (A) and the mean spike-train correlation coefficient Eqn. (11) (B) on the synaptic weight J and the relative strength g of inhibition.
The gray-shaded area marks regions where activity was not sufficient for analysis (see Fig. 3A). Other parameters as in Fig. 1.

of volts, rather than millivolts, depending on the amplitude of input current variance), only limited by217
the threshold for positive values and the maximally possible inhibitory input for negative values, which218
depends on the dynamical state of the system.219

If we consider the free membrane potential Vfree(t), i.e., the membrane potential dynamics if the spike220
threshold Vthr is set to infinity, as a representative monitor for the filtered input from the network, we221
see that Vfree(t) also has large excursions to positive values, cf. Fig. 5A, gray curve. The corresponding222
normalized histograms for these particular traces are shown in Fig. 5B. Note that for the neuron model with223
finite spike threshold (black) the membrane potential cannot be beyond threshold Vthr, and instead there224
is a large peak in the histogram around the reset potential Vres (the amplitude of the peak is approximately225
0.056, not shown).226

Moreover, due to these extreme fluctuations the neuron reset amplitude becomes almost negligible due to227
the occasional massive net-excitatory input transients, and as long as the free membrane potential Vfree(t)228
is above threshold Vthr and has positive derivative, the neuron fires at close to the maximum rate given229
by rmax ∼ 1/τref (see inset in Fig. 5A for illustration). The free membrane potential must have positive230
derivative, i.e., the neuron must receive net excitatory current, to drive the neuron to threshold because of231
the subthreshold reset after the spike. A large fraction of time, however, the membrane potential spends232
far below the threshold, leading to long periods of time where the neuron does not spike. This results in233
highly irregular spike trains with coefficients of variation (CV) larger than unity (here, CV= 2.91).234

3.2.2 LIF-neuron driven by strongly weighted Poisson input The full self-consistent dynamics of self-235
sustained activity states is hard to assess because of the non-linear input-output relation of LIF neurons236
and the non-Poissonian nature of the compound input spike trains that characterizes the SSAI-state. To237
address the spiking irregularity in the case of strongly weighted input spikes, we thus now consider a238
simplified scenario where we assume that the incoming spike trains are independent stationary Poisson239
processes, implying a CV of unity for the input spike trains.240

Already in this case, Vfree(t) spends large fractions of time at very hyperpolarized values, and only241
occasionally there are suprathreshold fluctuations, resulting in long periods of silence, interrupted by242
burst-like spiking, see Fig. 5C. The distribution of Vfree(t) (Fig. 5D) is narrower than for the full recurrent243
dynamics shown in Figs. 5A,B, yet already covers several hundred millivolts. The simple structure of the244
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Figure 5. Strong input fluctuations in strongly coupled networks lead to irregular spiking. A The membrane potential V (t) including the spike threshold
and reset (black) versus the corresponding free membrane potential Vfree(t) (gray) recorded from a neuron in a SSAI network. The free membrane potential
serves as a monitor of the effective filtered input current the neuron receives. Whenever Vfree(t) > Vthr, the neuron spikes at high rate r ∝ 1/τref (spikes
indicated by red asterisks at the threshold value Vthr). The inset shows a zoom into the membrane potential trace to better show the rapid spiking during
suprathreshold fluctuations of the free membrane potential (zoom window t ∈ [1370, 1570] ms, V (t) ∈ [−20, 700] mV). The average spike rate of this
neuron was 76.4/s with a CV of 2.91. B shows the histogram of the two traces in A . C and D show the same for the reduced Abeles-type model, where
the incoming spike trains are assumed to be Poissonian. Here, average spike rate was 36.2/s with a CV of 1.63. The inset zoom window is t ∈ [0, 300] ms,
V (t) ∈ [−20, 300] mV. The dashed red curve in D depicts the expected Gaussian distribution of Vfree with mean and variance given by Eqn. (17). Parameters:
simulation time 40 s, g = 4.2, J = 3.5 mV, CE = 400, CI = 100, other parameters as in Fig. 1.

Poisson input, moreover, allows to derive the distribution of Vfree(t) (red dashed curve in Fig. 5D) as we245
will discuss in the next section.246

The spiking activity, coefficient of variation CV, population spike count, free membrane statistics, and247
pairwise spike train correlation coefficient cij of uncoupled LIF neurons driven by such approximately248
balanced, but strongly weighted Poisson input, are shown in Fig. 6A,D,E, and F (light gray). Indeed, even249
in this reduced model the average CV of the output spike train-ISI is beyond unity at CV ∼ 1.6, i.e.,250
spiking is more irregular than Poisson (Fig. 6A). Pairwise spike train correlations were computed for 500251
randomly selected neurons. As to be expected for uncoupled neurons injected with uncorrelated Poisson252
input, correlation coefficients are symmetrically distributed around zero, cf. Fig. 6F.253

Fig. 6B shows the spiking and population count activity for 200 LIF neurons with input spike trains254
sampled from the Poisson-driven population shown in Fig. 6A, with the same common input structure as in255
the recurrent network (first-order recurrence). The corresponding CV ∼ 2, population count distribution,256
and free membrane potential distribution (Fig. 6B,D-E, dark gray lines) show that variability is greater257
than for the Poisson-driven case, but still much smaller than in the full SSAI dynamics (Fig. 6A,C-E,258
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black). Spike train correlations are now slightly positive on average, here c̄ = 5.4× 10−3, yet correlation259
coefficients are still approximately symmetrically distributed around zero.260

In Fig. 6C the corresponding full self-consistent SSAI dynamics for identical parameters is shown (∞-261
order reccurence), revealing the higher amplitude of population fluctuations and spiking variability with262
an average CV of spike train-ISI of CV ∼ 3. The population spike count is skewed to higher values, see263
black line in Fig. 6D, indicating the increased transients of correlated spiking that are visible as vertical264
stripes in the spike raster plot in Fig. 6C. Indeed, spike train correlations (see Fig. 6F, black line) are265
now clearly positive on average with a more than ten-fold increased value of c̄ = 0.068 compared to the266
correlations between spike trains shown in Fig. 6B.267

This demonstrates how the full recurrent network amplifies weak pairwise correlations and irregularity268
of spiking, yielding much larger population fluctuations, wider free membrane potential distribution,269
and higher CV of ISIs compared to what is expected from the Poisson-input assumption. Moreover,270
as the variability increases, also firing rates increase. For the Poisson-driven ensemble the average rate271
is 36 s−1 (Fig. 6A), for the ensemble-sampling neurons it is 51.1 s−1 (Fig. 6B), and for the full self-272
sustained dynamics it is 81 s−1 (Fig. 6C). At the same time, the fraction of ISIs that are close to the273
minimal ISI τref = 2 ms becomes larger. If we denote the interval between τref and τref + 1 ms by ISI1,274
and the next ISI2 := [τref + 1 ms, τref + 2 ms], the fraction f [ISI] of ISIs falling into these bins are275
(f [ISI1], f [ISI2]) = (0.14, 0.15) for spike trains in Fig. 6A, (f [ISI1], f [ISI2]) = (0.22, 0.23) for spike276
trains in Fig. 6B, and (f [ISI1], f [ISI2]) = (0.54, 0.2) for spike trains in Fig. 6C. This means, that while277
only about 30% of ISIs are shorter than 4 ms for neurons sampling from Poisson input, about 75% of ISIs278
in the recurrent SSAI-network fall into this category.279

3.2.3 Reduced two-state Abeles-type firing rate model From the observations of the last two sections,280
we will now derive a simple dynamical model to analyze the basic mechanism underlying the saddle-node281
bifurcation that leads to the emergence of a second stable fixed-point at finite rate, i.e., the self-sustained282
state. As discussed in Sec. 3.2.2, if J is strong, the resulting membrane potential of a LIF neuron undergoes283
large fluctuations also in the case of strongly weighted uncorrelated Poisson-input. Spikes are emitted at284
high rate r whenever the free membrane potential, i.e., the effective neuron drive, is (i) above threshold285
and (ii) has positive derivative, while the neuron is quiescent at basically all other times, cf. Fig. 5C.286
The free membrane potential fluctuates around a fixed mean, and if the input is approximately balanced,287
the derivative of Vfree(t) should be positive about half the time, i.e., we estimate the firing rate during288
suprathreshold excursions to be r . rmax =: 1/2τref.289

To derive the time that Vfree(t) is in the suprathreshold state, we observe that for uncorrelated stationary290
Poisson inputs of rate νj the distribution of the free membrane potential Vfree is approximately given by a291
Gaussian with mean µ = µ[Vfree] and standard deviation σ = σ[Vfree], such that292

P (Vfree, µ, σ) =
exp

[
−(Vfree−µ)2

2σ2

]
√

2πσ
(16)

with293

µ[Vfree] =
∑

j∈Pre[i]

νj

∫ ∞
0

PSPij(t) dt , σ2[Vfree] =
∑

j∈Pre[i]

νj

∫ ∞
0

PSP2
ij(t) dt . (17)

The PSP(t) for α-type synapses is defined in Eqn. (4).294
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Figure 6. Spiking dynamics, CVs, free membrane potential, and correlation statistics. A, B and C show the spiking activity and population dynamics of
200 neurons in terms of spike counts per millisecond for an ensemble of Poisson-driven LIF neurons (A, light gray), an ensemble of neurons in turn driven by
spike trains sampled from the ensemble in A (B, dark gray), and the full recurrent SSAI dynamics (C, black), respectively. D shows the corresponding count
distributions, E depicts the respective distributions of the free membrane potentials, and F the respective distributions of the pairwise spike train correlation
coefficients cij . The insets in A-C show the respective average coefficients of variation CV of interpike-intervals. For otherwise identical parameters the full
self-sustained dynamics (D, E, black) is characterized by a much more variable population spike count and dynamics of the free membrane potential than the
simplified model with Poisson input (D, E, light gray) which is fully explained by Eqn. (23) in D, and by Eqns. (16),(17) in E (black dashed). F illustrates how
the pairwise spike train correlations gradually shift to positive values and distributions broaden when neurons sample from the Poisson-driven population (F,
gray) and in the fully-recurrent SSAI-state (F, black) compared to the Poisson-driven ensemble (F, light gray), where they cluster around zero. Parameters as
in Fig. 5.

The probability q>Vthr
for the free membrane potential to be above threshold thus equals the fraction of295

the area under P (Vfree, µ, σ) above the threshold, i.e.,296

q>Vthr
(µ, σ) =

1

2

(
1− erf

[
Vthr − µ√

2σ

])
. (18)

All neurons in expectation spike at the same rate, such that Eqn. (18) can in analogy to the Abeles model297
Eqn. (15) be used to estimate an upper bound 〈ν(t)〉max for the time-averaged firing rate of the neuron, if298
we assume that the neurons keep integrating inputs while in the refractory state1, i.e.,299

〈ν(t)〉max = q>Vthr
(µ, σ)× rmax =

q>Vthr
(µ, σ)

2τref
. (19)

Because µ and σ are functions of ν(t), we can find the self-consistent rate solution for any given parameter300
set {J, g, CE , CI}, i.e.,301

ν0 = q>Vthr
(µ0, σ0)× r , (20)

where µo = µ(ν0) and σ0 = σ(ν0) again are the self-consistent mean and standard deviation.302

1 If we assume absolute refractoriness, i.e., the neuron loses the input during that period, the dynamics becomes biased towards higher rate because the neuron
stays at Vres in the presence of the net-inhibitory input from the network. In the actual system that will be considered in Sec. 3.4 this is indeed the case, and the
clamping at Vres during τref is explicitly taken into account in the diffusion limit solution in Brunel (2000).
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Moreover, we can assess the critical parameters for which (i) there exists a 〈ν(t)〉 = ν0, such that303
Eqn. (20) has a self-consistent solution, and (ii) this solution is stable. The latter is determined by304
computing the slope of Eqn. (19) at ν0, i.e.,305 ∣∣∣∣∣d

(
q>Vthr(〈ν(t)〉)× r

)
d〈ν(t)〉

∣∣∣∣∣
〈ν(t)〉=ν0

=

∣∣∣∣∣ rν0

(µ0 + Vthr)√
8πσ0

e
− (Vthr−µ0)2

2σ20

∣∣∣∣∣ !
< 1 , (21)

where the final condition is necessary for stability.306

Fig. 7A demonstrates this saddle-node bifurcation by evaluating the output rate Eqn. (19) with µ and σ307
as a function of input rate ν for increasing J and g = 4.2. The crossing of the resulting curve (gray) with308
the bisection line (black) indicates identity of input and output, i.e., fixed-points. The saddle-point that309
marks the onset of the saddle-node bifurcation is depicted in light gray, while the resulting new stable310
high-rate fixed-points after the saddle-node bifurcation are marked by dark gray dots.311

For increasing J , the new intermediate unstable fixed-point moves closer to the zero-rate fixed-point.312
This is shown in Fig. 7B which depicts the dependence of the fixed-points of νmax

0 := q>Vthr
(ν0)/2τref313

on J for three different g: For increasing J the resulting high-rate fixed-points (Fig. 7B, non-zero solid314
lines) of νmax

0 first quickly increase, but eventually level out, in line with the closer spacing we observe in315
Fig. 7A. The intermediate unstable fixed-points (Fig. 7B, dashed lines) move to smaller rates for increasing316
coupling strength J , asymptotically moving towards the zero-rate fixed-point. This indicates a loss of317
stability of the zero-rate fixed-point with increasing coupling strength. This is akin to the situation in the318
full spiking system where a single spike– the smallest perturbation from the quiescent state– can suffice to319
activate the SSAI state, if J becomes of the order of the distance between resting and threshold potential,320
see supplementary material Sec. 3. Finally, for fixed J , both intermediate and high-rate fixed-point rates321
decrease with increasing inhibition g (from dark to light gray).322

In the Abeles model, a smaller fixed-point rate corresponds to a smaller area of the free membrane323
potential above threshold, i.e. smaller q>Vthr

(ν). The area above threshold is determined by the trade-off324

between mean and standard-deviation: for fixed mean µ[Vfree], an increase in σ[Vfree] can increase the area325
above threshold, while for fixed σ[Vfree] the mean µ[Vfree] will determine, if and how much mass of the free326
membrane potential distribution is suprathreshold. The mean of Vfree in our networks is typically negative327
(g ≥ 4), such that σ[Vfree] should be of the order of (Vthr − µ[Vfree]) to have a significant contribution in328
q>Vthr

(ν), see Eqn. (18).329

For example, evaluation of Eqns. (17) shows that µ[Vfree] is linearly dependent on CE , CI and 〈ν(t)〉,330
while the standard deviation has a square-root dependence instead, such that a change in any of these331
parameters can lead to a faster decrease in mean than increase in standard deviation. Moreover, even332
though both mean and standard variation are linear in the respective synaptic current amplitude A, and333
thus in g and J , inspection of Eqns. (17) shows that the mean outweighs the standard deviation quickly if334
the rate ν is not too small and g is not close to CE/CI . This predicts that in these cases no self-consistent335
solutions may exist.336

From the full spiking network, however, we saw that there is a wide range of g and J values that337
lead to long periods of sustained activity (see Fig. 3A). We hypothesize that this is innately related338
to the large population variance, and thus also input current variance, and the spiking irregularity in339
these self-sustained systems. The variance of the free membrane potential Vfree(t) is already larger, if340
a neuron samples from the Poisson-driven ensemble, cf. Fig. 6D, and some of the increased variance is341
hence explained by the more irregular input spike statistics. Counterintuitively, larger population activity342
fluctuations and spiking irregularity can thus make the system more likely to sustain spiking activity in343
the absence of external input by increasing the likelihood for suprathreshold input transients.344

To test how well the reduced two-state approach performs compared to actual spiking neurons, we345
simulated a population of LIF neurons with balanced Poisson inputs to mimic a network of sizeN = 5000346
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with connection probability ε = 0.1 and a ratio between excitation and inhibition of four, i.e., it received347
CE = 400 excitatory and CI = 100 inhibitory input spike trains.348

In order to mimic the self-consistent state, these Poisson inputs had a rate ν0 = νsim
0 that was numerically349

tuned such that the N stimulated neurons on average spiked with ν0 themselves. νsim
0 is smaller than what350

is predicted by Eqn. (20) with rmax = 1/2τref, cf. Fig. 7C. Indeed, when we solved for the corresponding351
spike rate r = rfit in Eqn. (20) that in turn resulted in νsim

0 , we found it to be generally smaller than 1/2τref352
for the parameters chosen here. Also, it depends on the average firing rate and coupling strength in that353
it gets closer to 1/2τref for larger νsim

0 and J , cf. Fig. 7D. The discrepancy is mostly due to the fact that354
it takes neurons a finite time to move back to firing threshold after emitting a spike in the presence of355
fluctuating input currents, and this effect is stronger for smaller fluctuation amplitudes. We remark that356
for the full SSAI-network shown in Fig. 6C, Eqn. (20) gives the right quantitative rate, if evaluated with357
Vfree measured from the simulation. The good agreement is explained by the much higher fraction of short358
ISIs reported in Sec. 3.2.2, justifying the assumption of r = 1/2τref.

Figure 7. Self-consistent rates as a function of coupling strength in the reduced model assuming Poisson input spike trains. A The reduced Abeles-type
model allows for a straight-forward evaluation of the rate fixed-point, its emergence and stability. νmax

0 := q>Vthr
(ν)/2τref as function of ν is shown here for

different values of J (J = {0.525, 0.825, ..., 3.825} from bottom to top and g = 4.2), the intersections of the curves with the diagonal line mark the fixed-
points; in particular the coalescence point is marked by a light gray circle, the stable non-trivial fixed-points by dark gray circles). The zero-rate fixed-point
and unstable fixed-point are not explicitly marked for sake of visibility. B shows all three fixed-point states νmax

0 as a function of J for three different g, where
the solid lines denote the stable fixed-points at zero rate and at high rates, while the dashed line denotes the unstable intermediate fixed-point. C shows the
self-consistent high rate fixed-point for a network where input spike trains are Poissonian. The solid gray line shows the self-consistent rate as obtained from
a direct simulation of the simplified model, and the solid black line shows the rate as predicted from Eqn. (20) with rmax = 1/2τref (g = 4.2, cf. panel B). In
D rfit, the rate fitted to match the result for νsim

0 from the direct simulation, is depicted as a function of coupling strength (gray) and compared to rmax (black).
Parameters as in Fig. 5.

359
Within the simplified two-state Abeles model approach followed here, we cannot only derive the360

self-consistent firing rate, but also the approximate distribution of the population spiking activity. The361
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probability for any neuron to be in the active state and fire with rate r is given by q>Vthr
(ν0). Thus, the362

probability B(k|N, q>Vthr
(ν0)) to have k active neurons in an ensemble of N identical neurons is given by363

the binomial distribution364

B(k|N, q>Vthr
(ν0)) =

(
N
k

)
q>Vthr

(ν0)k(1− q>Vthr
(ν0))N−k . (22)

The expected number and variance of counts in a time bin ∆t is then given by365

E[counts] = Nq>Vthr
(ν0) r∆t , Var[counts] = Nq>Vthr

(ν0)(1− q>Vthr
(ν0)) r∆t. (23)

We indeed find very good agreement for Poisson-driven LIF neurons with ν0 = νsim
0 and r = rfit, see366

Fig. 6D.367

The two-state firing rate approximation for Poisson-driven LIF neurons is thus a valuable tool to gain368
qualitative insight into the basic mechanisms that underlie SSAI in random networks of excitatory and369
inhibitory spiking neurons.370

3.3 EFFECT OF COUPLING STRENGTH HETEROGENEITY ON THE EMERGENCE OF SSAI
IN THE TWO-STATE ABELES-TYPE MODEL

So far we considered networks where all excitatory synapses are weighted by the same weight J , and371
all inhibitory synapses by the same weight −gJ , respectively, and studied how the emergence of SSAI372
depends on these parameters, both in explicit simulations, as well as in the two-state firing rate Abeles-type373
model. Yet, in this reduced firing rate framework it is straightforward to investigate the impact of arbitrary374
parameters on the emergence of SSAI, in particular the effect of more realistic weight distributions with375
finite variance.376

If we assume that all synaptic weights are distributed according to some excitatory and inhibitory weight377
distribution P (WiE) and P (WiI), respectively, the variance of the free membrane potential is given by378

σ2
i [Vfree] = EW

∑
j∈exc

νjW
2
ij

∫ ∞
0

PSP2
ij(t)dt+

∑
j∈inh

νjW
2
ij

∫ ∞
0

PSP2
ij(t)dt

 (24)

= εiENEαiE νE EW [W 2
iE ] + εiINIαiI νI EW [W 2

iI ]

≥ εiENEαiE νE EW [WiE ]2 + εiINIαiI νI EW [WiI ]
2 ,

with expectation value across network realizations EW [.], αiX :=
∫∞

0 PSP2
iX(t)dt, X ∈ {I, E},379

cf. Eqn. (4), and νI , νE are the firing rates of the inhibitory and excitatory neurons, which for simplicity380
we assume to be stationary and the same for all neurons of one type. Note, that the PSP(t) without381
loss of generality are now normalized such that their peak-amplitude equals 1 mV, and the Wij are382
dimensionless numbers. So as to be expected, because EW [W 2

ij ] ≥ EW [Wij ]
2 any finite variance of383

the weight distribution will increase the input current distribution variance as well.384

Many experimental studies report lognormally distributed synaptic weights Wij ∼ Log-N (m, s) (Song385
et al., 2005; Lefort et al., 2009; Avermann et al., 2012), i.e., the logarithm of the weights Log[Wij ] is386
normally distributed. Such distributions are parametrized bym and s, i.e., the mean and standard deviation387
of the distribution of Log[Wij ]. The mean and raw variance of the lognormally distributed weights are then388
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given by389

EW [Wij ] = em+s2/2 and EW [W 2
ij ] = e2(m+s2) . (25)

For this type of weight distribution we obtain390

σ2
i [Vfree] = εiENEαiEe

2(mE+s2E)νE + εiINIαiIe
2(mI+s2I)νI . (26)

How this increased input variance in terms of the parameters m, s of the lognormal weight distribution391
affects the emergence and fixed-point firing rate of the SSAI-state for the Abeles-type model,392
cf. Sec. 3.2.3, is shown in Fig. 8.393

If we fix the average values of the excitatory and inhibitory coupling strengths EW [|WiE |] = J and394
EW [|WiI |] = gJ , respectively (and thus µ[Vfree]), a lognormal distribution has left one effective degree395
of freedom. If we decide to vary the width-parameter s, the respective m must be m = Log[W ] − s2.396
So, if EW [W ] is fixed, larger s implies smaller m. The median of the lognormal distribution is given397
by em, such that for decreasing m more and more of the total number of synapses will have very small398
weight, while a small number will have very large weight, and the total variance grows. Fig. 8A shows399
the resulting effect of increasing sE on the weight distribution. The larger sE becomes (from dark to light400
gray), the more skewed and heavy-tailed the weight distribution gets for same mean coupling strength401
(denoted by the black dashed line). For comparison, we also plot the weight distribution as reported in402
(Song et al., 2005) (red line), where the authors measured EPSP-amplitudes between layer 5 pyramidal403
cells from visual cortex. The resulting curve is compatible with sE ≈ 1.32 for the chosen J = 3.5 mV.404
In fact, the expectation value of the data curve is E[Wij ] = 3.13 mV, which is of the same order as the405
average weight chosen here. Other studies report lognormal weight distributions with expectation values406
of the order of E[Wij ] = 0.5 mV for unitary EPSP- and IPSP-amplitudes in layers 2/3 of the mouse barrel407
cortex (Lefort et al., 2009; Avermann et al., 2012).408

The key effect of increasing the variance of the free membrane potential in this way, while keeping the409
mean fixed, is a decrease in the critical average coupling strength for the saddle-node bifurcation to occur.410
This is exemplified in Fig. 8B: The black lines show the high-rate fixed-point rate for E[WiE ] = 3.5411
and E[WiI ] = −gE[WiE ], with g = 4.2, for varying sE and zero sI (dash-dotted line), and both varying412
sE = sI (solid line). For this average coupling strength, the network is beyond the saddle-node bifurcation413
even for zero variance of the weight distribution, cf. Fig. 7B, so in both cases the lines start at non-zero414
rate for sE = 0. The main effect of increasing sE is thus an increase in fixed-point rate, explained by415
the increased variance of the free membrane potential distribution for same expectation value, i.e., larger416
q>Vthr

(ν).417

The gray lines show the same setup for EW [WiE ] = 0.5 mV. In this case, the zero-variance distribution418
analysis of Eqn. (20) predicts that there is only the zero-rate fixed-point. With increasing finite variance419
sE the system undergoes a saddle-node bifurcation, see gray curves in Fig. 7B. Moreover, because of the420
larger variance, this bifurcation happens earlier for the case where both excitatory and inhibitory weights421
have finite variance sE (solid line), but exists as well for the case where inhibitory weights are all identical422
(see also Teramae et al. (2012); Ikegaya et al. (2013)).423

Similar effects are expected from every manipulation that increases the variance of the free membrane424
potential, while keeping the mean approximately fixed, as well as manipulations increasing the mean425
for fixed or increasing variance, e.g. by varying the number of synaptic inputs CE , CI = γCE for fixed426
weights, as well as changing the amount of relative inhibition by γ or g.427

3.4 LIFETIME OF SSAI STATES IN A STOCHASTIC RATE MODEL

So far we analyzed the occurrence, variability and irregularity in terms of a reduced two-state Abeles-type428
model. But can we understand the transition from finite to virtually infinite lifetimes in the fully recurrent429
networks when the synaptic coupling strength increases?430
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Figure 8. Effect of the weight distribution on the SSAI state in the reduced Abeles-type model. A shows the excitatory weight distribution as a function
of the lognormal parameter sE for fixed expectation value EW [WiE ] (indicated by the vertical dashed line). Even though the mean coupling strength is
thus the same, the median moves to the left and the variance increases for increasing sE , such that most synapses are very weak, but few are very strong.
For comparison, we also plot the EPSP-distribution found for layer 5 pyramidal cells in visual cortex by Song et al. (2005) (red dashed line). It proves
compatible with the curve for sE = 1.325, showing that such values are not unrealistic for cortical networks. B demonstrates the effect of increasing sE on
the saddle-node bifurcation point. Solid lines mark the high rate stable fixed-point rate for the SSA state as predicted from the two-state Abeles-type model for
Wij ∼ Log-N (m, s) with parametersm, s chosen such that the mean coupling strengths are constant at EW [|WiE |] = J = 3.5, EW [|WiI |] = gJ = 4.2J

(black lines) and EW [|WiE |] = J = 0.5, EW [|WiI |] = gJ = 4.2J (gray lines), respectively. The solid lines denote the case where only excitation is
distributed lognormally, while all inhibitory weights are −gJ (sI ≡ 0), while the dash-dotted lines denote the case where also inhibition is distributed
lognormally with sI = sE ; mE = Log[J ] − s2E/2 and mI = Log[gJ ] − s2I/2, respectively. For J = 3.5 the high-rate fixed-point exists for all sE ,
independent of the variance of the inhibitory weight distribution. The zero-rate and unstable intermediate fixed-points close to zero (see Fig. 7B) are not
included. For J = 0.5 we observe a saddle-node bifurcation for increasing sE that occurs earlier if inhibitory weights are also lognormally distributed. The
intermediate fixed-points are denoted by the dashed lines. All other parameters as in Fig. 5

.

As shown in the previous sections large population-rate variability is an inherent feature of self-sustained431
activity states. So the system perpetually perturbs itself and can substantially deviate from the high rate432
fixed-point ν0. If the basin of attraction is smaller than the characteristic fluctuation size, the system can433
escape the attractor and run into the trivial attractor at zero rate. Inspection of434

∆ν(ν) := q>Vthr
(ν)× rmax − ν , (27)

cf. Eqn. (19), as a function of the input rate ν (Fig. 9, upper panel) reveals the basin of attraction of the435
high-rate fixed-point as the interval between the unstable (indicated by white circles) and the stable (dark436
gray circles) fixed-points that are the zeros for ν > 0 of Eqn. (27). The black circle represents the zero-rate437
fixed-point ν = 0.438

The upper panel in Fig. 9 shows the respective curves for three different values of J , with all other439
parameters fixed. The lower panel shows the distribution of the population activity, as predicted from440
Eqn. (22) with the fitted rfit, around the stable fixed-point. For J close to the saddle-node bifurcation441
(indicated by solid curve, gray circle) the fluctuations extend well beyond the unstable fixed-point (dashed442
curves), and thus the system can be pushed to the trivial attractor by a random fluctuation. For larger J ,443
however, the basin of attraction is much larger than the population fluctuations (dashed-dotted curve), and444
thus lifetimes should become very long.445

To relate these findings from the two-state Abeles-type model with Poisson input to the full recurrent446
SSAI, we perform the analogous analysis with some examples of the data we obtained from the systematic447
large-scale simulations discussed in Fig. 3 and Fig. 4.448

Such estimated response functions ∆ν are shown in Fig. 10. The intersections of the response function449
with the x-axis (dashed line in Fig. 10A-D) again determine the fixed-points, while the slope at this points450
yields information about their stability: If the slope is positive, we expect the fixed-point to be unstable.451
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Figure 9. The lifetime of SSAI states is determined by the size of population fluctuations versus the size of basin of attraction. The upper panel shows
the emergence of the saddle-node bifurcation that underlies the SSAI state (coalescence point for critical coupling strength Jc depicted in light gray), while
the lower panel shows the population rate distributions for neurons that are driven by uncorrelated Poisson inputs, for three different values of J each (derived
from Eqn. (23) by translating the counts to rates and approximating the binomial by a Gaussian, solid lines: J = Jc = 0.641 mV, dashed J = 0.651 mV,
dashed-dotted J = 0.731 mV). In the upper panel the stable high-rate fixed-points for J > Jc are marked by dark gray, the unstable intermediate fixed-point
by white circles. The black circle indicates the trivial zero-rate fixed-point. In the SSAI state the system constantly produces large population fluctuations that
can drive the system substantially far away from the high-rate fixed-point. We expect the system to become stable to this inherently generated fluctuations
when the basin of attraction (here the distance between the unstable and stable fixed-point) becomes larger than the characteristic size of the fluctuations, given
by the variance of the population rate distribution. Parameters as in Fig. 5.

In the cases where the synapses are sufficiently strong to sustain persistent activity, we see that the452
distribution may be well approximated by a Gaussian centered at the upper fixed-point of the response453
function. This observation thus motivates the following simple stochastic model for the rate: We assume454
that the rate at any time is distributed normally with a mean given by the fixed-point of the response455
function. Both the response function and the width of the distribution are functions of the network and456
neuron parameters.457

The probability to observe a given rate ν is thus,458

Pg,J(ν) ∝ e
− (ν−ν0)

2

2σ2 , (28)

where ν0 = ν0(g, J) is the fixed-point of the response function, and σ = σ(g, J) is the width of the rate459
distribution.460

From the observations of network response functions we can also see that there is indeed typically461
another (unstable) fixed-point λ close to the trivial fixed-point at zero. For the purpose of the stochastic462
rate model, we assume that if the rate fluctuates to a value less than λ, the network activity will move463
towards the trivial fixed-point at zero rate and cease.464

From the probability distribution above, we can calculate the probability for the rate to be below λ, i.e.,465

P (ν < λ) ∝
∫ λ

−∞
e
− (ν−ν0)

2

2σ2 dν =
1

2

(
1− erf

[
λ− ν0√

2σ

])
. (29)

We conclude that the lifetime for the self-sustained network activity will be inversely proportional to the466
probability for the network activity to cease,467

T (g, J) =
τ0

P (ν < λ)
, (30)
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Figure 10. Estimated network response function and population rate distribution. The black solid lines depict the estimated network response functions,
i.e., the local derivative of the firing rate function for various parameter combinations. It was estimated by computing the difference of input rate and output rate
after a delay of δt = 1.5 ms (see text for details). The histograms quantify the amount of time spent at a given rate. Parameter values: A g = 4.2, J = 1.1 mV
B g = 4.2, J = 0.8 mV C g = 5.2, J = 1.8 mV D g = 4.8, J = 1.8 mV. Other parameters as in Fig. 1.

where τ0 is a constant (see also El Boustani and Destexhe, 2009). Thus, the lifetime is determined by a468
trade-off between the magnitude σ of the population-rate fluctuations and the size ν0 − λ of the basin of469
attraction of the nontrivial rate fixed point.470

3.4.1 Performance of the stochastic model in predicting SSAI lifetime We validate the stochastic model471
approach Eqns. (29),(30) by estimating the values for ν0, λ and σ, as well as the lifetimes T , from network472
simulations for a range of values for the parameters g and J and fitting the parameter τ0 using Eqn. (30).473

The values for the parameters ν0 and λ as a function of g and J were found by inspection of the response474
functions obtained by the method described in the previous section. The measured response curves, being475
averages over the full simulation, are noisier and less smooth when the lifetime of persistent activity is476
short. For longer lifetimes, the points ν0 and λ were found using an automated approach, using linear477
interpolation between the points in the measured response curve. For the more noisy curves, the points478
were estimated manually by inspecting the response curves. The value for σ was the standard deviation479
of the instantaneous population rate observed during the simulation. Fig. 11 shows the estimated and480
measured lifetimes for a range of values of g and J , revealing a good agreement.481

We note that a saddle-node bifurcation as predicted from the Abeles-type two-state model Eqn. (19)482
is also predicted from the diffusion-approximation ((Brunel, 2000) and Eqn. (S1) in the supplementary483
material) for strong enough coupling strength J . The respective saddle-node bifurcation lines for Eqn. (19)484
and the diffusion-approximation are depicted for reference as white lines in Fig. 3A. From these equations485
we can thus also derive at least qualitative predictions for the lifetime without having to estimate486
parameters from simulations. The resulting plots are presented in the supplementary material Sec. 1.487
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Figure 11. Lifetime of SSAI-states. Lifetime of SSAI-states estimated from measured parameters (solid lines) using Eqn. (30) with τ0 = 15 ms and observed
directly (dots). A Lifetime for selected values of inhibition level g. B Lifetime for selected values of synapse strength J . C Observed versus estimated lifetimes
for several simulations with different parameters (g, J). Other parameters as in Fig. 1.

4 DISCUSSION

Self-sustained activity in networks of LIF neurons with current-based synapses: Local cortical circuits488
can sustain elevated levels of activity after removal of the original stimulus or in total absence of external489
drive. Moreover, this ongoing activity is often characterized by highly fluctuating individual firing rates.490
In contrast to previous beliefs (see, e.g., Kumar et al. (2008); El Boustani and Destexhe (2009)),491
here we demonstrate that balanced random networks with strong current-based synapses can actually492
combine both features: the sustained asynchronous activation of groups of neurons in the absence of493
external drive together with the highly irregular spiking of individual cells. We call this state self-sustained494
asynchronous-irregular, or SSAI.495

We analyzed and identified simple mechanistic explanations for these activity features. The emergence496
of a stable attractor at non-zero rates is due to a saddle-node bifurcation: At sufficiently large synaptic497
efficacy, two fixed-points with finite rate exist in addition to the quiescent mode. These modes exist even498
when there is no external input to the network. The intermediate low-rate fixed-point is always unstable,499
while the fixed-point at higher rate can be long-lived with a lifetime rapidly increasing with synaptic500
efficacy.501

Using a simple stochastic rate model, we have shown that the lifetime is determined by a trade-off502
between the size of the basin of attraction of the high-rate fixed-point and the intrinsic variance of the503
network activity in this state. The stochastic model explains the lifetime over a wide range of network504
parameters.505

Origin of irregular SSA in a two-state Abeles-type model: The saddle-node bifurcation appears also506
in the simplified analytical models introduced by Siegert (1951), Griffith (1963) (see supplementary507
material Sec. 1) and Abeles (1982). Here we showed in particular, how a simple two-state Abeles-type508
model can be translated to the specific case of leaky integrate-and-fire (LIF) neurons with subthreshold509
linear dynamics. We find that in the SSAI state most of the time individual neurons will be strongly510
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hyperpolarized and far below threshold, but at times a large depolarizing input transient will occur that511
will drive neurons repetitively across threshold in a short time, leading in effect to highly irregular firing.512

We note that quantitatively the two-state model yields good agreement with the observed SSAI-states,513
if the amplitude of the free membrane potential fluctuations is large, and their mean and variance are514
known. The latter can be measured in simulations, but in practical terms they are hard to assess. For other515
cases, such as the Poisson-driven LIF-ensemble shown in Figs. 5C,D and 6A, the rate prediction was too516
low, even though in this case, mean and variance of Vfree are directly obtained from the firing rate. Part517
of the reason for the too low firing rate is the smaller amplitude of fluctuations. Another reason is that the518
self-consistent solution obtained from the Poisson-input scenario implicitly assumes that sampling spike519
trains from the output of neurons in turn yields a Poisson process again. This is clearly not the case, since520
every individual spike train will typically be non-Poissonian with a CV higher than unity, as we discussed521
in Sec. 3.2.2. Neurons sampling from the Poisson-driven pool in Fig. 6A already have increased rate, CV522
and σ[Vfree], see Fig. 6B. So a more quantitative self-consistent two-state Abeles model would have to523
incorporate a better spike train model, capturing more of the true “binary” statistics we observed here.524

Still, our model nicely shows that high variability of the spiking activity of individual neurons,525
pronounced population fluctuations, and stable persistent activity can go together well (see also526
Druckmann and Chklovskii (2012) for a related discussion), unlike previously thought (Kumar et al.,527
2008), and be realized by simple networks of integrate-and-fire neurons. Indeed, both during up-states528
(e.g., Shu et al. (2003) and persistent mnemonic states in prefrontal cortex (e.g., Compte et al. (2003a)),529
CVs of ISIs considerably larger than unity are common. We expect the effects reported here also in530
spiking network models of working memory that contain a stable low-rate attractor (which is not present531
in the simple network analyzed here), if they have a finite amount of comparably strong synapses. Such532
a network mechanism for the generation of fluctuating individual firing rates as presented in this paper533
could avoid the necessity to introduce additional noise sources or cellular bistability to obtain this effect534
(see, e.g., Renart et al. (2003); Compte (2006)).535

Highly hyperpolarized membrane potentials as side effect of membrane potentials without lower bound:536
Broad membrane potential distributions as observed here are not very physiological and not possible537
for neurons with conductance-based synapses (Kuhn et al., 2004), because of the limiting effect of the538
respective reversal potentials for NMDA or AMPA in the case of excitation, and GABA for inhibition.539

Yet, also in networks of leaky integrate-and-fire neurons with conductance-based synapses self-sustained540
activity states occur for broad parameter ranges of excitatory and inhibitory conductances (Kumar et al.,541
2008; Vogels and Abbott, 2005; El Boustani and Destexhe, 2009). The self-sustained activity state542
analyzed there usually requires large networks sizes and low population rate fluctuations to be stable543
(Kumar et al., 2008; El Boustani and Destexhe, 2009) and is much more sensitive to subthreshold544
perturbations than the networks investigated here. The coefficient of variation (CV) of the inter-spike545
intervals can be larger than unity, indicating that spiking is more irregular than Poisson (Kumar et al.,546
2008; Teramae et al., 2012; Ikegaya et al., 2013), yet observed CVs in the networks studied in these547
papers are typically smaller than those we report here for neurons with current-based synapses (see,548
however, Vogels and Abbott (2005); El Boustani and Destexhe (2009) that report parameter regimes549
with CVs in the range of two to three).550

In the supplementary material Sec. 6, we demonstrate cases of self-sustained activity in comparably551
small networks of neurons with conductance-based synapses where CVs of the inter-spike intervals are552
considerably larger than unity, and the membrane potential distributions are typically also comparably553
broad. Similar arguments as presented here for current-based synapses thus explain this higher variability554
and show that large network size is not a requirement for SSAI, as suggested by previous work (Kumar555
et al., 2008; El Boustani and Destexhe, 2009).556

We moreover note that clamping the membrane potential of LIF neuron with current-based synapses at557
a minimal value to avoid unbiological hyperpolarization leads to a shift of the saddle-node bifurcation558
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line to smaller J-values. This is due to the fact that the membrane potential distribution is shifted closer559
to firing threshold, see supplementary material Sec. 4.560

Asynchronous, highly irregular self-sustained activity, even in comparably small, yet strongly coupled561
networks, does thus not crucially depend on the synapse model, nor on extremely large subthreshold562
membrane potential fluctuations, but it is mainly a consequence of the large input fluctuations generated563
by the highly variable neuronal activities and the strong synaptic weights.564

Few strong weights sufficient for emergence of SSAI: We emphasize that a comparably small fraction of565
strong weights suffices to permit self-sustained activity (see Teramae et al. (2012); Ikegaya et al. (2013);566
Gewaltig (2013), and supplementary material Sec. 5), and such weights are not unbiological. Indeed,567
recent experiments consistently showed that the presence of strong synapses is not uncommon in cortical568
and hippocampal networks, but rather the norm (Song et al., 2005; Lefort et al., 2009; Avermann et al.,569
2012; Ikegaya et al., 2013). Weight distributions follow a lognormal distribution that is characterized by570
a high probability for low weights, but a heavy tail probability for very strong synapses, up to several571
millivolts. These weight distributions are usually characterized by high variances.572

The reduced Abeles-type model already shows that the critical average coupling strength for the saddle-573
node bifurcation decreases, if the variance of the weight-distribution increases. For the extreme case of574
mostly very weak synapses and few very strong synapses, the reduced model predicts SSAI to occur for575
small average coupling strength on the order of J ∼ 0.1 mV. This observation explains the related finding576
by Ikegaya et al. (2013) that deletion of the strongest weights quickly leads to failure of SSAI.577

Song et al. (2005) moreover showed that strong synapses preferentially occur organized non-randomly578
in structural reciprocal motifs. It is thus an interesting question in this context, whether several strongly579
connected cell-assemblies of current-based leaky integrate-and-fire neurons in a sea of weak synapses580
can be activated selectively as suggested, e.g., in (Brunel, 2003), without activating other local attractors581
or the whole network, and if such activation is stable to “distractor” activation from other parts of the582
network, as would be required, e.g., in working memory.583

Effects of strong synapses in complex random networks: The emergence of a self-sustained activity state584
is not the only intriguing dynamical effect caused by the presence of strong synapses. As pointed out in585
many studies, strong coupling in complex networks can lead to a breakdown of linearity and give rise to586
new collective phenomena, such as pattern formation, oscillations or traveling waves (see, e.g., Amari587
(1977); Ben-Yishai et al. (1995); Usher et al. (1995); Bressloff and Coombes (1998, 2000); Roxin et al.588
(2005); Kriener et al. (2014)).589

The presence of strong synapses was shown to lead to spike-based aperiodic stochastic resonance, and590
thus reliable transmission of spike patterns, in an optimal self-sustained background regime in networks591
of conductance-based LIF neurons (Teramae et al., 2012). Moreover, strong synaptic weights in the same592
random network as discussed here will render the globally synchronous firing mode unstable to any finite593
perturbation, and thus stabilize the asynchronous-irregular state, even if all neurons receive statistically594
identical input of equal magnitude (Kriener, 2012).595

Analogous to our observations, Ostojic (2014) in a recent paper observed how strong weights lead to596
highly irregular spiking with individually strongly fluctuating neuronal firing rates in the same networks597
analyzed here, but where neurons receive constant external drive. Similar observations of asynchronous598
and highly irregular states were made before for networks of rate neurons (Sommers et al., 1988), as599
well as spatially structured networks of spiking neurons that nonlinearly amplify heterogeneous activity600
fluctuations (see, e.g., Usher et al., 1994, 1995).601
Ostojic, as well, explains the effects in random networks by the breakdown of the linear response602
approximation and the non-linear network amplification of heterogeneous perturbations (see detailed603
discussion in the supplementary material Sec. 2), and he identifies the emerging state as a qualitative604
different and new asynchronous-irregular state. He shows that in this state average firing rates605
characteristically deviate to higher values as compared to the weakly-coupled balanced random network606
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states analyzed by Brunel (2000). Most of all the heterogeneity of activity brings about interesting607
computational properties in classifying temporally fluctuating inputs (Ostojic, 2014).608

The amplification by the recurrent network is also the reason that underlies the strengthening of609
irregularity and population fluctuations that we observe, e.g., in Figs. 6 A-C, where we increase the effect610
of network feedback from initial Poisson-drive (zero-order feedback), over sampling from the resulting611
output (first-order feedback) to the full self-consistent SSAI (∞-order feedback). We showed in Sec. 3.2612
that highly irregular spiking can already be observed in the uncoupled population of neurons fed with613
strongly weighted Poisson input, and even Gaussian white noise with high variance and strongly negative614
mean, in which case the firing rate does not deviate from that predicted by the diffusion-approximation615
(not shown). We note that although the breakdown of linear response theory with increasing coupling616
strength J , analyzed by Ostojic (2014), does not coincide with the emergence of the self-sustained activity617
state (see supplementaries Sec. 2), it does approximately overlap with the abrupt increase in firing rates618
to values ν0 ≥ 10 s−1 in Fig. 3B, as well as of the CV to values ≥ 2.5 as shown in Fig. 4A. We can thus619
conclude that we see the presence of this new qualitative state identified by Ostojic also in our simulations.620
This nonlinear amplification effect might serve to stabilize SSAI by moving the population firing rate to621
higher values and thus farther away from the trivial fixed-point.622

The existence of strong synapses in recurrent neuronal networks as observed in experiments thus leads623
to a plethora of interesting dynamical properties that just start to be explored, and analysis of how circuits624
can make use of their presence computationally is an important topic of future research.625
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5 TABLES

5.1 MODEL AND SIMULATION DESCRIPTION

A Model Summary
Populations three: excitatory (E), inhibitory (I), external input (Eext)
Connectivity random convergent connectivity with probability ε
Neuron model leaky integrate-and-fire (LIF), fixed voltage threshold, exact integration scheme

(Rotter and Diesmann, 1999) (update every 0.1 ms)
Synapse model α-shaped post-synaptic current (PSC)
Input independent Poisson spike trains

B Populations
Name Elements Size
E,I LIF neuron NE , NI = γNE
Eext Poisson generator Next = NE +NI

C Connectivity
Source Target Pattern
{E,I} E ∪ I random convergent CE = εNE → 1, CI = εNI → 1
Eext E ∪ I non-overlapping 1→ 1

D Neuron and Synapse Model

Name Leaky integrate-and-fire neuron with α-shaped PSCs

Subthreshold
dynamics τmV̇i(t) = −Vi(t) +Rm

(
Isyn,i(t− d) + Iext,i(t)

)
if t > t∗ + τref

Vi(t) = Vres else

Spiking If V (t−) < Vthr ∧ V (t+) ≥ Vthr

1. set spike time t∗ = t

2. emit spike with time-stamp tk = t∗

Postsynaptic
currents

Isyn,i(t) =
∑

j,k PSCij(t− tj,k) network input current of neuron i

Iext,i(t) =
∑

k PSCext,i(t− tk) external input current of neuron i

PSCij(t) = A(Jij)
t
τsyn

e1−t/τsyn H(t), Jij ∈ {−gJ, 0, J}
PSCext,i(t) = A(J) t

τsyn
e1−t/τsyn H(t)

E Input
Type Description
Poisson generators Spike times tk in Iext(t) are Poisson point processes of rate νext
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5.2 DEFAULT PARAMETERS

A Connectivity
Name Value Description
NE {100000, 5000} number of excitatory neurons (Figs. 1–4, 10,

11, and Figs. 5–9, resp.)
NI γNE , γ = 1/4 number of inhibitory neurons
ε {0.01, 0.1} connection density (Figs. 1–4, 10, 11, and

Figs. 5–9, resp.)

B Neuron
Name Value Description
τm 20 ms membrane time constant
Rm 20 GΩ membrane resistance
Vthr 20 mV firing threshold
Vres 0 mV reset potential
τref 2 ms refractory time

C Synapses
Name Value Description
J ∈ [0.1, 4.5] mV peak-amplitude of excitatory PSP(t)
A(J) ∈ [0.12, 5.44] pA amplitude of excitatory PSC(t) for α-current

input, normalized such that peak-amplitude of
PSP(t) = J

g ∈ [4., 8.] relative inhibitory coupling strength
d 1.5 ms synaptic delay
τsyn 0.5 ms synaptic time constant

D Input
Name Value Description
νext 1000(Vthr − Vres)

/
eτsynRmA(J) rate of external Poisson stimulus

tstim 1000 ms stimulus duration
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