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h i g h l i g h t s

• We show that a diploid gene can be modelled as one entity.
• Propagation functions describe how genetic variation propagates through the network.
• Their derivatives can be approximated by observable quantities—and are related to the feedback structure of the system.
• The observable allele interaction value is related to the dominant feedback loop.
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a b s t r a c t

A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally
cohesive way based on how genes actually work and interact. We provide a theoretical framework for
predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory
networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies.
Using results from network and graph theory, we define propagation functions describing how genetic
variation in a locus is propagated through the network, and show how their derivatives are related to
the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation
of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the
derivative of the feedback function of any locus to the feedback loops involving that particular locus.
We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is
equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent
results for a single locus system. Our results provide tools by which one can use observable equilibrium
concentrations of gene products to disclose structural properties of the network architecture. Our work
is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation
in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic
variation.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license. 
1. Introduction

Understanding the genotype to phenotype map is essential for
a whole range of problems in evolutionary biology, production
biology and biomedicine. As gene regulatory networks are the
main mediating agents for setting up this map, a theory that
can tell us how genetic variation is phenotypically manifested in
gene regulatory networks as a function of regulatory anatomy
may prove most helpful. Such a theory will be an important
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contribution to a future quantitative genetics theory linking genes,
phenotypes and population level genetic phenomena in causal
models based on how genes actually work and interact. More
specifically, by being able to describe how the effects of genetic
variation propagate in a network one will be able to predict
how genetic variation in a gene affects network pathways and
processes. In this way one may be able to tie genetic variation
in gene networks to a whole range of biological processes that
generate high-level phenotypic features. Moreover, at the generic
level such a theory can be used in a systematic way to reveal
recurrent patterns of how variation is propagated in specific types
of regulatory anatomies.

We assume that the network is composed of a set of interacting
nodes or loci. Each locus can in principle be regarded as a module
by being a functional unit or subsystem of molecular processes
whose working may be unknown, but which includes the whole
transcriptional and translational machinery that produces the
output of the locus [1,2]. The phenotypes of a network are the
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stable equilibrium values of the gene products of all the loci in
the network. Each locus is susceptible to genetic variation, and we
assume that the genetic variation affects the promoter region of a
given gene, but that there is no variation in the coding region of
the gene. Many experimental results justify the relevance of this
assumption. There are examples of noncoding mutations affecting
production rates [3], mRNA processing rates [4,5], the shape of the
cis-regulatory input function [6–8], and mRNA decay rates [9–11].
In a recent study of adaptive evolution in threespine sticklebacks,
Jones et al. found that in 41% of the genes allelic variation was
regulatory, in 42% it was probably regulatory, and in only 17% it
was coding [12].

To fully understand the functional properties of a diploid gene
it is desirable to model its two alleles as separate quantities. This
was first done by Omholt et al. [13] to show how the phenomena
of genetic dominance, overdominance, additivity, and epistasis
could be seen as generic features of simple diploid gene regulatory
networks. This model framework was later used to introduce the
so-called allele interaction concept [14]. In the present paper, we
develop these ideas further by proposing a way by which a diploid
gene modelled in this fashion can be represented as a single entity
and described by a single ODE for its gene product.

Based on these premises we provide a new vocabulary for
analysing how genetic variation is manifested in a wide class of
haploid and diploid gene regulatory networks possessing negative
and positive feedback loops. We introduce terms to describe
how a change in equilibrium value at one locus affects the
equilibrium values of all other loci, how to identify the causal
chains of loci conveying a genetic signal from one locus to
another, and how genetic variation at a particular locus affects
the equilibrium value phenotype of the locus itself. In [14] we
investigated the relationships between single locus gene action
concepts and regulatory network anatomy in small networks. Here
we extend the analysis to gene regulatory networks with arbitrary
number of loci and complex feedback structures. This extension
is highly relevant for understanding epistasis and pleiotropy in
genotype–phenotype maps. Epistasis refers to situations where
the effect of a genetic substitution at one locus depends on the
genotype at another locus. Pleiotropy describes situations where
one gene influences several phenotypes rather than a single one.
Since epistasis andpleiotropy are inherent to biological networks, a
system-level understanding of these phenomena is needed [15,16].

By this work we contribute to the long and strong tradition
originating with the works of René Thomas on relating generic
systemic properties to the web of feedback loops [17,18], while at
the same time elucidating the link between genetics and systems
dynamics. Our results provide further support to the view that
nonlinear system dynamics will make up a major part of the core
of the mathematical foundation of a future quantitative genetics
theory [19,20].

2. Propagation of genetic variation: features shared by haploid
and diploid networks

At this stage we are not concerned with the inner workings of
each gene due to genetic variation, but assume that the output
rate of a locus is a given function of the concentration levels of
its regulators, which we assume are one or several gene outputs.
Thus in the first part of the paper we deal with characteristics of
propagation of genetic variation that are shared by both haploid
and diploid networks.

We combine results from linear algebra and graph theory
(see e.g. [21]) with gene network ideas to describe how genetic
variation in one locus propagates to the other loci in the system
in terms of the equilibrium values of the state variables. We
introduce the term propagation function to describe how a change
in equilibrium value of one node affects the equilibrium values of
all other nodes, the term propagation chain to describe a chain of
actions conveying a genetic signal from one node in the network
to another, and finally, the term feedback function to describe how
genetic variation at any particular locus affects the equilibrium
value of the locus product itself.

A brief explanation of our notation is found in Appendix A.

2.1. Basic rate equations

We assume the network N is composed of a set of n loci Xi,
i ∈ N = {1, 2, . . . , n}, where n ≥ 2. The non-negative variable zi
represents the possibly time dependent concentration or amount
of the output of Xi and acts as input to other loci in the network
or contributes of the network’s net output. The dynamics of N is
described by a set of autonomous rate equations Ei for zi, i ∈ N ,

żi = fi(z, ai) = ri(z, ai)− γizi, (1)

where z ∈ Rn
+

is the n-component vector with non-negative
components zi, ri(z, ai) is differentiable with respect to z in
a certain open and convex domain W , and γi > 0 is the
relative degradation rate of zi. The quantity a = {ai}, i ∈ N ,
represents a set of parameters defining the system’s genotype, the
subset ai defining the genotype of Xi and comprising quantities
like maximum production rate, activation thresholds, affinities
of activators and inhibitors, mRNA to protein conversion rate,
etc. In many modelling approaches of this type, ri is a Boolean
or Boolean-like functional of sigmoidal functions or piecewise
constant functions; see [22] for a review of modelling approaches
for gene networks. It should be noted that there could be long and
complicated chains of effects incorporated into ri(z, ai) [23].

We assume that for each combination of genotypes of the loci
Xi in N , the system composed of Eqs. (1) has a single hyperbolic,
asymptotically stable and differentiable point-like solution x in
W . We show in Section 2.2 that under reasonable assumptions
an equilibrium x always exists. If N has no positive loops, x
is unique [24,25]. To avoid having to discuss possible problems
related to multistationarity, we invoke the additional assumption
that the equilibrium of the system is unique within the domain
of phase space of interest even if there are positive loops in the
system.

2.2. Propagation functions

A shift in the equilibrium value of some xk due to a change in
parameters specific for Xk will propagate through the network and
lead to shifts in other equilibrium values. The propagation follows
the network connections, which can be read out from the Jacobian
J of Eq. (1) in the stable state x. To the network N corresponding
to Eq. (1) we associate a signed digraph G. To each node or locus Xi
is associated a vertex Xi in G. Let Xj → Xi indicate a direct effect
from Xj to Xi if Jij = ∂ri(z, a)/∂zj ≠ 0 in z = x. The effect of Xj on Xi
is positive (negative) if the rate of change żi increases (decreases)
when zj increases. For this direct effect there is a corresponding
directed arc in G from Xj to Xi with a sign equal to the sign of Jij
associated to it. The sequence of direct effects Xk → Xj → · · · →

Xl is called a chain from Xk to Xl if each node in the chain occurs only
once [26]. This chain corresponds to a simple path in G from Xk to
Xl. We will use the term propagation chain.

The following proposition shows that for each pair k, l ∈ N ,
where l ≠ k, there exists a propagation function plk which
determines how the perturbed value of xl due to a genetic variation
in Xk is given in terms of xk.
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Proposition 1. Let k ∈ N be given, let L = N \ {k}, and consider the
set of equilibrium conditions

fl(xL, xk, al) = rl(xL, xk, al)− γlxl = 0, l ∈ L, (2)

where all xi ≥ 0, and all rl satisfy rl(xL, xk, al) > 0 for xl = 0. For
any xk the system of equations fL(xL, xk, aL) = 0 has at least one set
of solutions xl = plk(xk, a(k)), where a(k) is the set of parameters not
occurring in the rate equation of Xk.

The proposition follows directly from Theorem 4.9 in [27]. Be-
cause the equation fk(xL, xk, ak) = 0 is not included in the system
of equations fL(xL, xk, aL) = 0, the solution xL is independent of the
Xk-specific parameters ak. This fact is important because it implies
that the effect on xl of any genetic variation of Xk is given by a fixed
propagation function plk.

From this follows the usefulness of the propagation functions.
A genotypic variation (mutation) in a gene may lead to new
equilibrium values of the gene products in the network. One way
of addressing this would be to try to parametrise the genotypic
variation, and then model the dependence of the equilibrium
values on the relevant parameters. The propagation functions
offer a simpler solution because they require no knowledge of
how the mutated gene could be modelled. They only relate the
observable equilibrium concentrations. There is no need to take
account of what is the cause of the genetic variation of Xk, how
this manifests itself in a shift of parameter values in ak, or how
this parameter value shift might influence plk. All that matters
are the shifted values of xk and xl. For a given k the set of all the
functions plk contain all information about how the genetic change
in Xk becomes manifested in the network against a fixed genetic
background (the genotypes of all the other genes).

In the following we explore the properties of the propagation
functions and show how they are related to the structure and
interactions in the network. In the following wewill try and derive
the propagation functions from network properties, and also use
what can be learned about propagation functions from observed
equilibriumvalues to obtain information about causal chains in the
network.

For a given k the functions plk are in principle observable by
varying the genotype of Xk while keeping the other loci fixed and
recording the shifted equilibrium values. Of course, solving plk for a
givenmodel is in general prohibited due to the nonlinearities in the
system. However, finding the derivative of plk is a linear problem.
In the following we relate the derivative p′

lk(xk, a
(k)) = qlk(xk, a(k))

to the values of the elements of the Jacobian J of Eqs. (1) for a given
k and any l ≠ k. Let L = N \ {l, k} and j ∈ L. All the equilibrium
conditions EL define xj as a function of xk, i.e. xL = pLk(xk). Then,
when the expression in Eq. (6) below for dxl/dxk exists,

γlxl = rl(xl, xk, pLk(xk)) (3)

defines xl as a function of xk around the steady state. Differentiating
Eq. (3) with respect to xk gives
j≠k

Jljqjk = −Jlk. (4)

Let Q (k) be the column vector with components qik and v(k) the
column vector with elements ∂ fi/∂xk, both with i = k excluded.
Then

J (kk)Q (k)
= v(k). (5)

Using Cramer’s rule and interchanging columns in the numerator
finally leads to

dxl
dxk

= qlk(xk, a(k)) = (−1)k+l D(kl)

D(kk)
. (6)
Note that the right hand side is in fact independent of fk(x, ak)
because row number k in J is deleted in both determinants. This
confirms Proposition 1. However, despite this, genotype variation
in Xk will shift the equilibrium values and indirectly affect the
values of the matrix elements of J . Furthermore, it follows from
the implicit function theorem (see e.g. [28]) that if D(kk) ≠ 0 in x,
then there is a unique differentiable mapping plk : xk → xl in a
neighbourhood of xwhose derivative can be given as above.

Eq. (6) shows that the propagation of genetic variation in
locus Xk is intimately linked to the feedback loop structure of the
network in the stable state. While the left hand side of Eq. (6) can
be approximated by finite differences of observable equilibrium
values after a perturbation of Xk, its right hand side depends
on the feedback structure of the network, which is not directly
accessible. In the following section we introduce the propagation
chain concept and show how it is linked to J , and how it discloses
the biological implications of Eq. (6). First, however, we show that
Eq. (6) sheds some light on the conditions for the validity of the
chain rule for functions defined implicitly by a set of equations.

From an imprudent application of the chain rule to xm = pml(xl)
and xl = plk(xk) one might be tempted to conclude that xm =

pml ◦ plk(xk) and

p′

mlp
′

lk = p′

mk, (7)

where k ∈ N , m ∈ N and k ≠ m. This, however, is not generally
true. In Appendix Cweprove and comment on the following result:

Proposition 2. Assume the variables have been renumbered such
that k = 1 and 1 < l < m < n, and define the sets L = {1 : l},
M = {(l + 1) : n}, Q = {1 : (l − 1)}, R = {l : n}, where
{i : j} = {i, i + 1, . . . , j} for i < j and {i : i} = {i}. In terms of
partitioned matrices

J =


JLQ JLR
JMQ JMR


. (8)

If JMQ = 0, the chain rule Eq. (7) is fulfilled.

The opposite conclusion is not true, however, as there may be
nonzero elements in JMQ = 0 that do not enter into feedback loops
without jeopardising the rule.

Because the numbering of the nodes is arbitrary and immaterial,
this result can be interpreted as follows. If all chains of effects from
Xk to Xm pass through Xl, then the chain rule Eq. (7) is fulfilled,
even if there are return chains from Xm to Xk so that both nodes
are members of a feedback loop. However, if there exists a chain
from Xk to Xm that does not pass through Xl, the chain rule may be
violated. Apart from this, the network structure is immaterial.

As a simple illustration we consider the three-gene system

x1 = r1(x3),
x2 = r2(x1), (9)
x3 = r3(x1, x2),

in which all γi = 1. The two chains X1 → X2 → X3 and X1 → X3,
constitute a feedforward loop from X1 to X3, X2 playing the role of
the intermediate element Xl in Eq. (7). Then
dx2
dx1

= q21 =
dr2
dx1

,

dx3
dx2

= q32 =

∂r3
∂x2

1 −
∂r3
∂x1

∂r1
∂x3

, (10)

dx3
dx1

= q31 =
∂r3
∂x1

+
∂r3
∂x2

q21.

Obviously, q31 ≠ q32 q21 if r3 depends explicitly on x1, in which
case there is a chain from X1 to X3 not passing through X2. On the
other hand, the arc X3 → X1 causes no problem.
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2.3. Propagation chains and feedback loops

We start this section with a few standard definitions and
clarifications.

• A circuit is a set of elements in the Jacobian J whose circuit
product (the product of all the elements in the circuit)
contributes to det(J) or one of its principal subdeterminants. An
element in a circuit represents either an action from one node
to another or to itself (a regulatory element), or a degradation
term. Thus, a circuit with i elements involves i nodes. The signed
circuit product of a circuit equals its circuit product times a
signature factor defined in Appendix B. A full circuit is a circuit
with n elements. The length of a circuit equals the number of
elements in the circuit. The sign of a circuit equals the sign of its
circuit product.

• If there is a circuit among a subset of nodes and another
circuit among another disjoint subset of nodes, the two circuits
are subcircuits in a composite circuit. The circuit product of a
composite circuit can always be factorised as a product of two
or more subcircuit products. The sign of the composite circuit
equals the product of the signs of all the subcircuits.

• A proper circuit is a circuit that is not composite. Its circuit
product cannot be factorised into subcircuit products.

• A feedback loop or just a loop is a circuit that only comprises
regulatory elements. A feedback loop comprises one or more
closed chains of actions or effects (closed paths) in the network
in which any node in the chains occurs just once.

• An autoregulatory loop is a loop with one member, arising from
a node whose product acts on its own dose-response function.

For example, if

J =


−γ1 0 0
0 −γ2 c23
0 c32 −γ3


, (11)

there is just one regulatory loop in the network (X2 � X3),
but several (composite) circuits, for instance −γ1c23c32. The
degradation terms in Eq. (1) ensure that all nodes are members
of one or more circuits which could be purely regulatory loops or
a mixture of regulatory effects and degradation terms. A circuit
product is therefore always either a loop product or equal to a
loop product times one or more factors −γj. Accordingly, in the
mathematical sense there exists at least one (proper or composite)
circuitLN comprising all nodes, even in caseswhere there is no full
(regulatory) loop. In Appendix B we recall a few useful facts about
subdeterminants and circuits.

Let U = {u1, u2, . . . , uρ} be a subset of N with k as its first
element and l as its last, and let ρ = |U| be the number of elements
in U . Then CU is a propagation chain Xu1 → Xu2 → Xu3 → · · · →

Xuρ if the product

CU = Juρuρ−1 Juρ−1uρ−2 · · · Ju2u1 (12)

is nonzero. If CU is made to close on itself by appending the action
Xuρ → Xu1 , it becomes the loop LU with loop product PU =

Ju1uρCU .
Next we show that if some qlk(xk, a(k)) ≠ 0, there must

be a chain propagating the effect of a shift in xk from Xk to Xl.
(The opposite is not true, as the contributions from two or more
chains might accidentally cancel.) Combining Eq. (6) with known
formulae for the expansion of determinants in terms of minors
[27], we can express qlk as

qlk(xk, a(k)) =
1

D(kk)

U

(−1)ρ−1DVVCU , (13)

where U is any chain set with U1 = k and uρ = l, V = N \ U ,
CU = CU(J) is the chain product of U , and the sum runs over all
such U . Keep in mind that Eq. (6) presupposes k ≠ l. Combining
Eqs. (6) and (13) we see that D(kl) is a weighted sum of the chain
product in J of all chains leading fromXk toXl. If no such chain exists
for given k and l, then qlk(xk, a(k)) = 0, as expected.

For a given gene regulatory network model, Eq. (6), or
alternatively Eq. (13), allows us to obtain analytical expressions
predicting how variation in a gene Xk affects the equilibrium
concentrations of all other genes in the network. In those cases
where qlk(xk, a(k)) equals zero, the genetic variation in Xk does
not become manifested in the output of node Xl even though
the equilibrium concentration of xk is changed. If the variation
becomes manifested in the output of more than one locus, the
introduced polymorphism is pleiotropic. Since qlk(xk, a(k))depends
explicitly on all chains leading fromXk toXl, a change in genotype at
one or more loci involved can potentially modify the effect on xl of
a shift in xk, leading to epistasis. This implies that the epistasis and
pleiotropy features of all loci can be cartographed in a systematic
way. This information can be used to validate a particular model
against experimental measurements of qlk(xk, a(k)) as well as to
identify generic characteristics of how variation is manifested as
a function of regulatory anatomy.

2.4. The regulatory feedback effect on xk of genetic variation in Xk

The formula (13) for qlk is only valid for k ≠ l. We now want
to define a function which can be used to determine the effect
of genotypic variation in Xk on xk itself. It is obvious from Eq. (1)
that even in an isolated node Xk without autoregulation, a change
of genotype manifested as a change of ak will in general lead to
a shifted value of xk. We will call this an unmediated effect. In
addition there may be contributions from mediated effects due to
the feedback loops involving Xk, including an autoregulatory loop.
For example, in a system with the Jacobian in Eq. (11), a change of
genotype in X2 will lead to a shift in x2 for two reasons: a change
of the dose-response function r2, and because of the loop X2 � X3.
The resultant of both effects determines how xk responds to genetic
variation in Xk.

We let XL be the set of nodes apart from Xk itself that act directly
on Xk, and XM the remaining set of nodes, such that {k}∪L∪M = N .
The stationarity condition for node Xk is

γkxk = rk(xk, xL, ak). (14)

According to Proposition 1we can in principle find xl = plk(xk, a(k))
for all l ∈ L ∪ M , i.e. all l ≠ k. Inserting this into Eq. (14) gives

γkxk = rk(xk, pLk(xk, a(k)), ak). (15)

We define the feedback function φk for Xk by

φk(xk, a) = rk(xk, pLk(xk, a(k)), ak), (16)

or just φk(xk) = rk(xk, pLk(xk)), and express the stationarity
condition for Xk as

xk =
1
γk
φk(xk, a). (17)

For a given genotype, expressed as given a value of the
parameter set a, the value of xk can be found as the (by assumption
stable and unique) solution of this equation. If ψk(xk, a) =

φ′

k(xk, a) ≡ 0,where the prime denotes the derivativewith respect
to xk, then Xk is not involved in any regulatory feedback loop.
However, if ψk(xk, a) = φ′

k(xk, a) ≠ 0, there is an effective
feedback of Xk on itself, mediated by one or more loops. Therefore
the feedback function φk describes and quantifies the feedback
effects of changes in the equilibrium value of Xk on itself.

The derivative of φk can be expressed in terms of the Jacobi
matrix elements. Differentiating Eq. (16) with respect to xk, using
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xl = plk(xk, a(k)), Eq. (6) and that ∂rk/∂xm = 0 for all m ∈ M
defined just before Eq. (14), we find

ψk(xk, a) =
∂rk
∂xk

+


l∈L

∂rk
∂xl

qlk = γk +
D

D(kk)
. (18)

Let Fk be the sum of the signed circuit products (defined in
Appendix B) of all full circuits in J inwhich there is a real regulation
of Xk, but not necessarily of the other nodes. (We do not consider
the linear degradation as a regulation. For example, in J defined in
Eq. (11), there are two full circuits with circuit products −γ1γ2γ3
and −γ1c23c32, respectively, but only the latter includes a real
regulation of X2 (by X3) and would contribute to F2. Neither
contributes to F1.)

As an illustration we consider the system

γ1x1 = r1(x1, x2, x3),

γ2x2 = r2(x1), (19)
γ3x3 = r3(x2),

with the two loops X1 � X2 and X1 → X2 → X3 → X1. With k = 1
we readily find

ψ1 = γ1 +
1
γ2γ3

(γ2γ3J11 + γ3J12J21 + J13J32J31). (20)

The expression in the parenthesis is F1. Its second term comeswith
a positive sign because the minus sign for −γ3 is cancelled by the
negative signature factor of the loop X1 � X2. Here as always, Fk is
independent of γk, but not of the other degradation rates.

We also note that D(kk) is the sum of the signed circuit product
of all circuits (proper and composite) of length n − 1 which do not
involve Xk. Expanding D along row k gives

D =
∂rk
∂xk

D(kk) − γkD(kk) +

j≠k

∂rk
∂xj

D(kj). (21)

According to the lemma in Appendix B a determinant can be
expanded as a sum of its signed circuit products. The first term
in Eq. (21) is the sum of all full, composite circuit products with
an autoregulatory subcircuit in Xk. Each term in the last sum is the
determinant of amatrix K kj obtained by setting all elements in row
k and column j except Jkj equal to zero. Then det(K kj) is the sum of
all circuit products in J which involve the element Jkj, i.e. in which
Xk contributeswith an active regulation. This givesD = Fk−γkD(kk),
and if D(kk) ≠ 0,

ψk(xk, a) =
Fk

D(kk)
= γk

Fk
Fk − D

. (22)

By this we have obtained a formula that relates the gain of the
feedback function of a locus Xk to the circuit products of the full
circuits in which Xk is regulated. This circuit would be either a full
loop or a set of subloops, one of them involving Xk, and a number
of degradation terms. It provides an analytic basis for the intuition
that a high gain is obtained if the loops that Xk enters into aremuch
stronger than the rest, i.e. if |Fk| ≫ |D(kk)|. Note that because x is
hyperbolic by assumption, D ≠ 0, thus ψk(xk, a) ≠ γk.

If ψk(xk, a) = 0, then Fk = 0, which means that there is
no effective regulation of Xk or the effects of the regulating loops
happen to cancel. Then assumeψk(xk, a) ≠ 0. Solving Eq. (22)with
respect to D and using that (−1)nD > 0 (see Appendix B) leads to

(−1)nFkΩk(xk, a) > 0, (23)

where

Ωk(xk, a) =
ψk(xk, a)− γk

ψk(xk, a)
. (24)
Assume there exists a full circuit composed of a proper loop L
involving Xk and a perhaps number of degradation terms. Let P be
the loop product of L. As is illustrated in Eq. (20), the sign of this
circuit product is equal to sign(P) independently of the number of
degradation terms, because the negative signs of the degradation
terms are compensated by the signature factor (see Lemma 2 in
Appendix B) of the full loop. If sign(Fk) = sign(P), we call L a sign-
dominant loop of Xk. The signature factor of L is (−1)n−1 because
it has n members. The sign of its contribution to Fk is therefore
(−1)n−1sign(P), yielding the result

PΩk(xk, a) < 0, (25)

whichwill be used to prove Proposition 5. From this follows readily

Proposition 3. If P > 0, then 0 < ψk(xk, a) < γk, and if P < 0,
then ψk(xk, a) < 0 or ψk(xk, a) > γk, and vice versa.

Thus, a positive sign-dominant proper loop implies a feedback
function with positive slope bounded by the degradation rate,
while a negative sign-dominant loop implies either negative slope
or a large positive slope of φk. If L is a composite loop, Eq. (25) is
replaced by

(−1)n+εLPΩk(xk, a) > 0, (26)

where (−1)εL is the signature of the loop. If Fk ≠ 0, there is always
at least one sign-dominant loop for Xk.

To compute the values of xk for a slight change of genotype in
Xk, the shift in ak must also be taken into account. Let xk = xk(a)
be the solution of Eq. (17), and let b ∈ ak be a single parameter.
Differentiating Eq. (17) and introducing Jacobi elements as in the
derivation of Eq. (18) we find

∂xk
∂b

= −
D(kk)

D
∂rk
∂b

= −
D(kk)

D
∂φk

∂b
=

1
γk − ψk(xk, a)

∂φk

∂b
. (27)

This formula emphasises the importance of the feedback function
as a source of information about the phenotypic effects of genotype
changes.

We are now ready to use these results to analyse diploid
networks.

3. Allele interaction in networks with diploid loci

The rest of the paper deals with models of diploid systems, that
is, systems in which chromosomes come in pairs with one variant
of each gene, called an allele, on each of the two chromosomes.
Thus, each gene is composed of two alleles, each allele being
regulatedmore or less independently of the other, and the product
of the gene is some combination of the product of each of the
two alleles. If the two alleles are identical, the gene is called
homozygotic, if they are different, the gene is heterozygotic, and if
one of the alleles has been knocked out, it is hemizygotic.

Since the dawn of genetics, additive and dominant gene actions
in diploids have been defined by comparing heterozygote and
homozygote phenotypes without reference to, or model of, the
functional dependency between the two alleles composing each
genotype. However, from [14] as well as the present paper it is
clear that it is precisely the interaction between the two alleles that
gives rise to nonadditive gene action. Consequently, the genetics
concepts of additive and dominant gene actions cannot explain
basic phenomena in genetics theory from regulatory biology.
Exploiting the additivity and nonadditivity properties of the two
alleles, Gjuvsland et al. [14] showed that by means of the new
concept of allele interaction, gene regulatory systems with one or
two loci can be linked to single locus genetic theory.
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We first presentways ofmodelling a network of genes involving
diploid loci in an efficient way, and then introduce the concept
of allele interaction. Finally, we study how the sign of the allele
interaction is related to the feedback structure of the network.
When studying allele interaction, we contrast different genotypes
at a single focal locus without specifying the genotype of the rest
of the loci.

3.1. Allele-specific diploid gene regulatory network models

As our objective is to relate the changes in genotypic value
(i.e. the phenotype) due to allelic variation of a locus Xi to a
potential interaction between its two alleles, we need tomodel the
function and regulation of the two alleles as two distinct entities.
A biallelic node Xi with two alleles sitting on each of the two
chromosomes, splits into two subnodes X1

i and X2
i with z1i and z2i

representing the concentration of gene product from each of the
two chromosomes, respectively.

As stated in the introduction we assume that the outputs
of the two alleles are functionally equivalent in the sense that
they regulate other genes in the same fashion, genetic differences
manifesting themselves only in the regulation of the two alleles,
not in qualitative differences in their output. This implies that the
nodes in the network are regulated by the total gene product zi =

z1i + z2i , not by its two constituents separately. If this assumption
should not hold for a gene Xi, the dose-response function of a
downstream gene could depend on z1i and z2i separately. In such
cases the simplifications described below would not be justified,
and one would have to model the two alleles of this gene by two
separate equations.

We let superscripts αi and βi denote the alleles in X1
i and X2

i ,
respectively,αi ∈ {1, 2},βi ∈ {1, 2}. If the genotype of Xi is biallelic
with alleles αi, βi, we model its rate equations by

ż1i = f αii (z) = rαii (z)− γ
αi
i z1i ,

ż2i = f βii (z) = rβii (z)− γ
βi
i z2i ,

(28)

where zi = z1i + z2i . For simplicity we suppress the parameters
ai from the arguments of the dose-response functions in the
following. If (αi, βi) = (1, 1) or (αi, βi) = (2, 2), the equations
describe a homozygous locus Xi, while (αi, βi) = (1, 2) describes
the heterozygote. This model for a diploid node was first proposed
by Omholt et al. [13].

If Xi is a homozygous locus, αi = βi, and simple addition of the
two equations gives

żi = 2rαii (z)− γ
αi
i zi. (29)

In the hemizygous genotypes where one allele has been knocked
out and the remaining copy is of genotype αi, Eqs. (28) are reduced
to

ż1i = f αii (z) = rαii (z)− γ
αi
i z1i , (30)

and zi = z1i . For each polymorphic locuswemay therefore consider
five different genotypes: the biallelic genotypes 11, 12, and 22, and
the mono-allelic genotypes 1 and 2.

In the following we consider a network in which Xn is
polymorphic while the genotypes of the remaining loci are
unspecified but fixed. We first describe it by the extended system
SE defined by the rate equations

SE =


żi = ri(z)− γizi, i = 1, . . . , n − 1,
ż1n = rαnn (z)− γ αnn z1n ,

ż2n = rβnn (z)− γ βnn z2n ,
(31)

where zn = z1n + z2n and z = [z1, . . . , zn]. For simplicity we
drop the subscript n to αn and βn in the following. As above, we
denote the presupposed asymptotically stable state of Eq. (31) by
x = [x1, . . . , xn].
3.2. Aggregating diploid loci

Contrary to Eq. (28), common ways of modelling gene
regulatory networks describe a gene by a single equation for the
total output of the gene, even when the gene is diploid. In the
present section we investigate whether these two contrasting
modelling schemes can be unified into a common modelling
approach.

By exploiting the assumption that the diploid node Xn only acts
on the other nodes by its total output zn, we want to convert the
extended model into a new model expressed in terms of the total
product of a locus, while still keeping track of the properties of
each of the two alleles. In other words, we want to construct a
system SA obtained bymerging X1

n and X2
n into one aggregated node

Xn with a single rate equation for zn. Wewill call this conversion an
aggregation. The rationale for this operation is that an aggregated
model facilitates considerably the theoretical analysis of allele
interaction in high-dimensional systems.

In fact, almost all gene regulatory models occurring in the
literature are aggregated in the sense that they describe each gene
by just one variable representing the amount or concentration of
the gene’s output. This is so even if the gene is diploid, and even
in cases where several of the genes probably have allelic variation
in the coding region as well, and perhaps produce qualitatively
different outputs. Gene transcription and translation are very
complicated processes which are only very crudely modelled by
the kind of equations studied in the present paper. Even if the
two allele products act in the same way such that only their
total concentration matters as regulatory agents, there may be
different degradation rates operating at the mRNA stage, during
the translation process or later. If γ αn = γ

β
n = γn, then obviously

żn = rαn (z, an) + rβn (z, an) − γnzn. However, when γ αn ≠ γ
β
n , it

is impossible to combine the two last equations in Eqs. (31) into
one rate equation for zn. The crucial problem in these cases is to
perform the aggregation in such a way that the aggregated model
reproduces the properties of the original extended model.

A natural solution would be to assume that the total dose-
response function of the gene is the sum of the dose-response
functions for each of the two alleles, and that the relative
degradation rate of the total gene product zn = z1n+z2n is an average
of the two allelic degradation rates γ 1

n and γ 2
n . We will call such a

model an aggregated model SA of SE :

SA =


ẏi = ri(y)− γiyi, i = 1, . . . , n − 1,
ẏn = rαn (y)+ rβn (y)− γ αβn yn,

(32)

where

γ αβn =
γ αn xα|◦

n + γ
β
n xβ|◦

n

xα|◦

n + xβ|◦

n
. (33)

Let z(t, z0) and y(t, y0) be the solutions of SE and SA,
respectively, satisfying z(0, z0) = z0 and y(0, y0) = y0. It is easy to
see that if z∗

= [z∗

1 , . . . , z
∗
n ] is a steady point of SE , then y∗

= z∗ is
a steady point of SA. It is not obvious that if z∗ is an asymptotically
stable point of SE , then y∗

= z∗ is an asymptotically stable point
of SA, and if z∗ is hyperbolic, then y∗ is hyperbolic. However, we
show in Appendix D that this is in fact the case. We also show
by extensive numeric simulations that in the majority of cases
the temporal behaviours of z(t, z0) and y(t, z0) are approximately
equal and qualitatively similar for a range of actual parameter
values and realistic common initial values y0 = z0 ≠ z∗. This being
the case, we call SA a well-founded aggregation of SE .

These results strongly suggest that the idea of aggregating a
diploid model in this way makes sense. If SE has several biallelic
nodes, we use this aggregate procedure of SA on each node. If each
aggregation is well-founded, we finally arrive at a well-founded,
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fully aggregated system SFA. Its diploid loci Xi of genotype αiβi are
described by

ẏi = rαii (y)+ rβii (y)− γ
αiβi
i yi, (34)

where γ αiβii is given by Eq. (33) with n replaced by i. Haploid nodes
Xj are described by

ẏj = ri(y)− γjyj. (35)

If all nodes are diploid and admit the above aggregation process,
the dimensionality of the model has been reduced from 2n to n,
leading to the fully aggregated model SFA. In the next section we
use SFA to investigate the consequences of knockout behaviour
and different allele combinations in genotype–phenotype maps
(GP maps).

3.3. The allele interaction concept

The concept of allele interaction for a polymorphic locus X for
some specific phenotypic trait in a regulatory networkwas defined
by Gjuvsland et al. [14]. Recall that x1|◦i and x2|◦i are the hemizygote
genotypic values of a locus Xi when only allele 1, respectively allele
2 is present, and x11i , x12i and x22i are the biallelic homozygote and
heterozygote genotypic values. The heterozygote allele interaction
value∆12

i of Xi is defined as

∆12
i = x12i − (x1|◦i + x2|◦i ). (36)

We define the two homozygote allele interaction values ∆11
i and

∆22
i in the same way, in general

∆
αβ

i = xαβi − (xα|◦

i + xβ|◦

i ), (37)

where α, β ∈ {1, 2}. An allele interaction is said to be negative if
∆
αβ

i < 0 and positive if∆αβi > 0.
Mendelian dominance is expressed by the dominance value

di = x12i −
x11i + x22i

2
. (38)

The name ‘‘dominance value’’ stems from the fact that if di ≠

0, then one of the alleles contributes more to (dominates) the
equilibrium value, shifting the heterozygous value away from
the midpoint between the two homozygous equilibrium values.
Allele interaction is closely related to di because di = ∆12

i −

(∆11
i + ∆22

i )/2. Gjuvsland et al. [14] showed that if an isolated
node X is under negative autoregulation, then its three allele
interaction values are negative, while if the autoregulation is
positive, they are positive. Building upon the theoreticalmachinery
developed above, we show in the following that these results can
be generalised to higher dimensional gene regulatory networks
with more complex feedback structures. In this way we are able
to build new theory relating gene action concepts and regulatory
network anatomy to quantitative genetics.

If the two alleles of Xi were completely independent, onewould
expect ∆12

i = 0, as in this case the total output of the gene
would be just the sum of the outputs from the two alleles. A
nonzero value would therefore indicate some kind of one-way
or mutual action between the alleles. In a single-locus model a
nonzero allele interaction value could be a consequence of the
feedback between the two alleles. Non-feedback mechanisms,
such as transvection [29] in which one allele has an effect on the
other (but not the other way round), could also lead to nonzero
allele interaction [14].

To search for systemic causes of nonzero allele interaction
values we examine the two-locus systems in Fig. 1. Their rate
equations are given in Appendix E. The node X1 is diploid and splits
a b c d

Fig. 1. a. The two-locus system analysed in Section 3.3 to investigate the source
of nonzero allele interaction values. The nodes X1

1 and X2
1 are the two alleles of

the locus X1 . Black arrows indicate direct effects. b. The interaction diagram of the
artificial µ-system. The nodeX2 is a genetically identical copy of X2 . The two red,
crossing arrows indicate actions whose strengths depend on µ. c. If µ = 0, the
actions are zero. Theµ-system splits in two independent subsystems, each of them
equivalent to the original system i a with one allele knocked out. d. If µ = 1,
the strengths of the actions are the same as in the system i a. In this case the µ-
system is equivalent to the original system in a without any allele knockout. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

in two subnodesX1
1 andX2

1 of typeα1 = 1 andβ1 = 2, respectively.
Taking the total equilibrium concentration of X1 as the system’s
phenotype, we want to investigate the allele interaction value∆12

1
of the system in Fig. 1a. We then have to compare the equilibrium
value y121 with y1|◦1 + y2|◦1 , the phenotype values when only one
allele is present. Let the nodeX2 be a copy of X2. Then y1|◦1 and y2|◦1
are the phenotype values of the two systems in Fig. 1c.

To ease the comparison between these two systems we intro-
duce the artificial µ-system in Fig. 1b. The two red, crossing arcs
represent actions whose strengths (expressed by the magnitudes
of the corresponding Jacobian elements) are proportional to a pa-
rameter µwhich can be varied in [0, 1]. The equilibrium values of
X1
1 and X2

1 in the µ-system are y1|21 (µ) and y2|11 (µ), and the corre-
sponding allele interaction value is∆12

1 (µ).
If µ = 0, the µ-system simplifies to the two independent

subsystems in Fig. 1c. The one to the left (right) is the allele
knockout system with only X1

1 (X2
1 ) left because X2 and X2 are

presumed identical. The phenotypic value of the whole system is
y121 (0) = x1|◦1 +x2|◦1 . Therefore∆12

1 (0) = y121 (0)−y1|◦1 (0)−y2|◦1 (0) =

x1|◦1 + x2|◦1 − x1|◦1 − x2|◦1 = 0.
If µ = 1, the µ-system is represented by Fig. 1d. From its

rate equations it follows that the equilibrium conditions of this
systemare the same as for Fig. 1a, leading to equal allele interaction
values. Therefore theµ-system interpolates continuously between
the diploid system in Fig. 1a and the allele knockout system in
Fig. 1c.

Differentiating the equilibrium conditions of the µ-system, we
find that d∆12

1 /dµ|µ=0 is in general nonzero. Details are given
in Appendix E. Because ∆12

1 (0) = 0, this implies that even
for infinitesimally small µ the µ-system has a nonzero allele
interaction value. Onemight think that this nonzero value is caused
by the feedback loop X1

1 →X2 → X2
1 → X2 → X1

1 . However, there
is still a nonzero allele interaction value if the arc from X2

1 to X2 is
removed. In this case there is no mutual interaction between the
alleles, only an indirect action from X1

1 to X2
1 , but no chain from X2

1
to X1

1 . We conclude that a nonzero allele interaction value could
be caused by feedback among the two alleles, but that a one-way
action is sufficient.

3.4. Allele interaction, feedback functions and feedback loops

The allele interaction values can be computed from directly
observable quantities. In this section, we show how they can be
related to properties of the network. Using finite differences and
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the mean value theorem, the derivatives of the dose-response
functions can be estimated in terms of the single allele effects

δ
αkβk\αk
l = xαkβkl − xβk|◦l ,

δ
αkβk\βk
l = xαkβkl − xαk|◦l

(39)

which quantify the effect on any locus Xl of activating the second
allele in the initially hemizygous locus Xk. Then

p′

lk(c
αkβk
l ) = qlk(c

αkβk
l ) =

δ
αkβk\βk
l

δ
αkβk\βk
k

, (40)

where cαkβkl ∈ (xαk|◦k , xαkβkk ). We use the subscript l in cαkβkl because
its value clearly depends on l.

Because the function plk is independent of the allelic composi-
tion of Xk, we can get four independent estimates of qlk by combin-
ing X11

k with X1
k , X

22
k with X2

k , and X12
k with X1

k and with X2
k . Note

however that they will refer to different and unknown arguments,
so that all together they will provide an estimate of the average
value of qlk in the interval between theminimum andmaximum of
the five genotypic values x1|◦k , x2|◦k , x11k , x12k and x22k .

If a model for a given network exists, we can use Eq. (40)
to estimate how the single allele effect propagates through
the network as a consequence of polymorphism in Xk and the
network connectivities, and use this to test the model. Conversely,
measurements of the single allele effects from a polymorphic locus
give information about the network connections [30].

Again dropping the subscript k from αk and βk, we denote in
the following the feedback functions of Xk by φαk , φ

β

k and φαβk ,
and similarly for Fk, etc. According to Eq. (17) the stationarity
conditions for the allele combinations α|◦, β|◦ and αβ are

γ αk xα|◦

k = φαk (x
α|◦

k , a),

γ
β

k xβ|◦

k = φ
β

k (x
β|◦

k , a), (41)

γ
αβ

k xαβk = φαk (x
αβ

k , a)+ φ
β

k (x
αβ

k , a) = φ
αβ

k (xαβk , a),

where γ αβk is computed in accordance with Eq. (33). The last
equation follows because, as is evident from Proposition 1, to
derive pLk wedonot use the stationarity condition forXk, and all the
other stationarity conditions are invariant under polymorphism of
Xk and do not have superscripts α and β . The allele interaction
value∆αβk = xαβk −xα|◦

k −xβ|◦

k is then given in terms of the solutions
of the three Eqs. (41). The following proposition relates∆αβk to the
derivatives ψα

k and ψβ

k of the feedback functions φαk and φβk .

Proposition 4. For any biallelic locus Xk, k ∈ N, there exist numbers
cαβk ∈ (xα|◦

k , xαβk ) and cβαk ∈ (xβ|◦

k , xαβk ) such that

∆
αβ

k =
ψα

k (c
αβ

k , a)xβ|◦

k + ψ
β

k (c
βα

k , a)xα|◦

k

γ
αβ

k − ψα
k (c

αβ

k , a)− ψ
β

k (c
βα

k , a)
. (42)

Proof. From Eqs. (17) and (41) it follows that

∆
αβ

k =
1

γ
αβ

k


φαk (x

αβ

k , a)+ φ
β

k (x
αβ

k , a)


− xα|◦

k − xβ|◦

k .

Inserting xαβk = xα|◦

k + (∆
αβ

k + xβ|◦

k ) into φαk (x
αβ

k , a) and xαβk =

xβ|◦

k + (∆
αβ

k + xα|◦

k ) into φβk (x
αβ

k , a) and using the mean value
theorem on both functions lead after some elementary algebra and
repeated use of Eqs. (33) and (17) to Eq. (42). �

By combining Eq. (42) with Eq. (23) and using the following
lemma, we are able to relate the sign of ∆αβk to properties of the
feedback loops of the system.
Lemma 1. Let E be an open subset of R+, let φ1 : E → R+ and
φ2 : E → R+ be two positive, strictly monotonic and differentiable
functions. Define φ12(x) = φ1(x) + φ2(x), and assume that γix =

φi(x), i = 1, 2, have unique solutions x1, x2 in E, where γi > 0 and
x1 ≤ x2 by convention. Define

γ =
γ1x1 + γ2x2

x1 + x2
, (43)

and assume the solution x12 of γ x = φ12(x) is also in E. Define
∆12 = x12 − x1 − x2 and δ1 = x12 − x2, δ2 = x12 − x1.

1. If φ′

1(x) < 0 and φ′

2(x) < 0 for all x ∈ E, then ∆12 < 0 and
δ2 > 0.

2. If 0 < φ′

1(x) < γ1, 0 < φ′

2(x) < γ2 for all x ∈ E, then ∆12 > 0
and δ1 > 0, δ2 > 0.

3. If φ′

1(x) > γ1, φ′

2(x) > γ2 for all x ∈ E, then∆12 < 0 and δ1 < 0.

The proof is in Appendix F.
Recall the definition Ωi(x) = (φ′

i (x) − γi)/φ
′

1(x) in Eq. (24).
Assume Ω1 and Ω2 have the same sign. It follows from Lemma 1
that if Ωi < 0 for i = 1, 2, then ∆12 > 0, and if Ωi > 0 for
i = 1, 2, then ∆12 < 0. Combining this with Eqs. (23)–(26) we
readily arrive at

Proposition 5. If Fαk and Fβk , α ≠ β , have the same sign Sk, then
(−1)nSk∆

αβ

k < 0. If P is the loop product of a sign-dominant, proper
loop for Xk, then P∆αβk > 0. If the loop is sign-dominant but composite
and has signature factor (−1)ε , then (−1)n+ε−1P∆αβk > 0.

The allele interaction values ∆
αβ

k are directly observable
by subjecting each Xk to allele knockout and recording the
unperturbed and perturbed equilibrium values of xk. If this is done
for all Xk, a set of exact sign conditions on the loop structure of the
system is obtained. Thismay be particularly useful for homozygous
systems, because then Fαk = Fβk and there will be no problem with
the sign Sk.

4. Discussion and conclusions

Combining graph theory and linear algebra results with
mathematical models of gene regulatory networks, we have
introduced relevant concepts and provided analytical insights
on how genetic variation is propagated in gene networks. We
hope that our results may contribute to a future theory on the
pleiotropy and epistasis features of genetic variation in haploid and
diploid gene networks as a function of regulatory architecture and
functional location of genetic variation.

We have also shown that the modelling framework for diploid
gene networks developed by Omholt et al. [13] in which a diploid
node is described by two rate equations, can be transformed –
in our language: aggregated – into a standard type model in
which each locus, haploid or diploid, is described by just one rate
equation.

The time-dependent solutions of the aggregated models are
qualitatively equivalent to the corresponding model by the
modelling framework of Omholt et al., and the equilibrium
solutions of the former are stable when the solutions of the latter
are. Qualitative equivalence is here to be taken in an informal
sense, meaning that the graphs of the solution curves look similar,
and that the curves are relatively close to each other in a sense
given in Appendix D.

The variables of the aggregated model are the observable total
gene product of each locus. The model depends explicitly on the
genotypes of the two alleles of the diploid loci. This property
facilitates investigations on how the genotypic value of a diploid
locus (i.e. its phenotype) depends on its genotype. It further
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Fig. 2. A system with an incoherent feedforward motif (from X1 to X3) and three
feedback loops. An arrow denotes positive action, a crossbar negative action. The
two full loops X1 → X2 → X3 → X1 and (X1 → X3 → X1) (X2 → X2) are
incoherent: their contributions to each Fi have opposite signs.

reduces the size of the model from perhaps 2n down to n. This
reduction also makes it much easier to read out the connection
and the feedback loops between the loci in ‘‘everyday’’ language
in which we talk about a gene as one entity despite the fact that
it is composed by two more or less independent alleles. To the
best of our knowledge this provides for the first time a rationale
for modelling diploid gene regulatory networks with one node for
each locus even though the locus may be polymorphic and show
intra-locus interaction effects.

Finally, we have shown that for a wide range of network
architectures the sign of the allele interaction is independent of
the shape of the rate functions and parameter values, and does
not change with mutations in the other nodes or under external
noise.More specifically, Proposition 5 confirms and generalises the
result in [14] for an isolated gene. It shows the close connection
between the sign of the allele interaction for a polymorphic locus
Xk and the feedback loops it is involved in. Its main importance
is that recording the equilibrium values xk for a hemizygotic
and either a homo- or heterozygotic locus Xk gives information
about the network interactions and feedback loops involving
Xk. These genotypes are within experimental reach for several
organisms, and the machinery developed above can be tested
in several settings. Hemizygous collections are already available
for yeast [31]. Of course there may be networks for which the
actual genotypes lead to more complex sign relations so that the
above results would not be valid. Irrespective of whether the sign
relations are valid or not, if these three allele interaction values
∆ααk , ∆αβk and ∆ββk have equal signs sk, a tentative hypothesis is
that Xk has one or more sign-dominant loop with sign sk.

Gjuvsland et al. [14] showed that in systems with one or two
loci, a biallelic locus can display up to 18 qualitatively different
allele interaction sign patterns (triplets of +, − and 0 representing
the signs of ∆11, ∆12 and ∆22). In a single locus system with
autoregulation only a subset of 7 of these could be realised with
monotonic dose-response functions. With non-monotonic dose-
response functions, however, 16 sign patterns could be generated.
They also showed analytically that for each allele combination,
the allele interaction value and the sign of the autoregulatory
loop were equal (their Supporting Information, Result 1). For the
autoregulatory system of an isolated node X1, the sign of F1 is
just the sign of the autoregulatory loop, which equals the sign
of the derivative of the dose-response function. Therefore, a non-
monotonic dose-response function implies that F1 – and the allele
interaction value – may take both signs, depending on parameter
values.

Consider then a multi-locus system with monotonous dose-
response functions (Fig. 2). The two full loops X1 → X2 → X3 →

X1 and (X1 → X3 → X1)(X2 → X2) are incoherent (their
contributions to F1 have opposite signs) because F1 = J13J32J21 −

J13J31J22 and J13J32J21 > 0, J13J31J22 > 0. Depending on parameter
values either the one or the other may determine the sign of
F1 and give opposite signs to ∆αβ1 . In this multi-node network,
varying sign of∆αβ1 canbe obtainedwithmonotonic dose-response
functions, while this could only be obtained with non-monotonic
dose-response functions in the single node autoregulatory system.
Based on this we conjecture that with monotonic dose-response
functions a much wider range of allele interaction sign motifs can
be obtained in multi-gene systems than for autoregulated genes.

Our results provide a theoretical basis for two kinds of
experimental tests of network models: (i) checking the sign of
the allele interaction for any node by allele knockout in the same
node and (ii) checking the effect of allele knockout in one node on
the equilibrium values of other nodes. In both cases the checking
can be made independently on either of the homozygotes and
on the heterozygote. This gives three possible combinations for
each polymorphic locus. If the allelic composition of each of these
loci can be selected or imposed experimentally and independently
for each locus, the number of different test can in principle be
very large. The formalism developed above may be combined with
systematic measurement of the effects of allele knockouts and
their effects on the other nodes in the network to deduce the
connectivity of networks for which no model so far exists. This
approach would be very similar to the approach suggested by
Kholodenko et al. [30].

We have deliberately refrained from dealing with networks
with multiple stable states. Surely, multistationarity is a generic
characteristic of nonlinear dynamic systems, but is not a relevant
issue in a large number of biological systems. Nor have we allowed
genetic variation affecting the coding part of a gene. For such genes
aggregation is generally not possible, as the two allele products
may have different effects on other genes. It would not make
sense to sum the two product concentrations, and the two alleles
would simply have to be modelled by separate rate equations. The
model framework we have used for the theory development is
of course very simple both in terms of the relationship between
the gene product expression level and the production rate from
downstream loci and the neglect of more complex regulatory
anatomies involving for example noncoding RNA (see e.g. [32–35]).
Including more biological realism along these lines would make
it more complicated to develop the theory, but might at the
same time disclose deeper insight into the propagation of genetic
variation in real networks. Our formalism can easily also account
for other network agents than gene loci, and can be used to study
e.g. regulatory structures involving gene networks, metabolic
networks and protein signalling networks.We anticipate that such
an endeavour will yield new insight into the manifestation of
genetic variation in nonlinear biological systems.
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Appendix A. Notation

In this appendix, we explain our notation for subsets of vectors
and matrices, and for equilibrium values for different genotypes
(allelic compositions) of diploid genes.

Let U and V be subsets of N = {1, 2, . . . , n}. We use the
notation zU = {zk}k∈U , XU = {Xk}k∈U , etc. In matrix equations
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zU denotes the corresponding column vector. The n × n Jacobian
matrix of Eq. (1) in the stable point x is denoted by J , and JUV is the
matrix obtained from J by selecting the rows U and the columns
V (without interchanging rows or columns). We use the notation
X (U) to denote the set of nodes not in XU , etc., and denote the
corresponding set of variables by z(U). Similarly, x(k) is the set of
all xi except xk or the vector obtained by removing xk from x. Let
i ∈ U and j ∈ V . The matrix J (ij)UV is obtained from J by selecting
the rows U and the columns V in J and deleting row i and column
j in J . The superscript (i ◦) indicates that only row i and no column
is deleted, and (◦ j) that only column j and no row is deleted. We
also define D = det(J), D(ij)UV = det(J (ij)UV ) if |U| = |V |, and D(ij) =

det(J (ij)). It goes without saying that if there is no superscript, no
row or column is deleted, and if there is no subscript, all rows and
columns are included. Similarly, if L ⊂ N , pLk(xk, a(k)) =

{plk(xk, a(k)) | l ∈ L}.
The genotype of a diploid gene Xi is denoted gi = αiβi, where

αi and βi take the values 1 or 2, indicating two different alleles. All
equilibrium values depend on the total genotype g = [g1 · · · gn]
of the system, but we do not complicate formulae by stating this
explicitly. Instead, we let xαiβii denote the equilibrium value of Xi

when its genotype is αiβi. Thus, x11i , x12i and x22i are the stable
equilibrium values of Xi when both alleles are present and both are
of type 1, of types 1 and 2, and both of type 2, respectively.

The stable equilibrium value for Xi when one of the alleles has
been knocked out is x1|◦i and x2|◦i , where ◦ indicates a nil value,
i.e. that the allele is absent. Finally, x1|1i and x1|2i represent the
equilibrium value of the output from a subnode of Xi with allele
of type 1 when the other allele is of type 1 or 2, respectively. For
example, x11i = x1|1i + x1|1i = 2x1|1i , x12i = x1|2i + x2|1i , and
x22i = x2|2i + x2|2i = 2x2|2i . Note however that while e.g. z1i is the
(time dependent) output of X1

i whatever its actual genotype, x1|◦i is
the equilibrium concentration of the gene product of Xi when the
copy of the gene on one chromosome is knocked out and the one
present is allele αi = 1.

Appendix B. Circuits and loops

In this appendix, we recall some useful facts related to the
circuit structure of a real n × n matrix A.

Lemma 2 ([24]). Let k ∈ N be given, let U be any subset of N with k
elements, and let π(U) be the set of permutations of U, including the
identity permutation. Let V ∈ π(U) and define the circuit product

P(U, V ) = AU1V1AU2V2 · · · AUkVk (B.1)

and

SU =


V∈π(V )

(−1)ε(U,V )P(U, V ), (B.2)

where ε(U, V ) is the number of subcircuit products in the circuit
product P(U, V ) with an even number of factors, and

sk =


U

SU , (B.3)

where the sum runs over all U for which |U| = k. Then SU = DUU ,
and the characteristic polynomial of A is

pn(λ) = λn − s1λn−1
+ s2λn−2

+ · · · + (−1)nsn. (B.4)

In particular, the trace T = tr(A) = s1 and the determinant
D = det(A) = sn. Of course, sn = SN . We call (−1)ε(U,V ) the
signature factor and (−1)ε(U,V )P(U, V ) the signed circuit product of
the circuit corresponding to the circuit product P(U, V ). To express
signs we use the sign function defined by sign(x) = −1 if x < 0,
sign(0) = 0, sign(x) = +1 if x > 0.

A square matrix for which all eigenvalues have a negative real
part, will be called a stable matrix. The following result should be
well-known.

Lemma 3 ([36, vol. 2, p. 220]). If the real n × n matrix A is stable,
then

(−1)jsj > 0, all j ∈ N. (B.5)

Appendix C. Proof of Proposition 2

Proof. When FMQ = 0, the four determinants D(1l), D(lm), D(1m) and
D(ll) are all block triangular, and can be expressed as

D(1l) = D(1l)LQ DMM ,

D(lm) = DQQD
(◦m)
MR ,

D(1m) = D1l
LQD

(◦m)
MR ,

D(ll) = DQQDMM .

(C.1)

The notation for subscripts and superscripts was defined in
Appendix A. From Eqs. (C.1) follows trivially that

D(1l)D(lm) = D(1m)D(ll) (C.2)

which is equivalent to the chain rule due to Eq. (6). �

Appendix D. Justification of aggregated models

In this appendix, we justify the claim in Section 3.2 that the
aggregated model SA is a well-founded aggregation of SE .

The simple model for transcription regulation developed by
Bintu et al. [37,38] and Buchler et al. [39] is based upon setting
the transcription rate proportional to the binding probability of
transcription factors and polymerase to the gene’s binding site.
They used traditional Boltzmann statistics to derive formulae for
the binding probabilities. Extending this analysis to biallelic genes
remains to be done. Unfortunately, a physico-chemical analysis of
transcription soon gets very complicated [40,41], but the following
simple argument lends some justification to the assumption that
the production rate of the biallelic gene is just the sum of the two
monoallelic production rates. Assume the number of transcription
factor molecules is much larger than the number of binding sites
of the gene, and that the effect of non-specific binding sites for
the transcription factors can be disregarded. Then the number
of transcription factor molecules available for binding to one
chromosome is not appreciably reduced if a small fraction of them
are bound to the other chromosome. If the probability of binding to
the one chromosome is independent of what happens at the other
chromosome, the total probability that transcription factors will
bind to the gene and initiate transcription is just the sum of the
two single-allele probabilities, and the total transcription rate is
the sum of the two single-allele transcription rates.

The following proposition shows that SA possesses the same
asymptotic stability properties as SE .

Proposition 6. Let z∗
= [z∗

1 , . . . , z
∗
n ] be an asymptotically stable

point for SE . If the Jacobian J of SA is diagonalisable in z∗, then z∗ is
an asymptotically stable point for SA.

Proof. If γ 1
n = γ 2

n = γn, the equations for z1n and z2n of SE can be
added, leading to the equations for SA.

We then assume γ 1
n ≠ γ 2

n . Let z(t, z
0), where zn = z1n + z2n , be a

solution of SE as given by Eqs. (31) such that limt→∞ z(t, y0) = z∗,
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and define u(t) = z(t, y0)− z∗. The definition of SA ensures that z∗

is a stationary point for both systems.
Because z∗ is an asymptotically stable state for SE , for any ε > 0

there exists a T > 0 such that ∥u(t)∥ < ε for t > T . By choosing
y0 sufficiently close to z∗ we can ensure that ∥u∥ < ε for all
positive t .

We proceed by investigating the rate equations for the
n-component vector u(t).

u̇i = ri(z∗
+ u)− γizi = ri(z∗

+ u)− ri(z∗)− γiui,

u̇n = rn(z∗
+ u)− γ 1

n z
1
n − γ 2

n z
2
n

= rn(z∗
+ u)− rn(z∗)− γ 1

n u
1
n − γ 2

n u
2
n,

(D.1)

where i = 1, . . . , n − 1 and rn = r1n + r2n . After a little algebra the
equation for u̇n can be written as

u̇n = rn(z∗
+ u)− rn(z∗)− γnun + en(u), (D.2)

where γn is defined in Eq. (33), and

en(u) =
1
z∗
n


γ 1
n z

∗2
n − γ 2

n z
∗1
n

 
u2
n − u1

n


. (D.3)

The mean value theorem for a mapping r : Rn
→ Rn is [28].

Theorem 1. Suppose r : W → Rn is differentiable on the open
set W ⊂ Rn, and that the line segment joining z∗ and z lies in
W. Then there exist numbers αi, 0 < αi ≤ 1, and vectors wi

=

(1 − αi)z∗
+ αiz, i = 1, . . . , n, such that

ri(z)− ri(z∗) = Dri(w)(z − z∗), i = 1, . . . , n, (D.4)

where D = [∂/∂z1, . . . , ∂/∂zn], and ri, z and z∗ are column vectors.

Note thatwi lies on the line segment between z∗ and z.
Let J(z) be the Jacobian of SA, defined by Jij(z) = ∂ fi(z)/∂zj.

Applying the mean value theorem to Eq. (D.2) we get

u̇ = H(u, z∗, a)u + e(u), (D.5)

where H(u, z∗, a) is obtained as follows: Let vi = (1 − αi)z∗
+

αi(z∗
+ u) = z∗

+ αiu, where 0 < αi < 1, and define a =

[α1, . . . , αn]. Then H(u, z∗, a) is the matrix obtained by evaluating
the elements of J(z) in row number i in the point vi, i = 1, . . . , n.
Obviously, H(u, z∗, a) → J(z∗) = J∗ when t → ∞ and u(t) → 0.

WewriteH(u, z∗, a) = J∗ +E(u, a) = PD∗P−1
+E(u, a), where

D∗ is the diagonal eigenvalue matrix and P the eigenvector matrix
for J∗. Then E(u, a) → 0 when t → ∞. Considering Eq. (D.5) as an
inhomogeneous ODE for u(t) and introducing v(t) = P−1u(t), its
solution is

v(t) = eD
∗tv0 +

 t

0
eD

∗(t−τ) (E(Pv(τ), a)+ e(Pv(τ))) dτ . (D.6)

Withw(t) = E(Pv(τ), a)+ e(Pv(τ))we write this simpler as

v(t) = eD
∗tv0 +

 t

0
eD

∗(t−τ)w(τ)dτ

= eD
∗tv0 +

 t

0
eD

∗(t−τ)dτ w̄(t)

= eD
∗tv0 + (D∗)−1(I − eD

∗t)w̄(t), (D.7)

where w̄(t), which is the vector of mean values of the components
ofw(t), is bounded by theminimumandmaximumofw(t) in [0, t]
because the remaining integrand is positive for each component
of v(t).

Let {v0j}, j = 1, . . . , n be a set of linearly independent vectors,
and vj(t) the corresponding solutions given by Eq. (D.7). Because
w̄(t) → 0 when t → ∞, the set of vj(t) is also linearly
independent for sufficiently large t . Letting V 0, V (t) and W̄ (t) be
the matrices with v0j, vj(t) and w̄j(t) as columns, respectively, we
get

V (t) = eD
∗tV 0

+ (D∗)−1

I − eD

∗t

W̄ (t), (D.8)

leading to

eD
∗t

=

V (t)− (D∗)−1W̄ (t)

 
V 0

− (D∗)−1W̄ (t)
−1

. (D.9)

The last factor in Eq. (D.9) is well-defined for sufficiently large t
and approaches (V 0)−1 when t → ∞ because W̄ (t) approaches
the zero matrix. It follows that ∥eD

∗t
∥ → 0 when t → ∞.

Let µ be the spectral abscissa of D∗. For all t ≥ 0, exp(µt) ≤

∥ exp(D∗t)∥ [42, Theorem 15.3]. This shows that exp(µt) → 0
when t → ∞. Therefore µ < 0, and z∗ is an asymptotically stable
and hyperbolic point for SA. �

To compare the temporal behaviours of SE and SA we had to rely
on numerical simulations. To justify the aggregation, the temporal
behaviours of z(t, z0) and y(t, z0) should be approximately equal
and qualitatively similar for a range of actual parameter values
and realistic common initial values z0 ≠ z∗. Although very
close similarity far from the common equilibrium point cannot be
expected, at least the behaviours near the equilibrium should be
quantitatively similar. We quantify the degree of similarity of the
solution curves by the relative discrepancy

RelErr(y, z) =


∞

0 (yi(t, z0)− zi(t, z0))2dt
∞

0 (zi(t, z0)− z∗

i )
2dt


i∈N

. (D.10)

One advantage of this discrepancy measure is that both integrals
converge exponentially if z∗ is hyperbolic so that they can easily
be computed numerically by integrating to a sufficiently large
and finite T . As a measure of the similarity of solutions near the
equilibrium we used

EigDiff (z∗
; SE, SA) = log


j∈N

|λj −Λj|

|Λj|
eℜ(Λj)


, (D.11)

where {Λj} and {λj} are the sets of eigenvalues of the Jacobians of
SE and SA, respectively. Because SE has one additional eigenvalue,
one of its eigenvalues has to be excluded from the sum in Eq.
(D.11). We excluded the eigenvalue that minimises the sum. The
purpose of the exponential factor is to simulate the fact that an
eigenvalue contributes to the solution of the linearised equations
around z∗ by this factor. This similarity measure is justified if there
is a corresponding similarity between the two sets of eigenvectors,
because then for a given solution z(t) itwill be possible to construct
a solution y(t)which will be quantitatively similar to z(t) close to
the equilibrium.

Numeric simulations for a range of n-values show that in almost
all cases the eigenvalues of SA match the eigenvalues of SE very
closely (Fig. D.3). The scatterplots in the left column show that
except in a few cases, RelErr(y, z) and EigDiff (z∗

; SE, SA) are much
smaller than 0, showing that the solution of SA lies relatively
close to the solution of SE , and that the differences between the
eigenvalues {Λj} of SE and {λj} of SA aremuch smaller inmagnitude
than the eigenvalues of the Jacobians of SE .

Except in a small number of cases, the temporal behaviours
of the solutions also match closely. Typically, at least when n is
large, there are appreciable differences between the two solutions
only for a few variables (Fig. D.4). Frequently this happens for
variables that do not approach their final state monotonically,
either because they oscillate towards the equilibrium or because
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Fig. D.3. Comparisons of the temporal behaviour of the extendedmodel SE and the aggregatemodel SA for varying parameter combinations. Top row: 3 aggregated nodes, 423
data points. Second row: 7 aggregated nodes, 394 data points. Third row: 14 aggregated nodes, 352 data points. Bottom row: 24 aggregated nodes, 392 data points. Left panels:
scatterplot of RelErr(y, z) vs. EigDiff (z∗

; SE , SA) for 423 parameter sets. Middle panels: the distribution of RelErr(y, z). Right panels: the distribution of EigDiff (z∗
; SE , SA).

Parameter values and details about the simulations are given in the text.
they approach a limit cycle. Also, there could be multistationarity
in the systems such that the two solutions approach different final
states.

Below follows a summary of the simulation details. The rate
functions fk, k = 1, . . . , n − 1, f 1n and f 2n were given by the
function

fi(z) = aiBj(Zk, Zl)− γizi, (D.12)

where ai and γi were scalars chosen at random from a uniform
distribution over (0, 1), and Bj is any of the 14 non-constant
Boolean functions of two variables, chosen at random for each i,
but equal for f 1n and f 2n . The function

Zk =
zpkk + hkθ

pk
k

zpkk + θ
pk
k

(D.13)
is the generalised Hill function derived from applying Boltzmann
statistics to transcription regulation [43]. Note that here the
superscripts are powers. The thresholds θk are chosen at random
uniformly over (0, 1), the steepness parameters pk (equivalent
to the Hill exponent) were picked from a uniform distribution
of integers in [1, 10], and the inverse fold changes hk were also
chosen at random from a uniform distribution over (0, 1). The two
inputs to the Boolean functions were chosen at random among
the variables Zi, but the same for r1n and r2n . For each value of n
we ran 500 simulations. For each parameter set, both solutions
were started from the same randomly chosen initial point. The
systems that did not converge to a stable point or in which the
two systems approached different attractors, were disregarded.
That left us with the number of cases mentioned in the caption of
Fig. D.3.
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a b c

Fig. D.4. Selected examples of solution curves for extended systems (blue) and the corresponding aggregated systems (green). a: a typical case with n = 4 in which the two
systems differ significantly in just one variable. b: a case with n = 4 of particularly bad similarity. In both cases, however, the two sets of curves are qualitatively similar, but
the oscillations and dips are shifted in time. c: a system with n = 3 having a stable limit cycle for both systems. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Appendix E. The root of nonzero allele interaction values

The basic two-node system in Fig. 1a is in our standard notation
given by the rate equations

ż11 = r11 (z2)− γ 1
1 z

1
1 ,

ż21 = r21 (z2)− γ 2
1 z

2
1 , (E.1)

ż2 = r2(z1)− γ2z2,

where z1 = z11 + z21 . For the µ-system in Fig. 1b the rate equations
are

ż11 = r11 (z2)− γ 1
1 z

1
1 ,

ż21 = r21 (z2)− γ 2
1 z

2
1 ,

ż2 = r2(z11 + µz21)− γ2z2,̇z2 = r2(µz11 + z21)− γ2z2,
(E.2)

where µ ∈ [0, 1]. By assumption the equilibrium conditions of
Eq. (E.2) define unique stable equilibrium values y121 (µ) =

y1|21 (µ) + y2|11 (µ), y2(µ) andy2(µ). The allele interaction value is
∆12

1 (µ) = y121 (µ)−y1|◦1 (µ)+y2|◦1 (µ). Using implicit differentiation,
doing some straightforward algebra and finally taking the limit
µ → 0, we find

lim
µ→0

d∆12
1 (µ)

dµ
=

u2
1u2

γ 2
1 γ2 − u2

1u2
y11 +

u1
1u2

γ 1
1 γ2 − u1

1u2
y21, (E.3)

where uα1 and u2 represent the derivatives of the corresponding
dose-response functions with respect to their argument. Because
∆12

1 (0) = 0 (see the main text), it follows that for arbitrarily small
µ > 0 theµ-systemhas a nonzero allele interaction value.Wemay
conclude that in general, this is true also for µ = 1, in which case
theµ-system is equivalent to the basic systemdefined by Eqs. (E.1).

If the arrow from X2
1 to X2 in Fig. 1b is missing, the loop X1

1 →X2 → X2
1 → X2 → X1

1 is broken, and there is no longer a regulatory
loop in the system. In this case the subsystem X2
1 , X2 does not act on

the two other nodes, and limµ→0 d∆12
1 (µ)/dµ no longer depends

on y21. Only the first term in Eq. (E.3) remains, and the conclusion
is still valid.

Appendix F. Proof of Lemma 1

Proof. We adapt the numbering such that x1 ≤ x2. The
intersections between the curves y = φi(x) and y = γix, i = 1, 2,
and y = φ1(x) + φ2(x) and y = γ x define the solutions x1, x2 and
x12, respectively. We consider three cases separately.

1. The case φ′

i (x) < 0, i = 1, 2. Assume x12 ≥ x1 + x2. Then

γ x12 = φ1(x12)+ φ2(x12) ≤ φ1(x1 + x2)+ φ2(x1 + x2)
< φ1(x1)+ φ2(x2) = γ1x1 + γ2x2 = γ (x1 + x2),

contradicting the assumption. Thus, x12 < x1 + x2.
Then assume x12 ≤ x1. This leads to

γ x12 ≥ φ1(x1)+ φ2(x1)
> φ1(x1)+ φ2(x2) = γ (x1 + x2) > γ x12,

which is impossible. Thus, x12 > x1. In passing we note that it
is not possible to draw a definite conclusion about which is the
larger of γ1 and γ2.

2. The case 0 < φ′

i (x) < γi, i = 1, 2. In this case, too, existence of
x12 has to be assumed. The three curves y = φ1(x), y = φ2(x),
and y = φ12(x) intersect the lines y = γ1x, y = γ2x and y = γ x,
respectively, from above as in case 1. Then φ12(x1 + x2) >
φ1(x1)+ φ2(x2) = γ1x1 + γ2x2 = γ (x1 + x2). This implies that
in x = x1 + x2, φ12(x) > γ x, from which it follows that in this
point the curve y = φ12(x) lies above the line y = γ x. Therefore
the intersection x12 lies to the right of x1 + x2, i.e. x12 > x1 + x2.

3. The case φ′

i (x) > γi, i = 1, 2. The existence of x12 is not ensured,
but we have assumed it exists. In this case φ′

12(x) > γ1 + γ2 >
γ , and the three curves intersect the corresponding lines from
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below. As φ12(x) > φi(x), it follows that φi(xi) > γixi. Assume
γ1 < γ2. Thus, in both points x1 and x2, φ12(x) > γ x. This
implies that x12 < x1, x12 < x2, thus x12 < x1 + x2. The case
γ2 < γ1 goes likewise. �
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