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Dear Sirs, 

We enclose a manuscript titled “A call for virtual experiments: accelerating the scientific process” for inclusion within 

the Special Issue on “Multi-bio and multi-scale systems biology” in Progress in Biophysics and Molecular Biology. In it 

we propose the concept of “virtual experiments” as the in silico analogues of wet-lab or field experiments, and argue 

that this concept deserves as much attention as the computational models to which such experiments are applied. 

Promoting the reuse of virtual experiments would vastly improve the usefulness and relevance of computational 

models, encouraging critical scrutiny of models and serving as a common language between modellers and 

experimentalists. 

Experiments are fundamental to the scientific method, whether for exploration, description or explanation. 

Experiments should therefore be as central in computational biology as in other sciences, for studying the 

implications of theories or hypotheses encoded as computational models. In current practice, however, experiments 

applied to models are usually embedded in opaque computer code, which is often not available for public scrutiny. 

We discuss how the protocol for a computational experiment should be viewed as an entity in its own right, and 

cleanly separated from the description of the model itself, and from surrounding code. Annotations can then 

facilitate the linking of models to experiment descriptions and any corresponding data available. 

This approach can provide many benefits for scientific progress: in specifying, assaying, and comparing the 

behavioural repertoires of models; as a prerequisite for reproducible research; to guide model reuse and 

composition; and for quality assurance in the application of computational biology models. The paper lays out these 

benefits to motivate wider adoption and tool support for virtual experiments. We also present a “vision of the 

future” in which virtual experiments underpin rigorous, streamlined confrontation between experimental datasets 

and candidate models, enabling what we have styled "continuous integration" of biological knowledge. The benefits 

reaped by early adopters of virtual experiments will snowball as more people get involved, because of positive 

network effects: each piece of knowledge becomes more valuable when there is more to compare it with. 

In summary, we believe the virtual experiment concept, if pursued jointly by modelling, experimental and 

bioinformatics researchers, would lead to the faster development of better models. This would be of particular 

importance for the translational impact of our models. 

Yours sincerely, 

Jonathan Cooper, Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK 

Jon Olav Vik, Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian 

University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway 

Dagmar Waltemath, Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, 

Germany 
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Abstract 
Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We 

argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would 

vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and 

serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual 

experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for 

reproducible research; to guide model reuse and composition; and for quality assurance in the translational 

application of models. A key step towards achieving this is that models and experimental protocols should be 

represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we 

outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would 

enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. 

Keywords 
Virtual experiments; Computational physiology; Model comparison; Functional curation; Reproducible research 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/pbmb/viewRCResults.aspx?pdf=1&docID=575&rev=0&fileID=14002&msid={B24570F0-868A-48A7-A343-FC972E640DCA}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

1. Introduction 
"Experiment [noun]: An action or operation undertaken in order to discover something unknown, to test a hypothesis, 

or establish or illustrate some known truth" (Oxford English Dictionary online, 2014) 

Experimentation is fundamental to the scientific method, whether for exploration, description or explanation 

(Hacking, 1983; Radder, 2003). In the exploration of a novel system, children and researchers alike will mess about 

with things just to see what happens. More formalized experimental protocols ensure reproducible results and form 

a basis for comparing systems in terms of their response to a specific stimulus. Finally, experiments can be carefully 

designed to distinguish between competing causal hypotheses based on their different testable predictions about 

the outcome of the experimental manipulation. One would therefore expect experiments to be central in 

computational biology too. 

Indeed, a mathematical model embodies a thought experiment, a causal hypothesis, and its falsifiable predictions. It 

is easy to ask what if we were to change a parameter, an initial state, or the model structure (Morgan and Winship, 

2007). Papers in computational biology focus on describing and analyzing the effects of such changes, and on 

confronting models with experimental data (Hilborn, 1997). This confrontation often generates new hypotheses, and 

many if not most new models arise by modification of existing ones (Smith et al., 2007; Waltemath et al., 2013). 

However, most virtual experiments are not built to be reproducible (Waltemath et al., 2011b), and thus die with the 

paper they are published in. This inhibits the critical scrutiny of models, as models are seldom subjected to the same 

simulation experiments as their predecessors, or revisited later in the light of new data. Perhaps worse, the status 

quo fails to take full advantage of experiments as a common language between modellers and experimentalists. This 

limits the relevance of mathematical models for experimental biologists, who often prefer to rely primarily on 

mental models to develop hypotheses and design tests for them. Despite the growing availability of data and model 

repositories (Joyce and Palsson, 2006; Le Novere et al., 2006; Li et al., 2010; Lloyd et al., 2008), there has been only a 

slow uptake of emerging tools and standards for documenting and sharing the protocols for simulation experiments 

and their results (Cooper et al., 2011b; Waltemath et al., 2011a, 2011b). 

We define a virtual experiment as the in silico analogue to a wet lab or field experiment, performed on a 

computational model rather than the real system or a physical model (see Box 1 for definitions). Here we argue that 

promoting the reuse of virtual experiments would vastly improve the usefulness and relevance of computational 

models, including in biomedical endeavours such as the Virtual Physiological Human (Hunter et al., 2013, 2010) and 

the Human Brain Project (Markram, 2012). We review the benefits of reusable virtual experiments: in specifying, 

assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide 

model reuse and composition; and for quality assurance in the application of computational biology models. Next, 

we discuss potential approaches for implementing virtual experiments, arguing that models and experimental 

protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments 

and data (Figure 1). We follow with some consideration of open questions and challenges that remain before the use 

of virtual experiments can become widespread. Lastly, we outline a vision for how the rigorous, streamlined 

confrontation between experimental datasets and candidate models would enable a "continuous integration" of 

biological knowledge, akin to the strategy used in software development (Duvall et al., 2007). 

<Figure 1 here> 

<Box 1 here> 

As a running example we will refer to heart cell modelling, a mature research field (Fink et al., 2011) that relies 

heavily on experimental manipulation such as electrical pacing and cellular patch clamping (Box 2). 

<Box 2 here> 
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2. The virtues of virtual experiments 

2.1. Descriptions of the behavioural repertoire of models 
One does not model a system so much as a set of phenomena. Insofar as a model is a purposeful simplification, what 

should be included or left out depends on what behaviours it is supposed to imitate. Furthermore, any useful model 

must be capable of not exhibiting the phenomenon if certain parameter values, initial states, or model structure 

were different. This is what makes the model causal: it is a statement about sufficient causes to exhibit the 

phenomenon in question. Such what-if questions are all examples of virtual experiments. 

Indeed, many phenomena are created by experiments, under conditions so artificial as not to occur in nature, as 

asserted by Ian Hacking in his classic Representing and intervening (Hacking, 1983). Likewise, many phenotypes are 

defined by a system's response to some stimulus or perturbation. Francis Bacon, four hundred years ago, likened this 

to "twisting the lion's tail" (Kuhn, 1976); a more modern example is the action potential of isolated, excitable cells, 

which is evoked by an electric stimulus (Box 2). In either case, experiments bring into play mechanisms whose 

importance may not be apparent under passive observation. 

The behavioural phenotype of a dynamical system is a high-dimensional and complex thing (Gjuvsland et al., 2013). 

Even a "simple" measure such as the duration of an action potential is a summary of the time-course of 

transmembrane voltage, which is but one of the myriad variables in a heart cell system. A rich characterization of the 

phenotype aids in mechanistic interpretation, in constraining parameter estimation, and in exposing models to 

empirical challenge. For example, the combination of calcium transient and action potential data has been shown to 

identify more parameter values than action potentials alone (Sarkar and Sobie, 2010; Sobie, 2009). 

Virtual experiments serve as assays of a model's behavioural repertoire, both in declaring what a model should do 

and verifying what it actually does. For example, the Bondarenko heart cell model (Bondarenko et al., 2004) is 

feature-rich and was designed to accommodate various pacing protocols and a suite of voltage-clamp protocols for 

different ion currents. On the other hand, the Bernus model (Bernus et al., 2002) was simplified for computational 

efficiency and stability, while using virtual experiments to ensure that the model still exhibited the various intended 

behaviours. 

Behavioural assays using virtual experiments form a relevant basis for comparison within a class of systems. Each 

species, cell type, or candidate model can be positioned relative to others along phenotypic axes, with the 

comparison focused on the phenomena of interest. For example, ten Tusscher and co-workers (Ten Tusscher et al., 

2006) compared heart models based on action potential morphology, conduction velocity, spiral wave dynamics and 

other features. By making it easy to apply published experiments to published models, the scientific community can 

place each new study in the context of all previous ones, greatly enhancing their combined value. To realize these 

benefits, virtual experiments need to be easily reusable with different candidate models. 

2.2. Reproducible research 
Scientific knowledge must be independently verifiable, even in computational sciences (Morin et al., 2012), and a 

growing number of scientists are gathering under the banner of reproducible research (LeVeque et al., 2012; Peng, 

2011; Waltemath et al., 2011a, 2011b). The spectrum of reproducibility (Peng, 2011) ranges from strict "replication" 

as in re-running a simulation in exact detail, for instance using a virtual machine (Howe, 2012), through 

"reproduction" in the sense of independent re-implementation of the essential aspects of a carefully described 

experiment (Drummond, 2009; Ince et al., 2012), to "constructive replication" (Lykken, 1968) based only on a clear 

statement of the hypothesis, leaving the next researcher free to choose their own experiment and analysis methods. 

Depending on the implementation approach, virtual experiments can contribute at different points along this 

spectrum. 
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At the replication end, a virtual experiment can be represented as a script or program, and rerun exactly. 

Publications could point at particular combinations of models and associated protocols to show how a particular 

figure was produced or how an analysis was carried out, providing "verifiable computational results" (Gavish and 

Donoho, 2012). The Simulation Experiment Description Markup Language (SED-ML) (Waltemath et al., 2011b) is a 

format to store simulation setups for replication of a particular outcome. 

More usefully than a script, a protocol description can be given at a higher level of abstraction, providing the details 

requested by reporting guidelines such as the Minimum Information About a Simulation Experiment (MIASE) 

(Waltemath et al., 2011a). Different tools that understand the protocol description can reproduce the experiments 

using their own implementations of algorithms etc., and using their own set of models. 

Finally, virtual experiments even support going beyond just reproducing an experiment to extending it. Aspects of 

the experiment description can easily be tweaked, or parameters adjusted, in order to approach the same essential 

hypothesis from slightly different angles, or investigate the wider behavioural regime. 

2.3. Behavioural specifications for quality assurance, model reuse and model 

composition 
To enter the clinical mainstream, computational biology must achieve industry-level quality management, including 

verification (how accurately software implements an underlying model), validation (how accurately the model 

represents reality) and uncertainty quantification, collectively abbreviated VVUQ (Pathmanathan and Gray, 2013; 

United States National Research Council, 2012). These questions can only properly be considered in terms of 

particular phenotypes, or quantities of interest in VVUQ jargon. For example, a heart model may accurately predict 

activation time (Niederer et al., 2011) but provide poor approximations to other phenotypes. A virtual experiment 

defines quantities of interest and thus plays a key role in this endeavour. 

Cooper et al. (Cooper et al., 2011b) argued that effective reuse of published models is impossible without knowing 

the behaviours a model can produce. They suggested as a solution "functional curation" of models, i.e. automated 

confrontation between data and models based on (real and virtual) experiments. This would complement the 

existing curation of model repositories (Li et al., 2010; Yu et al., 2011) that ensures that a model contains valid 

mathematics, that units are consistent on both sides of an equation, and so on. With models, data, and virtual 

experiments available as distinct entities from shared repositories in standard formats, newly published models or 

datasets can be picked up by the system and analysed automatically under all suitable virtual experiments. The 

results would be checked against the expected behaviours, and thus the region of operation for a model would be 

determined, and limitations for the use of that model identified. Nevertheless, there are many subtleties in 

performing a rigorous comparison of simulation outputs with experimental data, including the implications of 

different experimental techniques and the range of quantities that can determine suitability (e.g. temperature, 

species, gender, pH, osmolarity) (Cooper and Niederer, 2011). 

Comparing models against behaviour specifications could also be tightly integrated into model development. This 

would allow model developers to ensure that in specialising a model for a particular experiment, "standard" 

behaviour is not unexpectedly lost. For parameter estimation the difference between a virtual experiment's output 

and experimental data can be used as the objective function. With more virtual experiments applicable to a given 

model, many parameters may potentially be fitted simultaneously. 

Model composition is crucial for integrative research programmes (Kohl et al., 2011) such as the Virtual Physiological 

Human and the Human Brain Project. By clearly specifying model requirements in terms of expected behaviours 

under standardised experiments, we envision that model composition could be made much more straightforward, 

focused and reliable. Functional curation would help both in screening for candidate submodels, checking whether 

submodels remain valid if computationally simplified (Tusscher and Panfilov, 2006), and for assessing the 

performance of the compound model. The relevant consequences of any modifications or computational shortcuts 
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would be immediately apparent, enabling a test-driven development cycle similar to that used in software 

engineering. 
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3. How to realize virtual experiments 
Two key design principles can help realize the benefits described above. Firstly, a clear separation of the 

experimental protocol from the model makes it easier to perform new experiments with a model, or run an existing 

experiment with new models. Secondly, data, model and protocol resources need to be labelled in a common 

language that facilitates automated processing. Although both the benefits and the principles are generic across 

disciplines, the way forward is clearer for research fields that have already established some level of standardization, 

modularity and abstraction. As an illustration from heart modelling, we outline how the existing groundwork 

(databases, model repositories, markup languages and open standards to describe biological knowledge) can be 

adapted to foster the reuse and sharing of virtual experiments, and to streamline the confrontation of models with 

data. 

As discussed in Box 2, the main problem with today's models is that most hardcode a single experiment, with the 

model and protocol interwoven in one piece of "model code" (Figure 1, left). Applying new experiments to such a 

model requires a lot of reverse-engineering, tweaking and technical knowledge that is beside the conceptual essence 

of the model. What would be better is to build one model, then represent its different behavioural aspects in terms 

of different virtual experiments performed on that model.  

3.1. Separate experiment and model descriptions 
At the simplest level, the separation of experiment and model involves restructuring the software that implements 

experiments on models. This may involve "unpicking" an existing, "hardwired" experimental protocol from the 

model code, so that only the model structure remains. The key requirement is to identify clear interfaces between 

the experimental and model components. Doing so also clarifies what the experiments performed actually are, 

making them easier to modify for different purposes. 

Such a separation is a goal of the Simulation Experiment Description Markup Language (SED-ML) (Waltemath et al., 

2011b). An experiment encoded in SED-ML may change parameters and initial states, collect specific outputs for 

post-processing, and specify technical options e.g. for numerical solvers. However, it still refers to hardcoded 

parameter names and model identifiers, which precludes its use with other, similar models, or even with an updated 

version of the same model. Thus, while SED-ML ensures replicability, it does not yet offer constructive replication in 

the sense of performing the virtual experiment on any model that encodes a particular feature of interest. 

There are trade-offs between implementation options for virtual experiments with regard to ease of construction, 

scope for automation, and generality. General-purpose programming languages have the advantage of being 

human-friendly, expressive and flexible. In contrast, markup languages such as SED-ML are verbose and complex, but 

designed for machine processing of the encoded biological meaning. They are thus easier to work with in an 

automated fashion. 

Depending on the level of detail, abstraction and generality of the model, the virtual counterpart of a wet-lab 

procedure may involve changing a parameter, an initial state, or a structural aspect of the system. The different 

scenarios of parameters and initial state can be viewed as members of a family of systems that the model describes 

in a unified manner. Thus, it is straightforward to represent and perhaps automate those experiments that 

correspond just to changing a parameter or initial state. A stimulus period parameter is easy to change; the internal 

details of a hardcoded cell model are not. 

To perform experiments that are not built directly into a model, it is often necessary to modify the model structure. 

While this can be done manually for quick prototyping, applying the same modification to another model will be 

easier and more reliable if it can be done programmatically. For instance, a differential equation for transmembrane 

voltage might be replaced with a constant to represent voltage clamping. Such modifications are easier with domain-

specific languages and a clean separation of model and experiment. Then, only the key features of the model and 
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experiment are encoded, divorced from "bookkeeping" details required by a programming language or software 

framework. 

3.2. Provide semantically rich interfaces between models and experiments (and 

researchers) 
An experimental protocol needs a way to recognize the model components, parameters and variables it manipulates. 

The pacing of a heart cell should be applicable to any model that includes an input current and a transmembrane 

potential, regardless of whether the latter is called V or Vm.  To achieve this, connections between protocol and 

model descriptions need to be done at the level of biological concepts, rather than depending on details of a 

particular encoding (Cooper and Osborne, 2013). What is needed is a common language between models and 

protocols (and researchers), and fortunately this already exists (de Bono et al., 2011) through the use of ontological 

annotation (see Box 1). Such an unambiguous identification of every variable, parameter or process in a model, data 

set or experimental procedure is already in place for many models in the BioModels database (Li et al., 2010). 

Models are free to use their own variable names if in addition they use globally agreed identifiers (Juty et al., 2011). 

The ability to consistently navigate and query a set of data and model resources using terms taken from one or more 

ontologies is called semantic interoperability (Box 1). Together, ontologies, standard formats, and associated 

infrastructure enable automated reasoning: the translation of human-meaningful queries to machine-processing of 

the relevant parts of vast data and model resources (de Bono et al., 2011). One such application could be a protocol 

that clamps all intra- and extra-cellular ion concentrations, without needing to know which ion species are included 

in each model. Another is to compute the sum of all membrane currents involving potassium ions, as new potassium 

currents have been discovered and added to models over the years. 

For virtual experiments, the key benefit of ontological annotation is that it defines interfaces. What features 

(components, variables, parameters) must a model contain to be eligible for a given experiment? What variables, 

collected under what circumstances, must a dataset contain to be useful in validating a given behavioural aspect of a 

model? This has applications such as determining which experiments may usefully be applied to which models, 

ensuring that the interfaces are compatible: the model provides the biological concepts which the experiment is 

probing. Model databases that link models, ontologies and associated simulations already enable queries such as 

"Which simulation experiments study the change of concentration in 'm-phase inducer phosphatase'?" (Henkel et al., 

2012), and could easily integrate virtual experiments. Similarly, queries over experimental databases can help to 

discover data available for calibrating or validating a model. These allow the many-to-many linking of models to 

experimental data via virtual experiments (Figure 1, right).  
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4. Challenges, and visions of a future  
We have argued that virtual experiments have the potential to accelerate the scientific process of computational 

modelling, and identified some key principles for implementing them effectively. In the following, we identify some 

of the challenges that impede the way to a future where virtual experiments are routinely incorporated in 

computational research. 

The power of virtual experiments extends to all fields of modelling, not just those from which we have drawn our 

examples above (see Box 3). However, the concepts required to represent virtual experiments vary widely across 

domains, and current solutions only capture a small subset. These differences in requirements depend partly on the 

maturity and homogeneity of modelling work. Where high flexibility is needed, the power of a full general purpose 

programming language may well be required in order to encode at least some aspects of experiments. Where there 

is greater consistency in the kinds of experiments performed, there is much more scope for a community standard 

with restricted semantics but greater stability. 

<Box 3 here> 

Awareness of the potential benefits of standardized and reusable virtual experiments is important, but not sufficient. 

Experience from other standardization efforts has shown that ideas will only be taken up when there is tool support. 

For example, most published SBML models arise only from modellers working with tools that directly export SBML. 

Encouragingly, a few model repositories have started to provide simulation descriptions in SED-ML format as a 

reproducible proof of their curation figures. However, whether or not a SED-ML file is available for a model so far 

depends on the curator, as very few researchers provide their experiments in a standard format. High-quality virtual 

experiments will only be provided if they can easily be generated and explored by software tools. 

Together, such tools could enable a continuous integration of knowledge. We envision a world where, as novel data 

are recorded and hypotheses are generated, they can be incorporated into existing or extended models in the 

context of existing knowledge, rather than in an ad-hoc manner as is often currently the case. Once in the system, 

each piece of information added provides new context for the existing ones, and thus the invested efforts bring 

rewards that continue to grow cumulatively. The high-throughput screening of data versus models will rapidly 

identify gaps in understanding, limitations in the data, and potential contradictions in current hypotheses. In concert 

with systems for difference detection between models (e.g. (Waltemath et al., 2013)), one could identify the specific 

model change(s) leading to differences in behaviour. By integrating functional curation as a public service, both for 

model repositories and model developers, researchers may easily characterise or benchmark their models under a 

wide range of scenarios (including easily varying published experiments to address their own specific setup), while 

checking whether standard behaviours are retained. We believe this will lead to faster development of better 

models. 

These visions have exciting implications for new research paradigms, with applications across biomedical research, 

particularly for embedding modelling into clinical use (somewhat fancifully imagined in Box 4). However, many non-

trivial challenges remain to be tackled, by experimentalists, by modellers, by developers of tools and standards, and 

by data and model curators. We hope our paper will stimulate our readers to be involved. 

<Box 4 here> 
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Box 1: Terminology 
A model is a purposeful simplification of reality, designed to imitate certain phenomena or characteristics of a 

system while downplaying non-essential aspects (Vik et al., 2014). Its value lies in the ability to generalise insights 

from the model to a broader class of related systems. Thus, a lab mouse can be a model representing mammals in 

general; an in vitro heart cell can represent the cells in an intact heart; and a set of differential equations can 

approximate the dynamic behaviour of a biological system. 

For mathematical and living biological models alike, an experiment is the process of inducing changes or stimuli to 

elicit some response from the system that can be observed and carries information about the inner workings and/or 

emergent properties of the system. 

An experimental protocol is a detailed specification for carrying out an experiment. Whether involving a wet-lab, 

field or simulated experiment, this will include interventions, recordings, and post-processing. A protocol for a wet-

lab experiment will specify environmental conditions, whereas a simulation protocol will translate these into 

corresponding initial/boundary conditions and parameter values. A simulation protocol may also include details of 

the numerical algorithm and parameters to use. 

A phenotype is any observable trait of interest in an organism or a model thereof. The purpose of computational 

physiology is to mimic measurable phenotypes based on mechanistic descriptions of dynamical systems. 

Ontologies are domain-specific lists of concepts and the relations between them. Multiple ontologies can be 

combined to encode biological knowledge, so that labels can be given a precise technical meaning. For example, 

consider the phenotype "mass of a heart cell". This is the quality "mass", pertaining to a heart cell, which is a cell and 

is located in the heart, which is an organ. A key feature of formal ontologies is that they are computer-processable, 

and automated tools can make logical deductions from the relationships stated. 

Semantic interoperability (where "semantic" means "relating to meaning") denotes the ability to consistently 

navigate and query a set of data, model and protocol resources using terms taken from one or more ontologies (de 

Bono et al., 2011). With ontological annotation, new knowledge automatically connects to that which already exists, 

so that users can discover relevant knowledge without knowing its location in advance, and without having to 

formulate specific queries to link and select data. 
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Box 2: Example from cardiac electrophysiology 
As an example of the central role virtual experiments could play, we consider cardiac electrophysiology modelling. 

Here the use of mathematical models dates back over 50 years (Noble, 1960), making this field a relatively mature 

area of computational systems biology. Several generations of computational models of individual cardiac cells of 

varying types and complexity have now been developed, and more than 100 are available within the CellML Model 

Repository (Yu et al., 2011). Such models take the form of (often large) systems of coupled nonlinear ordinary 

differential equations modelling processes such as the influx and efflux of ions across the cell membrane in response 

to, and generating, changes in the transmembrane voltage. 

Except for the pacemaker cells and some others, isolated mature heart muscle cells are quiescent. To elicit 

behaviour typical of a cell in its normal environment we need to mimic the electrical impulses it normally receives 

from neighbouring cells. This involves injecting a brief stimulus current, which depolarizes the cell and allows influx 

of sodium ions and further sustained depolarization, known as the action potential (see Figure 2A). This sets off a 

chain of events that releases calcium into the cytosol, where it binds to regulators of motor proteins allowing the cell 

to contract. Where a wet-lab experimentalist will administer a stimulus current via an electrode, the computational 

biologist might build in a stimulus current term in the differential equation for transmembrane voltage. 

<FIGURE 2 HERE> 

Most of the heart cell models in the CellML repository implement a single experiment, namely regular pacing. The 

virtual counterpart of a wet-lab experiment then amounts to changing parameter values for the stimulus duration, 

amplitude, and frequency of repetition; or possibly modifying the initial state of the simulated cell. Regular pacing is 

informative in many ways, and can reveal shortcomings such as the long-term instability that results from failing to 

conserve charge (a common omission in early models). However, many other experiments are possible, each 

focusing on some particular aspect of heart cell dynamics. These may involve changing a parameter value, the initial 

state, or a structural aspect of the system. For example, the conditional knocking-out of ion channel genes can be 

simulated by setting the corresponding ion-channel conductance parameters to zero. 

Many experiments cannot be represented by simple parameter changes, but instead require modification of the 

mathematical model structure. A case in point is voltage clamping (Molleman, 2002), an ingenious technique for 

dissecting the behaviour of voltage-dependent ion channels. By using an amplifier, current is injected to forcibly 

apply, and hold, any specified voltage across the cell membrane. In model terms, this amounts to replacing a 

differential equation for voltage with a constant parameter. The resulting ionic current gives information about the 

opening and state-switching of ion channels. A wide variety of voltage clamp protocols have been designed to 

emphasize particular aspects of different ion channel kinetics. 

In current practice, changes to models are mostly represented by duplicating the entire model and then modifying 

its source code. In cardiac electrophysiology this is seen most commonly in the provision of endocardial, epicardial 

and midmyocardial variants of many ventricular cell models (e.g. 

http://models.cellml.org/workspace/tentusscher_panfilov_2006 for (Tusscher and Panfilov, 2006)). This 

fragmentation of model families is equally widespread in the BioModels Database (Li et al., 2010), where several 

models of cortical spiking neurons, all based on Izhikevich 2004 (Izhikevich, 2004), differ primarily in parameter 

values (for instance BioModels IDs BIOMD0000000129 to BIOMD0000000136). 

Increasingly, researchers are also using single cell models within integrated, multi-scale models of whole heart (or at 

least whole ventricle) function (see Figure 2B). Software platforms exist that allow automated incorporation of 

multiple cell models (e.g. myocardial cells from differing regions of the heart, Purkinje fibre cells) direct from the 

CellML repository into the multi-scale computational model (see (Niederer et al., 2011) for a comparison). 

http://models.cellml.org/workspace/tentusscher_panfilov_2006
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It is therefore a hindrance to the field that most curated models come with some specific experimental protocol 

hardcoded into the equations. To reuse or combine such models, you must "unpick" the experimental protocol so 

that only the model structure remains. This is frequently a complex and error-prone procedure, as discussed in 

(Cooper et al., 2011a). 
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Box 3: Expanding the scope of virtual experiments 
The principal strategies to realize virtual experiments, namely ontological annotation and standardized interfaces, 

are generic and applicable even in research fields that are less standardized than e.g. ordinary differential equation 

modelling of cell biology. Many experiments, particularly for biomedical applications, involve spatial variation and/or 

composed multi-scale multi-physics models. In such scenarios one often wishes to modify model parameters within 

a particular spatial subdomain, or probe particular component models; these needs increase the complexity of the 

model/protocol interface (Cooper and Osborne, 2013). 

One specific example is agent-based modelling, which is an eclectic approach with applications in ecology (Grimm 

and Railsback, 2005), economics (Farmer and Foley, 2009) and medicine (An et al., 2009). Recent years have seen the 

gradual adoption of guidelines for model documentation and reproducibility of such models in ecology (Grimm et al., 

2010, 2006). It would be straightforward to extend the current structured-text-based scheme with ontological 

annotation. On the other hand, it is harder to standardise model implementations, which are very ad hoc in most 

agent-based models (Grimm and Railsback, 2005). However, certain frameworks such as NetLogo (Wilensky, 1999) 

are widely used for models of medium complexity. In general, separating experiment from model becomes a 

programming issue, in that all relevant experimental parameters must be user-controllable and discoverable through 

annotation. 

Virtual experiments could also become applicable in the wet lab. For instance, patch clamping of muscle, nerve or 

brain cells is a prime candidate for tight integration of wet-lab experiment and computer modelling. The robotized, 

high-throughput systems available (Kodandaramaiah et al., 2012; Kolb et al., 2013; Wood et al., 2004) already have 

their own formats for specifying voltage-stepping protocols, and excitable cells are among the best-modelled 

biological systems in public repositories (Box 2). It is a small step to use the same protocol specifications for wet-lab 

and virtual experiments, and thus streamline the confrontation of simulated and experimental data. 
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Box 4: A brave new world 
Contributed by Gary Mirams. 

Vladimir sat down at his desk, and glanced at the computer clock, 09:00 Thursday 20th February, 2035. His task for 

the day was to make a new <ion channel> model, because a novel methylation state was discovered on Tuesday that 

forms in <very specific cell type and disease circumstances>. 

Experiments had been performed on Wednesday, guided by protocols used to fit the previous model of <ion 

channel> for <very specific cell type>. The experimental team had looked up the existing model of <ion channel> for 

healthy <very specific cell type> and had access to the protocols that were needed to fully describe the kinetics of 

this channel, at a range of temperatures, pHs, ion concentrations, etc. They downloaded the protocols, ran their 

wet-lab experiments using the PatchClamper7000+, and the results had been uploaded to the WHO central database 

that evening, along with a computer-readable description of the corresponding protocols, conditions and all meta-

data. 

Vladimir downloaded all this information by 09:10 and was immediately able to simulate the predictions of the 

existing model using the machine readable protocol. He had a quick glance at the difference between the existing 

model's predictions and the new recordings; this novel methylation state made quite a difference! Together with 

SuperFancyFitting algorithms and full access to the raw data he selected a range of sensible objective functions, and 

re-fitted the previous model's parameter co-variance distributions to describe the new methylation state; 

unfortunately it couldn't describe the data whatever re-fitting he tried. Luckily NovelSuperFancyFitting algorithms 

had been invented in 2034 that suggested a range of possible new kinetic states and transitions, and he was able to 

select the minimal one for a great fit and evaluated its predictive power by 11:00. The community had standard 

guidelines for the adoption of novel models, and he had run the automated checks by 11:30: it passed and was 

deemed of sufficient predictive value to be widely useful. By lunchtime, the virtual physiological human model (in 

use in every hospital in the world) had been upgraded to version 10.4.1.3 and was providing more accurate 

predictions of <arrhythmic risk, pain relief, exercise guide, diet supplements!> for physicians looking after <very 

specific disease circumstances> patients. 
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Figure legends 
Figure 1. Integrating virtual experiments in the scientific workflow. At present (left), model repositories hold machine-readable 

model descriptions, typically containing a single hard-coded protocol. To perform any other virtual experiment on a given model 

requires substantial manual intervention. A more flexible architecture for virtual experiments (right) would define protocols 

independently of the model, but require models to be appropriately annotated with unambiguous identifiers for variables and 

parameters, so that protocols can be formulated in terms of such identifiers. This makes it possible to perform virtual 

experiments on all models having the annotations used by the protocol, or to find all experiments that are applicable to a given 

model. Similarly, annotation enables the automatic confrontation of simulations with relevant experimental data. 

Figure 2. Examples of cardiac virtual experiments. A) Simulated stimulation of a heart cell, eliciting an action potential 

(approximate reproduction of Figure 12 in (Noble, 1962) using a CellML encoding of the model equations). B) Transmembrane 

potential in a human ventricular mesh after a defibrillation shock (based on (Bernabeu et al., 2010), using the cell model in 

(Tusscher and Panfilov, 2006), simulated in Chaste 3.1 (Mirams et al., 2013)). 

 


