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The global expansion of the aquaculture industry has brought with it a corresponding

increase of novel viruses infecting different aquatic organisms. These emerging viral

pathogens have proved to be a challenge to the use of traditional cell-cultures and

immunoassays for identification of new viruses especially in situations where the

novel viruses are unculturable and no antibodies exist for their identification. Viral

metagenomics has the potential to identify novel viruses without prior knowledge of

their genomic sequence data and may provide a solution for the study of unculturable

viruses. This review provides a synopsis on the contribution of viral metagenomics to the

discovery of viruses infecting different aquatic organisms as well as its potential role in viral

diagnostics. High throughput Next Generation sequencing (NGS) and library construction

used in metagenomic projects have simplified the task of generating complete viral

genomes unlike the challenge faced in traditional methods that use multiple primers

targeted at different segments and VPs to generate the entire genome of a novel virus.

In terms of diagnostics, studies carried out this far show that viral metagenomics has the

potential to serve as a multifaceted tool able to study and identify etiological agents of

single infections, co-infections, tissue tropism, profiling viral infections of different aquatic

organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic

analyses, and the study of genomic diversity in quasispecies viruses. With sequencing

technologies and bioinformatics analytical tools becoming cheaper and easier, we

anticipate that metagenomics will soon become a routine tool for the discovery, study,

and identification of novel pathogens including viruses to enable timely disease control

for emerging diseases in aquaculture.

Keywords: aquatic organisms, diagnosis, discovery, etiology, novel, viral metagenomics, viruses

INTRODUCTION

Traditionally, the diagnosis of viral diseases has been dependent on cell culture in which viruses
exhibit cytopathic effects (CPE) and immunoassays based on antibodies having the binding
specificity for the virus to be diagnosed (Leland and Ginocchio, 2007) in addition to amplification
of specific gene segments of the viruses by polymerase chain reaction (PCR). Virus propagation
using cell-culture has significantly contributed to the development of protective vaccines against
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fish diseases such as infectious pancreatic necrosis virus
(IPNV), viral hemorrhagic septicemia virus (VHSV), infectious
hematopoietic necrosis virus (IHNV), salmonid alphavirus
(SAV), and infectious salmon anemic virus (ISAV) in
aquaculture (Sommerset et al., 2005; Gomez-Casado et al., 2011;
Munang’andu et al., 2014a,b; Munang’andu and Evensen, 2015).
However, the bulk of viruses found in aquatic environments are
unculturable (Wang et al., 2002) and there are no antibodies
available for their identification nor specific primers for PCR
detection, which precludes their study. The detection of non-
culturable viruses (Handelsman, 2004; Schloss and Handelsman,
2005), by molecular biology based tools such as the PCR test
demand that the genomic sequence of the target virus be known
prior to diagnosis (Yamaguchi et al., 2000; Bibby, 2013), which
precludes the identification of novel viruses whose sequences
are unknown (Gao and Moore, 1996). Given that aquaculture
is continuously faced with the challenge of identifying novel
pathogenic viruses infecting different fish, crustaceans, and
shellfish species, there is an urgent need to develop diagnostic
tools able to identify those viruses in order to expedite the
process of developing timely disease control strategies.

In the last decade, high throughput next generation
sequencing (NGS), has emerged not only as a powerful tool
able to enhance our understanding of the host response to
infection (Xu et al., 2015, 2016a,b), but as a tool able to unravel
a large number of viral genomes using metagenomics analysis
(Handelsman, 2004; Riesenfeld et al., 2004). Viral metagenomics
analysis is a culture independent approach that does not require
prior knowledge of the genomic sequence of the virus to be
identified (Handelsman et al., 1998; Streit and Schmitz, 2004;
Gross et al., 2010; Mokili et al., 2012; Martínez-Porchas and
Vargas-Albores, 2015). It provides a unique opportunity able
to identify several viruses in one sample at the same time.
The scope of its application in aquaculture is bound to expand
from the analysis of environmental microbial composition to the
search for novel viruses, routine diagnosis, disease surveillance,
and public health. Given the increase of emerging pathogenic
viruses in aquaculture, it is anticipated that viral metagenomics
is bound to expedite the process of identifying novel viruses
that infect different aquatic organisms before they cause disease
outbreaks reaching epidemic proportions. The number of viral
metagenomics studies has exponentially increased from <10
publications in 2002, when this technology was first discovered
(Handelsman, 2004; Riesenfeld et al., 2004), to>300 publications
by 2010 (Mokili et al., 2012). Although its application in
environmental studies has been widely reviewed by different
scientists (Fuhrman, 1999; Breitbart et al., 2002; Edwards and
Rohwer, 2005), there are limited reviews on its application in the
discovery of novel viruses in aquaculture.

Hence, in this review we first provide a historical background
of viral diseases discovered using the traditional cell culture,
immunoassays, and basic PCR techniques in aquaculture. As a
second step, we provide an overview of viral diseases discovered
using viral metagenomics and NGS in order to compare the
traditional approaches and viral metagenomics analysis in the
discovery of novel viruses. In addition, we also highlight the
diagnostic role and other potential uses of viral metagenomics

apart from its use in the discovery of novel viruses. Based on
observations herein, we advocate that scientists faced with the
challenge of identifying new viruses infecting aquatic organisms
should explore its application in order to expedite the process
of developing timely disease control strategies for emerging viral
diseases for aquatic organisms.

HISTORICAL PERSPECTIVES OF VIRAL
DISEASES IN AQUACULTURE

The major viral diseases of aquatic organisms can be divided into
viruses of finfish, crustaceans, and marine mammals as shown
below.

Viral Diseases of Finfish
Themajor challenge in the control of viral diseases in aquaculture
is the long duration it takes from the first time the disease
is discovered through clinical reports to identification of the
etiological agent. This delay precludes our ability to develop
timely disease control strategies. For example, IPNV was first
reported as a clinical disease causing acute catarrhal enteritis
in salmonids in 1940 (McGonigle, 1941) and yet the virus was
first identified and characterized 20 years later in 1960 (Wolf
et al., 1960). VHSV was first identified in 1962 (Jensen, 1965)
followed by IHNV in 1969 (Wingfield et al., 1969) although
reports of mortalities caused by both viruses date far back in
the early 1950s. In the case of nodavirus, infections causing
major problems in hatcheries as well as clinical signs linked
to lethargy, anorexia, pale coloration and corkscrew swimming
in barramundi (Lates calcarifer) and other fish species in Asia
were first reported in the 1970s and yet the virus was first
characterized in 1990 (Glazebrook et al., 1990; Munday et al.,
2002). SAV was first reported as a disease causing skeletal
muscle and cardiac myopathy in salmonids in 1976 and yet
the virus was first identified and characterized almost two
decades later in 1995 (Boucher et al., 1994; Castric et al.,
1997). Outbreaks of cardiomyopathy syndrome (CMS) were
first reported in 1985 (Amin and Trasti, 1988) while the virus
responsible for the disease was recently characterized as piscine
myocarditis syndrome virus (PMCV) in 2011 (Haugland et al.,
2011). Similarly, heart and skeletal muscle inflammation (HSMI)
outbreaks were first reported in 1999 (Kongtorp et al., 2004a,b)
and yet the etiological agent was recently identified after a decade
as piscine reovirus (PRV) now referred to as piscint orthoreovirus
(Løvoll et al., 2010; Palacios et al., 2010). Table 1 shows a
summary of the major fish viral diseases showing the year when
clinical cases were first reported and the year when the etiological
agent was identified. The general trend is that etiological agents
were only identified after they caused disease outbreaks reaching
epidemics proportions, which is in line with observations made
by Alavandi and Poornima (2012) who pointed out that our
response to viral infection has mainly been reactive in the sense
that a new pathogen is usually not identified until it has reached
epidemic proportions. Hence, there is need to develop proactive
diagnostic tools able to identify novel viruses before they cause
disease outbreaks leading to high economic losses in aquaculture.
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TABLE 1 | Viruses infecting finfish discovered using traditional cell culture methods.

Virus Family Nucleic acid Clinical signs first reported Etiological virus identified and

characterized

Year References Year* References

A: VIRUSES INFECTING FINFISH

Infectious pancreatic necrosis virus Birnaviridae dsRNA 1940 McGonigle, 1941 1960 Wolf et al., 1960

Viral hemorrhagic septicemia virus Rhabdoviridae (−)ssRNA 1950s Jensen, 1965 1962 Jensen, 1965

Infectious hematopoietic necrosis virus Rhabdoviridae (−)ssRNA 1950s Rucker et al., 1953 1969 Wingfield et al., 1969

Nervous necrosis virus Nodaviridae (+)ssRNA 1970s MacKinnon, 1987 1990 Glazebrook et al., 1990; Mori et al.,

1992
Salmonid alphavirus Togaviridae (+)ssRNA 1976 Munro et al., 1984 1995 Boucher et al., 1994; Castric et al.,

1997
Infectious salmon anemia virus Orthomyxoviridae (−)ssRNA 1984 Thorud and Djupvik, 1988 1995 Dannevig et al., 1995; Mjaaland et al.,

1997
Hirame rhabdovirus Rhabdoviridae (−)ssRNA 1984 Kimura et al., 1986 1984 Kimura et al., 1986

Piscine myocarditis syndrome virus Totiviridae dsRNA 1985 Amin and Trasti, 1988 2010 Løvoll et al., 2010; Haugland et al.,

2011

Epizootic hematopoietic necrosis virus Iridoviridae dsDNA 1985 Langdon et al., 1986 1985 Langdon et al., 1986

Spring viremia of carp virus Rhabdoviridae (−)ssRNA 2002 Dikkeboom et al., 2004 2002 Dikkeboom et al., 2004

Tilapia lake virus Orthomyxoviridae (−)ssRNA 2009 Eyngor et al., 2014 2014 Eyngor et al., 2014

*Year virus discovered and characterized.

Viral Diseases of Crustaceans
Apart from fish farming, shrimp farming is one of the rapidly
expanding aquaculture industries whose expansion has brought
with it a corresponding increase in the number of novel
pathogenic viruses being discovered. Similar to observations in
fish, Table 2 shows that the year when the first clinical case was
identified in shrimp and the year when the etiological agent
was identified, depicting long intervals allowing the diseases to
reach epidemic levels before the causative agents were identified.
For example, mortality due to Taura syndrome (TS) reached
high epidemic proportions spreading from the Taura river in
Ecuador, where the disease was first reported (Jimenez, 1992),
expanding to Peru, Colombia, Brazil, Honduras, and Hawaii.
It spread to Asia where it infected different shrimp species
before the virus was identified (Walker and Winton, 2010).
The cause was initially attributed to fungicide toxicity (Lightner
et al., 1994) and the subsequent identification of Taura syndrome
virus (TSV) as the etiological agent of the disease led to
development of molecular diagnostic tools that paved way to
breeding and cultivation of specific pathogen free (SPF) stocks
to ensure that all stocks used in shrimp farming were free of
the disease (OIE, 2016). Similarly, white spot syndrome virus
(WSSV), shrimp infectious myonecrosis virus (IMNV), Penaeus
vannamei nodavirus (PvNV) and several other shrimp viral
diseases reached high epidemic levels before their etiological
agents were identified and characterized (Lotz, 1997; Arcier et al.,
1999; Tang and Lightner, 1999; Yang et al., 2001; van Hulten et al.,
2001). Identification of the causative agents for these diseases
paved way to developing diagnostic tools that are currently used
for the screening of breeding stocks to ensure that only SPF stocks
are used for shrimp production (Lotz, 1997; Arcier et al., 1999;
Tang and Lightner, 1999; van Hulten et al., 2001; Yang et al.,
2001; OIE, 2016). Hence, it is important that proactive diagnostic
tools able to timely identify novel pathogenic viruses are devised

in order to expedite the process of developing effective disease
control strategies against emerging viral disease in aquaculture.

Marine Mammal Viral Diseases
Although calicivirus infections date as far back as 1932 when pigs
that were fed raw garbage in Los Angeles in California resulted
in an outbreak that caused high mortality in the infected pigs,
the disease in marine mammals was first reported in 1972 from
rectal swabs of Californian sea lions (Zalophus californianus)
that had just aborted on San Miguel Island (Smith and Boyt,
1990). The causative agent was characterized and named San
Miguel sea lion virus type I (SMSV-1). When SMSV-1 was
administered in pigs, it caused classical vesicular exanthema
syndrome in pigs comparable to the 1932 outbreak (Smith
et al., 1973, 1998; Smith and Boyt, 1990). By 1982, calicivirus
virus infections had been isolated from 11 pinnipeds and
cetaceans and the host range of infected species has continued
to increase (Smith et al., 1998). Marine mammal morbilliviruses
were first discovered in late 1980s following a large outbreak
in which approximately 18,000 harbor seals and gray seals
were found dead on Northern European coasts in 1987–1988.
The etiological agent was classified as phocine distemper virus
(PDV). Similar high mortalities involving thousands of animals
were reported in subsequent years in different species including
porpoises (Phocoena phocoena) (Kennedy et al., 1988), Phoca
caspisa (Kennedy et al., 2000; Ohashi et al., 2001; Kuiken et al.,
2006), Stenella coeruleoalba (Domingo et al., 1990), Tursiops
truncates (Lipscomb et al., 1994a,b), and Phoca vitulina (de
Swart et al., 1996), harp seals (Phoca groenlandica) (Markussen
and Have, 1992). The first report of influenza virus infections
in marine mammals was in 1979 when more >500 harbor
seals were found dead on the North Eastern Coast of the USA
due to H7N7 subtype infections (Lang et al., 1981; Webster
et al., 1981b). In 1982–1983, an outbreak of influenza due
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TABLE 2 | Shrimp viruses discovered using traditional cell culture methods.

Virus Virus family Nucleic acid Clinical signs first reported Etiological virus identified and characterized

Year* References Year* References

Infectious hypodermal and

hematopoietic necrosis virus

Parvoviridae ssDNA 1981 Brock et al., 1983; Lightner

et al., 2004

1984 Lightner and Redman, 1985

Taura syndrome virus Dicistroviridae (+)ssRNA 1991 Jimenez, 1992 1994 Hasson et al., 1995

Yellow head disease virus Roniviridae (+)ssRNA 1991 Limsuwan, 1991 1999 Tang and Lightner, 1999

White spot syndrome virus Nimaviridae dsDNA 1992 Lotz, 1997 2001 van Hulten et al., 2001; Yang et al., 2001

Macrobrachium rosenbergil

nodavirus

Nodaviridae (+)ssRNA 1997 Arcier et al., 1999 1999 Arcier et al., 1999

Shrimp infectious

myonecrosis virus

Totiviridae dsRNA 2002 Lightner et al., 2004; Nunes

et al., 2004

2006 Poulos et al., 2006

Penaeus vannamei nodavirus Nodaviridae (+)ssRNA 2004 Tang et al., 2007 2004 Tang et al., 2007

*Year virus discovered and characterized.

to subtype H4N5 caused mortality in more than 60 harbor
seals in Massachusetts coastal areas in the USA (Hinshaw
et al., 1984). Since then, influenza A and B viruses have
been isolated from different cetaceans and pinnipeds of which
postmortem handing has been linked to zoonotic infections
in humans (Webster et al., 1981a,b; Hinshaw et al., 1984,
1986).

The earliest reports of adenovirus infections in marine
mammals were in the late 1970s in large numbers of sea
lions that had clinical signs of hepatitis and enteritis (Britt
et al., 1979; Dierauf et al., 1981; Goldstein et al., 2011). Since
then, adenoviruses have been isolated from California sea
lions, South African fur seals (Arctocephalus pusillus), South
American sea lions (Otaria flavescens) (Inoshima et al., 2013), sei
whales (Balaenoptera borealis) (Inoshima et al., 2013), bowhead
whales (Balaena mysticetus) (Smith et al., 1987; Inoshima et al.,
2013), beluga whale (Delphinapterus leucas), and bottlenose
dolphins (T. truncates) (Rubio-Guerri et al., 2015). The first
report of marine mammal herpesvirus infection was from an
outbreak of several harbor seals that had acute pneumonia
and hepatitis in the Netherland in 1985 (Osterhaus et al.,
1985). Thereafter, herpesviruses have been isolated from several
species including harbor seal (P. vitulina) (Borst et al., 1986),
bottlenose dolphin (Tursiops truncatus) (Manire et al., 2006;
van Elk et al., 2009), orca (Orcinus orca) (Maness et al., 2011),
California sea lion (King et al., 2002; Buckles et al., 2006),
and gray seals (Halichoerus grypus) (Harder et al., 1996). Other
viruses shown to infect marine mammals include poxviruses
that have been reported in cetaceans and pinnipeds of which
some are zoonotic (Van Bressem et al., 1993; Bracht et al.,
2006; Waltzek et al., 2012) and astroviruses that have been
associated with diarrhea in California sea lions, Steller sea lion
(Eumetopias jubatus) and bottlenose dolphin (Rivera et al.,
2010). Put together, these studies further consolidate the notion
that our response to viral infections in aquatic organisms
has mainly been reactive given that the causative agents for
these diseases were only identified after they caused massive
outbreaks reaching epidemic proportions. Hence, there is need
for proactive diagnostic tools for the timely identification
of novel pathogens having the potential to cause disease

outbreaks in order to help design effective disease control
strategies.

DISCOVERY OF NEW VIRUSES USING
VIRAL METAGENOMICS

Viral metagenomics has led to discovery of several new viruses in
different aquatic organisms including fish, crustaceans, molluscs,
turtles, and marine mammals as shown below.

Novel Fish Viruses
Recently identified pathogenic viruses of fish include the
circovirus isolated from barbell fish (Barbus barbus), which
causes mortality within 4–6 days after hatching (Lőrincz et al.,
2011). Phylogenetic analysis of two complete genomes classified
as Barbell circovirus 1 and 2, (BaCV1 and BaCV2) showed
that these viruses belong to two new genetic groups within
the Circoviridae family, which are distinct from previously
known circoviruses (Lőrincz et al., 2011). Apart from barbell
fish, circoviruses have been detected in common bream
(Abramis brama), asp (Aspius aspius), round goby (Neogobius
melanostomus), monkey goby (Neogobius fluviatilis), and roach
(Rutilus rutilus) (Tarján et al., 2014). Novel circoviruses have
also been identified from the European catfish (Silurus glanis)
(Lőrincz et al., 2012) and European eel (Anguilla anguilla)
showing clinical signs of a cauliflower-like disease (Fichtner et al.,
2013). Reuter et al. (2015) identified a novel posavirus designated
as Fisavirus 1 (FisaV1) from freshwater carp (Cyprinus carpio)
and a novel seadornavirus resembling the mammalian Banna
virus from freshwater carp (Reuter et al., 2013). In another study,
Boros et al. (2011) identified a novel (+)ssRNA virus with a
di-cistronic genome in carp while Mor and Phelps (Mor and
Phelps, 2016b) identified a novel totivirus from Gold shiner
(Notemigonus crysoleucas) baitfish using NGS. The majority of
viruses shown in Table 3 have only been discovered in the last 4
years unlike viruses in Table 1, which took long to discover using
traditional methods. Hence, the rate at which viruses in Table 1

were discovered compared to viruses in Table 3 supports our
notion that NGS and viral metagenomics are proactive diagnostic
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TABLE 3 | Fish and shellfish viruses discovered using NSG and Metagenomics analysis.

Virus ABBR Virus family NA Host species (Scientific name) Year* References

Sea turtle tornovirus 1 STTV1 Papilloma ssDNA Florida green sea turtle 2009 Ng et al., 2009a

Erythrocytic necrosis virus ENV Iridoviridae dsDNA Pacific herring (Clupea pallasii) 2011 Emmenegger et al., 2014

Piscine orthoreovirus PRV Reoviridae dsRNA Atlantic salmon (Salmo salar L.) 2011 Palacios et al., 2010

Farfantepenaeus duorarum nodavirus FdNV Nodaviridae (+)ssRNA Shrimp (Farfantepenaus duirarum) 2013 Ng et al., 2013

Catfish circovirus CfCV Circoviridae ssDNA European Catfish (Silurus glanuris) 2013 Lőrincz et al., 2012

Starling circovirus StCV Circoviridae ssDNA Estuarine Mollusc (Amphibola crenata) 2013 Dayaram et al., 2013a

Japanese ell endothelial cell virus JEECV Polyomaviridae dsDNA Japanese eel (Anguilla japonica) 2013 Mizutani et al., 2011

Eel picornavirus EPV-1 Picornavirus (+)ssRNA European eel (Angilla anguilla) 2013 Fichtner et al., 2013

Banna virus BALV Reoviridae dsRNA Fresh water carp (Cyrpinus carpio) 2013 Reuter et al., 2013

Gastrop-associated circular ssDNA

virus

GaSCV Unknown ssDNA Estuarine mollusk (Amphibola crenata) 2013 Dayaram et al., 2013b

Balaton virus BALV Reoviridae dsRNA Freshwater carp (Cyrpinus carpio) 2013 Reuter et al., 2013

Shrimp hepatopancreas associated

circular DNA virus

CDV Circulovirus ssDNA Pink shrimp (Farfantepenaus duirarum) 2013 Ng et al., 2013

Sea-star wasting disease virus SSaDV Parvoviridae ssDNA Sea stars (Pycnopodia helianthoides) 2014 Hewson et al., 2014

Carp picornavirus 1 CPV-1 Picornaviridae (+)ssRNA Carp (Cyprinus carpio) 2014 Lange et al., 2014

Densoviruses Parvoviridae ssDNA Urchin (Colobocentrotus atratus), 2014 Gudenkauf et al., 2014

Penaeus monodon circovirus 1 PmCV-1 Circoviridae ssDNA Shrimp (Penaeus monodon) 2014 Pham et al., 2014

Fathead minnow picornavirus FHMV Picornaviridae (+)ssRNA Golden shiner (Notemigonus crysoleucas) 2014 Phelps et al., 2014

Asterias forbesi-associated circular

virus

AfaCV Circulovirus ssDNA Asterias forbesi 2015 Fahsbender et al., 2015a

Fisavirus 1 FisaV1 Posavirus (+)ssRNA Carp (Cyrpinus carpio) 2015 Reuter et al., 2015

White sucker hepatitis B virus WSHBV Hepadnaviridae dsDNA White sucker (Catostomus commersonii) 2015 Hahn et al., 2015

Golden Shiner totivirus GSTV Totiviridae dsRNA Golden Shiner (Notemigonus crysoleucas) 2016 Mor and Phelps, 2016b

Piscine myocarditis like virus PMCLV Reoviridae dsRNA Golden Shiner (Notemigonus crysoleucas) 2016 Mor and Phelps, 2016a

Bluegill hepadnavirus BGHB Hepadnaviridae dsDNA Bluegill (Lepomis macrochirus) 2016 Dill et al., 2016

NA, Nucleic acid. *Year virus discovered and characterized.

methods that have significantly accelerated our ability to identify
novel viruses of fish.

Novel Viruses of Crustaceans
Ng et al. (2013) identified two nodaviruses from the pink
shrimp (Frafantepenaeus duorarum hepatopancreas), which is
a commercially important farmed shrimp species. One virus
clone had a 403 nt insert encoding the RNA-dependent-RNA
polymerase (RdRp) partial sequence while the other contained
a 236 nt insert encoding a capsid protein partial sequence.
Phylogenetic analysis showed that the capsid sequence was
43–51% similar to the shrimp nodaviruses, Macrobrachium
rosenbergii nodavirus (MrNV) and P. vannamei nodavirus
(PvNV), which causes white tail disease in prawns (M.
rosenbergii), and muscle necrosis disease in shrimp (Litopenaeus
vannamei) (Table 2). Apart from FdNV, Ng et al. (2013) also
identified the shrimp hepatopancreas associated circular virus
(ShrimpCDV) from the digestive tract of the pink shrimp. Based
on these findings, it can be concluded that viral metagenomics
can be used to identify novel viral pathogens of shrimps. Once
the genomic sequence of the novel virus has been determined,
specific molecular biology diagnostic tools such as PCR can be
designed and used for the screening of brood stock in order to
ensure that only SPF stocks are used for shrimp production. In
this way viral metagenomics is expected to play an important role

in developing effective disease control strategies for novel viral
infections of crustaceans before they cause devastating economic
losses in aquaculture.

Novel Viruses of Mollusks, Turtle, and
Star-Fish
Apart from fish and crustaceans, the farming of different
species of mollusks, turtle, and starfish has also increased
tremendously in the last few decades. Interestingly, novel viruses
for these aquatic organisms have also been identified using viral
metagenomics (Table 3). Ng et al. (2009a) identified a novel
sea turtle tornovirus 1 (STTV1) as the cause of fibropapilloma
tumors in Florida sea green turtles. Hewson et al. (2014)
identified a novel Forbes sea star (Asterias forbes) virus (AFSSV)
as the causative agent of a wasting disease condition linked
to high mortality in the Forbes sea stars. On the other hand,
Andrade et al. (2015) showed that oysters are the hotspots for
Mimivirus isolations which are the largest viruses found in the
world with >1,100,000 bp length. Overall, these findings show
that viral metagenomics analysis is a powerful tool able to identify
novel pathogenic viruses infecting different aquatic organisms.

Novel Marine Mammal Viruses
Captive marine mammals such as the Californian sea lions (Z.
californianus) and bottle-nose dolphins (Tursiops tuncatus) are
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widely used as recreation animals. And as such, these animals are
kept in marine parks where they are used in circus shows and
other activities because of their intelligence and easy trainability.
Given their close contact with humans, it has become expedient
that their disease profile is determined both for public health
reasons and for the sake of providing timely healthcare when
they become infected with different diseases. Recently, Ng et al.
(2009b) used viral metagenomics analysis to identify a novel
California sea lion anellovirus (ZcAV) having 35% amino acid
homology in the open reading frame (ORF) 1 with the feline
anellovirus. In another study, Ng et al. (2011) usedmetagenomics
analysis to identify a novel seal anellovirus (SealAV) in Pacific
harbor seals (Phoca vitulina richardsii). Kluge et al. (2016) carried
out a viral metagenomics survey from feces of subantarctic
fur seals (Arctocephalus tropicalis) and South America fur seal
(Arctocephalus australis). From the South America fur seals they
identified seal anellovirus 5 (SaV5), and Troque teno salophus
virus 1 (TTZV) while in the Subantarctic seal fur picornaviruses
were identified namely Fur seal sakobuvirus (FSSV) having
50% amino acid identity resemblance to the Feline sakobuvirus
A (FSVA). In addition, rotaviruses were identified from the
subantarctic fur seals with 45–69% amino acid homology with
group C rotaviruses. The identification of rotaviruses from Fur
seals has important public health implications given that these
animals are commonly found on coastal areas of South America
where they attract a lot of tourism where they could serve
as a source of zoonotic infections to tourists. These findings
suggest that viral metagenomics can be used to obtain disease
profiles for aquatic animals as well as profiles of zoonotic
pathogens found in marine mammals. Table 4 shows some of the
aquatic mammalian viruses discovered using viral metagenomics
and NGS. It is interesting to note that most of the viruses
shown in Table 3 have only been discovered in the last 4 years
further consolidating the notion that viral metagenomics is
accelerating our ability to identify novel viruses infecting aquatic
organisms.

DIAGNOSTIC ROLE OF VIRAL
METAGENOMICS IN CLINICAL TISSUES

Viral metagenomics have been used to directly identify novel
etiological agents from tissues of diseased animals showing
pathological changes (Finkbeiner et al., 2008; Yongfeng et al.,
2011).

Identification of Etiological Agents of
Single Infection
Ng et al. (2009a,b, 2013) used lung tissues to identify the ZcAV
infecting Sea lions in two separate mortality events. They (Ng
et al., 2009b) showed that ZcAV was mainly found in the lungs
and pleural-cavity and not in blood, tonsils, lymph nodes, liver,
and other organs suggesting that metagenomics can be used to
determine tissue tropism of novel viruses in hosts. Follow-up
studies showed that the prevalence was high during outbreaks
in captive sea lions (100%) and low in reservoir wild sea lions
(11%) indicating viral metagenomics can be used to monitor the

prevalence of the virus in marine animals. In follow-up studies,
the virus from Sea lion was used to develop an enzyme linked
immunosorbent assay (ELISA) and specific PCR (Fahsbender
et al., 2015b). Apart from ZcAV, Ng et al. (2011) used infected
lung tissues of Pacific harbor seals (P. vitulina richardsii) to
identify SealAV. Hewson et al. (2014) used viral metagenomics
to identify the Sea star-associated densovirus (SSaDV) as the
causative agent of a wasting disease characterized by behavioral
changes, lesions on the limbs, loss of tugor and death due to rapid
degradation in infected sea-star (asteroid). They observed that
increase in viral titers correlated with increase in pathology in the
infected sea stars. Ng et al. (2009a) used tumors to identify STTV1
as the causative agent of fibropappillomas in Florida green sea
turtles. Bodewes et al. (2015) identified Phocine herpesvirus
7 (PhHV-7) as the etiological agent of ulcerative gingivitis in
phocines (Bodewes et al., 2015) while Enhydralutis papilloma
virus 1 (EIPV-1) was shown to be the etiological agent of oral
tumors diagnosed in Southern otters (Enhydra lutris Nereis) (Ng
et al., 2015).

Identification of Etiological Agents of
Co-Infections
Yang et al. (2011) have pointed out that viral metagenomics
has a high chance of identifying co-infections than traditional
diagnostic methods. Ng et al. (2009a) showed that STTV1
existed as a co-infection of a quasispecies of variant strains
from a single fibropappilloma tumor in each infected turtle.
The STTV1 variants detected by viral metagenomics were
identical from the majority part of the viral genome while
hypervariable regions (HVRs) were extensively divergent. Based
on these findings, it can be concluded that viral metagenomics
does not only serve as a diagnostic tool for identifying novel
viruses, but it serves as a reliable tool for identifying co-
infections of different viruses working together to cause disease
as well as identification of co-infections of variant strains
of the same virus existing as a quasi-species in a single
infection.

GENERAL DISCUSSION AND
CONCLUSIONS

In this review, we have shown that viral metagenomics is a
proactive diagnostic tool able to enhance the discovery of novel
pathogenic viruses in aquaculture. In terms of the discovery of
novel viruses, the de novo assemblies coupled with bioinformatics
annotation tools used in viral metagenomics have simplified
the task of identifying different sequence segments and variable
proteins (VP) that constitute the assemblage of complete viral
genomes. As for viral diagnostics, it can be used to identify
etiological agents of single infections, co-infections, and tissue
tropism. It can also be used for disease surveillance by profiling
viruses infecting in different host species and determining disease
prevalence in selected host species. As for quasispecies analyses,
metagenomics analysis can help identify segments of the viral
genome prone to genetic diversity and the conserved segments.
Hence, viral metagenomics can be used as multifaceted tool
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TABLE 4 | Marine mammalian viruses discovered using NSG and Metagenomics analysis.

Virus ABBR Virus family Nucleic acid Host species (Scientific name) Year* References

California sea lion anellovirus ZcAV Anellovirdae ssDNA Californian sea lion (Zalophus californianus) 2009 Ng et al., 2009b

Steller sea lion reovirus SSRV Reoviridae dsRNA Steller sea lion (Eumetopias jubatus) 2011 Palacios et al., 2011

California sea lion sapovirus CslSV Caliciviridae (+)ssRNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

California sea lion sapelovirus CslSaV Picornaviridae (+)ssRNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

California sea lion astrovirus CslAstV Astroviridae (+)ssRNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

California sea lion norovirus CslNV1170 Caliciviridae (+)ssRNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

California sea lion rotavirus-1 CslRV1 Reoviridae dsRNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

California sea lion bocaviruses CslBoV Parvoviridae ssDNA Californian sea lion (Zalophus californianus) 2011 Li et al., 2011

Seal parvovirus SealPV Parvoviridae ssDNA Harbor seals (Phoca hispida) 2013 Bodewes et al., 2013

Seal allenovirus 2 SealAV-2 Anelloviridae (+)ssRNA Pacific harbor seals (Phoca vitulina) 2013 Bodewes et al., 2013

Seal allenovirus 3 SealAV-3 Anelloviridae (+)ssRNA Pacific harbor seals (Phoca vitulina) 2013 Bodewes et al., 2013

Dolphin rhabdovirus DRV Rhabdoviridae (−)ssRNA White-beaked dolphin (Lagenorhynchus albirostris) 2014 Siegers et al., 2014

Sea lion associated stool

parvovirus

Sesavirus Parvoviridae ssDNA Californian sea lion (Zalophus californianus) 2015 Phan et al., 2015

Phocine herpesvirus 7 PhHV7 Herpesviridae dsDNA-RT Seals (Phoca vitulina) 2015 Bodewes et al., 2015

Fur eal sakoburis 1 FSSV) Pirconaviridae (+)ssRNA Subantractic fur seal 2016 Kluge et al., 2016

Seal anellovirus 5 SaV-5 Anelloviridae (+)ssRNA Fur seal (Arctocephalus australis) 2016 Kluge et al., 2016

Troque teno salophus virus TTZV 1 Anelloviridae (+)ssRNA Fur seal (Arctocephalus australis) 2016 Kluge et al., 2016

*Year virus discovered and characterized.

for the identification of novel viruses, phylogenetic analyses,
diagnosis of single and co-infection, tissue tropism, and disease
surveillance. Moreover, it has been shown that metagenomics
analyses can be used to study the epidemiology of viruses
outside their susceptible hosts using environmental samples
(Munang’andu, 2016). Despite so, viral metagenomics has some
limitations that require the support of traditional diagnostic
methods. For example, novel viral pathogens identified using
viral metagenomics require verification, which calls for isolation
of the etiological agent using cell culture, followed by virus
characterization and infecting of susceptible hosts to show
that the isolated virus is the causative agent of the identified
disease by fulfilling the Koch’s postulates (Rivers, 1937). And
as pointed out by different scientists that the bulk of viruses
generated by metagenomics are unculturable (Handelsman,
2004; Schloss and Handelsman, 2005), verification can be
a difficult challenge in situation where virus isolation and
characterization tools are not available. Although PCR has also
been used for verification, Yang et al. (2011) showed lack
of correlation of between viral metagenomics and PCR data
in their studies, which they attributed to possible errors in
annotation, errors de novo assembly, sequencing biases and low
sequencing depth. These observations further consolidate the
notion that verification of viral metagenomics data can be a
difficult challenge.

Another important challenge faced in viral metagenomics
analysis is that a large proportion of viral sequences generated
using this tool remain uncharacterized mainly because they
have no similarity with any known sequences in common
databanks. Rosario et al. (2009) generated 70% unknown DNA
viral sequences from reclaimed water while Zhang et al. (2006)
produced 91% unknown viral sequences from human feces. In

another study, Breitbart et al. (2002) generated 65% unknown
viral sequences from seawater while Rosario et al. (2009)
produced 57% unknown RNA viral sequences from reclaimed
water. And as pointed out by Mokili et al. (2012), there
is a general lack of appropriate bioinformatics tools for the
characterization of unknown viral sequences this far. Li et al.
(2016), pointed out that one of the problems associated with
de novo assembly of viral sequences is that they sometimes
form chimeric contigs made of artificially combined reads that
are not easy to identify. Hence, the bulk of uncharacterized
viral sequences, sometimes referred to as the “dark matter of
metagenomics,” limits our ability to identify novel pathogens
using this tool given that new viruses without homologous
sequences in public databases are likely not to be identified.
Kim and Bae (2011) compared the linker amplified shotgut
library (LASL) with the multiple displacement amplification
(MDA) methods and showed that there were more dsDNA
viruses amplified from the LASL than the MDA library. On the
contrary, the MDA library had more ssDNA viruses than dsDNA
viruses from the sample, which is in line with observations
made by Roux et al. (2016) who also showed that the choice of
amplification method has a bias on ssDNA and dsDNA viruses
detected from the same sample. Wommack et al. (2008) showed
that short reads (<400 bp) tend to miss distant sequences in
phylogenetic classification and that they are prone tomiss BLAST
homologs found in long reads, indicating that the length of
the reads matter thereby posing a challenge in the choice of
tools required for de novo assembly to ensure that only long
reads are produced for easy of taxonomical classification of
viruses.

Finally, another important challenge faced with viral
metagenomics analysis is that the accuracy of the methods

Frontiers in Microbiology | www.frontiersin.org 7 March 2017 | Volume 8 | Article 406

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Munang’andu et al. Viral Metagenomics for Aquatic Organisms

used for aligning the de novo assembled genomes have
not been investigated in detail (Mokili et al., 2012). The
accuracy of annotation methods for identify novel viruses using
metagenomics analyses in terms of avoiding false positives and
negatives is unknown (Bibby, 2013). Given that the majority of
viruses infecting aquatic organisms have not been characterized
and that they are not found in databanks, it is highly likely
that this inaccuracy might be higher for novel viruses infecting
aquatic organisms. Nevertheless, it is evident based on the
synopsis put forth in this review that viral metagenomics studies
have positively contributed to enhancing our ability to identify
novel viruses infecting aquatic organisms. Apart from the
discovery of novel pathogens, it is important to point out that
viral metagenomics studies have also increased our knowledge of
phage dynamics which may new applications for phage therapies

(Reyes et al., 2012) suggesting that “viruses are not only demons,
but could also serve as angels.”
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