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Abstract

In order to improve fish health and reduce use of chemotherapeutants in aquaculture pro-

duction, the immunomodulatory effect of various nutritional ingredients has been explored.

In salmon, there is evidence that functional feeds can reduce the abundance of sea lice.

This study aimed to determine if there were consistent changes in the skin mucus proteome

that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast

cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-

dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change

in their normalised volumes between the control and yeast cell wall diets. Thirteen spots

were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these

belonged to a variety of functions and pathways. To assess the validity of the results from

the proteome approach, the gene expression of a selection of these proteins was studied in

skin mRNA from two different independent feeding trials using yeast cell wall extracts. A

calreticulin-like protein increased in abundance at both the protein and transcript level in

response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a

possible biomarker for yeast-derived functional feeds since it showed the most consistent

change in expression in both the mucus proteome and skin transcriptome. The discovery of

such a biomarker is expected to quicken the pace of research in the application of yeast cell

wall extracts.
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Introduction

Functional feeds are used extensively in the aquaculture and agriculture sectors in order to

protect livestock from pathogens and parasites, as well as a means to improve growth and feed-

ing efficiency. These supplements offer an opportunity to the industry to reduce use of antibi-

otics and chemotherapeutants, which generate environmental sustainability concerns. A

greater understanding of how these functional feeds might impart their benefits would allow

for more evidence-based diet formulation. The aim of this study was to assess if one such func-

tional feed, yeast cell wall extract (YCW), caused a change in components of the proteome of

the salmon skin mucus that could be used as biomarkers for the response of salmon to dietary

YCW.

Functional feeds contain both digestible and non-digestible components, and include pro-

biotic and prebiotic supplements, nucleotides, vitamins, immunostimulants and algal/plant

extracts [1]. Prebiotic supplements are non-digestible feed ingredients, usually purified from

the yeast cell wall (YCW) or plant-derived, which profit the animal by promoting the growth

of beneficial bacteria in the gut [2]. Mannanoligosaccharides (MOS), fructooligosaccharides

(FOS), galactooligosaccharides (GOS) and hemicellulose are examples of the various available

forms of prebiotics used in aquaculture. Numerous studies of prebiotic use in fish farms high-

light the benefits such supplements lend to growth, feeding efficiency [3–6], immune response

to bacteria [7–9], lysozyme activity [10,11], intestinal morphology [12–14] and gut microbiota

[15–18].

Furthermore, YCW-derived supplements, such as β-glucans and MOS, have been linked

with sea lice resistance [4,19]. However, research in this area has been hampered by high bio-

logical and technical variability across studies. Sea lice Lepeophtheirus salmonis (Krøyer, 1837)

are ectoparasites of Atlantic salmon Salmo salar L., which disrupt the skin/mucus barrier by

feeding on it. Although the infection rarely leads to death, it can compromise the defence

mechanisms of the fish, leading to secondary infections. Sea lice control measures account for

over £250m of expenditure per year to the global salmon farming industry [20]. Severe sea lice

infestations on farms are of great environmental concern since chemotherapeutants can be

detrimental to the surrounding ecosystem but, if left untreated, the sea lice may be transferred

to the wild salmon populations [21,22]. In addition, there is growing concern that the sea lice

are developing resistance to pesticides used for controlling the infection in farms [23].

YCW extracts have been shown to increase mucus production and/or goblet cell count in

the intestine of various fish and other vertebrates [24–26]. A research area which has so far

been overlooked is the effect of YCW extracts on the skin and mucus of fish, with only two

reports in salmon [19,27]. Due to the nature of the sea lice infection, further study into this

subject is required to elucidate the mechanism of the protection provided by dietary YCW

extracts. In addition, discovery of a biomarker for the effect of dietary YCW in this tissue

would be most useful to the aquaculture industry since it will hasten the pace of research,

replacing the time-consuming and expensive sea lice challenges. Moreover, the skin and epi-

dermal mucus of fish play an important role in the innate immune system by providing the

first line of defence against pathogens and parasites. Apart from presenting a physical barrier

to infection, the mucosal layer also provides powerful chemical protection. Mucus is mainly

composed of large glycoproteins called mucins, which are responsible for the rheological and

viscoelastic properties of mucus [28]. In addition, the mucus is also a complex mixture of ele-

ments of both the innate and acquired immune system, including antimicrobial peptides, com-

plement, lectins, lysozyme and immunoglobulin, amongst others [29]. Changes in the skin

mucus composition due to dietary YCW extracts may bring to light further benefits of such

diets for farmed fish.

Salmon Mucus Proteome Changes Due to Functional Feed

PLOS ONE | DOI:10.1371/journal.pone.0169075 January 3, 2017 2 / 18

design, data collection and analysis, decision to

publish, or preparation of the manuscript. JWT and

RB are employees of BioMar Ltd. This does not

alter our adherence to PLOS ONE policies on

sharing data and materials.



This paper reports the effect of a functional feed containing YCW extracts on the skin

mucus proteome of Atlantic salmon, using two-dimensional sodium dodecyl sulphate poly-

acrylamide gel electrophoresis (2DGE). The analysis of skin mucus using 2DGE has been car-

ried out in a variety of teleost species [30–32]. Results from this study show a number of

proteins have altered expression in the mucus of the fish in response to inclusion of YCW

extracts in the diet. A number of these proteins were identified following LC MS/MS and the

transcript levels of the corresponding genes determined to assess whether the regulation of

these genes was at the transcription level. These proteins are all worthy of further research to

discover suitable biomarkers for YCW dietary modulation of skin mucus. An adequate bio-

marker assay will quicken the pace of research into functional feeds since it will complement

or reduce the need for sea lice challenge experiments.

Methods and Materials

Animal husbandry and sample collection

Two feeding trials (Trial#1 and #2) were carried out at the Marine Environment Research Lab-

oratory (Machrihanish, Scotland, United Kingdom). The experimental set up was composed

of circular tanks (2 m diameter, 1,500 L volume) supplied with filtered sea water at ambient

temperature (8–15˚C) and salinity (28–34‰) via a flow-through system. Atlantic salmon

(approx. 200 g) of a Scottish farmed strain were placed in each tank and fed on a standard

commercial diet (BioMar Ltd, Grangemouth, United Kingdom). The diet was supplemented

with 0.4% YCW and 0.1% FOS for half of the tanks, whereas the remaining tanks were fed

YCW extracts-free basal diets and used as control. Fish were fed twice daily to apparent satia-

tion and unconsumed food removed by an uplift system. Within each trial the control and

YCW-containing diet were designed to be isonitrogenous and isolipidic. Full details of the diet

compositions are given in S1 Table. Variations between the two trials are provided in Table 1.

Mucus/tissue sampling was carried out 7 weeks after the feeding trial was started for

Trial#1 and 4.5 weeks for Trial#2 (Table 1). Three fish per tank were randomly selected and

humanely killed by a sharp blow to the head followed by destruction of the brain. The study

was approved by Institute of Aquaculture’s (University of Stirling) ethic committee and proce-

dures carried out in accordance to the UK Animals (Scientific Procedures) Act 1986. Fish were

monitored twice daily and no adverse effects were recorded throughout either of the trials.

Immediately following death, mucus was collected by scraping one side of the fish using a

small spatula from head to tail. The accumulated mucus (approx. 200 μL per fish) at the tail

end of the fish was transferred into a 2 mL tube using a plastic Pasteur pipette and stored

immediately on dry ice. For the gene expression studies, a skin sample (100mg) was taken

Table 1. Details of feeding period and tank replicates for the feeding trials. The base diet was manufac-

tured by Biomar and described in three terms: the product range name (CPK), the pellet diameter and the oil

to protein ratio. The control and experimental diets were designed to be iso-nitrogenous and iso-lipidic.

YCW = yeast cell wall extracts. FOS = fructooligosaccharides.

Trial#1 Trial#2

Dates September 2010 September 2011

Base diet CPK 3mm 24/46 CPK 3mm 24/46

Experimental diet 0.4% YCW + 0.1% FOS 0.4% YCW + 0.1% FOS

Feeding period 7 weeks 4.5 weeks

Tank replicates 6 4

Average fish weight, initial / g 230 316

Average fish weight, final / g 350 350

doi:10.1371/journal.pone.0169075.t001
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from the opposite side of the fish from the dorsal area above the lateral line and stored in 1 mL

RNAlater solution (Applied Biosystems, Warrington, UK). The skin samples were stored at

4˚C for 24 h and then at -80˚C until RNA extraction. For Trial#1, samples were also collected

from the hindgut, cleaned of digesta and placed in RNAlater as for the skin samples.

Proteomic analysis was performed on samples collected during Trial#1. Skin samples from

Trial#2 were used together with Trial#1 samples to further test the biomarker candidate mole-

cules by qPCR.

Proteomic samples preparation

For each mucus sample taken from individual fish from Trial#1 100 μL of protein extract

was precipitated using the ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories, Hertfordshire,

UK) following the manufacturer’s guidelines. The final protein precipitate was solubilised in

100 μL re-swell buffer (7 M urea, 2 M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammo-

nio]-1-propanesulfonate (CHAPS), 0.3% dithiothreitol (DTT), 1% (v) IPG Buffer pH 3–10

(GE Healthcare). Complete solubilisation of the pellet was achieved by briefly vortexing the

tubes followed by clarification by centrifugation at 14,500 x g for 15 minutes. The supernatant

was then transferred to a clean 1.5 mL tube. The protein samples were initially analysed by

1-Dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

and Coomassie brilliant blue G-250 (CBB) (Fisher Scientific, Loughborough, UK) staining to

determine the sample quality and to provide an estimate of the protein concentration.

Two-dimensional gel electrophoresis

For this study, 12 preparative 2D gels were run, 6 gels per diet representing an individual fish

from all the tanks used in the feeding trial. 20–25 μL of each sample was mixed with 200 μL of

re-swell buffer and allowed to equilibrate at room temperature for 10 minutes. The treated

protein extracts were centrifuged for 5 minutes at 14,500 x g. 200 μL of the supernatant was

transferred to a re-swelling cassette and used to rehydrate 11 cm immobilised pH gradient

(IPG) strip, with a linear pH4-7 gradient (Immobiline™ DryStrips, GE Healthcare, Amersham,

UK). The rehydration process was carried out passively overnight. Isoelectric focusing was

achieved using a Multiphor II electrophoresis unit (GE Healthcare) in three stages through a

ramped voltage change (1 minute at 200 V, followed by 1.5 hours increasing from 200 V to

3,500 V and finally 7 hours at 3,500 V). The strips were reduced and alkylated using 10 mg

mL-1 DTT and 25 mg mL-1 iodoacetamide, respectively. These solutions were made up in an

equilibration buffer containing 0.05 M Tris, pH 6.8, 6 M urea, 30% glycerol and 10% SDS. The

second dimension was performed on an AnykD Precast Criterion gel (Bio-Rad Laboratories)

electrophoresed at 100 V for 35 minutes followed by 200 V for 35 minutes. Staining was

attained by first fixing the gels overnight (50% ethanol, 2% phosphoric acid), then rinsing

3-times with MilliQ water and staining with CBB in an equilibration solution (34% methanol,

17% ammonium sulphate, 2% orthophosphoric acid). The gels were scanned as 16-bit grey

images using an Image Scanner III (GE Healthcare).

Quantitative analysis of the 2D protein profiles was performed using Progenesis SameSpots

v4.5 (Nonlinear Dynamics Limited, Newcastle upon Tyne, UK). The 2D protein profile show-

ing optimal image quality and spot resolution was selected as a reference image and all of the

other 2D protein profiles were aligned to this automatically; the automatic alignment of the gel

images was manually confirmed and edited as required. Subsequent spot detection, volume

normalization, background correction and differential expression analysis was performed

using in-built routines from Progenesis SameSpots.

Salmon Mucus Proteome Changes Due to Functional Feed
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LC-MS/MS analysis

Proteins chosen for identification by mass spectrometry were selected according to the magni-

tude of change in intensity across treatments and the statistical significance. The selected spots

were manually excised from a dry-gel and in-gel trypsin digestion was carried out by Investiga-

tor ProGest robotic workstation (Genomic Solutions Ltd., Huntington, UK), following the

method described by Shevchenko et al. [33] adapted for CBB-stained gels. Briefly, the excised

protein was reduced and S-alkylated by incubating with DTT at 60˚C for 20 minutes and with

iodoacetamide at 25˚C for 10 minutes. Trypsin digestion was achieved by incubating with

sequencing grade trypsin (Promega, Southampton, UK) at 37˚C for 8 hours. The resultant

peptide extract was then dried by rotary evaporation (SC110 Speedvac; Savant Instruments,

Holbrook, NY, USA) and dissolved in 0.1% formic acid for liquid chromatography tandem

mass spectrometry (LC-MS/MS) analysis on electrospray ionisation (EIS)-ion trap instrument.

Liquid chromatography was performed on an UltiMate 3000 LC System (Dionex Ltd.,

Camberley, Surrey, UK) using a Monolithic Capillary Column (200 μm i.d. x 5 cm; Dionex).

Eluent A was constituted from 3% acetonitrile in water containing 0.05% formic acid, whereas

eluent B was made up from 80% acetonitrile in water containing 0.04% formic acid with a gra-

dient of 3–45% B over 12 minutes at a flow rate of 2.0 μL min-1. Peptide solutions were ana-

lysed in an HCTultra PTM Discovery System (Bruker Daltonics Ltd., Coventry, UK). Peptide

fragment mass spectra were obtained in data-dependent AutoMS(2) mode with a scan range

of 300–1,500 m/z, three averages and up to three precursor ions selected from the MS scan

100–2,200 m/z. Precursors were actively excluded within a 1.0-min window, and all singly

charged ions were excluded. Peptide peaks were detected and de-convoluted automatically

using the incorporated data analysis software.

Protein identification

Mass lists in the form of Mascot Generic Files were used as input for Mascot MS/MS ion

searches of the NCBI database using the Matrix Science web server, www.matrixscience.com

[34]. In addition, Mascot searches were also carried out for all samples on an in-house database

consisting of expressed sequence tags (ESTs) and generated contigs of salmonids downloaded

from the Genomic research on all salmon consortiums [35]. The search parameters used were:

Enzyme = Trypsin, Max. Missed cleavages = 1; Fixed modifications = Carbamidomethyl (C);

Variable modifications = Oxidation (M); Peptide tolerance ± 1.5 Da; MS/MS tolerance ±0.5

Da; Peptide charge = 2+ and 3+; Instrument = ESI-TRAP. If the top match in the salmonid

EST/contig database was to a non-annotated sequence, it was run through a BLASTx search

against NCBI non-redundant protein sequences to identify the protein.

RNA purification and cDNA synthesis

Total RNA was extracted from skin samples of 10 fish per diet from both Trial#1 and #2 using

TRI reagent (Sigma), as instructed by the manufacturer. RNA was also extracted in the same

manner for the Trial#1 gut samples (n = 6). The concentration and quality of the RNA was

assessed by both the ND-1000 Nanodrop Spectrophotometer (Labtech Inc., East Sussex, UK)

and the Agilent 2100 Bioanalyzer (Agilent Technologies, Cheshire, UK). RNA (2 μg) was used

for cDNA synthesis using Bioscript reverse transcriptase kit (Bioline, London, UK) and 0.2 μg

of Random Hexamer Primer (Thermo Scientific, Northumberland, UK). The mixture was

incubated at 70˚C for 5 minutes and then left to rest on ice for 2 minutes. The master mix for

25 μL reactions was prepared as described in the kit protocol. The tubes were incubated at

25˚C for 10 minutes, 45˚C for 60 minutes and 72˚C for 10 minutes. The cDNA was diluted

five-fold using 1x Tris-EDTA (TE) buffer (Sigma).

Salmon Mucus Proteome Changes Due to Functional Feed
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Real-time qPCR

Primer pairs (Table 2) were designed for the genes corresponding to candidate proteins that

were found to be differentially expressed in the 2D gel analysis following the feeding trial. For

the primer design, at least one of the primers was located on an intron/exon junction to avoid

amplification of genomic contaminations. The position of the splice sites was determined by

the publically available draft salmon genome.

The qPCR assay was performed with Immolase DNA Polymerase (Bioline). The master mix

was prepared as described previously [36]. The qPCR reaction was set up by mixing 16 μL of

this master mix with 4 μL diluted cDNA in a well of a 96-well plate. Each reaction was run in

triplicate. A serial dilution was used to determine primer amplification efficiency and to gener-

ate a standard curve for calculations of expression. This was prepared by mixing an equimolar

amount of six different cDNA samples (three from each dietary treatment) and serially dilut-

ing it with TE buffer 10-fold 5 times. Negative (no template) controls were also included in

each plate. The temperature programme was set up as follows: 95˚C for 10 min, followed by

35–40 cycles of 95˚C for 30 s, annealing at 59–67˚C depending on primer (Table 2) for 30 s,

72˚C for 30 s and finally, 75˚C for 5 s after which fluorescence was measured. A melting curve

was performed between 70˚C to 95˚C, to confirm amplification of a single product. The reac-

tion was normalised using two house-keeping genes, elongation-1 alpha and β-actin.

Data and statistical analysis

Statistical evaluation of the normalised spot intensities from the 2D gels was carried out on

Progenesis SameSpots. The analysis was done by comparison of the gels according to dietary

Table 2. Primer sequences, together with their optimum annealing temperature and product size, used for the gene expression studies in Atlantic

salmon skin cDNA.

Gene Primers Sequence (5’-3’) PS*/ bp Ann.† T/˚C E% § R2¤

Name Accession

Elongation factor 1α BT060384 EEF1a_F CAAGGATATCCGTCGTGGCA 313 61 102 0.990

EEF1a_R ACAGCGAAACGACCAAGAGG

β-actin BT047241 ACTB_F ATGGAAGATGAAATCGCCCC 239 61 102 0.986

ACTB_R TGCCAGATCTTCTCCATGTCG

Calreticulin-like BT072764 CALRL_F CCGCTGACTCTACCATCTACAA 192 62 101 0.993

CALRL_R CTTGTCATCTTCCTCCTGTTTC

Calreticulin BT044674 CALR_F AACATTGGAGTGTTGGGTCTGG 173 67 102 0.996

CALR_R TTTCCTCTCCTCCTCCTCCTGT

60S acidic ribosomal BT059903 RPLP0_F GTTGCTGCCTCACATCAAAG 211 59 87 0.990

protein P0 RPLP0_R AGATCTTGGTGGTGATGCC

Hemopexin-like protein Z68112 HPXL_F AGAGGCCACCACTTCCTGGA 225 66

HPXL_R TCCACTCCCAGCACCTCCTT

40kDa peptidyl-prolyl BT046523 PPID_F GAAGCCATGTGTAATTGCTGAG 240 62 102 0.990

cis-trans isomerase PPID_R CAGATACCTGAGAGCTTTGGAGT

Keratin, type I AJ427868 KRT13_F GAAGGAGGAGCTCATCTATCTCAAG 209 60 99 0.997

cytoskeletal 13 KRT13_R GTCTCCGTCTTGGTCTGGAA

Glyceraldehyde-3- BT045621 GAPDH_F ATGACCACAGTCCACGCCTA 169 65 81 0.991

phosphate dehydrogenase GAPDH_R ATGCCAGTCAGCTTGCCGTT

* PS = product size
†Ann. = annealing
§ E% = primer efficiency
¤ R2 = coefficient of determination.

doi:10.1371/journal.pone.0169075.t002
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treatment and hence, values for fold change and Analysis of Variance (ANOVA) p-values were

generated for each spot. At this point, protein spot matches were evaluated again and, where

necessary, spots were merged or split.

Using the data for the serial cDNA dilution and the Ct values, arbitrary units for the expres-

sion of genes of interest and house-keeping genes in every skin sample were calculated. The

arbitrary units of the genes of interest were normalized using that of the housekeeping genes.

The Shapiro-Wilk test was used to check whether the arbitrary units fit a normal distribution

curve. When the data were non-normal, appropriate transformations were applied; most often

log10 transformation. Student’s t-test was used to assess whether the mean expression in the

skin of control and prebiotic-fed fish is significantly different. Data analysis was carried out on

SPSS Statistics 20 (IBM, Hampshire, UK). Statistical significant differences were indicated at

P<0.05 unless stated otherwise.

Calreticulin phylogenetic tree

In order to identify the salmon calreticulin isoforms, the NCBI and ENSEMBL databases were

queried to discover other isoforms of salmon and also well-characterised calreticulin proteins

of other vertebrates. The calreticulin sequences were aligned and a phylogenetic tree was con-

structed on MEGA5 using the neighbour-joining method [37].

Results

Proteomic analysis

The 2D gels were of good quality and demonstrated consistent protein spot resolution and all

12 were included in the analysis. The 2D protein profiles were matched, as described in Meth-

ods, and after filtering out poorly resolved areas of the protein profile and also any protein

spots that were too faint and/or small, 705 spots were carried forward for analysis. Of these,

49 protein spots demonstrated changes in abundance due to the dietary treatments (Fig 1).

The p-value of these spots were in most cases < 0.05 in the ANOVA. However, spots with a

p-value< 0.10 were also included, particularly those that had a high-fold change and were pro-

tein spots that had been observed to change in abundance in another similar feeding trial in

which the experimental diet included a different YCW product but lacked the 0.1% FOS

(S1 File).

Thirteen protein spots out of the 49 significant ones were chosen for further identification

by LC-MS/MS (Table 3). These 13 spots were chosen on the basis of the magnitude of their

change and level of statistical significance. Eight of the identified proteins were salmon kera-

tins, which are non-secreted structural molecules expressed in the skin of fish typically found

in keratinocytes, mesenchymal cells or cytoplasm (in the case of type II keratins) [38,39].

Among the identified proteins, only calreticulin and hemopexin-like protein have signal pep-

tides and are expected to be secreted via the classical secretion pathway.

Calreticulin was studied further since this protein is involved in pathways that could poten-

tially be affected in mucosal layers following feeding with YCW extracts, such as protein glyco-

sylation and stimulation of the innate immune system. Four spots in close proximity were

identified by LC-MS/MS as two isoforms of salmon calreticulin (ACI32936 and ACN60341)

(Fig 2). A third isoform of calreticulin was identified (ACI33338) from the NCBI protein data-

base. The phylogenetic tree aided the classification of the identified salmon calreticulins as

calreticulin CALR (ACI32936), calreticulin-like CALRL (ACN60341) and calreticulin-like 2

CALRL2 (ACI33338), by comparison with the homologous zebrafish calreticulin isoforms

(Fig 3).
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Gene expression analysis

For proteins that had shown changes in abundance in skin mucus in Trial#1, the corres-

ponding gene transcript levels were determined in this trial and a second, independent trial

(Trial#2). The majority of the genes assayed using qPCR were not significantly altered in

expression across the dietary treatments in either of the trials (Table 4). The expression of

hemopexin-like gene was not detected in the skin in any sample. In contrast, calrl, but not calr,

was up-regulated in both Trial#1 and #2 in fish fed the YCW extract diet (Fig 4), thus, showing

potential as a suitable biomarker for dietary YCW extracts. However, no significant changes in

the expression of either of the calreticulin isoforms mRNAs were detected in the gut in fish

from Trial#1 (Fig 5).

Discussion

In the present experiment, the effect of dietary YCW extracts on the skin mucus proteome of

Atlantic salmon was studied using 2D gel electrophoresis. Results show that multiple proteins

in the skin mucus of Atlantic salmon exhibited different expression levels between diets, with

the majority of these being down-regulated in the YCW-fed individuals. These proteins were

all considered to be potential biomarkers. However, gene expression analysis of these mole-

cules on the skin cDNA from two feeding trials was required to verify CALRL as the most suit-

able biomarker candidate since its up-regulation was manifested in both trials. The levels of

significant probability were not particularly strong (P = 0.05–0.08) for a change in CALRL/carl
in Trial#1 and #2. However, they were comparable with a similar pilot feeding trial in which

Fig 1. Representative gel of a two-dimensional SDS-PAGE of the epidermal mucus of Atlantic salmon. The

first dimension was run on a pH4-7 IPG strip and the second dimension was run on an Anykd Criterion gel.

Molecular weights in kDa are denoted on the right side of the image as indicated by Precision Plus Dual Color

protein standards (Bio-Rad). The circled spots represent those that show significant differential expression between

dietary treatments as given by SameSpots analysis (n = 6, p<0.05). The spots that are circled and numbered refer

to those that were subsequently identified by LC-MS/MS. The boxed area refers to Fig 2 where this part of the

image has been magnified.

doi:10.1371/journal.pone.0169075.g001
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CARL was increased 1.5-fold (P< 0.03) in salmon fed a diet containing a different YCW prod-

uct and lacking FOS (S1 File). Though the differences in the diet compositions prevent direct

comparisons, CALRL/carl was increased in abundance in mucus or skin in salmon fed diets

containing YCW across all three independent trials.

Down-regulation of genes due to dietary YCW extracts has been previously reported in

microarray studies of Atlantic salmon liver [1] and rainbow trout gut and gills [41]. YCW

extracts improve growth and feeding efficiency ratios in flounder [11] and snakehead [8]. This

suggests that the fish fed YCW extracts are investing less energy on protein turnover in order

to utilise it for growth, but such a postulation was not investigated in our study.

Table 3. Differentially expressed proteins in the skin of Atlantic salmon fed prebiotic dietary supplements, as identified by two-dimensional elec-

trophoresis. The relevant spots were cut out from the gel and sequenced by LC-MS/MS, after which the peptides were identified by a MASCOT search. The

spot numbers refer to Fig 1, MW stands for molecular weight and fold change represents the expression level in the experimental fish group as compared to

the control.

Spot # Accession

number

Protein ID MW/Da pI MASCOT results Fold

change

p-value

Matched

Peptides

Sequence

coverage/%

Score

680 GI:1848139 Hemopexin-like protein (Oncorhynchus

mykiss)

76,688 6.25 3 5 173 +1.8 0.048

757 GI:224613524 Calreticulin precursor (Salmo salar) 30,030 4.51 15 34 691 +1.3 0.080

2020 GI:209736184 60S acidic ribosomal protein P0 (Salmo

salar)

31,083 9.10 35 62 1002 +1.3 0.017

2198 GI:185133596 Type I keratin E7 (Oncorhynchus mykiss) 23,095 5.11 11 19 240 -2.3 0.023

845 GI:185135325 Keratin, type I cytoskeletal 13

(Oncorhynchus mykiss)

71,984 7.72 8 21 277 -2.1 <0.001

921 GI:185135325 Keratin, type I cytoskeletal 13

(Oncorhynchus mykiss)

71,984 7.72 21 30 824 -2.0 0.003

2002 GI:185132221 Type II keratin E1 (Oncorhynchus mykiss) 97,540 8.68 6 9 350 -2.0 0.015

2033 GI:185135325 Keratin, type I cytoskeletal 13

(Oncorhynchus mykiss)

71,984 7.72 39 44 1215 -1.8 0.021

2007 GI:185135325 Keratin, type I cytoskeletal 13

(Oncorhynchus mykiss)

71,984 7.72 22 23 798 -1.7 0.005

2072 GI:185132221 Type II keratin E1 (Oncorhynchus mykiss) 97,540 8.68 36 34 1224 -1.7 <0.001

862 GI:185133596 Type I keratin E7 (Oncorhynchus mykiss) 31,541 5.04 12 16 330 -1.5 0.043

971 GI:209730456 40 kDa peptidyl-prolyl cis-trans isomerase

(Salmo salar)

31,499 5.42 18 50 682 -1.5 0.016

1043 GI:185132746 Glyceraldehyde-3-phosphate

dehydrogenase (Oncorhynchus mykiss)

51,406 8.90 47 56 853 -1.4 0.027

doi:10.1371/journal.pone.0169075.t003

Fig 2. Magnification of the gel image in the area where the calreticulin spot (no.757) was located in Fig 1.

The table indicates the identities the other protein spots migrating in this region of the profile along with their fold-

change and p-value from the SameSpots analysis of mucus samples from Trial#1.

doi:10.1371/journal.pone.0169075.g002
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), occasionally used as a reference gene,

was amongst the down-regulated proteins in this experiment. This result supports previous

studies that GAPDH is not suitable for use as a housekeeping molecule since it participates in

a variety of cellular processes [42]. Peptidyl-prolyl cis-trans isomerase is notable because pepti-

dyl-prolyl cis-trans isomerase A was down-regulated in a LC-MS/MS proteomic study on the

Fig 3. Phylogenetic trees showing the evolutionary relationship of the calreticulin family of proteins in

vertebrates, rooted by the mammalian calreticulin-3. The tree was used to name the calreticulin isoforms of

Salmo salar. The tree was constructed using multiple alignments of the vertebrate calreticulin. The neighbour-

joining method in MEGA 5 [37] was selected. The percentage of replicate trees in which the associated taxa

clustered together in the bootstrap test (10,000 replicates) is shown next to the branches [40]. The salmon

sequences are boxed. Each entry is described by the species common name and protein name, followed by the

Genbank or Ensembl accession number.

doi:10.1371/journal.pone.0169075.g003
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mucus of salmon fed unspecified prebiotic supplements [26]. The MASCOT search of the pep-

tide sequences for spot 971 indicate that the protein in this experiment was more similar to

peptidyl-prolyl cis-trans isomerase D (PPID), also known as cyclophilin D which is involved

Table 4. Validation of proteomic results by analysing the gene expression of the skin mRNA corresponding to the respective proteins. Fold

changes at the proteomic level was calculated on SameSpots using normalised spot volume data of two-dimensional gels (2DGE). Gene expression fold

changes were calculated from Ct values of qPCR assays by deriving arbitrary units using the standards graph equation and normalising using two housekeep-

ing genes, EF-1α and β-actin. (n = 9).

Trial#1 Trial#1 Trial#2

Primer 2DGE fold change P value qPCR fold change

CALR +1.2 0.40 n.s n.s.

CALRL +1.3 0.08 +1.26† +1.72*

GAPDH -1.4 0.03 n.s. n.s.

HPXL +1.8 0.05 n.e. n.e.

KRT13 -1.8 0.02 n.s. n.s.

PPID -1.5 0.02 n.s. n.s.

RPLP0 +1.3 0.02 n.s. +1.39*

† p<0.075

* p<0.05

n.s. = not significant; n.e. = not expressed.

doi:10.1371/journal.pone.0169075.t004

Fig 4. Effect of dietary YCW extracts on calrl expression in the skin of Atlantic salmon during two

independent feeding trials. Fish were fed either a control diet (Control) or the same base diet supplemented with

0.4% YCW for 4–7 weeks. Expression is given as a ratio of the arbitrary unit for calrl to the arbitrary units of two

reference genes, elongation factor 1-alpha and beta-actin. Data are present as Means ± SEM (n = 9). Statistical

significance was calculated by independent sample t-test, after checking for normality and outliers. One star (*)

denotes p<0.10 and two stars (**) denotes p<0.05.

doi:10.1371/journal.pone.0169075.g004
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in mitochondrial permeability [43] as well as suppression of apoptosis [44] in mammalian

models. Further investigation is required to deduce its function in fish and potential participa-

tion in the immunomodulatory effect of YCW extracts. However, it should be noted that

though PPID was up-regulated at the protein level in Trial#1, up-regulation at the transcript

level was not observed in either Trial#1 or Trial#2.

Three different keratins were also down-regulated. Keratins are a large family of proteins

which make up most of the intermediate filament [45], responsible to maintain the cell struc-

ture. Most keratins are associated with epithelial cells although others are found in mesenchy-

mal tissue. Since the epidermal layer of fish skin is situated on top of the scales [46], parts of it

would have been present in the mucus samples as the collection method was not sufficiently

selective. This explains the presence of non-secreted intracellular proteins in the mucus. Type

II keratins are also associated with scales [40], which were also present in the mucus samples.

Fig 5. Effect of dietary YCW extracts on calrl expression in the gut of Atlantic salmon during Trial#1. Fish were fed either a control diet (Control) or the

same base diet supplemented with 0.4% YCW. Expression is given as a ratio of the arbitrary unit for CALRL to the arbitrary units of two reference genes,

elongation factor 1-alpha and beta-actin. Data are present as Means ± SEM (n = 6). The expression of CALRL is not significantly different between diets

(p>0.05), as established by independent sample t-test after checking for normality and outliers.

doi:10.1371/journal.pone.0169075.g005
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The down-regulation of such proteins could be due to inconsistencies in the presence of scale/

epidermal cells in the samples. Whether these inconsistencies in sampling are actually related

to dietary-induced physicochemical changes in the fish mucus is unclear, but no difference in

keratin transcript levels was observed in any of the trials.

From the identified mucus proteins, only calreticulin and hemopexin-like protein have a

signal peptide (i.e. are secreted molecules). This implies that the rest of the identified proteins

are either intracellular proteins found in the skin epidermis, or are secreted into the mucus via

alternative secretion pathways. Hemopexin-like protein exhibited the highest positive fold-

change in the study. Hemopexin is expressed in the liver and then secreted into blood serum

[47] and, thus, no gene expression was detected in any of the skin samples. Hemopexin pro-

vides protection to the cells from oxidative damage and toxicity caused when haemoglobin is

released from damaged erythrocytes [48]. Hemopexin is part of the acute-phase response dur-

ing bacterial infection by binding iron, hence preventing its use by the bacteria [30,49]. Further

research into the function of this protein in fish is required in order to deduce its role in

mucus during the response to YCW extracts.

Calreticulin showed greatest potential as a biomarker for YCW-derived functional feed, as

it was up-regulated by a small but significant fold change in the proteomic study and this up-

regulation was also replicated when studying the gene expression in the skin from fish of the

same trial. Importantly, it was also up-regulated in the skin cDNA samples of an independent

feeding trial, Trial#2. This proteomic study has brought to light two different isoforms of

salmon calreticulin in the mucus and additional database searches have put forward a third

isoform which was not identified on the gels. Specifically, only the calreticulin-like (CALRL)

isoform was up-regulated due to dietary YCW extracts. Expression of this candidate biomarker

molecule was also explored in the gut cDNA samples as another mucosal tissue with a more

direct association with dietary intake. However, results show that the effect appears be skin-

specific since no changes were detected in the gut.

Calreticulin is a multi-functional protein and thus it is challenging to deduce the physiolog-

ical implications of its differential expression in Atlantic salmon. Calreticulin is a soluble pro-

tein found in the lumen of the endoplasmic reticulum [50]. It is also found in the extracellular

matrix and it has been linked to mineralisation in teeth and bone formation due to its high

affinity to calcium ions [51]. As a chaperone protein, calreticulin binds to glycoproteins in the

endoplasmic reticulum and is involved in their folding and degradation [52]. In the context of

this study, it is particularly interesting that calreticulin is directly involved in the synthesis of

mucins [53], the main macromolecule of mucus. Yeast-derived prebiotic dietary supplements

have been linked to an increase in mucus layer thickness [54] and goblet cell number [5,25] in

the gut. Furthermore, mucin 5B was up-regulated by three-fold in the skin mRNA of common

carp Cyprinus carpio fed a β-glucan, a type of YCW extract [55]. It was not possible to examine

the mucin content in the mucus during this experiment since the size of gel-forming mucins

[56] is beyond the range of sizes resolved on 2D gels.

Calreticulin has been found modulated in several previous proteomic studies in fish. It was

decreased in rainbow trout liver following exposure to verpamil, a calcium ionophore which is

toxic to fish [57]. Secondly, in medaka Oryzias melastigma, calreticulin protein levels were

decreased in gill after treatment with brevetoxin-1, a fish toxin associated with toxic algal

blooms [58]. In a recent study, calreticulin was over expressed in the proteome of the distal

intestine of Atlantic salmon 24 h after inducing inflammation [59]. Up-regulation of three iso-

forms of calreticulin was recorded in the channel catfish Ictalurus punctatus after iron-dextran

treatment and/or bacterial challenge [60]. This response has highlighted the possible participa-

tion of calreticulin in the innate immune response of fish via binding to components of the lec-

tin [61] or complement [62] pathways. On binding, calreticulin induces a change in the
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conformation of these molecules, leading to elimination of apoptotic cells and other immune

complexes. Both lectin and complement must be immobilised in order to bind to calreticulin

and, in the case of mannan-binding lectin, this is achieved by binding to mannan. The YCW

extract used in this study contained >20% w/v mannanoligosaccharide (MOS) with the

remainder mainly comprised of proteinaceous material, but also other cell wall fractions

including β-glucans and cellular constituents such as nucleotides. Alternatively the main die-

tary constituents of MOS and FOS, which are polymers of the mannan and fructose sugars

respectively, can be substrates for bacterial growth within the gut, thereby selectively modify-

ing the microbial composition, which in turn may have elicited the skin mucus response.

In the gene expression studies using skin cDNA as template, only CALRL exhibited a con-

sistent dietary effect in both its proteomic expression in the epithelial mucus and transcrip-

tomic expression in the skin. The rest of the studied proteins/genes did not follow such a

trend. This could because biological variation was quite high at both the proteomic and tran-

scriptomic level, although in the latter it was even more so. Attempts were done to counteract

this by using more biological replicates in the qPCR assays (9 replicates as opposed to 6 repli-

cates in the proteomic work). In addition, one gene isoform may result in multiple protein

spots on 2D gels due to post-translational modification that alter the pI of the protein, as was

the case with the multiple spots for calreticulin and keratin isoforms. Transcriptomic effects

are also more transient in comparison to protein turnover and thus, more changes will be

detected at the protein level rather than at the gene expression level. Also, some proteins pres-

ent in the mucus might not be secreted by the skin; a few proteins could form part of the

mucus through leakage of the secondary circulation system [30]. This could have been the case

of hemopexin-like protein, which was identified from the 2D gels but showed no expression in

the skin mRNA. Hemopexin-like proteins are produced and expressed mainly in the liver;

studies in teleost models support our findings that it is not expressed in the skin [63,64]. How-

ever, this protein must be transported to peripheral tissues, since 2D gels in the muscle [65]

and gills [66] of rainbow trout have also detected it.

Limitations of 2D gels are posed by the image resolution, detection of low abundance pro-

teins, those outside the pI range and very large or very small proteins. The use of skin mucus

to detect dietary changes has merit as it is easy and quick to collect non-destructively from live

animals and such assays would be highly beneficial to the aquaculture industry. However, it

also makes this study more complex since its proximity to the surrounding environment

brings about high biological variation across replicates. Nevertheless, our proteome-led

approach did identify a few proteins whose expression was altered by dietary YCW and

allowed us to further assess the validity of such biomarkers by targeted gene expression analy-

sis across independently replicated feed trials.

In conclusion, this study has confirmed that dietary YCW extracts cause a change in the

proteomic profile of Atlantic salmon skin mucus. CALRL was identified as a potential bio-

marker for research in YCW-derived diets and performance of salmon following different

health challenges. While specific benefits of using YCW extracts in aquaculture are still being

discovered, a biomarker would facilitate such studies by making them quicker and less costly.

In addition, this study highlights the need of further research into the microbial changes in the

gut of fish fed YCW extracts in order to discover the trigger behind proteomic and transcrip-

tomic changes.
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