1	Estimating farm scale greenhouse gas emission intensity of pig
2	production in Norway
3	
4	H. Bonesmo ^{1*} , S. Little ² , O.M. Harstad ³ , K.A. Beauchemin ² , A.O. Skjelvåg ⁴ & O.
5	Sjelmo ¹
6	
7	¹ Norwegian Agricultural Economics Research Institute, Trondheim, Norway, ²
8	Agriculture and Agri-Food Canada, Lethbridge, AB, Canada, ³ Department of Animal
9	Sciences, Norwegian University of Life Sciences, Ås, Norway, ⁴ Department of Plant and
10	Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
11	
12	Correspondence: Helge Bonesmo, Norwegian Agricultural Economics Research Institute,
13	Statens hus, P.O. Box 4718 Sluppen, NO-7468 Trondheim, Norway. Tel: +47 73199410.
14	Fax: +47 73199411. E-mail: helge.bonesmo@nilf.no.
15	
16	
17	

18 ABSTRACT

19	To assess greenhouse gas (GHG) emission intensity and its variation in Norwegian pig
20	production, we conducted an analysis of 15 farrow-to-finish pig farms to calculate farm
21	scale emissions of GHGs, expressed as carbon dioxide equivalents (CO2eq) per kg
22	carcass weight (CW) sold. A model, HolosNor, was developed to estimate net GHG
23	emissions, including soil C changes, from pig farms. Based on data from 2008 the
24	estimated GHG intensity was 2.65 kg CO_2 eq kg ⁻¹ CW (range: 1.24 to 4.03). The
25	production of the feed consumed by the pigs contributed most to total GHG emissions;
26	accounting for 2.14 kg CO ₂ eq kg ⁻¹ CW, or more than 80% of the total emissions. Our
27	study estimated a large variation in GHG intensity among pig farms in Norway which
28	indicates opportunity for incorporating mitigation practices. A valuable contribution of
29	the current work is the framework of a farm-scale tool for assessing farm-specific
30	mitigation options.
31	
32	Keywords: Feed production, greenhouse gas emissions, gross margin, manure, pigs
33	
34	Introduction
35	Pig production can have significant environmental impacts, including the emission of
36	greenhouse gases (GHGs) (Dalgaard, 2007). As with other livestock systems, pig
37	producing farms in future will need to reduce GHG emissions per unit of product.
38	Norwegian pig farms are small scale operations, typically 75 sows (Ingris, 2012). Animal
39	performance is high both in terms of reproduction (23.5 pigs reared per sow per year,
40	2.18 litters per sow per year, 13 pigs born alive per litter) and growth (daily average live

41 weight gain in finishing pigs is 952 g per day, the feed conversion ratio is 2.58 kg feed 42 per kg live weight, average lean meat percentage is 60.8, average slaughter weight is 80.3 43 kg). Norwegian agricultural policy aims to preserve the linkages between the natural 44 resource base of the farms and the animal production systems. For pig production, this 45 has been accomplished by implementing quotas for number of pigs, manure disposal requirements, and compulsory planning of manure use. The result is small-scale pig 46 47 production closely linked to feed production. The high animal performance of pig 48 production combined with farm scale linkage between animals and soil should ensure low 49 GHG emissions per unit of product. Yet, there is variation among farms both in animal 50 performance (Ingris, 2012) and feed production (Bonesmo et al., 2012) which may give 51 opportunity for mitigation options. The development and use of simulation models or 52 simpler calculators for estimation of GHG emissions at the farm level has been useful in 53 detecting tactical mitigation options in dairy and beef production (i.e., options within a 54 production season that do not require a change of the whole farm strategy) (Schils et al., 55 2007; Beauchemin et al., 2010; Bonesmo et al., 2013). Similar development and use of a 56 whole farm model for estimating GHG emission for pig production intensities would be 57 helpful in identifying suitable GHG mitigation options. Thus, our objectives were to: (1) 58 develop a whole farm model for estimating GHG emission intensities of pig production 59 that encompasses the farms' natural resource base and management; and (2) estimate the 60 average level of and the variation among GHG emission intensities of pig production for 61 Norwegian farms and thereby identify opportunities for mitigation.

62

63 Materials and methods

64 In the following section we first describe the model; thereafter, the farm specific

65 operational and natural resource base data are described.

66

67 The system boundaries and the whole-farm model

68 A farm scale model, HolosNor, was developed to estimate net GHG emissions from pig 69 production systems, including soil C changes. Based on the Canadian Holos model (Little 70 et al., 2008), HolosNor is an empirical model with a yearly time-step. Its framework is 71 based on the methodology of the Intergovernmental Panel on Climate Change (IPCC, 72 2006) with modifications that recognize the distinctness of Norwegian conditions. The 73 following GHG sources are considered: enteric CH₄ and manure-derived CH₄ and N₂O; 74 on-farm N₂O emissions from soils; off-farm N₂O emissions from N leaching, run-off and 75 volatilization (indirect N₂O emissions); on-farm CO₂ emissions or C sequestration due to 76 soil C changes; CO_2 emissions from energy used on-farm; and off-farm CO_2 and N_2O 77 emissions from supply of inputs of mineral fertilizers, pesticides, feed, and fuel. All gas 78 emissions are expressed as CO₂eq to account for the global warming potential of the 79 respective gases given a time horizon of 100 years: $CH_4 \text{ kg} \times 25 + N_2O \text{ kg} \times 298 + CO_2$ kg \times 1 (IPCC, 2007). The GHG emission intensities are reported as kg CO₂eq kg⁻¹ 80 81 carcass weight (CW) sold. 82 Yearly enteric CH₄ emissions ($CH_{4enteric}$) are calculated for each class of pigs ($_i$ =

83 sows, starters, finishers) as:

84
$$CH_{4enteric_i} = \frac{1.5}{365} \times pigs_i \times days_i$$

...1

85

86

87

where 1.5 kg CH₄ year⁻¹ is the yearly enteric emission rate (IPCC, 2006), *pigs* is the yearly average number of animal in each class of pigs, and *days* is the number of days by pig class (*days* for sows = 365, for starters = 33.9, finishers = 90.3).

- Manure CH₄ emissions estimates (kg CH₄ year⁻¹) are calculated for each class of pigs based on volatile solids (*VS*) production, according to IPCC (2006), and assumed to be 10% of the daily feed intake (value simplified from Table A4-21 in Little et al, 2008). The VS production is multiplied by a maximum CH₄ producing capacity of the manure $(B_o = 0.45 \text{ m}^3 \text{ CH}_4 \text{ kg}^{-1} \text{ VS}$ for pigs of all classes, IPCC, 2006), a conversion factor from volume to mass (0.67 kg m⁻³) and a CH₄ conversion factor specific to the manure management practice (*MCF*):
- 95

$$CH_{4manure_i} = VS \times B_o \times MCF \times 0.67 \times pigs_i \times days_i$$

96 The MCF is calculated for each farm individually based on Mangino et al. (2001) and 97 Vergé et al. (2006), assuming that a crust cover reduces CH₄ emissions by 40% as 98 compared with no cover (IPCC, 2006) and the emptying of the VS by 2/3 in May and 99 completely in September (Gundersen & Rognstad, 2001). Calculating MCF for 100 individual farms gave a range of 0.12 - 0.14, with an average of 0.13. 101 The manure N is estimated by pig class from daily concentrate intake (FI, kg "as 102 fed" head $^{-1}$ day $^{-1}$), the crude protein content of the diet (diet *CP* for sows = 0.20, for 103 starters = 0.22, for finishers = 0.18), and protein retention (PR =0.3; Little et al., 2008) by 104 the animals based on IPCC (2006) and Little et al. (2008):

105
$$N_{manure_i} = \frac{FI_i \times CP_i \times (1 - PR)}{6.25} \times pigs_i \times days_i$$

106	The IPCC (2006) calculates direct N_2O emissions from manure by multiplying the
107	manure N content by an emission factor for the manure handling system. For stored pig
108	manure as liquid slurry with natural crust cover, as is the case for the farms in this
109	investigation, the emission factor is set to 0. Indirect N_2O emissions caused by leaching
110	and volatilization are calculated as fractions of the total N excretion rate multiplied by
111	specific emission factors (Little et al., 2008). For manure stored as liquid slurry with a
112	natural crust cover, the leaching fraction is zero and the volatilization fraction is 0.48.
113	The emission factor for volatilization is 0.0075 kg N_2 O-N (kg N) ⁻¹ .
114	Estimates of direct soil N_2O emissions are based upon the IPCC (2006) emission
115	factor of 0.01 kg N_2 O-N kg ⁻¹ of total N input, defined as the sum of N fertilizer applied,
116	crop residual N, and mineralized N. The residue N is calculated as the sum of above
117	ground and below ground residue N (Janzen et al., 2003). The mineralised N is derived
118	from an N:C ratio of soil organic matter of 0.1 (Little et al., 2008). The N ₂ O emission is
119	strongly affected by soil moisture and temperature conditions (Watts and Hanks, 1978).
120	Relative effects of percent water filled pore space of 25 cm top soil (WFPS) and of soil
121	temperature at 30 cm depth (ts30 °C) are derived from Sozanska et al. (2002) as described
122	by Bonesmo et al. (2012). The seasonal variation in direct soil N_2O emissions is taken
123	into account by dividing the year into four seasons, spring (April-May), summer (June-
124	August), fall (September-November), and winter (December-March), with their
125	respective values of total N input, WFPS, and ts30. This approach allows for a simple
126	description of the seasonal interaction between the fertilization rate and the current soil
127	moisture and temperature conditions.

The indirect soil N₂O emissions due to leaching and runoff are calculated according to IPCC (2006); the leaching fraction is 0.3, and the emission factor for leaching and runoff is 0.0075 kg N₂O-N kg⁻¹. Emissions of N₂O due to volatilisation are calculated using the IPCC (2006) constants of 0.1 for the volatilisation fraction and 0.01 for the emission factor.

133 The estimates of soil C change are based upon the Introductory Carbon Balance 134 Model (ICBM) of Andrén et al. (2004). The ICBM is a two-component model, 135 comprising young and old soil C, input of total C from crop residues and manure, two 136 decay constants, parameters of humification (humification coefficient for pig manure is 137 set to 0.25 according to Wang et al., 2012, and for crop values cf. Bonesmo et al., 2012), 138 a farm specific multiplicative index of the relative effects of soil moisture and soil 139 temperature, and a soil cultivation factor. For the individual farm the multiplicative soil 140 moisture and temperature index is estimated on a daily basis and averaged over the year 141 (Bonesmo et al., 2012). The proportions of arable land in cereal production and of farms 142 with arable crops have been continuously increasing in Norway during the last 60 years. 143 Over time, the rate of soil C loss gradually declines in a continuously arable crop system 144 when following a mixed farming system including perennial grass (Riley & Bakkegard, 145 2006). Thus, we used the ICBM's estimate of soil C change in the 30th year of 146 continuous arable cropping.

Direct emissions from diesel fuel, electricity, and off-farm emissions of the
manufacturing and production of farm inputs are estimated using appropriate emission
factors for Norway or Northern Europe (for values cf. Bonesmo et al., 2012). Emissions
related to purchased concentrates are estimated by first calculating the amount of energy

151	and CP they supplied in order to estimate the amount of grain and soybean meal
152	comprised by the concentrates. It is assumed that farm produced grain crops (barley and
153	oats) replace the grain crops of the concentrate and that the soybean meal was imported
154	from South America. The emissions for the purchased concentrates were then assessed
155	as on-farm emissions from the individual farm's production of barley and oats (including
156	soil N2O, soil C change, and indirect and direct energy use), and off-farm emissions from
157	the production of imported soybean meal (1.09 kg CO ₂ eq kg ⁻¹ dry matter; Dalgaard et al.,
158	2008). If the amount of feed grains grown on the farm is insufficient, then the average
159	emission for barley and oats grown in Norway is used (0.62 kg CO ₂ eq kg ⁻¹ dry matter;
160	Bonesmo et al., 2012). Emissions from excess on-farm feed crop production (i.e., soil
161	N ₂ O, soil C change, and indirect and direct energy) were not included in the total farm
162	emissions related to pig production. Emissions from the farms' wheat production were
163	not included in the total farm emissions because wheat is not grown specifically as feed
164	for pig production in Norway, although in some years wheat is used as a feed if the
165	quality requirements for bread production are not met (Norske Felleskjøp, 2012).
166	
167	INSERT TABLE 1 HERE
168	
169	Farm operational and natural resource base data
170	The effects of variation in farm management practices on GHG emissions was explored
171	by running the model with data from 15 Norwegian farrow-to-finish pig farms for the
172	year 2008. The data set was established by combining individual farm operational data
173	from The Norwegian Farm Accountancy Survey (NILF, 2009) with farm level data on

174 soil characteristics, provided by the Norwegian Forest and Landscape Institute, and farm 175 level weather data for the year 2008 provided by the Norwegian Meteorological Institute. 176 Farm specific CW sold and numbers of pigs including sows, recruitment sows, 177 starters, and finishers were obtained from the Norwegian Farm Accountancy Survey 178 (NILF, 2009) (Table 1). The farm specific amount of concentrate fed was estimated on 179 the basis of the farm's expenditures for concentrate (NILF, 2009) and current price of 180 concentrate (BFJ, 2010). The on-farm use of concentrate was distributed among the pig 181 classes based on the feeding recommendations for the various pig classes (Table 1); the 182 relative amount of concentrate was: sows, 1.0; finishers, 0.13; and starters, 0.02. Based 183 on these relative amounts, the number of pigs in each class and the typical concentrate 184 types and their prices, the farm specific daily average amounts of concentrate fed to each pig class were estimated. The areas (ha) and yields (kg ha⁻¹) of barley, oats, spring and 185 186 winter wheat were specified in the Norwegian Farm Accountancy Survey (NILF, 2009) 187 (Table 1) and the farm specific application levels of N and the amount of pesticides 188 applied to each type of field crop were estimated on the basis of NILF (2009) according 189 to Bonesmo et al. (2012) The pesticide energy use (MJ ha⁻¹) was estimated according to 190 Audsley et al. (2009). Farms that received regional payments for maintaining land under 191 reduced tillage are specified in the accountancy survey (NILF, 2009), and from the 192 payments received, the area with reduced tillage was estimated for each farm (Bonesmo 193 et al., 2012). The farm expenditures for fuel and electricity (NILF, 2009) were 194 distributed to crops according to their respective areas, and the energy use was calculated 195 by dividing these amounts by the 2008 average consumer price of electricity (Statistics 196 Norway, 2010) or the 2008 average on-farm price of fuel (BFJ, 2010) (Table 1).

197	Soil survey records for the 15 farms were provided by the Norwegian Forest and
198	Landscape Institute for homogenous soil type mapping units down to 0.4 ha, each with
199	specifications of top soil and subsoil layers. From these records soil moisture capacities
200	were derived by using pedotransfer functions of Riley (1996). The 2008 daily weather
201	data from the network of the Norwegian Meteorological Institute were interpolated to
202	each farm's geographical midpoint and altitude (Tveito et al., 2005). From these data
203	daily values and annual means of $r_w \times r_T$ for ICBM, seasonal values for WFPS and ts30
204	were calculated (Table 1). A detailed description of the processing of the farm's natural
205	resource base data for field crops is given by Bonesmo et al. (2012).
206	
207	The GHG emission intensities
208	The GHG emission intensities were calculated for individual farms by relating the
209	estimated total farm GHG emissions (CO2eq) to meat as kg CW and live animals sold
210	from all pig classes. To explore causes of variation in the estimated GHG emission
211	intensities among farms, simple linear regressions were calculated between (1) the farm
212	specific estimated feed related emissions and the gross margin in crop production; and (2)
213	the animal related emissions and the economic feeding efficiency.
214	
215	Results
216	The average GHG intensity for the 15 farrow-to-finish pig farms was estimated as 2.65
217	kg CO ₂ eq kg ⁻¹ CW (Table 2). The production of the feed (on-farm and off-farm)
218	consumed by the pigs contributed most to total GHG emissions; accounting for about
219	2.14 kg CO ₂ eq kg ⁻¹ CW or 80% of the total emissions. Animal related GHG emissions

220	(enteric and manure storage CH ₄ , manure storage N_2O) accounted for about 0.51 kg
221	CO_2 eq kg ⁻¹ CW or 20% of the total emissions. The soil N ₂ O emissions were the largest
222	single on-farm source accounting for 21% of the total emissions, and the soil C change
223	the smallest accounting for 2% of the emissions. The on-farm emission from fuel use in
224	feed crop production was on average 0.18 kg CO_2eq kg ⁻¹ CW or 7% of the total
225	emissions. There was large variation in estimated GHG emission intensities among farms
226	(Table 2). The maximum GHG emission per kg CW was more than three times higher
227	than the minimum, a difference of 2.79 kg CO ₂ eq kg ⁻¹ CW. The variation in the estimated
228	soil N ₂ O emissions was the source that contributed most to the total variation in GHG
229	emissions among the farms. The difference between the minimum and the maximum
230	levels for soil N ₂ O emissions was 1.56 kg CO ₂ eq kg ⁻¹ CW.
231	
232	INSERT TABLE 2 HERE
233	
234	
235	In general, higher GHG emissions per kg CW could be explained by higher
236	emissions from feed production (on and off farm) (regression slope 0.86, $r^2 = 0.99$); the
237	animal related emissions were smaller (regression slope 0.14, $r^2 = 0.72$) (Fig 1).
238	Consequently, the proportion of emissions related to animals was lower at farms with the
239	higher GHG emissions per kg CW.
240	
241	INSERT FIGURE 1 HERE
242	

243	Examination of correlations between farm scale economic efficiencies, gross
244	margin in crop production and economic feeding efficiency, and the estimated emission
245	intensity per kg CW sold revealed no strong relationships (Fig. 2A). However, there was
246	a decrease in GHG emission intensity per kg CW of feed related emissions with increased
247	gross margin in crop production ($r^2 = 0.21$, p=0.086). A similar relationship was found
248	for the estimated animal related emission intensities per kg CW and economic feed
249	efficiency (r ² =0.23, p=0.070) (Fig. 2B).
250	
251	INSERT FIGURE 2 HERE
252	
253	Discussion
254	The estimated average GHG emission intensity of 2.65 kg CO ₂ eq kg ⁻¹ CW for Norwegian
255	pig production was similar to the average of five Swedish studies as reported by Soneson
256	et al. (2009); the average of Swedish pig production was 4.1 kg CO_2eq kg ⁻¹ bone free
257	meat recalculated to 2.5 kg CO ₂ eq kg ⁻¹ CW. Our estimated GHG emission was also close
258	to the average of 2.4 kg CO_2 eq kg ⁻¹ CW reported for four German pig production systems
259	(Hirschfeld et al., 2008). The ranges of the Swedish studies and the German production
260	systems were $1.9 - 3.1$ and $1.7 - 3.1$ kg CO ₂ eq kg ⁻¹ CW, respectively. The range of
261	variation found in our study of 15 farms was somewhat wider $(1.24 - 4.03 \text{ kg CO}_2\text{eq kg}^{-1}$
262	CW; Table 2), which is expected because our numbers are from actual farms rather than
263	from constructed model farms as was the case in the Swedish as well as in the German
264	studies. Other studies with estimates of 3.3 and 3.4 kg CO_2eq kg ⁻¹ CW for pig production
265	in Denmark and UK, respectively (Dalgaard et al., 2007), and 3.0 kg CO_2eq kg ⁻¹ CW for

266 pig production in France (Basset Mens & van der Werf, 2005) were somewhat higher, but 267 still very close to the average of the Norwegian farms. This difference can mainly be 268 attributed to lower animal husbandry related emissions estimated by our model. The 269 lower estimates of animal related emissions can be explained by the high animal 270 performance of Norwegian pig production. In 2008 the daily average live weight gain in 271 finishing herds was 5% higher and the feed conversion ratio was 1% lower than for 272 Danish finishing herds (calculations based on data from Ingris, 2010, and Groes 273 Christiansen, 2011). Further it should be recognized that there are inevitable differences 274 in quality of farm data, boundaries assumed, and emission factors applied in the different 275 studies. However, the overall conclusion is that the GHG emissions related to pig 276 production are relatively low. Using an emission factor of 3.0 kg CO₂eq litre⁻¹ fuel for 277 direct and indirect fuel use (cf. Bonesmo et al., 2012), the emissions from the production 278 of 1 kg CW of pork would be comparable to the emissions of a 10 km drive in a typical 279 family car. Moreover, the emission intensity of pig production is about one seventh of the intensity (19 kg CO₂eq kg⁻¹ CW) reported for beef from dairy herds (Bonesmo et al., 280 281 2013) and only one tenth of the intensity (37 kg CO_2 eq kg⁻¹ CW) for beef from 282 specialised beef cattle (Dalgaard et al., 2007). Substituting beef with pork might thus be a 283 GHG emission abatement strategy. However, this is a simplified comparison as it does 284 not credit the ruminant- production for the CO₂ storage in grassland; land use change is 285 not considered in this abatement strategy. If the grass production and pasture land were 286 converted to grain land for pig production substantial soil C losses would be expected. 287 Application of tactical mitigation options (i.e., options tailored to the specific 288 farm's strategy) to lower GHG intensity of pork production assumes significant variation

289 within the production system. Our study estimates large variation in GHG intensity among pig farms in Norway $(1.24 - 4.03 \text{ kg CO}_2\text{eq kg}^{-1} \text{ CW})$ which indicates a 290 291 sensitivity of emissions to mitigation. The variation in GHG emissions is mainly caused 292 by the variation in feed related emissions (Fig. 1), and thus mitigation measures should be 293 applied to crop production. Agronomic measures at the tactical level are perhaps the most 294 difficult mitigation practices to assess; reducing N fertilisation, the use of reduced tillage, 295 catch crops (i.e., crops grown that remove N from the soil at the time leaching takes 296 place), and crop rotation all impact yields and crop residues (cf. discussion of Bonesmo et 297 al., 2012). Thus, a whole-farm analysis using farm level decision support tools would be 298 helpful. Our results showed a decrease in estimated GHG emission intensities with both 299 an increase in gross margin in crop production and an increase in economic feeding 300 efficiency (Fig 2), suggesting that there are few negative economic impacts of reducing 301 the GHG emissions in pig production.

302

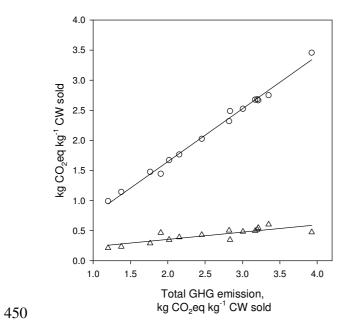
303 Conclusion

304 The GHG emission intensity for 15 farrow- to- finish pig farms in Norway was on average 2.65 kg CO₂eq kg⁻¹ CW, which is similar to emissions from pig production in 305 306 other western European countries. There was a large variation in GHG emission intensity 307 among farms in Norway (1.24 – 4.03 kg CO₂eq kg⁻¹ CW) indicating a sensitivity of 308 emissions levels to mitigation measures. The variation in GHG emissions was mainly 309 caused by the variation in feed related emissions, and thus mitigation measures should be 310 applied to crop production. There were few negative farm scale economic impacts of 311 reducing the GHG emissions in pig production. The HolosNor model takes into account

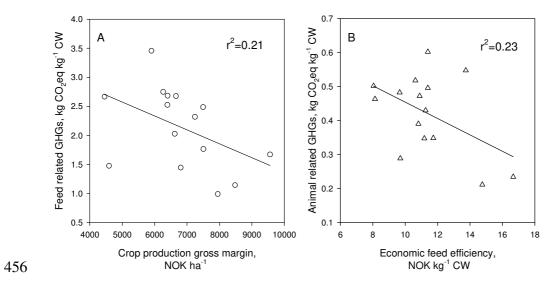
312	the interactions between the farm's soil and production of crops and animals. Thus, a
313	valuable contribution of this study is the framework of an on-farm tool for assessing
314	farm-specific mitigation options of Norwegian pig production.
315	
316	Acknowledgements
317	This work was financed by the Norwegian Research Council and the companies
318	TINE BA, Felleskjøpet Fôrutvikling BA, Nortura, and Animalia.
319 320	References
321 322 323 324 325	Andrén, O., Kätterer, T. & Karlsson, T. (2004). ICBM regional model for estimations of dynamics of agricultural soil carbon pools. <i>Nutrient Cycling in Agroecosystems</i> , 70, 231-239.
326 327 328 329	Audsley, E., Stacey, K., Parsons, D.J. & Williams, A.G. (2009). Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. Cranfield University. 20 pp.
330 331 332 333	Basset-Mens, C. & van der Werf, H.M.G. (2005). Scenario-based environmental assessment of farming systems: the case of pig production in France. <i>Agriculture Ecosystems & Environment, 105</i> , 127–144.
334 335 336	Beauchemin, K.A., Janzen, H.H., Little, S.M., McAllister, T.A. &, McGinn, S.M. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. <i>Agricutural Systems 103</i> , 371-379.
337338339340	BFJ (2010). Totalkalkylen for jordbruket. Jordbrukets totalregnskap 2008 og 2009 og budsjett for 2010. Budsjettnemnda for jordbruket, Oslo.
341 342 343 344	Bonesmo, H., Beauchemin, K. A., Harstad, O. M. & Skjelvåg, A. O. (2013). Greenhouse gas emission intensities of grass silage based dairy and beef production: A systems analysis of Norwegian farms. <i>Livestock Science</i> , in Press.
345 346 347	Bonesmo, H., Skjelvåg, A.O., Janzen, H.H., Klakegg, O. & Tveito, O.E. (2012). Greenhouse gas emission intensities and economic efficiency in crop production: a systems analysis of 95 farms. <i>Agricultural Systems 110</i> , 142–151.
348 349 350	Dalgaard, R. (2007). <i>The environmental impact of pork production from a life cycle perspective</i> . Ph. D. Thesis, University of Aarhus, Faculty of Agricultural Sciences,

351 352	Department of Agroecology and Environment and Aalborg University, Department of Development and Planning. Aalborg, Denmark. 135 pp.
353	
354	Dalgaard, R., Halberg, N., & Hermansen J.E. (2007). Danish pork production: An
355	environmental assessment. DJF Animal science, 82, Aarhus Univiersity, Faculty of
356	Agricultural Sciences, 34 pp.
357	Data de Data de La Hallere N. Chaldere D. There M. 9 Decem W. A
358	Dalgaard, R., Schmidt, J., Halberg, N., Christensen, P., Thrane, M. & Pengue, W.A.
359	(2008). LCA of Soybean Meal. International Journal of LCA 13, 240–254
360	Cursos Christianson M (2011) Intermis 2000 Resultator of intermational
361 362	Groes Christiansen, M. (2011). Interpig 2009 – Resultater og international
362 363	konkurrenceevne. Notat nr. 1102, Videncenteret for svineprodution. 30 pp.
364	Gundersen, G. I. & Rognstad, O. (2001), Lagring og bruk av husdyrgjødsel, Rapport
365	2001/39, Statistisk sentralbyrå, Oslo. 47pp.
366	2001/39, Statistisk sentralbyla, Oslo. 47pp.
367	Hirschfeld, J., Weiss, J., Preidl, M. & Korbun, T. (2008). Klimawirkungen der
368	Landwirtschaft in Deutschland. Schriftenreihe des IÖW 186.
369	Landwirtschaft in Deutschand. Sem gienreine des 10 W 100.
370	Ingris (2012). Årsstatistikk 2011 (Annual report). Accessed Oct. 9, 2012.
371	http://www.animalia.no/upload/Filer%20til%20nedlasting/In-
372	Gris/%c3%85rsstatistikk%202011.pdf.
373	6116/ 70057005105tatistikk 70202011.pdf.
374	IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by
375	the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L.,
376	Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan
377	
378	Janzen, H.H., Beauchemin K.A., Bruinsma, Y., Campbell, C.A., Desjardins, R.L., Ellert,
379	B.H. & Smith, E.G. (2003). The fate of nitrogen in agroecosystems: an illustration
380	using Canadian estimates. Nutrient Cycling in Agroecosystems 67, 85-102.
381	
382	Kätterer, T. & Andrén, O. (2009). Predicting daily soil temperature profiles in arable soils
383	in cold temperate regions from air temperature and leaf area index. Acta Agriculturae
384	Scandinavica, Section B - Soil & Plant Science 59, 77–86.
385	
386	Little, S., Lindeman, J., Maclean, K. & Janzen, H.H. (2008). HOLOS. A tool to estimate
387	and reduce greenhouse gases from farms. Methodology and algorithms for version
388	1.1. Agriculture and Agri-Food Canada, Lethbridge, Canada. 162 pp.
389	
390	Mangino, J., Bartram, D. & Brazy, A. (2001). Development of a methane conversion
391	factor to estimate emissions from animal waste lagoons. U.S. EPA's 17th Annual
392	Emission Inventory Conference, Atlanta GA, USA. 14 pp.
393	
394	NILF (2009). Account results in agriculture and forestry 2008. Norsk institutt for
395	landbruksøkonomisk forskning, Oslo, Norway. 229 pp
396	

397 398 399	Norske Felleskjøp (2012). Prosjekt norsk korn i kraftfôr, sluttrapport mars 2012. Oslo, Norway. 43 pp.
400 401 402 403	Riley, H. (1996). Estimation of physical properties of cultivated soils in southeast Norway from readily soil information. <i>Norwegian Journal of Agricultural Science</i> <i>Suppl. No. 25</i> , 51 pp.
404 405 406 407	Riley, H. & Bakkegard, M. (2006). Declines of soil organic matter content under arable cropping in southeast Norway. <i>Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 56</i> , 217–223.
408 409 410 411	Schils, R.L.M., Olesen, J.E., delPrado, A. & Soussana J.F. (2007). A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. <i>Livestock Science</i> , 112, 240–251.
412 413 414 415	Soneson, U., Cederberg, C. & Berglund, M. (2009). Greenhouse gas emissions in pig meat production. Descision support for climate certification. <i>Klimatmärking för mat</i> , 5, 29 pp.
416 417 418	Sozanska, M., Skiba U. & Metcalfe, S. (2002). Developing an inventory of N ₂ O emissions from British soils. <i>Atmospheric Environment</i> 36, 987–998.
419 420 421 422	Statistics Norway (2010). <i>Kraftpris og nettleie for husholdninger</i> . Webpage: http://www.ssb.no/emner/10/08/10/elkraftpris/tab-2010-07-01-02.html, Cited 29 December 2010.
423 424 425 426	Tveito, O.E., Bjørdal, I., Skjelvåg, A.O. & Aune, B. (2005). A GIS-based agro-ecological decision system based on gridded climatology. <i>Meteorological Applications</i> , 12, 57– 68
427 428 429 430	Vergé, X., Worth, D., Hutchinson, J.J. & Desjardins R.L. (2006). Greenhouse Gas Emissions from Agro-Ecosystems in Canada. Methane Emissions: Methodology for Calculations. Technical Report. 38 pp.
431 432 433 434	Wang, S.X., Liang, X.Q., Luo, Q.X., Fan, F. & Chen, Y.X. (2012). Fertilization increases paddy soil organic carbon density. <i>Journal of Zhejiang University - Science B</i> , 13, 274–282.
435 436 437	Watts, D.G. & Hanks, R.J. (1978). A soil-water-nitrogen model for irrigated corn on sandy soils. <i>Soil Science Society of America Journal</i> , 42, 492-499.


- **Table 1.** Data for animals, fuel usage, crops, and natural resources for the 15 Norwegian
- 439 farrow-to-finish pig farms included in the analyses.

Farm characteristics, units	n	Mean	Range [min, max]
Animals			
Sows including recruitments, number fed year ⁻¹	15	58	[20, 96]
Starters, number fed year ⁻¹	15	1105	[379, 1782]
Finishers, number fed year ⁻¹	15	843	[345, 1473]
Carcass weigth, kg sold year ⁻¹	15	77747	[29375, 130294]
Concentrate to sows, kg year ⁻¹	15	93556	[32302, 138661]
Concentrate to starters, kg year ⁻¹	15	24157	[8178, 39957]
Concentrate to finishers, kg year ⁻¹	15	175908	[71074, 281539]
Energy, direct usage			
Fuel, litre year ⁻¹	15	5495	[1685, 12980]
Electricity, kWh year ⁻¹	15	45507	[19429, 84995]
Crops			
Barley area, ha	12	20	[8, 49]
Barley yield, kg DM ha ⁻¹	12	4582	[2510, 5647]
Barley mineral fertilizers, kg N ha ⁻¹	12	89	[0, 148]
Barley reduced tilllage, ratio	12	0,7	[0, 1]
Barley pesticides, MJ ha ⁻¹	12	163	[0, 206]
Oats area, ha	6	18	[6, 36]
Oats yield, kg DM ha ⁻¹	6	5126	[4386, 7267]
Oats mineral fertilizers, kg N ha ⁻¹	6	107	[82, 134]
Oats reduced tillage, ratio	6	0,7	[0.4, 1.0]
Oats pesticides, MJ ha ⁻¹	6	187	[91, 488]
Spring wheat area, ha	8	21	[8, 61]
Spring wheat yield, kg DM ha ⁻¹	8	3760	[2460, 5620]
Spring wehat mineral fertilizers, kg N ha ⁻¹	8	100	[20, 140]
Spring wheat reduced tillage, ratio	8	0,8	[0.4, 1.0]
Spring wheat pesticides, MJ ha ⁻¹	8	244	[133, 537]
Winter wheat area, ha	4	12	[4, 23]
Winter wheat yield, kg DM ha ⁻¹	4	7738	[3970, 6130]
Winter wheat mineral fertilizers, kg N ha ⁻¹	4	125	[125, 125]
Winter wheat pesticides, MJ ha ⁻¹	4	546	[330, 1079]
Soil weather			
Soil temperature at 30 cm depth ^a , winter, °C	15	1,4	[0.9, 2.5]
Soil temperature at 30 cm depth, spring, °C	15	8,0	[6.4, 9.5]
Soil temperature at 30 cm depth, summer, °C	15	15,5	[13.9, 17.0]
Soil temperature at 30 cm depth, fall, °C	15	7,2	[6.5, 9.1]
Water filled pore space ^b , winter, % Water filled pore space, spring, %	15	79 64	[70, 84]
Water filled pore space, summer, %	15 15	63	[52, 74] [33, 70]
Water filled pore space, fall, %	15	79	[49, 71]
$r_w \times r_T$ yearly ^c , dimensionless	15	1,72	[1.46, 2.09]
Soil organic C, Mg ha ⁻¹	15	78,5	[61.3, 102.5]
^a Estimated according to Kätterer and Andrén (20	_	70,5	[01.3, 102.3]
	109)		
² Estimated according to Bonesmo et al. (2012) ² Estimated according to Andrén et al. (2004)			


Table 2.

- 444 Mean, minimum, and maximum values of GHG emission intensities, expressed as kg
- 445 CO₂eq kg⁻¹ CW, for 15 Norwegian farrow-to-finish pig farms. Values less than 0 indicate
- 446 removal from the atmosphere (i.e., soil C gain).

	GHG emissions, kg CO ₂ eq kg ⁻¹ CW sold		
	Mean	Range [min, max]	Proportion, %
Total GHGs	2.65	[1.24, 4.03]	
Enteric CH ₄	0.14	[0.07, 0.18]	5.3
Manure CH ₄ N ₂ O ^a	0.38	[0.18, 0.55]	14.3
Soil N ₂ O ^a	0.56	[0.11, 1.68]	21.1
Soil C change ^a	0.06	[-0.07, 0.49]	2.3
Off-farm barley	0.41	[0.00, 0.98]	15.5
Off-farm soya	0.71	[0.28, 1.22]	26.8
Indirect energy	0.21	[0.04, 0.65]	7.9
Direct energy	0.18	[0.07, 0.35]	6.8

451 Figure 1. Relationships between estimated emissions from two groups of sources of
452 GHG emission and total GHG emission both expressed as kg CO₂eq kg⁻¹ CW sold, based
453 on data for 15 farrow-to-finish pig farms; open circles are feed related emissions, open
454 triangles are animal related emissions.

457 Figure 2. Relationships between estimated GHG emission intensities as: (A) feed related

458 kg CO₂eq kg⁻¹ CW and the crop production gross margin; and (B) animal related kg

459 CO₂eq kg⁻¹ CW and economic feed efficiency. Data for 15 farrow-to-finish pig farms,

- 460 solid lines indicate trends.
- 461