1	In vitro production of methane with increasing levels of corn or wheat based dried
2	distillers' grains with solubles in a barley silage based diet
3	
4	M. HÜNERBERG ^{1,2} , K. A. BEAUCHEMIN ¹ , E. K. OKINE ² , L. HOLTSHAUSEN ¹ ,
5	S. M. MCGINN ¹ , O. M. HARSTAD ³ AND T. A. MCALLISTER ^{1*}
6	
7	¹ Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
8	² Department of Agricultural, Food & Nutritional Science, University of Alberta,
9	Edmonton, Alberta, Canada
10	³ Norwegian University of Life Sciences, Ås, Norway
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	Correspondence: Tim A. McAllister, Agriculture and Agri-Food Canada, Lethbridge
22	Research Centre, Lethbridge, Alberta, Tel: +1-403-317-2240, E-mail:
23	tim.mcallister@agr.gc.ca

24	ABSTRACT: Methane production from wheat or corn based dried distillers' grains with
25	solubles (CDDGS, WDDGS) was compared in vitro. Wheat DDGS (49 g fat/kg DM) or
26	CDDGS (115 g fat/kg DM) partially or completely replaced whole crop barley silage at
27	200, 400, 600, 800 or 1000 g/kg DM. Production of CH4 increased linearly and
28	quadraticly ($p < 0.01$) with increasing levels of CDDGS. Cumulative CH ₄ production at 24
29	h was higher (p <0.05) for WDDGS (12.0 ± 0.5 mg/g DM) than CDDGS up to 800 g/kg
30	DM. Molar proportions of propionate in incubation fluid were higher (p <0.05) for CDDG
31	than for WDDGS at 200, 400 and 600 g/kg DM, respectively. In vitro CH ₄ production
32	(mg CH ₄ /g DM; mg CH ₄ /g DMD) was lower for CDDGS than WDDGS up to 800 g/kg
33	substrate DM. The higher residual oil content in CDDGS compared to WDDGS likely
34	elicited this response.
35	Keywords: in vitro, dried distillers' grains with solubles, methane
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 Introduction

48 Dried distillers' grains with solubles (DDGS) is a major by-product from the biofuel 49 industry wherein cereal grains are fermented to produce ethanol. As ethanol production 50 has increased considerably in the last decade, large amounts of DDGS are available and 51 predominantly used as feed for ruminant livestock (Klopfenstein et al., 2008). Corn based 52 DDGS (CDDGS) is the most abundant DDGS in the USA whereas in Canada wheat 53 based DDGS (WDDGS) accounts for almost one third of total DDGS production (USDA 54 Foreign Agricultural Service, 2010). As a result of the fermentation process, DDGS is 55 largely starch free, but concentrated three fold in protein, fibre and fat (Spiehs et al., 56 2002). The fat content is higher in CDDGS (~100 g/kg dry matter [DM]; Spiehs et al., 57 2002) than in WDDGS (~50 g/kg DM; Gibb et al., 2008) owing to the higher level of fat 58 in corn. Supplementation of ruminant diets with dietary fat reduces ruminal CH₄ through 59 a number of mechanisms including reduction in ruminal DM digestibility, direct effects 60 of fatty acids on ruminal methanogens and protozoa, and by biohydrogenation of 61 unsaturated fatty acids (Czerkawski et al., 1966; Johnson and Johnson, 1995). 62 Additionally, dietary fats often replace fermentable carbohydrates that otherwise would 63 contribute to an increase in the reducing equivalents available to reduce CO₂ to CH₄ 64 (Beauchemin et al., 2008). 65 Replacing a mixture of 350 g/kg barley grain and 50 g/kg canola meal (DM basis) 66 by CDDGS (100 g fat/kg DM) in a growing high-forage diet reduced enteric CH_4 emissions of beef cattle from 25.3 to 21.5 g CH₄/kg DM intake, while including 400 g/kg 67 68 DM WDDGS (41 g fat/kg DM) had no effect on CH₄ emissions (23.9 g/kg DM intake; 69 Hünerberg et al., 2012a). In a second study by Hünerberg et al. (2012b), replacing 400

70	g/kg DM of barley grain with CDDGS (97 g fat/kg DM) in a high-grain finishing diet
71	reduced CH ₄ emissions from 16.6 to 13.6 g/kg DM intake; while WDDGS (34 g fat/kg
72	DM) had no effect on enteric CH ₄ production (18.4 g CH ₄ /kg DM intake). Results from
73	both in vivo trials indicate that high-fat CDDGS can effectively reduce CH4 emissions at
74	dietary inclusion level of 400 g/kg DM. However, it is unknown how CDDGS and
75	WDDGS at inclusion level different from Hünerberg et al. (2012a; 2012b) affect CH ₄
76	production. Measuring in vivo CH4 production is expensive, labour intensive and time
77	consuming; while in vitro batch culture fermentation is an effective technique to screen
78	CH ₄ production of several substrates simultaneously under standardized laboratory
79	conditions (Soliva and Hess, 2007).
80	The objective of this study was to compare in vitro CH4 production from CDDGS
81	and WDDGS as these by-products over a range of substitution for whole crop barley
82	silage, and to describe responses of CH ₄ and other fermentation parameters to increasing
83	levels of both DDGS types as a substrate.
84	
85	Materials and methods
86	Substrates, inoculum and incubation
87	The substrates used were mixtures of whole crop barley silage and CDDGS or WDDGS
88	in the ratios of 800:200, 600:400, 400:600, 200:800 and 0:1000 (g/kg DM). It has to be
89	acknowledged that DDGS concentrations above 400 g/kg DM to 600 g/kg DM are
90	typically not fed in vivo because of adverse effects on feed intake and animal
91	performance. The levels of DDGS used for this study were chosen to characterize in vitro

92 CH₄ production and fermentation parameters for a theoretically range of DDGS inclusion
93 level of up to 1000 g/kg DM.

94 All substrate components were dried separately at 55°C for 24 h and ground through 95 a 1 mm screen (Wiley mill standard model 3, Arthur H. Thomas, Philadelphia, PA, USA) 96 before being combined. The incubation included 5 replications for each DDGS type at 97 each inclusion level. The substrates 0.3 ± 0.005 g were weighed into ANKOM bags 98 (model F57, ANKOM Technology, Macedon, NY, USA) and heat sealed. Bags were 99 placed in 125 ml serum vials 1 day prior to incubation. 100 Rumen fluid was obtained from two ruminally cannulated non-lactating Holstein 101 cows 2 h after feeding. Cows were fed a high forage diet (650 g/kg whole crop barley 102 silage, 200 g/kg barley grain, 100 g/kg canola meal and 50 g/kg vitamin/mineral 103 supplement; DM basis) ad libitum. Rumen contents were collected from three sites within 104 the rumen (*i.e.*, reticulum and dorsal and ventral sac), thoroughly mixed and squeezed 105 through two layers of PeCAP® polyester 355 µm pore size screen into a preheated and 106 insulated transport bucket. Donor cows were cared for in accordance with the guidelines 107 of the Canadian Council on Animal Care (1993). 108 Rumen fluid was immediately transferred to the laboratory and re-strained through 4 109 layers of cheesecloth. Filtrate was maintained at 39°C in a water bath and the headspace 110 continuously flushed with CO₂. Strained rumen fluid (10 ml) was dispensed into pre-111 warmed 39°C culture flasks, which were preloaded with a substrate filled ANKOM bag, 112 40 ml of buffer solution and 0.5 ml of cysteine sulfide solution as a reducing agent 113 (Menke et al., 1979). The incubation flasks were sealed with aluminium crimp-sealed

114 rubber stoppers and placed on two rotary shaker platforms (Lab-Line Instruments Inc.,

115	Melrose Park, IL, USA) oscillating at 90 rpm in an incubator (model 1915, Sheldon
116	Manufacturing, Cornelius, OR, USA) at 39°C. Triplicate flasks containing only rumen
117	fluid and buffer solution were used as blank controls. All flasks were incubated for 24 h.
118	
119	Gas measurement and sample collection
120	A pressure transducer (model PX4200-015GI, Omega Engineering, Inc., Laval, QC,
121	Canada) attached to a 22 gauge (0.6 mm) needle was used to measure gas pressure [P_t
122	(kPa)] inside the flasks by inserting the needle into the flasks after 3, 6, 12 and 24 h of
123	incubation. Gas pressures were used to calculated gas production $[G_P (ml)]$ using the
124	equation of Mauricio et al. (1999) as:
125	$G_P = 0.18 + (3.697 \times P_t) + (0.0824 \times P_t^2)$
126	Gas production was corrected for the amount of substrate incubated and gas produced
127	from blank controls. After each P_t measurement, a 15 ml gas sample was collected from
128	each flask using a syringe. The gas sample was then injected into a 5.9 ml evacuated
129	Exetainer (Labco Ltd., High Wycombe, Buckinghamshire, United Kingdom) and
130	analyzed for CH ₄ . The remaining gas was released from the flask after the gas sample
131	was collected. Gas production (mL/g DM) and CH ₄ production per g incubated DM
132	(mg/g DM) or digested DM (mg/g DMD) were summarized and reported for the duration
133	of incubation.
134	After 24 h of incubation, flasks were opened and the pH of the incubation fluid
135	measured using a pH meter (model Accumet 25, Denver Instrument Company, Arvada,
136	CO, USA). Subsequently, flasks were placed on ice and a 1.6 ml subsample of fluid was
137	removed from the bottle, acidified with 400 μl of metaphosphoric acid (0.25; wt/vol) and

138	stored at -20°C for analysis of VFA. Bags containing the residual substrate were removed
139	from the flasks, washed under cold tap water until the water became clear, dried at 55°C
140	for 48 h and weighed to estimate in vitro DM disappearance (IVDMD).
141	
142	Laboratory analyses
143	Methane concentrations were analyzed using a gas chromatograph [GC (model 6890,
144	Agilent Technologies, Wilmington, DE, USA)] coupled to a thermal conductivity
145	detector. The correlation coefficients for all standard curves exceeded 99.9%. The VFA
146	concentrations were determined by GC as described by Holtshausen et al. (2009).
147	Analytical DM was determined by drying at 135 °C for 2 h (AOAC, 2005; method
148	930.15), followed by hot weighing. Organic matter (OM) was calculated as the weight
149	lost upon ignition at 550°C for 5 h (AOAC, 2005; method 942.05). Crude fat was
150	determined by ether extraction (method 920.39; AOAC, 1995) using a hot extraction unit
151	(model E-816 HE, Buchi Labortechnik AG, Flawil, Switzerland). Total N was
152	determined by combustion analysis (model NA 1500, Carlo Erba Instruments, Milan,
153	Italy). Neutral detergent fibre (NDF) and acid detergent fiber (ADF) were quantified as
154	described by Van Soest et al. (1991), using conventional filtration through fritted glass
155	crucibles, and expressed inclusive of residual ash. Neutral detergent fibre was determined
156	with inclusion of a heat stable amylase and sodium sulphite. Starch was determined as
157	described by Rode et al. (1999). Chemical analyses were completed on each sample in
158	duplicate (Table I).
159	

160 Statistical analysis

Data were analyzed using the mixed model procedure of SAS (2001). The incubation
flask was the experimental unit for all variables. The statistical model was:

163 $y_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ij}$

164 where: y_{ij} was the dependent fermentation variable; μ the overall mean; α_i the fixed effect 165 of type of DDGS i (CDDGS or WDDGS); β_i the fixed effect of DDGS inclusion level j 166 $(200, 400, 600, 800 \text{ or } 1000 \text{ g/kg DM}); (\alpha\beta)_{ii}$ the interaction of DDGS type i by inclusion 167 level j; and ε_{ij} the residual error term. Denominator degrees of freedom were estimated 168 using the Kenward-Roger option in the model statement. Pre-planned comparisons 169 between CDDGS and WDDGS at the same inclusion level were completed using the 170 contrast statement. Polynomial contrasts were used to determine linear and quadratic 171 responses of dependent variables to increasing level of CDDGS or WDDGS. Data are 172 presented as least squares means \pm standard error of means. Differences were declared 173 significant if *p*<0.05.

174

175 **Results and Discussion**

The IVDMD (Table II) decreased linearly (p < 0.01) with increasing levels of CDDGS or WDDGS in the diet, likely attributable to the higher concentrations of EE in CDDGS (115 g EE/kg DM) and WDDGS (49 g EE/kg DM) compared to barley silage (25 g EE/kg DM). Elevated dietary fat levels can depress *in vitro* fibre and OM digestion by exerting toxic effects on protozoa and cellulolytic bacteria (Henderson, 1973), and by limiting microbial attachment to feed particles (McAllister et al., 1994). The depression in IVDMD was higher (p < 0.05) for CDDGS than for WDDGS at inclusion levels above

400 g/kg DM, which corresponds with the lower (*p*<0.05) gas production (as ml/kg DM)
for CDDGS compared to WDDGS at all inclusion levels.

185 Production of CH₄ (mg/g DM) increased (p < 0.05) from 5.7 to 10.0 mg CH₄/g DM as 186 the concentration of CDDGS increased from 200 to 800 g/kg DM. However, this 187 response is not typical of that observed *in vivo* as increased levels of concentrate in the 188 diet are usually associated with lower CH₄ emissions per unit feed intake (Johnson and 189 Johnson, 1995). However, it is important to consider that substitution of DDGS for barley 190 silage also results in a substantial change in both the protein content and the nature of the 191 fibre within the mixed substrate. Our results suggest that substitution of DDGS for barley 192 silage results in an increase in the amount CH₄ produced/g DM fermented. 193 Methane production (mg) per g/DM and g/DMD from CDDGS was lower (p < 0.05) 194 than from WDDGS when DDGS was included at levels of 200 to 800 g/kg, with the 195 difference being more pronounced at lower DDGS inclusion levels. In contrast, CH₄ 196 production (mg/g DM; mg/g DMD) was similar when WDDGS or CDDGS were the sole 197 substrate incubated. Decreased CH_4 emissions (mg/g DM; mg/g DMD) from samples 198 containing 200 to 800 g/kg CDDGS as compared to WDDGS likely reflect the higher fat 199 content in CDDGS, which could have lowered OM fermentation and exerted toxic effects 200 on methanogens and protozoa (Czerkawski et al., 1966). Additionally, biohydrogenation 201 of fatty acids in CDDGS may have directed reducing equivalents away from reduction of 202 CO₂ to CH₄ formation, as previously described *in vitro* (Jenkins 1987; Getachew et al., 203 2001).

Total VFA production and proportions of acetate were consistently higher (p<0.05) in samples containing WDGGS compared to CDDGS. Addition of CDDGS increased

206 (p < 0.05) propionate proportions at levels of 200, 400 and 600 g/kg DM compared to 207 WDDGS. This resulted in higher (p < 0.05) acetate to propionate ratios for WDDGS 208 compared to CDDGS at levels up to 600 g DDGS/kg DM and likely reflects reduced 209 fibrolytic activity (Getachew et al., 2004) with CDDGS. Higher concentrations of 210 propionate and lower acetate to propionate ratios, in batch culture *in vitro* incubation of 211 200 g/kg DM CDDGS compared to WDDGS have been reported by others (Au et al., 212 2010; McKeown et al., 2010). Production of CH₄ and propionate are closely linked since 213 both pathways utilize reducing equivalents. Therefore, increased propionate production in 214 diets containing CDDGS compared to WDDGS may have been responsible for the lower 215 CH₄ concentration at DDGS inclusion rates up to 600 g/kg DM. Culture pH remained 216 above 6.4 in all incubations and was only lower (p < 0.05) in WDDGS versus CDDGS at 217 an inclusion level of 200 g/kg DM. 218 Results of this in vitro study suggest that compared with WDDGS, adding CDDGS 219 to whole crop barley silage at dietary inclusion levels of up to 800 g/kg DM could reduce 220 CH₄ production *in vivo*. The lower CH₄ production was due to greater reduction in 221 IVDMD/unit CDDGS compared to WDDGS, as well as higher concentrations of 222 propionate when up to 600 g/kg DM CDDGS was included in the diet. These predictions 223 were subsequently confirmed in vivo when WDDGS and CDDGS were included in 224 barley silage-based diets at 400 g/kg DM (Hünerberg et al., 2012a; 2012b). 225 Acknowledgments 226 The authors thank R. Chung, D. Vedres and M. Huynh for their assistance. This study

227 was funded by the Feed Opportunities in the Biofuels Industry (FOBI) network of the

AAFC Agricultural Bioproducts Innovation Program, and from the Norwegian–CanadianBILAT project.

231	References
232	Association of Official Analytical Chemists (AOAC) (2005). Official Methods of
233	Analysis, 18th ed. AOAC International, Gaithersburg, MD, USA.
234	Au, F., McKeown, L. E., McAllister, T. A. & Chaves, A. V. (2010). Fermentation
235	characteristics of corn-, triticale-, and wheat-based dried distillers' grains with
236	solubles in barley-based diets determined using continuous and batch culture systems.
237	Journal of the Science of Food and Agriculture, 90, 2074-2082.
238	Beauchemin, K. A., Kreuzer, M., O'Mara, F. & McAllister, T. A. (2008). Nutritional
239	management of enteric methane abatement: a review. Australian Journal of
240	Experimental Agriculture, 48, 21-27.
241	Canadian Council on Animal Care (CCAC). (1993). Guide to the care and use of
242	experimental animals. Vol. 1. 2nd ed. E. D. Olfert, B. M. Cross, and A. A.
243	McWilliam, ed. CCAC, Ottawa, ON, Canada.
244	Czerkawski, J. W., Blaxter, K. L. & Wainmann, F. W. (1966). The metabolism of oleic,
245	linoleic and linoleic acids by sheep with reference to their effects on methane
246	production. British Journal of Nutrition, 20, 349-362.
247	Getachew, G., DePeters, E. J., Robinson, P. H. & Taylor, S. J. (2001). In vitro rumen
248	fermentation and gas production: influence of yellow grease, tallow, corn oil and their
249	potasium soaps. Animal Feed Science and Technology, 93, 1-15.

- 250 Getachew, G., Robinson, P. H., DePeters, E. J. & Taylor, S. J. (2004). Relationships
- between chemical composition, dry matter degradation and in vitro gas production of
 several ruminant feeds. *Animal Feed Science and Technology*, *111*, 57-71.
- 253 Gibb, D. J., Hao, X. & McAllister, T. A. (2008). Effect of dried distillers grains from
- wheat on diet digestibility and performance of feedlot cattle. *Canadian Journal of*
- 255 *Animal Science*, 88, 659-665.
- Henderson, C. (1973). The effect of fatty acids on pure cultures on rumen bacteria. *The Journal of Agricultural Science (Cambridge)*, *81*, 107-112.
- 258 Holtshausen, L., Chaves, A.V., Beauchemin, K. A., McGinn, S. M., McAllister, T. A.,
- 259 Odongo, N. E., Cheeke, P. R. & Benchaar, C. (2009). Feeding saponin-containing
- Yucca schidigera and Quillaja saponaria to decrease enteric methane production in
 dairy cows. *Journal of Dairy Science*, *92*, 2809-2821.
- 262 Hünerberg, M., McGinn, S. M., Beauchemin, K. A., Okine, E. K., Harstad, O. M. &
- 263 McAllister, T. A. (2012a). Use of dried distillers' grains with solubles to reduce
- 264 enteric methane emissions from growing beef cattle. GHG seminar NJF 453.
- 265 November 5-6, 2012, Oslo, Norway.
- 266 Hünerberg, M., McGinn, S. M., Beauchemin, K. A., Okine, E. K., Harstad, O. M. &
- 267 McAllister, T. A. (2012b). Effect of dried distillers' grains plus solubles on enteric
- 268 methane emissions and nitrogen excretion from finishing beef cattle. GHG seminar
- 269 NJF 453. November 5-6, 2012, Oslo, Norway.
- 270 Jenkins, T.C. (1987). Effect of fats and fatty acid combinations on ruminal fermentation
- in semi continuous *in vitro* cultures. *Journal of Animal Science*, 64, 1526-1532.

- Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. *Journal of*
- 273 *Animal Science*, *73*, 2483-2492.
- 274 Klopfenstein, T. J., Erickson, G. E. & Bremer, V. R. (2008). Use of distillers by-products
- in the beef cattle feeding industry. *Journal of Animal Science*, 86, 1123-1231.
- 276 Mauricio, R. M., Mould, F. L., Dhanoa, M. S., Owen, E., Channa, K. S. & Theodorou, M.
- K. (1999). A semi-automated in vitro gas production technique for ruminant feedstuff
 evaluation. *Animal Feed Science and Technology*, *79*, 321-330.
- 279 McAllister, T. A., Bae, H. D., Jones, G. A. & Cheng, K. J. (1994). Microbial attachment
- and feed digestion in the rumen. *Journal of Animal Science*, 72, 3004-3018.
- 281 McKeown, L. E., Chaves, A.V., Oba, M., Dugan, M. E. R., Okine, E. & McAllister, T. A.
- 282 (2010). Effects of corn-, wheat- or triticale dry distillers' grains with solubles on in
- vitro fermentation, growth performance and carcass traits of lambs. *Canadian Journal*of Animal Science, 90, 99-108.
- 285 Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979).
- 286 The estimation of the digestibility and metabolizable energy content of ruminant
- feedingstuffs from the gas production when they are incubated with rumen liquor *in*

vitro. Journal of Agricultural Science (Cambridge), 93, 217-222.

- 289 Rode, L. M., Yang, W. Z. & Beauchemin, K. A. (1999). Fibrolytic enzyme supplements
- for dairy cows in early lactation. *Journal of Diary Science*, 82, 2121-2126.
- 291 SAS Institute. (2001). System for Windows Release 9.1. SAS Inst. Inc., Cary, NC, USA.
- 292 Soliva, C. R. & Hess H. D. (2007) Measuring methane emissions of ruminants by in vitro
- and in vivo techniques. In Measuring Methane Production from Ruminants; Makkar,
- H. P. S., Vercoe, P. E., (Eds.), Springer Netherlands, 15-32.

- 295 Spiehs, M. J., Whitney, M. H. & Shurson, G. C. (2002). Nutrient database for distiller's
- dried grains with solubles produced from new ethanol plants in Minnesota and South
- 297 Dakota. *Journal of Animal Science*, 80, 2639-2645.
- 298 USDA Foreign Agricultural Service. (2010). Canada: Annual Biofuels. Global
- Agricultural Information Network GAIN Report Number: CA0023. [Online]
- 300 Available: http://gain.fas.usda.gov/Pages/Default.aspx [2012 Aug. 27].
- 301 Van Soest, P.J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber,
- 302 neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.
- 303 *Journal of Dairy Science*, *74*, 3583-3597.

	Barley silage	CDDGS	WDDGS
Dry matter, g/kg	433 ± 4.3	917 ± 3.2	917 ± 2.8
Organic matter	921 ± 0.1	965 ± 0.1	937 ± 0.5
Crude protein	121 ± 1.4	315 ± 2.4	457 ± 1.8
ADF ¹	345 ± 4.2	143 ± 5.0	144 ± 2.7
NDF ²	522 ± 10.5	474 ± 14.1	352 ± 8.5
Crude fat	25 ± 1.2	115 ± 4.2	49 ± 0.6

 247 ± 7.9

Table I. Chemical composition (g/kg DM) of barley silage, corn and wheat dried distillers' grains [CDDGS, WDDGS (means ± SD; n=2)].

 43 ± 0.4

 10 ± 0.2

¹ADF, acid detergent fibre inclusive residual ash.

Starch

²NDF, neutral detergent fibre assayed with heat stable amylase and expressed inclusive residual ash.

307

Table II. Effect of inclusion level of corn or wheat dried distillers' grains with solubles on *in vitro* dry matter disappearance (IVDMD), gas and CH₄ production, pH and volatile fatty acids (VFA) after 24 h *in*

vitro incubation.

	Dried distillers' grains with solubles, g/kg DM										p-values ⁶							
	200		400		600		800		1000		Pooled				CDDGS		WDDGS	
	CDDGS	WDDGS	CDDGS	WDDGS	CDDGS	WDDGS	CDDGS	WDDGS	CDDGS	WDDGS	SEM	Type ¹	Level ²	Type \times Level ³	L^4	Q ⁵	L	Q
IVDMD, g/kg DM	492.6	508.5	482.9	496.2	446.9	494.5*	429.9	457.6*	392.2	445.7*	9.74	< 0.01	< 0.01	0.16	< 0.01	0.23	< 0.01	0.42
Gas, mL/g DM	122.8	177.9*	130.2	183.2*	143.1	180.9*	147.1	174.1*	146.0	162.0*	4.89	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02
CH4, mg/g DM	5.7	12.5*	7.4	12.4*	8.8	12.2*	10.0	11.5*	9.9	9.5	0.30	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CH4, mg/g DMD	10.9	23.3*	14.5	23.5*	18.7	23.4*	22.0	23.8*	21.6	20.2	0.74	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	0.02
pН	6.45*	6.41	6.42	6.41	6.43	6.43	6.44	6.45	6.45	6.45	0.005	0.03	< 0.01	< 0.01	0.11	< 0.01	< 0.01	0.55
Total VFA, mM	68.3	81.5*	72.1	79.6*	73.4	80.0*	73.5	77.0*	73.7	75.8*	0.85	< 0.01	0.16	< 0.01	< 0.01	< 0.01	< 0.01	0.56
VFA, mol/100																		
Acetate (A)	49.3	51.4*	50.3	51.6*	50.6	52.0*	51.2	51.9*	51.4	52.2*	0.13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.55
Propionate (P)	22.3*	19.4	21.3*	19.4	20.3*	19.5	19.7	19.5	19.4	19.7	0.14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.63
Butyrate	18.1	17.9	17.8	17.7	17.8*	17.1	17.6*	17.0	17.5*	16.4	0.09	< 0.01	< 0.01	< 0.01	< 0.01	0.41	< 0.01	0.52
A:P ratio	2.21	2.65*	2.36	2.66*	2.50	2.66*	2.60	2.66^{\dagger}	2.64	2.65	0.022	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.95	0.62

 1 Type = CDDGS or WDDGS.

²Level = 200, 400, 600, 800 and 1000 g/kg DM of DDGS.

313 ³Type \times Level = interaction of DDGS type \times inclusion level.

 $^{4}L = \text{linear and}$

 ${}^{5}Q$ = quadratic effects of different types of DDGS.

316 ⁶Means within an inclusion level differ at (*; p < 0.05).