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Abstract: In this study we present general (multiple tree species from several sites) above- and
belowground biomass models for trees in the miombo woodlands of Malawi. Such models are
currently lacking in the country. The modelling was based on 74 trees comprising 33 different
species with diameters at breast height (dbh) and total tree height (ht) ranging from 5.3 to 2 cm and
from 3.0 to 25.0 m, respectively. Trees were collected from four silvicultural zones covering a wide
range of conditions. We tested different models including dbh, ht and wood specific gravity (ρ) as
independent variables. We evaluated model performance using pseudo-R2, root mean square error
(RMSE), a covariance matrix for the parameter estimates, mean prediction error (MPE) and relative
mean prediction error (MPE%). Computation of MPE% was based on leave-one-out cross-validation.
Values of pseudo-R2 and MPE% ranged 0.82–0.97 and 0.9%–2.8%, respectively. Model performance
indicated that the models can be used over a wide range of geographical and ecological conditions
in Malawi.
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1. Introduction

Miombo woodlands, classified as dry forests, are dominated by woody plants, primarily trees,
whose canopy cover more than 10% of the ground surface, occurring in a climate with a dry season of
three months or more [1]. The woodlands are dominated by deciduous trees of the genera Brachystegia,
Julbernadia and Isoberlinia, which cover an area of approximately 2.7 million km2 spanning ten countries
in eastern and central Africa including Malawi [1–5]. Miombo woodlands may be divided into dry and
wet miombo. Dry miombo occur in areas receiving less than 1000 mm of rainfall annually in Zimbabwe,
central Tanzania, and in the southern areas of Mozambique, Malawi and Zambia. Wet miombo occur
in areas receiving more than 1000 mm of annual rainfall in eastern Angola, northern Zambia, south
western Tanzania and central Malawi [1,6]. In Malawi, miombo woodlands constitute 92.4% of the
country’s total forested area, and are mainly located in forest and game reserves established for water
catchment as well as for soil and biodiversity conservation [2,7].

Miombo woodlands play a critical role in the livelihoods of Malawian communities because they
provide social, economic, and environmental benefits, such as firewood, timber, medicinal plants, food,
and catchment protection, among others [8]. Increased population growth, currently estimated at an
annual growth rate of 2.8% [9], has led to higher demand for firewood, charcoal, and timber. Thus, the
woodlands are being deforested at an annual rate of approximately 0.9%, which is among the highest
rates in Africa [10].

To sustain the provision of these services, there is an urgent need to implement sustainable
forest management measures including estimation of growing stock, productivity, forest biomass
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and yield [11,12]. Estimation of forest biomass is the first step towards calculation of carbon stocks.
Due to the natural capacity of trees to sequester carbon dioxide, miombo woodlands are considered
an important element in global climate change mitigation programs such as the reducing emissions
from deforestation and forest degradation mechanism (REDD+), which provides a framework where
developing countries may be financially rewarded for reducing carbon emissions.

The Malawi government recently established a baseline for forest biomass and carbon stock
estimates for targeted forest reserves in miombo woodlands of Malawi [7]. However, the estimates are
unreliable because of the nature of the allometric models that were used. For example, the aboveground
forest biomass estimates were based on a pan-tropical biomass model developed by Chave et al. [13].
This model was developed using data from trees in tropical America and Asia but did not include
Africa or the miombo woodlands. In addition, belowground forest biomass estimates were based on
an allometric model developed by Cairns et al. [14]. Unlike Chave et al. [13], this dataset included some
trees from Africa, i.e., Democratic Republic of the Congo, Ghana and the Ivory Coast. However, the
trees were from moist evergreen tropical forests, whose structure is different from miombo woodlands.

By 2011 there were approximately 370 allometric models for predicting tree biomass in
sub-Saharan Africa [15]. The majority of these models were developed for tropical rainforests in
western Africa. Among the models in south-eastern Africa, only a few were developed for miombo
woodlands. These models consisted of: (a) models developed for specific tree species based on a
dataset from one site (Mwakalukwa et al. [16]); (b) models developed for specific tree species based on
a dataset from several sites (Mate et al. [17]); (c) models developed for multiple tree species based on
a dataset from one site (Chidumayo [18], Chamshama et al. [19], Malimbwi et al. [20], Ryan et al. [4],
Mwakalukwa et al. [16]) and (d) models developed for multiple tree species based on a dataset from
several sites (Mugasha et al. [21]).

Miombo woodlands are characterized by high tree species diversity, and the reported number
of species from assessments at different spatial scales ranges from 80 to 300 [22–27]. Due to such
large number of tree species, the applicability of species-specific models is limited. Furthermore,
applicability of single-site models over different ecological zones is also limited due to their narrow
geographical range. A scenario with general models, combining multiple species collected over several
sites, would therefore be the best alternative, for example, in cases where national forest inventories
are to be carried out. No such models exist for miombo woodlands in Malawi.

Most of the previously mentioned studies focused on aboveground biomass. However, estimation
of belowground biomass in miombo woodlands is also vital. Belowground tree biomass, as a basis
for model development, can be determined using complete excavation of roots, soil core sampling
for fine and medium roots, and root sampling (complete excavation of a few sampled roots of a
tree). Estimating belowground tree biomass can be done by using the root to shoot ratio (RS-ratio),
i.e., the ratio between belowground and aboveground dry weights (see e.g., [28,29]), or through
allometric models. Belowground biomass models for miombo woodlands in neighbouring countries
were developed by Mugasha et al. [21], Chidumayo [18] and Ryan et al. [4].

The Inter-governmental Panel on Climate Change (IPCC) (see [30]) requires biomass and carbon
reporting under the REDD+ mechanism to be accompanied by appropriate measures of uncertainty.
Uncertainties are likely to occur in the following steps in biomass quantification: (i) when applying the
sampling design (number and size of plots); (ii) during tree measurements and (iii) when applying the
biomass model (e.g., [31,32]). The model-related uncertainty in this context stems from sources such as:
(a) model misspecifications; (b) uncertainties in values of independent variables; (c) residual variability
and (d) uncertainty in the model parameter estimates (see e.g., [33,34]). Among these, uncertainty in
model parameter estimates has a great influence [35]. However, very few studies report uncertainty in
the model parameter estimates, i.e., the covariance structure of the parameter estimates of developed
models, and this makes it impossible to analyse the totality of the uncertainty related to estimated
forest biomass (see [35]).
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The objective of this study is to develop general (multiple tree species from several sites)
above- and belowground biomass models applicable across the entire distribution of miombo
woodlands in Malawi. The models are also accompanied with information on their covariance
structure to enable quantification of model-related uncertainties in biomass and carbon estimation.
Furthermore, we provide basic statistics on RS-ratios and compare the performance of our models
with existing models from miombo woodlands.

2. Materials and Methods

2.1. Site Description

The sample trees for model development were selected from four forest reserves, namely
Mtangatanga, Kongwe, Mua-livulezi and Tsamba (Figure 1, Table 1). The selection of sites was based
on geographical location, management regime, silvicultural classification, and climatic conditions to
capture a wide range of factors influencing tree growth [1].

Figure 1. Map of Malawi showing the location of the study sites.

Table 1. Geographical location, management regime, silvicultural classification and climatic conditions
of study sites.

Mtangatanga Kongwe Mua-livulezi Tsamba

Region Northern Central Central Southern
District Mzimba Dowa Dedza Neno

Location 11˝561 S
33˝421 E

13˝351 S
33˝551 E

14˝211 S
34˝371 E

15˝211 S
34˝361 E

Area (ha) 8443 1813 12147 3240
Management regime Co-management Government Co-management Government
Altitude (m) 1500–1700 1000–1500 400–900 700–1500
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Table 1. Cont.

Mtangatanga Kongwe Mua-livulezi Tsamba

Dominant soil type Humic ferrallitic Ferruginous Lithosols Ferrallitic

Silvicultural classification Moist
Brachystegia

Moist
Brachystegia Dry Brachystegia Moist

Brachystegia
Mean minimum annual temp (˝C) 6 6 13 8
Mean maximum annual temp (˝C) 29 29 32 28
Total annual rainfall range (mm) 960–1050 960–1050 840–960 1200–1600
Rain period December–April November–April November–April November–April
Dry months May–November May–October May–October May–October

Data sources: Rainfall and temperature data (1975–2005) from Ministry of Natural Resources, Energy and
Mining, Department of Climate Change and Meteorological Services in Malawi. Soil and silvicultural
classification according to Hardcastle [36].

2.2. Selection of Sample Trees

We conducted systematic sample plot inventories covering each site to collect information on
ranges in tree size and species distribution to guide the selection of sample trees (e.g., [21]). We
used circular plots with radius 11.28 m (400 m2). On each plot, we identified all tree species and
measured their diameter at breast height (dbh) for all trees with dbh >4 cm. In addition, we sampled
three trees within each plot, (one with the smallest, one with a medium and one with the largest
dbh), and measured their total height (ht). The inventories covered a total of 221 plots with 70, 30,
71 and 50 plots for Mtangatanga, Kongwe, Mua-livulezi and Tsamba, respectively. The maximum
recorded dbh values based on all sample plots in Mtangatanga, Kongwe, Mua-livulezi and Tsamba
were 61 cm, 73 cm, 70 cm and 56 cm, respectively, while the number of species identified for the
respective sites were 66, 45, 77 and 65. In total, for all the study sites, we identified 139 species. The
most frequent species for Mtangatanga, Kongwe, Mua-livulezi and Tsamba were Uapaca kirkiana Müll.
Arg., Brachystegia spiciformis Benth., Diplorhynchus condylocarpon (Müll. Arg.) Pichon and Uapaca
kirkiana Müll. Arg, respectively.

A total of 74 trees were selected based on the observed dbh and tree species frequency within
the sites. We ensured that the trees were selected from all dbh classes observed in the sample plot
inventories. In addition, we selected a total of eight trees with larger dbh than those observed in
the sample plot inventories to reduce uncertainty when predicting biomass of very large trees. We
also selected at least one tree among the eight most frequent species observed in each site. The
remaining sample trees were selected randomly among all species. In total, 33 tree species were
selected, comprising 10, 10, 12 and 10 different tree species in Mtangatanga, Kongwe, Mua-livulezi
and Tsamba, respectively.

Before felling (at a stump height of 30 cm), we recorded scientific and local names, and measured
dbh, stump diameter (at 30 cm above ground) and ht (Tables 2 and A1). We used either a calliper
or a diameter tape, depending on tree sizes, to measure dbh and stump diameter, while a Suunto
hypsometer was used for all ht measurements. These trees have previously been used to develop
general volume models for miombo woodlands in Malawi [37].

Table 2. Mean, minimum, maximum and standard deviation (STD) of diameter at breast height (dbh)
and total tree height (ht) for sample trees at each site.

Site No. of Trees
dbh (cm) ht (m)

Mean Min. Max. STD Mean Min. Max. STD

Mtangatanga 20 35.5 6.0 111.2 26.7 10.7 4.0 18.0 4.3
Kongwe 18 34.9 9.0 75.7 19.6 11.7 5.0 22.0 4.7
Tsamba 18 30.2 8.4 75.0 17.5 12.6 6.5 25.0 5.1

Mua-livulezi 18 32.8 5.3 81.7 23.0 11.6 3.0 22.0 5.8
All 74 33.4 5.3 111.2 21.8 11.6 3.0 25.0 4.9
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2.3. Destructive Sampling

We separated each sample tree into the following aboveground components: merchantable stem
(from the stump at 30 cm above ground to the point where the first branches start), branches (all parts
of the tree above the defined merchantable stem and up to a minimum diameter of 2.5 cm) and twigs
(all branches with a diameter less than 2.5 cm). For small trees not considered suitable for timber
production (dbh < 15 cm, in total 14 trees), merchantable stem biomass were allocated to branches
(e.g., [37,38]). During the work on destructive sampling most of the trees had already started to shed
leaves. We therefore excluded leaves from twigs, and leaves were not included in the models.

To facilitate measurements, stems and branches were crosscut into manageable pieces of
approximately 1–2 m in length and then weighed for fresh weight using a mechanical hanging
spring balance (0–200 kg). Twigs from each tree were separately bundled and weighed for fresh weight.
Three small sub-samples, varying in weight between 0.1 and 1.0 kg, from each of the components
(merchantable stem, branches and twigs) were taken from each sample tree and weighed with an
electronic balance for fresh weight and finally brought to laboratory for drying. The sub-samples were
taken from the biggest, medium and smallest diameter parts of each tree component.

For determination of belowground biomass of the sample trees, our strategy involved root
sampling at two levels, namely main roots (roots branching directly from the root crown) and side
roots (roots branching from the main roots). The first step in excavation involved clearing the topsoil
around the tree base to expose the points at which the roots were branching. We then selected three
main roots, i.e., the main roots with the largest, medium and smallest diameters, and recorded their
diameters at the points where they joined the root crown. The diameters of all main roots not excavated
were recorded at the point where they were joined the root crown. From each of the selected main
roots, we selected up to three side roots, i.e., the side roots with the largest, medium and smallest
diameters. For each of the selected side roots, we recorded the diameter where they joined the main
root. For the remaining side roots, we also recorded the diameters at the branching point from the main
root. The selected side and main roots were then fully excavated up to the minimum diameter of 1 cm
and then weighed. In cases where the full roots could not be excavated due to obstacles such as rocks,
the diameter of the last bit of the root was recorded and we treated the remaining unexcavated part as
a side root. An effort was made to ensure that all the main, side and taproots were fully excavated
up to the last 1 cm. In total, 38 out of the 41 trees, had taproots. Out of the 38 trees, we were not able
to fully excavate the taproots for 16 trees. In such cases, the diameter at the breaking point of the
unexcavated taproot was recorded and treated as a side root. On average, trees were dug down to
2.5 m depth. Lastly, we recorded the fresh weight of the root crown for each tree.

For all sample trees, three small sub-samples, varying in weight between 0.1 and 1.0 kg, were
taken from each main and side root, and one was taken from the root crown. We obtained the fresh
weight of the sub-samples using an electronic balance and brought them to the laboratory for drying.

2.4. Laboratory Analyses and Determination of Biomass Dry Weight

All sub-samples, from both above- and belowground, for each tree were dried in an oven in
a laboratory at a temperature of 80 ˝C until a constant weight was achieved (constant weight was
observed in 2–3 days). We then recorded dry weights of the individual sub-samples. Subsequently,
we used the sub-sample dry and fresh weights to determine the tree- and section specific dry to fresh
weight ratios (DF-ratios) (see Table A2).

We then calculated the dry weight of each section as a product of tree- and section specific
DF-ratios and the fresh weights of the respective trees and tree sections. Subsequently, we computed
the total aboveground dry weight by summing the dry weights of the merchantable stem, branches
and twigs of each tree (Figure 2, Table A1).
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Figure 2. Total aboveground tree biomass (kg dry weight) distribution over dbh (cm) and ht (m) for
Mtangatanga, Kongwe, Mua-livulezi and Tsamba and forest reserves.

To determine the total belowground dry weights of the excavated parts of the trees we first
converted all the fresh weights from the different sections to dry weight biomass by multiplying the
tree- and section specific DF-ratios and their respective fresh weights. We then developed a general
(combining data from all sites) side root model by regressing the dry weight biomass of the fully
excavated side roots and their diameters (cm). We assumed the relationship between side root biomass
and root diameter (similarly for main roots, see below) to exhibit a power-law relationship described as:

B “ a ˆ db (1)

where B = dry weight biomass of a side root or main root (kg); d = diameter (cm) of a side or main root
at the point it is joining the main root or the root crown, respectively; a and b are parameter estimates.
The following side root model was developed:

B “ 0.198102ˆ d1.656968, Pseudo´ R2 “ 0.67, MPE% “ ´2.0 (2)

where

Pseudo´ R2 “ 1´
ˆ

SSR
CSST

˙

(3)
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SSR is the sum of squared residuals and CSST is the corrected total sum of squares. The mean
prediction error (MPE), and the relative mean prediction error (MPE%) is calculated as

MPE “
ÿ

n
i“1
pyi ´ ŷiq

n
, MPE% “

MPE
y

ˆ 100 (4)

where yi is the observed biomass of tree i, ŷi is the predicted biomass of tree i and y is the mean observed
biomass. Both MPE and MPE% are based on leave-one-out-cross validation. The MPE% value for the
side root model was not significantly different from zero indicating appropriate model performance.

The side root model was used to predict the dry weight biomass of all the side roots that were not
excavated for the main sample root. The total dry weight of all side roots for each main sample root
was then determined by summing dry weights of the excavated side roots and predicted dry weights
of unexcavated side roots. Finally the complete dry weight of the sample main root was determined
by summing the total dry weights of all side roots and the excavated parts of the main root. The
following main root model was then developed and applied to predict the dry weights of main roots
not excavated;

B “ 0.063132ˆ d2.174388, Pseudo´ R2 “ 0.79, MPE% “ ´0.4 (5)

The MPE% value for the main root model was not significantly different from zero indicating
appropriate model performance. To determine the dry weight of unexcavated parts of the taproots
(16 trees), we applied the general side root model.

Total belowground dry weight biomass for each tree was finally determined by adding the dry
weights of all excavated and unexcavated main roots, dry weight of the taproot, and the dry weight of
the root crown (Figure 3, Table A1).

Figure 3. Cont.
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Figure 3. Total belowground tree biomass (kg dry weight) distribution over dbh (cm) and ht (m) for
Mtangatanga, Kongwe, Mua-livulezi and Tsamba and forest reserves.

2.5. Model Development and Evaluation

Before fitting the models, we assessed the basic diagnostic plots of biomass over dbh and ht. As
expected, the plots indicated non-linear patterns in the relationships between biomass and dbh and ht
(Figures 2 and 3). Since wood specific gravity (ρ) is considered as an important factor for explaining
variation in biomass (e.g., [39]), we included this variable in the models. We therefore tested the
following models:

Model 1 : B “ aˆ dbhb (6)

Model 2 : B “ aˆ dbhb
ˆ htc (7)

Model 3 : B “ aˆ dbhb
ˆ ρc (8)

Model 4 : B “ aˆ dbhb
ˆ htc

ˆ ρd (9)

where B is biomass (kg), dbh is diameter at breast height (cm), ht is total tree height (m) and ρ is
the species-specific mean wood specific gravity (g/cm3) extracted from the global wood density
database [40,41] and a, b, c and d are parameter estimates.

Since the data was collected from different study sites in different geographical regions and
silvicultural zones across Malawi, we anticipated that individual tree attributes would be different
depending on site. We therefore initially fitted mixed effects models, with site as a random effect, to the
side root, main root and total belowground and aboveground biomass datasets using PROC NLMIXED
of SAS 9.4 [42]. This procedure fits nonlinear mixed models, that is, models in which both fixed and
random effects enter nonlinearly. PROC NLMIXED fits nonlinear mixed models by maximizing an
approximation to the likelihood integrated over the random effects using the maximum likelihood
estimation method.

These mixed effects models were compared with weighted nonlinear regression models fitted
using PROC MODEL in SAS 9.4 [42]. This procedure fits models in which the relationships among the
variables comprise a system of one or more nonlinear equations using the full information maximum
likelihood (FIML) estimation method.

For each model derived from the two procedures, i.e., mixed effects and weighted regression, we
computed Akaike Information Criterion (AIC) values [43]. AIC measures the model goodness-of-fit
whilst correcting for model complexity. We used the AIC values to compare mixed effects models with
the weighted regression nonlinear models. The results showed that, in all cases, weighted regression
models produced lower AIC values relative to mixed effects models. We thus decided to develop our
final models based on weighted regression.

Model efficiency and performance were assessed based on results from a leave-one-out cross
validation procedure [44]. This splits the dataset of n observations into two parts, namely, a validation
dataset and a training dataset. The validation dataset comprises a single observation (x1, y1) and the
training dataset comprises the remaining {(x2, y2), . . . .., (xn, yn)} observations. The model is fitted
on the n-1 observations in the training dataset and a prediction ŷ is made for a single observation in
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the validation dataset, using its value x1. Since (x1, y1) was not used in the fitting process, the square
error (SE) = (y1´ŷ)2 provides an estimate of the test error. This procedure is repeated n times, thus
producing n test errors, SE1 . . . . . . .SEn. The leave-one-out-cross validation estimate for the test error
is the mean of these n test error estimates (MSE).

The cross validation results were then used to calculate the root mean square error (RMSE)
as follows;

RMSE “
?

MSE (10)

RMSE p%q “
RMSE

y
ˆ 100 (11)

where y is the mean observed biomass and RMSE (%) is the relative Root Mean Square Error.
Model comparison was based on AIC values. Models with insignificant parameter estimates

were not considered irrespective of AIC values. For all the models, we presented pseudo-R2, RMSE,
RMSE (%), covariance matrix for the parameter estimates, and the MPE and MPE% values based on
leave-one-out cross validation. Student t-tests were conducted to determine whether the MPE values
were significantly different from zero.

In addition, we tested a number of previously developed biomass models (Table 3) on our data.
This included models developed for miombo woodlands in neighbouring countries, i.e., Ryan et al. [4]
in Mozambique, Mugasha et al. [21] in Tanzania and Chidumayo [18] in Zambia, and the pan-tropical
model developed by Chave et al. [39]. MPE values were computed, and student t-tests were applied to
determine whether the MPE values were significantly different from zero.

For a graphical display of the behaviour of models with ht as independent variable, i.e.,
Mugasha et al. [21] and Chave et al. [39] (see Table 3), we applied a height-diameter model developed
from our sample trees:

ht “ 1.3` exp3.787685´ 6.62809 ˆ dbh´0.45222 (12)

Furthermore, when applying Chave et al. [39], we extracted ρ values from the global wood density
database [40,41] and subsequently calculated a mean ρ value, which was then used for the graphical
display of this model.

Table 3. Number of sites, sample trees and dbh ranges (cm) of previously developed models tested on
our data.

Tree Section Author Model No. of
Sites

No. of
Trees

dbh Range
(cm) Species

Above-Ground

Mugasha et al. [21] B “ 0.1027ˆ dbh2.4798 4 167 1.1–110 60

Mugasha et al. [21] B “ 0.0763ˆ dbh2.2046
ˆ ht0.4918 4 167 1.1–110 60

Ryan et al. [4] a C “ ´3.629` 2.601ˆ log pdbhq 1 29 5–73 6

Chidumayo [18] B “ ´2.5265` 2.5553ˆ log pdbhq 1 113 2–39 19

Chave et al. [39] b B “ 0.0673ˆ
´

ρˆ dbh2
ˆ ht

¯0.976
58 4004 5–180 Unclear

Below-Ground

Mugasha et al. [21] B “ 0.2113ˆ dbh1.9838 4 80 3.3–95 60

Mugasha et al. [21] B “ 0.1766ˆ dbh1.7844
ˆ ht0.3434 4 80 3.3–95 60

Ryan et al. [4] a C “ ´3.370` 2.262ˆ log pdbhq 1 23 5–72 6

Chidumayo [18] B “ ´1.9439` 2.1712ˆ log pdbhq 1 12 4–35 19

a Carbon converted to biomass as B “
ˆ

C
47

˙

ˆ 100; b ρ (g/cm3) is the species-specific mean wood specific

gravity (g/cm3) extracted from the global wood density database [40,41].
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3. Results

The mean RS-ratio of the 41 trees sampled both above- and belowground was 0.47 (Table 4). No
significant differences in RS-ratios were found between sites (p = 0.8684, F = 0.2400). The RS-ratio
decreased nonlinearly with increasing dbh (Figure 4).

Table 4. Mean, standard deviation (STD) and range of root to shoot ratios (RS-ratio) over sites.

Site No. of Trees Mean Min Max STD

Mtangatanga 12 0.49 0.32 1.15 0.25
Kongwe 10 0.44 0.22 0.91 0.22

Mua-livulezi 9 0.51 0.27 0.92 0.27
Tsamba 10 0.44 0.21 0.78 0.16

All 41 0.47 0.18 1.15 0.22

Figure 4. Root to shoot ratio (RS-ratio) vs. diameter at breast height (dbh). The dots represent
observations for individual trees and the line represents the fitted nonlinear model.

For aboveground biomass, all models, except Model 4, had significant parameter estimates and
appropriate performance criteria, i.e., none of the models had MPE% values significantly different from
zero (p > 0.05) (Table 5). Among these models, Model 2 with dbh and ht as independent variables had
the smallest AIC value. The pseudo-R2 values for all models ranged from 0.93 to 0.97. For belowground
biomass, Model 1 was the only one where all parameter estimates were significant. Covariance matrices
for all models with significant parameter estimates in Table 5 are shown in Table A3.

Among the models with significant parameter estimates for twigs, branches and merchantable
stem biomass (Table 6), Models 1, 2 and 2, respectively, provided the smallest AIC values. The
pseudo-R2 values for the twigs, branches and merchantable stem models with significant parameter
estimates were 0.82, 0.91–0.92 and 0.77–0.88, respectively.

We further evaluated the above- and belowground biomass models over sites and dbh classes
(Table 7). None of the tested models produced MPE values significantly different from zero (p > 0.05)
overall or for any site. However, a significant MPE was observed for dbh class 0–20 cm for Model
3. For the aboveground biomass models, MPE% values ranged from 0.4% to 15.1% while for the
belowground biomass model, the MPE% values ranged from 2.1% to 3.9%.

Finally, we tested previously developed models (Table 3) on our dataset (Table 8). The MPE%
when applying the aboveground biomass models developed by Mugasha et al. [21], Ryan et al. [4],
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Chidumayo [18] and Chave et al. [39] ranged from 2.8 to 30.8 (under prediction). The above- and
belowground biomass models developed by Chidumayo [18] generally produced the lowest MPE%
values, i.e., 2.8% and ´4.7%, respectively. Figures 5 and 6 display above- and belowground biomass
over dbh for some of the models developed in the current study and some from the previous studies.

Table 5. Model parameters and performance criteria of above- and belowground biomass models.

Component Model
No.

No. of
Trees Model Pseudo-R2 RMSE MPE

AIC
(kg) (%) (kg) (%)

Aboveground

1 74 0.21691 ˆ dbh2.318391 0.93 751.2 60.6 ´22.2 ´1.8 981.89

2 74 0.103685 ˆ dbh1.921719 ˆ ht0.844561 0.97 426.6 34.4 ´19.8 ´1.6 954.27

3 74 0.290457 ˆ dbh2.283998
ˆ ρ0.443619 0.94 923.1 74.5 ´53.2 ´4.3 977.05

4 74 0.129899 ˆ dbh1.90203
ˆ ht0.828647

ˆ ρ0.296271NS 0.97 542.1 43.7 ´37.1 ´3.0 952.35

Belowground

1 41 0.284615 ˆ dbh1.992658 0.94 161.7 30.7 ´4.8 ´0.9 481.23

2 41 0.224132 ˆ dbh1.899061
ˆ ht0.222554NS 0.94 169.7 32.2 ´7.4 ´1.4 481.73

3 41 0.415451 ˆ dbh1.933905
ˆ ρ0.465663NS 0.94 175.4 33.3 ´5.0 ´1.0 481.74

4 41 0.350488 ˆ dbh1.732452
ˆ ht0.395127NS

ˆ ρ0.836154NS 0.94 170.2 32.3 ´6.5 ´1.2 479.66
NS Parameter estimate not significant (p > 0.05). Note: biomass in kg, dbh in cm, ht in m, and ρ in g/cm3, Bold:
best model according to AIC (Akaike Information Criterion (AIC)).

Table 6. Model and performance criteria for twigs, branches and merchantable stem biomass models.

Component Model
No.

No. of
Trees Model Pseudo-R2 RMSE MPE

AIC
(kg) (%) (kg) (%)

Twigs

1 72 0.07239 ˆ dbh1.858897 0.82 39.3 62.5 ´0.8 ´1.2 602.84

2 72 0.070224ˆ dbh1.598204
ˆ ht0.384139NS 0.84 37.8 60.1 ´1.1 ´1.7 634.09

3 72 0.130116ˆ dbh1.764995
ˆ ρ0.687581NS 0.83 44.3 70.4 ´1.4 ´2.2 616.35

4 72 0.109969NS ˆ dbh1.446488
ˆ ht0.549901

ˆ ρ0.951968 0.83 40.2 63.9 ´1.5 ´2.4 631.63

Branches

1 74 0.137316ˆ dbh2.328104 0.91 659.8 80.9 ´25.4 ´3.1 973.58

2 74 0.051157 ˆ dbh2.161115 ˆ ht0.598879 0.92 565.2 69.3 ´22.6 ´2.8 933.50

3 74 0.123375ˆ dbh2.379626
ˆ ρ0.30643NS 0.91 789.0 96.8 ´47.5 ´5.8 946.79

4 74 0.059792ˆ dbh2.150762
ˆ ht0.582627

ˆ ρ0.20053NS 0.92 692.2 84.9 ´39.3 ´4.8 934.74

Merchantable 1 60 0.145576ˆ dbh2.116265 0.77 299.9 66.9 ´1.2 ´0.3 773.89

Stem

2 60 0.030811ˆ dbh1.572422 ˆ ht1.345696 0.88 249.9 55.8 5.3 1.2 737.16

3 60 0.221213ˆ dbh2.059249
ˆ ρ0.544483 0.79 330.2 73.7 ´13.9 ´3.1 772.48

4 60 0.039194ˆ dbh1.554911
ˆ ht1.329832

ˆ ρ0.36722NS 0.88 256.2 57.2 2.6 0.6 737.75
NS Parameter estimate not significant (p > 0.05). Note: biomass in kg, dbh in cm, ht in m, and ρ in g/cm3. Bold:
best model according to AIC.

Table 7. Mean prediction errors (MPE) of the models over study sites and dbh classes.

Component Model No. Variable No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

1 Site Mtangatanga 20 1465.5 1606.2 ´140.8 ´9.6
Kongwe 18 1195.4 1200.6 ´5.2 ´0.4

Mua-livulezi 18 1316.7 1231.5 85.3 6.5
Tsamba 18 956.3 882.4 73.8 7.7

dbh class 0–20 21 79.7 93.4 ´13.6 ´17.1
(cm) 21–40 35 545.6 584.1 ´38.5 ´7.1

41–60 6 2225.4 1911.6 313.9 14.1
>60 12 4801.5 4826.0 ´24.5 ´0.5

All 74 1239.7 1240.3 ´0.6 ´0.1
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Table 7. Cont.

Component Model No. Variable No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

2 Site Mtangatanga 20 1465.5 1424.1 41.4 2.8
Kongwe 18 1195.4 1146.8 48.6 4.1

Mua-livulezi 18 1316.7 1337.8 ´21.1 ´1.6
Tsamba 18 956.3 1032.2 ´75.9 ´7.9

dbh class 0–20 21 79.7 86.3 ´6.5 ´8.2
(cm) 21–40 35 545.6 578.5 ´32.9 ´6.0

41–60 6 2225.4 2111.9 112.5 5.1
>60 12 4801.5 4754.1 47.4 1.0

All 74 1239.7 1240.3 ´0.6 ´0.1

3 Site Mtangatanga 20 1465.5 1686.3 ´220.8 ´15.1
Kongwe 18 1195.4 1133.3 62.1 5.2

Mua-livulezi 18 1316.7 1205.4 111.4 8.5
Tsamba 18 956.3 889.3 67.0 7.0

dbh class 0–20 21 79.7 96.3 ´16.5 ´20.7 *
(cm) 21–40 35 545.6 585.6 ´40.0 ´7.3

41–60 6 2225.4 1936.4 289.1 13.0
>60 12 4801.5 4807.8 ´6.3 ´0.1

All 74 1239.7 1240.9 ´1.2 ´0.1

Belowground

1 Site Mtangatanga 12 795.9 777.0 18.9 2.4
Kongwe 10 386.3 401.4 ´15.1 ´3.9

Mua-livulezi 9 427.7 418.9 8.8 2.1
Tsamba 10 435.3 450.9 ´15.5 ´3.6

dbh class 0–20 12 42.1 46.1 ´4.0 ´9.5
(cm) 21–40 16 240.3 259.3 ´19.0 ´7.9

41–60 4 821.3 736.9 84.4 10.3
>60 9 1553.4 1551.9 1.5 0.1

All 41 527.2 527.2 ´0.0 ´0.0

* MPE is significantly different from zero (p < 0.05).

Table 8. Mean prediction error (MPE) of previously developed models.

Component Model
Independent
Variable(s)

No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

Mugasha et al. [21] dbh 74 1239.7 1135.7 104.0 8.4
Mugasha et al. [21] dbh, ht 74 1239.7 1076.7 163.0 13.2 **

Ryan et al. [4] dbh 74 1239.7 1068.8 170.9 13.8 *
Chidumayo [18] dbh 74 1239.7 1205.6 34.1 2.8
Chave et al. [39] dbh, ρ, ht 74 1239.7 953.7 286.1 23.1 ***

Belowground

Mugasha et al. [21] dbh 41 527.2 377.5 149.7 28.4 ***
Mugasha et al. [21] dbh, ht 41 527.2 364.8 162.4 30.8 ***

Ryan et al. [4] dbh 41 527.2 426.9 100.3 19.0 ***
Chidumayo [18] dbh 41 527.2 551.9 ´24.7 ´4.7

* MPE is significantly different from zero at (p < 0.05); ** MPE is significantly different from zero at (p < 0.01)
and *** MPE is significantly different from zero at (p < 0.001).
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Figure 5. Aboveground biomass (dry weight) over dbh based on the general models developed in
this study (with dbh and ht as independent variables), by Mugasha et al. [21] (with dbh and ht as
independent variables), by Ryan et al. [4] (with dbh as only independent variable), by Chidumayo [18]
(with dbh only as independent variable) and by Chave et al. [39] (with dbh, ρ, and ht as independent
variables). CHI, RY, MG and CS are the maximum dbh values for the data used in the models developed
by Chidumayo [18], Ryan et al. [4], Mugasha et al. [21] and current study, respectively.

Figure 6. Belowground biomass (dry weight) over dbh based on the general models developed in
this study, by Mugasha et al. [21], by Ryan et al. [4] and by Chidumayo [18]. All models had dbh
as the only independent variable. CHI, RY, MG and CS are the maximum dbh values for the data
used in the models developed by Chidumayo [18], Ryan et al. [4], Mugasha et al. [21] and current
study, respectively.

4. Discussion

Capturing a wide range of natural variability in factors influencing tree growth, such as soil types,
temperature, and rainfall, is important for developing robust biomass models [21,39]. The modelling
dataset for this study was collected from sites located in all the three regions of Malawi, i.e., north,
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central and south (Figure 1). Application of sound sampling procedures when selecting sample trees
is also critical in development of models as it may help in reducing the probability of biases. In this
study, we selected trees based on information from forest inventories for each site done prior to tree
selection. We also included a number of very large trees to avoid extrapolation beyond the data ranges
as much as possible. Our sample trees comprised 33 out of the 139 tree species identified during the
forest inventories for the four study sites. Compared to most previous studies our dataset included a
large number of tree species. The modelling dataset of Mugasha et al. [21] comprised 60 tree species,
while those of Chidumayo [18] and Ryan et al. [4] had 19 and 6 species, respectively. Although the
proportion of the number of tree species in our dataset is relatively low compared to total number of
tree species reported in miombo woodlands [22–27], the information from the prior forest inventories
ensured that the most common species were represented, in addition to species selected randomly
among the remaining less frequent species.

Leaves and fine roots were excluded from our biomass sampling. Leaves were excluded because
most of the trees had started to shed leaves when we carried out destructive sampling. This is a
common challenge for biomass studies in seasonally dry forests, as acknowledged by Chave et al. [39].
A recent study on miombo woodlands in Mozambique by Mate et al. [17] found that leaves comprised
only 3% of the total aboveground biomass during the peak leaf season. Such a number would probably
be a good estimate of how much aboveground biomass is missing in our data.

Root parts with diameter < 1 cm were also excluded from the biomass data, mainly to reduce
workload. Similar root parts (diameter < 2 cm) were also excluded in the Chidumayo [18] and
Ryan et al. [4] models. Chidumayo [18] analysed cumulative root biomass vs. diameter and found
that the trend levelled off considerably around a diameter of 2 cm. Thus, the underestimation of the
belowground biomass in our data is small, especially since we used a diameter threshold of 1 cm.

RS ratio is an important alternative for estimating belowground tree biomass in cases where
allometric models are not available (see [14,45]). The mean RS ratio observed here (0.47, Table 4)
is higher than the value reported by Mugasha et al. [21] and Ryan et al. [4] for miombo woodlands
(0.40 and 0.42 respectively). However, Chidumayo [18] reported a mean value of 0.54 which is
comparatively higher. Since the RS ratio decreases with increasing dbh (Figure 4), the mean value
depends on the size distribution of the trees. The high mean RS-ratio found by Chidumayo [18] is
likely to result from the relatively smaller tree sizes in his dataset (see Table 3) rather than a higher
proportion of root biomass in trees from miombo woodlands in Zambia. Mean RS ratios are frequently
used to estimate belowground biomass (e.g., [46]). However, by using a fixed mean RS ratio for
a relationship that most probably is non-linear (Figure 4), a bias will be introduced (see e.g., [47]).
Therefore, application of mean RS-ratios to estimate belowground should be done with caution.

Among the aboveground biomass models with significant parameter estimates, Model 2 (with
dbh and ht as independent variables) had the smallest AIC value (Table 5). Models with both dbh
and ht as independent variables had a better fit than those with only dbh (e.g., [21,39]). Inclusion of ρ
as independent variable (Model 3), in place of ht (Model 2), did not improve aboveground biomass
prediction. This could be attributed to the fact that the ρ values were not obtained directly from
the sampled trees, but from the global wood density database [40,41]. The model with the smallest
AIC value (Model 2) is similar (pseudo-R2 = 0.97) to the models developed by Mugasha et al. [21]
(pseudo-R2 = 0.95), Chidumayo [18] (R2 = 0.98) and Ryan et al. [4] (adjusted-R2 = 0.93).

Although Model 2 is generally considered the best aboveground biomass model, it should be
noted that Models 1 and 3 can still be applied during forest inventories in cases where ht is lacking
or considered as inaccurate. Application of Model 2 requires measuring both dbh and ht during a
forest inventory. In such cases, ht for individual trees is usually predicted based on dbh-ht models
developed from sample trees collected from the study site because measuring ht in all trees is too time
consuming. However, measuring tree height is also prone to errors especially in closed-canopy forests,
due to differences in crown shapes and the difficulty of observing the top of the tree crown [48,49].
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Among the belowground biomass models, the only viable model, i.e., with significant parameter
estimates, was the one with dbh as an independent variable (Model 1). The fit of this model is
similar (pseudo-R2 = 0.94) to that of the models developed by Mugasha et al. [21] (pseudo-R2 = 0.92),
Chidumayo [18] (R2 = 0.95) and Ryan et al. [4] (adjusted-R2 = 0.94).

Proper implementation of the REDD+ mechanism in participating countries, including Malawi,
requires biomass estimates to be accompanied with an estimate of uncertainty (see [30]). Uncertainty
of biomass estimates is usually computed from error estimates of model parameters for the employed
biomass models [34]. In Table A3, we have therefore presented the covariance matrices of model
parameters for all the valid models in Table 5 to enable potential users to estimate uncertainty in
biomass and carbon quantities during national forest inventories and monitoring, reporting and
verification systems under the REDD+ mechanism (see [30,34]).

Tree component biomass models, i.e., models for twigs, branches and merchantable stem, may
be useful when planning commercial extraction of timber or quantification of biomass for domestic
fuelwood or charcoal production (see [37]). All tree component models with significant parameter
estimates produced MPE% values not significantly different from zero (see Table 6). This is an
indication of appropriate performance.

The evaluation of the developed above- and belowground models on our own data showed that
no models produced MPE% significantly different from zero for any site (Table 7), thus indicating that
the models can be applied over a wide range of conditions. The trend was the same over dbh classes
except for the smallest dbh class under Model 3. It should be noted that the magnitude of MPE% seen
over sites in Table 7 is the kind of error that should be expected across sites if we were to apply our
models across Malawi, e.g., in a national forest inventory.

The previously developed models from neighbouring countries resulted in large prediction errors
significantly different from zero when applied to our data (Table 8). Exceptions were observed
in the aboveground biomass models of Mugasha et al. [21] and the above- and belowground
models of Chidumayo [18]. For the recently developed pan tropical aboveground biomass model of
Chave et al. [39], the prediction error was also large (23.1% underestimation). The generally large
prediction errors when appliying the previously developed models are, of course, not surprising since
they are applied outside their respective data ranges. These results, however, also demonstrate the
importance of developing local models.

5. Conclusions

We developed general above- and belowground, stem, branch and twig biomass models for
the miombo woodlands of Malawi. Our models can be used over a wide range of geographical
and ecological conditions in Malawi. The generally large prediction errors seen when applying
previously developed models from neighbouring countries to our data demonstrated the importance
of developing local models.
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Appendix

Table A1. Dataset used for model development.

Site Scientific Name Local Name dbh (cm) ht (m)
Total

Above-Ground
Biomass (kg)

Total
Below-Ground
Biomass (kg)

Use

Mtangatanga

Brachystegia glaucescens Burtt Davy & Hutch. Musani 6.0 4.4 15.5 17.8 a,b
Erica benguelensis (Welw. ex Engl.) E.G.H. Oliv. Msankhanya 9.4 4.0 18.7 6.2 a,b
Erica benguelensis (Welw. ex Engl.) E.G.H. Oliv. Msankhanya 13.0 6.0 31.6 N/A a
Uapaca kirkiana Müll. Arg. Msuku 15.0 5.0 73.4 36.8 a,b
Julbernadia paniculata (Benth.) Troupin Mtondo 16.5 8.0 106.0 84.2 a,b
Isoberlinia angolensis (Benth.) Hoyle & Brenan Kabale 19.4 12.0 266.3 86.5 a,b
Brachystegia boehmii Taub. Mombo 20.2 8.0 194.0 N/A a
Uapaca kirkiana Müll. Arg. Msuku 21.0 7.8 175.2 N/A a
Brachystegia utilis Burtt Davy & Hutch. Nzale 23.0 10.0 278.8 N/A a
Brachystegia taxifolia Burtt Davy & Hutch. Mchinji 23.6 10.0 271.8 N/A a
Julbernadia paniculata (Benth.) Troupin Mtondo 27.3 10.0 412.2 N/A a
Isoberlinia angolensis (Benth.) Hoyle & Brenan Kabale 28.6 11.0 445.0 N/A a
Brachystegia spiciformis Benth. Chumbe 36.0 12.0 921.1 N/A a
Brachystegia longifolia Benth. Sanga 36.0 10.8 1173.0 511.1 a,b
Brachystegia glaucescens Burtt Davy & Hutch. Musani 48.4 14.5 1847.1 947.1 a,b
Brachystegia glaucescens Burtt Davy & Hutch. Musani 50.0 16.0 2160.7 741.5 a,b
Brachystegia spiciformis Benth. Chumbe 60.0 18.0 3935.0 1247.0 a,b
Brachystegia glaucescens Burtt Davy & Hutch. Musani 68.0 10.5 3233.2 1160.7 a,b
Brachystegia glaucescens Burtt Davy & Hutch. Musani 78.0 17.0 4952.1 1567.2 a,b
Brachystegia glaucescens Burtt Davy & Hutch. Musani 111.2 18.0 8798.5 3144.9 a,b
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Table A1. Cont.

Site Scientific Name Local Name dbh (cm) ht (m)
Total

Above-Ground
Biomass (kg)

Total
Below-Ground
Biomass (kg)

Use

Kongwe

Julbernadia paniculata (Benth.) Troupin Mtondo 9.0 5.0 23.4 11.1 a,b
Uapaca kirkiana Müll. Arg. Msuku 10.2 5.0 26.2 N/A a
Brachystegia spiciformis Benth. Chumbe 13.0 6.0 94.9 86.4 a,b
Brachystegia manga De Wild. Mpapa/Bovo 17.3 10.0 138.4 85.7 a,b
Julbernadia paniculata (Benth.) Troupin Mtondo 21.0 11.0 264.9 154.3 a,b
Brachystegia utilis Burtt Davy & Hutch. Nzale 24.5 9.0 368.6 82.1 a,b
Monotes africanus A. DC. Mkalakate 27.2 10.0 437.2 N/A a

Brachystegia spiciformis Benth. Chumbe 27.5 9.3 499.9 N/A a
Brachystegia boehmii Taub. Mombo 30.8 14.0 636.5 N/A a
Uapaca kirkiana Müll. Arg. Msuku 34.0 12.0 689.6 201.4 a,b
Parinari curatellifolia Planch. ex Benth. Muula 37.3 12.0 839.7 285.7 a,b
Brachystegia manga De Wild. Mpapa/Bovo 38.1 17.0 1445.1 N/A a
Cussonia arborea Hochst. ex A. Rich. Mbwabwa 38.4 7.0 346.6 N/A a
Brachystegia spiciformis Benth. Chumbe 38.7 14.0 1298.4 492.7 a,b
Brachystegia manga De Wild. Mpapa/Bovo 52.0 22.0 2534.0 N/A a
Brachystegia manga De Wild. Mpapa/Bovo 61.7 17.0 4400.3 1235.3 a,b
Brachystegia spiciformis Benth. Chumbe 71.2 18.0 4914.1 1228.4 a,b
Erythrina abyssinica Lam. ex DC. Muwale 75.7 12.0 2559.1 N/A a

Mua-livulezi

Markhamia obtusifolia (Baker) Sprague Msewa 5.3 5.0 6.3 5.8 a,b
Combretum apiculatum Sond. Kakunguni 6.0 3.0 15.0 12.4 a,b
Bauhinia petersiana Bolle Mphandula 9.1 5.2 36.5 27.4 a,b
Bauhinia thonningii Schum. Msekese 13.0 5.0 61.6 N/A a
Diplorhynchus condylocarpon (Müll. Arg.) Pichon Thombozi 16.2 10.4 84.7 N/A a
Annona senegalensis Pers. Mpoza 17.0 8.0 83.9 45.3 a,b
Markhamia obtusifolia (Baker) Sprague Msewa 20.0 9.3 142.8 N/A a
Pterocarpus rotundifolius (Sond.) Druce M’balitsa 22.0 8.5 170.1 N/A a
Albizia versicolor Welw. ex Oliv. Mtangatanga 23.2 10.4 214.6 N/A a
Bauhinia petersiana Bolle Mphandula 27.4 7.9 366.6 N/A a
Diplorhynchus condylocarpon (Müll. Arg.) Pichon Thombozi 31.8 13.0 407.3 169.5 a,b
Acacia galpinni Burtt Davy Mgundanjira 37.7 14.0 932.3 232.6 a,b
Pterocarpus rotundifolius (Sond.) Druce M'balitsa 42.0 15.0 959.6 N/A a
Brachystegia spiciformis Benth. Chumbe 47.1 15.5 1916.1 349.5 a,b
Brachystegia bussei Harms Mtwana 61.0 20.5 3970.5 1337.1 a,b
Pseudolachnostaylis maprouneifolia Pax Msolo 61.0 15.6 2994.0 N/A a
Brachystegia spiciformis Benth. Chumbe 69.5 21.0 4580.6 1669.5 a,b
Brachystegia bussei Harms Mtwana 81.7 22.0 6758.4 N/A a
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Table A1. Cont.

Site Scientific Name Local Name dbh (cm) ht (m) Total Above-Ground
Biomass (kg)

Total Below-Ground
Biomass (kg) Use

Tsamba

Uapaca kirkiana Müll. Arg. Msuku 8.4 6.5 18.0 N/A a
Brachystegia floribunda Benth. Tsamba 9.5 9.0 37.5 N/A a
Pseudolachnostaylis maprouneifolia Pax Msolo 12.4 7.0 105.9 N/A a
Brachystegia floribunda Benth. Tsamba 19.9 8.0 287.6 N/A a

Parinari excelsa Sabine Mpembu 21.0 10.0 205.1 86.2 a,b
Julbernadia globiflora (Benth.) Troupin Kachumbe 21.0 10.0 223.0 N/A a
Brachystegia spiciformis Benth. Chumbe 21.2 12.0 271.7 210.7 a,b
Uapaca sansibarica Pax Msokolowe 22.2 10.0 212.3 110.2 a,b
Pericorpsis angolensis (Baker) Meeuwen Muwanga 28.4 8.0 440.2 249.4 a,b
Uapaca kirkiana Müll. Arg. Msuku 30.3 11.0 581.9 277.7 a,b
Pterocarpus angolensis DC. Mlombwa 31.3 17.0 667.7 218.5 a,b
Brachystegia utilis Burtt Davy & Hutch. Nzale 32.0 14.0 867.6 385.8 a,b
Uapaca sansibarica Pax Msokolowe 32.0 12.0 445.9 177.3 a,b
Brachystegia floribunda Benth. Tsamba 34.5 12.0 683.0 N/A a
Julbernadia globiflora (Benth.) Troupin Kachumbe 37.5 18.0 1014.0 N/A a
Faurea speciosa (A. Rich.) Pic.Serm. Chisese 38.7 16.0 693.7 N/A a
Julbernadia globiflora (Benth.) Troupin Mchenga 67.4 21.0 4591.2 1397.5 a,b
Brachystegia spiciformis Benth. Chumbe 75.0 25.0 5866.2 1240.0 a,b

Note: a = aboveground only; a, b = both above-and belowground; N/A = not applicable.
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Table A2. DF-ratio for merchantable stem, branches, twigs, roots, and root crown in the four study sites.

Site
Aboveground Belowground

No. of Trees
Merchantable Stem Branches Twigs

No. of Trees
Roots Root crown

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Mtangatanga 20 0.61 0.48 0.77 0.57 0.44 0.73 0.51 0.30 0.66 12 0.58 0.46 0.69 0.59 0.53 0.67
Kongwe 18 0.56 0.36 0.71 0.54 0.35 0.65 0.52 0.37 0.65 10 0.58 0.48 0.72 0.57 0.39 0.67

Mua-livulezi 18 0.60 0.54 0.69 0.61 0.54 0.67 0.56 0.44 0.66 9 0.60 0.49 0.70 0.59 0.46 0.68
Tsamba 18 0.59 0.45 0.70 0.58 0.45 0.67 0.53 0.38 0.65 10 0.52 0.45 0.63 0.57 0.51 0.61

All 74 0.59 0.36 0.77 0.58 0.35 0.73 0.53 0.30 0.66 41 0.57 0.45 0.73 0.58 0.39 0.68

Note: The number of sample trees for Kongwe for the twigs section is 16 instead of 18 because two trees did not have twigs.

Table A3. Covariance matrices of all valid above- and belowground models.

Component Model No. Model Variable Covariance Matrix

Belowground 1 0.284615 ˆ dbh1.992658
intercept dbh

intercept 0.01184

dbh ´0.01018 0.00882

Aboveground

1 0.21691 ˆ dbh2.318391
intercept dbh

intercept 0.00251

dbh ´0.00263 0.00278

2 0.103685 ˆ dbh1.921719 ˆ ht0.844561

intercept dbh ht

intercept 0.00058

dbh ´0.00045 0.00166

ht ´0.00129 ´0.00094 0.00580

3 0.290457 ˆ dbh2.283998 ˆ ρ0.443619

intercept dbh ρ

intercept 0.00592

dbh ´0.00422 0.00305

ρ 0.00557 ´0.00346 0.01364
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