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Abstract

FTIR and Raman spectroscopy, and MALDI-TOF mass spectrometry are emerging

technologies for multidimensional phenotyping of microorganisms. While FTIR and

Raman both represent a full metabolic fingerprint, MALDI spectra mainly represent the

microbe’s ribosomal protein composition.

All methods are used for microbial identification, both by the food industry and in the

clinical laboratory, but direct comparison of them by integration into the same statistical

model is lacking in scientific literature. To compare the three methods, we applied a Sparse

MultiBlock PLSR (SMBPLSR) routine capable of analysing all data types simultaneously.

We present results indicating that this SMBPLSR method can be used to establish

connections between the metabolic fingerprint of FTIR and Raman spectra, and ribosomal

protein expression in MALDI-TOF data, and that the method to a large extent enables

identification of samples on the strain level. Furthermore, we show that the SMBPLSR

method can be used to indicate how phenotypic response to varied growth temperature is

ascribed to certain types of biomolecules. Finally, we present results showing that different

types of phenotypic data are treated differently by the SMBPLSR method. Grouping

among variables or samples in FTIR and Raman data is achieved by a different set of latent

variables than in grouping in MALDI data. The sensitivity and wealth of information

obtainable from the SMBPLSR method makes it a viable complement to the already

existing multivariate analysis methods.
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Samandrag

FTIR- og Raman-spektroskopi, og MALDI-TOF massespektrometri, er alle framvaksande

teknologiar brukt til multidimensjonal fenotyping av mikroorganismar. Medan FTIR or

Raman gjev eit fullt metabolsk fingeravtrykk, er det ribosomal proteinkomposisjon som

kjem til uttrykk i MALDI.

Alle desse metodane brukast for å identifisera mikrober, b̊ade i matvareindustrien og i

kliniske laboratorier, men ei direkte statistisk samanlikning av metodane manglar i den

vitskaplege litteraturen. For å bøte p̊a mangelen, brukte me ei Sparsomleg MultiBlokk

PLSR-metode (SMBPLSR) som kunne analysera alle datatypane samstundes.

Me synar fram resultat som indikerer at SMBPLSR-metoden kan nyttast til å etablera

koplingar mellom metabolsk fingeravtrykk i FTIR- og Raman-spektra p̊a den eine sida,

og ribosomalt proteinuttrykk i MALDI-TOF data p̊a den annan. SMBPLSR-metoden

kan i utstrekt grad identifisera prøver p̊a stammeniv̊a. Vidare syner me at SMBPLSR-

metoden kan brukast til å indikera korleis fenotypisk respons p̊a ulike veksttemperaturar

kan tilskrivast spesifikke typar biomolekyl. Til slutt presenterast resultat som syner at dei

ulike slaga fenotypiske data handsamast svært ulikt av SMBPLSR-metoden. Grupperingar

av variablar eller prøver i FTIR- og Raman-data tilskrivast heilt andre latente variablar

enn tilsvarande grupperingar i MALDI-data. Følsemda til og vellet av informasjon som

kan framskaffast fr̊a SMBPLSR-metoden gjer han til eit levedyktig tilskot til allereie

eksisterande multivariate analysemetodar.
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Chapter 1

Introduction

1.1 Motivation

Technology and methods for classification, identification and characterisation of microor-

ganisms has seen tremendous development in recent decades. The main modern way

of microbial classification (phylogenetic placement of an organism new to science) is by

comparing its genotype - genetic code - with that of already known genera, species or

strains. The various techniques employed to do so are called genotyping techniques [1]. The

numerous scientific and commercial techniques currently in use, include single nucleotide

polymorphism whole-genome sequencing (SNP WGS) and pulsed-field gel electrophoresis

(PFGE) [2]. Genotyping techniques make it possible to accurately classify novel microor-

ganisms and place them in the phylogenetic tree, or identify already known ones correctly

[2].

The demand for such techniques has never been higher. As occurrences of bacterial

multiresistance to antibiotics are on the rise worldwide [3], methods that ensure rapid and

adequate classification, identification and/or characterisation (the measure of a microbe’s

biological constituents) is becoming increasingly important to detect and avoid nosocomial

infections (attracted in hospitals or, literally, ‘under care’ [2]) and epidemics. Similar

needs are expressed by the food industry for the prevention of food spoilage [4, 5, 6, 7].

For this purpose, the current genotyping techniques tend to be considered too slow and

cumbersome [2, 8].

Generally working at lower cost, offering higher throughput, and requiring less elaborate

sample preparation than genotyping, phenotyping is a viable and widely used alternative

[2, 9, 10, 11]. The phenotype is the expressed character traits of an organism [8]. A

few examples of phenotypic expression in bacteria are growth and replication rates, and

production levels of certain chemical compounds [8], often proteins or measures of protein

levels whose values are known to be species-specific [2, 12]. The use of such phenotypic
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CHAPTER 1. INTRODUCTION

techniques, or phenotyping, is to identify microorganisms by examining these traits, also

called biomarkers [2].

In this study, we employ three phenotyping techniques, namely Fourier-Transform

InfraRed (FTIR) spectroscopy, Fourier-Transform Raman (Raman) spectroscopy and

Matrix Assisted Laser Desorption Ionisation Time-of-Flight (MALDI or MALDI-TOF)

mass spectrometry, to study these biomarkers. FTIR and Raman both, though in different

ways, utilise the specificity of resonance frequencies in the covalent chemical bonds between

the atoms of a molecule [13]. MALDI makes use of the fact that an ionised molecule

subjected to a magnetic field will, depending on its mass-to-charge ratio, require a certain

time-of-flight to reach a detector [14].

Being emerging technologies, the three techniques all have their individual properties,

advantages and drawbacks. The data gathered from FTIR and Raman correspond to a

metabolic fingerprint (not to be confused with the spectral region), indicating levels of

both proteins, lipids and carbohydrates in the sample, their interrelated and absolute levels

being the predictive factor in identification or characterisation [9]. In contrast, MALDI

measures the prevalence of specific ribosomal biomarker proteins that can be used to

characterise, identify, or even characterise microorganisms [12].

As discussed by Dieckmann et al. [2], MALDI possesses a twofold major advantage as

a characterisation and identification technique compared to FTIR and Raman. Because

of its less strict standardisation requirements in sample preparation, for instance with

growth conditions and type of sample preparation, it has become the technique of choice

when creating spectral databases of microorganisms, as well as for identifying pathogenic

microbes that must be neutralised prior to analysis [15].

On the contrary, strict standardisation requirements for both FTIR and Raman

discourage the creation of similar inter-institutional, comprehensive data bases due to

the perils of methodological inaccuracy and variation. As of today, most suppliers of

spectroscopic equipment include access to their own spectroscopic databases - for MALDI.

Notwithstanding, this dominance mostly restricts itself to macromolecules. There are

voluminous spectral databases for small organic and inorganic molecules, such as the NIST

Chemistry Webbook [16], or as a compiled list of such, at Internetchemistry.com [17].

The paramount distinction between the techniques is their predictive ability; how well

do they predict a new set of data and what is their mode of prediction? Phenotypic

methods require training before they can classify new data [18]; genotypic techniques do

not. This training entails calibration of the model parameters employed for the actual

analysis of the data set.

Dieckmann et al. [2] argue that while MALDI shows better discriminative ability at

the species level, the intraspecies discrimination of FTIR is superior because of the full

2



fingerprint it provides. Specifically, MALDI mainly detects ribosomal proteins that display

less strain diversity [11]. On the other hand, FTIR gathers information from cell surface

lipid and carbohydrate levels, both of which show higher intraspecific variation [2].

A common way to analyse MALDI, FTIR and Raman data is by using multivariate

methods [19, 20, 21, 22, 23]. In this study, we exploit these methods’ ability to handle

collinearity within the data set. This enables us to assess the differences and similarities in

predictive ability and discrimination by the various phenotypic methods discussed so far.

Principal Component Analysis (PCA) is the foundation upon which most of the modern

multivariate methods are built, and indeed the foundation for our model extensions as

well. Both PCA and our extended version base the prediction on latent variables [24].

The inherent spectral composition of FTIR and Raman spectra us to extract data

blocks that only encompass certain specific types of biomolecules, such as lipids or proteins.

Separating the total spectrum of these signals enable us to examine in-depth how each

type of biomolecule contributes to the overall model prediction [24].

In particular, we want to explore and examine how multiblock methods can be used in

combination with sparse variable selection to enhance the predictive ability of phenotypic

data sets, and how they can be used to detect phenotypic responses to growth conditions,

specifically variation in growth temperature. Arrondo and Goñi [25] showed that FTIR

possessed such discriminative capability, but this has to our knowledge never before been

done with this kind of data.

In a sparse model, only a subset of the variables are selected. Sparsity is implemented

by soft thresholding as proposed by Lê Cao et al. [26]. This implementation allows

selecting, to a higher extent, biologically meaningful variables, easing the interpretation of

the results [20, 26].

Multiblock (MB) models are effective in several different ways. MB gives the opportunity

to ‘zoom’ by dividing a data set into blocks and then examining the results of each individual

block [27, 28]. Furthermore, several types of data can be included in the same model [29],

improving predictive ability and enhancing interpretation.

The scope of this study is to evaluate the ability of sparse multiblock methods to establish

a connection between metabolic fingerprints by FTIR and Raman, and protein expression

by MALDI, and to compare phylogenetic differences and similarities assessed by different

phenotypic methods.

The multivariate methods used in this study were first proposed by Karaman et

al. [29], who implemented them for a purpose similar to ours, but for different data

types. The statistical methods have mainly been implemented into MATLAB R© R2016a

(The MathWorks, Inc., Natick, Massachusetts, US) code by Professor Achim Kohler and

researcher Valeria Tafintseva, both of NMBU. The data sets have been kindly provided by

3



CHAPTER 1. INTRODUCTION

Peter Lasch of Robert Koch-Institut, Berlin, Germany.

1.2 Structure of thesis

The remaining chapters of this thesis are structured in the following way: In Chapter 2,

the bacterial strains examined in this study are presented. In Chapter 3, we give a short

presentation of the physical principles behind the three phenotyping techniques employed

in this study. In Chapter 4, the methods of preprocessing, pretreatment and statistical

analysis employed in this study are explained and briefly discussed. Chapter 5 gives a

short walk-through on how the statistical models are validated, and some information

about the code and statistical script used. In Chapters 6 and 7, we present the main

results, one chapter per data set. A discussion of the results is included in each chapter.

A general discussion of the statistical methods used and other relevant topics is given in

Chapter 8. Finally, the main conclusions and outlook are summarised in Chapter 9.

In the electronic version of this thesis, all links to chapters, sections, references, figures

and tables are clickable at their numbers.
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Chapter 2

Materials: Two data sets of bacterial

strains

In this thesis, two different data sets were examined. The first data set was used to test

SMBPLSR methods for identification purposes. It consists of 17 bacterial strains, 16 of

which belong to the Klebsiella oxytoca species, and one belonging to the K. pneumoniae

species, totalling 51 samples. This data set is referred to as the Klebsiella, ‘identification’

or ‘identificatory’ data set. Further description is given in Section 2.1.

The second data set was used for assessment of the discriminative abilities of SMBPLSR

methods for varying growth temperatures. This data set consists of two bacterial strains, of

the Bacillus subtilis and Escherichia coli species, cultivated at four different temperatures.

Given three samples per species-per temperature, it totals 24 samples. It is referred to

as the Bacillus/Escherichia, ‘experimental’ or ‘experimental design’ data set because it

concerns a variable of experimental design. For further description, see Section 2.2.

Both data sets were kindly provided by Peter Lasch of Robert Koch-Institut, Berlin,

Germany.

Both data sets include data from FTIR and Raman spectroscopy, and MALDI-TOF-MS.

Furthermore, the experimental data set includes low-mass and medium-mass MALDI

data, whereas the identificatory data set only includes medium-mass MALDI data. An

explanation of the column label abbreviations in the MALDI data sets can be found at

[30].

2.1 Klebsiella oxytoca and K. pneumoniae

The bacteria K. oxytoca is an opportunistic, pathogenic, facultative anaerobic species of

Gram-negative, rod-shaped and non-motile bacteria of the Enterobacteriaceae family, and

a close relative to K. pneumoniae, responsible for pneumonia in humans [3, 31]. Under
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CHAPTER 2. MATERIALS: TWO DATA SETS OF BACTERIAL STRAINS

natural circumstances, both K. oxytoca and K. pneumoniae are found on human mucosal

surfaces, such as the throat, and in our surroundings [2].

2.1.1 Occurrence in the clinical environment

The bacterial species K. oxytoca and K. pneumoniae have long been associated with so-

called nosocomial (attracted in hospital, or, literally: ‘under care’) infections, particularly

attacking immunocompromised patients [2]. Nordmann, Cuzon and Naas [3] reported

that during the first decade of the 21st century, resistance to antibiotics in several strains

of both species has been found, first in the USA, then around the world. These strains

showed reduced susceptibility to antibiotics (carbapenems or other β-lactams) frequently

used in the treatment of Gram-negative bacteria in hospitals.

Both K. oxytoca and K. pneumoniae are known to contaminate soap and hand sanitiser

dispensers in clinical and community environments [32]. In fact, the majority of K. oxytoca

strains in this study are from two lots (I and II) of hand soap produced in Greece in 2013,

see Table 2.1. In particular, sanitation products with high water content are prone to

bacterial contamination [2]. Contamination can be divided into two categories: Intrinsic

contamination during manufacturing and/or shipping, and extrinsic contamination during

use at a health care facility [33]. Correspondingly, increased awareness of the risk of

infection stemming from water-containing sanitation products has sparked an increased

popularity for waterless, alcohol-based hand sanitisers [32].

Thorough screening for and identification of microbial pollutants during manufacturing

and shipping could potentially eliminate intrinsic contamination altogether. Rapid and

precise strain identification and characterisation, and subsequent isolation of patients

infected by multiresistant strains of K. spp. is critical in order to prevent or minimise

hospital outbreaks.

2.1.2 Strains and specifications

All samples in this data set, including their background, preparation and measurement,

are the same as the ones used and described by Dieckmann et al. [2]. An overview of the

strains is shown in Table 2.1. For FTIR and Raman, all strains consist of three biological

replicates (samples), each of which is the average of three technical replicates. For MALDI,

each sample is the average of two technical replicates.
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Table 2.1: Overview of strains of the Klebsiella genus included in this data set. The year
of isolation is not known for all strains.

Strain Country of origin Year of isolation Source
PHS-890a Greece 2013 Hand soap, lot 1
PHS-891a Greece 2013 Hand soap, lot 1
PHS-892a Greece 2013 Hand soap, lot 1
PHS-893a Greece 2013 Hand soap, lot 1
PHS-894a Greece 2013 Hand soap, lot 1
PHS-895a Greece 2013 Hand soap, lot 2
PHS-896a Greece 2013 Hand soap, lot 2
PHS-897a Greece 2013 Hand soap, lot 2
PHS-898a Greece 2013 Hand soap, lot 2
PHS-899a Greece 2013 Hand soap, lot 2
CB4063a Germany 1995 Child, enteritis
CB4074a Germany 1995 Child, enteritis
CB4072a Germany 1995 Child, enteritis

CCUG 15788a Sweden Environmental
Oman 61a Oman 2011 Clinical isolate

ATCC 13182a USA Pharyngeal tonsil
ATCC 25926b Belgium Human blood

a K. oxytoca, b K. pneumoniae, subsp. Ozaenae

2.2 Bacillus subtilis and Escherichia coli

B. subtilis is an endospore-forming, motile and gram positive bacteria commonly found in

soil, but also in the intestinal tract of humans [34]. The species is harmless, non-toxic and

not dangerous to humans [34]. E. coli is a gram-negative bacterium commonly found in

the intestines of warm-blooded animals [35]. Most strains of E. coli, including the one we

examine in this study [36] are harmless, but some are pathogenic and may infect humans

who consume contaminated food or liquids [35].

2.2.1 Strains and specifications

All samples in this data set were cultivated aerobically for 24 hours. Two bacterial

strains were measured: E. coli K12 DSM 3871 [36] and B. subtilis DSM347 [37]. Four

growth temperatures were selected: 25, 30, 37 and 43oC. Three biological replicates were

produced for each temperature, each biological replicate being the average of three technical

replicates. All strains and samples were measured by FTIR, Raman and MALDI-TOF

ICMS (Intact Cell Mass Spectrometry [38]). MALDI measurements were taken both in

the low mass (m
z

between 500 and 3200) and medium mass (m
z

between 3200 and 20000)

ranges.
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CHAPTER 2. MATERIALS: TWO DATA SETS OF BACTERIAL STRAINS

All measurements were carried out by Maren Stämmler and the data set was kindly

provided by Peter Lasch, both of Robert Koch-Institut, Berlin, Germany. The strains were

prepared essentially equally as those described in the previous section (i.e. by Dieckmann

et al. [2]), but with certain differences in growth conditions. Further enquiries regarding

the details of how the strains were prepared should be addressed to Peter Lasch. An

overview of the strains and their growth temperature is shown in table 2.2.

Table 2.2: Overview of B. subtilis and E. coli strains included in this data set.
Strain Growth temperature [oC]

DSM 347a 25
DSM 347a 30
DSM 347a 37
DSM 347a 43

K12 DSM 3871b 25
K12 DSM 3871b 30
K12 DSM 3871b 37
K12 DSM 3871b 43

a B. subtilis, b E. coli
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Chapter 3

Spectroscopic methods

FTIR, Raman and MALDI are widely used phenotyping techniques, providing rapid and

accurate identification of microorganisms [2, 11]. This is done through cultivation and

subsequent measurement of prepared samples. The measured samples provide a data set

which can be visualised as a continuous spectrum.

The scope of this chapter is to outline the working principles behind FTIR, Raman

and MALDI. In Section 3.1, we give a brief motivation for the usage of FTIR, a very short

introduction to the physical principles behind the technique, and finally a discussion of

advantages and drawbacks of the technique. The procedure is then repeated for Raman in

Section 3.2 and MALDI in Section 3.3.

3.1 Fourier Transform InfraRed (FTIR) spectroscopy

Whenever electromagnetic radiation interacts with matter, one of three events are likely

to occur: transmittance, absorbance or scattering. The working principle behind FTIR is

detecting differences and variations in these three [13]. The recorded absorbance spectrum

of a molecule or microorganism can be read as a fingerprint and compared to already

existing spectra for identification. This routine is both quick and cheap, and efforts are

ongoing to fully automate the cultivation and analysis of samples [5]. FTIR is routinely

being used in both the food industry [4, 5, 6, 11] and clinically [2, 39].

3.1.1 Infrared Radiation

The infrared spectrum succeeds the spectrum of visible light at wavelengths around 700

nm and continues up to around 1 mm [40]. However, in FTIR-spectroscopy, a unit called

the wavenumber is commonly preferred to wavelength because of the more convenient

9



CHAPTER 3. SPECTROSCOPIC METHODS

scale it uses. The wavenumber ν̃ is the reciprocal of wavelength λ such that

ν̃ =
1

λ

Its unit is given in cm−1 according to customs. Corresponding IR wavenumbers range from

12 820 cm−1 to 33 cm−1. The set of wavenumbers is further divided into three categories:

near, mid and far IR [40]. Most of the fundamental modes of molecular vibration are

localised in the mid IR region [13], see subsections 3.1.2 and 3.1.3 for further elaboration.

Consequently, this is the most interesting part of the IR spectrum to examine. The mid

IR region is the set of wavenumbers ranging from 4000 cm−1 to around 500 cm−1.

The relationship between wave energy and wavelength is given as E = hc
λ

where λ

is the wavelength, h is Planck’s constant and c the speed of light. This amounts to IR-

photons possessing energy from 1.7 eV to 1.24 meV; energy and wavelength are inversely

proportional. Mid IR photon energy varies from 0.50 eV to 0.062 eV, or around 8 to 40

kJ/mol.

3.1.2 Molecular response to IR-radiation

The mid IR photon energy of 0.062 eV (8 kJ/mol) to 0.50 eV (40 kJ/mol) corresponds

to vibration in covalent bonds in organic molecules [13]. Typical modes of vibration are

stretching, scissoring and rocking, shown in Figure 3.1 below. Whenever a photon in the

IR energy range interacts with a molecule and that molecule has a bond with a resonance

frequency (or equivalently an energy gap between two states) that matches the photon

frequency (energy), absorption occurs that induces vibration in one of the molecule’s

covalent bonds [13].

Both the mode of movement, the hybridisation of the bond (single, double or triple)

and the species of atoms connected contribute to determine the specific frequency of the

vibration [13]. For instance, the bending of a conjugated carbon-carbon double bond

is always found at 1615 cm−1 and, conversely, a spectrum displaying a peak at that

wavenumber indicates the presence of such a bond.

Because of the direct mode of excitation, FTIR spectroscopy is only concerned with

asymmetric movement that causes a net displacement or change in dipole moment within

the molecule [13]. This is complementary to Raman spectroscopy, which registers changes

in molecular polarisation, i.e. changes in the shape, size or orientation of the atom’s

electron cloud. These are only detectable when the movement is symmetric [40]. More on

this in Section 3.2.

The specificity of the resonance frequencies enable the identification of molecules [13]

and even microorganisms [4, 6, 7, 9] based on inspection, interpretation and analysis of

10



Figure 3.1: Illustration of bending and stretching modes of covalent bonds, from [41].

their spectra. Figure 3.2 below shows the raw FTIR spectra of the Klebsiella data set

analysed in this study. The various high-absorbance peaks can be attributed to specific

covalent bonds that correspond to common constituents of biomolecules.

Figure 3.2 uses absorbance as y-axis unit. Transmittance may also be used. Absorbance

and transmittance are values obtained during spectroscopy from comparing the intensity

of emitted and detected radiation for various wavenumbers, denoted I0(ν̃) and I0(ν̃),

respectively. Transmittance is defined simply as the coefficient of detected light, or

T (ν̃) ≡ I(ν̃)

I0(ν̃)
(3.1)

while absorbance is defined as the negative logarithm of T , or

A(ν̃) ≡ −log(T ) = −log I(ν̃)

I0(ν̃)
(3.2)

for some wavenumber ν̃. These spectral entities in equations (3.1) and (3.2) constitute the

fundamentals of signal preprocessing, which is explained in Section 4.1.

The various peaks of Figure 3.2 are often divided into two regions or categories: the

functional region and the fingerprint region [13]. The functional region encompasses the

spectrum from 4000 cm−1 to around 1500 cm−1 and indicates the presence of organic

functional groups. For instance, the rather narrow peak around 2950 cm−1 indicates
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Figure 3.2: Raw spectra of FTIR data from the Klebsiella data set analysed in this study.

CH-stretching [13].

The fingerprint region, from 1500 cm−1 to 500 cm−1, is densely populated with peaks,

and it is difficult to meaningfully interpret this region visually [13]. Still, it plays a crucial

role in the identification of both molecules and microorganisms [6] because its highly

specific composition of peaks serves as a fingerprint for the molecular or cell composition.

However, because absorbance levels usually vary among samples and replicates, visual

identification becomes slightly more auspicious for larger data sets than for single samples.

Nevertheless, decisive identification and characterisation must be done through statistical

analysis, for instance by comparison with spectral libraries [13, 40].

3.1.3 Absorbance regions of biomolecules

The main constituents of any microbe are proteins (amino acids), carbohydrates and lipids

(fatty acids). The most abundant chemical bonds usually belong to molecules associated

with these three categories, making it relatively easy to statistically identify the dominant

biomolecular constituents of a sample.

Proteins are characterised chiefly by their amide I bonds (C=0) at around 1700 - 1550

cm−1 [25, 42].

The strongest identifiers of carbohydrates are found in the fingerprint region, between

1400 and 900 cm−1 [19, 43]. This region can be further subdivided into the regions 1150-900

cm−1 (C-O and C-C stretching) and 1400-1150 cm−1 (O-C-H, C-C-H and C-O-H bending).

Fatty acids occupy several spectral subregions, including the primary domains of

carbohydrates and proteins [20]. However, the tails of most lipids are full of CH=CH and

CH2-CH2 bonds. These bonds show characteristic stretching vibration around 3200 - 2800
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cm−1 [6].

A second inspection of Figure 3.2 indicates that signals localised in the aforementioned

spectral regions indeed dominate the FTIR spectrum of microorganisms.

3.2 Fourier-Transform Raman (Raman) spectroscopy

Both FTIR and Raman are vibrational spectroscopic methods, that is, they detect

vibrations in the covalent bonds between atoms [40]. But while FTIR spectroscopy uses

infrared radiation to induce vibration directly, Raman spectroscopy employs monochromatic

laser radiation in the regions of near infrared (NIR), visible light and the near ultraviolet

regions to excite electrons to a virtual energy state. The electrons then relax back into an

intermediate vibrational energy state before complete relaxation [2, 10].

3.2.1 Scattering in Raman spectroscopy

Electronic scattering, the interactive process between radiation and matter causing the

photon to change direction, comes in two forms: Elastic and inelastic [44]. Elastic

scattering is also known as Rayleigh scattering and inelastic scattering is also known as

Compton scattering. In elastic scattering, the energy of the photon remains unaltered.

In inelastic scattering, some energy is either lost or gained in the process. In the case

where the net change of photon energy is negative, the excitation/relaxation process is

called Stokes or Stokes Raman scattering. If the net change is positive, the process is

called Anti-Stokes or Anti-Stokes Raman scattering. Scattering properties of Raman

spectroscopy and comparison to direct IR absorption is shown in Figure 3.3.

Figure 3.3: Schematic depiction of elastic and inelastic scattering associated with Raman
spectroscopy, compared with IR absorption. From [45].
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3.2.2 Detecting Raman scattering

The photon energy lost during Stokes scattering is temporarily retained in the covalent

bonds between the atoms of the irradiated molecule. However, the now-excited covalent

bond will, after a short retention time, emit its surplus energy as an infrared photon

[40]. The retention time must be so long that no fluorescence interferes with the Raman

signal, or the experiment must be designed so that there is no fluorescence at all. This is

because only a tiny fraction of photons, about one in a million, are excited/relaxed via

a Stokes/Anti-Stokes pathway. In fact, sample fluorescence is 107 times stronger than

Raman scattering [40].

One way of ensuring adequate retention time is to use a NIR pulse laser as the source

of radiation. NIR energy pulses create sufficiently large energy gaps between the virtual

energy states and the vibrational energy states [10, 44]. Also, the number of transitions in

the NIR region are fairly few, helping to further reduce or diminish the fluorescence.

There exists a trade-off between strength of Raman effect (Pscattered ∝ I0
λ4

) and fluores-

cence from an incoming laser beam. Among the common laser frequencies are 532 nm

(red/green light), 785 nm (NIR) and 1064 nm (NIR). There is less fluorescence at 1064

nm, but the Raman signal is 16 times weaker than for a 532 nm laser, all other conditions

remaining the same [46].

3.2.3 Measuring a Raman spectrum

Like FTIR, Raman spectra are reported in wavenumbers ν̃ with cm−1 as units. However,

the x-axis unit is not the wavenumber, but rather the Raman shift, denoted ∆ν̃ and

derived using the formula

∆ν̃ =

(
1

λ0
− 1

λvib

)
× 107nm

cm

where λ0 is the incident wavelength (from ground state to virtual state) and λvib is the

vibrational Raman spectrum wavelength. For example: Given an incident radiation

wavelength of 1064 nm (ν̃ = 9399 cm−1), we detect an IR photon with a wavelength of

1292 nm (ν̃ = 7740 cm−1). Using the above formula, we can determine that the Raman

shift for the given photon was ∆ν̃ = 1659 cm−1, a typical wavenumber corresponding to

the amide I bond in proteins. The Raman shift is not dependent on the incident laser beam,

only on the absorbing chemical bond [47]. The more photons of this exact wavelength

detected, the more intense the signal. Figure 3.4 shows the raw Raman spectra of the

Klebsiella data set examined in this study. Note the use of arbitrary units on the y-axis,

as opposed to absorbance/transmittance for FTIR.
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Figure 3.4: Raw spectrum of Raman spectrum for the Klebsiella data set under study.

3.3 Matrix Assisted Laser Desorption Ionisation Time-

Of-Flight (MALDI-TOF) mass spectrometry

The scope of mass spectrometry is to produce and subsequently weigh ions of compounds

for information about molecular structure. The mass spectrometer is a device constructed

to achieve this goal [13]. There are several different types of MS that can be used for

both qualitative and quantitative analysis [48]. Once such way of qualitative analysis is to

classify microorganisms by detecting certain species or even strain specific signal molecules

present in the sample [23]. This type of analysis has enjoyed widespread application in

both clinical practice [12, 49, 50, 51, 52] and the food industry [11, 38, 53].

One of the major advantages of MS is that, given a reference database of spectra, it

can accurately classify microorganisms, sometimes down to strain level [11, 49] in a matter

of minutes [48]. What’s more, Wenning et al. [11] showed that MALDI compares to and

for some classes of bacteria even outperforms FTIR spectroscopy in terms of identification

rate.

3.3.1 Principles of mass spectrometry

The core principle of MS is to ionise the molecules or molecular fragments in a sample and

then measure the time it takes for them to reach a detector [13, 39]. This time-of-flight

will depend on its mass-to-charge
(
m
z

)
ratio. The net charge of most compounds is usually

+1 because ionisation is achieved by bombardment of protons, so the correct mass will be

m− 1. Overall, calculating m
z

is a straight-forward operation.

One of the main distinctions in MS is the one between so-called hard and soft ionisation
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[13]. Hard ionisation involves extensive molecular fragmentation into ions, often to separate

the components or functional groups of the molecule under examination [13]. Needless

to say, for large biomolecules weighing up to hundreds of kilodaltons (kDa) [39], such

fragmentation is undesirable, if not to say completely pointless. MALDI is a soft ionisation

technique, causing little molecular fragmentation [11] and preserving the original molecular

ion M+ or fragmenting it into a few, large compounds.

The macro-ions are then subjected to an electric field and hit the detector after a certain

time-of-flight, depending on m
z

. Ions of similar m
z

ratio hit the detector simultaneously and

their number relative to the total number of detections determine their relative intensity

in the recorded spectrum [13]. The results are then plotted in a coordinate system with
m
z

on the x-axis and relative intensity on the y-axis. As an example, the raw spectra of

MALDI data from the Klebsiella data set is shown in Figure 3.5.

Figure 3.5: Raw spectra of MALDI data from the Klebsiella data set.

Each peak in Figure 3.5 corresponds to a specific ion, for example a protein fragment

[11]. Knowledge of the protein’s likely fragmentation pattern, combined with fragmentation

data from a spectrum, serves to identify the protein or its abundance relative to other

significant proteins; such levels or occurrences are genus, species of even strain specific - a

fingerprint [11, 39].
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3.3.2 Biomolecules detected by MALDI

Whereas FTIR and Raman both address the entire metabolic fingerprint of the biomolecule,

MALDI-TOF delimits itself to primarily measure protein levels [12, 53], predominantly

the abundance of ribosomal proteins in the m
z

range between 4 and 13 kDa. In complete

cell MS [2, 54, 55]. These are known to display clear inter-species differences, but lower

strain-specific variation than the aggregate of biomolecules measured by FTIR and Raman

[2], and has previously achieved a lower percentage of correct identification at the strain

level [11]. Nevertheless, Sandrin et al. [54] concluded in their review of quantitative

profiling by MALDI on the strain level, that while results between studies and for different

techniques varied significantly, accurate identification is possible.
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Chapter 4

Multivariate methods

In spectroscopy, one often finds oneself with data sets where the number of variables far

exceed the number of samples [19, 56]. It is not uncommon to have a sample size of less

than one hundred, while the number of variables reaches several thousand. The data are

modelled as a matrix X, with samples as rows and variables as columns. Yet, because the

variance within each column vector xn is rather small due to the similarity of each sample,

it is possible to explain most of the variance of the entire data set in only a few dimensions.

This variance is described through principal components (PCs), and determining these

PCs is the purpose of PCA [57].

But before analysis, the data set needs to be both preprocessed to remove unwanted

mechanical, physical or biological noise from the data, and pretreated to emphasise its

important information [58].

In Section 4.1, a motivation for data preprocessing is given and the Extended Multi-

plicative Signal Correction (EMSC) algorithm for data preprocessing of FTIR and Raman

is presented. In Section 4.2, we give a short description of the modes of data pretreatment

used in this study. Finally, in Section 4.3, the data analysis methods used in this thesis

are explained.

4.1 Data preprocessing

The raw spectra shown in Figures 3.2 and 3.4 above provide a lot of information, some

of which is important and some which can be disregarded [59]. Sifting out the relevant

information is essential to be able to statistically analyse and identify, classify or characterise

the molecule or microorganism at hand. Proper preprocessing of the sample spectrum

facilitates successful further analysis, even though the measurement process might be

burdened by inaccuracy.

Possible sources of error in measurement are numerous in spectroscopic analysis.
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Zimmermann and Kohler [60] list a few: Chemical pollution of the sample in analysis

or simply a poor sample; a multitude of atmospheric pollutants such as CO2 or water;

unwanted or unaccounted-for refraction or scattering effects from the spectroscopy itself

may lower the quality of data acquired from the measurement; instrumental errors and

anomalies. Naturally, one seeks to find some way of identifying and removing or at least

reducing these impairments before analysing the data, while at the same time preserving or

even accentuating important biochemical information [61]. In short: The ultimate purpose

of preprocessing is to identify, separate and attenuate or remove unwanted non-biochemical

information from the data set.

4.1.1 The Savitzky-Golay filter

First proposed in 1964, the Savitzky-Golay [62], or convolution [63] filter, is a numerical

tool for preprocessing spectral data. The procedure relies on two conditions: That the

data points be evenly distributed along some axis, and that the function be continuous.

Both conditions are met by FTIR spectroscopy [60].

Each data point on the spectrum represents the intersection of some absorbance value

along the y-axis and some wavenumber along the x-axis. Centred in this point, a number

(denoted m) of neighbouring points are selected, the aggregate of which (2m+ 1) is called

the window size. A polynomial of predetermined order (often quadratic or quartic [60])

is then fit to these points by least squares regression. The neighbouring points are given

weighting coefficients based on proximity to the centre point, facilitating more thorough

smoothing of the spectrum. Finally, the spectral derivative of this polynomial is taken.

This can be done any number of times, but is usually done twice to preserve and accentuate

peaks, see Figure 4.1 below. Then the window moves to the next data point and repeats

the process.

Other important effects of taking the derivative are to remove additive variations in

the data set and altering the signal-to-noise-ratio [56].

For the SG algorithm to work properly, a full set of neighbouring points must exist for

all data points. This means that unless some preventive measure is taken, the m first and

last border points of the spectrum will be truncated. A shortcoming of the original model,

this was improved upon by Gorry [63]. However, this is not often a problem with FTIR

as the spectrum consists of several thousand data points, the optimal window size is but

a tiny percentage of this [60], and the most valuable information is rarely found on the

edges [13].

Selecting an appropriate window size is still important in order best to obtain the

data desired. Zimmermann and Kohler [60] show that the optimal window size depends

on both the nature of the spectrum under analysis and the order of polynomial chosen:
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Figure 4.1: The 2nd order derivative, unlike the 1st, preserves the peak x-coordinate. From
[64]. Arbitrary axis units.

A higher-order polynomial, say quartic, is more prone to overfitting, i.e. also including

random error or noise in the model than for a lower-order polynomial, say quadratic. A

large window size will smooth high-frequency noise better than a small, but may at the

same time also remove important information contained in narrow peaks.

4.1.2 Deriving the EMSC model

EMSC, as described in [56, 59, 65], is an extension to the Multiplicative Signal Correction

(MSC) model developed in the 1980s [66]. The extension was developed because MSC

sometimes failed to adequately correct spectra with higher-order baseline effects [65, 67].

EMSC takes this problem into account and provides a model for correcting spectra using

a higher-order polynomial. Rinnan, van den Berg and Ellingsen [61] elaborate further

on the similarities and differences between MSC and EMSC. EMSC also normalises the

spectrum with respect to some reference spectrum.

Absorbance and transmittance

When radiation of intensity I0(ν̃) hits a cell or other kind of sample, not all of the radiation

is transmitted through the sample; some might be scattered or absorbed. The definitions

of transmittance and absorbance are shown in equations (3.1) and (3.2) above.

A(ν̃) is also given by Beer-Lamberts law [13], stating that

A(ν̃) ≈ k(ν̃)cb (4.1)

where, in a transparent sample with a single absorbing component, k(ν̃) is the characteristic
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absorbtivity of said component for a certain wavenumber, c is the component concentration

in the sample and b the thickness of the sample, commonly referred to as optical pathlength

(unit: cm). Generalised for N absorbing components, (4.1) becomes

A(ν̃) ≈ b
N∑
n=1

cnkn(ν̃) (4.2)

where cn is the concentration and kn(ν̃) the absorptivity of sample species n, respectively.

Scattering

Absorption is, as previously mentioned, not the only physical effect affecting the total

transmittance; there is also scattering. A fraction of I0 might be scattered by the sample

to avoid detection. This effect is denoted by σ and inserted in (3.2) such that

A(ν̃) ≈ −logσI(ν̃)

I0(ν̃)
= −log(σ)− log I(ν̃)

I0(ν̃)
(4.3)

The − log(σ) term in (4.3) corresponds to providing (4.2) with an additive term s so

that

A(ν̃) ≈ b

[
N∑
n=1

cnkn(ν̃)

]
+ s (4.4)

describing the superposition of absorbances for N chemical components. The optical path

length b is assumed to be equal for all components. cn is the concentration and kn(ν̃)

characteristic, wavelength-dependent absorptivity, both of component n. s is the additive

baseline effect.

Averaging spectra

Because of the assumed collinearity between samples, the average x̄(ν̃) of all spectra is a

good approximation to each sample. As such, every sample spectrum can be expressed by

its deviation ∆kn(ν̃) from the mean:

kn(ν̃) = x̄(ν̃) + ∆kn(ν̃) (4.5)

Summing up for all components in the sample, (4.5) and (4.4) combine to become

A(ν̃) = b

[
N∑
n=1

cnx̄(ν̃) +
N∑
n=1

cn∆kn(ν̃)

]
+ s (4.6)
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Assuming that
∑N

n=1 cn constitutes all possible spectra, the sum of these must add up to

one:
N∑
n=1

cn = 1 (4.7)

Finally, applying (4.7) to (4.6), produces

A(ν̃) = b

[
x̄(ν̃) +

N∑
n=1

cn∆kn(ν̃)

]
+ s (4.8)

which may also be stated as the the statistical model

A(ν̃) = bx̄(ν̃) + s+ e(ν̃) (4.9)

where s is the additive scattering effect, b the multiplicative optical path length and the

residue e(ν̃) ≡ b
∑N

n=1 cn∆kn(ν̃). The unknown parameters s and b are estimated by least

squares regression.

Correcting the spectra based on (4.9), we get

Acorr(ν̃) =
A(ν̃)− s

b
(4.10)

also known as the Multiplicative Signal Correction (MSC). It accounts for additive and

multiplicative effects, but only in the case that the baseline is linear. This does not always

hold true and calls for an extension of (4.9) to include baseline polynomials of higher order:

A(ν̃) = bx̄(ν̃) + s+ d1ν̃ + d2ν̃
2 + . . .+ dnν̃

n + e(ν̃) (4.11)

Here, as with MSC, the coefficients d1, d2, . . . , dn are all calculated by least squares

regression. The corresponding extension of (4.10) is as follows:

Acorr(ν̃) =
A(ν̃)− s− d1ν̃ − d2ν̃2 − . . .− dnν̃n

b
(4.12)

where A(ν̃) is the wavenumber-dependent absorption, s is the additive scattering effect,

dn are coefficients, ν̃n are terms of a higher-order baseline-correcting polynomial, and b is

the multiplicative optical path length. This is the final version of the EMSC model. In

the case when the model is extended to a quadratic polynomial, it is often referred to as

the basic or standard EMSC model [65].
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4.1.3 Notation in pretreatment and analysis

In the following, matrices are denoted in capital bold-face (e.g. X), vectors in lower case

bold-face (e.g. t) and scalars in lower case italics (e.g. b). Furthermore, principal compo-

nents are written as subscripts, so that for A principal components, TA = [t1t2 . . . ta . . . tA].

Block numbers are written as superscripts: The concatenated matrix of B blocks, X, may

also be written as X = [X1X2 . . .Xb . . .XB]. A superscript t denotes the transposed of

the matrix or vector in question.

4.2 Data pretreatment

After preprocessing, it is necessary to adjust the data set so that it is optimally prepared

for the subsequent statistical analysis. This step is also called pretreatment [58].

Van den Berg et al. [58] divide data pretreatment into three classes, which are applied

in the order they are listed here: Centring, scaling and transformation. Centring is simply

subtraction of the mean from each column of the data set. Scaling is an important part of

pretreatment in a number of phenotyping techniques, but is rarely performed on any of the

data types we use in this study and hence only mentioned. Transformation is nonlinear

conversion of the data to correct for heteroskedasticity, or fluctuations in variance between

data blocks.

In this study, (S)PLSR and (S)MBPLSR models are subject to different types of

pretreatment. Whereas both the descriptor and response data of single-block PLSR

routines in this study are only mean-centred, MBPLSR routines employ a more elaborate

pretreatment. The descriptor data is pretreated block-wise. Each block 1 ≤ b ≤ B is first

centred according to

Xb = Xb
0 − 1x̄b

where Xb is the mean-centred descriptor data block b, Xb
0 is the non-centred descriptor

data, 1 is a matrix whose dimensions are equal to Xb but whose elements are all 1, and x̄b

is the mean value of each column of Xb. Then each block is divided by its Frobenius norm

X̂
b

=
Xb

‖Xb‖F

where X̂
b

is the pretreated block and Xb is the mean-centred block. The response data

undergoes centring in the MBPLSR routines.
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4.3 Data analysis

Preprocessed and pretreated data usually show a high degree of collinearity - they are

intended to do so. Despite the number of samples, most of the total variance in the set -

both in X and Y - can often be explained adequately in only a few dimensions by methods

based on latent variables [19]. These methods function by computing the latent variables,

or principal components (PCs), that explain the most of this variance. Analysis of the

latent variables is commonly referred to as Principal Component Analysis (PCA).

Several algorithms may be used to perform PCA, of which Singular Value Decomposition

(SVD) and Non-Iterative PArtial Least Squares (NIPALS) are perhaps the most common.

One key difference between the two is that SVD extracts all the PCs at once, while NIPALS

does so sequentially; one at the time [68]. Wu, Massart and de Jong [68] also showed

that for a sufficiently large amount of variables, i.e. several hundred, the SVD algorithm

required far less computation (in Megaflops) than sequential algorithms to obtain the

preselected number of PCs. In this study, SVD is used as a basis to extract starting vectors

for the various PLSR algorithms employed. Scores and loadings are then calculated by

NIPALS algorithms.

A ubiquitous prerequisite in the upcoming section is exact row-to-row correspondence

between the descriptor data X and response data Y; columnar correspondence is not

required.

4.3.1 SVD

Shlens [57] provides an excellent explanation of the SVD algorithm. The general formula

for SVD is [68, 69]

X = UΣVt, (4.13)

where X is an n×m matrix of rank r, n and m being the number of samples and variables,

respectively. V = [v̂1, . . . , v̂r] is the set of orthonormal eigenvectors with corresponding

eigenvalues λ1, . . . , λr for the symmetric matrix (XtX)v̂i = λiv̂i. σi ≡
√
λi are called

the singular values of the decomposition. These are the r first diagonal entries of Σ.

U = [û1, . . . , ûr] is the set of orthonormal vectors defined by ûi = 1
σi

Xv̂i.

In this study, SVD is used to extract start weights to be used in the NIPALS algorithm

for PLSR and MBPLSR (described below), guaranteeing a unique solution. Equation

(4.13) above shows the basic version of SVD for PCA. For PLSR, with both descriptor data

X and response data Y, one can perform SVD on M ≡ XtY to obtain starting weights

for both sets (wa for X and ca for Y). These vectors are û1 and v̂1, the first columns of

U and Vt, respectively. The tildes signify normalisation to a length of 1.
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4.3.2 Partial Least Squares Regression (PLSR)

PLSR is the basic statistical model employed to study the relationship between a model

based on a set of descriptor data X, and a set of unknowns, or response data Y [28, 70].

This prediction is achieved through the model

X = 1xx̄ + TAPt
A + EX,A

Y = 1yȳ + TAQt
A + EY,A

where 1X and 1Y are matrices of dimensions equal to X and Y, respectively, x̄ and ȳ are

the mean of Y and X, TA is the score matrix, QA are the loadings of YA and PA of X,

and EX,A and EY,A are the residuals after A principal components have been calculated.

Notice how the score vectors TA = [t1 . . . tA] are common to both X and Y, assuring

mutual relevance. Figure 4.2 provides an illustration of the algorithm, explained below.

Figure 4.2: Illustration of the PLSR algorithm. From [19], page 343.

The algorithm for normal PLSR in this study goes as follows:

Step 1. Initialisation.

• Select two sets of variables: X and Y.

• Pretreat data according to single-block PLSR routine presented in Section 4.2.

Step 2. Calculation of PCs. The following procedure is run for each PC to be calculated.

Each PC is computed from the residual matrices EX,a−1 = X and EY,a−1 = Y from the

previous PC-calculation.

• Decompose XtY to UΣVt by SVD and extract the first column w of U as initial

loading weights.
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• Calculate X scores: t̃ = Xw

• Normalise the score vector: t = t̃
‖t̃‖ .

• Calculate Y loadings: q = Ytt.

• Calculate X loadings: p = Xtt.

Because SVD (ball point 1) extracts the w with the highest variance to begin with, this

particular algorithm converges after the first iteration.

Step 3. Deflation. Höskuldsson [70] showed that in PLS routines, deflation on X or

Y alone would suffice and that this would indeed enhance the computational speed of

the algorithm. Nevertheless, deflation procedures for both matrices are performed in this

study.

Y is deflated according to the formula

• Ya+1 = Ya + taq
t
a.

Recall from the PCA algorithm that some loading vector p is required to deflate X.

This first needs to be defined through the projection of X onto t:

• p = Xtt
ttt

.

Then, for PC a, X is deflated according to the formula

• Xa+1 = Xa − tap
t
a

just as in PCA. The algorithm is repeated on Xa+1 until the desired amount of PCs are

obtained.

4.3.3 Sparse PLSR (SPLSR)

For large matrices of spectroscopic data where variance between samples is small, it is

not always necessary to include all variables in the calculation of PCs. Usually, careful

selection of the most informative variables will suffice. Karaman et al. [42] showed that

sparse PLSR, even with only a fraction of the original variables selected, still performed

well and proved stable in selecting the relevant variables.

Sparsity

Based on SVD where M = XtY = VX∆VY , the optimisation problem raised by imposing

sparsity is formulated by Zou et al. [71] as

min
w,c
‖M−wct‖2F + 2λ|w| (4.14)
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where w and c are the loading weights of X and Y, respectively, ‖ ‖F is the Frobenius

norm and 2λ|w| is the penalty function for so-called soft thresholding. Note that the

threshold value λ of this section is different from the eigenvalue λi of Section 4.3.1 on SVD

above.

Soft thresholding

Lê Cao et al. [26] set their soft thresholding function to

STλ = sign(z)(|z| − λ)+ (4.15)

where z ∈ R are the elements of a loading weight vector, λ is a threshold value and the

function (z)+ ≡ max(0, z). (4.15) implies that any element z ≤ λ is forced to value 0 and

z > λ gets λ subtracted from its value. The number of variables deemed ‘worthy’ decreases

as λ is increased; λ = 0, conversely, corresponds to ordinary PCA/PLSR. In principle, this

soft thresholding can be applied to both X and Y in (4.14), but because of the often low

number of variables in Y, it is usually applied to w only [29]. A visualisation of how soft

thresholding impacts on variables selection for sparse PLSR algorithms is shown in Figure

4.3. The dotted lines represent the threshold, the blue line the original sample spectrum

and the orange line the effect of soft thresholding on the selected variables.

Figure 4.3: Visualisation of soft thresholding. Figure courtesy of Valeria Tafintseva,
researcher at NMBU.
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The algorithm

In their 2014 article, Karaman et al. [29] present two analogous methods for calculating

SPLSR, one by themselves and one by Lê Cao et al. [26]. The MATLAB-functions in this

study use the second one.

Step 1: Initialisation.

• Select two sets of preprocessed and pretreated variables: X and Y.

• Define Ma−1 = Xt
a−1Ya−1.

• Decompose Ma−1 by SVD to obtain VX∆Vt
Y .

• Assign the first singular vectors of VX and Vt
Y as start super loading weights of X

and Y: wold = va,x and cold = va,y

Step 2. Calculation of PCs. Repeat until convergence of wa and ca.

• Calculate new X loading weights: wnew = STλ(Ma−1cold)
‖STλ(Ma−1cold)‖

.

• Calculate new Y loading weights: cnew =
Mt
a−1wold

‖Mt
a−1wold‖

.

• Check for convergence.

• Update both loading weights: wold = wnew and cold = cnew.

No scores are calculated directly in this algorithm until convergence.

Step 3. Deflation.

• Calculate X and Y scores: ta =
Xt
a−1wnew

wtnewwnew
and ua =

Yt
a−1cnew

ctnewcnew
.

• Calculate X and Y loadings for deflation: pa =
Xt
a−1ta
ttata

and qa =
Yt
a−1ta
ttata

.

• Deflate X and Y: Xa = Xa−1 − tap
t
a and Ya = Ya−1 − taq

t
a.

4.3.4 Sparse Multiblock PLSR (SMBPLSR)

Multiblock PLSR implies that there is more than one descriptor matrix containing the

same amount of samples: X = [X1 . . .Xb]. These are regressed upon by assembling a

common score vector t to deflate X, gathering information from all blocks [29].

The algorithm largely remains the same if no sparsity is imposed; the difference is

explained in the relevant ball point below.

The following NIPALS-based algorithm was proposed by Karaman et al. [29], who

based their algorithm on the original MBPLSR algorithm developed by Wangen and

Kowalski [72].
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Step 1: Initialisation. Unlike the algorithms for NIPALS and PLSR, this algorithm

employs subscripts for PC number throughout. This is to show that for some of the

steps, using information from earlier PC calculations is a necessity. Furthermore, with the

exception of multiple descriptor blocks, the initialisation steps of SMBPLSR are identical

to those of SPLSR.

• Select preprocessed and pretreated sets of descriptor and response data X0 = X =

[X1, ...,Xb, ...,XB] and Y0 = Y

• Define Ma−1 = Xt
a−1Ya−1.

• Decompose Ma−1 by SVD to obtain VX∆Vt
Y .

• Assign the first singular vectors of VX and Vt
Y as start super loading weights of X

and Y: wa = va,x and ca = va,y

Step 2. Calculation of PCs. Estimation of global parameters

• Define super scores of Y: ua = Ya−1ca.

– SMBPLSR: Select loading weights based on soft thresholding: wa =
STλ(X

t
a−1ua)

‖STλ(Xt
a−1ua)‖

– MBPLSR: Calculate loading weights: wa =
Xt
a−1ua

‖Xt
a−1ua

Estimation of block parameters. First, wa is split into non-normalised block loading

weights: wa(b).

• For each block 1 . . . b . . . B, block loading weights are normalised: wb
a = wba

‖wba‖
.

• Calculate block scores: tba = Xb
aw

b
a for each block Xb.

• Append block scores: Ta = [t1a . . . t
b
a . . . t

B
a ].

• Calculate X super weights: wsa = [‖wa(1)‖ . . . ‖wa(b)‖ . . . ‖wa(B)‖]t.

• Calculate X super scores: ta = Tawsa.

Back to estimation of global parameters:

• Calculate new super loading weights of Y: ca =
Yt
a−1ta

‖Ttaua‖
.

Step 2 is repeated until convergence of wa.

Step 3. Calculating loadings for deflation and deflating. This step is a fusion of steps 3

and 4 in [29].

• Calculate X and Y loadings: pa =
Xt
a−1ta
ttata

and qa =
Yt
a−1ta
ttata

.
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• Deflate X and Y: Xa = Xa−1 − tap
′
a and Ya = Ya−1 − taq

′
a.

Once an iteration of the algorithm is completed, Xa and Ya are updated and stages 2.

and 3. repeated.

According to Karaman et al. [29] and Hassani et al. [73], deflation can be done

upon either block or super scores of X. Both refer to Westerhuis and Smilde [27] who

showed that deflating upon super scores leads to mixing of information between blocks

and recommended deflating only on Y. Yet, because this method causes super loading

weights to become non-sparse, it is not a viable deflation method under the constraint of

sparsity. Therefore, in this study we chose to deflate using super scores on both X and Y.
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Chapter 5

Model validation, script and data set

Once statistical analysis has been undertaken, we must employ methods both to validate

the stability and performance of the model, and to make the results as easily interpretable

as possible. Easy interpretation can be achieved by presenting the results in a visually

meaningful way.

In Sections 5.1 and 5.2, we present methods for validating the established statistical

model. Next, in Section 5.3, we explain how the predictive ability of the analysis is

measured, based on the previously presented validation methods. We then explain why

score and correlation loading plots were chosen for visualisation in Section 5.4. Finally, in

Section 5.5, we briefly describe the code behind the statistical methods and functions used

for analysis.

5.1 Cross Validation (CV)

CV is a model validation technique used to check how well some data set at hand will be

able to predict some other independent data set [22, 24]. In this context, independence

means using keeping all variables, such as spectrometer and other instrumentation, and

growth conditions, constant, while varying the type of microbe grown. Variation can be in

strain, species or genus.

For some data set X, a subset of samples, the test set X̂, is left out. Then, a model

is established based on the remaining data set X̃. Following the calibration, X̃ is used

to predict X̂ and the degree of concordance between the two determines the success of

the prediction. When this stage is done, another test set is extracted and the process is

repeated until all samples have been used.

Test sets can be extracted in numerous ways, and many strategies have been given

their own names [74]. In this study, we chose to use two of the most common strategies,

namely ‘Venetian Blinds’ and ‘Full CV’. For Venetian Blinds, for k subsets (‘k-fold’), every
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kth sample is extracted. This configuration is mainly employed on the SMBPLSR runs

described. In the data sets analysed in this study, samples are listed so that sample 1, 2

and 3 belong to the same strain, 4, 5, 6 to the next, etc. Therefore, we chose to run a

three-fold Venetian Blinds configuration so that no strain or group of samples would be

completely removed from any iteration of the CV procedure. For certain analyses of the

Klebsiella data set, we instead used eight-fold Venetian Blinds CV to better ascertain the

results.

For Full CV, also known as full leave-one-out CV, one sample is extracted from the

data set before analysis. In practice, leave-one-out CV on an n-sized samples set equals

an n-fold Venetian Blinds. More on how full leave-one-out CV was in the next section.

5.2 Cross Model Validation (CMV) and frequency

plots

Cross Model Validation could also be called a meta or two-layer CV [75]. While CV only

runs a single loop to optimise the model, CMV runs two, one internal and one external

[22, 42]. The internal loop corresponds to CV, while the outer loop is left out as an

‘independent’ set. Westad, Afseth and Bro [75] provide a simple yet apt illustration of this

in Figure 5.1.

Figure 5.1: Visualisation of the CMV and CV loops. The black row represents the external
set for CMV, while the grey row represents the internal CV set. From [75], page 325.

It is worth noting that sparse PLSR methods involve some degree of optimisation, and

as such may suffer from overfitting [42]. CMV is employed as a measure to prevent this.

In this study, we used full leave-one-out CV as CMV method on both data sets

when running preliminary SPLSR runs on the data. Specifically, for each data type

(FTIR/Raman/MALDI), we analysed the entire spectrum and, for each CMV step,
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recorded the sparse regression coefficients that were selected. The regression coefficients

had their values set to one after each step. As the CMV progressed, often-selected

coefficients (corresponding to persistent strong signal in variables) accumulated faster than

seldom selected ones. After all the CMV steps had been taken, the total accumulated

scores for each variable was plotted in a bar plot, displaying how often a variable had been

chosen. Blocks to be used in the subsequent SMBPLSR models were selected based on the

frequency of selected variables in the frequency plot [42]. A sample frequency plot based

on the FTIR data from the B. subtilis/E. coli data set is shown in Figure 5.2. Note that

this frequency plot was made using Venetian Blinds only for illustrative purposes and is

not used later in the thesis.

Figure 5.2: Dummy frequency plot based on FTIR data from the B. subtilis/E. coli data
set.

5.3 Misclassification and success rates

In spectroscopy, an often-used method of assessing the predictive ability of a model is to

calculate the number of misclassifications (NMC). The way the model works is simply to

relate the elements of the predicted Ŷ to some threshold value or classification boundary.

Each column yn in the indicator matrix Y produced from the response data contains 0’s

or 1’s based on actual classification: y1 contains 1’s for all samples of group 1 and 0’s for

all other samples, y2 1’s for group 2 and 0’s for all other groups, and so on. The predicted

values ŷn are based on the model

Ŷ = X̄β + β0 (5.1)
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where X̄ is the pretreated descriptor matrix, β are the regression coefficients and β the

intercept. If, for an element i, j, |Yi,j − Ŷi,j| < δ, δ being a threshold value, the predicted

element Ŷi,j in Equation (5.1) is classified according to the corresponding element yn,i and

assigned a value of either 0 or 1. All elements of Ŷ are predicted this way. In this study,

we used δ = 0.5.

For a two-class system, one often labels the classes in terms such as ‘case’ and ‘control’

[76] and assign values 1 - or positive - to case, and 0 - or negative - to control. For each

prediction, the turnout must be either True or False Positive (TP/FP ) or True or False

Negative (TN/FN). This system, called the confusion matrix or contingency table [76], is

displayed in Figure 5.3.

Figure 5.3: Classification of a two-class system. Predicted values on the y-axis are compared
with actual reference values on the x-axis. From [76], page 172.

After classification, the number of misclassifications (NMC) can easily be calculated

by summing the number of FP ’s and FN ’s: NMC = FP + FN . But this number is in

itself of limited usefulness [76]. By dividing it on the number of samples in the data set

(N), one can obtain the misclassification rate (MCR) [76, 29]:

MCR =
NMC

N
=
FP + FN

N
(5.2)

Where NMC is the number of misclassifications, N is the number of samples, FP are the

false positives and FN are the false negatives.

The success rate (SR) is simply the percentage of correctly predicted samples: SR =

(1−MCR)× 100%. In the following, this number will be the most often reported when

assessing any model’s predictive ability.

The confusion matrix of Broadhurst and Kell [76] is extendable to higher-class systems,

in which case (5.2) will show as what class some sample was falsely identified. In addition

to this, grey-scaling can further enhance intuitive understanding. Hue saturation is

proportional to fraction size. Thus, for a completely correctly identified set, all diagonal

entries are black and all the others white. However, this is rarely the case, as the example
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in Figure 5.4 shows.

Figure 5.4: Sample figure of a confusion matrix for eight classes, showing the result of
three-fold CV of FTIR data from the B. subtilis/E. coli data set. AOpt is the optimal
number of principal components for the model.

5.4 Score and correlation loading plots

Score plots are a common modern technique of visualising sample variation within multi-

variate data [19, 29, 77]. Plots can be shown both for block and global scores. The purpose

of the score plot is to give a two-dimensional visualisation of the variance in the data set

[19, 29]. This is done by plotting a set of scores from two different latent variables of the

same data set against each other, showing how each sample in the data set deviates from

the mean (origin). Assuming collinearity between samples, we can expect similar samples,

for instance the biological replicates between strains, to show similar patterns of deviation

for each latent variable in the global scores. The different groups of samples in the plot can

be named or colour-coded to enhance interpretability even further [19, 29, 77]. In the block

scores, we can zoom in on differences and similarities in chemical composition between

samples. This is especially useful when examining for instance phenotypic response to

varying growth conditions, or what type of biomolecule explains the most of the variation

between strains [2]. Both examples just mentioned are essential to the scope of this thesis.
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A sample score plot is shown in Figure 5.5, where global scores of latent variables 1 and 4

are plotted against each other for an SMBPLSR run on four blocks of FTIR data.

Figure 5.5: Sample figure for a global score plot of PC1 vs PC4 from a four block SMBPLSR
model on FTIR data.

Correlation loading plots are used to visualise the correlation between variables for

two selected latent variables [19, 29]. A sample plot is shown in Figure 5.6, showing

the correlation between variables in the FTIR lipid region for a: All block variables and

b: Sparse block variables. Each number in the plot represents the wavenumber of the

examined variable.

The outermost circle in the plot denotes 100% correlation between the two components

of the variable; the innermost, dotted circle, a correlation of 50%. As seen in Figure 5.6a,

these plots have a tendency of becoming cluttered. Normally, we are most interested in the

variables explaining the most information, in this case the variables remaining after sparsity

has been imposed, shown in Figure 5.6b. For both subplots, there are tendencies of strong

correlation or anticorrelation between variables in the lipid region. For further examination

not shown in these sample plots, it is possible to add data points corresponding to certain

experimental conditions, such as susceptibility to chemicals [19] or diet [29].

5.5 Test scripts

Two main MATLAB scripts were set up for this study, one for each data set. These

two scripts share a common main setup originally done by Valeria Tafintseva, reseracher

at NMBU, but was modified and extended by the author for the specific purposes of
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Figure 5.6: Sample figure for a correlation loading plot of block 1 (lipid variables) from a
four block SMBPLSR model on FTIR data. a: All block variables, b: Sparse variables.

this study. The script id script.m, presented in Appendix C.1, is used to analyse the

identification data set, whose results are presented in Chapter 6. The script exp script.m,

presented in Appendix C.2, is used to analyse the experimental design data set, whose

results are presented in Chapter 7.

5.5.1 MATLAB functions and other software

The MATLAB software provides packages for both algorithms and allows for the creation

of custom packages. The program The Unscrambler X version 10.4 (CAMO, Oslo, Norway)

software has been used to prepare spectra for the aforementioned scripts.

Most of the functions used in this study are part of the Saisir (fr: ‘to grasp’, metaphor-

ically: ‘to understand’; Statistics Applied to the Interpretation of Spectra in the InfraRed)

package [78]. Saisir is a package of around 200 MATLAB functions, developed by Dr

Dominique Bertrand (Institut National de la Recherche Agronomique (INRA), Nantes,

France) and Dr Christophe Cordella (INRA and AgroParisTech, Paris, France). The

functions are specifically designed for chemometricians. Additional functions based on the

Saisir data structure have been coded or assembled in-house (NMBU), mostly by Professor

Achim Kohler or researcher Valeria Tafintseva. Some functions were made by the author

of this thesis, including the main data scripts used for data processing in this thesis.
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Chapter 6

Results and discussion, identification

This chapter deals with the first part of the scope for this thesis, namely how to use sparse

multiblock methods to establish a connection between metabolic fingerprint by FTIR and

Raman, and protein expression by MALDI. Unless otherwise stated, all data sets and

spectra in this chapter refer to the Klebsiella data set described in Section 2.1. Data sets

are referred to as multiblock sets or simply sets, depending on whether each data type

is represented by one block, or their respective number of selected blocks. For example,

FTIR multiblock set 1 consists of four blocks, while FTIR set 1 means that these four

blocks have been merged into one.

In Sections 6.1 and 6.2, details of the experimental setup are described; how blocks

were selected and demarcated to increase interpretability and computational speed. In

the following four sections, we present and discuss the results of four different SMBPLSR

runs. In Section 6.8, results of the runs are summarised and the most important findings

highlighted, before being discussed in Section 6.9.

6.1 Experimental setup

6.1.1 Preprocessed spectra

In this study, we preprocessed the FTIR data set by applying a 2nd derivative, 2nd degree

polynomial SG filter, using a window size of 9. The data set was further preprocessed by

EMSC with a quadratic extension, also known as standard EMSC [59]. The preprocessed

FTIR spectra are shown in Figure 6.1a.

The Raman data set used in this study was preprocessed by applying a 2nd degree

polynomial SG filter, using a window size of 9, but no derivation. This is in accordance

with the preprocessing techniques of Dieckmann et al. [2] for the same data set. The

data set was further preprocessed by the standard EMSC algorithm [59]. The resultant
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preprocessed spectra are shown in Figure 6.1b.

The MALDI data set was already preprocessed upon receipt, first by using an SG filter

with a window size of 21, then by baseline correction and finally by vector-normalisation.

In this case, however, the preprocessed spectra only made up an intermediate step and

were not used for further analysis. This role was instead taken by a bar code plot [79]. The

bar code plot was set up by selecting the 30 highest-intensity peaks in the preprocessed

spectra. Their y-values were then set to 1, thus omitting their relative intensity in

further pretreatment and analysis. All other values in the spectrum were set to 0. This

preprocessing technique is in accordance with the one used by Dieckmann et al. [2] and

Lasch et al. [79] for MALDI preprocessing. The MALDI bar code spectra are shown in

Figure 6.1c.

Figure 6.1: Preprocessed spectra (FTIR and Raman), and bar code plot (MALDI) from
the Klebsiella data set. a: FTIR, b: Raman, c: MALDI.
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Figure 6.1c shows that the MALDI spectra still contained a large, redundant tail region

(from
(
m
z

)
≈ 1.3× 104). This tail was cut off to increase computational speed.

6.1.2 Significance of appropriate SG filter parameters for opti-

mising Raman spectral analysability

During the data preparation stages, we attempted several different ways of preprocessing

the Raman spectra. Dieckmann et al [2] preprocessed the spectra using an SG smoothing

filter with a window size of 9 and no derivative, followed by vector-normalisation. At first,

we preprocessed the spectra using an SG filter with a 2nd degree polynomial, a window size

of 9 and 2nd derivative taken, followed by standard EMSC [19, 65]. The resultant frequency

plot showed that variables had been selected across the entire spectrum, including areas

known to be of no value to analysis [13]. This frequency plot is shown in Figure 6.2.

Figure 6.2: Discarded frequency plot obtained from a full leave-one-out CMV (51-fold) of
Raman data, using an SPLSR model and discarding 90% of variables. The Raman data
were preprocessed by an SG filter that included taking the 2nd derivative, resulting in a
high signal-to-noise ratio and subsequently poor selection of sparse regression coefficients.

We attributed this undesired selection to a high signal-to-noise ratio in the samples and

attempted to copy the preprocessing procedure used by Dieckmann et al. [2] as described

above in order to attenuate the signal-to-noise ratio, but to no avail. Variables were still

selected throughout the spectrum (not shown).

A combination of the two preprocessing algorithms (our initial attempt and the one

used by Dieckmann et al.) was then attempted: An SG filter with a 2nd degree polynomial

and a window size of 9, but no derivative, followed by standard EMSC. Both model

prediction and selection of sparse regression coefficients improved as a result: For an

43



CHAPTER 6. RESULTS AND DISCUSSION, IDENTIFICATION

eight-fold Venetian Blinds CV, 86% of the samples were correctly identified, compared to

78% for our initial attempt, all other conditions remaining the same. This is in accordance

with findings of Karaman et al. [42], who reported that the predictive ability of Sparse

PLSR methods was poor for high signal-to-noise ratios.

The result of the non-derivative selection of regression coefficients is shown in Figure

6.3b. Our results show that the choice of the preprocessing method was crucial. The

process of taking the 2nd derivative of the Raman spectra did, unlike the FTIR spectra,

increase the signal-to-noise ratio to such a degree that it greatly altered the selection of

regression coefficients and subsequent data analysis, as is easily seen comparing Figures

6.2 and 6.3b.

6.1.3 Selecting relevant spectral regions

One of the major advantages of multiblock methods is their ability to select only the

specific regions containing most of the desired spectral information [27]. To locate the

most important regions of each spectrum, full leave-one-out CMV was run on all data

types in single descriptor runs in order to create frequency plots as described in Section

5.2. In this thesis, we let the frequency plots form the basis for the blocks we selected in

the subsequent sparse multiblock analyses.

Figure 6.3a shows the frequency plot for the SPLSR model using the entire FTIR

spectrum as the descriptor data. The sparsity parameter was set to discard 90% of the

variables, and 10 PCs were calculated. The vast majority of the most frequently selected

regression coefficients were collected from the regions around 1750-1550, around 1400 and

1250-900 cm−1, the former region corresponding to the amide bonds of the protein region

and the latter two to the various bonds associated with carbohydrates. Furthermore, a

minority of the frequently selected coefficients stemmed from the lipid region between

2950-2800 cm−1. This information prompted the creation of FTIR multiblock set 1,

consisting of the following blocks:

• Block 1 from 2950-2800 cm−1.

• Block 2 from 1750-1550 cm−1.

• Block 3 from 1450-1350 cm−1.

• Block 4 from 1250-900 cm−1.

Figure 6.3b shows the frequency plot for the SPLSR model using the entire Raman

spectrum as descriptor data. Blocks were selected following the same principles as those

described for FTIR. Raman multiblock set 1 was constructed; it consisted of the following

blocks:
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Figure 6.3: Frequency plot from full leave-one-out CMV (51-fold) on all data types. Each
data type was analysed by the SPLSR model described in Section 4.3.3. For all analyses,
90% of variables were discarded by soft thresholding. a: FTIR, b: Raman, c: MALDI.

• Block 1 from 3050-2800 cm−1.

• Block 2 from 1700-1550 cm−1.

• Block 3 from 1500-1300 cm−1.

• Block 4 from 1200-750 cm−1.

• Block 5 from 350-100 cm−1.

Figure 6.3c shows the frequency plot for the SPLSR model using the entire MALDI

spectrum, minus the redundant tail region mentioned above, as descriptor data. No clear

variable clustering is evident. Notwithstanding, some incisions were made to redundant
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regions of the data set. The spectrum was reduced to include only the m
z

region between

3000 and 11000 in accordance with existing literature [2, 38, 79]. This data set is from

now on referred to as MALDI set 1.

6.2 Predictive abilities and weighting of regression

coefficients

6.2.1 Correspondence between strain and script names

Table A.1 in Appendix A shows the correspondence between the sample strain names

shown in Section 2.1.2 and their given names in the data script. The six-letter names in

the middle column were used further on in the text and figures, for brevity. The first three

letters refer to species and the final three to group.

6.2.2 Description of input data

After blocks had been selected and redundant regions cut away, we proceeded by running

sparse multiblock routines on all data types. The input data setups we analysed, were

• Analysis 1: FTIR multiblock set 1 as descriptor data, four blocks as described above.

• Analysis 2: Raman multiblock set 1 as descriptor data, five blocks as described

above.

• Analysis 3: FTIR set 11, Raman set 12 and MALDI set 1, in total three blocks.

FTIR and Raman data blocks as described above, were concatenated.

• Analysis 4: FTIR multiblock set 1, Raman multiblock set 1 and MALDI set 1, ten

blocks.

As MALDI set 1 was not grouped after SPLSR, we chose to proceed using only the cut data

set, as described above in Section 6.1.3. For all analyses, we set the sparsity parameters

equal to those for SPLSR, discarding 90% of the variables and calculating 10 PCs. For

the single descriptor-data type analyses, three-fold Venetian Blinds CV was performed in

order to expose possible overfitting and to assess predictive ability. For the multiple-type

descriptor data runs, we increased to eightfold CV. Table B.1 in B lists the global explained

variance in analyses 3 and 4.

1FTIR set 1 means one data block consisting of the four data blocks in FTIR multiblock set 1.
2Raman set 1 means one data block consisting of the five data blocks in Raman multiblock set 1.
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To establish a connection between the predictive abilities of the metabolic fingerprint

produced by FTIR/Raman sets 1, and the protein expression in MALDI set 1, we wanted

to compare both from what regions and what groups the sparse regression coefficients

were selected, and see how this selection was expressed in global and block score plots.

6.3 Analysis 1: FTIR multiblock set 1

Figure 6.4 shows the selected regression coefficients from analysis 1. Regression coefficients

are selected from all subregions and seemed to correspond well with known resonance

frequencies for common biomolecular bonds [13]. The signal strength for each group varied

between subregions, an early indication of differences in chemical composition; strong

signals indicate high prevalence of certain chemical bonds. The success rate for prediction

in this analysis was 96.1%. Only two samples were wrongly identified as OxyHWP.

Figure 6.4: Selected sparse regression coefficients for analysis 1, on FTIR multiblock set 1.

6.4 Analysis 2: Raman multiblock set 1

Figure 6.5 shows the selected regression coefficients from the Raman multiblock set 1

analysis. Signal strength in PneOza, for the upper fingerprint region in particular, differed

from the regression coefficients in analysis 1. No regression coefficients were selected

from block one, covering the lipid region. This was unexpected given the number of

variables of that region being selected in Figure 6.1b. Large numbers of variables were

selected from the protein and upper carbohydrate regions, especially in the OxyHWP
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CHAPTER 6. RESULTS AND DISCUSSION, IDENTIFICATION

group. Furthermore, the success rate of prediction was 84.3%. Most misclassifications

were identified as OxyHWP. Two samples were also misclassified as OxyCB4.

Figure 6.5: Selected sparse regression coefficients for analysis 2, on Raman multiblock set
1.

6.5 Analysis of MALDI set 1

The scattering of regression coefficients in MALDI set 1 (Figure 6.3c) prompted no division

into blocks. Instead, the regression coefficients obtained from the SPLSR analysis were

used for further comparison and are shown in Figure 6.6. The corresponding SR was

82.4%, mostly misclassifying samples as OxyHWP. Two samples were also misclassified as

OxyCB4 (not shown).

Figure 6.6: Selected sparse regression coefficients for MALDI set 1 analysis with SPLSR.
These were obtained before the spectrum was cut as described in subsection 6.1.3.

The tendency of strong signals from OxyCB4 in the protein region was continued;

many of the strongest signals shown by recorded regression coefficients in Figure 6.6 are
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attributed to this group. Almost no coefficients seemed to be selected from OxyCCU,

which for analyses 1 and 2 showed the strongest signal in the lower fingerprint region. In

accordance with existing literature ([2, 38, 79]), most regression coefficients were selected

in the m
z

range between 3 and 10 kDa.

6.6 Analysis 3: Concatenated data blocks, all data

types

Figure 6.7 shows the selection of regression coefficients from concatenated blocks of each

data type analysed by an SMBPLSR routine. Comparing with the regression coefficients

of FTIR multiblock set 1 in Figure 6.4, Raman multiblock set 1 in Figure 6.5 and MALDI

in Figure 6.6, we see a few important changes: Variables were selected far more sparsely

in the lipid and carbohydrate regions in FTIR set 1 than for analysis 1, while variables

were more often selected in the protein and lower carbohydrate regions. For Raman set 1,

the changes were even more clear: Variable selection was almost inverted - only variables

between 350 and 100 cm−1 were selected in both analyses. The number of variables selected

in MALDI was quite high and scattered across the entire spectrum. Regression coefficients

for PneOza and OxyCB4 now seemed to be the strongest, partly in accordance with their

strong signal in the protein regions in analyses 1 and 2.

Figure 6.7: Selected sparse regression coefficients for analysis 3: Concatenated blocks, all
data types.

The corresponding confusion matrix is shown in Figure 6.8. The success rate of

prediction was 84.3%, only slightly better than MALDI set 1 and worse than Raman

multiblock set 1. This time, eight-fold Venetian Blinds CV was used to address the model’s
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predictive ability. We also see that this time, fewer samples were misclassified as OxyHWP,

possibly owing to its apparent absence from the MALDI regression coefficients.

Figure 6.8: Confusion matrix from analysis 3. The CV configuration was eight-fold
Venetian Blinds.

The global scores from analysis 3 are shown in Figure 6.9. All combinations of PC1,

PC2, PC3 and PC4 were plotted against one another. In any plot involving PC1, OxyHWP

was separated from the other groups with only a few borderline overlaps in PC1 vs PC2

and PC1 vs PC4. In any plot involving PC4, we see three distinct tendencies. The first is

that PneOza was clearly separated from all other groups. The second is that OxyCCU

and OxyOma were clustered. The third is that OxyAT1 and OxyCB4 congregated away

from the other groups.

Figure 6.10 shows a selection of recorded block scores plots of the FTIR set 1 from

analysis 3. In PC1 vs PC3, the grouping of OxyHWP was very similar to that in the

corresponding global score plot in Figure 6.9. The block scores showed a slightly better

separation between OxyHWP and any other group, and even managed to split OxyCCU

and OxyOma. Comparing PC1 vs PC4 for the two plots, we see that the separation of

PneOza was still clear in the block scores, although not as pronounced as in the global

scores. In the block scores, we also see that OxyCCU has been properly separated from

the rest and is identifiable as a group.

Figure 6.11 shows the most clearly grouped result from the Raman set 1 block scores.

There is some separation between OxyHWP and the remaining groups, but it is not nearly

as clear as in the FTIR set 1 block scores. Apart from this, the Raman set 1 block scores

bear no clear resemblance to the global scores.
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Figure 6.9: Global scores from analysis 3: Concatenated blocks, all data types.

Figure 6.12 shows the selected set of block score plots from MALDI set 1 in analysis 3.

MALDI represented a rather curious case. Unlike FTIR and Raman, the variance in

MALDI data was not explained in any primary dimension; there was no dominant principal

component (no component even exceeded 10% explained variance) due to the lower degree

of collinearity between samples. This resulted in very little of the total variance being

explained by MALDI in the first one to PCs. First when we plotted PCs from 3 and up

against each other, we saw trends and patterns also evident in the corresponding global

score plots. For example, the MALDI block score plot of PC3 vs PC4 and its global peer

showed striking overall resemblance. A rather clear separation and grouping of OxyCCU

was also present in PC1 vs PC3 in the block scores, but not present in the global scores.

In the MALDI block scores, PneOza was also more consistently clustered than seen in the

global scores. This effect did, as discussed above, not become fully apparent until most of
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Figure 6.10: FTIR set 1 block scores from analysis 3.

Figure 6.11: Raman set 1 block scores from analysis 3.

the global variance in a PC was explained by MALDI.

6.7 Analysis 4: Split data blocks, all data types

Figure 6.13 shows the regression coefficients selected when the analysed data consisted

of FTIR multiblock set 1, Raman multiblock set 1, and MALDI set 1, totalling 10 data

blocks. Comparing with 6.4, 6.5 and 6.6 above, we see that the that selection of variables

in Raman multiblock set 1 to a much higher degree resembled the one from analysis 2.

MALDI set 1 variables were selected far less frequently than for analysis 3, and this time

only variables pertaining to groups PneOza and OxyHWP seemed to be selected.

The biological interpretation of this result is that in analysis 4, biological information

was gathered from a larger variety of chemical bonds than in analysis 3. That is, in analysis

4, biological information was also gathered from the protein and fingerprint regions of

Raman multiblock set 1, potentially providing a more detailed correspondence between

metabolic fingerprint in FTIR/Raman and protein expression in MALDI set 1 in the score

plots.

The confusion matrix produced from analysis 4 is shown in Figure 6.14. The success
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Figure 6.12: MALDI set 1 block scores from analysis 3.

rate was even higher than for the concatenated block model: 86.3%. Although misclassified

samples without exception were identified either as OxyHWP or OxyCB4, the two largest

groups, most of the groups were either all right or all wrong, a result divergent from the

more partial group misclassifications shown in Figure 6.8 and also seen in single data type

models (not shown). The abundance of OxyHWP and relative absence of other groups of

variables selected from the MALDI set 1 block, might explain this ascription. This model

used an eight-fold Venetian Blinds CV configuration for prediction.

Figure 6.15 shows the global scores from analysis 4. The proximity of OxyOma and

one sample of PneOza to OxyHWP shown in all subplots involving PC1, and the clustered

grouping of OxyAT1 and OxyCB4 seen in PC1 vs PC2, were both expected from the

misclassifications shown in Figure 6.14.

6.7.1 Resemblance between global scores and block scores in the

lipid region

In this subsection, score plots from blocks 1 from FTIR multiblock set 1, and 1 from

Raman multiblock set 1, are compared with the global scores in Figure 6.15. The weak

signal seen in Raman block 1 in Figure 6.13 was also present in the block scores: Variables

were only selected from PC4 and PC6. In FTIR block 1, no variables were selected in the

block loadings of PCs 4 and 5.

Figure 6.16 shows a selection of block score plots from the lipid blocks. Some of the

trends present in the global scores were also seen here: OxyAT1, OxyCB4 and OxyHWP

showed a similar interrelated pattern for subplots of PC1 vs PC2, PC1 vs PC3 and PC2

vs PC3. The PneOza outlier was present in both block and global scores. OxyOma was

separated better in the global scores than in the present block scores.
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Figure 6.13: Selected sparse regression coefficients for analysis 4: Split blocks, all data
types.

6.7.2 Resemblance between global scores and block scores in the

amide region

In this subsection, score plots from blocks 2 from FTIR multiblock set 1, and 2 from

Raman multiblock 1 one are compared with the global scores in Figure 6.15. Variables

were only selected for the block scores of PCs 1, 2 and 7 for the Raman block, and from

all PCs but 4 and 6 for the FTIR block.

Figure 6.17 shows a selection of block scores from the amide blocks. No detailed

resemblance seemed to exist between the amide region block scores and the corresponding

global scores. We did, however, see a clearer separation of PneOza in plots involving PC3

than in the global scores. We also saw a much denser grouping of OxyOma in PC1 vs

PC2 of Raman block 2 in the block scores.
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Figure 6.14: Confusion matrix showing the predictive ability of analysis 4. The CV
configuration was eight-fold Venetian Blinds.

6.7.3 Resemblance between global scores and block scores in the

fingerprint/carbohydrate and far IR region

In this subsection, score plots from blocks 3 and 4 from FTIR multiblock set 1 and 3, and

3 and 4 from Raman multiblock set 1, are compared with the global scores in Figure 6.15.

In FTIR block 3, no variables were selected in the block loadings for PCs 4-6; variables

were selected for all PCs in block 4. In Raman block 3, variables were selected for PCs 2

and 4-6; in block 4, from PCs 2, 3 and 5.

Figure 6.18 shows a selection of block score plots from the Raman multiblock set 1

fingerprint/carbohydrate region. In block 3 (left), we see that the model managed to

separate OxyOma and OxyAT1 from the remaining strains, although clustering them

together. OxyAT1 was also in block 4 (right), but not separate from the main cluster of

strains. No other clear grouping was apparent.

Despite a strong signal in the far IR region, the block scores of Raman multiblock set

1, block 5 did not produce any grouping of samples or strains resembling that of the global

scores for corresponding latent variables.

Figure 6.19 shows a selection of block score plots from blocks 3 and 4 of FTIR multiblock

set 1, corresponding to the fingerprint/carbohydrate region. Overall, the fingerprint region

proved much better in discriminating between groups than the lipid and amide regions,

and was also better than the global scores. Notably, the different strains of the OxyCB1

group are distinguishable in the FTIR block scores, as visible in the subplots of Figure

6.19 involving block 4.
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Figure 6.15: Global scores from analysis 4: Split blocks, all data types.

Interestingly, the clearest and most differentiated grouping occurred when the total

explained variance between the two PCs plotted against each other was rather low, such

as in the subplot of PC3 vs PC4 of FTIR block 4, in the bottom right of Figure 6.19.

6.7.4 Resemblance between MALDI set 1 block scores and global

scores

Here we present and compare a selection of block scores from the MALDI block with the

global scores of analysis 4. No variables were selected for PC1.

Figure 6.20 shows a selection of block scores from the MALDI block of analysis 4. Some

trends in the global scores seemed present here: In both PC2 vs PC3 subplots, OxyCCU

and OxyOma were separate and showed clear grouping. OxyHWP was clustered around
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Figure 6.16: Selection of block scores from FTIR multiblock set 1, block 1, corresponding
to the lipid region, from analysis 4.

Figure 6.17: Selection of block scores from FTIR and Raman multiblock sets 1, block 2,
corresponding to the amide region, from analysis 4.

the origin together with OxyCB4 and OxyAT1, with PneOza slightly separated. In PC2

vs PC4, there was far stronger separation of OxyAT1 and OxyCCU in the block scores

than in the corresponding global score plot.

A tendency similar to that seen in blocks 3 and 4 (fingerprint/carbohydrate) of FTIR

multiblock set 1 above (Figure 6.19) was also present here. Apart from FTIR multiblock

set 1’s ability to distinguish between OxyCB1 strains, there was pronounced solitary

clustering of most groups in both plots. This was most clear in the subplots of PC3 vs

PC4, which showed similar grouping of OxyOma, OxyAT1 and OxyCCU, plus OxyHWP

positioned in patterns similar to those in FTIR blocks 3 and 4 with respect to the origin.

6.8 Key results

Our main finding in this chapter was how MALDI was treated differently by the SMBPLSR

routine than FTIR/Raman in analysis. Input data from FTIR and Raman seemed to be

treated similarly in analysis, while MALDI generated entirely different output. Similar

patterns of clustering between groups was stored in different latent variables. This is easily
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Figure 6.18: Selection of block scores from Raman multiblock set 1, blocks 3 and 4,
corresponding to the fingerprint region, from analysis 4.

seen by comparing block score plots from analyses 3 (Section 6.6) and 4 (Section 6.7).

6.8.1 Discrimination

PneOza stood out as being the only group most clearly identified in analysis 3, where

especially PC4 of MALDI set 1 (Figure 6.12) and FTIR set 1 (Figure 6.10) encouraged its

separation from the other strains in the global scores (Figure 6.9). All other groups were,

in one way or another, found more clearly separated and/or clustered in analysis 4.

As briefly mentioned in the final part of Section 6.7, the resemblance was most

pronounced between FTIR multiblock set 1, blocks 3 and 4, corresponding to the finger-

print/carbohydrate region, the MALDI block (Figure 6.19), and the global scores. FTIR

multiblock set 1, blocks 3 and 4 also showed by far the best discriminative ability of

any spectral subregion. This divergence from the general trend of increased scrambling

of samples in later latent variables (PC3 and higher) in the global scores, was instead

highlighted by Raman multiblock set 1 for most blocks.

The lower fingerprint region corresponding to FTIR multiblock set 1, block 4, showed

exceptionally high discriminative ability, being the only block capable of separating the

individual OxyCB4 strains.

Closer inspection of Figures 6.15, 6.19 and 6.20 revealed some more detailed corre-

spondence in the latent variables: Grouping of OxyAT1 and its separation from OxyCB4

seemed to be most pronounced whenever PC4 was part of the plot; OxyCCU was most

separately grouped from PneOza in PC2 vs PC3; OxyOma showed the least overlap with

other groups when PC4 was involved in the FTIR multiblock set 1, blocks 3 and 4 scores,

while the best separation by MALDI and global scores was achieved in PC3.

In general, Raman multiblock set 1 data resembled neither its corresponding global

scores nor the MALDI set 1 data to any detailed level, at best managing to showcase some

clustering, but was unable to separate groups from each other in the block score plots,
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Figure 6.19: Selection of block scores from FTIR multiblock set 1, blocks 3 and 4,
corresponding to the fingerprint region, from analysis 4.

not even in the carbohydrate/fingerprint region. Raman multiblock set 1 managed best

grouping in the amide region (Figure 6.17, right), a result that corresponded well with the

global scores in Figure 6.15, top left.

6.8.2 Success rates

The success rates remained relatively stable for all analyses, although analyses 3 and 4

employed eight-fold CV while analyses 1, 2 and MALDI set 1 only three-fold. Analysis

1 achieved the peak success rate at 96.1%, while success rates were around 85% for the

remaining analyses. The high success rate of analysis 1 seems to be owing to the balanced

selection of sparse regression coefficients; this was shown to be less balanced in the other

analyses.
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Figure 6.20: Selection of block scores, MALDI set 1, from analysis 4.

6.8.3 Optimal number of latent variables

As shown in Table B.1 in Appendix B below, the optimal number of latent variables were

7 for analysis 3 and 5 for analysis 4. This was also the case for most of the single-type

analyses, where AOpt varied from 4 to 7. In this study, we rarely reported plots where

latent variables past number 4 were included. Inspecting plots where higher-order PCs

were included, revealed little new information. Notable exceptions were PC5 in FTIR and

PC6 in MALDI, which both explained OxyAT1 relatively well. Furthermore, OxyCCU

was explained well by MALDI PC6 and OxyOma by FTIR PC5. For analysis 8, the only

notable information carried by PC5 was how block scores pertaining to the lipid regions of

FTIR and MALDI grouped PneOza relatively well.

6.9 Discussion

The reason for the different treatment of MALDI for FTIR/Raman by the SMBPLSR

routine, can probably be ascribed to the reduced collinearity in MALDI bar code spectra

compared to the FTIR and Raman spectra, i.e. the input data. Peaks in Raman and FTIR

possess a certain width, so that even though one or a few samples are slightly displaced,

the difference in signal intensity between the samples remains small. In other words: The

variance within each variable is small.
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The tables are turned completely with the MALDI bar code spectra, for which all

peaks are per definition of width one. A displacement of even one unit along the x-axis

will remove all collinearity between the samples for the variable and significantly increase

its inherent variance (compare unit scales for score plots of MALDI with FTIR/Raman).

6.9.1 Selection of regression coefficients and predictive ability

In Figure 6.4 (analysis 1), relatively strong signals were seen from all groups in several

blocks. The success rate of identification was 96.1%. In Figure 6.5 (analysis 2), certain

groups, such as OxyOma, only exhibited strong signals for very few variables, whereas

strong signals were recorded for many variables in OxyHWP (block 2 and 3). In the

corresponding confusion matrix (not shown), no samples were attributed to OxyOma, but

two of three OxyOma-samples were misclassified as OxyHWP. The absence of OxyAT1

signals in Figure 6.6 was, similarly to analysis 2, seen as a lack of attributed samples in

the corresponding confusion matrix (not shown).

The imbalanced selection of regression coefficients was less pronounced in analysis 3,

but still especially evident in the MALDI block, where most strong signals were of the

PneOza and OxyCB4 groups. In the corresponding confusion matrix, Figure 6.8, most

misclassifications were ascribed to OxyCB4, and PneOza was the only three-sample group

completely correctly identified.

Analysis 4 saw an even more balanced selection of regression coefficients (Figure 6.13)

than analysis 3. Relatively strong signals were recorded for all blocks and groups, except for

the MALDI block, where only signals from OxyHWP and PneOza appeared to be selected.

As a result, more groups were completely correctly identified and misclassifications were

less scattered, as shown in the corresponding confusion matrix (Figure 6.14.

Having misclassifications ascribed to the largest groups is not entirely unexpected, as

the higher number of samples within the group makes the probability of recording a strong

signal from the group as a whole a lot higher than gathering them from smaller groups.

Still, as the discussion above indicates: The multi-type, multiblock, descriptor data in

analysis 4 seemed to stabilise the selection of sparse regression coefficients in disfavour of

larger groups, except for the MALDI block.

The group-wise selective selection of regression coefficients in analyses 3 and 4 further

emphasises the different treatment of MALDI data from FTIR/Raman data by the

SMBPLSR routine. Further study is required to address this problem.

61



CHAPTER 6. RESULTS AND DISCUSSION, IDENTIFICATION

6.9.2 Block variable selection in single-type versus multi-type

descriptor data SMBPLSR analyses

In analysis 1, variables were not selected for most of the PCs in lipid and amide regions of

FTIR multiblock set 1, and variables for PC1 were only selected in the upper fingerprint

region corresponding to block 3; only variables of PCs 1 and 8 were selected for block 3.

In general, variables were selected far more scarcely in analysis 1 than in analyses 3 and 4,

probably owing to the number of variables being so much lower in the former than the

latter two, attributable to the presence of the comparatively large MALDI data set.

The presence of the MALDI data set in practice allowed more than 10% of the variables

in FTIR multiblock set 1 to be selected, resulting in a de facto ‘less sparse’ variable

selection in FTIR multiblock set 1. This pattern is repeated in a similar fashion for Raman

multiblock set 1.

One could then enquire whether a battery of single data type SMBPLSR analyses

similar to analyses 1 and 2 described above, but with a higher percentage of variables

retained, say 20 or 30%, would allow for an equally good or better overall solution of the

problem posed in this thesis. Or whether the lack of common global scores, loadings and

weights in single-type descriptor analyses would obscure the comparative abilities of the

multi-type descriptor analysis shown and discussed above.
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Chapter 7

Results and discussion, experimental

design

This chapter deals with the second part of the topic for this thesis: How sparse multiblock

methods perform in comparing phylogenetic similarities and differences assessed by different

phenotypic methods. As such, all mention of data sets and spectra in this chapter refers

to the B. subtilis/E. coli data set described in Section 2.2 unless otherwise stated. Data

sets are referred to as multiblock sets or simply sets, depending on whether each data type

is represented by one block, or their respective number of selected blocks. For example,

FTIR multiblock set 2 consists of four blocks, while FTIR set 2 means that these four

blocks have been merged into one.

In Sections 7.1 and 7.2, details of the experimental setup are presented. It is explained

how blocks were selected and demarcated to increase interpretability and computational

speed. In the following four sections, we show and discuss the results of four different

SMBPLSR analyses. In Section 7.8, results of the analyses are summarised and the most

important findings highlighted, before being discussed in Section 7.9.

7.1 Experimental setup

7.1.1 Preprocessed spectra

All spectra in this section were preprocessed identically to their corresponding Klebsiella

data set-data types, that is: FTIR by a 2nd order polynomial, 2nd degree derivative SG filter

with a window size of 9, followed by standard EMSC; Raman by 2nd degree polynomial

SG filter of window size 9 but no derivative, followed by standard EMSC; MALDI low

and medium masses by an SG filter of window size 21, followed by normalisation and

baseline correction [2]. The FTIR and Raman spectra were processed by in-house or Saisir
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codes [78]. The preprocessed spectra are shown in Figure 7.1a and b. The MALDI spectra

were already preprocessed upon receipt. The preprocessed MALDI spectra constituted

an intermediate step in data preprocessing and were not sent to further pretreatment or

analysis. Instead, a peak table containing the 30 highest-intensity peaks after preprocessing

was transformed into a bar code table; their relative intensities were as such omitted in

further analysis. The bar code tables were used in further analysis. The bar code spectra

are shown in Figure 7.1c and d.

Figure 7.1: Preprocessed spectra (FTIR and Raman), and bar code plots (MALDI, low and
medium mass) from the Bacillus/Escherichia data set. a: FTIR, b: Raman, c: MALDI,
low mass, d: MALDI, medium mass.
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7.1.2 Selecting relevant spectral regions

All four data types were analysed with SPLSR and frequency plots were set up using

full leave-one-out CMV in order to select relevant spectral regions for further analysis.

For all data types, the sparsity parameter was set by soft thresholding, so that 90% of

the variables were discarded and 10 PCs were calculated. Figure 7.2 shows the resultant

frequency plots. Note that the x-axes are reverted for all subplots.

Figure 7.2: Frequency plot from full leave-one-out CMV (24-fold) on all data types. Each
data type was analysed by the SPLSR model described in Section 4.3.3. For all analyses,
90% of variables were discarded by soft thresholding. a: FTIR, b: Raman, c: MALDI, low
mass, d: MALDI, medium mass.

Figure 7.2a shows the resultant frequency plot from 24-fold CMV of the FTIR data
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set. Based on the grouping of often selected variables, FTIR multiblock set 2, consisting

of four blocks, was assembled:

• Block 1 from 2950-2800 cm−1.

• Block 2 from 1750-1600 cm−1.

• Block 3 from 1500-1350 cm−1.

• Block 4 from 1250-850 cm−1.

Figure 7.2b shows the resultant frequency plot from 24-fold CMV of Raman data. Note

that selection of frequencies corresponding to proteins were fewer here than for the FTIR

frequency plot, and even for the Klebsiella Raman frequency plot, shown in Figure 6.1b.

On this basis, Raman multiblock set 2, consisting of four blocks, was assembled:

• Block 1 from 3100-2800 cm−1.

• Block 2 from 1700-1350 cm−1.

• Block 3 from 1010-750 cm−1.

• Block 4 from 350-100 cm−1.

Figure 7.2c shows the resultant frequency plot from 24-fold CMV of MALDI, low

mass data. Visual inspection of the plot gave no clear indication of grouping, but did

however reveal the redundancy of both extremities of the spectra; the m
z

regions 0-500 and

1500-2000, in which almost no variable selection occurred and no variables were selected

more than 10/24 times. Nevertheless, we chose not to discard any part of this plot in

further analysis.

Figure 7.2d shows the resultant frequency plot from 24-fold CMV of MALDI data,

medium mass. No region stood out as particularly information-rich, although there was a

slightly higher prevalence of frequently selected variables in the m
z

region between 2500 and

5500. The m
z

region above 8000 was rather sparsely populated by high-frequency peaks.

Also, note that there were no variables selected less than 15 times, making any grouping

or incision even harder. As such, no incisions were made and no regions discarded before

further analysis.
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7.2 Predictive abilities and weighting of regression

coefficients

7.2.1 Correspondence between strain and script names

Table A.2 in Appendix A shows the correspondence between the sample strain names

shown in Section 2.2.1 and their given names in the data script. Names were altered

to ensure concurrence between different data types, and in such a way that important

information remained in the name. In the following plots, the first letter of each sample

denotes the species: E for Escherichia and B for Bacillus. The two-digit number denotes

the growth temperature of the sample.

7.2.2 Description of input data

After preliminary analysis was performed and blocks selected, we proceeded by analysing

sparse multiblock routines on all data types. These analyses were

• Analysis 5: FTIR multiblock set 21, four blocks as listed above.

• Analysis 6: Raman multiblock set 22, four blocks as listed above.

• Analysis 7: FTIR set 2, Raman set 2, and MALDI data, both low and medium mass,

in total four blocks.

• Analysis 8: FTIR multiblock set 2, Raman multiblock set 2 and MALDI data, both

low and medium mass, ten blocks. No concatenation.

The MALDI data was neither split into blocks, nor were any regions removed, so we chose

not to run additional analyses on these sets. We did, however, gather information about

their global scores for further comparison and analysis. For all the analyses described, we

kept the sparsity parameters used in Chapter 6, discarding 90% of variables and calculating

10 PCs. Model prediction was performed using three-fold Venetian Blinds CV for all

analyses, also those with multiple types of descriptor data. In the following, these will

simply be referred to as the MALDI, low or medium mass, analyses. Table B.2 in B lists

the global explained variance by the latent variables from analyses 7 and 8.

To shed a first ray of light upon the ability of our phenotyping methods’ ability to

discriminate between species and their medial growth temperature, we chose to examine

and compare the selected regression coefficients and their relative weighting for each

analysis specified above.

1FTIR set 2 means one data block consisting of the four data blocks in FTIR multiblock set 2.
2Raman set 2 means one data block consisting of the four data blocks in Raman multiblock set 2.
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7.3 Analysis 5: FTIR multiblock set 2

Figure 7.3 shows the selected variables from analysis 5 on FTIR multiblock set 2. The

highest number of variables were selected from block 1 and 2, covering the lipid and amid

regions, respectively. The strongest signals were found in the amide and carbohydrate

regions. Misclassifications occurred chiefly in the mid-temperature range, but all samples

of B43, E43 and E25 were correctly identified (figure not shown). The success rate of

identification was 70.8%.

Figure 7.3: Selected sparse regression coefficients for SMBPLSR from analysis 5: FTIR
multiblock set 2.

7.4 Analysis 6: Raman multiblock set 2

Figure 7.4 shows that the selected variables of analysis 6 (Raman multiblock set 2) were

gathered from all blocks, though in relatively low numbers in block 4. The signal was by

far the strongest in the upper fingerprint/carbohydrate region of block 3 and displayed

by E43. The E30 group also showed strong signals in both block 1 and 2. The success

rate was 54.2%; most misclassifications occurred in B. subtilis groups, some of which

were incorrectly classified as E. coli. All E30 and E43 samples were correctly identified.

However, both groups received several additional misclassified samples from B. subtilis,

suggesting that the dominant signals visible in the regression coefficients of these groups

might be the cause of the misclassifications.
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Figure 7.4: Selected sparse regression coefficients for SMBPLSR from analysis 6: Raman
multiblock set 2.

7.5 MALDI, low and medium mass analyses

Figure 7.5a and b shows the selected regression coefficients from the MALDI, low and

medium mass analyses, respectively. The selection of variables seemed to correlate with

high density regions in their respective bar and frequency plots (Figures 7.2c and d, and

7.1).

For both analyses, regression coefficients were only selected from some of the groups.

Regression coefficients were primarily attributed to B37, B43, E37 and E43 in subplot a,

while B43, E43 and E30 appear to be the only groups for which regression coefficients

were selected in subplot b. Interestingly, in the MALDI, low mass, analysis no samples

were identified as B43 (figure not shown), while the apparently absent B30 group was

completely correctly identified and had misclassifications attributed to it from several

other groups. In the analysis of MALDI, medium mass data, no samples were identified as

B25, B30, E25 or E37 (figure not shown). Why samples were identified as B37, which was

absent in the regression coefficient plots, remains unknown.

The unexpected selection of regression coefficients manifested in particularly low success

rates for these analyses: 29.2% for low and 25.0% for medium mass.

7.6 Analysis 7: Concatenated data blocks, all data

types

Figure 7.6 shows the resultant variable selection from analysis 7. The vast majority of

FTIR variables were - rather unexpectedly, considering especially the relatively weak signal
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Figure 7.5: Selected sparse regression coefficients for SMBPLSR on MALDI, low and
medium mass. a: low mass, b: medium mass.

in the lower fingerprint region of Figure 7.3 - selected from the protein and fingerprint

regions. Almost no variables were selected from the lipid region.

Figure 7.6: Selected sparse regression coefficients for SMBPLSR from analysis 7: FTIR
set 2, Raman set 2, and MALDI, low and medium masses.

Variables selected from the Raman block also differed from the selection shown in Figure

7.4; variable selection was now most pronounced in the extreme ends of the spectrum,

even though these signals, particularly in block 4, previously were among the weakest.

The strong signal of block 3, attributed to be misclassifying B. subtilis as E. coli, now

barely appeared.

E30 and E43 were particularly prominent in the MALDI blocks. This probably caused

the numerous misclassifications attributed to them in the corresponding confusion matrix,

displayed in Figure 7.7. The weak signals from E25 (light green) and its relative absence
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from the MALDI blocks in Figure 7.6 saw an effect in the confusion matrix: No samples

attributed to this group. Apart from this, regression coefficients appeared to be selected

in a relatively balanced manner in the MALDI blocks, as compared to their selection in

the previous single-type MALDI runs (Figure 7.5).

The confusion matrix of predicted groups from the analysis 7 is shown in Figure 7.7.

The often-correct identification of E43 and B43 from analyses 5 and 6 was continued. Even

though the success rate was only 54.2%, there was no misclassification between species,

and four groups were completely correctly identified.

Figure 7.7: Confusion matrix from analysis 7. The CV configuration was three-fold
Venetian Blinds.

The global scores from analysis 7 are shown in Figure 7.8. There was clear between-

species grouping for the first three subplots, but this was discontinued for the final three.

B43 was grouped particularly well for all subplots involving PC3.

From Figure 7.9, we see that the block scores of FTIR set 2 showed similar grouping

patterns for corresponding subplots, although achieving slightly better clustering of the

groups. Visible in subplot 3 is also that involving PC3, such as in the global scores, isolated

B43 from the rest of the samples. In this case, however, E43 was also isolated. This

complemented the trend from the scores obtained in analysis 5 (not shown).

Only one block score plot was selected from Raman set 2 in analysis 7. The plot is

shown in Figure 7.10.

This was the best grouping seen in of all combinations of plots of PC1-4 against

one another, yet it barely showed a pattern in the B43/E43 groups, as visible in global

scores and FTIR set 2 (Figure 7.9). Grouping was altogether more pronounced in the

global scores of analysis 6 (not shown) than for Raman set 2 in analysis 7. A probable
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Figure 7.8: Global scores from analysis 7: Concatenated blocks, all data types.

reason for the poor grouping was the absence of a dominant variable. Both PC1 and

PC2 explained more than 30% of the total variance, while PC3 explained 15.4%. The

resultant diagonal inclination apparent in Figure 7.10 made groups and patterns less

discernible than a plot with a dominant variable would have been, and likely also caused

the between-species misclassification mentioned in Section 7.4 (analysis 6). In general, the

visual correspondence between Figure 7.10 and the global scores of analysis 7 was low.

A recurring pattern with MALDI data was the lack of a dominant latent variable; at

most, one or two exceeded 10% of the total explained variance. This trend was less clear

in analysis 7, where the first PC explained 13.6% and PC4 19.5% of the total variance,

as opposed to less than 8% in the Klebsiella data set. Selected block score plots are

shown in Figure 7.11. For MALDI, low mass, separation between species was enabled, but

intermingled samples or outliers obscured further separation.
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Figure 7.9: Selection of block scores from analysis 7: FTIR set 2.

The predictive results of the MALDI, medium mass, data set was overall better than

the low mass one, in accordance with reports of main peaks in the MALDI spectrum of

similar microorganisms being found in the m
z

range between 3 and 10 kDa [2, 38, 79]. The

block score plots of MALDI, medium mass are shown in Figure 7.12. PC1 was relatively

dominant, explaining 21.4% of the total variance in the data set alone. However, the total

explained variance by the 10 PCs calculated was only 54.3%. Still, grouping was more in

accordance with the global scores (Figure 7.8) and FTIR set 2 (Figure 7.9), for example

in that B43 was consistently grouped in subplots involving PC3, and that species were

separated in subplots 1 and 2.

7.7 Analysis 8: Split data blocks, all data types

The regression coefficients selected from analysis 8 are shown in Figure 7.13. Regression

coefficients were selected from the FTIR and Raman blocks (1-8) in such high numbers

that the sparsity parameters were almost obviated for these blocks, suggesting a relatively

strong signal in this blocks as compared to the MALDI, low and medium mass, blocks.

This was allowed by the model because the total number of variables in the first eight

blocks made up 11% of the total number of variables, and that most variables in the

MALDI blocks was zero and as such could not be selected.
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Figure 7.10: Selection of block scores, analysis 7: Raman set 2.

Figure 7.11: Selection of block scores, analysis 7: MALDI, low mass.

The tendency in the Klebsiella results Section (6.2) of devaluing MALDI data in a

split block-setting, was discontinued here; signals from both low and medium mass spectra

were more abundant, and several were among the strongest in the whole set. Furthermore,

no groups seem particularly prominent apart from E25 in the MALDI blocks.

Figure 7.14 shows that the prediction using split blocks was fairly similar to that using

concatenated blocks (Figure 7.7). A slightly lower success rate at 50.0% and only two

groups - again B43 and E43 - completely correctly classified, the prediction still displayed

less congregation around certain groups than its concatenated sibling; no groups had zero

samples attributed to it and both B25, B37 and E25 had two of three samples correctly

identified, suggesting a more balanced outcome for this analysis compared to analysis 7.

The argument for stably selected regression coefficients as a result of multi-type multiblock

input data made in Section 6.9 is strengthened by this finding.

Comparison of the global scores of analysis 7 (Figure 7.8) and analysis 8 (Figure 7.15)

showed similar, but slightly more pronounced grouping patterns in the latter than the

former. The clustering of each group was closer and better defined in analysis 8. This

could be ascribed to the more dominant first latent variable in analysis 8, explaining 56.9%

of the total variance, compared to the first latent variable in analysis 7 explaining only
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Figure 7.12: Selection of block scores, analysis 7: MALDI, medium mass.

35.3%. As in earlier analyses, the separation of B43 and E43 was by and large the most

often present, although PC4 appeared to carry information making discrimination of B37

possible.

7.7.1 Discriminative abilities of the lipid region of FTIR and

Raman multiblock set 2

Figures 7.16 and 7.17 show a selection of block scores from FTIR multiblock set 1 and

Raman multiblock set 1, blocks 1, respectively. Raman showed weaker overall grouping

and clustering in the lipid region than did the corresponding global scores. The global

grouping and clustering patterns were in turn slightly weaker than their FTIR peers.

7.7.2 Discriminative abilities of the amide region of FTIR and

Raman multiblock set 2

The amide region (block 2) of the FTIR data appeared to be holding interesting information,

particularly about the Bacillus groups, all of which were clearly distinguishable, as shown

in Figure 7.18. On the other hand, very little valuable information could be obtained from

the plot of Raman data in Figure 7.19. No patterns seemed to be especially informative

for this plot.
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Figure 7.13: Regression coefficients for SMBPLSR from analysis 8: FTIR multiblock set 2,
Raman multiblock set 2, and MALDI, low and medium masses.

7.7.3 Discriminative abilities of the carbohydrate/fingerprint re-

gion of FTIR and Raman multiblock set 2

Selections of block score plots for block 3 of FTIR multiblock set 2 and Raman multiblock

set 2 are shown in Figure 7.20 and 7.21, respectively. For FTIR, information carried

by the upper fingerprint/carbohydrate region highlighted B37 as a distinct group. This

information was also carried by the global score subplots involving PC3, albeit to a lesser

extent (Figure 7.15). No variables were selected from PC2 for any of the blocks; for Raman,

nor for PC5. However, PC6 turned out to explain 14.1% of the total block variance and

as such a subplot of PC1 vs PC6 was examined and reported. To the extent that any new

information was provided by PC6, it seems that it might have forced a slight split between

the previously less distinguishable E. coli strains.

The block score plots from the lower carbohydrate/fingerprint region, corresponding to

block 4 of FTIR and Raman multiblock sets 2, showed the best discriminatory potential
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Figure 7.14: Confusion matrix from analysis 8. The CV configuration was three-fold
Venetian Blinds.

among the subregions of the FTIR/Raman absorbance spectra. The plots are shown in

Figures 7.22 and 7.23.

The strain B37 is distinctly separated in all subplots of Figure 7.22 but especially in

the subplot of PC2 vs PC3. Furthermore, E25 and B25 were all also clearly separated and

clustered in all subplots. PC2 vs PC3 showed almost perfect grouping, and only struggled

to discern between E30 and E37, which have been nearly inseparable in all plots, including

the global scores.

Although not as clear-cut as FTIR, the Raman block score plots in Figure 7.23 display

good separation compared to other regions, especially in its distinction of B43, and, to

some degree E43 and B37. It is also worth noting that PC1 explains 84.2% of the total

variance for the block, easily a new record for Raman and an indication of a higher degree

of coherence between samples in this spectral region than any other.

The wealth of information provided in the block scores of analysis 8 was contrasted by

the lack of such in analyses 5 and 6. Oftentimes, variables of the most highly explanatory

PCs of the blocks, and particularly blocks 3 and 4 of the FTIR/Raman multiblock sets

2 examined in analyses 5 and 6, were not selected. For analysis 5, block 4, no variables

were selected for PC1, which explained 67.4%; selection only occurred for PCs 3, 8 and

10. These PCs explained 9.1% of the total variance between them. This suggests that the

high threshold (90% of the variables to be discarded) removed potentially very valuable

information from analyses 5 and 6, some of which has been preserved in analysis 8, and,

presumably, analysis 7.
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Figure 7.15: Global scores, analysis 8: Split blocks, all data types.

7.7.4 Discriminative abilities of MALDI, low and medium mass

The MALDI low mass block scores in Figure 7.24 were the foremost exponents of a the

recurring problem of outliers in in the MALDI blocks. Additionally, we here saw some

inexplicable orientation of Bacillus strains in both subplots. Not even the pattern of B43

being clearly separated in PC1 vs PC3, present in almost all blocks score plots both in

analyses 7 and 8, was continued here. Neither the main (PC1: 13.2%, and PC4: 15.4%)

nor the aggregate of 10 PCs (67.3%) seemed to explain the total variance very well. This

probably accounted for some of the poor grouping. It was unclear why all Bacillus groups

were explained almost equally well by both PC1 and PC2 while the Escherichia samples

behaved normally.

Despite its rather unusual appearance, the selected block score plots for MALDI,

medium mass, shown in Figure 7.25, performed the best of any MALDI score plot in
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Figure 7.16: Selection of block scores, analysis 8: FTIR multiblock set 2, block 1.

Figure 7.17: Selection of block scores, analysis 8: Raman multiblock set 2, block 1.

analyses 7 and 8 in discriminating between the eight groups. For this block, no variables

were selected for PC1, which accounted for 20.8% of the total variance, the highest of

any PC of any MALDI block in analyses 7 and 8. Consequently, subplots started from

PC2 and upwards. For corresponding global scores, the pattern of grouping was relatively

similar, although the planar orientation was somewhat different.

7.7.5 Correlation loading plots

Looking at the design matrices of block correlation loading plots, we see that only a

few groups were predicted chiefly by a single latent variable, and that most groups

clustered together relatively near the origin. This clustering obscured any otherwise

visible connection between the groups of the design matrix, and variables of the spectral

subregions. Luckily, there were exceptions: E43 and B43 showed strong correlation in PC2

and PC3, respectively, as best seen in the design matrix correlation loading plot of Figure

7.26.

These two groups were also the most frequently separated groups in the aforementioned

block score plots. These two observations combined motivated a search to see what types

of biomolecules showed the highest correlation with these groups.
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Figure 7.18: Selection of block scores, analysis 8: FTIR multiblock set 2, block 2.

Figure 7.19: Selection of block scores, analysis 8: Raman multiblock set 2, block 2.

The E43 group achieved its highest correlation in the amide and fingerprint regions of

the FTIR and Raman spectra, shown in Figure 7.27.

The B43 group achieved its highest correlation in the amide and fingerprint regions

of the FTIR spectrum, shown in Figure 7.28; the results were not repeated by the

corresponding Raman regions, nor by any of the MALDI plots.

From Figures 7.27 and 7.28, we see clear evidence of collinearity within the blocks.

This trend was, as expected, discontinued for the MALDI block correlation loading plots.

As a result, the variables grouped together in the general direction of the design matrix

variables form the origin, but, in accordance with their explained variance per latent

variable, rarely achieved high correlation. Examples are shown in Figure 7.29.

Another interesting finding was the relatively high correlation between design variables

for groups E25 and B25, and variables associated with the lipid region, shown in Figure

7.30. This correlation was by not as pronounced as the one described above for E43 and

B43, but still worth mentioning. This result was also indicated in the confusion matrix for

analysis 8, shown in Figure 7.14, where two out of three samples of both B25 and E25

were correctly identified.

The remaining groups showed high correlation in several spectral subregions, which
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Figure 7.20: Selection of block scores, analysis 8: FTIR multiblock set 2, block 3.

Figure 7.21: Selection of block scores, analysis 8: Raman multiblock set 2, block 3.

made it hard to ascribe their identification to specific types of biomolecules. An example

of this (not shown), is the group B37, which, in addition to being located close to other

design variables, had pertaining groups that showed high correlation in both blocks 2, 4, 7

and 8, corresponding to the amide (FTIR), carbohydrate (Raman) and fingerprint (both)

regions of FTIR and Raman.

7.8 Key results

The main finding in the previous results chapter was repeated. Data were interpreted

differently by the SMBPLSR routines, owing to the differences in collinearity between

samples. In this data set, we also see further discrepancy between the interpretation of

MALDI data of low and medium masses. The global scores of the MALDI, medium mass,

data set showed a higher between-sample variance than the low mass one, probably due to

the higher amount of variables in the set and consequent increased spread of main peaks.
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Figure 7.22: Selection of block scores, analysis 8: FTIR multiblock set 2, block 4.

7.8.1 Discrimination

As the summary of results below indicates, the SMBPLSR method showed good all-

round discriminative power for this data set, despite the presumably small between-strain

variance.

The SMBPLSR method was also able to identify specific temperatures where discrimi-

nation between strains of the same species was weak or absent. Inspecting the various

score plots, we see that for Escherichia, E30 and E37 were seldom far apart, and most

times at least partly intermingled. In Figure 7.22, we also see them separated from E25, a

frequent companion of theirs.

The Bacillus samples showed a similar pattern, but here the B25 and B30 strains were

the ones most often clustered, for example on Figures 7.20, 7.23 and in the global scores

in Figure 7.13. Both the latter figure and several others bring nuance into this pattern by

showing its dependence on certain latent variables. PC4 in particular seemed to be good

at separating the two groups.

B30 was consistently well grouped and relatively separated in MALDI, low mass, global

scores. This trend was also to some degree present in MALDI, medium mass, global scores

(neither plots are shown).

E30 and E37 were separated by PC1 in Raman multiblock set 2 global scores (not

shown). This separation was not managed as well elsewhere; the greatest separation
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Figure 7.23: Selection of block scores, analysis 8: Raman multiblock set 2, block 4.

Figure 7.24: Selection of block scores, analysis 8: MALDI, low mass.

of these two strains was in the amide region of Raman multiblock set 2, Figure 7.19,

suggesting that a difference in protein composition constituted a separable feature of the

strains in question.

In analysis 8, the most easily discriminated groups in the block correlation loading plots

were B25, E25, B43 and E43. B43 and E43 showed the highest correlation for variables in

the amide and fingerprint regions; B43 only for FTIR, E43 for both FTIR and Raman. For

B25 and E25, the lipid regions of both FTIR and MALDI provided the best correlation.

Most plots of MALDI, low and medium mass, showed good directional correlation from the

origin. The lack of a dominant latent variable muddled high correlation for any variable;

correlation above 0.5 was seldom seen.

7.8.2 Success rates

A comparison of success rates between preliminary SPLSR analyses and analyses 5-8

showed a higher success rate for the latter analyses three out of four times. For SPLSR on

FTIR (whole spectrum), the success rate was 62.5%, versus 70.8% in analysis 5. Normal

PLSR in FTIR data (whole spectrum) also resulted in a success rate of 70.8%. SPLSR on

the entire Raman spectrum yielded a success rate of 54.2%, the same as analysis 6. The
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Figure 7.25: Selection of block scores, analysis 8: MALDI, medium mass.

Figure 7.26: Design matrix correlation loading plot for PC2 vs PC3.

success rate for PLSR on the entire Raman spectrum was slightly higher at 62.5%.

The trend with low success rate was, as already mentioned, particularly evident in the

MALDI data types when run as single descriptor data types. Dieckmann et al. [2] discussed

the relatively poor intra-strain discriminatory power of MALDI as compared to Raman

and especially FTIR, naming low degree of variation in ribosomal protein expression as its

chief cause. It appears that the variation is no more pronounced as a function of growth

temperature, either. The change was bigger in the metabolic fingerprint.

This assumption was backed also by visual inspection of confusion matrices from each

single-type analysis (figures not shown). Misclassification across species only occurred in

the Raman analysis, for four samples of B. subtilis grown at 25 (one sample), 30 (one

sample) and 43 (two samples) wrongly being identified as E. coli. All other analyses

ascribed all strains to the correct species. Given that the primary aim of this chapter was

to assess how well SMBPLSR methods highlight phenotypic response to a set of growth

conditions, these results are by and large satisfactory.

84



Figure 7.27: Block correlation loading plots of the biomolecular subregions and latent
variables displaying the best correlation with the E43 group. FTIR amide block to the
left, FTIR lower fingerprint block to the right. FTIR amide (left) and lower fingerprint
region (right) on top, corresponding Raman blocks bottom. Design variables enlarged and
in blue.

7.8.3 Optimal number of latent variables

The optimal number of latent variables for analysis 8 was 6; 4 for analysis 7. In this study,

there were, with one exception in Figure 7.21, no plots reported where latent variables

higher than the 4th were shown. Further inspection (not shown) revealed that almost

no additional information was extractable from the higher-order latent variables. We

did, however, find discrimination of E25 in the 5th. This information was recorded from

FTIR multiblock set 2, blocks 1, 2 and 4, and Raman multiblock set 2, block 1, plus both

MALDI sets.
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Figure 7.28: Block correlation loading plots of the biomolecular subregions and latent
variables displaying the best correlation with the B43 group (encircled in red). FTIR
amide block left and lower fingerprint region block right. Design variables enlarged and in
blue.

7.8.4 Comparison of global score plots

A comparison between the global scores of analyses 5, 6, the MALDI analyses, and analysis

7 showed that the global scores of analysis 5 (FTIR multiblock set2, plot not shown)

resembled those of analysis 7 the most, followed by analysis 6 (not shown) and the MALDI

analyses (not shown). This resemblance consisted of equality in predictive ability and

subplot-wise strain grouping. As previously discussed, analysis 5 also showed the highest

success rate and most pronounced grouping of analyses 5, 6 and MALDI. In a similar

comparison between the global scores of analyses 5, 6, MALDI, and analysis 8, grouping

and clustering in the global scores was best resembled by analysis 5, and for the same

reasons as in the above paragraph.

7.9 Discussion

For all analyses but those of MALDI, low and medium masses, the E43 group was

completely correctly identified, though in combination with additional misclassifications

attributed to it. In all but Raman and MALDI, both low and medium mass, analyses,

B43 was also correctly identified, and always without any additional misclassifications

pertaining to it. This suggests that discrimination was easiest and metabolic fingerprint

most pronounced at high temperatures. The high scores of the block correlation loading

plots reported for E43 and B43 (Figures 7.27 and 7.28) support this suggestion.

One reason for this finding might be that both species are found in mammalian intestines

[34, 35], whose core temperatures normally do not exceed 40oC. Core temperatures around
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Figure 7.29: Block correlation loading plots of the MALDI block. Low mass to the left,
medium mass to the right. Design variables enlarged and in blue.

43oC in humans are lethal due to denaturation of the protein structure in bodily tissue

[80]. A similar mechanism might explain the both the change in metabolic fingerprint in

FTIR/Raman and in protein expression in MALDI. The global score plots of MALDI, low

and medium masses (not shown), strengthen this conclusion by clearly separating E43

(low mass) and B43 (medium mass) in the 4th latent variable. This separation did not

occur in corresponding block scores in analyses 7 and 8.

A biological explanation of why the groups B25 and E25 showed high correlation with

lipid variables (also mentioned as a digression in Section 7.8.3 above) is the reported

temperature dependence of bacterial fatty acid composition [81]. Unsaturated fatty acids

have a lower melting point than saturated fatty acids, and as such one would expect an

altered ratio in favour of unsaturated fatty acids as the growth temperature declines.
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Figure 7.30: Block correlation loading plots of the biomolecular subregions and latent
variables displaying the best correlation with the B25 and E25 groups. FTIR lipid block
to the left, Raman lipid block to the right. Design variables enlarged and in blue.
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Chapter 8

General discussion

8.1 On the different treatment of data types by the

SMBPLSR routine

As described in the key results sections of both previous chapters, the SMBPLSR routine

treated MALDI data vastly different from FTIR/Raman data. The discrepancy owes its

existence to differences in inherent variance within each variable. Consequently, the same

set of latent variables produce different grouping among strains and samples between the

data blocks. This difference is evident in the block score plots of analyses 3, 4, 7 and 8.

Presumed lower metabolic differences between strains and consequently stronger likeli-

hood for collinearity resulted in more prominent latent variables in the MALDI blocks

of the E. coli/B. subtilis than in the MALDI block of the Klebsiella data set, as seen

in Table 8.1 below. However, this did not alter the tendency of the SMBPLSR routines

to yield different output for MALDI data than for FTIR/Raman between the two sets

of analyses (3 and 4; 7 and 8); the same groups were still explained by different latent

variables depending on data type.

Table 8.1: Explained variance by the most prominent latent variable in MALDI blocks in
multi-data type analyses. Low and medium denote low and medium masses, respectively.

Analysis # # Samples in % of block variance Latent variable #
data set explained variable #

3 51 5.9 PC1
4 51 6.3 PC1
7 24 19.4 (low)/21.4 (medium) PC4/PC1
8 24 15.4 (low)/20.8 (medium) PC4/PC1

Loss of interpretability is a possible undesired side effect of this difference in treatment.

Consider a case where the same information is stored in a higher-order latent variable in
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the FTIR/Raman data, and a lower-order one in MALDI. Because patterns stemming

from the FTIR blocks are dominant for lower-order global latent variables and vice versa,

additional information carried by lower-order MALDI and higher-order FTIR/Raman

latent variables might be suppressed in a multi-type data setting such as analyses 3 and 4,

as compared to in single-type settings such as analyses 1, 2 and MALDI set 1. Conversely,

the data carried by the presently dominant latent variables are expressed twice. Other

reports employing MB methods, sparse or not, selected data types expressing similar

collinearity patterns [19, 24, 29].

On the contrary, this tendency can be used advantageously by attempting to establish

patterns between the information carried in the latent variables of each data type for future

analyses. If successful, these patterns may serve as a source for cross-referencing and quality

control between the measurements. That is, for a certain phenotypic expression stored in

a specific set of latent variables in FTIR data, one would expect to see similar information

carried by a specific, but different set of latent variables in MALDI. Examining an eventual

discrepancy between the two may also enhance total understanding of the phenotypic

response exhibited, or increase indicative ability. If these attempts are unsuccessful or

prove irrelevant to analysis, two measures for increasing collinearity and diminishing

columnar variance in MALDI data are suggested below.

Autoscaling, or columnar division by inherent standard deviation [58] in data pre-

treatment, is one way to perhaps lower the variance within each column and bring it to

levels comparable to that of FTIR and Raman. To our knowledge, this has never been

done before for MALDI data, but instead with other types of spectral data [29] with high

heteroskedasticity. Van den Berg et al. [58] describe several types of data scaling that

can be used prior to statistical analysis to maybe tune the MALDI data into a form more

visually compatible with FTIR and Raman. Van den Berg et al. [58] also mention inflated

signal-to-noise ratio as a drawback with several of the scaling methods; this will not be a

problem with bar code plots as all noise has been previously cleared.

While the aforementioned approach of might attune MALDI’s appearance to FTIR/Ra-

man, it does not eliminate its problematic lack of collinearity, whose success SMBPLSR

methods depend upon [19, 29].

8.2 On utilising varied growth media to enhance dis-

crimination

In the introduction, the proposed [2] advantage of MALDI over FTIR/Raman with regards

to the creation of spectral data bases was introduced and commented. Considering the

results presented in this thesis, this position should be qualified somewhat.
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MALDI results are less susceptible to perturbation by varied growth conditions [11].

Stated in another way: Ribosomal proteins are less sensitive to varied growth conditions

as measured by MALDI.

The high sensitivity to growth conditions expressed by both FTIR [2, 25] and Raman [2]

metabolic fingerprints makes it possible to examine how minute variations in for instance

access to nutrients, can trigger different types of phenotypic response. Knowledge of strain-

specific phenotypic response to varied growth conditions can enhance the discriminative

potential of analysis.

This potential was briefly addressed in this thesis. We showed how SMBPLSR methods

could be utilised to highlight phenotypic response and attribute it to specific biomolecules.

Several publications mention overlapping intra-species results as a shortcoming of FTIR

methods in characterisation or identification [11, 55]. Including phenotypic response into

the analysis of microorganisms at this taxonomic level may provide a higher-resolution

picture of their overlap. Consequently, more detailed discrimination between groups can

be achieved.

Extensive growth protocols that include broader sets of growth conditions may be

more time consuming and costly [5]. However, if recent developments in sample treatment

enabling high-throughput FTIR analysis of microbial samples [4, 9] are consolidated with

our results to create more robust and detailed models for characterisation and identification,

differentiated cultivation might become a desirable option to singular cultivation protocols

in the future.

8.3 On the trade-off between predictive ability and

interpretability

Throughout the analyses described in this thesis, the predictive ability of single data type

analyses (such as 1, 2, 5 and 6) was generally equal to or higher than those of multi-type

analyses (3, 4, 7 and 8). For example, analysis 1 (FTIR multiblock set 1) achieved a

success rate of 96.1% and analysis 2 (Raman multiblock set 1) achieved 84.3%, equal to

analysis 3 (FTIR set 1, Raman set 1, MALDI). The MALDI analysis achieved a success

rate of 82.4%.

Achieving a high success rate was not the primary scope in the second set of analyses

(5-8); rather examining whether SMBPLSR methods enabled assessment of phenotypic

response to varying growth conditions. Nevertheless, the success rates of the set of analyses

are mentioned here for comparison.

The success rate was 70.8% for analysis 5 (FTIR multiblock set 2), 54.2% for analysis 6

(Raman multiblock set 2), 54.2% for analysis 7 (FTIR set 2, Raman set 2, MALDI low and
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medium masses) and 50.0% for analysis 8 (FTIR multiblock set 2, Raman multiblock set

2, MALDI, low and medium masses). The analyses of MALDI, low and medium masses

constitute exceptions in this regard, achieving success rates of only 29.2% and 25.0%,

respectively. Correspondingly, the global scores of the single type data analyses showed

clearer strain grouping than multi-type analyses.

Furthermore, the single data type analyses carried information about how each subregion

of the metabolic fingerprint allowed for strain identification (analyses 1, 2) or recorded

changes in phenotypic response (analyses 5, 6) for each individual data type. In Section 7.8

above, we reported that success rate, i.e. predictive ability, was comparable for SPLSR and

SMBPLSR, given the same input data. In summary, this indicates that SMBPLSR analyses

of single data types carry more information in the block loadings than corresponding

SPLSR analyses, while not losing significant predictive ability.

The single block analyses achieved higher success rate and grouping, but did not carry

information about the relative weighting of each data type. This type of information is,

however, easily acquired by analysing multi-type data, such as 3 and 7. The block scores

from these described the weighting of each data type for the different latent variables.

Examples can be seen in block score plots of higher-order latent variables, where, as

MALDI data start dominating the explained variance, patterns similar to MALDI block

scores are emerging in the global scores. See the global scores of analysis 3 in Figure 6.9

and corresponding MALDI block scores in Figure 6.12 for an example.

The paragraphs above first describe how single data type analyses (1, 2, 5, 6 etc.)

carry information about the weighting of each type of biomolecule in prediction. Then,

we saw how analyses 3 and 7 might furnish the interpreter with knowledge of how data

types are weighted in a multi-type data analysis. The information provided by analyses

4 and 8 encompasses both these aspects of interpretation: Weighting of data types and

weighting of biomolecules. SMBPLSR methods possess the capacity to include several

data types into the same statistical model, and to highlight and make accessible all the

aforementioned information in a meaningful way.

8.4 On the discriminative ability of spectral subre-

gions

In the first set of analyses described in Chapter 6, we see from the block scores of analysis

4 (Figures 6.16 to 6.20) that the single most powerful spectral subregion of all in terms

of discriminative ability is the FTIR fingerprint area corresponding to block 4 of FTIR

multiblock set 1, shown in Figure 6.19. This result, however, was not found in analysis

1, because the sparsity parameter had set the threshold in such a way that for block 4,
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block variables were only selected from PCs 3-5, 7 and 9, failing to select variables from

the dominant PC1 that explained 40.3% of the total block variance and thus impeding

the interpretability of the spectral data.

In the second set of analyses described in Chapter 7, the findings described in the above

paragraph were repeated. Again, we saw how the FTIR fingerprint area corresponding

to FTIR multiblock set 2, block 4 (Figure 7.22), surpassed all other spectral subregions

in discriminative ability in analysis 8. This trend was partly followed in the correlation

loading plots, where the variables belonging to fingerprint regions showed high correlation

for B43 and E43, although both findings were supported by similar correlation in the

amide regions.

According to the score plots, phenotypic response to growth temperature was most

pronounced in the fingerprint region. The findings from analysis 1 were also repeated

in analysis 5 on FTIR multiblock set 2 alone: Variables were not recorded for several of

the dominant latent block variables. The most striking examples were again from block

4, where no variables were recorded for PC1 (67.4% explained block variance) and PC2

(12.7%).

These findings strengthen the case for using multi-type input data in SMBPLSR

models for a larger set of variables to deflate upon. For instance, regions of maintained

strong signal, such as the FTIR fingerprint region, will be selected at the cost of larger,

but less explaining MALDI regions. Another alternative is to impose less strict sparsity

requirements in single type analyses. Lê Cao et al. [26] discuss this problem in particular,

stating that too strict variable selection can potentially remove subtle but valuable patterns

in the data set.

8.5 On different deflation methods

In PCA, the latent variable explaining most of the variation in X is always calculated first

[57]. The subsequent PCs are then calculated in descending order according to the same

quality. This is also the case with PLSR, but in this case, it is the sum of the variance

explained for X and Y that determines the position of the PC [59]. Numerous examples of

this are listed in Tables B.1 and B.2 in Appendix B. This trend was even more prominent

in the score plots, and clearly visible from inspecting the block score plots shown above.

An example is shown in Figure 7.19, where, in block 2 of Raman multiblock set 2 from

analysis 8, PC1 explained 42.9% and PC2 45.3% of the total block variance.

A related and interesting consequence of deflation using super scores, which was done

in these models, was that the dimension chosen for deflation did not necessarily contain

strong enough signals in all the blocks; the soft threshold λ was set so high globally that for
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one or more blocks, no signal was strong enough to exceed it. Consequently, no variables

were selected from this block, and there was no way to plot the associated score plots;

information had to be obtained by other means, for example correlation loading plots.

This weakness was also discussed by Westerhuis and Smilde [27]. Still, as mentioned by

Karaman et al. [29], in sparse models, there is essentially no valid alternative to deflation of

both X and Y on super scores, because deflating on block scores would remove information

that is not presented; slight mixing of information is preferred to its removal.

8.6 On model validation

While the analytic capability of the SMBPLSR method has enjoyed much attention and

devotion in this thesis, less effort has been dedicated to address model stability. This study

employs the SMBPLSR routine as it was developed by Karaman et al. [29]. Unlike them,

however, we did not address the stability of the model using CMV, only CV. Westad et

al. [75] highlighted how CMV could be used deliberately to establish stable and robust

connections between the predicted model and specific subregions of the FTIR and Raman

spectrum. This validation would have been a particularly useful part of the analyses

described in Chapter 7 in this thesis. The reason these methods were not included, was

because a CMV function for multiblock models was absent in the Saisir code pack, and

that the deadline for the thesis provided the author with insufficient time to assemble one

such function. Notwithstanding, other methods of stability-assessment could have been

undertaken.

Hassani et al. [24] suggested calculating the Root Mean Square Error (RMSE) to

validate the stability of their MBPLSR routine. RMSE is calculated for each the descriptor

data block Xb, and the response data Y. These are calculated to highlight the contribution

of each block and for each component in the prediction, and to highlight the predictive

ability of each descriptor block in the response data, respectively. RMSE is calculated by

CV. For mathematical details, see [24].

Another method for addressing model stability is the Q2 test. This test was used

by Karaman et al. [42] to assess predictive ability of each model as part of a CMV

routine. This test, however, was found by Szymanska et al. [22] to yield inferior results

to the routine of calculating the Number of Misclassifications (NMC) used in this study;

according to them, NMC proved better at predicting the model when the difference

between groups was small, which is clearly the case in this study for both data sets.
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Chapter 9

Conclusions and outlook

In this thesis, a twofold scope has been addressed. First, the ability of sparse multiblock

methods to establish a connection between metabolic fingerprints by FTIR and Raman,

and protein expression by MALDI in K. oxytoca and K. pneumoniae has been evaluated.

Score plots were used to showcase the methods’ ability to accurately characterise different

strains in the data set, to ascribe phenotypic similarities and differences between strains to

data blocks pertaining to specific regions of the FTIR and Raman spectra, and compare

these with protein expression in MALDI.

Second, the methods were used to compare phylogenetic differences and similarities in

strains of E. coli and B. subtilis assessed by the same three phenotyping techniques. Results

acquired from multi-type data analyses made it possible to establish connections between

growth temperature and phenotypic response, showcasing which types of biomolecules

were most involved in identification for different temperatures. Block score plots were

used to show that the most pronounced responses were in the amide region for high

temperature (43oC), and in the lipid region for low temperature (25oC). These results

indicate SMBPLSR methods’ ability to utilise differentiated growth protocols to produce

more robust and comprehensive models.

For both data sets, there were clear indications that the methods’ treatment of MALDI

data was completely different from that of FTIR and Raman. While grouping patterns in

FTIR and Raman were relatively equivalent, a completely different set of latent variables

were responsible for corresponding grouping in MALDI. This discrepancy was due to

the lack of collinearity in the MALDI data. As a consequence, global patterns were

dominated by the highly collinear FTIR/Raman data in the first 2-3 latent variables,

but the dominance shifted towards patterns explained chiefly by the MALDI blocks in

higher-order latent variables.

The ability to establish patterns of grouping between FTIR/Raman and MALDI is a

possible advantageous consequence of this; a drawback is the risk of the same information
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being doubly present in dominant latent variables - first in FTIR/Raman - then in MALDI,

while other information is suppressed.

The connections described in this thesis are based on few data sets, and for a limited

set of phenotypic response. More extensive testing is required to strengthen the conclu-

sions. The robustness of the method should also be further examined by application on

strains subject to other variations in growth conditions, such as nutrition deficiency [6] or

cultivation time [11].
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Appendix A

Correspondence tables for strain

names

Table A.1: Overview of K. oxytoca and K. pneumoniae strain names, the names with
which they appear in the figures in this thesis, and their corresponding full script names.
r = 0, 1 or 2 depending on biological replicate.

Strain name Name appearing in figures Full name in script
PHS-890a OxyHWP OxyHWP8000r
PHS-891a OxyHWP OxyHWP8010r
PHS-892a OxyHWP OxyHWP8020r
PHS-893a OxyHWP OxyHWP8030r
PHS-894a OxyHWP OxyHWP8040r
PHS-895a OxyHWP OxyHWP8050r
PHS-896a OxyHWP OxyHWP8060r
PHS-897a OxyHWP OxyHWP8070r
PHS-898a OxyHWP OxyHWP8080r
PHS-899a OxyHWP OxyHWP8090r
CB4063a OxyCB4 OxyCB40000r
CB4074a OxyCB4 OxyCB40010r
CB4072a OxyCB4 OxyCB40020r

CCUG 15788a OxyCCU OxyCCUG000r
Oman 61a OxyOma OxyOman000r

ATCC 13182a OxyAT1 OxyAT13000r
ATCC 25926b PneOza PneOzae000r

a K. oxytoca, b K. pneumonia
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Table A.2: Overview of B. subtilis and E. coli strain names and, the names with which
they appear in the figures in this thesis, and their corresponding script names. r = 0, 1 or
2 depending on biological replicate.

Strain name Growth temperature Name appearing Full name
[oC] in figures in script

DSM 347a 25 B25 BacSubDSM0347250r
DSM 347a 30 B30 BacSubDSM0347300r
DSM 347a 37 B37 BacSubDSM0347370r
DSM 347a 43 B43 BacSubDSM0347430r

K12 DSM 3871b 25 E25 EscColDSM3871250r
K12 DSM 3871b 30 E30 EscColDSM3871300r
K12 DSM 3871b 37 E37 EscColDSM3871370r
K12 DSM 3871b 43 E43 EscColDSM3871430r

a B. subtilis, b E. coli
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Appendix B

Globally explained variance

Table B.1: Explained global variance for the 10 PCs calculated as part of the K.oxytoca/K.
pneumoniae analyses a: 3 and b: 4. Optimal number of PCs were 7 for analysis 3 and 5
for analysis 4.

PC# Xa [%] Ya [%] Xb [%] Yb [%]
1 27.2 38.4 27.9 44.3
2 15.2 7.4 15.3 7.6
3 9.1 8.3 6.8 6.4
4 4.3 12.1 14.9 5.0
5 3.5 11.0 4.0 6.5
6 5.5 4.9 6.5 3.9
7 3.5 3.9 3.9 4.5
8 3.2 4.7 2.5 4.1
9 2.4 2.2 2.6 2.1
10 2.7 1.5 1.8 3.8
Total: 76.6 94.4 86.2 88.2
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Table B.2: Explained global variance for the 10 PCs calculated as part of the E. coli/B.
subtilis SMBPLSR analyses a: 7, and b: 8. Optimal number of PCs was 4 for analysis 7
and 6 for analysis 8.

PC# Xa [%] Ya [%] Xb [%] Yb [%]
1 35.3 14.2 56.9 14.3
2 12.1 10.5 11.8 11.1
3 8.6 12.3 8.5 13.2
4 7.8 8.8 3.9 11.4
5 3.9 11.7 1.7 12.0
6 2.9 12.2 3.5 8.3
7 3.3 7.1 1.9 9.2
8 1.9 9.6 0.8 10.6
9 3.1 3.7 1.5 3.4
10 2.2 3.6 0.8 1.9
Total: 81.1 93.7 91.3 95.4
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Appendix C

MATLAB scripts

In this chapter, the two main scripts used in this thesis are presented. Code and functions

referred to in the script may be shared upon request. Currently, both scripts are set up for

analysing data corresponding to runs 1 and 5 (FTIR multiblock sets 1 and 2, respectively).

C.1 Identification

The following script is the one used to analyse the data on K. oxytoca and K. pneumoniae

described in Chapter 2.1.

% Master t h e s i s s c r i p t t a i l o r e d f o r a n a l y s i s o f the data

% s e t o f K l e b s i e l l a oxytoca and K. pneumoniae , provided by

% Peter Lasch o f Robert Koch−I n s t i t u t , Ber l in , Germany .

%

% Or ig ina l s c r i p t setup by Va l e r i a Taf intseva , Norwegian

Un ive r s i ty o f

% L i f e Sc i enc e s . T a i l o r i n g and ex t en s i on s s e t up by Tor Einar

M l l e r .

c l e a r a l l ;

c l o s e a l l ;

MALDI = 0 ; % I f MALDI data are inc luded in the a n a l y s i s

CMV = 0 ; % I f CMV i s to be performed

t i c

%% Import data . Dataset from Robert Koch I n s t . / Peter Lasch
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Akos=genpath ( ’C:\ Users\Bruker\Desktop\Master\2 TorEinar\ ’ ) ;

addpath ( Akos , ’C:\ Users\Bruker\Desktop\Master\ s c r i p t s \ s a i s i r ’ ) ;

addpath ( Akos , ’C:\ Users\Bruker\Desktop\Master\ s c r i p t s ’ ) ;

DirNameData=’C:\ Users\Bruker\Desktop\Master\DataRobertKoch\ ’ ; %

Set paths

[ Z S a i s i r 1 ]=LoadFromUnscrambler v1003 ( DirNameData , ’ Klebs ie l laFTIR

’ ) ;

ZX = Z S a i s i r 1 ; % FTIR

ZX raw = load ( s t r c a t ( DirNameData , ’ Klebsie l laRaman ’ ) ) ;

Z S a i s i r . v = ZX raw . VarLabels0 ;

Z S a i s i r . d = ZX raw . NIR FTRaman ;

Z S a i s i r . i = ZX raw . ObjLabels ;

RX = Z S a i s i r ; % Raman

ma ld i l o c = ’\MALDI spec t ra \K l e b s i e l l a−oxytoca . muf ’ ;

MX = load ( s t r c a t ( DirNameData , ma ld i l o c ) , ’−mat ’ ) ;

MX = MX. spec ; % MALDI

%% Replace comma by point

Nx=s i z e (ZX. v , 1 ) ; % FTIR

f o r j =1:Nx

oldName=Z S a i s i r 1 . v ( j , : ) ;

mod i f i edStr = s t r r e p ( oldName , ’ , ’ , ’ . ’ ) ;

ZX. v ( j , : )=modi f i edSt r ;

end

Nx=s i z e (RX. v , 1 ) ; % Raman

f o r j =1:Nx

oldName=Z S a i s i r . v ( j , : ) ;

mod i f i edStr = s t r r e p ( oldName , ’ , ’ , ’ . ’ ) ;

RX. v ( j , : )=modi f i edSt r ;

end

%% Preproces s spec t r a by EMSC

ws = 9 ; % Set window s i z e o f SG f i l t e r
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RX 2ndDer = s a i s i r d e r i v a t i v e (RX, 2 , ws , 0 ) ; % Raman

[ RX EMSCModel]=make emsc modfunc ( RX 2ndDer ) ;

[ RX cor ,˜ ,˜ ]= ca l emsc (RX 2ndDer , RX EMSCModel) ;

ZX 2ndDer = s a i s i r d e r i v a t i v e (ZX, 2 , ws , 2 ) ; % FTIR

[ ZX EMSCModel]=make emsc modfunc ( ZX 2ndDer ) ;

[ ZX cor ,˜ ,˜ ]= ca l emsc ( ZX 2ndDer , ZX EMSCModel) ;

%% S e l e c t b locks o f FTIR and Raman data

% S e l e c t FTIR blocks

ZX cor s e l {1} = s e l e c t c o l ( ZX cor , 1090 :1245) ; % 2950−2800 wn

ZX cor s e l {2} = s e l e c t c o l ( ZX cor , 2334 :2542) ; % 1750−1550 wn

ZX cor s e l {3} = s e l e c t c o l ( ZX cor , 2645 :2749) ; % 1450−1350 wn

ZX cor s e l {4} = s e l e c t c o l ( ZX cor , 2853 :3216) ; % 1250−900 wn

% Concatenate FTIR blocks

ZX cor con = appendcol ( ZX cor s e l {1} , ZX cor s e l {2}) ;

ZX cor con = appendcol ( ZX cor con , ZX cor s e l {3}) ;

ZX cor con = appendcol ( ZX cor con , ZX cor s e l {4}) ;

% S e l e c t Raman b locks

RX cor se l {1} = s e l e c t c o l ( RX cor , 468 :728) ; % 3050−2800 wn

RX cor se l {2} = s e l e c t c o l ( RX cor , 1868 :2024) ; % 1700−1550 wn

RX cor se l {3} = s e l e c t c o l ( RX cor , 2076 :2283) ; % 1500−1300 wn

RX cor se l {4} = s e l e c t c o l ( RX cor , 2387 :2854) ; % 1200−750 wn

RX cor se l {5} = s e l e c t c o l ( RX cor , 3269 :3526) ; % 350−100 wn

% Concatenate Raman b locks

RX cor con = appendcol ( RX cor se l {1} , RX cor se l {2}) ;

RX cor con = appendcol ( RX cor con , RX cor se l {3}) ;

RX cor con = appendcol ( RX cor con , RX cor se l {4}) ;

RX cor con = appendcol ( RX cor con , RX cor se l {5}) ;

%% Set up MALDI data

% Set up names : Constructs and s t o r e s names i d e n t i c a l to those

used in
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% FTIR in a new MX f i e l d c a l l e d stn ( s to r ed names ) .

f o r row = 1 : l ength (MX)

s p e c i e s = s t r c a t ( upper (MX( row ) . spe (1 ) ) ,MX( row ) . spe ( 2 : 3 ) ) ;

i f strcmp (MX( row ) . s t r ( 1 : 2 ) , ’ 13 ’ )

s t r a i n = s t r c a t ( ’HWP80 ’ , MX( row ) . s t r (9 ) ) ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 6 ) , ’ATCC 1 ’ )

s t r a i n = ’AT1300 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 6 ) , ’ATCC 2 ’ )

s t r a i n = ’ Ozae00 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 4 ) , ’Oman ’ )

s t r a i n = ’Oman00 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 4 ) , ’CCUG’ )

s t r a i n = ’CCUG00 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 6 ) , ’CB4063 ’ )

s t r a i n = ’CB4000 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 6 ) , ’CB4072 ’ )

s t r a i n = ’CB4001 ’ ;

e l s e i f strcmp (MX( row ) . s t r ( 1 : 6 ) , ’CB4074 ’ )

s t r a i n = ’CB4002 ’ ;

e l s e

d i sp ( ’Unknown s t r a i n . ’ )

end

r e p l i c a t e = str2num (MX( row ) . typ ( 5 : 6 ) )−1;

rep = s t r c a t ( ’ 0 ’ , num2str ( r e p l i c a t e ) ) ;

MX( row ) . stn = s t r c a t ( spe c i e s , s t r a in , rep ) ; % Creates a new

f i e l d in MX

end

i f MALDI

MX bar = make bar code (MX) ; % Create MALDI bar code p l o t

MX bar = s e l e c t c o l (MX bar , 1222 :9222) ; % I n c i s e in spectrum

end

%% Concatenate data types

% One block f o r a l l data types

X con data = appendcol ( ZX cor con , RX cor con ) ;
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i f MALDI

X con data = appendcol ( X con data , MX bar) ;

end

% Mult iblock , one block f o r each data type

X mult i data {1} = ZX cor con ;

X mult i data {2} = RX cor con ;

i f MALDI

X mult i data {3} = MX bar ;

end

% Mult iblock , f our FTIR blocks , f i v e Raman blocks , and one MALDI

block

XM{1} = ZX cor s e l {1} ;

XM{2} = ZX cor s e l {2} ;

XM{3} = ZX cor s e l {3} ;

XM{4} = ZX cor s e l {4} ;

XM{5} = RX cor se l {1} ;

XM{6} = RX cor se l {2} ;

XM{7} = RX cor se l {3} ;

XM{8} = RX cor se l {4} ;

XM{9} = RX cor se l {5} ;

i f MALDI

XM{10} = MX con ;

end

%% Def ine parameters

% C l a s s i f i c a t i o n Tree s p e c i f i c a t i o n

Leve l s . Names = ’ St ra in ’ ;

Leve l s . NameRange{1 ,1} = 1 : 6 ;

Leve l s . NumLevels = s i z e ( Leve l s . Names , 1 ) ;

% Def ine CV type : ’ Fu l l CV’ , ’ Contiguous Blocks ’ , ’ Random Subsets

’ ,

% ’ Venetian Blinds ’ , ’ S p e f i f i e d ’ .

CVPar . CVType = ’ Venetian Bl inds ’ ;

CVPar . c v f o l d = 3 ;
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CVPar . cvind = [ 1 , 1 1 ] ; % Relevant f o r ’ S p e c i f i e d ’ c o n f i g u r a t i o n .

CVPar = CVParGenerator (CVPar , ZX cor con ) ;

% Def ine PLS method

PLSPar . PLSMethod = ’ p l s ’ ;

PLSPar . Sparse = ’ on ’ ;

PLSPar . Mult ib lock = ’ o f f ’ ;

PLSPar . PLSType = ’DA’ ; % Discr iminant Ana lys i s

PLSPar . S p a r s I n t e r v a l = [ 0 . 9 0 , 0 . 9 8 ] ; % percent o f v a r i a b l e s

thrown away

PLSPar . NSpars = 5 ; % 5 number o f va lue s f o r s p a r s i t y

PLSPar . p c r i t i c a l = 0 . 0 5 ; % S i g n i f i c a n c e l e v e l f o r

s e n s i t i v i t y in the

% model s e l e c t i o n : measured in

precent o f

% optimal e r r o r .

PLSPar . pc = 10 ; % Maximum number o f PC’ s

%% MAIN PART

%% Training

N = s i z e ( ZX cor con , 1 ) ;

l e v e l = 1 ;

which = ( 1 :N) ’ ;

PlotTrain . ConfM = 1 ; % Plot con fus i on matrix

PlotTrain . RegrCoef = 1 ; % Plot r e g r e s s i o n c o e f f i c i e n t s

% Set up Y

[ZY,ZYAdd] = s p l i t 2 l e v e l s ( Leve l s . NameRange , ZX cor con , ’ o f f ’ ) ;

% Perform PLS

[ ClasModel ] = Est imateClassTree ( l e v e l , ZX cor con ,ZY,ZYAdd, which

, . . .

PLSPar , CVPar , Levels , PlotTrain ) ;

%% CMV

i f CMV

Vote . switch = ’ o f f ’ ;
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Vote . ind = 1 : 2 0 ;

CMVPar. CVType = ’ Fu l l CV’ ; % Options as f o r CV desc r ibed

above

CMVPar. c v f o l d = 9 ;

CMVPar. cvind = 7 : 8 ;

CMVPar = CVParGenerator (CMVPar, RX cor ) ;

CMVPar. c v f o l d = CMVPar. c v f o l d ;

CMVPar. f r e p l t = 1 ; % Create f requency p l o t

CMVData = CMVDA( RX cor , PLSPar , CVPar ,CMVPar, Levels , Vote , ’ o f f ’

) ;

end

toc

C.2 Experimental design

The following script is the one used to analyse the data on E. coli and B. subtilis described

in Chapter 2.2.

% Master t h e s i s s c r i p t t a i l o r e d f o r a n a l y s i s o f the data

% s e t ’ Study2008 ’ o f Es che r i ch i a c o l i and B a c i l l u s s u b t i l i s ,

provided by

% Peter Lasch o f Robert Koch−I n s t i t u t , Ber l in , Germany .

%

% Or ig ina l s c r i p t setup by Va l e r i a Taf intseva , Norwegian

Un ive r s i ty o f

% L i f e Sc i enc e s . T a i l o r i n g and ex t en s i on s s e t up by Tor Einar

M l l e r .

c l e a r a l l ;

c l o s e a l l ;

MALDI = 0 ; % I f MALDI data are inc luded in the a n a l y s i s

CMV = 0 ; % I f CMV i s to be run

t i c

%% Import data . Dataset from Robert Koch I n s t . / Peter Lasch
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Akos=genpath ( ’C:\ Users\Bruker\Desktop\Master ’ ) ;

addpath ( Akos , ’C:\ Users\Bruker\Desktop\Master\ s c r i p t s ’ ) ;

DirNameData=’C:\ Users\Bruker\Desktop\Master\Data2008\ ’ ; % Set

paths

[ Z S a i s i r ]=LoadFromUnscrambler v1003 ( DirNameData , ’FTIRData ’ ) ;

ZX = Z S a i s i r ; % FTIR

[ RSa i s i r ]=LoadFromUnscrambler v1003 ( DirNameData , ’RamanData ’ ) ;

RX = RSa i s i r ; % Raman

MX l = load ( s t r c a t ( DirNameData , ’ low−mass ’ ) ) ;

MX l = MX l . spec ; % MALDI low mass

MX m = load ( s t r c a t ( DirNameData , ’medium−mass ’ ) ) ;

MX m = MX m. spec ; % MALDI low mass

%% Replace comma by point

Nx=s i z e (ZX. v , 1 ) ; % FTIR

f o r j =1:Nx

oldName=Z S a i s i r . v ( j , : ) ;

mod i f i edStr = s t r r e p ( oldName , ’ , ’ , ’ . ’ ) ;

ZX. v ( j , : )=modi f i edSt r ;

end

Nx=s i z e (RX. v , 1 ) ; % Raman

f o r j =1:Nx

oldName=RSa i s i r . v ( j , : ) ;

mod i f i edStr = s t r r e p ( oldName , ’ , ’ , ’ . ’ ) ;

RX. v ( j , : )=modi f i edSt r ;

end

%% Preproces s spec t r a

ws = 9 ; % Set window s i z e o f SG f i l t e r .

ZX 2ndDer = s a i s i r d e r i v a t i v e (ZX, 2 , ws , 2 ) ; % FTIR

[ ZX EMSCModel]=make emsc modfunc ( ZX 2ndDer ) ;
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[ ZX cor ,˜ ,˜ ]= ca l emsc ( ZX 2ndDer , ZX EMSCModel) ;

RX 2ndDer = s a i s i r d e r i v a t i v e (RX, 2 , ws , 0 ) ; % Raman

[ RX EMSCModel]=make emsc modfunc ( RX 2ndDer ) ;

[ RX cor ,˜ ,˜ ]= ca l emsc (RX 2ndDer , RX EMSCModel) ;

%% S e l e c t b locks o f FTIR and Raman data

% S e l e c t FTIR blocks

ZX cor s e l {1} = s e l e c t c o l ( ZX cor , 1090 :1245) ; % 2950−2800 wn

ZX cor s e l {2} = s e l e c t c o l ( ZX cor , 2334 :2490) ; % 1750−1600 wn

ZX cor s e l {3} = s e l e c t c o l ( ZX cor , 2594 :2749) ; % 1500−1350 wn

ZX cor s e l {4} = s e l e c t c o l ( ZX cor , 2853 :3257) ; % 1250−850 wn

% Concatenate FTIR blocks

ZX cor con = appendcol ( ZX cor s e l {1} , ZX cor s e l {2}) ;

ZX cor con = appendcol ( ZX cor con , ZX cor s e l {3}) ;

ZX cor con = appendcol ( ZX cor con , ZX cor s e l {4}) ;

% S e l e c t Raman b locks

RX cor se l {1} = s e l e c t c o l ( RX cor , 415 :727) ; % 3100−2800 wn

RX cor se l {2} = s e l e c t c o l ( RX cor , 1867 :2230) ; % 1700−1350 wn

RX cor se l {3} = s e l e c t c o l ( RX cor , 2583 :2853) ; % 1010−750 wn

RX cor se l {4} = s e l e c t c o l ( RX cor , 3267 :3527) ; % 350−100 wn

% Concatenate Raman b locks

RX cor con = appendcol ( RX cor se l {1} , RX cor se l {2}) ;

RX cor con = appendcol ( RX cor con , RX cor se l {3}) ;

RX cor con = appendcol ( RX cor con , RX cor se l {4}) ;

%% Set up MALDI data

% Set up names : Constructs and s t o r e s names i d e n t i c a l to those

used in

% FTIR in a new MX f i e l d c a l l e d stn ( s to r ed names ) .

f o r row = 1 : l ength (MX l)

gen = MX l( row ) . gen ( 1 : 3 ) ;
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spe = s t r c a t ( upper (MX l( row ) . spe (1 ) ) , MX l( row ) . spe ( 2 : 3 ) ) ;

i f strcmp ( gen , ’ Bac ’ )

s t r = s t r c a t (MX l( row ) . s t r ( 1 : 3 ) , ’ 0 ’ ,MX l( row ) . s t r ( 5 : 7 ) ) ;

e l s e i f strcmp ( gen , ’ Esc ’ )

s t r = s t r c a t (MX l( row ) . s t r ( 6 : 8 ) ,MX l( row ) . s t r ( 1 0 : 1 3 ) ) ;

e l s e d i sp ( ’unknown s p e c i e s ! ’ )

break

end

temp = MX l( row ) . tem ( 1 : 2 ) ;

i f rem( row , 3) == 1

tech = ’ 00 ’ ;

e l s e i f rem( row , 3) == 2

tech = ’ 01 ’ ;

e l s e i f rem( row , 3) == 0

tech = ’ 02 ’ ;

end

MX l( row ) . stn = s t r c a t ( gen , spe , s t r , temp , tech ) ;

MX m( row ) . stn = s t r c a t ( gen , spe , s t r , temp , tech ) ;

end

i f MALDI

MX l bar = make bar code (MX l) ;

MX l bar = s e l e c t c o l ( MX l bar , 1 : 1 9 8 3 ) ;

MX m bar = make bar code (MX m) ;

MX m bar = s e l e c t c o l (MX m bar , 1 : 1 0 2 1 6 ) ;

end

%% Concatenate data types

% One block conta in ing a l l data

X con data = appendcol ( ZX cor con , RX cor con ) ;

i f MALDI

X con data = appendcol ( X con data , MX l bar ) ;

X con data = appendcol ( X con data , MX m bar) ;

end

% Mult iblock , one block per data type

X mult i data {1} = ZX cor con ;
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X mult i data {2} = RX cor con ;

i f MALDI

X mult i data {3} = MX l bar ;

X mult i data {4} = MX m bar ;

end

% Mult iblock , f our FTIR−blocks , f our Raman−b locks and two MALDI−
b locks

XM{1} = ZX cor s e l {1} ;

XM{2} = ZX cor s e l {2} ;

XM{3} = ZX cor s e l {3} ;

XM{4} = ZX cor s e l {4} ;

XM{5} = RX cor se l {1} ;

XM{6} = RX cor se l {2} ;

XM{7} = RX cor se l {3} ;

XM{8} = RX cor se l {4} ;

i f MALDI

XM{9} = MX l bar ;

XM{10} = MX m bar ;

end

%% Def ine parameters

% C l a s s i f i c a t i o n Tree s p e c i f i c a t i o n

Leve l s . Names = ’ Design ’ ;

Leve l s . NameRange{1 ,1} = 1 0 : 1 5 ;

Leve l s . NumLevels = s i z e ( Leve l s . Names , 1 ) ;

% Def ine CV type : ’ Fu l l CV’ , ’ Contiguous Blocks ’ , ’ Random Subsets

’ ,

% ’ Venetian Blinds ’ , ’ S p e c i f i e d ’ .

CVPar . CVType = ’ Venetian Bl inds ’ ;

CVPar . c v f o l d = 3 ;

CVPar . cvind = [ 1 , 1 1 ] ; % Relevant f o r ’ S p e c i f i e d ’ c o n f i g u r a t i o n .

CVPar = CVParGenerator (CVPar , ZX cor con ) ;

% Def ine PLS method

113



APPENDIX C. MATLAB SCRIPTS

PLSPar . PLSMethod = ’ p l s ’ ;

PLSPar . Sparse = ’ o f f ’ ;

PLSPar . Mult ib lock = ’ on ’ ;

PLSPar . PLSType = ’DA’ ; % Discr iminant Ana lys i s

PLSPar . S p a r s I n t e r v a l = [ 0 . 9 0 , 0 . 9 9 ] ; % percent o f v a r i a b l e s

thrown away

PLSPar . NSpars = 3 ; % 5 number o f va lue s f o r s p a r s i t y

PLSPar . p c r i t i c a l = 0 . 0 5 ; % S i g n i f i c a n c e l e v e l f o r

s e n s i t i v i t y in the

% model s e l e c t i o n : measured in

precent o f

% optimal e r r o r .

PLSPar . pc = 10 ; % Maximum number o f PC’ s

%% MAIN PART

%% Training

N = s i z e ( ZX cor con , 1 ) ;

l e v e l = 1 ;

which = ( 1 :N) ’ ;

PlotTrain . ConfM = 1 ; % Plot con fus i on matrix

PlotTrain . RegrCoef = 1 ; % Plot r e g r e s s i o n c o e f f i c i e n t s

% Set up Y

[ZY,ZYAdd] = s p l i t 2 l e v e l s ( Leve l s . NameRange , ZX cor con , ’ o f f ’ ) ;

% Perform PLSR

[ ClasModel ] = Est imateClassTree ( l e v e l , ZX cor se l ,ZY,ZYAdd, which

, . . .

PLSPar , CVPar , Levels , PlotTrain ) ;

%% CMV

i f CMV;

Vote . switch = ’ o f f ’ ;

Vote . ind = 1 : 2 0 ;

CMVPar. CVType = ’ Venetian Bl inds ’ ; % Options as f o r CV

CMVPar. c v f o l d = 8 ;
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CMVPar. cvind = 7 : 8 ;

CMVPar = CVParGenerator (CMVPar, ZX cor ) ;

CMVPar. c v f o l d = CMVPar. c v f o l d ;

CMVPar. f r e p l t = 1 ; % Plot f requency p l o t

CMVData = CMVDA( ZX cor , PLSPar , CVPar ,CMVPar, Levels , Vote , ’ o f f ’

) ;

end

toc
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