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Summary

Microarray gene expression data are usually associated with a large number of cor-
related variables measured on few samples. This type of data typically contain high
levels of noise, and the biological signals may be difficult to extract. The classical
approach for analysing gene expression data is to test individual genes for differential
expression. This basically implies performing tests on possibly thousands of depend-
ent variables while incorrectly assuming statistical independence. The probability of
doing false positive discoveries is accordingly high, the results of the analysis may be
difficult to reproduce, and the outcome may be a list of biologically unrelated genes
that leaves very much to the imagination.

An increasing number of publications have therefore started to focus on incorporating
prior biological information about gene dependencies in the analysis of gene expres-
sion data. Vast amounts of knowledge about relationships between genes based on
previous studies are available. The motivation behind analysing the data in light of
this information, include increased sensitivity and robustness of the analysis, better
reproducibility of the results and easier interpretation. The prior information can for
example be groups of genes with a similar function, or gene networks that describe
some relationship between genes. With this information in hand, the focus can be
turned from identifying important individual genes, to identifying larger groups of
important genes that are also related.

The aim of this thesis has been to improve and adapt existing methods to accommod-
ate gene expression data from various types of experimental designs, in addition to
developing novel procedures that incorporate prior information. A central part of this
work has been concerned with significance testing in data sets with few and dependent
samples. Most existing methods in this field use permutation tests to assess signific-
ance when the distribution of the test statistics is unknown. This is however problem-
atic in data sets with very small sample sizes and complex experimental designs. In
paper I we adopt a popular method for analysing gene sets, and replace the permuta-
tion test with a rotation test to accommodate it to small sample sizes. Paper III and IV
introduce improvements to the method in paper I by adapting it to data from complex
experimental designs and time series data. In paper II we propose a novel method that
uses gene networks to improve test statistics for individual genes.

v



Guro Dørum

Sammendrag

Genekspresjonsdata fra mikromatriser assosieres ofte med et stort antall korrelerte
variabler målt på få observasjoner. Denne typen data inneholder vanligvis mye
irrelevant variasjon, og de biologiske signalene kan være vanskelig å skille fra bak-
grunnsstøyet. Den vanligste måten å analysere geneekspresjonsdata på, har vært å
teste hvert enkelt gen for differensiell ekspresjon. Dette innebærer å utføre tester på
potensielt tusenvis av avhengige variabler, samtidig som man antar statistisk uavhen-
gighet. Sannsynligheten for å finne falske positive er tilsvarende høy, resultatene kan
være vanskelig å reprodusere, og utfallet av analysen kan være en liste med gener uten
biologisk relasjon som overlater veldig mye til fantasien.

Et økende antall publikasjoner har derfor begynt å fokusere på inkludering av a

priori informasjon om genavhengigheter i analyse av genekspresjonsdata. Fra tidligere
studier finnes store mengder biologisk kunnskap om relasjoner mellom gener. Ved å
analysere dataene i lys av denne informasjonen, ønsker man å oppnå en mer sensitiv
og robust analyse med resultater som er enklere å reprodusere og tolke. Forhånds-
informasjonen kan for eksempel bestå av grupper av gener med lignende funksjon
eller gennettverk som beskriver relasjoner mellom gener. Med denne informasjonen
for hånden, kan fokuset flyttes fra viktige enkeltgener, til grupper av viktige gener som
også har noe felles.

Målet med denne avhandlingen har vært å forbedre og tilpasse eksisterende metoder
til genekspresjonsdata med forkjellige typer forsøksdesign, samt utvikling av nye met-
oder som benytter seg av a priori informasjon. En sentral del av dette arbeidet har vært
knyttet til testing av signifikans i datasett med få og avhengige observasjoner. De fleste
eksisterende metoder innenfor dette feltet bruker permutasjonstester for å evaluere sig-
nifikans når testobservatoren har en ukjent fordeling. Dette er imidlertid problematisk
for datasett med veldig få observasjoner som ikke kan antas uavhengige grunnet for-
søksdesignet. I artikkel I tar vi for oss en populær metode for å analysere gengrupper
og bytter ut permutasjonstesten med en rotasjonstest for å tilpasse metoden til små
utvalgsstørrelser. I artikkel III og IV introduseres forbedringer av metoden i artikkel
I ved å tilpasse den til data med komplekse forsøksdesign og tidsseriedata. I artikkel
II foreslår vi en ny metode som bruker gennettverk til å forbedre testobservatoren til
enkeltgener.
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1 Introduction

1.1 Background

The last couple of decades have seen a revolution in the field of biology with the
introduction of "omics" techniques - such as genomics, transcriptomics, proteomics
and metabolomics - that can measure the complete set of DNA, RNA, proteins or
metabolites in a cell or tissue. Figure 1 shows the hierarchy of the most important
omics approaches and which part of the cell they are studying. Genomics at the bottom
of the pyramid is a relatively well studied field, while metabolomics at the top is less
explored so far. Common for these high-throughput technologies is that they give
rapid determination of a large number of variables per sample. However, the number
of samples is often limited by financial or practical interests, and the variables may be
highly correlated. The generation of such high-dimensional data sets has introduced
an increasing need for multivariate statistical methods that can handle these types of
data. The combination of many correlated variables and few samples causes problems
for the classical statistical methods that rely on having more samples than variables,

Figure 1: The omics hierarchy.
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and that do not take any potentially known variable dependence into account.

A growing number of papers that deal with the analysis of omics data are concerned
with bringing prior biological information into the analysis. Large amounts of bio-
logical knowledge have been gathered over the years, and analysing the data in light
of this information may lead to increased statistical power and improved understand-
ing of the biological processes involved in the condition under study. The focus of
this PhD project has been on incorporating biological knowledge into the analysis
of transcriptomics data in order to identify genes that are regulated under a certain
condition.This has demanded a consideration for complex dependency structures both
between variables and samples. Topics that have been treated include testing sets of
genes, smoothing data with gene networks and handling small sample sizes and cor-
related observations. The introduction part of this thesis will give a short preface to
the work that is presented in the papers, with a perspective of what have been done be-
fore and references to what we have done in our papers. The methods presented in this
thesis have been applied to microarray gene expression data, which will be presented
in brief in the next section. However, many of the problems faced in microarray data
are typical for high-throughput data, and the issues and methods presented here should
thus be highly relevant within other omics fields as well. With small adjustments these
methods could be applied to different types of omics data.

1.2 Microarray gene expression data

The first paper on microarrays was published by Schena et al. in 1995, and the tech-
nology has since become a mainstream tool within the field of molecular biology.
Microarrays offer the chance to measure the simultaneous expression of all genes in
a cell, quickly and at a relatively low cost per gene. The objective is often to identify
genes that are differentially expressed under two or more different conditions or pheno-
types.

The number of samples (arrays) in microarray experiments is usually very small com-
pared to the number of variables (genes). There are multiple sources of variation in
each step of the experiment which can potentially result in extremely noisy data. Ex-
amples of such unwanted effects include differences in dye-intensity, batch effects and
array effects. It is important to carefully consider the experimental design in order to

2



PhD thesis 1.2 Microarray gene expression data

reduce and control the variation so the important effects can be identified. Kerr and
Churchill (2001) present some important statistical principles for experimental design
of gene expression microarrays.

A microarray experiment can be designed with direct or indirect comparison between
the conditions/phenotypes of interest. In direct designs, samples from two phenotypes
hybridise to mutual arrays. In indirect designs, samples from two (or more) pheno-
types hybridise to different arrays with a common reference. Direct designs give, as
the name implies, a direct estimate of the differential expression between two pheno-
types. Direct designs require only half as many arrays for the same number of meas-
urements as indirect designs do. The small sample size, which is particularly present
in direct designs, is one of the challenges in microarray data that has been treated in
this thesis. Indirect design is a natural choice for comparing more than two pheno-
types or for comparing results across different experiments. In data from indirect
designs, one sample (array) corresponds to one phenotype. Many statistical methods
for analysing gene expression data are designed for indirect comparison data, so ad-
apting these methods to direct comparison data is another issue that has been handled
in this thesis. Yang and Speed (2002) give a comprehensive review of design consid-
erations for microarray experiments.

Microarray experiments designed as time series have the appealing property of giving
a more dynamic picture of gene expression, rather than just doing a ”snapshot” of the
genome. Longitudinal studies measure each individual repeatedly over time, while
cross-sectional studies measure different individuals at each time point. The advant-
age of longitudinal studies over cross-sectional studies, is that they can distinguish
changes over time within individuals from general differences between individuals.
The individuals are usually considered independent, but there will inherently be cor-
relations between measurements from the same individual that must be taken into
account. Longitudinal data is a topic in paper III and IV.

The technologies for measuring gene expression is in constant change, and in the fu-
ture the microarray technology as we know it may be a thing of the past. RNA se-
quencing (RNA-seq) is gradually taking over in the analysis of transcriptomes (Shen-
dure, 2008, Wang et al., 2009). This technology directly determines the sequence and
yields a digital quantification of gene expression, rather than an analog quantification
as microarrays yield. The consequence is a dramatic reduction in the level of noise.

3
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Sequencing approaches have traditionally been associated with low throughput and
high costs, but with new high-throughput technologies both cost and time are signi-
ficantly reduced. Although we do not know exactly what is in store for the analysis
of transcriptomes, we can be confident that there will always be a need to measure
gene expression. The methods presented in this thesis are not exclusive to microarray
data, and could easily be adapted to other types of gene expression data. Small sample
sizes, one of the issues handled in this thesis, is likely to be a problem also in the fu-
ture, especially when technologies are new and expensive. As improved technologies
produce less technical variation, the biological variation will be even more prominent.
Our methods that consider gene dependencies and time dependencies should therefore
be highly relevant for gene expression data also from other technologies.

1.3 Including prior knowledge in the analysis

The traditional approach in analysis of gene expression data has been to test each gene
for differential expression. Testing thousands of genes simultaneously can potentially
lead to a large number of false positives. Correction for multiple hypothesis testing
can to a certain degree justify this, but may in many cases give very conservative
estimates. In addition, the outcome of the analysis may be a list of significant genes
with little or no biological relation, and the results may prove difficult to reproduce in
another experiment.

It is known that genes interact on many levels in the cell, and this is likely to be reflec-
ted in correlated expression patterns between genes. More and more publications are
now focusing on bringing prior biological knowledge into the analysis of expression
data. The idea is that genes that are known to be related, should also share a similar
expression pattern. The relation may be that the genes take part in the same metabolic
pathway, that they have a similar function, or that they are part of the same bacterial
operon, just to mention a few. This background information can be brought into the
analysis in the form of gene sets or gene networks. What is essential is that the inform-
ation about gene dependencies is not based on the data at hand, but defined prior to
the analysis. Analysing data in light of this prior information can lead to an increased
sensitivity by moving the focus from large expression changes in individual genes to
more moderate changes in larger groups of related genes. It should also make the

4
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analysis more robust, reduce the number of false positives and give more interpretable
results.

1.3.1 Gene set analysis

Gene set analysis methods, or gene set tests as they also will be referred to here,
evaluate gene expression data on the basis of a collection of predefined gene sets.
Rather than testing individual genes, inferences are made on the gene set level where
the goal is to identify differentially expressed sets of genes. Gene set tests may have
higher statistical power than individual gene tests because signals from the whole set
of genes are accumulated in a gene set score. Significance is assessed for each gene
set, usually by computing p-values using a permutation test.

There are numerous ways of defining gene sets. In the papers included in this thesis we
have analysed four different categories of gene sets: functional categories, pathways,
EC groups and operons. The reasonings for classifying genes into sets may differ,
but the fundamental idea is that genes in the same set are expected to have correlated
expression patterns. In the functional categories, genes are grouped based on their
functional role. Genes in the same pathway take part in successive chemical reactions.
EC groups are defined based on the genes’ Enzyme Commission number reflecting
the biochemical reactions that enzymes catalyse. Operons are clusters of genes in
bacterial genomes that are controlled by a common transcription mechanism.

By doing tests on gene sets rather than individual genes, the number of tests, and hence
the probability of doing type I errors, is reduced. Gene set tests are also more sensitive
for detecting moderate changes in expression that are consistent within the members
of a gene set. This can be helpful for seeing gene regulation in a greater context.
Larger groups of related genes that show some degree of differential expression, may
give more valuable information than a few and possibly unrelated genes with high
differential expression. On the other hand, the focus on gene sets may mean that
we miss out on some important individual genes. The analysis of gene sets can also
be useful for comparing expression patterns in different studies. Subramanian et al.
(2005) and Manoli et al. (2006) showed that gene set analysis gave more consistent
results than individual gene analysis on different data sets.

5
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A classical method for assessing differential expression in gene sets is the Fisher’s
exact test. A list of significant genes is compiled, and the density of differentially
expressed genes in a given set compared to the remaining genes is tested. The test
layout can be presented in a 2× 2 table. A number of methods with minor variations
of the 2×2 table have been proposed, and an overview is given in Khatri and Draghici
(2005). A drawback of these methods is that they still make inferences on the gene
level; only the significant genes are included in the computation of a gene set statistic.

Gene set tests that consider the whole set of genes in the computation of a gene set
score have become increasingly popular after the introduction of the Gene Set Enrich-
ment Analysis (GSEA) (Mootha et al., 2003, Subramanian et al., 2005). GSEA starts
by ranking the genes based on some test statistic, e.g. correlation with a phenotype
vector or a t-statistic comparing the differential expression in two groups. The mem-
bers of the gene sets are located in the ranked list before a Kolmogorov-Smirnov type
statistic, a so-called ”enrichment score”, is calculated for each gene set. Gene sets
clustered at the top or bottom of the list tend to get high test scores. The GSEA en-
richment score is used as the gene set score in all papers included in this thesis. While
GSEA is probably the most popular choice of these types of gene set tests, a string of
other tests have been suggested by e.g. Goeman et al. (2004), Tian et al. (2005), Efron
and Tibshirani (2007) and Wu et al. (2010). A recent overview can be found in Huang
et al. (2009).

The focus of gene set tests so far have been on identifying sets of genes that are dif-
ferentially expressed at a given time. In longitudinal microarray data, one may also
be interested in identifying gene sets that show strong time trends. A group of genes
that change expression unanimous over time may give just as important information
about gene behaviour as a set of genes that is constantly expressed over time, and is
potentially a stronger indicator of correlated genes. In paper III we introduce a gene
set test that captures both gene sets with constant differential expression over time and
gene sets that show certain trends over time.

1.3.2 Gene networks

Using gene networks is an alternative to gene sets when it comes to including prior
information in the analysis. Genes may be arranged into complex networks according

6
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to regulation aspects or location in the DNA. Gene set analysis methods do not take
advantage of the explicit structure of gene relationships. With gene networks we can
exploit information about distances between genes in a gene set, i.e. how closely
related each pair of genes are. The idea is that shorter distances within the network
often implies more correlated gene expression patterns. As with gene sets, there are
numerous ways of defining gene networks. The most common approach is to use
networks based on pathways, but other alternatives include gene regulatory networks
or networks derived from bacterial operons. Methods that use gene networks in the
analysis of expression data have been presented by i.e. Hanisch et al. (2002), Vert and
Kanehisa (2003), Rahnenführer et al. (2004), Rapaport et al. (2007) and Sæbø et al.
(2008).

A gene network can be represented as a directed or undirected graph, where each node
corresponds to a gene and an edge between two nodes represents some biological re-
lationship. In pathways, an edge between two nodes imply that the genes take part in
successive biochemical reactions. In gene regulatory networks, two genes are connec-
ted if the transcription of one gene is regulated by the other gene. In operons, two
genes are connected because they are located next to each other on the chromosome
and are controlled by a common transcription mechanism. Although we have not seen
operons being used as networks, they appear to be strong indicators of co-regulation
considering that the genes are transcribed simultaneously. Figure 2 shows an example
of a gene network derived from pathways in the bacterium Enterococcus faecalis. The
individual pathways are merged together to one comprehensive network.

The edges in a gene network may also include information about the direction of reg-
ulation, that is whether we should expect a positive or negative correlation between
each pair of genes. Both in pathways and gene regulatory networks, genes may have
either positive or negative effect on each other (positive or negative feedback). Within
operons however, we would expect a positive correlation between all genes.

In addition to fully exploiting the structural relationship between genes, gene networks
have the appealing feature of not requiring a strict division into gene sets. Since genes
may have several functions and take part in several reactions, they do not necessarily
fall naturally into one set, and hence there is often considerable overlap between gene
sets. In a network however, genes can be connected to several reactions or functions.
Groups of genes manifest themselves through so-called community structures in the

7
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Figure 2: A gene network based on pathways in Enterococcus faecalis.

network. Within communities the genes are more tightly connected, and between com-
munities the edges are more sparse. Much effort has been put into finding good ways
to divide networks into subnetworks, and examples include using the eigenstructure of
the network’s Laplacian matrix (Fiedler, 1973, Pothen et al., 1990) or by properties of
the network’s modularity matrix (Newman and Girvan, 2004). The modularity matrix
reflects community structures in the network, and approaches based on this topology
will look for natural divisions into communities rather than force a division. The mod-
ularity matrix is used in paper IV to divide genes into non-overlapping groups.

In paper II we use a gene network based on pathways to smooth genewise test statistics.
The idea is that genes that are closely connected in the network should also have a
similar test statistic, and the smoothing should remove false positives and accentuate
subnetworks with a high density of important genes. The network is translated into
gene dependencies with the use of a graph topology called diffusion (Chung, 1997,
Kondor and Lafferty, 2002). Diffusion can be visualised as a liquid travelling through
the network, similar to a random walk process. When the diffusion is faster, the liquid
will spread faster, and this is equivalent to shortening the distances between genes in
the network. Diffusion is also used to model gene dependencies in paper IV, but in
this context the gene dependencies are used in the estimation of correlation between

8
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samples. There are a number of other graph topologies that can be used as measures
for gene dependencies, for instance the shortest path matrix containing the smallest
number of edges separating two nodes, or the already mentioned modularity matrix.

Although gene networks seem to have many advantages over gene sets, a drawback is
that there is still limited network information available. Most likely network informa-
tion for all genes in the data set will not be available. However, in our applications of
gene networks it is not required that we have network information for all genes. Our
intention is to use whatever information is available to improve the analysis as much
as possible.

1.4 Significance testing

The main objective in all papers in this thesis is to identify differentially expressed
genes or sets of genes. Whether we are testing individual genes or gene sets, when
the distribution of the test statistic is unknown we can use a resampling test to assess
significance. Significance testing in gene set analysis is a rather wide-ranging and
sometimes confusing subject, so the first section gives an introduction to this topic.

1.4.1 Significance testing in gene set analysis

The general hypothesis tested in all gene set tests is whether a gene set is ”enriched”
or not, but the meaning of the word ”enriched” is not always straight forward to inter-
pret. Tian et al. (2005) defined two types of null hypotheses that are used in gene set
testing. Hypothesis Q1 is that the gene set contains no more differentially expressed
genes than the remaining gene sets. Hypothesis Q2 is that the gene set does not con-
tain any differentially expressed genes. In a similar spirit, Goeman and Bühlmann
(2007) divided gene set tests into competitive and self-contained tests depending on
how the null hypothesis is defined. Competitive gene set tests aim at identifying gene
sets that stand out from a collection of gene sets and are testing the Q1 hypothesis.
Self-contained tests assess each gene set individually and is not affected by the enrich-
ment of other sets, hence they are testing the Q2 hypothesis. Q1 and competitive tests
are often associated with permutation of genes in the computation of p-values (testing
the null hypothesis of the gene set being a random sample of genes from the whole

9



1 INTRODUCTION Guro Dørum

collection of genes), while Q2 and self-contained tests are associated with permuta-
tion of samples. GSEA however, is rather special. The test statistic is competitive,
but sample permutation is used to calculate p-values. The difference in the null hypo-
thesis for the calculation of the test statistics and the p-values may decrease GSEA’s
power, according to Tian et al. and Goeman and Bühlmann. Permutation of samples
compared to permutation of genes is treated in more depth in the next section.

The self-contained null hypothesis is more restrictive than the competitive null hypo-
thesis, and in general self-contained tests will reject more null hypotheses than com-
petitive tests. This will in particular emerge in data sets with many differentially ex-
pressed genes. In a competitive test it is harder for a gene set to stand out from the
rest when there are many important gene sets. This was shown in a simulation study
by Efron and Tibshirani (2007), and is probably also what we observe when we use
GSEA in paper II; data sets with many differentially expressed genes get fewer signi-
ficant gene sets than those with less differentially expressed genes. On the other hand,
in such data sets a self-contained test would call almost all gene sets significant, and
this may not always be biologically interesting. The choice of null hypothesis and gene
set test thus depends on the data at hand and the purpose of the analysis; whether it
is to identify all gene sets that are associated with a phenotype or the most important
gene sets. Alternatively one can test both Q1 and Q2, as suggested by Tian et al. and
Efron and Tibshirani.

1.4.2 Permutation test

The most common approach in gene set tests is to permute samples to obtain a distri-
bution of the gene set scores under the null hypothesis that none of the genes are differ-
entially expressed (the Q2 hypothesis and GSEA). In indirect comparison data, each
sample (array) represents one phenotype. The permutations are performed by shuff-
ling phenotype labels on the samples. In direct comparison data, a sample represents
the ratio of expression for two phenotypes. This is a case of paired data, and permuta-
tions can be performed by randomly changing the signs of the samples. Permutation
tests require a certain number of samples in order to estimate accurate p-values. Micro-
array data often have small sample sizes, which restricts the maximum number of per-
mutations. This is especially the case in direct design experiments, which require only
half as many arrays as indirect designs to achieve the same number of measurements.
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In an experiment with four arrays comparing two phenotypes there are only
(
4
2

)
= 6

possible permutations for an indirect design, and 24 = 16 possible permutations for a
direct design. The result would be granular null distributions and inaccurate p-value
estimates.

Since the number of genes is usually very large, a straightforward solution to the small
sample size problem seems to be permutation of genes rather than samples. However,
this changes the implicit null hypothesis to being that the genes in the set are drawn at
random from the full collection of genes (the Q1 hypothesis). Fisher’s exact test and
other 2×2 table methods are equivalent to methods that permute genes. The observed
2 × 2 table and distribution of significant genes in the gene set is compared to cases
where the significant genes are randomly distributed in the 2 × 2 table. Gene per-
mutation is problematic because it implicitly assumes independent genes, completely
contradictory to the whole idea of bringing gene set/network information into the ana-
lysis. The genes are grouped or connected because they are believed to have correlated
gene expression patterns. The result of resampling correlated genes may be a serious
underestimation of the p-values, as shown by Efron and Tibshirani (2007) and as we
show in paper I. For this reason, we want to avoid permutation of genes.

A problem with the permutation of samples is the necessary assumption about inde-
pendent and identically distributed samples, which is often not satisfied in data from
complex experiments. Because of effects of fixed design factors the samples are not on
the same level, while random design factors introduce correlations between samples.
An option could be to permute samples within each level of a factor, but this requires
a large number of samples. In paper I and II we approach this problem by fitting an
ANOVA model with the uninteresting design variables as fixed factors. The estim-
ated residuals from this model, only containing the interesting effects (e.g. differential
expression), are regarded as independent, normalised samples. Similar normalisation
techniques have been used by other authors, e.g. Wolfinger et al. (2001). The residuals
will never be completely independent, but we argue that they are sufficiently independ-
ent for the purposes in these papers. However, in cases where the number of replicates
is limited, and the effects of the nuisance factors are small, this type of normalisation
may actually increase correlations between samples! In paper I and II we analyse data
sets with only two samples from each level of a factor, but by assuming that the effects
are independent of gene we can use all genes in the estimation.

11
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Although the problems with the permutation test for small sample sizes and non-
exchangeable samples have been discussed in the context of gene set testing, it also
applies to single gene testing, which we use in paper II.

1.4.3 Rotation test

As a solution to the problems regarding permutation tests, we have exchanged the per-
mutation test with a rotation test whenever required in all papers in this thesis, both in
the context of gene set testing and individual gene testing. The theory behind rotation
tests was first published by Langsrud (2005). We were the first to introduce rotation
testing for gene set tests in paper I. While a permutation test is restricted to exchange
measurement axes, a rotation test can rotate the data in all directions and still preserve
covariances between genes. Since there is no limitation to the number of rotations, ac-
curate p-values can be estimated also for small sample sizes. In paper I we compared
the power of the rotation test and the permutation test, and found that the rotation test
clearly had higher power for very small sample sizes. One advantage the permuta-
tion test has over the rotation test, is that it makes no assumptions about distribution
except that the samples are identically distributed. The rotation test assumes that the
samples come from a multivariate normal distribution, but this appears not to be a
critical assumption, as shown by us in paper I and by Wu et al. (2010).

The rotation test can handle data from complex experimental designs by doing rota-
tions in the residual space of a linear model including all factors in the experiment.
The data are projected onto a subspace orthogonal to the nuisance factors, a procedure
that removes the nuisance effects and obtains independent residuals. This part of the
rotation test was first employed in a gene set test context by Wu et al. (2010), and we
apply it in paper III and IV where we adapt it to longitudinal microarray data.

1.4.4 Correlated samples

The rotation test can, as mentioned, handle effects of fixed design factors by modelling
the data in a linear model and perform rotations in the model’s residual space. The
rotation test does however assume that the samples are uncorrelated. Wu et al. (2010)
dealt with correlation between samples due to random design factors by estimating

12
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the empirical covariance matrix. The estimated covariance can then be included in the
model to reduce correlations between samples. The covariance matrix was assumed to
be identical for all genes, and genes were assumed to be independent, leaving a large
number of samples to base the estimate on. In paper III we attempt to improve this
estimate by assuming a structure for the covariance matrix and estimate the various
components, rather than estimating each element of the covariance matrix. We use
a structure presented in Diggle et al. (1994) for longitudinal data, that assumes that
variation between samples is due to random design factors, time and random error. We
further assume a common covariance structure for all genes and independence between
genes, and estimate the variance components with restricted maximum likelihood. The
assumption of independence between genes made by both Wu et al. and us, is however
in strong contrast to the assumption about correlation between genes made in the later
gene set test. In paper IV we therefore take the estimation of covariance between
samples a step further by also including gene dependencies. The genes are divided
into non-overlapping groups, and dependencies are assumed only within groups.

1.4.5 False discovery rate

Although testing gene sets rather than individual genes significantly reduces the num-
ber of tests performed, some correction for multiple hypothesis testing should be ap-
plied. In all papers in this thesis we have used the false discovery rate (FDR) (Ben-
jamini and Hochberg, 1995) as an error rate for controlling the type I error. FDR is
defined as the expected proportion of falsely rejected hypotheses among all rejections.
An FDR of 5% means that among all rejected hypotheses, on average 5% of these will
be false rejections. Storey (2002) introduced the positive false discovery rate (pFDR)
which is conditioned on at least one hypothesis being rejected, and the term q-value,
the pFDR equivalent of the p-value. The q-values give measures of significance for
each hypothesis. It is the lowest significance level at which the hypothesis can be re-
jected, or the lowest level of pFDR that can be achieved when using the test statistic
for the given test as the cut-off.

13
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2 Paper summaries

Paper I – Rotation testing in Gene Set Enrichment Analysis for
small direct comparison experiments

The popular Gene Set Enrichment Analysis (GSEA) uses a permutation test to assess
significance for gene sets. The permutation test in GSEA is designed for indirect
comparison data. To make GSEA applicable also to direct comparison data with few
samples, we replace the permutation test in GSEA with a rotation test. The rotation
test can, in contrast to the permutation test, calculate accurate p-values also for small
sample sizes. We demonstrate in a simulation study how problematic permutation of
genes can be when genes are correlated within gene sets. We compare the rotation
test with the permutation test on simulated normal and non-normal data, and show
that the rotation test outperforms the permutation test on very small sample sizes,
and that the rotation test seems to be robust to deviations from the assumption about
multinormality. Finally, GSEA with rotation test is applied to a real gene expression
data set where the stress responses in the bacterium E. faecalis have been investigated.

Paper II – Smoothing gene expression data with network informa-
tion improves consistency of regulated genes

In this paper we move the focus from gene sets to gene networks. In gene networks we
do not only have information about which genes are related, but also how closely re-
lated each pair of genes are. As network information we use pathways that are merged
into one large gene network. The gene network is used to ”smooth” genewise test
statistics in order to reduce the number of false positives, and accentuate parts of the
network with high concentrations of important genes. We simulate gene expression
data with correlation structures borrowed from both fictional and real networks, and
show that the network smoothing improves the power in identifying important genes,
but that it also imposes the risk of losing individual genes. We discuss the effect of
smoothing on different network structures and the degree of smoothing that should be
performed, and propose a criterion for choosing the optimal level of smoothing based
on the correlation between the network and the data. The network smoothing is also
applied to the E. faecalis data set from paper I, and a rotation test is used to calcu-
late a p-value for each gene. The smoothed data are finally analysed with GSEA with
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rotation test from paper I to help interpreting the results on a pathway level.

Paper III – Rotation gene set testing for longitudinal expression
data

We pick up the thread from paper I and move back to gene sets. In this paper we
attempt to improve the method presented in paper I by adapting it to longitudinal data
and other complex experimental designs. Longitudinal data introduce intricate correl-
ation structures between samples. In order to reduce these correlations, we assume a
structure for the covariance matrix and estimate its components with restricted max-
imum likelihood. The estimated covariances are included in a preprocessing step. The
preprocessed data are represented by a linear model and the rotation test is performed
in the residual space of this model, thereby dodging the effects of nuisance factors.
This procedure also gives independent residuals from the linear model. The gene set
analysis is further improved by allowing testing of several properties simultaneously,
so both gene sets that are differentially expressed and gene sets that have interesting
time trends can be identified. We show in a simulation study that by taking into ac-
count the correlation structure of the samples, we improve the power in identifying
important gene sets. Applied to the E. faecalis data set from the previous papers, the
method is able to identify both gene sets that are constantly differentially expressed
over time and gene sets that show strong time trends.

Paper IV – Improved preprocessing for rotation gene set testing for
longitudinal expression data

The final paper in this thesis is an extension of paper III. The aim is to further im-
prove the gene set rotation test for longitudinal data, and the focus is now on the
estimation of covariances between samples in the preprocessing step. In paper III we
made a doubtful assumption about independent genes for the purpose of estimating
the covariance matrix. This assumption is in strong contrast to the gene set test’s idea
about correlation between genes in the same set. We therefore decided to include gene
dependencies in the estimation. This paper brings back some topics from paper II con-
cerning gene networks. The genes are divided into non-overlapping groups with the
use of a predefined gene network, and dependencies are assumed only between genes
in the same group. Gene dependencies are further modeled with distances extracted
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from the gene network, and the dependencies are included in the estimation of cov-
ariances between samples. In a simulation study we compare the power for the gene
set rotation test when using the old and the new preprocessing step. The new prepro-
cessing method seems to emphasize gene sets with strong time trends more than the
old method, and attaches less importance to gene sets with constant expression over
time. This is further validated by application to the E. faecalis data set.

3 Discussion

The focus in this thesis has been on analysing gene expression data with the con-
tribution of prior biological information. The aim has been to extract more of the
significant information in the data and filter out the noise, with resulting increased
statistical power and improved biological understanding. Incorporation of prior biolo-
gical information in the analysis is of course dependent on the extent of information
available. For some organisms the gene set and gene network information may be lim-
ited. In general this seems to be a larger problem when working with networks, since
the creation of networks requires more detailed knowledge about gene dependencies.
Network information may be available only for sections of the genes to be analysed,
and details about the direction of regulation may be unattainable. The applications of
networks in this thesis do not require information about all genes, as genes without net-
work information can still be included in the analysis. In gene set tests however, only
genes that are members of gene sets are analysed. It can be argued that the exclusion of
a small number of genes should not be crucial for the outcome of the analysis when the
goal is to identify larger sets of important genes. In addition to the extent of informa-
tion available, these methods depend upon the accuracy of the biological information.
For example are the operons we analysed in paper I, III and IV just predictions. The
consequences of incorrect information should be more moderate when working on a
gene set level rather than on a gene level. In paper II we used networks to smooth ge-
newise test statistics, where we assumed positive correlations between all genes. Some
genes will undoubtedly be negatively correlated, so as a future perspective it would be
interesting to explore the robustness towards incorrect network information.

The GSEA enrichment score is used as the gene set score in all papers included in this
thesis, but could easily have been replaced with other types of statistics. The choice of
gene set score is heavily debated in the literature, and new gene set scores that appear
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to outperform existing scores in given scenarios, are constantly introduced (Kim and
Volsky, 2005, Efron and Tibshirani, 2007, Dinu et al., 2007). Different scores capture
different sorts of correlation structures between genes, and the optimal choice of score
depends on the questions being asked, the gene sets being tested and the researcher’s
biological knowledge. Huang et al. (2009) give some guidelines for choosing the most
appropriate gene set test. The gene set score has however not been a major topic in
this thesis, so we chose to retain the GSEA approach for measuring enrichment in gene
sets.

We first introduced rotation testing as an alternative to permutation testing to assess
significance for gene sets in paper I. Rotation testing was used also in papers II-IV,
both for testing gene sets and individual genes. In paper I we investigated properties
of the rotation test, and showed that it had superior power over the permutation test
when the sample size was very small, and that it controlled the type I error satisfactor-
ily. The rotation test does make an assumption about the samples being multinormally
distributed, but in paper I we showed that the rotation test appears to be robust to
deviations from normality. This has also later been confirmed by Wu et al. (2010).
We did however note that the rotation test had slightly lower power than the permuta-
tion test in a data set with even stronger deviations from normality, so it would be
interesting to carry out a more thorough survey on the rotation test’s properties. In
paper III and IV we adapted gene set analysis with rotation test to data with complex
correlation structures between samples, in particular longitudinal data. By estimating
covariances between samples and taking these into account, we showed on simulated
data that we were able to increase the power in identifying important gene sets. We
also noted that the estimated type I error was not controlled at a proper level when we
ignored these covariances. By assuming independence between samples when they are
in fact correlated, we believe that we have more observations than we actually have,
and as a result we underestimate the variance. In paper III we assumed independence
between genes during the estimation, an assumption that is very doubtful. In paper IV
we therefore tried to improve the estimation of the covariance matrix by also taking
gene dependencies into account. By dividing genes into non-overlapping gene groups
based on network topology, most of the gene-gene correlations within these groups are
hopefully taken into account. Including gene dependencies in the covariance matrix
helped in the identification of gene sets with strong time trends, but made it more diffi-
cult to identify gene sets with differential expression and no time trends. The question
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of whether to include gene dependencies in the covariance matrix or not depends on
the magnitude of the correlations. If the correlations are large, then the type I error
will be more efficiently controlled when including gene dependencies. If however the
correlations are small, we risk overfitting. The division into meaningful groups is
therefore important to accommodate the assumption of correlations within groups and
independence between groups as much as possible.

In all papers included in this thesis we have used simulated data to demonstrate our
methods. Microarray data contain large amounts of noise from various sources, so a
severe simplification of the real world is necessary when simulating data. Correlations
both between genes and samples will undoubtedly be much more complex than what
is assumed here, and one may experience that the method is behaving completely
different when applied to real data. However, in order to understand the new methods’
effect on certain factors, it may be necessary to neglect other less important factors.
By applying the method to simulated data in a controlled environment, we hope to get
an increased understanding of why the method acts like it does on real data.

The increasing amounts of biological knowledge being accumulated through different
studies offer good prospects for including prior knowledge in the analysis. It seems
only natural to take advantage of this additional information when analysing new data.
New biological associations have been identified with methods that include prior in-
formation, and all in all the result may be an increased insight into the behaviour of
genes. The information will also become more reliable and more detailed as it is veri-
fied in more studies. There are certainly numerous ways to incorporate this informa-
tion that have not been thought of yet, and future challenges may include combining
different sources of information to obtain even better estimates.
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Abstract

Gene Set Enrichment Analysis (GSEA) is a method for analysing gene expression data with
a focus on a priori defined gene sets. The permutation test generally used in GSEA for testing the
significance of gene set enrichment involves permutation of a phenotype vector and is developed
for data from an indirect comparison design, i.e. unpaired data. In some studies the samples rep-
resenting two phenotypes are paired, e.g. samples taken from a patient before and after treatment,
or if samples representing two phenotypes are hybridised to the same two-channel array (direct
comparison design). In this paper we will focus on data from direct comparison experiments, but
the methods can be applied to paired data in general. For these types of data, a standard permu-
tation test for paired data that randomly re-signs samples can be used. However, if the sample
size is very small, which is often the case for a direct comparison design, a permutation test will
give very imprecise estimates of the p-values. Here we propose using a rotation test rather than a
permutation test for estimation of significance in GSEA of direct comparison data with a limited
number of samples. Our proposed rotation test makes GSEA applicable to direct comparison data
with few samples, by depending on rotations of the data instead of permutations. The rotation test
is a generalisation of the permutation test, and can in addition be used on indirect comparison data
and for testing significance of other types of test statistics outside the GSEA framework.

KEYWORDS: gene set analysis, gene expression, microarray data analysis
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1 Introduction

The most widespread use of the microarray technology is for identification of
differential expression of genes between samples from two or more conditions/
treatments/populations. The traditional approach for analysing expression
data involves testing single genes for differential expression and assembling
lists of post hoc interesting genes, but the results can often be difficult to
interpret into a biological context. In many cases we are more interested in
identifying groups of genes rather than single genes. A growing number of
methods are focusing on the identification of a priori defined sets of genes
that are in some way affected by the experimental conditions. A set of genes
that is known to be functionally related is likely to share a similar expression
pattern, so the use of prior biological knowledge can make the analysis more
robust and give more meaningful results. Examples of such a priori defined
gene sets are pathways, functional categories and Gene Ontology categories
(Ashburner et al., 2000).

Most approaches for identifying affected gene sets start by ranking each
gene by its differential expression, and some cut-off is set to compile a list of
differentially expressed genes. Groups of genes that are overrepresented in this
list are classified as potentially interesting. Khatri and Drăghici (2005) give
an overview of many of these approaches.

In the following we adopt the Gene Set Enrichment Analysis (GSEA) ap-
proach, first introduced by Mootha et al. (2003) and later modified by Sub-
ramanian et al. (2005), for identifying differentially expressed gene sets. One
interesting aspect of GSEA is that no inferences are made on the level of single
genes, but instead all members of a gene set are included in the calculation
of a set score. The idea is that GSEA is more sensitive for detecting sets
of genes with a moderate, but consistent effect, compared to methods that
use a strict cut-off value. GSEA starts by ranking all genes based on their
association with a phenotype vector. The rank positions of all members of
a set are identified, and an enrichment score, which is essentially a weighted
Kolmogorov-Smirnov statistic, is calculated for each gene set. The enrichment
score is normalised to account for gene set size. The significance of a gene set
is in Mootha et al. and Subramanian et al. estimated by permuting the class
labels of the phenotype vector and recalculating the normalised enrichment
score for each permutation. The p-value is calculated as the proportion of this
distribution at least as extreme as the observed normalised enrichment score.
See Subramanian et al. for further details about the GSEA procedure.

A microarray experiment comparing two different classes (conditions/
treatments/populations) can be performed by either direct or indirect com-
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parison of data. Indirect comparison for two-colour arrays, which has been the
common data type in GSEA applications insofar, involves hybridising samples
from different classes to different arrays with a common reference. Alterna-
tively, gene expression analysis may be conducted by letting samples from two
classes hybridise to the same array, and by that obtain a direct estimate of the
genes’ differential expression between the classes. Direct comparison requires
only half as many arrays as indirect comparison, and the inevitable variation
between two arrays is avoided. On the other hand, indirect comparison is
a natural choice for experiments where you want to compare more than two
classes, or if you want to compare the results with other experiments in which
the same reference has been used.

In direct comparisons, data from a single array does not represent only one
phenotype or class, and hence it is impossible to use a permutation test that
shuffles class labels. A number of modifications of GSEA has been suggested,
i.a. by Kim and Volsky (2005), Jiang and Gentleman (2007) and Efron and
Tibshirani (2007). None of these directly addresses the case of direct com-
parison data, but e.g. Kim and Volsky avoid permutation tests by assuming
normal distribution for the data. A Z-score is calculated for each group and
the p-value is estimated by comparing the score to the normal distribution.

Direct comparison data is a case of paired data, for which the standard
permutation test involves randomly changing the signs of samples, yielding
zero expectation under the null hypothesis (the procedure is outlined in i.a.
Box et al., 1978). By re-signing whole arrays, the correlation structure between
genes is preserved. A problem with permutation tests arises when the number
of replicate arrays is small, which is often the case for direct comparison data
(there can be as little as two arrays, see e.g. Kerr et al., 2000). In this paper
we analyse a data set with four arrays, meaning there are only 24=16 possible
re-signings, and the smallest p-value that can be obtained is 1/17 (when the
observed value is included).

A simple solution for situations with small sample sizes would be to per-
mute genes rather than samples, which here will be referred to as randomi-
sations (following the nomenclature of Efron and Tibshirani, 2007). As dis-
cussed briefly by Efron and Tibshirani and also demonstrated here, a problem
with the randomisation approach is that it assumes independence between
genes. However, the genes in a set are grouped because they are believed to
be functionally related, so presumably there is a considerable correlation be-
tween the members’ expression values. By shuffling genes, new artificial sets
are created and the original correlation structure between the genes is lost.
Since the null distribution is based on gene sets with no correlation, the p-
values are likely to be severely underestimated. See also Nam and Kim (2008)
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and references therein for discussions concerning randomisation of genes.
As a solution to the problem raised by the often small number of samples

in the direct comparison situation, we propose a non-parametric approach for
estimating p-values in GSEA based on rotations instead of permutations. The
rotation test handles correlation within sets in a similar way to permutations
by conditioning rotations on the covariance matrix (Langsrud, 2005).

In the following we will use the notation GSEAperm, GSEArand and
GSEArot for GSEA with permutation test, GSEA with randomisation test
and GSEA with rotation test, respectively.

In an initial simulation study we illustrate how the randomisation test
tends to have increased type I error levels when genes are correlated within
gene sets, whereas the rotation test does not show this deficiency. We further
use simulated data to compare the power and type I error of the rotation test
and the permutation test, and to check the robustness of the rotation test
to deviations from its assumptions. We apply GSEArot to data where the
genome-wide effect of bile stress on the bacteria Enterococcus faecalis V583
has been studied in a direct comparison experiment using two-colour DNA
microarrays. We also apply GSEArot to the p53 data set (Olivier et al., 2002)
used by Subramanian et al. to illustrate that a rotation test can be seen as a
generalisation of the permutation test, and is applicable also to indirect data.

2 Materials and Methods

2.1 Rotation test

Due to the fact that a permutation test gives very imprecise estimates of
the p-values when the number of samples is small, we here introduce rotation
testing as an alternative to permutation testing in GSEA. The observed values
for each gene may be considered as a vector in the n-dimensional sample space,
Rn. Random rotations of these p gene vectors are used to simulate new data
matrices X?. The rotations are conditioned on the covariance matrix, i.e. the
correlation between genes are maintained also after the rotation.

Consider a n × p data matrix X of log-ratios, where n is the number of
samples and p is the number of genes. The rotation test assumes that the rows
of X are multinormal and independent, i.e. that each array xi ∼ Np(µ,Σx)
and that the arrays are independent. By a random rotation of xi we get
x?
i ∼ Np(0,Σx). The rotated genes have expectation 0, but the covariance

matrix is maintained. The test statistic for GSEA, the enrichment score (ES),
is computed for each of a number of rotations in order to construct a null
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distribution for ES under the complete null hypothesis that all gene sets consist
of only non-differentially expressed genes. This is the same null hypothesis as
is tested with the permutation test, though not clearly stated by Subramanian
et al. (2005).

Note that since our data are log-ratios, assuming each gene to have ex-
pectation zero is equivalent to assuming that the expected gene expression
for the two phenotypes are identical. This is also the assumption made when
permuting phenotypes for indirect comparison data.

In order to describe the procedure for performing random rotations, we
adopt a similar notation as Langsrud (2005). The data matrix X can be
decomposed into a random configuration matrix XR and a random orientation
matrix XQ by QR decomposition:

X = XQXR (1)

Here XQ is an orthonormal matrix of size n× r, where r is the rank of X, and
XR is an upper triangular r × p matrix with positive diagonal elements. The
configuration matrix XR is a sufficient statistic for the covariance matrix Σ.
In order to rotate X, we want a new rotation matrix X?

Q while keeping the
structure XR:

X? = X?
QXR (2)

A random rotation matrix multiplied by another rotation matrix is still a
random rotation matrix. A random rotation matrix X?

Q can therefore be
simulated by

X?
Q = QXQ (3)

where Q is a simulated random rotation matrix. This means that X? can be
simulated as

X? = QXQXR = QX (4)

It can be shown that a random rotation matrix can be generated as follows.
A n×n matrix W is comprised by elements drawn at random from a standard
normal distribution. A QR decomposition of W then gives W = WQWR,
where WQ is a random n × n rotation matrix. The rotated data set X? was
generated as

X? = WQX (5)

Note that some implementations of the QR decomposition algorithm gives a
matrix WQ where the column-vectors are reverted to give, as far as possible,
positive diagonal elements of the corresponding matrix WR. This will not
give full rotational freedom of X. We implemented our own QR-function in R
based on Householder reflections to avoid this.

4

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 34

http://www.bepress.com/sagmb/vol8/iss1/art34
DOI: 10.2202/1544-6115.1418



Whereas the rotations in the rotation test are allowed to vary freely in
Rn, permutations can be seen as rotations with restrictions. Permutations of
the rows of a matrix X can be achieved by pre-multiplying by a permutation
matrix P, which can be constructed by permuting the columns of an identity
matrix. The permutation matrix can be considered a restricted rotation matrix
for which rotation is equivalent to exchanging measurement axes. On the other
hand, the rotation test assumes multinormality for the rows in the data matrix,
which is not a necessary assumption for the permutation test.

Although the motivation for rotation testing in this paper is for performing
tests on direct comparison data with small sample sizes, the method may also
be used for indirect comparison data as an alternative to the commonly used
permutation test. This is illustrated below by reanalysing the p53 data set
used by Subramanian et al. with GSEArot. Since for indirect comparison
data the assumption of null-expectation under the null hypothesis is no longer
reasonable, a slight modification of the rotation test must be done to give
rotated data where both mean and covariance structure are preserved (as is
the case for the permutation method). This means that the data rotation must
be done in the (n-1) dimensional space orthogonal to the constant vector 1. A
procedure for achieving such subspace rotations is described by Wedderburn
(1975).

2.2 Simulations

2.2.1 Comparison of rotation test and randomisation test

By permuting genes rather than samples, the randomisation test breaks down
the correlation structure within gene sets, resulting in an underestimation of
the p-values. To illustrate the effect correlation has on the randomisation test
versus the rotation test, we simulated data with increasing correlation within
gene sets.

We assume that each gene is member of one and only one gene set, and
that all sets have equal internal correlation. The genes were simulated under
the complete null hypothesis that all gene sets contain only non-differentially
expressed genes. Let xkj be the expression value of the jth gene in the kth set,
where k = 1, ..., K and j = 1, ..., J . We generated values imitating log-ratios
with the model

xkj = ak + εkj (6)

where ak ∼ N(0, σ2
a) is a random gene set effect and εkj ∼ N(0, σ2

ε ) is a random
gene effect. We further assumed that xkj ∼ N(0, 1), such that a gene’s total
variance is σ2

a + σ2
ε = 1. For a given correlation ρ, we generated each xkj
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with gene set variance σ2
a = ρ and gene variance σ2

ε = 1 − ρ. Data were
generated for K = 50 gene sets of size J = 20, a total of 1000 genes. The
number of samples (arrays) was set to 8. The correlation levels chosen were
ρ = {0, 0.1, 0.2, ..., 0.9}. The simulation was repeated 100 times for each ρ.

2.2.2 Rotation test and permutation test on normal data

Control of the type I error and the sensitivity of the rotation test versus the
permutation test were tested in a simulation study. Standard normally dis-
tributed data for 1000 genes distributed over 50 gene sets were generated as in
section 2.2.1, and the within gene set correlation was set to ρ = 0.4. A gene ef-
fect γ was added to all genes in the first gene set, where γ = {0, 0.4, 0.55, 0.7}.
The number of samples chosen were n = {4, 8}. The simulation was repeated
100 times for each combination of γ and n.

2.2.3 Rotation and permutation test on non-normal data

The rotation test’s assumption about multinormal distribution for each array
is what separates it from the permutation test. To test the robustness of the
rotation test to deviations from normality, we simulated random data from
a log-normal distribution with mean 0 and variance 1. First a matrix X of
normally distributed data for 1000 genes in 50 gene sets were generated with
the model in (6), with a gene’s total variance corresponding to variance 1 on
log-normal scale, and an internal gene set correlation of ρ = 0.4. The number
of samples chosen were n = {4, 8}. Log-normal data were then generated as
yij = exij , and the expected mean was subtracted to obtain expression values
with mean 0. A gene effect γ was then added to all genes in the first gene set,
with γ = {0, 0.1, 0.15, 0.2}. The γ values for these log-normal data correspond
to the percentiles for the γ’s used in the normal data in section 2.2.2. The
simulation was repeated 100 times for each combination of γ and n.

2.3 Real data

2.3.1 Stress response in E. faecalis

Our initial motivation for introducing the rotation test for use in GSEA, was
to be able to apply this method to direct comparison data with few samples.
The data set described here is an example of such data, with a sample size of
only four arrays.

A microarray experiment was conducted to test the genome-wide responses
in the bacterium Enterococcus faecalis V583 to bile stress (sublethal concentra-
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tions). The experiment was designed as a direct comparison study: labelled
cDNA from both bacteria treated with bile and untreated bacteria was hy-
bridised to mutual slides. In this experiment one wanted to investigate the
gene expression response to various treatment durations, and bile-treatment
durations were chosen to be 10, 20, 60 or 120 minutes. In the following, these
are treated as four separate experiments. There were data from four arrays in
each experiment (2 × dye-swap), where bacteria had been sampled from two
different batches. For further details on the labelling, hybridisations and data
pre-processing, see Solheim et al. (2007).

Initially 3287 genes were spotted on each array. A minimum requirement
for a gene to be included in the analysis, was to be present on at least 3 out of
the 4 arrays from a time point. To be able to compare the results from all time
points, only genes with sufficient observations in all four experiments (time 10,
20, 60 and 120) were included in the analysis. The number of genes meeting
this requirement was 2350. Finally, missing data were imputed by k-nearest
neighbours imputation (Troyanskaya et al., 2001) implemented in R.

The differential expression between treated and untreated bacteria was
measured as log2(signal treated) - log2(signal untreated). Loess normalisation
implemented in the LIMMA package for R (Smyth and Speed, 2003) was used
to correct for intensity dependent trends in the data. To correct for effect of
batch and dye, an ANOVA model with the main effects of these two factors
was fitted to the data. The residuals from the model represent the normalised
log-ratios and were used in the following analysis. A similar normalisation
was done by Wolfinger et al. (2001). We are aware that this normalisation will
not remove all dependencies between arrays, which is one of the assumptions
behind the rotation test. However, the normalisation part is not the main
focus of this paper, so we will treat the arrays as independent samples after
this normalisation.

Four different types of gene sets were tested in GSEA: 1) functional cate-
gories defined by The J. Craig Venter Institute (JVCI) (http://www.tigr.org),
2) pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg), 3) genes classified by first EC (Enzyme Com-
mission) number downloaded from JVCI, and 4) operon predictions by
the Virtual Institute for Microbial Stress and Survival (VIMSS)
(http://www.microbesonline.org). Operons are sets of genes located adja-
cently in a bacterial genome and controlled by a common regulatory sequence.
If transcription of an operon is induced, usually all genes in the operon are
transcribed. Hence, high correlations are expected between the expression
values of genes belonging to the same operon.

Gene sets were required to have at least 5 members corresponding to genes
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on the microarray to be included in the analysis, which resulted in a total
of 132 gene sets: 19 functional categories, 59 pathways, 6 EC groups and 48
operons.

In GSEA the genes are typically ranked by their individual association
with a phenotype vector (correlation/two-sample t-statistic/signal-to-noise ra-
tio etc.). However, since direct comparison data do not have a phenotype
vector, we chose to rank genes by their t-statistic for testing the expected
expression log-ratio to be different from zero. Because of the small number of
arrays, the estimated variance of each gene was stabilised by adding the 90th
percentile of the estimated variances for the p genes (Efron et al., 2001). The
t-statistic for gene j was estimated as

tj =
x̄j√
vj+ṽ

2n

(7)

where x̄j is the average log-ratio for gene j over all arrays, vj is the estimated
variance of the gene, and ṽ is the 90th percentile variance estimate.

2.3.2 p53 status in cancer cell lines

Small sample sizes can be a problem also in indirect comparison data, thus the
rotation test can be highly relevant for this kind of data as well. To illustrate
that the rotation test is an alternative to the permutation test for GSEA on
indirect comparison data, we applied GSEArot and GSEAperm to the p53
data set (Olivier et al., 2002) used by Subramanian et al. (2005). Although
this is a data set with large sample size (50 arrays), we were able to compare
the results of the permutation test and the rotation test on a benchmark data
set.

The aim of this analysis was to identify targets of the transcription factor
p53 in expression patterns from the NCI-60 collection of cancer cell lines. The
data set contains expression profiles from 50 cell lines, of which 17 were clas-
sified as wild type of the p53 gene and 33 were classified as mutant. GSEArot
and GSEAperm were applied to a catalogue of 308 functional gene sets (see
Subramanian et al. for details about the data).

To make the comparison of the rotation test and the permutation test as
accurate as possible, we implemented our own version of GSEAperm. Due
to this, there may be some differences in our procedure and the procedure of
Subramanian et al., and hence also in the results. Genes were ordered by their
signal-to-noise ratio calculated as

SNR =
x̄1 − x̄2

s1 + s2
(8)
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where x̄1 and s1 denote the gene’s sample mean and sample standard deviation,
respectively, for mutant, while x̄2 and s2 denote the gene’s sample mean and
sample standard deviation for wild type. For these indirect comparison data
we used a slightly different method for rotation, that in addition to maintaining
the covariance matrix also maintains the mean vector, i.e. it allows non-zero
means. See Langsrud (2005) for details.

3 Results

3.1 Simulations

3.1.1 Comparison of randomisation test and rotation test

The simulated data sets from section 2.2.1 were analysed with both GSEArand
and GSEArot. For each level of the gene set correlation ρ, the probability of
making a type I error was estimated as the average proportion of significant
gene sets in the 100 simulated data sets. Figure 1 shows the estimated prob-
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Figure 1: Estimated type I error for GSEA with randomisation test and GSEA with
rotation test for different levels of correlation ρ within gene sets. The dashed line indicates
the expected type I error of 0.05. The type I error of the randomisation test increases with
correlation, while the rotation test controls the type I error for all levels of correlation.
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ability of type I error for the randomisation test and the rotation test, for
different levels of gene set correlation.

Considering that the genes were generated under the null hypothesis that
all gene sets contain only non-differentially expressed genes, and a nominal
test level of 5 % was used, we would expect a type I error of approximately
0.05 (indicated by the dashed line). As suspected though, the type I error for
the randomisation test increases rapidly as the gene set correlation increases.
For gene sets with correlation 0.1 the type I error is over 0.2, while a within
gene set correlation of 0.9 gives an estimated type I error of more than 0.7.
The rotation test, however, controls the type I error at a level of 0.05 for all
correlations. This shows that gene randomisation has severe weaknesses when
it comes to testing significance for a correlated set of genes, and hence the
rotation test is to be preferred.

3.1.2 Rotation test and permutation test on normal data

The simulated normal data described in section 2.2.2 were analysed with
GSEAperm and GSEArot. The power for each of the two methods was cal-
culated as the proportion of the 100 simulations in which the gene set with
the added gene effect was found to be significant. The probability of type I
error was calculated from the simulated data set with an added gene effect of
0, as the average proportion of the 50 gene sets that was found to be signifi-
cant over all simulations. The results of the power study and the type I error
for different levels of the significance level α can be seen in Figure 2. The
permutation test clearly has lower power than the rotation test for the data
set with 4 samples. When the number of samples increases to 8, the power
is more or less equal for both tests. The type I error rate is very low for the
permutation test on 4 samples due to the low power, while the rotation test
has the expected type I error rate for both sample sizes.

3.1.3 Rotation test and permutation test on non-normal data

The simulated log-normal data from section 2.2.3 were analysed with GSEAperm
and GSEArot, and the power and probability of type I error were estimated
as for the normal data in section 3.1.2. Figure 3 shows the estimated power
and type I error for varying sample size, gene effect and significance level α.
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Figure 2: Power study for permutation test and rotation test on simulated normal data
with added gene effect of 0, 0.4, 0.55 or 0.7 for the first gene set. The chosen significance
level is indicated by α. The value for gene effect 0 is the estimated probability of type I
error.
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Figure 3: Power study for GSEA with rotation test on simulated log-normal data with
added gene effect of 0, 0.1, 0.15 or 0.2 for the first gene set. The chosen significance level is
indicated by α. The value for gene effect 0 is the estimated probability of type I error.

12

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 34

http://www.bepress.com/sagmb/vol8/iss1/art34
DOI: 10.2202/1544-6115.1418



3.2 Real data

3.2.1 Stress response in E. faecalis

The bacteria data described in section 2.3.1 were analysed with GSEArot.
Data from each of the four time points were analysed separately. The sig-
nificant gene sets are presented in Table 1, along with q-values (the FDR
analogue of the p-value, Storey, 2002), p-values, normalised enrichment scores
(NES) and size of the gene sets. With a significance level of 0.2 for the q-value,
no significant gene sets are found at times 10 and 20. At time 60 we find the
largest share of significant sets, where 23 out of the 132 sets are significantly
enriched. At time 120 there are 12 significant gene sets.

Although the enrichment scores are computed and all testing is done for
each time point separately, it is valuable to study the time-course of the en-
richment score. If a gene set is (significantly) enriched at several time points
and there is a clear trend in the scores, this gives strong support to the conclu-
sion that the genes in the set are affected by bile treatment. False positives for
single time points may correspondingly be discovered through the absence of a
trend over time. In Figure 4 the normalised enrichment score (NES) is plotted
against time for all gene sets that were found to be significantly enriched at
minimum one time point. A bold point indicates that the gene set is signifi-
cant at the given time point. Figure 4(a) shows the time trend for significantly
enriched functional categories. For most categories, the general trend seem to
be repression in bacteria treated with bile, indicated by a negative NES at
all time points. However, one functional category shows a different trend.
Fatty acid and phospholipid metabolism has a decreasing trend, going from
induced to repressed. In Figure 4(b) the expression pattern of the significant
pathways can be studied. To reduce the number of pathways in the figure,
only pathways that are significant at minimum two time points were plotted.
Pyruvate metabolism show a decreasing trend, while the other two pathways
are repressed at all times, similar to the general trend among the functional
categories. Figure 4(c) shows the differential expression of the EC groups over
time. Hydrolases has a positive NES for all time points, indicating that it is
induced in bile-treated bacteria. Transferases and Ligases are repressed at all
times. Oxidoreductases show a decreasing trend over time, while for Lyases
it is difficult to point out a trend. Figure 4(d) shows that the operon EF0261
EF0268 has a positive NES at all time points, while EF0988 EF1002 show
an increasing trend over time. The two operons EF0455 EF0461 and EF1193
EF1197 do not have any apparent trends.
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Table 1: Significant gene sets (q ≤ 0.2) from GSEArot on E. faecalis data set, with their
estimated q-value, p-value and normalised enrichment score (NES). Size gives the number
of genes in the gene set (notice that this is the number of genes in the set that correspond
to genes in the expression data).

Gene set q p NES Size

Time 60
Functional categories
Signal transduction 0.000 0.002 -1.979 76
Transcription 0.000 0.002 -2.016 32
Purines, pyrimidines, nucleosides, and nucleotides 0.005 0.008 -1.753 56
Fatty acid and phospholipid metabolism 0.029 0.002 -1.593 33

Pathways
Phosphotransferase system (PTS) 0.000 0.002 -1.930 34
Pyruvate metabolism 0.006 0.002 -1.717 22
Pyrimidine metabolism 0.006 0.006 -1.718 41
Fructose and mannose metabolism 0.007 0.002 -1.729 28
Glycerolipid metabolism 0.010 0.008 -1.672 11
Lysine biosynthesis 0.027 0.002 1.776 13
Citrate cycle (TCA cycle) 0.116 0.006 -1.468 6
Tyrosine metabolism 0.157 0.036 -1.428 9
Two-component system - General 0.163 0.012 -1.418 25
Glycolysis/Gluconeogenesis 0.200 0.018 -1.381 25

EC
Transferases 0.000 0.002 -1.983 131
Ligases 0.001 0.002 -1.859 52
Lyases 0.006 0.004 -1.725 38
Oxidoreductases 0.011 0.004 -1.662 42
Hydrolases 0.049 0.004 1.658 84

Operons
EF0261 EF0268 0.028 0.010 1.723 8
EF0988 EF1002 0.065 0.004 1.620 15
EF0455 EF0461 0.162 0.033 -1.431 7
EF1193 EF1197 0.185 0.062 -1.400 5

Time 120
Functional categories
Purines, pyrimidines, nucleosides, and nucleotides 0.075 0.002 -1.586 56
Signal transduction 0.170 0.070 -1.453 76
Fatty acid and phospholipid metabolism 0.185 0.002 -1.453 33

Pathways
Pyruvate metabolism 0.003 0.002 -1.927 22
Alanine and aspartate metabolism 0.018 0.002 -1.777 17
Pyrimidine metabolism 0.083 0.002 -1.593 41
Fructose and mannose metabolism 0.102 0.002 -1.551 28
Glutamate metabolism 0.128 0.002 -1.520 17
Propanoate metabolism 0.141 0.002 -1.498 10

EC
Transferases 0.019 0.002 -1.756 131
Ligases 0.095 0.002 -1.602 52
Oxidoreductases 0.188 0.002 -1.462 42
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Figure 4: Time series plots, showing the change in normalised enrichment score (NES) over
time, for gene sets significantly enriched (q ≤ 0.2) at minimum one time point (minimum
two time points for pathways) in E. faecalis treated with bile. Gene sets that are significant
at a given time point are marked in bold.
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3.2.2 p53 status in cancer cell lines

GSEArot and GSEAperm were applied to the p53 data set, described in section
2.3.2, to illustrate that the rotation test is an alternative to the permutation
test also for indirect comparison data. The comparison wild type>mutant
identified five significant gene sets (q-value ≤ 0.25) with GSEAperm, and four
significant gene sets with GSEArot. The comparison wild type<mutant gave
one significant gene set with both methods. Both GSEArot and GSEAperm
gave the same top six gene sets, although GSEArot gave slightly higher q-
values. The results are presented in Table 2.

Table 2: Top six gene sets, with their corresponding q-value and p-value, from GSEAperm
and GSEArot on the p53 data set.

GSEAperm GSEArot
Gene set q p q p

Enriched in p53 mutant
Ras signaling pathway 0.238 0.004 0.485 0.004

Enriched in p53 wild type
Stress induction of HSP regulation 0.001 0.002 0.001 0.002
Hypoxia and p53 in the Cardiovascular system 0.001 0.002 0.002 0.002
p53 signaling pathway 0.002 0.002 0.008 0.002
p53 upregulated genes 0.003 0.004 0.012 0.002
Radiation sensitivity genes 0.051 0.007 0.131 0.006

No preprocessing of the data had been done, apart from gene probe re-
duction (see supporting information in Subramanian et al., 2005). Since one
of the assumptions of the rotation test is multinormally distributed arrays,
we log-transformed the data to make them more normal and reanalysed them
with GSEArot and GSEAperm. The results of the analysis can be viewed
in Table 3. The comparison wild type>mutant gave no significant gene sets,
while the comparison wild type<mutant gave three significant gene sets with
both GSEArot and GSEAperm. Interestingly, two of the gene sets that were
now identified, ngf pathway and igf1 pathway, fell just short of the signifi-
cance threshold before the log-transformation. These gene sets were examined
further by Subramanian et al.. Their leading edge subsets (i.e. the core mem-
bers of the set) were found to contain four genes that they both share with
the Ras signaling pathwway, which was significant both before and after log-
transformation.
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Table 3: Top three gene sets, with their corresponding q-value and p-value, from
GSEAperm and GSEArot on the log-transformed p53 data set.

GSEAperm GSEArot
Gene set q p q p

Enriched in p53 mutant
Ras signaling pathway 0.015 0.004 0.031 0.002
ngf pathway 0.099 0.006 0.143 0.006
igf1 pathway 0.234 0.006 0.215 0.008

4 Discussion

In this paper we have presented the rotation test as an alternative to the
permutation test generally used for testing significance in Gene Set Enrichment
Analysis. Since the permutation test requires a certain number of samples to
generate accurate estimates of the p-values, applying GSEA to data with small
sample sizes would be of little value. Especially for microarray experiments
where direct comparison design has been used, the number of samples tends
to be small.

Although our initial motivation was to find a significance test that would
make GSEA applicable to direct comparison data with few samples, we would
like to emphasise the versatility of the proposed rotation test. The rotation
test can be applied to both direct (paired) and indirect (unpaired) comparison
data. We would also like to point out that the test procedure is not only
for use within the GSEA framework, but can also be used for other types of
statistics testing significance for sets of genes.

Through a simulation study we demonstrated problems occurring when
trying to permute genes rather than samples (randomisation), as an alterna-
tive to the permutation test. Gene sets with varying internal correlation levels
were simulated, and analysis with GSEArand showed that the type I error for
the randomisation test increased rapidly when correlation within gene sets in-
creased. GSEArot, on the other hand, controlled the type I error for all levels
of correlation. The simulation study comparing the power of the permutation
test and the rotation test on normally distributed data, showed that the ro-
tation test had higher power than the permutation test on 4 samples, while
the power was approximately the same for 8 samples. The same results could
be observed for the comparison of the two tests on simulated log-normal data,
which indicates that the rotation test is fairly robust against deviations from
the assumption about multinormally distributed arrays.
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Both GSEAperm and GSEArot are testing a complete null hypothesis,
meaning that all null hypotheses are assumed to be true. In this case it trans-
lates to assuming that all gene sets consist of only non-differentially expressed
genes. The complete null hypothesis is a consequence of permuting or rotating
all gene sets simultaneously, and will here lead to loss in power. In theory,
we could avoid the complete null hypothesis by permuting/rotating only the
gene set to be tested, but a few aspects of the analysis prevent this. First, we
have overlapping gene sets, which means that rotating genes in one set would
automatically rotate genes in other sets. This could potentially cause prob-
lems, and since we have used several different types of gene sets (pathways,
functional categories etc.), we would expect a considerable overlap. Second,
the choice of enrichment score as the test statistic means that the statistic of
one gene set is dependent on the other sets. GSEArand is testing a different
type of complete null hypothesis than GSEAperm and GSEArot, namely that
all gene sets show a similar expression pattern. The randomisation test would
always have to assume a complete null hypothesis, independent of overlapping
sets and which test statistic is used, because genes are drawn at random from
all sets of genes to create new artificial sets.

GSEArot was applied to a direct comparison data set describing the genome-
wide effect of bile stress on Enterococcus faecalis V583. Previous studies have
suggested that several aspects of the bile response are conserved among gram-
positive bacteria (Bron et al., 2006; Solheim et al., 2007). In our analysis
of the E. faecalis V583 data set, the key role of the membrane architecture
and composition in bacterial bile tolerance was reflected in an enrichment of
genes that code for proteins with membrane-associated functions and/or lo-
cations. Particularly, the functional categories of genes involved in fatty acid
and lipid metabolism and signal transduction were strongly affected. The
functional category Signal transduction mainly contains genes that code for
regulatory two-component systems and phosphotransferase systems (PTS),
two of the membrane-associated pathways that showed differential expression.
Altogether, these results suggest that bile acids may insert into the membrane
and interfere with the dynamics and coordinated function of multienzyme
complexes located there.

In addition to emphasising the effects of bile on membrane integrity and
structure, studies of bile stress in other gram-positive bacteria have suggested
that bile imposes oxidative stress on the cell (reviewed in Begley et al., 2005).
By random gene disruption strategies in E. faecalis, Le Breton et al. (2002)
identified a bile-sensitive mutant in which the amino acid sequence of the
insertion locus showed homology to a putative oxidoreductase. This EC group
(EC1 Oxidoreductases) was also significantly enriched with GSEArot at times
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60 and 120. Another observed response to bile was the downregulation of genes
belonging to the functional category Purines, pyrimidines, nucleosides and
nucleotides (cf. the pathway Pyrimidine metabolism). Differential expression
of genes involved in pyrimidine metabolism have also been observed in response
to detergents, antibiotics and NaCl-induced osmotic stress (Aakra et al., 2005;
Solheim et al., 2007; Solheim et al., unpublished results), and may be part of
a more general stress response in E. faecalis V583.

The time trend plots reveal quite clear trends for many of the gene sets.
On the other hand, lack of a clear trend may unveil false positives. The EC
group Lyases does not show a clear trend, having a positive NES at times 10
and 20 and a negative NES at times 60 and 120, and where only time 60 is
significant. This could be an indication that lyases are not affected in bacteria
exposed to bile, and that the significant NES at time 60 is a false positive.
The same can be hypothesized about the two operons EF0455 EF0461 and
EF1193 EF1197, which lack a trend and also have a higher q-value than the
two operons that show a time trend.

The rotation test, like the permutation test, is based on the assumption of
sample independence. In many experiments there may occur between-array ef-
fects like batch effects (e.g. array lots, lab batches), array effects (e.g. for direct
comparison data) and effects from other design factors that introduce depen-
dencies between samples. It is quite common in microarray studies to deal
with this by normalising the data up-front in an attempt to remove the un-
wanted and systematic within- and between-array effects. ANOVA-type batch
corrections, for instance, are frequently used for microarray data, and for the
E. faecalis data in this paper, a simple ANOVA correction of dye and batch ef-
fects was done. Due to dependence between the residuals, normalisation with
ANOVA models will never be able to remove all correlation between arrays.
At best it can reduce the correlation levels between arrays, but in some cases
where the number of within-batch samples is limited, it may even increase
correlations! Hence, the assumption of independence may very often be ques-
tionable. We do not intend to follow up this comprehensive, but important
issue here. The purpose of applying GSEArot to the E. faecalis data in this
paper was merely to demonstrate the method on data with very few samples.
Even if there are doubts about the independence, the analysis seem to generate
meaningful results.

ANOVA corrections with post-analyses on residuals is not the only option
for dealing with systematic nuisance factors in relation to GSEA analyses. We
may also think of a more integrative approach where both gene-effects and
effects from nuisance factors are estimated together using an ANOVA model.
The t-statistic in eq. (7) could then be replaced by gene specific t-statistics
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from the ANOVA model. The rotations of the GSEA test should then be
restricted to take place in a space orthogonal to the space spanned by the
nuisance variables. The details on such a procedure need to be subject to
further study. A consequence of such an ANOVA approach would be that all
genes are assumed to have equal variance (homoscedastic error model), which
of course is a stricter assumption than the smoothing of individual variances
that is done in eq. (7). An alternative could perhaps be a model along the
lines of the empirical Bayes model implemented in the LIMMA package for R
(Smyth, 2004), for which random gene specific variances are assumed to follow
a common prior distribution.

To illustrate that a rotation test can be seen as a generalisation of the
permutation test, GSEArot was applied to an indirect comparison data set
used by Subramanian et al. (2005). In the p53 data set the comparison of
the permutation test and the rotation test showed that both tests gave the
same top six gene sets, though the rotation test seemed to generate slightly
larger q-values and found one less significant gene set than the permutation
test did. Univariate histograms of the data showed quite strong deviations
from normality. The rotation test is based on a multinormal distribution
assumption, which may give loss in test power if this assumption is false. By
the permutation test no explicit assumption of the distribution of the array xi

is made, other than that the expression values for the two classes come from
the same distribution with identical means. The normal assumption of the
rotation test may give more correct conclusions regarding gene set enrichment
if the assumption is approximately true and the number of samples is limited,
which is often the case in microarray studies. As the simulation studies showed,
the rotation test had higher power than the permutation test on 4 samples for
both normal and log-normal data. On the other hand, when the sample size is
very large (50 arrays for these data) the assumption about multinormality can
instead lead to some loss in power. There exist tests for multinormality, e.g.
Mardia’s test of multinormality (Mardia, 1985) and a multivariate Shapiro-
Wilk test (Royston, 1982). But to our knowledge, none of these tests are
applicable for situations where the number of variables exceeds the number of
observations, as is the case for these types of data.

Although the rotation test seems fairly robust against violations of the
multinormality assumption, the loss in power will probably be more notice-
able for extreme deviations from normality. We also did a comparison of
GSEAperm and GSEArot on the ALL-AML data set (Armstrong et al., 2002)
used by Subramanian et al., for which univariate histograms showed even
stronger deviations from normality than the p53 data. The results are not
included in this paper, but the rotation test appeared to have lower power
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than the permutation test, finding only one significant gene set compared to
the permutation test’s five gene sets.

In an attempt to approach the rotation test’s assumption about multi-
normality, we log-transformed the p53 data before reanalysing them. The
analysis of these log-transformed data gave quite different results from before
the transformation. GSEArot and GSEAperm found the same three signifi-
cant gene sets, but only one of these corresponded with the significant gene
sets in the untransformed data. A possible explanation for this could be the
weighting of the enrichment score (see Subramanian et al. for details); the log-
transformation will tone down the highest expression values, such that these
genes now will have a lower influence on the enrichment score. This raises the
question of what should and what does contribute to a gene set getting a high
enrichment score, a discussion we will not go any deeper into here.

To summarise, the rotation test seem to be tolerably robust against devi-
ations from the assumption about multinormally distributed arrays, but the
power will be somewhat lower for extreme deviations from normality. For very
small sample sizes the rotation test has proved to have higher power than the
permutation test, both for normal and non-normal data, which was our initial
aim with rotation testing in GSEA.
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Abstract

Gene set analysis methods have become a widely used tool for including prior biological
knowledge in the statistical analysis of gene expression data. Advantages of these methods include
increased sensitivity, easier interpretation and more conformity in the results. However, gene set
methods do not employ all the available information about gene relations. Genes are arranged in
complex networks where the network distances contain detailed information about inter-gene
dependencies. We propose a method that uses gene networks to smooth gene expression data with
the aim of reducing the number of false positives and identify important subnetworks. Gene
dependencies are extracted from the network topology and are used to smooth genewise test
statistics. To find the optimal degree of smoothing, we propose using a criterion that considers the
correlation between the network and the data. The network smoothing is shown to improve the
ability to identify important genes in simulated data. Applied to a real data set, the smoothing
accentuates parts of the network with a high density of differentially expressed genes.

KEYWORDS: differentially expressed genes, gene network, gene set analysis, microarray data
analysis, enrichment analysis
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1 Introduction
Gene Set Enrichment Analysis (Subramanian et al., 2005) and similar methods have
in recent years become a popular way of evaluating gene expression data in light
of background knowledge of gene sets. The fundamental idea is that sets of genes
with some logical connection should show similarities with regard to expression
level, and that differential expression should be evaluated at the gene set level in-
stead of at the individual gene level. The benefit of this strategy may be a reduction
in the number of false positives, since small, but consistent changes in expressions
at the gene set level may be more reliable than large expression changes for indi-
vidual genes. The sets of genes may be defined in different ways, but is of course
motivated by the assumption of correlated expressions between the members of the
set. Examples include metabolic pathways, functional categories and gene ontology
levels. Various versions of gene set analysis methods have been proposed by Kim
and Volsky (2005), Jiang and Gentleman (2007) and Efron and Tibshirani (2007).
See Huang et al. (2009) for a recent review.

It is however known that genes are arranged in complex networks, and gene
set methods do not take full advantage of the information contained in these net-
works. Gene set methods require that the genes are divided into groups, while genes
may take part in several reactions and do not necessarily fall into just one group.
There may therefore be considerable overlap between groups. By shifting the focus
from gene sets to gene networks, we can avoid the division into groups and at the
same time make full use of the information about gene dependencies contained in
the network distances. The fundamental idea is similar to the idea behind gene set
methods, that there is a connection between network distance and gene expression
similarity.

A growing number of papers are describing methods that make use of de-
tailed network information for the analysis of expression data. Vert and Kanehisa
(2003) presented a method for correlating gene networks and gene expression data.
Rahnenführer et al. (2004) used distance between pairs of genes to improve sta-
tistical scores for finding active pathways. Hanisch et al. (2002) used information
about gene networks to improve clustering of gene expression data. In regression
modelling network information has also been used to smooth the estimated regres-
sion coefficients. Both Li and Li (2008) and Pan et al. (2010) used the network
information as a penalization constraint in the parameter estimation, whereas Sæbø
et al. (2008) used the network information to adjust the rotations in the Partial Least
Squares regression model in their L-PLS. Shojaie and Michailidis (2009) incorpo-
rated network information in a latent variable model and used a mixed linear model
framework to test the significance of subnetworks, with a generalisation (Shojaie
and Michailidis, 2010) of the method to handle more complex experimental de-
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signs and test several contrasts simultaneously. Rapaport et al. (2007) used network
information to extract the relevant signals in the gene expression data by removing
the high-frequency components, and adapted this to classification.

Our approach is similar to the one in Rapaport et al. in that we aim at
smoothing away the part of the gene expression data that represents noise. The
goal is to eliminate false positives and accentuate important subnetworks with a
high density of differentially expressed genes. The method is demonstrated on data
simulated from one fictional and three real networks, and on a data set from a real
experiment on Enterococcus faecalis.

2 Method
In this section we describe the method of network smoothing. The procedure re-
quires that some type of network information is available for the genes in the ex-
pression data. A matrix of distances between genes is extracted from the graph
topology. We assume that network distances correspond to similarity between the
genes’ expression patterns, and refer to this matrix as a similarity matrix. The sim-
ilarity matrix is then used for smoothing of the gene expression data.

2.1 Similarity matrix

A predefined gene network, containing g genes, can be represented as a simple
graph G, with genes as nodes and edges between genes representing some bio-
logical relationship. A simple graph is undirected, contains no loops and has at
maximum one edge between each pair of nodes. Let i and j represent two nodes in
G, and let i ∼ j indicate that the two nodes are adjacent (directly connected). The
g × g adjacency matrix A describes the nodes’ neighbourhoods, and the entries ai j
are

ai j =

{
1 if i ∼ j
0 else (1)

for i, j = 1,2, ...,g. The g×g degree matrix D is a diagonal matrix with the degree,
i.e. the number of edges to a node, on the diagonal. Let δi be the degree of node i.
The entries in D are

di j =

{
δi if i = j
0 else (2)
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The g × g Laplacian matrix (Chung, 1997) is defined as L = D − A, where the
entries are

li j =





−1 if i ∼ j
di j if i = j
0 else

(3)

There are numerous ways of translating the network topology of G into
similarity between genes. Here, we will focus on the diffusion kernel (Chung,
1997, Kondor and Lafferty, 2002) as a similarity measure. The concept of diffusion
is closely related to random walks and can be imagined as information, just like a
fluid, travelling through the network. The diffusion kernel, or diffusion matrix Sβ
as we will refer to it here, is defined by the matrix exponential of L:

Sβ = e−βL =
g

∑
i=1

vie−βλivT
i (4)

where vi and λi are the i’th eigenvector and eigenvalue of L, respectively. Sβ de-
pends on a parameter β , where β > 0, that controls the speed of diffusion through
the graph. The diffusion is faster for larger values of β , corresponding to shorter
distances between nodes. The diffusion matrix contains numbers between 0 and
1, and all rows and columns sum to 1. Figure 1 shows a fictional network and
Figure 2 shows its diffusion matrix Sβ when the diffusion parameter β is set to 0.1
and 0.7, respectively. In the diffusion matrix black indicates values close to 0 and
corresponds to long distances between nodes, and white indicates values close to
1 and corresponds to short distances. With β = 0.1 there are large distances also
between the closely connected nodes, indicated by close to white diagonal elements
and black off-diagonal elements. When β is increased to 0.7, the shorter distances
between nodes is particularly apparent for the tightly connected nodes 1 to 6, in-
dicated by the lighter area around these nodes. Node 17 is directly connected to
only one node, and the colour of the diagonal element has not changed much from
β = 0.1 to β = 0.7. The information has only one way of travelling to and from
node 17, so it will remain mostly unaffected by an increase in the diffusion.

Increasing β too much will eventually result in all connected genes getting
an identical diffusion value. Since the purpose in this paper is to use the diffusion
matrix for smoothing, we have chosen an upper limit on β by requiring that the
diagonal should always contain the largest number in each row. This is equivalent
to requiring that a node should always put most weight on itself. We refer to the
upper limit as βmax. In section 2.3 we propose a measure for finding the optimal
value of β between 0 and βmax.
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Figure 1: Fictional network.
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(b) β = 0.7

Figure 2: Graphical representation of the diffusion matrix for the fictional network.
Black indicates large distances and white indicates small distances.
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2.2 Smoothing expression data

Let X denote an n × g matrix of gene expression levels measured for g genes on n
samples. A test statistic, e.g. a t-statistic for testing differential expression between
two conditions, correlation between the gene and a phenotype vector or a signal-to-
noise ratio, is calculated for each gene. Let t denote the g×1 vector of test statistics.
The absolute values of the test statistics are multiplied with the diffusion matrix Sβ
to obtain a vector of smoothed test statistics tβ :

tβ = Sβ |t| (5)

The diffusion matrix acts like a weighting matrix since each row sums to 1. The
smoothing will give closely connected genes a more similar test statistic and tone
down extreme observations. This agrees with the intention of the network smooth-
ing approach; we wish to detect smaller changes within a number of related genes
rather than large changes in a few unrelated genes. Nodes without any neighbours
are unaffected by the smoothing and keep their original test statistic. Note that
since we use absolute values, all smoothed test statistics are positive. We are only
detecting whether a gene is differentially expressed, not whether it is up- or down-
regulated. However, the direction of regulation may be extracted as the sign of
t. Figure 3 shows how the test statistics for the nodes in the fictional network are
changing with different levels of smoothing. Each node is coloured by the magni-
tude of its test statistic, where red is largest and white is smallest. Figure 3(a) shows
the test statistics before smoothing. In 3(b) the test statistics are smoothed with a
medium value of β , and in 3(c) they are smoothed with βmax, which is 0.7 for this
network. In Figure 3(d) the degree of smoothing is so extreme that all nodes get
an almost identical test statistic. The smoothing implies a sharing of power, where
nodes with high test statistics transfer some of their power to their neighbouring
nodes. While this may lead to a discovery of subnetworks with more moderate
expression, a consequence is that we risk losing individual important nodes. In the
next section we propose a way of finding the optimal value of β for a given network.

2.3 Optimal smoothing

The optimal level of smoothing should ideally be determined by the data. Of course,
the analyst could alternatively screen a set of values for β between 0 and βmax and
inspect the results in order to find a level that gives a reasonable outcome in light of
prior knowledge, but this may put too much subjectivity into the results and prevent
discoveries which do not harmonise with prior knowledge. We therefore seek an
optimal level of smoothing solely dependent on the data through some optimality
criterion.
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(b) Smoothing with β = 0.3
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(c) Smoothing with β = 0.7
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(d) Smoothing with β = 5

Figure 3: Nodes coloured by the magnitude of their test statistic before and after
smoothing with different values of β . Red is largest, white is smallest.

Most statistical smoothing methods depend on one or several regularization
parameters controlling the level of smoothing. In some cases, like for prediction
models, it is quite straightforward to define some loss function that can serve as a
criterion for choosing optimal values for the smoothing parameter(s). An example
is non-linear regression, where the width of the moving-average window can be
chosen to minimize prediction error. In other problems, like the one issued in this
paper, the choice of loss function is not that obvious.
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The aim of our smoothing approach is to identify subnetworks or commu-
nities (Newman, 2006) which show a coherent expression pattern that stands out
from other parts of the network. The optimality criterion should therefore seek a
level of smoothing for which the smoothed gene statistics within communities are
more positively correlated than for genes from different communities. A criterion
suited for this purpose is the network correlation (Newman, 2002, 2003, 2006). This
correlation function is a measure of assortative mixing, which measures to what ex-
tent adjacent nodes in a network have similar properties. The measure is based on
the modularity matrix B (see e.g. Newman, 2006), which is a matrix representa-
tion of the community structure of a network. The modularity matrix is defined as
B = A − P, where A is the adjacency matrix as defined in eq. (1), and P contains
the expected number of edges between each pair of nodes. The expected number of
edges between nodes i and j if edges are placed at random is

pi j =
δiδ j

2m
(6)

where δi and δ j are the degrees of the nodes and m is the total number of edges in
the network. The network correlation of the smoothed test statistic tβ across the
network for a given value of β is defined by

r(β ) =
1

2m
tT
β Btβ (7)

Based on this, we define the optimal level of smoothing, βopt , as

βopt = argmaxβ (r(β )) (8)

For our fictional network and simulated test statistics, the function r(β ) is shown
in Figure 4. The maximum was found to be βopt = 0.3 with a network correlation
of r(0.3) = 0.09. The corresponding smoothed network was shown in Figure 3. As
this figure suggests, it is not much to gain when increasing β from 0.3 to 0.7, so it
seems reasonable that the optimum is found here.

2.4 Estimation of significance

For each gene we are testing the null hypothesis of the gene being differentially
expressed. The test is conditional on the smoothing matrix used. The null distri-
bution of the smoothed test statistics is unknown, and therefore a resampling based
method must be adopted for significance testing. Let Xr denote a n × g matrix of
resampled gene expression data. A g ×1 vector of genewise test statistics tr based
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Figure 4: The network correlation r(β ) for different values of β over the fictional
network. The dashed line indicates βmax.

on the resampled data, are smoothed with the similarity matrix to obtain smoothed
resampled test statistics tβ r

tβ r = Sβ |tr|
By repeating this procedure for a large number R of resampled data sets, the vectors
of resampled test statistics tβ1, tβ2, ..., tβR give an estimate of the distribution of
the smoothed test statistics under the null hypothesis. Let tβ j denote the observed
smoothed test statistic and tβ r j denote a resampled smoothed test statistic for gene
j. A p-value for gene j is calculated as the proportion of resampled test statistics at
least as extreme as the observed test statistic

p j =
#(tβ r j ≥ tβ j)+1

R+1

The choice of resampling test depends on the type of data. For single-
channel data or two-colour data with a common reference (indirect design), a per-
mutation test shuffling a phenotype vector can be used. For two-colour data with
direct design, a permutation test exchanging signs can be applied. A problem with
the permutation test, for both data types, arises when the number of samples is
small, which is often the case for microarray data. Small sample sizes mean that
the number of possible permutations is limited, and the accuracy of the estimated
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p-values will be accordingly low. We therefore suggest using a rotation test rather
than a permutation test for cases with small sample sizes. The rotation test can ro-
tate samples in all directions while still preserving the correlation structure between
the genes (Langsrud, 2005). As shown by Dørum et al. (2009), the rotation test has
higher power than the permutation test for small sample sizes.

In the following we have adopted a similar notation to Langsrud. The ro-
tation test assumes that the rows of X are multinormal and independent, i.e. that
each array xi ∼ Ng(µ,Σx) and that the arrays are independent. The rotation test is
however robust to deviations from normality, as shown by Dørum et al. and Wu
et al. (2010). By a random rotation of xi we get xir ∼ Ng(0,Σx). The rotated genes
have expectation 0, but the covariance matrix is maintained. To perform a random
rotation of the data, we start by noting that the matrix of gene expressions X can be
decomposed by the QR decomposition

X = XQXU

where XQ is an orthonormal matrix of size n × n, and XU is an upper triangular
matrix of size n×g with positive diagonal elements. XQ represents the orientation,
while XU represents the configuration and is a sufficient statistic for Σx. Let W be
a n×n matrix of random standard normal distributed data. A QR decomposition of
W gives W = WQWU , where WQ is an n × n random rotation matrix. A random
rotation matrix multiplied with another rotation matrix is still a random rotation
matrix, and a rotated data matrix Xr can therefore be generated as

Xr = WQXQXU = QXU (9)

where Q = WQXQ. The rotations are conditioned on Σx, so this procedure makes
it possible to account for covariances between genes without having to estimate Σx.
See Dørum et al. and Langsrud for more details on the rotation test.

2.5 Simulated data

Gene expression data were simulated based on the structure of four different net-
works: the fictional network in Figure 1 with two additional disconnected sub-
graphs, and the three real pathways ”Energy metabolism”, ”Lipid metabolism” and
”Glycan biosynthesis metabolism” from the bacterium E. faecalis. Each network
can be represented as a graph G with g nodes (genes). An additional node, the
”pheno node”, was connected to three adjacent nodes in G. Nodes that are highly
correlated with the pheno node are considered important. The pheno node has of
course no biological meaning, and is used here purely as a statistical approach for
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associating nodes with the phenotype. Simulating data this way gives us control of
the dependencies between nodes. All nodes that to some extent are connected to
the pheno node, will be correlated with it. Let 1st order neighbours denote nodes
that are directly connected to the pheno node, 2nd order neighbours denote nodes
that are connected to the pheno node through the 1st order neighbours, and so on.
Detached nodes refer to nodes that are completely disconnected from the pheno
node.

For the fictional network, data were simulated from three different sce-
narios, where in each scenario the pheno node was connected to different nodes.
Hence, all scenarios consider different nodes as important. The three scenarios can
be seen in Figure 5. In scenario 1, the pheno node is connected to nodes 1, 2 and 6,
which are located in a very dense part of the network where all nodes are directly
connected to each other. Nodes 3-5 are the 2nd order neighbours in this scenario,
while nodes 7 and 13 are the 3rd order neighbours. In scenario 2, the pheno node is
connected to nodes 9, 10 an 11 in a less dense part of the network. The 2nd order
neighbours are 8 and 12, and the 3rd order neighbours are 7 and 13. In scenario
3, the pheno node is connected to the same part of the network as in scenario 1,
but this time only to node 1. The 2nd order neighbours are now nodes 2-6, while
the 3rd order neighbours are still nodes 7 and 13. In all scenarios, nodes 18-22
and 23-27 are completely irrelevant for the pheno node since they are disconnected
from the part of the network connected to the pheno node. These nodes were used
to compute the type I error rate (false positives).
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Figure 5: The fictional network used in the simulation study and the three scenarios
data were simulated under. The square node represents the pheno node.
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(a) Energy metabolism (b) Lipid metabolism (c) Glycan biosynthesis
metabolism

Figure 6: The three E. faecalis networks with a connected pheno node (square) used
in the simulation study.

The structure of the three E. faecalis pathways with a pheno node connected
to three adjacent nodes are shown in Figure 6. Energy metabolism has 41 nodes,
Lipid metabolism has 42 nodes, and Glycan biosynthesis metabolism has 27 nodes.
They are three rather different networks and contain several subgraphs that are not
associated with the pheno node.

The correlations between the nodes, including the pheno node, were con-
structed with an exponential correlation model (see e.g. Diggle et al., 1994)

ri j = e−αbi j for i, j = 1, ...,g+1 (10)

for some α > 0, where bi j denotes the distance between node i and j. We measured
distance as the inverse diffusion distance, where bi j is the inverse of the i j’th ele-
ment of the diffusion matrix with β = 1. With this model, increasing the distance
between genes in the diffusion matrix will decrease the correlations towards zero.
The rate of decrease is faster for larger values of α . We chose α = 0.3 and used
random signs on the correlations to simulate both activation and inhibition between
the nodes. Table 1 gives the average correlations between the pheno node and its
1st, 2nd and 3rd order neighbours, plus the average correlation within the 1st or-
der neighbours, between 1st and 2nd order neighbours and within the 2nd order
neighbours, for each scenario/network.

Let R = {ri j} denote the (g + 1)× (g + 1) matrix of correlations between
the g nodes and the pheno node. For each network, gene expression data for n = 20
samples were simulated as follows. Let U be a n×(g+1) matrix of standard normal
data, where the first g columns represent the genes and the last column represents
the pheno node. A dependency structure between the genes was introduced by mul-
tiplying U with R

1
2 , an upper triangular matrix obtained by Cholesky decomposition
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Table 1: Average correlations between the pheno node and its 1st, 2nd and 3rd order
neighbours, within the 1st order neighbours, between 1st and 2nd order neighbours
and within the 2nd order neighbours. Note that in scenario 3 there is only one 1st
order neighbour, and in Energy metabolism there are no 3rd order neighbours.

pheno-1st pheno-2nd pheno-3rd 1st-1st 1st-2nd 2nd-2nd
Scenario 1 0.72 0.41 < 0.01 0.78 0.48 0.41
Scenario 2 0.57 0.08 < 0.01 0.38 0.17 0.04
Scenario 3 0.47 0.06 < 0.01 − 0.57 0.48
Energy 0.44 0.12 − 0.30 0.31 0.43
Lipid 0.48 0.11 < 0.01 0.46 0.21 0.19
Glycan 0.49 0.03 < 0.01 0.24 0.1 0.09

of R. The transformed data Z = U ·R
1
2 have the distribution

Z ∼ Ng+1

([
µx
µy

]
,

[
Σxx σxy
σxy σ2

y

])
(11)

where Σxx are the gene covariances, σxy are the gene-pheno covariances, and σ2
y is

the pheno node variance. Note that since σ2
y and the gene variance σ2

x were both
set to 1 for simplicity, we have that Σxx = Rxx and σxy = rxy, where Rxx and rxy
are the gene-gene and gene-pheno correlations, respectively. The first g columns
of Z constitute the gene expression matrix X. The last column, which represents
the expression of the pheno node, was rounded to either 0 or 1 to form a phenotype
vector Y representing two phenotypes (e.g. diseased and healthy).

A total of 100 data sets were simulated from each scenario/network. A
two-sample t-test comparing the population means of the two phenotypes was per-
formed for each gene. The value of βmax was determined to 0.7 for the fictional
network, 2.2 for Energy metabolism, 0.4 for Lipid metabolism and 0.5 for Glycan
biosynthesis metabolism. Diffusion matrices for ten equally spaced β values be-
tween 0.001 and βmax were found, and the t-statistics were smoothed with all ten
diffusion matrices. Since this is a case of indirect design data with a quite large
sample size, statistical significance for the genes were estimated with a permutation
test shuffling the phenotype vector.

Power was calculated as the proportion of the 100 data sets in which the
most important nodes were found to be significantly expressed (p-value ≤ 0.05).
Power was calculated separately for the 1st, 2nd and 3rd order neighbours of the
pheno node. Power was also calculated for the detached nodes as an estimate of the
type I error rate. In addition, the optimal smoothing parameter βopt was found for
each simulated data set.
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2.6 Stress response in E. faecalis

This microarray experiment was performed in order to investigate the transcrip-
tional response of the bacterium Enterococcus faecalis V583 to bile stress. RNA
was extracted from bacteria treated with bile and from untreated cultures as a ref-
erence, and reverse transcribed. Labelled cDNA was then hybridised to mutual
slides in a direct design experiment. RNA was obtained in two separate growth
experiments, and samples were collected after 10, 20, 60 and 120 minutes. At each
time point four arrays were used, and the time points were analysed separately. For
details about labelling, hybridisations and data pre-processing, see Solheim et al.
(2007).

The differential expression between treated and untreated bacteria was mea-
sured as log2(signal treated) - log2(signal untreated). Loess normalisation imple-
mented in the LIMMA package for R (Smyth and Speed, 2003) was used to correct
for intensity dependent trends in the data. To make the samples as independent
as possible, an ANOVA model incorporating the unwanted effects of batch and
dye were fitted to the data, and the resulting residuals were used in the following
analysis. Though this normalisation will not remove all dependencies between the
samples, it should be sufficient for the purpose in this paper.

From the KEGG PATHWAY database (Kanehisa and Goto, 2000), 83 metabolic
and non-metabolic pathways in E. faecalis were downloaded and converted into
graphs. These graphs were merged together to one large graph with the R package
KEGGgraph (Zhang and Wiemann, 2009), removing redundant nodes and edges
due to overlapping pathways. The resulting graph consisted of 800 nodes and 1306
edges where each node represents a gene product (two nodes may represent the
same gene product). The 800×800 diffusion matrix D was calculated for the graph.
Rows and columns in D corresponding to nodes that we did not have gene expres-
sion data for were removed, reducing D to a 633 × 633 matrix. To make each row
in D sum to 1 again, the values that were removed from a row were added to the
row’s diagonal. This preserves the network information as much as possible even if
some genes are not spotted on the array.

A t-statistic for testing the expected expression log-ratio to be different from
zero was calculated for each of the 633 genes. Because of the small number of
samples, the estimated variance of each gene was stabilised by adding the 90th
percentile of the estimated variances for all genes (Efron et al., 2001). The t-statistic
for gene j was computed as

t j =
x̄ j√
v j+ṽ

2n

(12)
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where x̄ j is the average log-ratio for gene j over all four arrays, v j is the esti-
mated variance of the gene, and ṽ is the 90th percentile variance estimate. The
t-statistics were smoothed with the diffusion matrix with β = 0.1, which was both
βmax and βopt for this network. Without the upper limit, βopt would have been 0.17.
Due to the small sample size, a rotation test was used to compute p-values. The
false discovery rate (FDR) was controlled by computing adjusted p-values with the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

To shift the focus from individual genes to subnetworks, Gene Set Enrich-
ment Analysis (GSEA) was performed on the individual KEGG pathways that made
up the network used for smoothing. The pathways were required to have at least 5
members, so only 56 of the 83 pathways were tested. Gene set enrichment scores
were computed based on the smoothed t-values (we refer to Subramanian et al.
(2005) on how to compute enrichment scores). Each gene set was assigned a p-
value computed with a rotation test. See Dørum et al. (2009) for details about
GSEA with rotation test. To correct for multiple hypothesis testing, FDR q-values
(Storey, 2002) were calculated for each gene set. Since all smoothed test statis-
tics are positive, we are only interested in gene sets with high positive enrichment
scores. We therefore used a one-sided version of the approach for computing q-
values in Subramanian et al.. GSEA was also performed on non-smoothed absolute
t-values for comparison.

3 Results

3.1 Simulated data

For each network/scenario the 100 simulated data sets were analysed as described
in section 2.5. Figure 7 shows the average power for the 1st, 2nd and 3rd order
neighbours, plus the detached nodes, as a function of the smoothing parameter β in
the three scenarios of the fictional network. The average βopt over all simulations
are also indicated in the figure. Smoothing with β = 0.001 approximately corre-
sponds to no smoothing. The nodes have different power in the three scenarios also
without smoothing. This is a result of using diffusion distances in the simulation of
correlations, meaning that the correlations between nodes depend on the topology
of the network. The power without smoothing can be seen in connection with the
correlations in Table 1. Networks with high correlation between the pheno node
and its neighbours have high power. The benefit of smoothing for the 1st order
neighbours seems to be similar for both scenario 1 and 2, while scenario 1 has a
higher increase in power for the 2nd order neighbours. Scenario 1 has higher cor-
relations both between the 1st and 2nd order neighbours and within the 2nd order
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(c) Scenario 3

Figure 7: Estimated power for different values of the smoothing parameter β for
the three scenarios of the simulated network. The vertical red line indicates βopt ,
the optimal β according to the network correlation criterium.

neighbours. As the power is growing rapidly with increasing β , the average βopt is
quite low for scenario 1. A higher β gives a higher power for the most important
nodes, but may deteriorate the correlation between nodes in other communities in
the network. The benefit of smoothing for the 3rd order neighbours is also largest
in this scenario, but the degree of smoothing required to detect these nodes is above
βopt .

In scenario 3, the pheno node was connected to only one node, meaning
that there is only one important gene in a subnetwork of less important genes. As
can be seen in the plot, the 1st order node quickly looses its power. The 2nd and
3rd order neighbours only have a small benefit of the smoothing; even though the
correlations between 1st and 2nd order neighbours is quite large, there is only one
1st order neighbour to borrow power from. However, this scenario has the highest
value of βopt . It can be interpreted as there is more to gain from increasing the
power for the 2nd and 3rd order neighbours, than keeping the power for the one 1st
order neighbour.

Higher values of β were tried for scenario 1 and 2, resulting in a decrease
in power for both the 1st and 2nd order neighbours (results not shown). The de-
tached nodes have a power of approximately 0.05 for all networks, indicating that
the method controls the type I error satisfactorily.

Figure 8 shows the power for the data simulated from real networks. In
Energy metabolism we can observe the same behaviour in the 1st order neighbours
as for scenario 3; they are losing power when β is increasing. These nodes have to
”give up” some of their power to the 2nd order neighbours, which in their turn gain
power by the smoothing. Like scenario 3, Energy metabolism has the highest βopt
of the three real networks.
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(b) Lipid metabolism
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Figure 8: Estimated power for different values of the smoothing parameter β for the
data simulated from real networks. The vertical red line indicates βopt , the optimal
value of β according to the network correlation criterium.

Lipid metabolism and Glycan biosynthesis metabolism have approximately
the same benefit of smoothing for the 1st order neighbours. The increase in power
for the 2nd order neighbours is minimal for Glycan biosynthesis metabolism. This
network has rather low correlations between 1st and 2nd and within 2nd order
neighbours. The smoothing seems to have minimal effect on the 3rd order neigh-
bours in all networks (Energy metabolism has no 3rd order neighbours). The level
of the detached nodes is satisfactory in all networks. In summary, the effect of
smoothing seems to be smallest on Glycan biosynthesis metabolism, which is the
most loosely connected of the three real networks. Energy metabolism and Lipid
metabolism are both tightly connected networks, and have more benefit from the
smoothing.

3.2 Stress response in E. faecalis

The data from the E. faecalis experiment were analysed as described in section
2.6. The number of significant genes (adjusted p-value ≤ 0.05) before and after
smoothing are given in Table 2. The network smoothing resulted in more significant

Table 2: Number of significant genes (adjusted p ≤ 0.05) in the E. faecalis data set
before and after smoothing.

Time 10 Time 20 Time 60 Time 120
Before smoothing 172 284 51 104
After smoothing 276 394 109 262

genes at all time points.
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In Figures 9 and 10, the nodes are coloured by the magnitude of their ad-
justed p-value (divided into ten equally sized intervals between 0 and 1) before and
after smoothing with β = 0.1. For better visualisation, nodes that were not in the
expression data and nodes without any edges (which are not affected by the smooth-

q−value 1q−value 0 q−value 1q−value 0

Time 10

q−value 1q−value 0 q−value 1q−value 0

Time 20

q−value 1q−value 0

Figure 9: The E. faecalis network at time points 10 and 20 before (left) and after
(right) smoothing with β = 0.1. The nodes are coloured by their adjusted p-value.
Nodes not in the expression data and nodes without any edges are not shown.
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ing), are not included in the plot. Individual nodes with high adjusted p-values
surrounded by nodes with small adjusted p-values become more significant after
smoothing, while highly significant nodes become less significant after smoothing
if they are surrounded by nodes with high adjusted p-values. In other words, the
power is more evenly distributed over the subnetwork after smoothing.

q−value 1q−value 0 q−value 1q−value 0

Time 60

q−value 1q−value 0 q−value 1q−value 0

Time 120

q−value 1q−value 0

Figure 10: The E. faecalis network at time points 60 and 120 before (left) and after
(right) smoothing with β = 0.1. The nodes are coloured by their q-value. Nodes
not in the expression data and nodes without any edges are not shown.
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Phosphotransferase system (PTS)
Fructose and mannose metabolism
Amino sugar and nucleotide sugar metabolism
Two−component system

(a) Time 20

Alanine, aspartate and glutamate metabolism
Fatty acid biosynthesis

(b) Time 120

Fatty acid biosynthesis
Purine metabolism
Propanoate metabolism
Pyrimidine metabolism
Pyruvate metabolism

Fructose and mannose metabolism
Citrate cycle (TCA cycle)
ABC transporters
Glycolysis / Gluconeogenesis

(c) Time 60

Figure 11: Significant pathways (q ≤ 0.05) with GSEA on non-smoothed E. faecalis
data. Note that some pathways are completely overlapping with other pathways and
cannot be seen in the plot.
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Butanoate metabolism
Phosphotransferase system (PTS)

(a) Time 20

Fatty acid biosynthesis
Propanoate metabolism

(b) Time 120

Fatty acid biosynthesis
Propanoate metabolism
Butanoate metabolism
Two−component system
Valine, leucine and isoleucine degradation
Citrate cycle (TCA cycle)
Pyrimidine metabolism

Pyruvate metabolism
Fructose and mannose metabolism
Terpenoid backbone biosynthesis
Phosphotransferase system (PTS)
Tyrosine metabolism
Glycolysis / Gluconeogenesis

(c) Time 60

Figure 12: Significant pathways (q ≤ 0.05) with GSEA on network smoothed E.
faecalis data. Note that some pathways are completely overlapping with other path-
ways and cannot be seen in the plot.
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Another interesting observation is that before smoothing the significant path-
ways differ between the time points, while after smoothing the significant pathways
seem to be more consistent over time. All the significant pathways at time 20 and
120 are also significant at time 60, which is not the case before smoothing. The
significant pathways (q-value≤ 0.05) from GSEA before and after smoothing are
coloured into the graphs in Figures 11 and 12, respectively. There were no signif-
icant gene sets at time 10. Interestingly, time 60 is the time point with the least
significant genes both before and after smoothing, yet this is the time point with
most significant gene sets in GSEA.

4 Discussion
In this paper we have presented a method for smoothing gene expression data with
a priori network information. The aim of the smoothing was to remove false posi-
tives and identify parts of the network where genes are moderately, but coordinately
expressed. A similar smoothing approach was used by Rapaport et al. (2007), but
with the aim of classifying samples rather than identifying differentially expressed
genes. Rapaport et al. considered the smoothing procedure as a spectral decom-
position of the graph, where the eigenvectors with large eigenvalues represent the
high-frequency noise components and the eigenvectors with small eigenvalues are
smoother functions containing the biologically important information. They used
two different smoothing methods, one that attenuated eigenvectors with large eigen-
values, and one that completely filtered out the eigenvectors with the largest eigen-
values. The first method is similar to our approach of smoothing with the diffusion
matrix, with the degree of attenuation being adjusted by the parameter β . Rapa-
port et al. showed that filtering out approximately 80 % of the eigenvectors with
the largest eigenvalues gave a small improvement in the classification, while at-
tenuating these eigenvectors gave no improvement, at least for large values of β .
However, they used values up to β = 50, while we chose to restrict the value of β
to diffusion matrices in which a node puts most weight on itself. This resulted in
β ’s in the range of 0.1−2.2 for the networks used in this paper.

Another important distinction between our method and the approach of Ra-
paport et al. is that they are smoothing raw data rather than absolute values of the
test statistics. Because our network information did not include information about
the direction of regulation, we chose to smooth absolute values. If not, we would
risk that neighbouring nodes with opposite signs cancel each other out. Absolute
test statistics were also used by Saxena et al. (2006) for gene set enrichment anal-
ysis in order to identify gene sets with bi-directional changes, and were mentioned
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by Efron and Tibshirani (2007) as an option for genewise statistics for gene set test-
ing. A drawback of using absolute values is the risk of accentuating less important
subnetworks. Provided that we knew the directions of regulation in the network,
we could have kept the signs of the test statistics. An example of such a network is
operons, which are sets of genes located adjacently in a bacterial genome and con-
trolled by a common regulatory sequence. Operons appear to be strong indicators
of co-regulated genes, and the regulation between all nodes is positive. If a gene in
an operon has a test statistic with opposite sign from the rest of the operon, it should
be canceled out by the smoothing.

When the type of network is chosen, there are several ways that the network
topology could be translated into gene dependencies in the smoothing matrix. In
this paper we have only considered diffusion, but other topology descriptors that
with some small modifications could act as smoothing matrices are e.g. a matrix
of shortest distances between genes (shortest path), or the modularity matrix which
was used in the criterion for finding the optimal smoothing.

The simulation study showed that the network smoothing improved the abil-
ity to identify nodes associated with the phenotype. The result of the smoothing is
that genes with a strong signal share some of their power with their closest neigh-
bours. With an improved ability to identify nodes with a weaker signal comes the
risk of losing some important individual nodes. At the same time, this could be
thought of as a way of removing false positives; a single important node in a sub-
network of unimportant nodes may be an indication of a false positive gene. The
choice of the smoothing parameter β is thus a trade-off between detecting the most
important genes, and detecting larger groups of somewhat less important genes with
the chance of losing individual genes.

In this paper we used the network correlation as optimality criterion for
setting the level of smoothing. Other choices of loss functions may, of course, re-
place this. There is a vast literature on the problem of finding optimal values for
regularization parameters in smoothing problems, for example in spatial statistics,
epidemiology and image restoration (Chan and Kay, 1990, Chan and Gray, 1996,
e.g.). Some of the suggested criteria are based on generalized cross-validation GCV
(Golub et al., 1979) and variants thereof, which probably could be adapted to net-
work smoothing. These will however not take the community structure into ac-
count. In this respect, we believe the network correlation criterion used here is a
more appropriate measure for the problems discussed in this paper. A thorough
comparison of various criteria would be interesting to investigate in future work.

When a gene set method like GSEA is combined with the network smooth-
ing, as was done on the E. faecalis data, the smoothing should accentuate important
subnetworks that can then be picked up by GSEA. A benefit of using a gene set
method after smoothing is that you can interpret results on a gene set level rather
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than on an individual gene level. The analysis of the smoothed E. faecalis data with
GSEA revealed most significant gene sets at the time point that also had the fewest
significant individual genes. The reason may be that GSEA is a type of compara-
tive gene set test, meaning that it tries to identify gene sets that stand out from the
other sets, compared to a self-contained gene set test that looks at each gene set
separately (Goeman and Bühlmann, 2007). If the data contains a large number of
significant genes, it may be difficult for a gene set to assert itself, as shown in a sim-
ulation study by Efron and Tibshirani (2007). See Goeman and Bühlmann, Efron
and Tibshirani and Tian et al. (2005) for an in-depth discussion about the different
types of gene set tests and the null hypotheses they are testing.

The analysis of the E. faecalis data revealed an increased conformity in the
significant pathways across the time course after smoothing (Figure 11-12), i.e. all
the pathways identified as significant at either time 20 or time 120 were also signif-
icant at time 60 in the smoothed data set. In the non-smoothed data set on the other
hand, markedly less overlap were observed between the time points. This could im-
ply that the network smoothing produces more robust results. Among the recurring
pathways was ”Fatty acid biosynthesis” encoding genes involved in type II fatty
acid biosynthesis (FAB). The genes associated with this pathway have previously
been linked to bile-induced cell envelope modifications in E. faecalis and other
Gram-positive bacteria (Taranto et al., 2003, 2006, Le Breton et al., 2002). A con-
siderable overlap is seen between the ”Fatty acid biosynthesis” and the ”Propanoate
metabolism” pathways, both of which were identified as significant at time 60 and
time 120 after smoothing. In addition, the latter pathway also includes genes coding
for two lactate dehydrogenases. Mehmeti and co-workers (Mehmeti et al., 2011) re-
cently identified putative Rex binding sites upstream of both ldh-1, fabI and fabF.
The Rex transcriptional regulator has been recognised both as a repressor and an
activator, and is responsive to the level of NADH in the cell. Interestingly, putative
Rex boxes were also identified upstream of several of the members of the ”Bu-
tanoate metabolism” pathway (significant at time 20 and time 60 after smoothing).
Overall, these observations may thus be indicative of an effect of bile on genes in-
volved in pyruvate metabolism, which may be related to a shift in the E. faecalis
NADH/NAD ratio. A potential effect of bile on the metabolic state of the cell in
E. faecalis was further supported by the significant pathways ”Phosphotransferase
system (PTS)” and ”Fructose and mannose metabolism”.

Unfortunately, there are still limited amounts of network information avail-
able, and often one can only find information for parts of the genes in the expression
data. For the E. faecalis data we chose to exclude genes without network informa-
tion from the analysis, but this is not a requisite for the network smoothing, as these
genes could simply be treated as detached nodes and would be unaffected by the
smoothing. In comparison, gene set methods such as GSEA exclude genes that are
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not member of any gene set from the analysis, and it is also common practice to
leave out small gene sets (e.g. less than five genes).
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Abstract
Gene set analysis methods are popular tools for identifying differentially expressed
gene sets in microarray data. Most existing methods use a permutation test to as-
sess significance for each gene set. The permutation test’s assumption of indepen-
dent samples is often not satisfied for time series data and complex experimental
designs, and in addition it requires a certain number of samples to compute p-
values accurately. The method presented here uses a rotation test rather than a
permutation test to assess significance. The rotation test can compute accurate p-
values also for very small sample sizes. The method can handle complex designs
and is particularly suited for longitudinal microarray data where the samples may
have complex correlation structures. In addition, the method can test for both gene
sets that are differentially expressed and gene sets that show strong time trends.
We show on simulated longitudinal data that the ability to identify important gene
sets increases when we take the correlation structure between samples into ac-
count, and applied to real data the method identifies both gene sets containing
differentially expressed genes and gene sets containing genes with strong time
trends.
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1 Introduction
In the recent years gene set analysis methods have become increasingly popular
as a tool for analysing microarray gene expression data. By shifting the focus
from individual genes to sets of genes with some biological relation, the results
of the analysis may be easier to interpret and more reproducible. Genes in the
same gene set are thought to have a similar expression pattern and are defined a
priori. Examples include metabolic pathways and functional categories. Gene set
methods are testing whether a set of genes is enriched, and assigns p-values to
each gene set. In addition to easier interpretation of the results, testing gene sets
rather than individual genes reduces the number of tests and hence the number of
false positives.

Goeman and Bühlmann (2007) introduced the terms competitive and self-
contained gene set tests to differentiate between tests that aim at identifying gene
sets that stand out from a collection of gene sets, and tests that look at each gene
set by itself. One of the most popular competitive tests is the Gene Set Enrichment
Analysis (GSEA), introduced by Mootha et al. in 2003 and modified by Subra-
manian et al. in 2005. Competitive gene set testing have also been done by e.g.
Efron and Tibshirani (2007) and Dørum et al. (2009). Examples of self-contained
testing can be found in Goeman et al. (2004), Tian et al. (2005), Jiang and Gen-
tleman (2007) and Wu et al. (2010). See Huang et al. (2009) for a recent review
of gene set methods.

Common for gene set methods is that they assign a p-value to each gene set,
usually calculated with a permutation test. Correct permutation requires indepen-
dent samples, which is often not the case in complex microarray designs. In addi-
tion, permutation tests require a moderate to large number of samples to calculate
accurate p-values. Permutation of genes rather than samples have been shown to
seriously underestimate p-values due to the incorrect assumption of independence
between genes (Efron and Tibshirani, 2007, Dørum et al., 2009). Dørum et al. in-
troduced GSEA with rotation testing as an alternative to permutation testing. The
rotation test can calculate accurate p-values even for small sample sizes. Wu et al.
(2010) introduced rotation testing for gene set tests that can also handle complex
experimental designs. Their method ROAST can apply different types of gene
set statistics. We are developing gene set analysis with rotation testing further by
allowing testing of several contrasts simultaneously and by considering complex
correlation structures between samples.

In particular, we have in mind gene expression time series data. Microarray
experiments performed as time series capture a dynamic picture of gene expres-
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sion rather than a snapshot provided by a static experiment. Many authors have
dealt with the problem of identifying differentially expressed genes in time series
data. Storey et al. (2005) modelled the time course for each gene by splines. Park
et al. (2003) fitted ANOVA models and tested interactions between time and treat-
ment. Zhou et al. (2010) estimated the direction in time space with the strongest
ANOVA signal of interest. Ma et al. (2009) modelled time course data with func-
tional ANOVA mixed-effect models and tested the interaction between treatment
and time. All the above mentioned methods, however, evaluates differential ex-
pression on the individual gene level, while we are interested in identifying sets
of genes that are differentially expressed. Wei and Li (2008) incorporated gene
network information in Markov random field models to identify differentially ex-
pressed pathways in time course data.

Time series data can be divided into cross-sectional data, in which each in-
dividual is measured only once, and longitudinal data for which individuals are
measured repeatedly over time. In this paper we will focus on longitudinal data.
The repeated sampling on individuals means that the samples tend to be correlated.
In addition, there may be random design factors introducing correlation between
samples. The method presented here allows for complex covariance structures for
the samples by considering the special correlation structure introduced by time
course measurements. Since the method can test several contrasts simultaneously,
gene sets can be tested for both differential expression and time trends.

We introduce a gene set analysis method that can handle almost all types of
experimental designs, complex covariance structures between samples and a small
number of samples, while testing several contrasts simultaneously. The method’s
power and control of the type I error is demonstrated in a simulation study. A data
set investigating stress responses in E. faecalis over time is analysed with the aim
of identifying both gene sets that are differentially expressed and exhibit a time
trend.

2 Model assumptions

2.1 General linear model with correlated errors
Let y j be a vector of gene expression values for the j’th gene, where j = 1,2, ...,g.
For each gene we assume the general model

y j = Xβ j + e j (1)
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where X is a n × p matrix with n samples and p design factors, β j is a vector
of p parameters, and e j ∼ Nn(0,V ). Note that we assume a common covariance
structure for all genes.

The rotation test described in section 3 is based on the assumption that the
observations are independent. As mentioned by Wu et al. (2010), known depen-
dencies may be removed up front of the rotation testing. In practice these depen-
dencies will be unknown, but by assuming that all genes have the same covariance
matrix V , a good estimate of V can be obtained if the number of genes is large.
The estimate V̂ may be used in a preprocessing step to reduce between-sample de-
pendencies before the rotation testing. Next we describe a method for obtaining a
V̂ that accounts for complex dependency structures in the data.

2.2 Covariance structure for longitudinal data
In this section we describe a covariance structure, presented in Diggle et al. (1994),
for experimental designs with random effects and where measurements are done
on the same subjects over time (longitudinal data). We assume that the random
variation in the data is due to three different sources of variation. The first source
is random design factors that affect all measurements done on a subject, and we
denote this variance σ2

b . For example, if RNA is sampled from different batches,
batch may be regarded as a random factor. The second source of variation is se-
rial correlation between measurements done on the same subject at different time
points. This correlation is typically weaker for time points that are far apart. We
denote this variance σ2

t . The third source of variation is a random measurement
error for measurements done at the same time on the same subject, denoted σ2

e .
The covariance matrix V is composed of these three sources of variation as

V = σ2
b J+σ2

t H+σ2
e I (2)

where J is a n × n matrix with ones in positions corresponding to samples with
the same level of the random factor, H is block diagonal with all elements within
the same subject specified by a correlation function ρ(u) of the time interval u
between the samples, and I is the identity matrix. An example of a correlation
function is the exponential correlation model

ρ(u) = e−ϕu (3)

for some value of ϕ > 0.
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V is usually unknown and must be estimated. Since we assume an identical
covariance structure for all genes, we can use all g genes to compute a restricted
maximum likelihood (REML) estimate (see e.g. Diggle et al., 1994). With the
reparametrisation V = σ2

t W (α), the three parameters to estimate are α1 = σb/σt ,
α2 = σe/σt and α3 = ϕ . Assuming independence between genes, the restricted
log-likelihood function for α = [α1,α2,α3] is

ℓ∗(α)=−1
2

[
g(n− p)log(σ2

t )+g · log|W (α)|+ 1
σ2

t

g

∑
j=1

RSS j(α)+g · log|XTW−1X |
]

where RSS j(α) = (y j − Xβ̂ j)
T W−1(y j − Xβ̂ j). For a given start value of α , β̂j

can be found as
β̂ j = (XT W−1X)−1XT W−1y j

This estimate is inserted into the restricted log-likelihood function, which can then
be optimised with respect to α . σ2

t is estimated as σ̂2
t = ∑g

j=1 RSS j(α̂)/[g(n− p)].

3 Rotation test

3.1 Data preprocessing
The first step in the analysis is to reduce between-sample correlations by multi-
plying each term of eq (1) with the inverse square root matrix of the estimated
covariance matrix V̂

V̂ −1/2y j = V̂ −1/2Xβ j +V̂ −1/2e j (4)

The model with the transformed data is

y∗
j = X∗β j + e∗

j (5)

where e∗
j ∼ Nn(0, I). For simplicity we will omit the ’*’ notation, however it is the

transformed data that are used in the following, unless otherwise stated.

3.2 Remove nuisance parameters and obtain independent resid-
uals

The next step is to remove the design factors that we are not interested in testing.
A common way of handling unwanted design effects is to use an ANOVA type
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normalisation by fitting a model with the unwanted effects and use the residuals
from this model in the further analysis (Kerr et al., 2000, Dørum et al., 2009).
However, these residuals are not independent, and the rotation test (like the per-
mutation test) assumes independence between samples. We therefore employ a
method outlined by Langsrud (2005) that removes the nuisance parameters but
also obtains independent residuals.

The n× p design matrix X can be decomposed by a QR decomposition

X = XQU

where XQ is an orthonormal basis for the column space of X . In order to make
XQ a full n × n matrix we can add n − p extra orthonormal columns, and at the
same time add the same number of rows containing only zeros in the upper trian-
gular matrix U . This corresponds to including some extra non-observed variables
without any impact on the response y j. We now assume that X has been arranged
such that all nuisance effects are in the first p − k columns, while the interesting
variables are in the last k columns. The interesting variables may be e.g. contrasts
for testing linear and quadratic time effects (as for the simulated data in section
4.1). XQ can be split into

XQ =
[
XN

Q,XB
Q,XE

Q
]

where XN
Q is a n × (p − k) orthonormal matrix spanning the nuisance space, XB

Q
is a n × k orthonormal matrix spanning the space of effects we want to test, and
XE

Q are the added extra orthonormal columns. In a similar fashion we can split the
p×1 parameter vector β j into

β j =

[
β N

j
β B

j

]

where β N
j are the p− k nuisance parameters and β B

j are the k parameters of inter-
est.

With the QR decomposition of X we can rewrite the model in (5) as

y j = XQγ j + e j

where γ j = Uβ j. The n×1 vector γ j contains linear combinations of the param-
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eters and has the following structure

γ j =




u11β j1 +u12β j2 + · · ·+u1pβ jp
u22β j2 + · · ·+u2pβ jp

...
un−p,pβ jp

0
...

0




where the u’s denote elements in U . We can split γ j into

γ j =




γN
j

γB
j

γE
j




where γN
j contains linear combinations of the p− k nuisance parameters, γB

j con-
tains linear combinations of the k interesting parameters, and γE

j is the expected
effect of the n− p extra non-important variables. Testing H0 : β B

j = 0, i.e. that all
parameters of interest are 0, is equivalent to testing H0 : γB

j = 0. The last element
of γB

j is un−p,pβ jp, and for this to be zero, β jp must be zero. The second last ele-
ment of γB

j is un−p−1,p−1β j,p−1 + un−p,pβ jp, and for this to be zero, β j,p−1 must
also be 0, and so on. We estimate γ j by

γ̂ j = (XT
QXQ)−1XT

Qy j = XT
Qy j

The observations in y j are thus projected onto the orthonormal basis spanned by
XQ to separate the various effects. γ̂N

j corresponds to observations along nuisance
directions and can be ignored in the subsequent analysis, γ̂B

j corresponds to the
estimated effects of interest, and γ̂E

j corresponds to so-called error observations.

3.3 Genewise statistics
The n − p error observations in γ̂E

j can be used to compute the sample variance
for gene j. The computations can be done separately for each gene or by some
approach introducing smoothing across genes (Wright and Simon, 2003, Smyth,
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2004). Let s2
j denote the variance estimate for the j’th gene. A t-value for gene j

and variable l, where l = 1, ...,k, can then be computed as

t jl =
γ̂B

jl

s j
(6)

where γ̂B
jl is the estimated variable. A genewise F statistic, involving all k variables

of interest, can be calculated as

Fj =
t2

j1 + t2
j2 + ...+ t2

jk

k
(7)

3.4 Gene set statistics
The genewise F statistics are the basis for gene set statistics. In this paper we
are using GSEA as the gene set score, but in general any gene set statistic could
be used. GSEA starts by ranking the genes based on the F statistics. The rank
positions of all members of a gene set are identified before an enrichment score
is calculated for each gene set. The enrichment score is normalised to account
for gene set size. GSEA makes no inferences on the gene level, so all genes are
included in the analysis. This makes GSEA sensitive to smaller changes that are
consistent within the gene set. We refer to Subramanian et al. (2005) on how to
calculate enrichment scores.

3.5 Assigning significance
In the original GSEA procedure a permutation test is used to generate a null dis-
tribution for each gene set, but we have replaced it with a rotation test (Langsrud,
2005). Rotation testing for GSEA was first introduced by Dørum et al. (2009). A
rotation test can rotate the genes in all directions and can therefore generate ac-
curate p-values also for small sample sizes. The rotations are conditioned on the
covariance matrix so the gene-gene correlations are maintained during the rota-
tion. Permutations can be viewed as rotations restricted to exchange measurement
axes. The rotation test assumes multivariate normal distribution for each sample,
which in this setting means that the genes on an array have a multivariate normal
distribution. However, Dørum et al. and Wu et al. (2010) showed on simulated
non-normal data that the rotation test is robust with regard to violations against
the assumption of multinormality.
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Let

γ̂BE
j =

[
γ̂B

j
γ̂E

j

]

be the subvector of non-nuisance effects and residuals for the j’th gene. A sample
from the null distribution is found by rotation of this (n− p+k)×1 vector. Let R∗

be a valid (n − p + k)× (n − p + k) rotation matrix, e.g. the Q matrix from a QR
decomposition of a (n − p + k)× (n − p + k) matrix of random standard normal
data. Then

γ̂ j
BE∗ = R∗γ̂BE

j (8)

is a rotated version, and test-statistics can be computed from the γ̂B∗
j part of this

vector, just as described above. By repeating this procedure for a large number
of random rotation matrices, we obtain a sample of test statistics from the null
distribution. A p-value is calculated for each gene set as the proportion of this
distribution at least as extreme as the observed gene set score.

4 Data

4.1 Simulated longitudinal data
Log-ratios from an experiment comparing two treatments/phenotypes were sim-
ulated. Assuming that RNA was extracted from two different batches, batch was
included as a random factor with variance σ2

b . Dye was included as a fixed factor
with two levels. Dye and batch are nuisance factors that we want to remove the
effect of. Arrays with the same combination of batch and dye followed over time
were considered a subject, and each subject was measured at four time points: 1,
2, 6 and 12. Variance due to sampling the same subject over time was denoted σ2

t .
The covariance structure for the samples also included a random error variance σ2

e
for measurements done on the same subject at the same time. The design matrix
included two contrasts for testing linear and quadratic time effects, in addition to
dye and an intercept column. Since these data are log-ratios, testing the intercept
corresponds to testing for differential expression.

Let n be the number of samples per gene. With four subjects (2 batches × 2
dyes) measured at four time points there are n = 16 samples. The 16 × 1 expres-
sion vector for gene j have the following structure

y j =
[
y j11

T ,y j12
T ,y j21

T ,y j22
T ]T
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Each 4 × 1 vector y jbd contains the measurements for one subject, where b =
1,2 denotes batch and d = 1,2 denotes dye. Applying the covariance structure
described in section 2.2, the 16×16 covariance matrix is the block diagonal

V =




R1 R2 0 0
R2 R1 0 0
0 0 R1 R2
0 0 R2 R1


 (9)

The 4 × 4 matrix R1 describes covariance between measurements from the same
subject and is composed as

R1 =




σ2
b +σ2

t +σ2
e σ2

b +σ2
t ρ12 σ2

b +σ2
t ρ13 σ2

b +σ2
t ρ14

σ2
b +σ2

t ρ12 σ2
b +σ2

t +σ2
e σ2

b +σ2
t ρ23 σ2

b +σ2
t ρ24

σ2
b +σ2

t ρ13 σ2
b +σ2

t ρ23 σ2
b +σ2

t +σ2
e σ2

b +σ2
t ρ34

σ2
b +σ2

t ρ14 σ2
b +σ2

t ρ24 σ2
b +σ2

t ρ34 σ2
b +σ2

t +σ2
e




where ρi j is the correlation between time points i and j. The 4×4 matrix R2 de-
scribes covariance between subjects from the same batch and has σ2

b in all entries.
We assume independence between subjects from different batches.

The variance components were set to σ2
b = 1, σ2

t = 2 and σ2
e = 3. For correla-

tion between time points we used the exponential correlation model in eq (3) with
ϕ = 1.5 (corresponding to a correlation of approximately 0.22 between the first
two time points). Log-ratios were simulated for g = 1000 genes divided into 50
sets of size 20. For gene j a n × 1 vector z j of random standard normal data was
multiplied with the square root matrix of V to get the desired covariance structure

y j = V 1/2z j

4.1.1 Estimation of covariance matrix

To examine the accuracy of the REML estimates of the variance components in
V for different sample sizes, data were simulated for scenarios with 16, 32 and
64 samples per gene. For the last two scenarios we have 8 and 16 subjects, re-
spectively, where the extra subjects are replicates of the original four subjects. We
still assume time dependence only between measurements from the same subject,
so covariance between replicates are described by the R2 matrix. A dye effect of
βD = 1 was added to all genes, while a gene effect of βG = 2, a linear time effect
of βL = 2 and a quadratic time effect of βQ = 1.5 were added to all genes in the
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first two gene sets. One gene set was given only positive effects, while the other
was given only negative effects. 500 data sets with each sample size were simu-
lated, and for each data set the variance components were estimated with REML
as described in section 2.2. Random uniformly distributed values between 0 and
10 were chosen as start values for α in each simulation.

4.1.2 Effect of including covariance matrix

Next we wanted to explore the effect of incorporating the estimated covariance
matrix V̂ in the rotation test procedure. Taking into account dependency between
samples should increase the power of the method, as long as the assumed covari-
ance structure is reasonable. 500 data sets with a sample size of n = 16 were
simulated. A dye effect of βD = 1 was added to all genes, while linear time ef-
fects βL = {1,2,3} and quadratic time effects βQ = {0.5,1,1.5} were added to all
genes in the first two sets. One gene set was given positive linear and quadratic
time effects, while the other was given negative linear and quadratic time effects.
All combinations of βL and βQ were tried.

The data sets were analysed with the method outlined in section 3, first with-
out the data transformation in section 3.1 and then with the transformation. Two
contrasts were tested, one for linear and one for quadratic time effect. Power was
computed as the proportion of the 500 data sets in which the two important gene
sets were found to be significant.

4.2 Stress response in E. faecalis
This microarray experiment was performed in order to investigate the transcrip-
tional response of the bacterium Enterococcus faecalis V583 to bile stress. RNA
was extracted from bacteria treated with bile and from untreated cultures as a ref-
erence, and reverse transcribed. Labelled cDNA was then hybridised to mutual
slides in a direct design experiment. RNA was obtained in two separate growth
experiments, here referred to as batches. Samples were collected from each batch
after 10, 20, 60 and 120 minutes. At each time point four arrays were used (2 ×
dye-swap). Arrays with the same combination of batch and dye are considered
the same subject, so this is a case of longitudinal data. There were four subjects
and a total of 16 arrays. For details about labelling, hybridisations and data pre-
processing, see Solheim et al. (2007).

The differential expression between treated and untreated bacteria was mea-
sured as log2(signal treated) - log2(signal untreated). Loess normalisation imple-
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mented in the LIMMA package for R (Smyth and Speed, 2003) was used to cor-
rect for intensity dependent trends in the data. A gene was required to be present
on at least 3 out of 4 arrays at each time point to be included in the analysis. The
number of genes meeting this requirement was 2350. Missing data were imputed
by k-nearest neighbours imputation (Troyanskaya et al., 2001) implemented in R.

The design of this experiment is the same as for the simulated data in section
4.1, except that at time 60 three of four samples were dyed with cy3, so the data
were analysed unbalanced. In addition to testing for linear and quadratic time
effects, we also wanted to test the intercept (i.e. differential expression between
treated and untreated bacteria).

Four different types of gene sets were tested in GSEA: functional categories,
KEGG pathways, genes classified by first EC number and operons. Gene sets
were required to have at least 5 members to be included in the analysis, which
resulted in a total of 132 gene sets: 19 functional categories, 59 pathways, 6 EC
groups and 48 operons.

Modified t-values (Wright and Simon, 2003, Smyth, 2004) computed for each
gene and each contrast were composed to a genewise F-value. In the computation
of enrichment scores we chose not to use weighting of the ranked F statistics (i.e.
the parameter p in Subramanian et al. (2005) was set to 0). The reason for avoiding
weighting is that genes with very high F-values may be too influential on the gene
set score if weighting is used. To correct for multiple hypothesis testing, a false
discovery rate q-value (Storey, 2002) was calculated for each gene set. Since we
are using F statistics we are only interested in the gene sets with a large positive
enrichment score, so we used a one-sided version of the approach for computing
q-values in Subramanian et al..

In addition to analysing the data as time series, the four time points were
analysed as separate experiments. Since in this case we are only interested in
testing for differential expression, we used t statistics rather than F statistics as
the basis for ranking genes in the computation of enrichment scores. The signs
of the t statistics and the enrichment scores in this case give information about
the direction of regulation, which we do not get when working with F statistics.
In this analysis both large positive and negative enrichment scores are of interest,
so the q-values were computed with the approach in Subramanian et al.. In the
following, the two analyses will be referred to as the time series analysis and the
individual time point analysis.
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5 Results

5.1 Simulated longitudinal data
5.1.1 Estimation of covariance matrix

Table 1 shows the REML estimates for the variance components in V with dif-
ferent sample sizes, averaged over 500 simulations. The estimated batch variance
σ2

b is very accurate, while the random error variance σ2
e is mildly underestimated.

The time correlation parameter ϕ is slightly overestimated, meaning that the time
correlation between samples is underestimated. However, considering that the es-
timated time variance σ2

t is a little high, the estimated time dependency seems
quite decent. The covariance structure for the simulated data may give highly
correlated parameter estimates. If the time correlations are weak and the noise
variance is small compared to the time variance component, the two parameters
σ2

t and σ2
e are close to being non-identifiable. This was the case for these par-

ticular simulations where the estimate of σ2
t on average was too small and the

estimate of σ2
e too big, but the sum of the parameters was correctly estimated

with an average of 5.00, and the correlations between the estimates across the 500
simulations was -0.9998. We therefore conclude that the REML-estimation pro-
cedure produces good estimates of V to be used in the preprocessing of the data.
However, as illustrated in this simulation, the estimates of the individual variance
components may be biased and highly correlated if the time dependence is weak.
Therefore, if one suspects low time dependence in addition to the fixed linear and
quadratic time trends, a simpler covariance structure without time correlations
should be chosen.

Table 1: Average REML estimates based on 500 simulations for the components
in V , where n is the sample size. The standard deviations (SD) of the 500 estimates
are also given.

σ2
b = 1 σ2

t = 2 σ2
e = 3 ϕ = 1.5

n = 16 Estimate 0.99 2.16 2.84 1.76
SD 0.08 1.59 1.60 2.10

n = 32 Estimate 1.00 2.22 2.78 1.60
SD 0.06 1.49 1.49 1.55

n = 64 Estimate 1.00 2.24 2.76 1.58
SD 0.05 1.37 1.37 1.33
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5.1.2 Effect of including covariance matrix

Two analyses were performed on the simulated data, one where the data were
transformed with V̂ (as described in section 3.1) and one where this preprocessing
step was ignored. This was done in order to see the effect of incorporating covari-
ance between samples on the method’s power, i.e. its ability to identify the gene
sets with added time effects. Figure 1 shows the estimated power in the two anal-
yses with increasing linear time effect βL, when the added quadratic time effect
was βQ = 1. Including the covariance structure in the analysis has increased the
method’s ability to identify the important gene sets. The same effect from inclu-
sion of the covariance matrix could be seen for the other levels of βQ, only with
lower power for both analyses when βQ = 0.5 and higher power when βQ = 1.5.

1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βL

P
ow

er

Power with V̂
Power without V̂

Figure 1: Estimated power with increasing linear time effect (βL) and quadratic
time effect βQ = 1, with and without incorporation of the estimated covariance
matrix V̂.

5.2 Stress response in E. faecalis
In the time series analysis of the E. faecalis data we were testing the null hypoth-
esis for each gene set that it was differentially expressed and/or showed a linear
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Table 2: Significant gene sets (q ≤ 0.25) from the time series anal-
ysis of the E. faecalis data when testing for differential expression
and time trend.

Gene set q Size*

Functional categories
Fatty acid and phospholipid metabolism 0.172 33
Purines, pyrimidines, nucleosides, and nucleotides 0.220 56
Pathways
Pentose phosphate pathway 0.026 18
Fatty acid biosynthesis 0.054 12
Pyrimidine metabolism 0.113 41
Glycine, serine and threonine metabolism 0.132 17
EC
Transferases 0.132 131
Operons
EF1712 EF1721 0.033 9
EF2875 EF2886 0.044 11
EF1492 EF1500 0.117 9

*Genes in the set corresponding to genes in the expression data

and/or quadratic time trend. The significant gene sets (q-value ≤ 0.25) are shown
in Table 2. To get a picture of the time trends for the significant gene sets, the
normalised enrichment scores from the individual time point analysis were plot-
ted against time. Note that these enrichment scores only reflect differential ex-
pression, while the enrichment scores in the time series analysis also reflect time
effects. However, the signs of these enrichment scores give information about up-
and downregulation. Figure 2 shows the time trends for the significant gene sets
in the time series analysis. Since we were testing three contrasts simultaneously,
differential expression, linear time effect and quadratic time effect, there may be
different causes for a gene set’s high score. These time trend plots indicate that
both gene sets that are highly differentially expressed over time and gene sets that
have a strong time trend are identified by the method.

To investigate whether the gene set scores have successfully captured the im-
portant trends for the members of a set, the time trends for the individual genes in
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Figure 2: Normalised enrichment score (NES) for each time point separately for
significant gene sets in the time series analysis of the E. faecalis data.
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a few chosen gene sets are plotted in Figure 3. In these plots the modified t-values
reflecting differential expression from the individual time point analysis are plot-
ted against time. The y-axis is not directly comparable with the y-axis in Figure
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Figure 3: Time trends for all genes in four of the significant gene sets from the
time series analysis of the E. faecalis data. Each time point shows the genes’
modified t-values.
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2, nevertheless it is possible to spot a general trend among the genes that seems
to correspond with the gene set trend. The genes in the functional category ”Fatty
acid and phospholipid metabolism” seem to cluster into two groups, possibly re-
flecting that this gene set is composed of several groups of genes, where one (or
more) of these groups displays a different time trend than the remainder. This no-
tion is supported by the plot of the pathway ”Fatty acid biosynthesis”, where the
genes show a similar trend as the group of genes that stand out in the functional
category. Moreover, the majority of remaining genes of the functional gene set
belongs to the pathway ”Glycerophospholipid metabolism”, for which no signif-
icant differential expression/time trend was detected. It thus seems to be mainly
type II fatty acid biosynthesis (type II FAS) genes influencing the gene set score
for ”Fatty acid and phospholipid metabolism”. Of note, the type II FAS genes also
reappear in the operon ”EF2875 EF2886”. The EC group ”Transferases” is a very
large gene set, which makes it harder to spot a general trend among the genes in
this set.

6 Discussion
Rotation testing for GSEA was first introduced by Dørum et al. (2009). By us-
ing a rotation test one can avoid the problem with granularity of p-values that
the permutation test suffers from when the sample size is small. GSEA is an
example of competetive gene set testing, where the aim is to identify gene sets
that stand out from a collection of gene sets. Wu et al. (2010) presented ROAST,
which is rotation testing for self-contained gene set testing, where each gene set is
tested separately without considering the remaining gene sets. ROAST can han-
dle most experimental designs and correlation between samples. In this paper we
have further developed the contributions of ROAST with a method that allows for
more complex covariance structures between samples, and that can test more than
one contrast simultaneously. These improvements are especially useful for lon-
gitudinal data analysis, because these types of data may introduce more complex
correlations between samples, and the focus of attention may be gene sets that
show both a time trend and differential expression. For the gene set statistic we
chose to use the GSEA enrichment score, but in principle any test statistic could
be used.

Because we assumed a common covariance structure for all genes, we had a
large number of observations to estimate covariance between samples from. An
alternative could be to divide genes into non-overlapping groups, either based
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on some pre-clustering of the genes or in light of prior biological knowledge,
and assume a common covariance structure only for genes in the same group.
This would of course result in more parameters to estimate, but the assumption
of a common covariance structure could be more correct within these groups. In
the REML function we also assumed independence between genes. This is an
assumption that conflicts with the gene set methods’ hypothesis of correlation
between genes in a set. Wu et al. also assumed independence between genes
when estimating correlation between samples, but rather than assuming a structure
for the correlation, they estimated each element of the covariance matrix directly.
Considering gene-gene correlations in the estimation of sample correlations would
be an interesting topic for further improvement of the method. Another issue to be
further explored is the method’s robustness against incorrect assumptions about
the correlation structure. In the simulation study we used the same correlation
structure for generation and analysis of the data.

The rotation test’s assumption of multinormal distribution for each sample
is a strong assumption, but as previously argued it has been shown to be robust
with regards to deviations from normality by Dørum et al. (2009) and Wu et al.
(2010). However, Dørum et al. also mentioned a data set with stronger deviations
from normality where the rotation test showed somewhat lower power than the
permutation test. To further confirm the robustness of the rotation test, more tests
on time series data sets with stronger deviations from normality could be carried
out.

A permutation test can be seen as a rotation test that is restricted to exchange
measurement axes. Both the permutation test and the rotation test assumes inde-
pendence between the samples to be permuted/rotated. The procedure for obtain-
ing independent residuals in the linear model in section 3.2 could also be used in
relation to a permutation test. The rotation matrix in eq (8) could in principle be
replaced by a permutation matrix if the number of samples is large enough.

In the simulation study we observed that the type I error was not controlled
properly on a gene level when the estimated covariance matrix V̂ was not included
in the analysis (results not shown). A significance level of 0.05 for genewise p-
values gave an actual rejection level of over 0.07 for the non-important genes (as
an estimate of the type I error). On a gene set level the type I error was controlled
for both the analysis with and without inclusion of V̂, however the rejection level
for the non-important gene sets was slightly higher when V̂ was not included.
This may imply that the actual gain in power from including V̂ is even larger than
Figure 1 shows.

The significant gene sets from the analysis of the E. faecalis data included

19



the functional category ”Fatty acid and phospholipid metabolism”, the pathway
”Fatty acid biosynthesis” and the operon ”EF2875 EF2886”, all encoding genes
involved in type II fatty acid biosynthesis. Le Breton et al. (2002) previously
identified an E. faecalis bile-sensitive mutant corresponding to a gene involved
in fatty acid biosynthesis by random gene disruption strategies. Moreover, bile
exposure has been reported to trigger changes in the membrane fatty acid compo-
sition, and a decrease in membrane fluidity and in the protein:phospholipid ratio
in other bacteria (Ruiz et al., 2007, Kimoto-Nira et al., 2009, Taranto et al., 2003).
The putative roles of these genes in E. faecalis bile response may thus be re-
lated to bile-induced modifications in cell membrane properties, and have been
thoroughly covered by ourselves and others (Le Breton et al., 2002, Dørum et al.,
2009, Solheim et al., 2007, Vebo et al., 2009). Among the significant gene sets was
also the pathway ”Pentose phosphate pathway”. In addition to generating energy
through fermentation of sugars, this multifunctional pathway generates reducing
equivalents in the form of NADPH, which can be used in reductive biosynthesis
reactions within the bacterium, including fatty acid biosynthesis (Huycke, 2002).
Moreover, the pentose phosphate pathway also channels pentoses into nucleotide
biosynthesis (Huycke, 2002). A potential role of nucleotide biosynthesis in E.
faecalis bile response was further reflected by the significant functional category
”Purine, pyrimidines, nucleosides and nucleotides” and the pathway ”Pyrimidine
metabolism”.
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Abstract
Gene set tests are used in the analysis of gene expression data to identify prede-
fined sets of genes that are differentially expressed. Most existing methods use
a permutation test to calculate a p-value for each gene set. Permutation tests are
limited to data sets with relatively large sample sizes and independent samples,
which is often not found in microarray data. In a previous paper we introduced
a gene set test that uses a rotation test rather than a permutation test to compute
p-values. The gene set rotation test can handle small sample sizes and complex
experimental designs. It is particularly suited for longitudinal data and can iden-
tify both gene sets with differential expression and time trends. In order to reduce
correlations between samples, the data are preprocessed with an estimated co-
variance matrix taking random design factors and time correlations into account.
Here we propose an improved preprocessing for the gene set rotation test that also
considers gene correlations in the estimation of covariances between samples. We
demonstrate on simulated data that the improved preprocessing method increases
the gene set rotation test’s power in identifying gene sets with time trends. The
method is also illustrated by application to a real data set investigating stress re-
sponses in E. faecalis.
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1 Introduction
Gene set tests for the analysis of differentially expressed genes have gained in-
creased popularity over the last few years, especially after the introduction of the
Gene Set Enrichment Analysis (Mootha et al., 2003, Subramanian et al., 2005).
Rather than searching for differentially expressed individual genes, gene set tests
aim at identifying sets of genes that are co-expressed. The gene sets are defined
prior to the analysis based on biological knowledge. Examples of gene sets in-
clude pathways, functional categories and GO categories. Genes that belong to
the same set are believed to have correlated expression patterns. Gene set tests
can have more statistical power than individual gene tests because they accumu-
late signals from a number of genes. This also increases the sensitivity towards
sets of genes with moderate, but consistent changes in gene expression. Vari-
ous gene set tests have been introduced by i.e. Goeman et al. (2004), Tian et al.
(2005), Efron and Tibshirani (2007), Goeman and Bühlmann (2007), Jiang and
Gentleman (2007) and Wu et al. (2010). See Huang et al. (2009) for a recent
review.

A p-value for each gene set is usually computed with a permutation test per-
muting samples. A permutation test is based on the assumption that the samples
are independent and identically distributed, and requires a certain number of sam-
ples to estimate accurate p-values. This severely limits the types of data sets
that can be analysed with gene set methods. Small sample sizes are common in
microarray experiments, and depending on the design of the experiment, the sam-
ples may not be regarded as exchangeable. Some gene set tests permute genes
rather than samples. Since the number of genes is usually very large, the prob-
lem with small sample sizes is avoided. However, when we permute genes we
implicitly assume that the genes are independent, an assumption that contradicts
the fundamental idea behind gene set tests. The genes are grouped because they
are believed to have correlated expression profiles. Permutation of genes has been
demonstrated by Efron and Tibshirani (2007) and Dørum et al. (2009) to produce
severely overoptimistic p-values.

Dørum et al. (2009) introduced rotation testing as an alternative to permutation
testing for gene set tests. In contrast to permutation tests, rotation tests (Langsrud,
2005) has no limitations to the maximum number of rotations and can therefore
compute accurate p-values also for small sample sizes. Wu et al. (2010) intro-
duced a gene set test with rotation testing that can also handle data from complex
experimental designs. The data is represented by a linear model, and the rotations
can be done in a subspace orthogonal to the nuisance factors. Correlation between
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samples due to random design factors was handled by estimating an empirical co-
variance matrix as described in Smyth et al. (2005).

In Dørum et al. (Submitted) we presented a gene set test with rotation testing
for complex designs that is particularly suited for longitudinal gene expression
data. In longitudinal data, individuals have been measured repeatedly over time,
and are thus expected to have considerable correlation between samples. Rather
than estimating a completely unstructured covariance matrix, as in Wu et al., we
assumed a structure for the covariances incorporating dependencies both due to
time and random design factors. The components of the covariance matrix were
estimated by restricted maximum likelihood, assuming an identical covariance
structure for all genes and independence between genes. The estimated covariance
matrix was included in a preprocessing step before the gene set rotation test to
reduce correlations between samples. The gene set test is also particularly suited
for longitudinal data by offering the opportunity to test for several properties in
gene sets simultaneously, e.g. differential expression and time effects.

Both Wu et al. and Dørum et al. assumed an identical covariance structure for
all genes and independence between genes when estimating the covariance matrix.
The assumption of independent genes is very doubtful considering the gene set
tests’ idea about correlated expression patterns within gene sets. In this paper we
present an extension to the method in Dørum et al.. We improve the preprocessing
step by considering gene dependencies in the estimation of the covariance matrix.
Gene dependencies are modeled with the use of network distances from an a priori
defined gene network. Rather than estimating dependencies between all genes,
the genes are divided into non-overlapping groups and dependencies are assumed
only within groups. We refer to Dørum et al. for a detailed description of the
gene set rotation test, as this paper focuses only on the preprocessing to remove
correlations between samples.

2 Methods

2.1 Gene network
We use gene networks both to divide genes into non-overlapping groups and to
model gene dependencies. This section gives a brief introduction to gene networks
and some measures for describing the topology of a network.

A gene network can be constructed based on prior biological information such
as pathways or bacterial operons. The network can be represented as a graph
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where each node corresponds to a gene and an edge between two nodes represents
some relationship between the genes. In networks based on pathways two genes
are connected if they take part in successive reactions in the cell, while in net-
works based on operons two genes are connected if they are located next to each
other on the bacterial chromosome and are regulated by a common transcription
mechanism. Let G be a graph with g nodes (genes). Further let i and j represent
two nodes in G, and let i ∼ j indicate that the two nodes are adjacent (directly
connected). The g × g adjacency matrix A describes the nodes’ neighbourhoods,
and the entries ai j are

ai j =

{
1 if i ∼ j
0 else (1)

for i, j = 1,2, ...,g. The g×g degree matrix D is a diagonal matrix with the degree,
i.e. the number of edges to each node, on the main diagonal. Let δi be the degree
of node i. The entries in D are

di j =

{
δi if i = j
0 else (2)

The g × g Laplacian matrix (Chung, 1997) is defined as L = D − A, where the
entries are

li j =





−1 if i ∼ j
di j if i = j
0 else

(3)

2.1.1 Dividing genes into non-overlapping sets

In the estimation of the covariance matrix, we simplify the task by assuming de-
pendencies between genes in the same group and independence between groups.
To make this assumption as valid as possible, the genes should ideally be divided
into groups with strong correlations within groups, and weak or no correlations
between groups. To achieve this, we represent the genes with a gene network.
The network can be split into smaller, non-overlapping subnetworks with a high
density of edges within the network, and few or no edges between subnetworks.
Newman and Girvan (2004) introduced the concept of modularity as a way to di-
vide the network into subnetworks based on natural communities. Algorithms that
split networks based on modularity, identify parts of the network with fewer edges
than expected, and divide the network there. The number of communities to split
the network into is not given in advance, but determined from the network itself.
It may be the case that no good division of the network exists. The modularity
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matrix is defined as M = A − P, where A is the adjacency matrix and P contains
the expected number of edges between each pair of nodes. The expected number
of edges between nodes i and j if edges are placed at random is

pi j =
δiδ j

2m
(4)

where δi and δ j are the degrees of the nodes and m is the total number of edges in
the network. For a given division of the network into two groups, let b be a g×1
vector where bi = 1 if node i belongs to group 1 and bi = −1 if node i belongs to
group 2. The modularity can be expressed as

Q =
1

4m
bT Mb (5)

The task is to find the value of b which maximizes Q. Each of the two groups can
again be divided into two groups, and so forth until the divisions no longer give a
positive contribution to the modularity. Newman and Girvan (2004) and Newman
(2006a,b) present a number of algorithms for splitting networks into communities
based on the eigenvectors of the modularity matrix. We chose however to use an
algorithm described in Clauset et al. (2004) that does not use the eigenvectors. The
algorithm starts by treating each node as a separate community, before joining the
two communities that produce the largest increase in modularity. This is repeated
until all communities are combined. The optimal division can be traced back to
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Figure 1: Dividing a network into communities based on modularity. The dashed
line indicates the split found with the fastgreedy.community algorithm.
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where the largest modularity occurred. The algorithm is implemented in the R
function fastgreedy.community in the igraph package (Csardi and Nepusz, 2006),
and is very efficient for large networks. In Figure 1 the dashed line indicates the
split found by the algorithm in a fictional network. In this case the optimal division
was a split into two communities.

2.1.2 Modelling gene dependencies

Gene networks can also be used to estimate dependencies between genes. We as-
sume that the more closely connected two genes are in the network, the more cor-
related their gene expression should be. One way of measuring distances between
genes in a network is to look at the smallest number of edges separating each pair
of nodes, i.e. the shortest path between two nodes. In this paper, however, we
will focus on the concept of diffusion (Kondor and Lafferty, 2002). Diffusion is
closely related to random walks and can be imagined as a fluid travelling through
the network. The time that the fluid takes to get from one node to another indicates
the distance between the nodes. The diffusion matrix S is defined by the matrix
exponential of the Laplacian matrix L

S = e−βL =
g

∑
i=1

vie−βλivT
i (6)

where vi and λi are the i’th eigenvector and eigenvalue of L, respectively. The
parameter β , where β > 0, controls the speed of diffusion through the graph.
The diffusion is faster for larger values of β , corresponding to shorter distances
between nodes. We have used β = 1 for the purpose in this paper. The less fluid
that diffuse from one node to another, the further they are apart. We therefore use
the inverse diffusion to describe distances. If s is the diffusion between two nodes,
then

f = 1/s (7)

is the distance between the nodes. The correlation between two genes with dis-
tance f can be modelled with e.g. the exponential correlation model

γ( f ) = e−γ f (8)

for γ > 0. A larger distance in the network will thus give a weaker correlation,
and γ controls the magnitude of the correlation.
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2.2 Model assumptions
2.2.1 General linear model with correlated errors

Assume that we have i = 1, ...,m subjects measured at n time points for each of
j = 1, ...,g genes. A subject in a microarray experiment may refer to arrays with
the same levels of experimental factors followed over time. The n × 1 vector y ji
contains the measurements over time for subject i and gene j and represents one
experimental unit. All experimental units for gene j are arranged in the vector y j
of length m ·n with the following structure

y j =
[
y j1,y j2, . . . ,y jm

]T (9)

We further assume that the g genes are divided into k = 1, ...,K non-overlapping
groups of size Mk, e.g. with the network splitting procedure described in section
2.1.1. The observations for all genes in group k can be arranged in a vector of
length Nk = Mk ·m ·n as

Y k =
[
y1,y2, . . . ,yMk

]T (10)

We assume the following model for group k

Y k = Xkβ k + ek (11)

where Xk is an NK × p design matrix including design factors plus contrasts of
interest, β k is a vector of p parameters, and ek ∼ NNk(0,Vk). Note that we assume
an identical design matrix X for all genes, so Xk is just X repeated k times. The
groups are assumed to be independent.

2.2.2 Covariance structure for longitudinal data

The covariance structure presented here is as given in Diggle et al. (1994). We
assume that there are four different sources of variation that account for the total
variation between samples. The first source is random design factors, a variance
denoted σ2

b . The second source is serial correlation between samples from differ-
ent time points measured on the same subject. We expect this correlation to be
weaker for time points that are far apart. The time variance component is denoted
by σ2

t . The third source of variation comes from gene dependencies. We also
expect this correlation to be weaker for genes that are less related within the gene
set, and this variance component is denoted by σ2

g . The last source of variation is
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a random error variance, denoted by σ2
e . A Nk ×Nk covariance matrix for gene set

k including these four sources of variation can be composed as

V k = σ2
b Jk +σ2

t Hk +σ2
g Mk +σ2

e Ik (12)

where Jk is a matrix with ones in positions corresponding to samples with the
same level of the random factor, Hk is block diagonal with all elements within
the same subject specified by a correlation function ρ(u) of the time interval u
between the samples, Lk has all elements specified by the correlation function in
eq. (8) and Ik is the identity matrix. We chose to use an exponential correlation
model similar to the gene correlation model to describe time correlations. The
correlation between two samples measured with time interval u is

ρ(u) = e−ϕu (13)

for some value of ϕ > 0. A larger difference in time will lead to weaker correla-
tions between samples.

2.3 Estimating the covariance matrix with REML
V k is usually unknown and must be estimated, and we use restricted maximum
likelihood (REML) for this (see e.g. Diggle). With the reparametrisation Vk =
σ2

t Wk(α), the five parameters to estimate are α1 = σb/σt , α2 = σg/σt , α3 =
σe/σt , α4 = ϕ and α5 = γ . Assuming independence between gene sets, the re-
stricted log-likelihood function for α = [α1,α2,α3,α4,α5] is

ℓ∗(α) = −1
2

[
(N −K · p)logσ2

t +
K

∑
k=1

log|Wk(α)|+ 1
σ2

t

K

∑
k=1

RSSk(α)

+
K

∑
k=1

log|XT
k Wk(α)−1Xk|

] (14)

where N = ∑K
k=1 Nk and RSSk(α) = (Yk − Xkβ̂k)

T Wk(α)−1(Yk − Xkβ̂k). For a
given start value of α , β̂ k can be found as

β̂k = (XT
k Wk(α)−1Xk)

−1XT
k Wk(α)−1Yk

This estimate is inserted into the restricted log-likelihood function, which can then
be optimised with respect to α . Finally, σ2

t is estimated as

σ̂2
t =

K

∑
k=1

RSSk(α̂)/(N −K · p)
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2.4 Data preprocessing
To reduce between-sample correlations before the rotation test, we multiply each
term of eq. (11) with the inverse square root matrix of the estimated covariance
matrix V̂ k

V̂ −1/2
k Y k = V̂ −1/2

k Xkβ k +V̂ −1/2
k ek (15)

The model with the transformed data is

Y ∗
k = X∗

kβ k + e∗
k (16)

where e∗
k ∼ Nk(0, I). The transformed samples should be approximately indepen-

dent given that the correct dependence structure is used, and a large number of
genes are used in the estimation. The transformed data can be analysed with the
gene set rotation test as described in Dørum et al.

3 Data

3.1 Simulated longitudinal data
We simulated gene expression log-ratios from a microarray experiment compar-
ing two phenotypes/treatments. The g = 1000 genes were divided into 50 groups
of size 20. The genes in a group were assumed to be part of the same operon,
meaning that in the network gene 1 is connected to gene 2 which is connected
to gene 3, and so on. Note that since we had non-overlapping groups we did not
need to use the approach in section 2.1.1 for splitting a network into subnetworks,
but the network splitting is used in the real data analysis presented later in this
article. Dye was included as a fixed factor with two levels and batch was included
as a random factor with two levels. Arrays with the same combination of dye and
batch followed over time were considered part of the same subject. There were
four subjects measured at the four time points {1,2,6,12}, resulting in 16 samples
per gene. The design matrix included an intercept column (testing the intercept
corresponds to testing for differential expression in log-ratios), a dye column and
two contrasts for testing linear and quadratic time effects. Covariance between
samples was attributed to four sources: batch, time dependency, gene dependency
and random error. Gene dependencies were assumed only within groups, time de-
pendencies only within an experimental unit, and batch correlations only between
experimental units from the same gene. The covariance matrix for a gene is the
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16×16 matrix R with the following structure

R =




R1 R2 R3 R3
R2 R1 R3 R3
R3 R3 R1 R2
R3 R3 R2 R1


 (17)

The 4 × 4 matrix R1 describes the covariance for one experimental unit and is
composed as



σ2
b +σ2

g +σ2
t +σ2

e σ2
b +σ2

g +σ2
t ρ12 σ2

b +σ2
g +σ2

t ρ13 σ2
b +σ2

g +σ2
t ρ14

σ2
b +σ2

g +σ2
t ρ12 σ2

b +σ2
g +σ2

t +σ2
e σ2

b +σ2
g +σ2

t ρ23 σ2
b +σ2

g +σ2
t ρ24

σ2
b +σ2

g +σ2
t ρ13 σ2

b +σ2
g +σ2

t ρ23 σ2
b +σ2

g +σ2
t +σ2

e σ2
b +σ2

g +σ2
t ρ34

σ2
b +σ2

g +σ2
t ρ14 σ2

b +σ2
g +σ2

t ρ24 σ2
b +σ2

g +σ2
t ρ34 σ2

b +σ2
g +σ2

t +σ2
e




where ρi j is the correlation between time points i and j found with eq. (13).
The 4 × 4 matrix R2 describes covariance between experimental units with the
same batch level and has σ2

b + σ2
g in all entries. The 4 × 4 matrix R3 describes

covariance between experimental units with different batch levels and has σ2
g in

all entries. For three genes from the same group, the 48 × 48 covariance matrix
V k would look like

V k =




R U12 U13
U12 R U23
U13 U23 R


 (18)

The 16×16 matrix U12 has all its entries equal to σ2
g γ12, where γ12 is the correla-

tion between gene 1 and 2 found by eq. (8). Likewise, U13 has all its entries equal
to σ2

g γ13, where γ13 is the correlation between gene 1 and 3, and so on.
In this illustration the variance components were rather arbitrarily set to σ2

b =
1, σ2

g = 2, σ2
t = 2, σ2

e = 3, γ = 0.3 and ϕ = 0.9. However, the chosen values
for γ and ϕ gave maximum gene and time correlations close to 0.4, which is a
reasonable level of time and gene dependence. Log-ratios for the genes of group
k were simulated by drawing a Nk × 1 vector zk of random standard normal data,
which was then multiplied with the square root matrix of V k to get the desired
covariance structure

Y k = V 1/2
k zk

A dye effect was added to all genes, while a gene effect βG (corresponding to
differential expression between phenotypes), linear time effect βL and a quadratic
time effect βQ were added to all genes in the first two gene sets. One gene set
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was given only positive gene and time effects, while the other was given negative
gene and time effects. In the first scenario we added both gene and time effects, in
the second scenario we added only time effects and in the third scenario we added
only gene effects. The added effects in each scenario are given in table 1.

Table 1: Fixed effects were added in three different scenarios.
βD βG βL βQ

Scenario 1 1 2 {0,1,2,3} 0.5
Scenario 2 1 0 {0,1,2,3} 0.5
Scenario 3 1 {1,2,3} 0 0

The components of V were estimated with the REML in eq. (14). We refer
to this estimated covariance matrix as V̂A. For comparison, we also estimated
a covariance matrix with the estimation method presented in the previous paper,
which assumes independence between genes. This covariance matrix is referred to
as V̂B. Data preprocessed with each of the two covariance matrices were analysed
with the gene set rotation test.

3.2 Stress response in E. faecalis
This data set is from an experiment that investigated stress responses in the bac-
terium E. faecalis to bile (Solheim et al., 2007). The expression data for the 2350
genes are log-ratios comparing treated and untreated bacteria. The same data set
was analysed in Dørum et al. (2009), so more details about the experimental de-
sign can be found there. Samples were collected after 10, 20, 60 and 120 minutes
after treatment with bile. The design of the experiment is the same as for the
simulated data in the previous section, except for an unbalance at time 60 where
three of four samples have the same dye. We also chose to leave out batch from
the model in order to avoid over-parametrisation, as previous studies have shown
that the batch effect in this data set is very small. The assumed components in the
covariance matrix to be estimated were thus σ2

t , σ2
g , σ2

e , ϕ and γ .
We constructed a gene network based on 83 metabolic and non-metabolic

pathways from the KEGG PATHWAY database (Kanehisa and Goto, 2000). The
pathways were merged to one large network, removing redundant nodes and edges,
with the KEGGgraph package in R (Zhang and Wiemann, 2009). The final net-
work consisted of 800 nodes connected by 1306 edges. Of these 800 nodes, 633
corresponded to genes in the data set. These 633 nodes were divided into com-
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munities with the R function fastgreedy.community, resulting in 281 communities
with sizes ranging from 1 to 57 nodes. The remaining 1717 genes in the data set
lacked network information and were regarded as communities of size 1. Gene de-
pendencies were estimated with eq. (8) where network distances were extracted
from the diffusion matrix based on all 800 nodes.

Three contrasts were tested, differential expression, linear time effect and
quadratic time effect. The 132 gene sets tested included 19 functional categories,
59 pathways, 6 EC groups and 48 operons.

The four time points were also analysed separately. In this case we only tested
for differential expression, so the gene set scores were based on t-values rather
than F-values. The sign of the gene set score thus give information about up- and
downregulation. We refer to the two analyses as the time series analysis and the
individual time point analysis.

4 Results

4.1 Simulated longitudinal data
Table 2 shows the REML estimates for the variance components in V̂A averaged
over 100 simulations. The time variance σ2

t is overestimated, while the random
error variance σ2

e is likewise underestimated. However, the sum of the two param-
eters was estimated to 5.01 and the correlation between the estimates across the
100 simulations was -0.9989. From the structure of V we observe that if the time
correlation function ρ(u) is rapidly decaying as the time intervals increase, the
time variance component and the error variance will be nearly non-identifiable.
The off diagonal terms that include σ2

t will be close to zero, and in this case only
the sum of σ2

t and σ2
e can be estimated. This is likely the case here, and points to

the fact that if the time dependencies, beyond the modelled linear/quadratic time
effects, are small, it is probably better to leave the time components out of the

Table 2: Average REML estimates based on 100 simulations for V̂A (assuming
dependence within gene sets) and their standard deviations (SD).

σ2
b = 1 σ2

t = 2 σ2
g = 2 σ2

e = 3 ϕ = 0.9 γ = 0.3
Estimate 1.00 2.81 2.02 2.20 1.11 0.30
SD 0.07 1.27 0.14 1.29 0.46 0.04
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Table 3: Average REML estimates based on 100 simulations for V̂B (assuming
independence between genes) when ignoring gene dependencies.

σ2
b = 1 σ2

t = 2 σ2
e = 3 ϕ = 0.9

Estimate 1.00 2.90 2.12 1.11
SD 0.07 1.45 1.48 0.5

model for V . The time correlation parameter ϕ is slightly overestimated, meaning
that the time correlation is slightly underestimated, but this is to a certain degree
compensated for by the too large σ2

t estimate. Table 3 shows the estimated vari-
ances from REML for V̂B where genes were assumed to be independent. The
estimated variance components are more or less identical to those in V̂A where the
gene dependencies were taken into account, so the difference lies in the structure
of the two matrices.

Figure 2 shows the power for the gene set rotation test after preprocessing the
data with V̂A and V̂B in the three different scenarios. In Figure 2(a) we tested for
gene (differential expression) and time effects (linear and quadratic) in scenario
1. The power of identifying the two important gene sets depends on the size of
the linear time effect. With small linear time effects it is most beneficial not to
correct for gene correlations, while for larger time effects it is better to include
gene dependencies in the covariance structure. Figure 2(b) shows the results from
scenario 2 where only time effects were added, but we tested for both gene and
time effects. In this case it is beneficial to correct for gene dependencies irrespec-
tive of the magnitude of the linear time effect. Figure 2(c) shows the results of
testing only for time effects in the same scenario, and now the power is identical
for preprocessing with V̂A and V̂B. In Figure 2(d) we tested for both gene and time
effects in scenario 3 where only gene effects were added. In this scenario it is
never beneficial to correct for gene dependencies.

We used the GSEA enrichment score as the gene set test statistic (Subramanian
et al., 2005). The enrichment score is calculated by ranking all genes by their test
statistic before the position of the gene set members are identified in the ranked
list. Gene sets that are clustered at the top or bottom of the list tend to get high
scores. Hence, both correlation within gene sets and added gene and time effects
are important for the gene set score. Gene sets that are highly correlated can get
high gene effects by random chance, while a high linear or quadratic time effect
is more unrealistic to get by chance since these effects have more complicated
structures. If we had used another type of gene set score that does not consider
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(a) Scenario 1: Testing for gene, linear and
quadratic time effects
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(c) Scenario 2: Testing for linear and
quadratic time effects
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(d) Scenario 3: Testing for gene, linear and
quadratic time effects

Figure 2: Power in finding the important gene sets with the gene set rotation test.
Each subfigure shows the results for one scenario where the data were prepro-
cessed both with (V̂A) and without (V̂B) gene dependencies. Note that scenario 3
has βG on the x-axis, while the other scenarios have βL.
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correlations between genes, then we may not have got the same results we see in
Figure 2.

When the time effects are small it is mostly gene effects that are reflected in a
high gene set score, and in this case it is better to keep correlations to get as high
score as possible for the important gene sets. As the time effects increase they con-
tribute more are more to the gene set score. For high time effects it is favourable
to remove correlation between genes to remove false positive gene sets that get a
high score by accident. In this way the important gene sets with both time and
gene effects are easier to identify. The observations for the largest time effects in
Figure 2(a) is further verified by the observations from Figure 2(b) where there
were no gene effects, but we still tested for gene effects. By removing correlation
within gene sets we remove false positives that accidentally get high scores be-
cause of their correlation, and the important gene sets with time effects are easier
to identify. In comparison, if we do not test for gene effects in this scenario, there
is no benefit of correcting for gene correlations either. The observations for the
smallest time effects in Figure 2(a) are verified by Figure 2(d). When there are no
time effects, only gene effects, the removal of correlations makes it more difficult
to identify the sets with gene effects. A general conclusion is that by bringing
gene dependencies into the preprocessing, we improve the ability to identify gene
sets with strong time effects, but at the same time we make it more difficult to
identify gene sets with mainly constant gene effects.

We note however that the type I error is not properly controlled in many of
these scenarios when we use the incorrect covariance structure in the preprocess-
ing. This is most notable on a gene level and not so serious on a gene set level. As
an estimate of the type I error we used the proportion of times the non-important
genes or gene sets came out as significant when we used a p-value cutoff of 0.05.
The only scenario where the type I error was controlled properly also with V̂B is
in scenario 2 when we test for only time effects (when the power is identical for
V̂A and V̂B. The power curve for V̂B should thus be adjusted slightly down for a
more fair comparison of V̂A and V̂B. The type I error was well under 0.05 for V̂A
on a gene set level, indicating that the gene set test may be slightly conservative
(this has been noted about GSEA before by Tian et al. (2005) and Goeman and
Bühlmann (2007)).

4.2 Stress response in E. faecalis
Table 4 shows the estimated covariance parameters in the E. faecalis data set. The
estimate of γ corresponds to correlations of approximately 0.12 for the closest
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Table 4: Covariance parameters in E. faecalis data estimated with REML.

σ2
t σ2

g σ2
e ϕ γ

0.12 0.24 0.11 0.48 0.64

genes in the network, while the estimate of ϕ corresponds to correlations of ap-
proximately 0.62 for the closest time points. The gene set rotation test revealed
four significant gene sets (FDR q-value≤ 0.25) given in table 5. This is fewer
gene sets than what was found with the original preprocessing in Dørum et al.
(submitted) that did not consider gene dependencies. Judging by the results we
saw in the simulation study, this may be an indication that many of the gene sets
found in Dørum et al. contain genes with high gene effects and less distinct time
effects, and that the focus now have been directed towards sets with strong time
trends. This observation is in a sense verified by Figure 3 showing the time trends
for the significant gene sets. The time trends are based on enrichment scores (nor-
malised to account for size, see Subramanian et al. (2005)) from the individual
time point analysis. These enrichment scores reflect only differential expression,
and their signs indicate whether the genes in the set are mostly upregulated or
downregulated. The gene sets seem to have strong time trends, except for maybe
the operon EF1712 EF1721. A similar time trend plot in Dørum et al. revealed
many significant gene sets without particular time trends. The pathway ”Fatty acid
biosynthesis” and the operon ”EF2875 EF2886” show an almost identical trend,
which is not surprising considering they are severely overlapping.

Table 5: Significant gene sets (q ≤ 0.25) from the time
series analysis of the E. faecalis data when testing for
differential expression and time trends.

Gene set q Size*

Pathways
One carbon pool by folate 0.213 7
Fatty acid biosynthesis 0.226 12
Operons
EF1712 EF1721 0.026 9
EF2875 EF2886 0.149 11

*Genes in the set corresponding to genes in the expression data
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Figure 3: Time trends for the signficant gene sets in the time series analysis of the
E. faecalis data. The time trend shows the normalised enrichment scores (NES)
from the individual time point analysis.

Figure 4 shows the time trends for the individual genes in each of the signifi-
cant gene sets. In this plot the modified t-values reflecting differential expression
in the individual time point analysis have been plotted against time. The time
trends for the individual genes seem to reflect the time trends we see on a gene
set level in Figure 3 quite nicely. The exception is maybe once again the operon
EF1712 EF1721, for which the gene set score does not reflect the constant in-
crease over time that the genes show. The gene set score only increases between
the first two time points and then retains the same level.
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Figure 4: Time trends for all genes in significant gene sets from the time series
analysis of the E. faecalis data. Each time point shows the genes’ modified t-
values.
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5 Discussion
Rotation testing for gene set tests was first introduced in Dørum et al. (2009) as
an alternative to permutation testing for small sample sizes. Rotation tests can
compute accurate p-values also for small sample sizes. Wu et al. (2010) adapted
rotation test for gene set testing to data with complex designs, and in Dørum et al.
we presented a gene set rotation test for longitudinal data. In this paper we have
improved the preprocessing step in the latter paper to also accommodate gene
dependencies. The simulation study indicates that including gene dependencies in
the preprocessing changes the focus of the gene set test from sets with differential
expression to sets with strong time trends. Although the method in Dørum et al.
also could identify gene sets with time trends, the preprocessing presented in this
paper has improved the ability to identify these sets.

By introducing gene dependencies into the covariance matrix we run the risk
of overfitting the model if the gene dependencies are in fact very small. The di-
vision of the network into meaningful groups is therefore important in order to
have as much correlation within groups as possible. In the E. faecalis data we
found that the average correlation between members in each group or commu-
nity ranged from -0.40 to 0.83, though the most extreme correlations were found
in groups with only two members. The smallest correlation within a group was
-0.003 (in a group with 3 members). The average correlation between the one-
member groups, calculated to 0.00097, can be seen as an estimate of correlation
between different groups. Unfortunately the network did not contain information
about the direction of regulation, so we only modelled positive correlations. Judg-
ing from the negative correlations within some of the groups, it would have been
more correct to model negative correlations. However, we emphasise that we use
the information that is available, even though it is not complete.

An alternative to grouping genes based on communities in the network, could
be to use predefined gene sets that are non-overlapping. In this case the same gene
sets could have been used for estimating the covariance matrix and for testing in
the subsequent gene set test. However, an advantage of splitting a network into
subnetworks is that these can be as large as desired. Algorithms that split networks
based on modularity looks for natural communities in the network, and hence
will not look for groups of any particular size. Spectral graph partitioning is an
alternative approach that splits networks into subnetworks of predefined size by
the use of the eigenvectors of the graph’s Laplacian matrix (Fiedler, 1973, Pothen
et al., 1990).
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