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Summary

Transmission of waterborne disease through drinking water remains a public health concern,
even in developed countries. This is evidenced not only by the occurrence of small and large
disease outbreaks in modern water supply systems, but also by studies that indicate a contri-
bution of drinking water to endemic gastrointestinal infectious disease. In its guidelines for
drinking-water quality, the World Health Organization promotes quantitative microbial risk
assessment (QMRA) as a tool for assessing health risks from pathogenic microorganisms and
developing water quality criteria based on quantified health risk targets.

In QMRA, exposure to pathogens is estimated by modeling the concentration of pathogens
from source waters to the consumer’s tap. Exposure is subsequently translated into health
risks through dose-response relations, and compared to a health risk target. Conceptually,
QMRA carries the potential to overcome existing challenges associated with low-sensitivity
epidemiological methods and the somewhat obscure health risk relevance of faecal indicator
organisms. However, its application is still limited by a lack of fundamental scientific under-
standing in certain areas as well as the lack of site-specific and pathogen-specific data. This
thesis contributes to the advancement of QMRA through detailed investigations of (1) math-
ematical properties of the dose-response relations that are currently in use and (2) dynamic
effects in deep-bed filtration on the removal of viruses (primarily) and bacteria from drink-
ing water, and the associated implications for risk assessment. There is also (3) a study on
metabolic lag effects in bacterial growth, which could be relevant in some QMRA-settings.

In Paper I, the mathematical structure of currently used dose-response models, known as
“single-hit models”, is reviewed. These models estimate the probability of infection as a
function of the ingested dose and are based on a certain hypothesis about the infection process:
Pathogens act independently of each other in overcoming host defenses, and infection results if
at least one pathogen is successful in overcoming these defenses. The contribution of Paper I
is a detailed dissection of the model structure, facilitated by introducing general variables
that represent host properties and pathogen properties, respectively. This leads to a precise
expression for the so-called “single-hit probability” in terms of these variables. Furthermore,
it is demonstrated that the model-consistent expression for computing the risk from repeated
exposures deviates (gives lower risk) from conventional expressions used in applications. This
result affects e.g. annual risk estimates, which is usually the basis for health risk targets.

Paper II is a continuation of the analysis from Paper I. The baseline assumption on the
probability distribution of microbial counts (i.e. the dose) in water samples is the Poisson
distribution, and this forms the basis for the standard dose-response models. However, the
literature is rich with speculation that microorganisms may frequently be clustered together, in
which case the dose distribution is naturally represented by a stuttering Poisson distribution.
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In Paper II, the single-hit dose-response model with general stuttering Poisson distributions
is developed and analyzed. It is shown that the risk computed with this distribution is less than
the risk computed with a Poisson distribution, assuming constant mean doses. An equivalent
result is obtained for mixed Poisson distributions, another class of distributions that is used
to model Poisson overdispersion. Finally, an upper bound on risk is developed from Jensen’s
inequality, taking the mean dose, λd, and the probability of zero dose, pX(0), as parameters.
Numerical simulations indicate that the bound is quite close to exact computations, which
suggests that parameters λd and pX(0) contain most of the information on the dose-distribution
that is relevant in a single-hit model. The bound may serve as an approximate dose-response
model, and an example with norovirus data is given.

Virus removal during filtration, in particular in relation to filter effluent turbidity, has been
identified as a knowledge gap in QMRA. In Paper III, the removal of viruses (primarily) and
bacteria during deep-bed filtration was studied using natural raw water in a pilot-scale exper-
iment of dual-media contact-filtration, a common treatment process in Norway. A filter-run
with unprecedented spatio-temporal sampling resolution for viruses was investigated. Results
show that ripening and breakthrough fronts for both model viruses (bacteriophages), E.coli
and turbidity migrated down the filter bed in wave-like manner. Removal efficiency for viruses
and bacteria varied by a factor of about 50 and 200, respectively, during the period of op-
eration when water is usually supplied to the consumer. Ripening was fast for bacteria, but
removal peaked early. Ripening for viruses was slow and removal peaked right before turbidity
breakthrough. Comparison of observed filter coefficients with predictions from ideal filtration
theory suggests that the majority of microorganisms were floc-bound. Efforts to fit a dynamic
filtration model to the data are ongoing.

The topic of Paper IV is the impact on risk estimates of such dynamic filtration effects
that were observed in Paper III. It is shown that the mean removal efficiency of viruses
and bacteria over the entire filter-cycle may be significantly lower than the more easily ob-
served instantaneous removal efficiency. Furthermore, the maximum mean microorganism
removal efficiency is reached only after microorganism breakthrough, and closer to turbid-
ity breakthrough, which is reassuring from a risk management point of view. These results
demonstrate the importance of sampling regimes that can capture dynamic filtration effects
and correct mean removal efficiencies. Finally it is shown that these performance variations in
themselves are unlikely to affect risk estimates as long as the correct mean removal efficiency is
used. However, filtration dynamics do represent a vulnerability when coupled with short-term
variations in either raw water pathogen concentrations and/or disinfection efficiency.

In Paper V, a model is proposed to account for metabolic lags in bacterial growth. Metabolic
lags may occur when bacteria are adapting to a new environment, in particular changes in the
available substrate types. Absent an explicit model of the metabolic pathways, such effects
may be modeled by delay differential equations. The proposed model uses a distributed delay
formulation in the form of a convolution integral which, when coupled with a certain integral
kernel, produces a simple system of differential equations. The model was tested with published
data on biodegradation of organic contaminants in a groundwater setting and was shown to
simulate this system using fewer parameters than a previously published model. Although
presented in a different context, it is hypothesized that the model may also be useful for risk
assessment, for example in modeling growth of environmental pathogens or for incubation time
distributions in population disease transmission.
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Sammendrag

Spredning av vannbåren sykdom med drikkevann representerer en stadig folkehelseutfordring,
også i høyt utviklede land. Dette viser seg ikke bare gjennom små og store sykdomsut-
brudd i moderne vannforsyningssystemer, men også gjennom studier som anslår at drikkevann
bidrar til forekomsten av endemisk sykdom fra mage-tarm-infeksjoner. I sine retningslinjer
for drikkevannskvalitet fremhever Verdens helseorganisasjon kvantitativ mikrobiell risikoanal-
yse (QMRA) som et verktøy for å vurdere helserisiko fra patogene mikroorganismer og for å
utvikle kriterier for vannkvalitet basert på tallfestede mål for helserisiko.

I QMRA estimeres forbrukerens eksponering for patogener ved å modellere konsentrasjonen av
patogener i vannet fra råvann til tappepunkt. Eksponeringen blir deretter omsatt til helserisiko
ved hjelp av dose-respons-funksjoner, og sammenlignet med et risikomål. QMRA har et teo-
retisk potensial til å omgå eksisterende begrensninger knyttet til lav sensitivitet i epidemi-
ologiske metoder og den noe uklare sammenhengen mellom helserisiko og fekale indikatoror-
ganismer. Anvendelser begrenses imidlertid fortsatt av manglende vitenskapelig forståelse på
enkelte områder, samt manglende sted-spesifikke og patogen-spesifikke data. Denne avhan-
dlingen bidrar til videreutviklingen av QMRA gjennom detaljerte studier av (1) matematiske
egenskaper ved dose-respons-funksjonene som benyttes pr. i dag og (2) dynamiske effekter
ved dybdefiltrering på fjerningen av virus (primært) og bakterier i drikkevannsbehandling, og
implikasjoner for risikovurderinger. Avhandlingen inneholder også (3) en studie av metabolske
forsinkelseseffekter i bakterievekst, som vil kunne være relevant i enkelte QMRA-settinger.

I Paper I gjennomgås den matematiske strukturen til dose-respons-modellene som benyttes
pr. i dag, kalt “ett-treffs-modeller”. Disse modellene estimerer sannsynligheten for infeksjon
som en funksjon av inntatt dose og er basert på en bestemt hypotese om infeksjonsprosessen:
Patogener virker uavhengig av hverandre i å overvinne vertens forsvarsmekanismer og infeksjon
oppstår hvis minst en av patogenene lykkes i å overvinne dette forsvaret. Bidraget fra Paper I
er en detaljert disseksjon av modellstrukturen gjennom å innføre generelle variabler som repre-
senterer henholdsvis verts- og patogenegenskaper. Dette fører til en presis formulering av den
såkalte “ett-treffs-sannsynligheten” uttrykt ved disse variablene. Videre blir det demonstrert
at det modell-konsistente uttrykket for å beregne risikoen ved gjentatte eksponeringer avviker
(gir lavere risiko) fra det uttrykket som konvensjonelt benyttes i anvendelser. Dette resultatet
påvirker f.eks. estimater for årlig risiko, som er den vanlige enheten for helserisikomål.

Paper II er en fortsettelse av analysen fra Paper I. En grunnantakelse er at sannsynlighets-
fordelingen for antall mikroorganismer (dvs. dosen) i en vannprøve følger Poisson-fordelingen,
og dette er grunnlaget for de vanlige dose-respons-modellene. I litteraturen spekuleres det
imidlertid i om mikroorganismer ofte kan være klumpet sammen, og i så fall vil dosefordelin-
gen naturlig være representert ved en “snublende Poisson-fordeling” (en diskret sammensatt
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Poisson-fordeling). I Paper II blir ett-treffs dose-respons-modeller med generelle snublende
Poisson-fordelinger utviklet og analysert. Det vises at risikoen beregnet med denne fordelingen
er mindre enn risikoen beregnet med Poisson-fordelingen, gitt at midlere dose holdes konstant.
Et tilsvarende resultat fås for blandede Poisson-fordelinger, en annen klasse av fordelinger
som kan modellere Poisson-overdispersjon. Til slutt utledes en øvre skranke for risiko fra
Jensens ulikhet, som tar midlere dose, λd, og sannsynligheten for null-dose, pX(0), som pa-
rametere. Numeriske simuleringer antyder at skranken ligger ganske nær den eksakte risikoen,
som innebærer at parameterne λd og pX(0) inneholder det meste av informasjonen om dose-
fordelingen som er relevant i en ett-treffs modell. Skranken kan tjene som en approksimativ
dose-respons-modell, og et eksempel med data fra norovirus blir gitt.

Virusfjerning ved filtrering, og særlig sammenhengen med utløpsturbiditet, er identifisert som
et kunnskapshull i QMRA. I Paper III studeres fjerningen av virus (primært) og bakterier ved
dybdefiltrering med naturlig råvann i et pilotskala forsøk med to-media kontaktfiltrering, en
vanlig behandlingsmetode i Norge. Én filtersyklus ble undersøkt med unikt høy prøvetakings-
frekvens både i tid og rom. Resultatene viser at modnings- og gjennombruddsfronter for begge
modellvirus (bakteriofager), E.coli og turbiditet vandret nedover filtersengen som en bølge.
Fjerningsgraden for virus og bakterier varierte med en faktor på hhv. 50 og 200 i den delen av
syklusen hvor vannet vanligvis sendes til forbruker. Modningsperioden for bakterier var kort,
men gjennombrudd oppstod tidlig. Modningsperioden for virus var lang, og gjennombrudd
oppstod rett før turbiditetsgjennombruddet. En sammenligning av observerte filterkoeffisien-
ter med prediksjoner fra ideell filtreringsteori, antyder at majoriteten av mikroorganismene
var fnokk-bundet. Arbeid med å tilpasse en dynamisk modell til dataene pågår.

Temaet for Paper IV er innvirkningen på risikoestimater av slike dynamiske filtreringseffekter
som ble observert i Paper III. Det blir vist at midlere fjerning av virus og bakterier over hele
filtersyklusen kan være betydelig lavere enn den momentane fjerningen, som er enklere å ob-
servere. Videre blir det vist at den maksimale midlere fjerningen oppnås etter gjennombrudd
av den aktuelle organismen, og nærmere turbiditetsgjennombruddet, som er betryggende fra
et risikohåndteringsperspektiv. Disse resultatene viser viktigheten av å utarbeide prøvetak-
ingsplaner som kan fange opp dynamiske effekter og korrekt midlere fjerning. Til slutt vises
det at slike variasjoner i seg selv neppe kan påvirke risikoanslaget så lenge man benytter en
korrekt midlere fjerningsgrad. Dynamiske filtreringseffekter representerer imidlertid en ek-
stra sårbarhet i forbindelse med raske variasjoner i råvannets innhold av patogener og/eller
virkningen av desinfeksjonsprosesser.

I Paper V presenteres en modell som beskriver metabolske forsinkelseseffekter ved bak-
terievekst. Slike forsinkelseseffekter oppstår når bakterier tilpasser seg et nytt miljø, og særlig
ved endringer i hvilke typer substrat som er tilgjengelig. I fravær av en eksplisitt modell for cel-
lulære prosesser kan slike effekter modelleres ved hjelp av differensialligninger med forsinkelser.
Den foreslåtte modellen benytter en formulering med distribuerte forsinkelser i form av et fold-
ingsintegral som, med en bestemt integralkjerne, munner ut i et enkelt system av første ordens
differensialligninger. Modellen ble testet med publiserte data for bionedbrytning av organ-
iske forurensninger i grunnvannssammenheng og viste seg å kunne simulere dette systemet
med færre parametere enn en tidligere publisert modell. Selv om modellen ble presentert i en
annen kontekst, kan man anta at den også kan være nyttig for risikomodellering, for eksem-
pel for å beskrive vekst av miljøpatogener eller fordelinger av inkubasjonstider i modeller for
smittespredning.
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The first principle is that you must not fool yourself —
and you are the easiest person to fool.

Richard Feynman (1918-1988)
Nobel laureate in physics
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1. Introduction and Research
Motivation

This thesis treats two topics in waterborne infectious disease control with different develop-
mental histories; sand filtration and quantitative microbial risk assessment (QMRA). Filtration
in one form or another is an ancient technology for water treatment, and rapid sand filtra-
tion has been common practice for drinking water treatment since the early 20th century. Its
importance for removing pathogens from water is well established. The application of quan-
titative risk assessment principles to drinking water is a more recent development that began
in the early 1980s, and the field is still maturing. It represents an alternative approach to
assessing hygienic water quality and informing management decisions, and is complementary
to traditional epidemiological and faecal indicator methods.

Of the five papers on which this thesis is based, Paper III contributes new experimental data
while the remaining four have a more theoretical character, using only published data, if any.
Hence, the presentation does not lend itself very well to the conventional IMRAD1 structure of
scientific reporting. Instead of distinct methods and results chapters, the thesis contains three
main chapters, Chapter 2 on dose-response models for QMRA, Chapter 3 on filtration and
Chapter 4 on metabolic lags in bacterial growth. In these chapters, the relevant background is
developed and the results of each paper is presented and discussed. The presentation should
be fairly accessible even to an uninitiated reader.

This introductory chapter aims to provide some broad context for the thesis and indicate
the overall role of the individual appended papers in the QMRA framework. Section 1.2 will
review the occurrence of disease associated with drinking water in Norway and the Nordic
countries, epidemiological data on the role of filtration, and current regulatory practices for
drinking water. Section 1.3 introduces QMRA and its components, while Section 1.4 makes
the objectives of the thesis concrete and briefly presents the methods that were employed.
However, we begin with a motivating example from the early days of microbiology.

1.1 A historical prologue

In his biography of Robert Koch, Brock (1999) stated that “. . . water filtration has probably
saved more lives than immunization and chemotherapy combined.”. This statement is of course
difficult to verify and should not be taken as fact, but it sets the stage: drinking water filtration
has been and remains of prime public health importance (Cutler and Miller, 2005). Robert

1Introduction, Methods, Results and Discussion.

1
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Koch is known for founding modern bacteriology and Koch’s principles for identifying the
etiologic agent of an infectious disease, but he also took an interest in sand filtration for
drinking water treatment. His paper on the role of slow2 sand filtration in preventing cholera
(Koch, 1893, German original, 1894, English translation) serves as a nice historical background
to both the filtration and microbial risk aspects considered in this thesis, and a brief summary
follows.

From the mid-19th century, many European and (somewhat later) American cities established
centralized public water supplies which often involved slow sand filtration as treatment (Kirk-
wood, 1869). For example, Norway’s first filtration plant, which for several decades was also
the only one, was commissioned in Larvik in 1869 (Johansen, 2004). During this period, the
germ theory of disease gradually displaced the prevailing miasmatic theory, which held that
disease was caused by foul air resulting from decomposing organic matter. John Snow famously
demonstrated (Snow, 1855) that cholera could be transmitted with water when he identified
the pump on Broad street as the focal point of the 1854 outbreak in London, a foundational
event for the discipline of epidemiology. In 1884 Robert Koch identified the bacterium Vibrio
cholera as the etiologic agent of the disease.3 The work of Snow and Koch, then, is actually an
illustrative example of the first step of a QMRA, hazard identification; identifying the disease
causing microbial agent and relevant exposure routes.

Yet, by the 1890s, there was still opposition to the germ theory and Koch’s paper on sand
filtration was intended to both (1) prove his opponents wrong on the etiology of cholera
(in surprisingly colorful language!) and (2) demonstrate the importance of sand filtration,
including its skilful operation, in preventing the disease. The data he needed for (1) presented
itself during the 1892-1893 cholera outbreak in Hamburg, Germany, which resulted in about
17000 cases and 8600 deaths and was the last major cholera outbreak in the developed world.
A striking difference in cholera incidence in the adjacent cities of Hamburg and Altona (Koch
estimated around 100 cases originating in Altona) called for an explanation. Both cities drew
water from the river Elbe; Hamburg upstream of the city and Altona downstream of Hamburg’s
sewer outlets. The separation between affected and unaffected areas coincided with the border
separating the two cities’ water distribution networks. Cholera bacteria were found in the raw
water of both cities, but not in Altona’s finished water. Research at the Berlin water works had
previously demonstrated the capacity of slow sand filters to remove cholera bacteria. Only
Altona’s water supply was filtered. In sum, Koch saw this as irrefutable evidence that the
cholera bacteria had spread with the drinking water and that the Altona filters protected that
city against infection.

Koch went on to present data for the filtration plant in Altona that indicated 2-3 log10-units
removal of heterotrophic plate counts (HPC), which is not much different from what one could
expect from a modern rapid sand filtration plant. As mentioned, he found cholera bacteria in
the raw water and not in the filtered water, but noted that they probably would have been
found if larger volumes could be sampled. Thus, he performed the rudiments of an exposure
assessment, i.e. quantifying how many pathogens a given population is exposed to, and he
understood that probabilistic concepts are involved in such assessment. Essentially, he only

2Slow sand filtration shares many characteristics with today’s more common rapid sand filtration, but unlike
rapid sand filtration, removal depends largely on the development of a surface mat of deposit/biofilm called a
schmutzdecke.

3Only later was it widely recognized that Filippo Pacini actually isolated the bacterium already in 1854
(Pacini, 1854).
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lacked a relationship between exposure and disease, a dose-response relation (the topics of
Paper I and Paper II), before being able to make a rough risk characterization. Lacking
these tools, he nevertheless expressed the following, which conveys a view on acceptable risk:

All that we yet know of sand-filtration, therefore, compels us to admit that, even
under the most favourable circumstances, it cannot afford absolute protection
against infection, though, as I have already said, it does afford a protection with
which, considering the practical conditions of life, one may rest content.

Koch went even further and discussed in detail the importance of proper design and operation
of filters for bacterial removal, i.e. risk management, which is treated in Paper IV. He
demonstrated his points by comparing the filters at Altona with those at Nietleben, Halle, a
smaller water treatment plant supplying a mental asylum that experienced a cholera outbreak,
and which showed a HPC-removal of less than 1 log10-units. His recommendations align almost
perfectly with present views on good filtration practice, and included keeping the filtration
rate as stable as possible, installing facilities for filtering to waste (and using them) after a
filter has been cleaned, installing facilities for sampling from every filter in the gallery (not
just from the mixed effluent), regular bacterial monitoring using rapid analysis methods, and
shutting down a filter if effluent HPC exceeds 100/ml (a number which occurs in drinking
water regulations even today).

Koch also called for technology-neutral government regulations regarding water quality and
expressed the view that, if bacterial counts in the effluent were the target for regulatory
requirements, no further regulations regarding the type or management of water treatment
would be required. This, then, is a step on the path from technology-focused guidelines
towards fully health-risk based guidelines (World Health Organization, 2011), for which QMRA
is essential. Furthermore, Koch recommended a switch to using ground water as raw water
supplies in order to take advantage of nature’s own filtration system, and he discouraged
point-of-use household filters for their unreliability.

Finally, his paper also included the following passage:

Even with our best filtering arrangements then we cannot keep back all micro-
organisms. This too must be attainable, but it would then be necessary to make
the rate of filtration much slower even than it is, and perhaps to use thicker layers
and other filtering material, all which would involve an enlargement of the works
and an increase of expense that would exceed practicable limits. To all appearance
we have attained the limit of capability with our present arrangements.

Much progress has been made since Koch’s times in controlling pathogens in drinking water;
rapid sand filtration largely took over for slow sand filtration and dedicated disinfection pro-
cesses represent the main barrier in modern water treatment plants. However, it remains true
that we cannot remove all microorganisms from drinking water everywhere and at all times.
Koch’s quote recognizes that microbial risks must be balanced with the cost of abatement, but
only now, more than a 100 years later, are we beginning to apply risk assessment principles
to address these issues in a systematic and quantitative way. This thesis attempts to make a
contribution to that end.
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1.2 Pathogens in drinking water: Epidemiology and regula-
tions

1.2.1 Pathogens of concern

Waterborne pathogens (Leclerc et al., 2002) are pathogenic microorganisms that primarily
use water as a vehicle of transport to reach and infect their hosts. Traditionally, the main
concern for drinking water are waterborne pathogens that are transmitted by the fecal-oral
route (enteric pathogens), i.e. they are shed in the feces of an infected host and transmitted
through the aquatic environment and engineered facilities to reach a point of possible exposure.
In addition, there is now increasing concern about environmental pathogens, such as Legionella,
that may grow and multiply outside a host (Ashbolt, 2015).

The important groups of pathogenic microorganisms in drinking water are the following:

Bacteria are prokaryotic uni-cellular organisms of varying shape, typically a few micrometers
in size. They multiply by binary fission and some may grow outside their hosts. Some
have the ability to form endospores, a highly resistant dormant stage.

Viruses are nucleic acids (DNA or RNA) contained in a protein capsid, sometimes with a
lipid envelope outside the capsid. They are small and have various shapes, typically
20-300 nm. They have no metabolism and cannot reproduce outside their host. Most
have a lytic life cycle; they infect a host cell, reproduce within the cell and then lyse the
cell to release the virus particles.

Protozoa are eukaryotic uni-cellular organisms several times larger than bacteria. They
typically display two distinct life-cycle stages; an active, reproductive stage and an en-
vironmentally resistant dormant stage (cysts/oocysts). It’s the cysts/oocysts that are
excreted with feces and may subsequentally be ingested by new hosts. They multiply by
binary or multiple fission.

Helminths are also known as parasitic worms and are multicellular organisms typically visible
to the naked eye. They produce eggs (ova) that are environmentally resistant.

Table 1.1 on the facing page gives an overview of the pathogens in these groups that are
known to be transmitted through drinking water, along with a qualitative evaluation of some
important properties. In recent years, the main focus has been on protozoa and viruses
(Gibson, 2014) as these tend to be environmentally persistent, are more resistant to chlorine
disinfection and are quite infective. They are also frequently associated with waterborne
outbreaks (Section 1.2.2). There are regional differences in importance, and helminths in
drinking water is usually not an issue in developed countries. Some of these pathogens are host-
specific, while others have the ability to infect both animals and humans (zoonotic pathogens).

Infection is identified with a pathogen succeeding in multiplying within a host, and may be
symptomatic or asymptomatic. Common symptoms of infection by the pathogens in Table
1.1 include those associated with acute gastrointestinal illness (AGI) such as diarrhea, vom-
iting and abdominal pain, which are typically self-limiting in healthy adults. However, some
pathogens can cause more serious illness and death if an infection is left untreated, in par-
ticular in children and immunocompromised individuals (Gerba et al., 1996a). Globally, it
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Table 1.1: Pathogens known to be transmitted through drinking water; adapted from
Guidelines for Drinking-water Quality, World Health Organization (2011), in which further
specification of these qualitative characterizations may be found.

Pathogen Health
significance

Persistence
in water
supplies

Resistance
to chlorine

Relative
infectivity

Important
animal
source

Bacteria

Burkholderia pseudomallei High May multiply Low Low No
Campylobacter jejuni, C. coli High Moderate Low Moderate Yes
Escherichia coli – Pathogenic High Moderate Low Low Yes
E. coli – Enterohaemorrhagic High Moderate Low High Yes
Francisella tularensis High Long Moderate High Yes
Legionella spp. High May multiply Low Moderate No
Leptospira High Long Low High Yes
Mycobacteria (non-tuberculous) Low May multiply High Low No
Salmonella Typhi High Moderate Low Low No
Other salmonellae High May multiply Low Low Yes
Shigella spp. High Short Low High No
Vibrio cholerae High Short to long Low Low No

Viruses

Adenoviruses Moderate Long Moderate High No
Astroviruses Moderate Long Moderate High No
Enteroviruses High Long Moderate High No
Hepatitis A virus High Long Moderate High No
Hepatitis E virus High Long Moderate High Potentially
Noroviruses High Long Moderate High Potentially
Rotaviruses High Long Moderate High No
Sapoviruses High Long Moderate High Potentially

Protozoa

Acanthamoeba spp. High May multiply High High No
Cryptosporidium hominis/parvum High Long High High Yes
Cyclospora cayetanensis High Long High High No
Entamoeba histolytica High Moderate High High No
Giardia intestinalis High Moderate High High Yes
Naegleria fowleri High May multiply Low Moderate No

Helminths

Dracunculus medinensis High Moderate Moderate High No
Schistosoma spp. High Short Moderate High Yes

has been estimated that unsafe drinking water, sanitation and lacking handwashing practices
contribute about 3.5 % of the total DALY (disability adjusted life years) burden of disease
(GBD 2013 Risk Factors Collaborators, 2015), most of which occur in developing countries.
However, even developed countries continue to face challenges with hygienic water quality, as
discussed below, and climate change may intensify these challenges (Hunter, 2003; Semenza
et al., 2012; Sterk et al., 2013).

1.2.2 Epidemic and endemic waterborne disease

In spite of advances in protecting drinking water from microbial contamination, waterborne
disease still occurs in developed countries. The massive Cryptosporidium outbreak in Mil-
waukee, USA, in 1993 (Mac Kenzie et al., 1994), with approximately 400 000 cases and 100
deaths, is often taken as a case in point. However, the total disease burden is composed of
cases associated with small and large outbreaks as well as the endemic disease burden, i.e. the
“background” incidence of waterborne disease. The latter is extremely challenging to estimate
(DeFelice et al., 2015; Murphy et al., 2014; Roy et al., 2006), but it is generally recognized that
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the case numbers derived from detected outbreaks substantially underestimates the total case
numbers (Ford, 1999). In the following, some evidence on the occurrence of disease associated
with drinking water in Norway and the Nordic countries is reviewed.

Outbreaks in Norway and the Nordic countries

In Norway, several outbreaks of serious waterborne disease (typhoid fever, shigellosis, hepatitis
A) occurred until the mid 20th century, after which drinking water quality improved (Nygård et
al., 2003). Since the turn of the millennium, there have been two major drinking-water related
outbreaks in Norway. In 2004, the city of Bergen experienced an outbreak of Giardiasis which
resulted in 1253 laboratory-confirmed illness cases, more than 2500 receiving treatment and an
estimated 5000-6000 cases overall (Eikebrokk et al., 2006; Nygård et al., 2006; Wensaas, 2011).
Several patients reported long-term fatigue (Wensaas, 2011). The source of the outbreak was
identified by Eikebrokk et al. (2006) as leaking sewers that contaminated surface raw waters.4
Drinking water treatment at the time consisted only of straining and chlorine disinfection that
was ineffective against Giardia cysts. After the outbreak, the treatment plant was upgraded
with UV-disinfection and coagulation-filtration. In 2007, an outbreak of Campylobacteriosis
occurred in the town of Røros (Jakopanec et al., 2008), with illness confirmed in about 1500
of the 3600 persons served by the municipal waterworks. The water was drawn from a well-
protected, but untreated groundwater source and it was suspected, but not confirmed, that
the distribution system was contaminated during a low-pressure event in the vicinity of a
slaughterhouse.

In addition to these two major outbreaks, smaller outbreaks occur every year in Norwegian
drinking water supplies, in particular in those systems which serve such a small number of
persons as to not require public registration (Folkehelseinstituttet, 2014; Guzman-Herrador
et al., 2015; Kvitsand and Fiksdal, 2010; Nygård et al., 2003; Stenström et al., 1994). Any
infectious disease outbreak in Norway that is suspected to be associated with food or drinking
water shall be reported to the Norwegian Institute of Public Health (Norwegian Surveillance
System for Communicable Diseases). Kvitsand and Fiksdal (2010) compiled the available
outbreak data for the period 1984-2007 and found that there had been registered 102 outbreaks
with 17 243 disease cases, of which 50 outbreaks and 11 643 cases could be identified as
stemming from surface water supplies. The proportion of outbreaks and cases associated with
groundwater corresponded roughly to the number of groundwater works and people served by
groundwater works, respectively. Norovirus, Campylobacter and Giardia (due to the Bergen
outbreak) were the most common etiologic agents in those outbreaks where the agent was
identified (60/120 outbreaks).

Guzman-Herrador et al. (2015) compiled outbreak data for all the Nordic countries (Denmark,
Finland, Norway and Sweden) for the period 1998-2012 (for Sweden 1998-2011) in an update
of previous work by Stenström et al. (1994). Denmark is distinguished with having fewer
outbreaks compared to the other Nordic countries, due to the high proportion of municipal
water works using ground water as their raw water source. The data for Finland, Norway
and Sweden show that the countries are somewhat similar with respect to the number of
outbreaks, number of cases, seasonality (more outbreaks in the summer season) and etiology.

4This conclusion appears to survive (Robertson et al., 2015) recent claims that dog faeces in the recreational
area surrounding the water source was the cause of the outbreak (Landvik, 2015).
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Figure 1.1: Conceptual relationship between epidemic and endemic waterborne disease.
From Haas et al. (2014), adapted from Frost et al. (1996).

Norovirus and Campylobacter caused the largest number of outbreaks, while Cryptosporidium
and Giardia caused few, but large outbreaks and affected many people.

Several large outbreaks have occurred in the Nordic region. In 2010 Östersund, Sweden,
experienced the largest ever Cryptosporidium outbreak in Europe (Widerström et al., 2014)
with about 27 000 cases. In 2008 Lilla Edet, Sweden, experienced a large norovirus outbreak,
affecting approximately 2400 persons (Ekvall, 2010; Larsson et al., 2014). In 2007 Nokia,
Finland, contamination of the distribution system led to an estimated 8453 illness cases from a
range of pathogens (Laine et al., 2011). It is of interest to note that, in the study by Guzman-
Herrador et al. (2015), in only a few cases could the outbreaks be classified as “strongly
associated” with drinking water according to the classification scheme of Tillett et al. (1998),
pointing to the difficulties of correctly quantifying the number of people affected by waterborne
pathogens through drinking water, as well as identifying the precise causes of each outbreak.

Endemic waterborne disease

As already mentioned, it is believed that registered outbreaks are only the tip of the iceberg
(Figure 1.1) of the total number of disease cases associated with drinking water in the developed
world. Since AGI symptoms are frequently mild and self-limiting, people are not likely to
seek medical attention and thus cases are under-reported. Furthermore, even if a case is
registered with the health care system, it is often difficult to identify the etiologic agent, let
alone identify drinking water as the source of exposure. Hence, more sensitive methods than
disease surveillance are needed in order to estimate the total number of waterborne disease
cases (Murphy et al., 2014). In the United States, the Environmental Protection Agency
(USEPA) and Center for Disease Control have been required to develop a national estimate
of the incidence of waterborne disease in community water supplies. The results of concerted
efforts were published in a special issue of the Journal of Water and Health (Calderon et al.,
2006) and by Reynolds et al. (2008).

Using data from household intervention trials such as the well-known studies by Payment
et al. (1991) and Payment et al. (1997), Colford et al. (2006) estimated the US incidence
of AGI to be between 4.26 - 11.69 million cases/year (surface water: 2.93 - 7.81 million
cases/year). This was based on an assumption of 0.65 cases of AGI per person/year, of which
12 % was attributed to drinking water, along with further assumption on raw water quality and
treatment regimes. Messner et al. (2006) assumed a distribution of AGI incidence among water
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utilities and estimated the mean AGI incidence attributable to drinking water (surface and
ground water) as 0.06 cases/person/year with 95 % credible interval of 0.02-0.12 (translating to
a point estimate of 16.4 million cases each year). Reynolds et al. (2008) applied crude QMRA
principles and estimated 18.4 cases of illness per year, including non-gastrointestinal illness.
All these estimates are to be compared with the number of annually registered outbreak cases
in the US, which has typically stayed below 10 000 cases/year throughout the 20th century
(Craun et al., 2006). Major uncertainties notwithstanding, it seems safe to conclude that the
endemic incidence is indeed much higher than the incidence associated with outbreaks.

No such studies to develop a national estimate have been undertaken in Norway. A naive
application of the US estimates of the ratio of endemic to outbreak cases (roughly 100 - 1000),
leads to an estimated 70 000 - 700 000 illness cases in Norway per year, using 700 registered
illness cases/year from Guzman-Herrador et al. (2015). Possible differences in ground water
vs. surface water use, source water quality, size of water systems, climate, treatment regimes
and population-specific factors, leave such an estimate highly uncertain.

Kuusi et al. (2003) conducted a nation-wide retrospective survey (3000 participants, 61 %
response rate) to investigate the incidence of AGI in Norway. They found an incidence rate
of 1.2 cases/person/year, higher than the rate used for the US estimates, but the authors
warn against possible biases of their study. No attempt was made to estimate the proportion
of AGI attributable to drinking water, but a crude analysis of risk factors identified private
water supplies as a risk factor and chlorinated water as protective in children younger than 15
years old.

The studies on outbreaks and endemic disease referred to above have only made crude estimates
of the disease incidence attributable to source water quality/treatment on one hand and con-
tamination of distribution systems on the other hand. Nygård et al. (2007)5 found a 1.6 times
increased risk of AGI in populations exposed to low-pressure episodes in the distribution sys-
tem as compared to unexposed populations, and there was an association between the amount
of water ingested and the incidence of AGI. Tinker et al. (2009) found a moderate positive
correlation between residence time in a water distribution network and emergency department
visits for AGI, suggestive of contamination of the distribution system with pathogens.

Although case numbers provide a starting point for the analysis of drinking water related
disease and its societal impact, a more complete analysis must take into account measures of
disease burden (Rice et al., 2006), such as the DALY, and the associated economic cost to
society of this burden. However, the economic valuation of costs associated with disease is
not straightforward (Haas et al., 2014, chap. 11). Costs include not only direct healthcare
costs (Collier et al., 2012), but also the costs associated with loss of work days, loss of leisure
time, and in some cases permanent disability or even death. The availability of cost estimates
are more or less restricted to data from outbreaks. As an example, the 1993 Cryptosporidium
outbreak in Milwaukee (400 000 cases) was estimated to cost $96.2 mill. (1993 dollars), of
which two thirds was associated with loss of productivity (Corso et al., 2003) and one third
with medical treatment. The 2008 norovirus outbreak in Lilla Edet, Sweden (2400 cases), was
estimated to cost SEK 8.7 mill. (83 % due to lost productivity), but this included management
costs in the municipality. Cryptosporidium causes more serious disease than norovirus, but
accounting crudely for inflation and exchange rates, these estimates are actually similar on a
per-case-basis.

5This study was also reported by Wahl (2005).
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1.2.3 Evidence on the role of filtration

Besides disinfection processes (chlorine, ozone, UV-irradiation), filtration is considered the
major pathogen-eliminating unit process in drinking water treatment. Rapid sand filtration
is part of most larger water treatment plants world-wide, serving approximately 2 million
people in 185 water utilities in Norway (Myrstad et al., 2015). It began taking over for
slow sand filtration during the early 20th century. The first Norwegian rapid filtration plant
was commissioned in Sarpsborg in 1913, using alum for coagulation and sedimentation before
filtration (Johansen, 2004). In contrast, the capital, Oslo, didn’t receive a filtered water
supply until 1994 (Skullerud treatment plant) and 2008 (reconstructed Oset treatment plant),
although its water was chlorinated since 1930 (Johansen, 2001).

We will return to pathogen removal capacities of deep-bed filtration in Chapter 3. Here
we will review some studies that may provide some direct evidence of the role of filtration in
preventing waterborne disease, as in the historical example from Hamburg given in section 1.1.
Logsdon (1982) gave several examples from the early days of slow and rapid sand filtration,
showing how reductions in typhoid fever cases coincided with the introduction of filtration in
the water supply. Cutler and Miller (2005) used regression modeling in an attempt to isolate
the contribution of filtration and chlorination to the reduced mortality in early 20th century
United States. They estimated that the introduction of filtration reduced overall mortality
by 16 %, infant mortality by 43 % and child mortality by 46 %. Lower effects were found
for chlorination, which must be attributed mainly to the fact that introduction of filtration
usually preceded chlorination in treatment plants.

In today’s developed world, with generally better protection of drinking water supplies and
lower incidence of disease, it is challenging to demonstrate links between filtration/filtration
performance and endemic disease. However, some data exist. Finished drinking-water tur-
bidity is highly influenced by the filtration process, and while no simple relationship between
turbidity and pathogen content exists, increases in filter effluent turbidity is generally associ-
ated with increases in microorganism content (Huck et al., 2001). For example, the Milwaukee
Cryptosporidium outbreak occurred during a period of unusually high effluent turbidity from
one of the filtration plants in the city (Mac Kenzie et al., 1994).

Mann et al. (2007) reviewed time series studies that investigated associations between daily
mean plant effluent turbidity and reported cases of AGI. They found five studies that met
their quality-criteria for inclusion. Three of these studies found moderate associations between
turbidity and incidence of AGI (Gilbert et al., 2006; Schwartz et al., 2000; Schwartz et al.,
1997), while two didn’t (Lim et al., 2012; Morris et al., 1998). After the Mann et al. (2007)
review, Tinker et al. (2010) found no association. In an unfiltered water supply, Hsieh et al.
(2015) recently found a weak association during spring season, especially for young children. It
should be noted that correlating plant turbidity and AGI incidence in the population served by
the plant is extremely challenging (Sinclair and Fairley, 2000), with issues such as accounting
for lags due to incubation times and distribution system transport time. Taken together, the
relationship between turbidity and AGI incidence is far from clear.

Another line of data on the effect of filtration on AGI disease stems from changes in community
AGI incidence after upgrading treatment plants to include filtration, so-called community-
intervention studies (Calderon and Craun, 2006). Upon introduction of filtration to the treat-
ment train of a US city’s water supply, Frost et al. (2000) found no reduction in Cryptosporid-
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Table 1.2: Indicator organisms used in the Norwegian drinking water regulations (Drikke-
vannsforskriften, 2001).

Indicator organism Regulatory requirement
Clostridium perfringens (incl. spores) 0/100 ml
E.coli 0/100 ml
Intestinal enterococci 0/100 ml
Heterotrophic plate count (HPC) Should be below 100/ml
Coliform bacteria 0/100 ml
Note: The sampling frequency depends on the size of the water supply.

ium antibodies in the population served, suggesting that filtration didn’t reduce Cryptosporid-
ium infections, although the authors noted that seasonal variations in infection rates may have
confounded the results. McConnell et al. (2001) investigated the change in rates of physicians’
requests for stool sample analyses before and after introduction of filtration in 10 water supply
systems in Australia. They found no consistent trends in the data, although only descriptive
statistics were shown. Frost et al. (2009) investigated rates of AGI in a population before and
after introduction of filtration and ozonation to a treatment plant that previously only used
chlorination, and found no significant changes.

Finally, in a retrospective observational study in Vermont, USA, Birkhead and Vogt (1989)
found a significantly greater incidence of Giardiasis in unfiltered water supplies as compared
to filtered water supplies. A similar observation was made by Fraser and Cooke (1991) in
Dunedin, New Zealand.

In sum, the studies cited above indicate that filtration has the potential to reduce the incidence
of waterborne disease when raw water quality is poor and there is no disinfection (as the early
20th century data show), but it is generally more difficult to identify and estimate the effect
of filtration in today’s environment with better source water protection (due to better waste
water management) and abundant disinfection processes in water treatment plants.

1.2.4 Regulations and guidelines

The above review of epidemiological data makes it clear that judgment on the hygienic safety
of a water supply cannot be made on the basis of disease surveillance alone. However, routine
monitoring of finished drinking water (as well as raw waters) for pathogens remains difficult and
expensive, mainly because of the large array of different pathogens and low natural pathogen
concentrations relative to analytical methods’ quantification limits (Aw and Rose, 2012; Straub
and Chandler, 2003). Regulations for microbial drinking water quality have therefore long been
based on criteria for the concentrations of faecal indicator organisms in finished drinking water
(Saxena et al., 2015). These are non-pathogenic microorganisms that are naturally present
in faeces and also amenable to routine analysis. Among the desirable characteristics that an
ideal indicator organism should possess, it should be specific to faeces and its survival in the
environment should be at least as good as for enteric pathogens. Although no ideal indicator
organism has been identified, E.coli is considered the best available (Edberg et al., 2000). The
Norwegian drinking water quality regulations (Drikkevannsforskriften, 2001), which implement
the EU drinking water directive (Council of the European Union, 1998), currently prescribe
maximum levels for five categories of indicator organisms (Table 1.2).



1.2. PATHOGENS IN DRINKING WATER 11

There is no doubt that the indicator organism approach has been eminently useful in safeguard-
ing drinking water from microbial contamination. However, it is also clear that it represents an
indirect approach to assessing health risks since the correlation between indicator and pathogen
concentrations may be poor or non-existent (Harwood et al., 2005), and likely influenced by
such things as the local prevalence of AGI and variations in survival and inactivation between
indicators and pathogens in both natural water environments and during treatment. The as-
sociation with bacterial indicators may be particularly uncertain for pathogenic viruses, which
tend to be more environmentally resistant than bacteria (Table 1.1 on page 5; Bosch, 1998;
Bosch, 2007). Furthermore, pathogens have been found in finished drinking water that meets
regulatory microbial indicator standards (e.g. Keswick et al., 1984) and outbreaks have also
occurred in systems that meet standards (Hrudey et al., 2006; Mac Kenzie et al., 1994). Wu
et al. (2011) analyzed indicator-pathogen correlations from 40 years of research and concluded
that no single indicator performed consistently better than others, and that lack of correlations
were often associated with small sample sizes. HPCs have not been found to be associated
with any elevated health risk from drinking water (Allen et al., 2004; Edberg, 1996; Edberg
and Allen, 2004).

Regardless of the extent of association between pathogens and indicators, it has long been
recognized (Hrudey et al., 2006) that microbial water quality management must aim broader
than simply monitoring the finished end product, i.e. treated drinking water, for the presence
of indicator organisms. This is because (1) only a very small proportion of the treated water
can feasibly be tested, (2) when indicators are detected in the treated water, compromised
water will usually have reached consumers before a boil-water warning can be issued and (3)
data from end-point monitoring provides very little guidance in identifying weak links in the
water supply chain, i.e. areas where vigilance is required and the potential for risk reduction
is the greatest.

One consequence of this recognition is the widespread adoption of the multiple barrier ap-
proach, which postulates that a water supply system should include several, independent
“barriers” against pathogens, of which protection of source waters against contamination may
constitute the first barrier. Furthermore, the World Health Organization’s (WHO) Guide-
lines for Drinking-water Quality 2011 now advocates the development of comprehensive water
safety plans (WSP; Davidson et al., 2005). In a water safety plan, the whole water supply
system from source water to tap is considered, hazards and critical components are identified,
and a monitoring and control program is developed to ensure the integrity of the system as a
whole. HACCP (Hazard Analysis and Critical Control Points), a management approach orig-
inally developed for the food industry, has thus found its way into the drinking water industry
(Damikouka et al., 2007; Havelaar, 1994).

As a regulatory requirement (Drikkevannsforskriften, 2001), any Norwegian surface water sup-
ply that serves more than 20 households or 50 persons must include at least two independent
hygienic barriers, of which at least one barrier must be located in the water treatment plant.
A hygienic barrier shall remove or inactivate pathogens, and dilute, remove or break down
chemical and physical substances to such a level that these substances do not represent any
health risk. What constitutes a hygienic barrier is defined operationally in the accompanying
guidance document to the regulations (Mattilsynet, 2011). To some extent, the Norwegian
drinking water regulations implement some of the principles of WSPs. However, the regula-
tions are currently under review and the revised regulations will have an even stronger focus
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on hazard identification and risk management, preventive safety measures and preparedness.
Furthermore, maintenance of distribution systems will be emphasized. The revision is part of
efforts to meet Norway’s country specific targets under the United Nations’ UNECE (1999).

In addition to official regulations and guidelines, the association of Norwegian water utilities
has developed its own tool and guidelines to aid utilities in evaluating the hygienic safety of
their water supplies. Formerly known as Optimal disinfection practice or Good disinfection
practice (Ødegaard et al., 2006, 2009), it has been renamed in its latest iteration to Microbial
barrier analysis and comes in Norwegian (Ødegaard et al., 2016b), English (Ødegaard et al.,
2016a) and Swedish (Svenskt Vatten, 2015) versions. It is a simple tool and database to
(1) determine the total required barrier, in terms of required log10 pathogen reductions, on
the basis of raw water characteristics and size of the water supply, and (2) compute the
removal/inactivation throughout the system to verify its hygienic safety and/or determine the
final disinfection requirement. It actually incorporates many of the ideas of QMRA, described
below, without relying on complicated probabilistic computations or measures of absolute
health risk.

The WHO has sought to develop a harmonized framework for risk assessment and management
to be used for all of its guidelines relating to water quality; drinking water, waste water reuse
and recreational water. The development of this framework was described in an extensive
background document (Fewtrell and Bartram, 2001). At the core of the framework is the idea
that water-quality targets must reflect health targets and be grounded in sound scientific prin-
ciples. The current drinking water guidelines (World Health Organization, 2011) implement
this idea and promote QMRA as a tool to develop such health-based water quality targets for
pathogens.

1.3 Quantitative microbial risk assessment

As a loose definition, risk is the potential for an adverse event to happen, i.e. an event that re-
sults in the loss of human health or well-being. It has two main dimensions, the probability that
the event will occur and the severity of the event. For infectious diseases, the adverse event of
interest is the occurrence of infection (symptomatic/asymptomatic), illness or some measure
of disease burden, or even death, due to exposure to pathogenic microorganisms. Quanti-
tative microbial risk assessment, then, is the application of sound scientific principles from
diverse disciplines to characterize and quantify risks associated with exposure to pathogens,
accounting for variability and uncertainty of inputs in the process. Risk assessment is typically
considered the first component of risk analysis, which also includes risk management and risk
communication (Haas et al., 2014).

1.3.1 Overview of QMRA

Historically, microbial risk has been approached by epidemiological methods as well as indicator
monitoring. The advantages and limitations of these approaches have been discussed above.
QMRA differs from these approaches in several respects; a simple comparison is attempted in
Table 1.3 on the facing page. Rather than starting with observations on AGI incidence or faecal
indicators in drinking water, QMRA is concerned with modeling the amount of pathogens
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Table 1.3: Comparison of approaches to hygienic water quality.

Indicator monitoring Epidemiology QMRA
Study object Faecal indicator organisms Illness (AGI) cases in DW consumers Prob. of infection/AGI from DW
Approach Monitor indicators Monitor/map AGI in DW consumers Model system from source to tap
Link to illness Indirect Direct Semi-direct
Used in DW regulations Yes, since early 1900s No Only Netherlands
Main benefit Ease of data collection Studies the real thing (illness) Endemic risk, scenario risk
Main limitations Obscure health significance Low sensitivity, link to DW obscure Data requirements, uncertainty
DW - drinking water

in drinking water from source to tap, and then quantifying the health-risk associated with
pathogen exposure through dose-response relations. Thus, QMRA aims to provide a rational
framework for evaluating epidemic and endemic microbial health risks associated with actual
and hypothetical scenarios for water supply systems, a framework which is needed to inform
cost-benefit analyses and ultimately decisions on water quality management (Medema and
Ashbolt, 2006). Although QMRA is not without its own methodological problems and data
scarcity (Petterson and Ashbolt, 2016), it is equipped to complement knowledge gained from
traditional epidemiological and indicator methods.

Microbial risk assessment is a relatively new discipline, and was preceded by risk assessments
of other hazards, mainly chemicals. There are important differences between chemical hazards
and microbial hazards, including the ability of microbes to replicate/become inactivated, acute
exposure and health effects of microbes as opposed to the (typically) accumulated effects of
chemicals, and the possibility of secondary cases resulting from direct person-to-person trans-
mission of microbial infections. There have been organized attempts to define frameworks for
risk assessment that are tailored to microbial hazards (ILSI Risk Science Institute, 2000; ILSI
Risk Science Institute Pathogen Risk Assessment Working Group, 1996; Soller, 2006; Teunis
and Havelaar, 1999), but the frameworks laid out for chemical risk assessment (National Re-
search Council, 1983) have largely been retained for microbial risk assessment as well (Haas
et al., 2014). Therefore, the risk assessment process is typically divided into four main com-
ponents, as shown in Figure 1.2 on the next page: Hazard identification, exposure assessment,
dose-response assessment and finally risk characterization.

The exact content of each of these components will depend on the purpose of the risk as-
sessment and the data and resources that are available to the risk assessor. Some possible
questions that a QMRA may answer, or provide input for, are:

• What concentrations of pathogens can be accepted in drinking water without exceeding
a given health risk target?

• Does a certain water supply comply with current guidelines for acceptable health risk?

• How will a proposed treatment upgrade affect the health risks associated with a water
supply? Is the upgrade cost effective?

Figure 1.2 on the following page also shows that risk analysis is an iterative procedure: once
a risk characterization has been performed, the impact of an actual or proposed management
strategy on exposure can be assessed, and updated risk estimates can be computed.
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QMRA
Hazard identification

Dose-response

assessment
Exposure assessment

Risk characterization

Risk management

Figure 1.2: Overview of the components in the QMRA framework.

1.3.2 The components of QMRA

Hazard identification and problem formulation

The hazard identification step is largely qualitative and may be conceptually divided in two
parts. One part is related to overall biomedical understanding; identifying infectious agents,
establishing water as a transmission pathway and identifying health effects in humans. There is
an ongoing concern about emerging waterborne pathogens (La Rosa et al., 2012; Nwachcuku
and Gerba, 2004; Sharma et al., 2003), i.e. pathogens that were previously unknown or
assumed not to be waterborne to any significant extent. This first part is a large scientific
undertaking and not included in any given site-specific QMRA.

The second part is more site-related and involves selecting pathogens (so-called index pathogens)
for risk assessment that are known to be important locally, or for which relevant local data
on occurrence in water exists or may be feasibly collected. Often, one pathogen from each
of the main groups (bacteria, viruses, parasites) is selected for analysis. This step should be
accompanied by a clear problem formulation that may guide the data collection efforts and
analysis in subsequent steps.

Exposure assessment

Exposure assessment is where the majority of the effort is expended in a typical risk assess-
ment. While measures of exposure in epidemiology are often categorical, the goal of exposure
assessment in QMRA is to quantify the actual number of pathogens (the dose) that are in-
gested through drinking water in the population of interest. There are two main components
to consider: the concentration of pathogens in drinking water and the volume of (unboiled)
tap water ingested (Westrell et al., 2006), including variations in these quantities in time or
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between different sub-populations. Typically, the pathogen concentrations in finished drinking
water are so low as to render monitoring infeasible for all but exceptional cases. The starting
point for exposure assessment therefore has to be a point further upstream in the water supply
system.

In principle, exposure assessment may draw on the entire body of scientific knowledge on (1)
pathogen occurrence in faeces from infected individuals, in waste-water or in source waters
(depending on the starting point of analysis), (2) transport, growth, inactivation and removal
in waste-water treatment and transport systems (2) transport, growth and inactivation in the
natural water environment, (3) removal and inactivation during drinking water treatment,
(4) inactivation/growth or intrusion in distribution systems and (5) volume of unboiled water
consumed. Expertise from a variety of disciplines is therefore a significant benefit in conducting
a successful exposure assessment. The more site-specific data that is available, the better, but
more often one has to rely on literature data for most of these steps. Statistical models rather
than mechanistic process models are the more common approach to modeling, although there
are exceptions (e.g. hydrodynamic modeling; Sokolova et al. (2012)). Often, pathogen-specific
data is not available and one has to resort to data from surrogates (Petterson et al., 2016), in
particular for modeling removal by treatment (Smeets et al., 2008).

Methods to detect and quantify microorganisms are relevant throughout exposure assessment
(Aw and Rose, 2012). These methods come in many forms, but may be roughly subdivided into
molecular methods (detection/quantification of nucleic acids), culturing methods (quantifying
some observable effect of growth/multiplication of microbes) or direct observation and count-
ing using light- or electron microscopy. Culturing methods confer more information on the
viability/infectivity/virulence of the microorganisms, but are not available for all pathogens.
Prior to employing these methods, there is often the need to perform a concentration step
because the raw samples are too diluted for direct analysis (Ikner et al., 2012). Such concen-
tration steps are prone to inefficiency, i.e. one looses a significant proportion of the microbes
during the process, and this recovery efficiency may vary between samples. Issues regarding
recovery efficiency of concentration procedures, as well as uncertainties in enumeration meth-
ods themselves, leave typical microbial concentration estimates uncertain. Quantifying this
uncertainty is a central part of the exposure assessment (Emelko et al., 2008; Emelko et al.,
2010; Petterson et al., 2015; Petterson et al., 2007; Schmidt and Emelko, 2011; Schmidt et al.,
2013a).

Dose-response assessment

The objective of dose-response assessment is to translate doses estimated during the exposure
assessment into measures of health risk (FAO/WHO, 2003; Haas, 1983; Teunis, 1997; Teunis
et al., 1996). Most QMRA studies take infection (symptomatic or asymptomatic) as the
health outcome of interest since data on infection is more readily available than for illness.
Illness is then usually modeled as conditional on infection (Havelaar and Swart, 2014; Teunis
et al., 1999a). As with many other forms of risk assessment, the doses required to elicit an
observable response in a group of people is much higher than the doses that typically are
needed for risk assessment. Extrapolation of dose-response curves to low doses is therefore
required. In order to justify this extrapolation, QMRA for drinking-water has largely relied
on a class of semi-mechanistic dose-response models called single-hit models, of which the
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exponential model and beta-Poisson model are the prime examples. These models are based
on a certain hypothesis about the infection process: Pathogens act independently of each
other in overcoming host defenses and infection results if at least one pathogen is successful
in overcoming these defenses. The mathematical properties of these models are the topic of
Paper I and Paper II, and they are treated further in Chapter 2.

Data for dose-response relations are obtained in experimental feeding trials with human volun-
teers (or sometimes animals) (Teunis et al., 1996) or naturally, during outbreaks (Thebault et
al., 2013; Zmirou-Navier et al., 2006). Most site-specific QMRAs will simply retrieve an estab-
lished dose-response relation from the literature. A large collection of data and fitted models
is available at the QMRA Wiki of the Center for Advancing Microbial Risk Assessment, Michi-
gan State University. It is important that pathogen concentrations in an exposure assessment
are determined using methods that are fairly consistent (and if not, differences should be ac-
counted for) with the methods that were used to quantify doses for dose-response assessment,
since estimated dose-response parameters necessarily are specific to the enumeration methods
that are used.

Risk characterization

Risk characterization integrates the exposure assessment with the dose-response relation to
produce the final risk estimates. In the simplest case, the inputs are point estimates and a
point estimate of risk is obtained. It is generally recognized that point estimates are of limited
value and that interval estimates or distributions of risk reflecting the uncertainty and/or
variability in the input data is much more useful (Haas et al., 2014). Such distributions are
typically obtained using Monte-Carlo methods. Disentangling uncertainty from variability is
an ongoing challenge in QMRA, and some risk assessments employ so-called second-order risk
characterization that includes another level of uncertainty, such as uncertainty associated with
dose-response parameters (Donald et al., 2011; Pouillot et al., 2004). In some cases, it may
also be relevant to incorporate infectious disease transmission models to include secondary
cases in the risk estimate (Eisenberg et al., 1996).

1.3.3 Acceptable risk

In order for a risk estimate to be useful, an idea of acceptable risk is needed (Haas, 1996a;
Hunter and Fewtrell, 2001). The issue of determining a health risk target that is deemed
acceptable is complicated, involves ethical as well as economical considerations, and may de-
pend on local circumstances. The USEPA has been using 10−4 infections/person/year as an
acceptable level of risk from consumption of drinking water (Macler and Regli, 1993),6 and
this has largely been adopted by microbial risk professionals world-wide.

According to Haas (1996a), the USEPA target arose from (1) the observation that the annual
reported waterborne disease incidence in the US was roughly 1/10 000, (2) such an incidence
was deemed acceptable at the time and (3) using infections rather than illness for the risk
target introduced additional conservatism. Endemic disease occurrence was not considered
and Haas (1996a) suggests that the risk target may be too stringent. Signor and Ashbolt

6It seems to be rarely discussed, but this target is usually applied on a per-pathogen basis, which implies
that the acceptable total risk from all pathogens is higher.
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(2009) recommended a daily risk target instead of an annual as a way to incentivize managers
to focus on short-term risks that may often dominate overall risk.

The WHO has defined its risk target in terms of DALYs (Havelaar and Melse, 2003) and
recommended a maximum acceptable risk from waterborne disease of 10−6 DALYs/person/year
(World Health Organization, 2011). The DALY measure sums the contribution from years of
life lost due to premature death and the years of life lost due to disability (accounting for
the duration and degree of disability for the disease in question). Using DALYs is intended
to better capture the burden of disease, allow comparison with non-microbial risks and hence
prioritization of public health investments.

1.3.4 Applications and limitations for drinking water

Early applications of QMRA for drinking-water appeared in the US as the USEPA developed
standards for drinking-water quality based on health-risk targets (Gerba and Haas, 1988; Haas
et al., 1993; Macler and Regli, 1993; Regli et al., 1991; Rose et al., 1991; Rose and Gerba,
1991; Sobsey et al., 1993) and focused on Giardia and rotaviruses (Gerba et al., 1996b).
Several studies have since been performed for many pathogens, including Cryptosporidum
(Cummins et al., 2010; Masago et al., 2002; Pintar et al., 2012; Teunis et al., 1997), bacterial
opportunistic pathogens (Rusin et al., 1997), Coxsackie virus (Mena et al., 2003; Vivier et al.,
2002), adenovirus (Heerden et al., 2005) and norovirus (Masago et al., 2006; Petterson et al.,
2013).

Many studies have also been conducted with specific management challenges in mind, such
as balancing the risks from enteric pathogens and disinfection byproducts (Ashbolt, 2004;
Havelaar et al., 2000), the effect on risk from failures in a drinking water system (Hamouda
et al., 2016; Westrell et al., 2003), the effect on risk from closing the drinking water intake
during high-contamination events (Åström et al., 2007), the risk from recycling filter backwash
water to the plant inlet (Loret et al., 2013), the feasibility, or lack thereof, of monitoring
finished water for pathogens to ensure compliance with health risk goals (Signor and Ashbolt,
2006), and the usefulness of online monitoring data for informing a QMRA (Nilsson et al.,
2007). Traditionally given less attention in QMRA, distribution systems are increasingly being
included in the analysis (Besner et al., 2011; Lieverloo et al., 2007; Teunis et al., 2010; Yang
et al., 2011).

Although QMRA guidelines have been published by major agencies (USDA/FSIS and USEPA,
2012; USEPA, 2014; World Health Organization, 2003), it remains a tool that for the most
part is used by researchers and not utilities themselves. Conducting a full QMRA for a given
water supply is a task that requires a substantial amount of input data, either carefully chosen
from the voluminous literature or collected locally with significant effort, as well as the skill
and experience to compute risk estimates and interpret the results in light of uncertainties.
However, there have been some efforts to make QMRA more available for utilities and man-
agers, demonstrate how it can be useful in practice (Medema and Smeets, 2009; Smeets et al.,
2010) and how it can be integrated into the work with water safety plans (Microrisk, 2006).

The Netherlands has been at the forefront of QMRA implementation, with utilities required
by regulations to perform a QMRA for selected pathogens on a regular basis (Bichai and
Smeets, 2013; Smeets et al., 2009). To assist utilities in this, a software tool was developed
(Schijven et al., 2011). Health Canada promotes the use of QMRA in its guidelines and
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has developed a simple spreadsheet application intended for utilities (Tfaily et al., 2015). In
Sweden, the Swedish Water & Wastewater Association developed a simple software tool for
utilities (Lundberg Abrahamsson et al., 2009). In Norway, QMRA hasn’t seen much use outside
research institutions, although there have been reflections on how it can fit into the Norwegian
drinking water management landscape (Fiksdal et al., 2008; Seidu, 2013; Seidu et al., 2007).
An EU-financed Scandinavian research project (VISK, 2013) recently focused on the risk of
waterborne disease from viruses and obtained data on norovirus and adenovirus occurrence in
the river Glomma (Grøndahl-Rosado et al., 2014a; Grøndahl-Rosado et al., 2014b; Petterson
et al., 2016) and performed a QMRA case study for the Nedre Romerike Vannverk water
supply system (Petterson et al., 2013).

Petterson and Ashbolt (2016) recently reviewed studies that applied QMRA for drinking water,
and identified the most important knowledge gaps that limit its use for water safety planning.
They characterized the current state of knowledge with respect to fundamental research ques-
tions with a subjective grading of 1-4 (1 - high uncertainty, 4 - low uncertainty). The areas
that received a grade of 1 were (a) knowledge of the proportion of pathogens excreted by hosts
(animal/human) that are viable and human infectious, (b) knowledge on expected log-removal
by treatment barriers, for which uncertainties stem from generalizations from surrogate data
or site-specific data, (c) knowledge on dose-response relationships, for which uncertainties stem
from having few datapoints and the unknown representativity of hosts/strains used in experi-
ments, and (d) knowledge on the conditions for growth of environmental pathogens. Regarding
dose-response, one might add the knowledge gap associated with the low-dose extrapolations
thath are ubiquitous in QMRA applications, and for which no direct empirical validation is
available.

In addition to the above, two of the areas that received the grade 2 were (a) knowledge
on causes as well as the frequency and duration of poor treatment performance, and (b)
knowledge on the relationship between filter effluent turbidity and filter removal efficiency of
pathogens. Regarding the latter, Petterson and Ashbolt noted that this relationship was “[n]ot
well characterized for viruses, and [turbidity] may be a completely inappropriate indicator of
virus removal performance, depending on process”. In a guide to the operation of coagulation-
filtration plants in Norway, Eikebrokk (2012) also concluded that more data was needed on
virus removal during contact filtration and direct filtration, which is the filtration configuration
typically used in Norway.

As briefly laid out below, this thesis aims to contribute to narrowing the knowledge gaps
with respect to (1) the structure and mathematical properties of dose-response models, (2)
dynamic effects in filtration removal efficiency of viruses and (3) metabolic lags in bacterial
growth, possibly relevant for environmental pathogens. A more complete introduction to each
of these topics is given in the respective chapters.

1.4 Aims and objectives of the thesis

As emphasized in the introductory sections, most inputs to a QMRA are subject to variation,
usually represented by random variables. However, it is not always made explicit exactly
what variation these random variables are intended to represent. Rather, probability distri-
butions are often fitted to available data sets with little consideration of the characteristics



1.4. AIMS AND OBJECTIVES 19

of the processes that generated the variation. The variation represented by a random vari-
able is therefore typically the lumped effect of variation in several sub-processes (such as e.g.
treatment efficiency of unit processes in a treatment train), each of which may have its own
characteristic time and spatial scale. This is not a criticism of such an approach; typically
data is simply not available to decompose variation into its constitutive components.

Still, the field of QMRA should strive to do better. The overall aim of this work, and a
unifying principle among the appended papers, is therefore to sharpen the analysis and data
availability with respect to variation in some of the QMRA inputs; a better understanding
of the sources and scales of variation in the inputs to QMRA will lead to more precise risk
estimates and pave the way for more targeted risk management interventions.

As identified in the previous section, the main focus will be on dose-response assessment and
virus removal during filtration. The specific objectives of this work may be stated for each of
the appended papers:

• Paper I: Develop a stringent formulation of the single-hit dose-response model in which
variation in pathogen properties, host properties and doses is clearly distinguished from
one another.

• Paper II: Investigate, in some generality, the effect in single-hit models of having dose-
distributions that are overdispersed relative to the default Poisson distribution (i.e. dose
variation in excess of Poisson-variation, e.g. as a result of pathogen clustering).

• Paper III: Undertake a high-resolution pilot-scale experimental investigation to char-
acterize variation in virus removal efficiency throughout the filter cycle in a coagulation
contact-filtration process.

• Paper IV: Investigate how the dynamics uncovered in Paper III affects risk estimates
and whether opportunities exist for optimizing filter operation to minimize risk.

• Paper V: Develop a conceptually appealing and numerically tractable model for incor-
porating microbial lag effects in bacterial growth, which may also be relevant for the
growth of environmental pathogens.

The role of the individual papers within the larger QMRA framework is depicted in Figure 1.3
on the next page.

1.4.1 Data and methodological tools

Table 1.4 on the following page gives a brief overview over data and modeling tools that
were employed in each paper. These are described more fully in the respective chapters.
Only Paper III contributes new experimental data; the remaining papers either do not use
experimental data (Paper I), or use data that were published before (Paper II; Paper V)
or data from Paper III (Paper IV). Modeling approaches were selected eclectically; in
Paper I, Paper II and Paper IV elementary techniques from mathematical statistics were
used, Paper III uses models from filtration theory while Paper V uses delay differential
equations coupled with partial differential equation (PDE) models for contaminant transport.
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Figure 1.3: The relationship between the appended papers and the individual compo-
nents of QMRA. Papers in green boxes have been published while papers in yellow boxes
are still in a manuscript stage.

Table 1.4: Overview of tools and methods employed in the thesis.

Paper Data Models and theory

I: Single-hit model structure - Mathematical statistics
Generating functions
Jensen’s inequality

II: Clustering in single-hit models Published norovirus dose-response data Generating functions
Jensen’s inequality
Maximum likelihood est.

III: Virus filtration dynamics Pilot-scale filtration experiments Colloid filtration theory
Plaque assay, RT-qPCR, MPN assay Coupled PDEs

IV: Risk and filtration dynamics Data from Paper III Mathematical statistics
Ideas from paper I/II

V: Microbial metabolic lag Published biodegradation data Coupled PDEs with delay
Linear chain trick
Method of lines (num.sol.)

MPN - Most probable number; PDE - partial differential equation
RT-qPCR - Reverse-transcription quantitative polymerase chain reaction
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1.4.2 Synopsis of the appended papers

The following is a brief summary of each paper.

Paper I: Single-hit model structure

Dose-response modeling is the link between exposure levels and health consequences and there-
fore essential to microbial risk assessment. Generally supported by available data, the prob-
ability of infection has long been modeled by single-hit models, as briefly defined in Section
1.3.2. Paper I is a detailed investigation of the structure and assumptions of these proba-
bilistic models, including the role played by distinct random variables that represent pathogen
properties, host properties and dose, respectively. A precise expression for the so-called single-
hit probability R in terms of these variables is developed, and it is confirmed that only host
variation enters into the variation in R. One consequence of this interpretation is that the
expression that hitherto has been used in QMRA to compute the risk from multiple exposure
events should be replaced by a model-consistent expression, for which the deviation from the
conventional expression may be non-negligible in practice. This latter point is important, since
it affects annual and lifetime risk estimates that are the basis for regulations and guidelines.

Paper II: Clustering in single-hit models

Although difficult to verify experimentally, there have been speculations in the literature that
pathogens may sometimes occur naturally as clusters rather than dispersed pathogens, or that
clustering may be promoted during conventional water treatment. Furthermore, clustering
was observed in the laboratory for noroviruses during feeding trials for dose-response assess-
ment. Clustering will induce overdispersion in the dose distribution, i.e. greater variance
than can be accommodated by the default Poisson dose distribution. Paper II therefore
investigates, in some generality, the effect of clustering in single-hit dose-response models. It
is argued that a so-called stuttering Poisson distribution (also known as a Poisson-stopped
sum) is a natural model for the dose-distribution in the presence of clustering. It is shown
that, assuming constant mean doses, the risk computed with a stuttering Poisson distribu-
tion is less than that computed with a Poisson distribution. A similar result is obtained for
mixed Poisson-distributions, which is the other common generalization of dose distributions in
QMRA. Finally, a bound on risk is derived from Jensen’s inequality that is valid regardless of
the nature of the dose-distribution. This bound takes the probability of zero dose as a param-
eter in addition to the mean dose and appears to be very close to exact computations when
there is severe overdispersion. It may also serve as an approximate single-hit dose-response
model; this was exemplified by fitting the model to published norovirus dose-response data.

Paper III: Virus filtration dynamics

Rapid sand filtration is usually the most dynamic process in the treatment train with per-
formance varying systematically throughout the filtration cycle. Typically, performance with
respect to effluent turbidity improves initially (the ripening phase), then is relatively stable
for an extended time period before declining towards the end of the cycle (the breakthrough
phase). Most data on microbial removal performance, and viruses in particular, has been
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collected during the stable operating phase. The motivation for Paper III was therefore to
carry out a pilot-scale filtration experiment for viruses with a sampling regime that permits
detailed characterization of removal performance during the whole filtration cycle and at dif-
ferent depths of the filter. A purpose-built automatic sampler made the latter possible. The
data so obtained may be appropriate for fitting a dynamic filtration model. The results show
that, in contrast to turbidity, there was hardly any period of stable operation for viruses (Salm.
typh. 28B and MS2) and bacteria (E.coli) - performance improved continuously throughout
the cycle until breakthrough for each organism was reached. This happened mid-cycle for
bacteria and slightly before turbidity breakthrough for viruses. Mean log-removal rates during
the period when water is usually sent to the consumer were significantly lower than peak re-
moval rates. The study demonstrates the importance of carefully designing sampling regimes
in order to correctly estimate microorganism removal efficiencies.

Paper IV: Risk and filtration dynamics

Having established the potential for highly dynamic microbial removal performance in Pa-
per III, Paper IV is an investigation of how such dynamic effects may impact risk estimates
and what opportunities exist for optimizing filter operation. It is shown how the mean removal
efficiencies of viruses and bacteria develop as the filter-cycle progresses and that the peak in
this mean removal rate actually occurs after microorganism breakthrough, by mathematical
necessity. However, continuing filtration until turbidity reaches the regulatory guideline of 0.2
NTU may be highly detrimental to the mean removal. Finally, it is shown that pathogen con-
centration variations induced by filtration, assuming otherwise stable plant performance and
raw water concentrations, are unlikely to affect the risk estimate as long as the correct mean
concentration is used in the dose-response model. However, filtration dynamics do represent
an additional vulnerability when coupled with other short-term variations in either raw water
pathogen concentrations and/or disinfection efficiency.

Paper V: Microbial metabolic lag

The basis for Paper V is that bacterial communities may display a lag phase in which growth
rates do not follow typical growth kinetics as e.g. Monod kinetics. This phase may be explained
by the introduction of a new kind of substrate, which requires adaptation on the part of the
bacteria before they can utilize it. Paper V is an attempt to model this lag phase by a
temporal convolution over the history of substrate concentrations. This is not a new idea,
but the integral kernel used in Paper V makes it possible to rewrite the integro-differential
system of equations as a system of ordinary differential equations through the linear chain
trick. This facilitates the use of standard integration packages for numerical solution of the
resulting equations. The new lag formulation was used with a subsurface transport model
for organic compounds that are subject to biodegradation. It was found that the new model
could fit the data as well as a previously suggested models, but with fewer parameters. While
not presented in a QMRA context, the lag formulation may possibly be useful for modeling
the growth of environmental pathogens or incubation times in population disease transmission
models, which is also a lag phenomenon for which temporal convolutions have been used.



2. Dose-response for QMRA:
Papers I and II

It has been said (Teunis and Havelaar, 2000) that QMRA as a discipline began when Haas
(1983) fitted dose-response models to data from experiments in which human volunteers were
administered known amounts of pathogens, so-called feeding trials, and extrapolated the mod-
els to environmentally relevant exposure levels.

It is not obvious how to construct such dose-response models, though. For infection and
illness to occur, pathogens must defeat the host immune system, which comprises a sequence
of complex defense mechanisms, some general (innate immune system) and some targeted
(adaptive immune system) towards the specific infectious agent. The detailed workings of the
immune system is not explored further here, since it is not required for developing conventional
dose-response models. A general overview for gastrointestinal pathogens is given by Duncan
and Edberg (1995) and in relation to dose-response theory by Teunis (1997) and Buchanan
et al. (2000).

Most dose-response studies focus on infection as the endpoint of interest since infection is
a necessary step in the sequence of steps leading to clinical illness; further sequelae is then
modeled with probabilities that are conditioned on the presence of infection (e.g. Haas et al.
(1993)). Infection is typically defined as the invasion and multiplication of pathogens within
the host. In practice, infection is determined by the detection of pathogens in stool samples,
elevated levels of antibodies in the host’s blood stream or symptoms of illness.

The presence of infection has traditionally been taken as a simple Bernoulli random variable;
i.e. either infection is established, with associated probability pI, or it is not. With this
approach, no consideration is given to the extent of infection, such as the number of pathogens
detected in the stool, or to the time between exposure and detected infection (the host is
monitored for pathogen shedding for some time after the exposure). It is not immediately
clear that the Bernoulli assumption is appropriate; possibly one should work with graded and
timed infections instead. Some references to such work are given in section 2.5.

With the Bernoulli assumption on infection, we may state some general requirements for the
dose-response model. Microbes are discrete entities and if we denote the number of ingested
pathogens by x, the dose-response model becomes a function f c : N0 → [0, 1] that relates
the probability of infection to the dose x, pI = f c(x). Subscript c denotes “conditional”
from terminology introduced by Haas (2002), as opposed to marginal dose-response models
introduced below.

We may reasonably require f c(0) = 0 (no infection if no pathogens are ingested), f c(x2) ≥

23
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f c(x1) for all x2 > x1 (larger doses produces at least the same probability of infection as smaller
doses) and limx→∞ f c(x) = 1 (as the dose becomes infinitely large, all hosts are infected if
there is no complete immunity). As such, the basic characteristics of f c are coincident with
those of the cumulative probability distribution of a discrete random variable with support
on the set of positive integers. Usually, there is no possibility of knowing the dose x precisely
and we must treat it as a random variable X with support on N0 and with probability mass
function (pmf) pX . In this case, a marginal dose-response model is obtained by marginalizing
the discrete dose-response model over X, i.e.

pI = fm(λd) =
∞∑

x=0
f c(x)pX(x) (2.1)

Here, fm : R≥0 → [0, 1] is written as a function of the mean of the dose distribution, λd.

When searching for a useful model formulation for fm, two approaches may be discerned (Haas
et al., 2014):

1. Select any model that best fits the data, i.e. pure curve fitting (but taking care to avoid
overfitting).

2. Select a model from a subset of mechanistically based and biologically plausible models,
even if better-fitting models exist.

An advantage of the second approach is that mechanistic models make a clear distinction
between the exposure part of the model and the host-microbe interaction part (i.e. a precise
identification of f c is made), while these aspects may be entangled in the first approach
where only fm is explicitly defined. If both parts are reasonable representations of reality,
mechanistic models will permit generalizations to other exposure scenarios (other dose levels,
other probability distributions for the number ingested) than the one that applied during data
collection and parameter fitting. The main disadvantage is that there will typically be models
that fit the data better.

In general, the second approach has been deemed preferable for QMRA. The main reason is
the need for extrapolating to dose levels beyond regions of data availability. In drinking water
applications, we are often concerned with low mean doses, but a very high number of exposed
individuals; the net effect may be a significant health impact. Since the effect of such dose
levels cannot feasibly be observed in experimental studies with a limited number of subjects,
higher dose levels are used and extrapolation to low dose levels is performed. Models that
fit the available data equally well may differ markedly upon extrapolation (Haas, 1983). This
motivates the use of (semi-) mechanistically based, biologically plausible dose-response models.

The term infectious dose is sometimes used in a manner that suggests the existence of a
threshold dose, and that ingestion of lower doses than the infectious dose produces no infection.
Such concepts are not supported empirically, and there is evidence that ingesting a single
infectious pathogen may lead to infection (Section 2.4). The concept of infectious dose should
therefore more appropriately be interpreted as the ID50, the dose that produces infection in
50 % of hosts, which may be thought of as a parameter of the pertinent dose-response model.
The idea that a single ingested organism may be sufficient to cause infection, and the general
agreement with data of models that are derived from this hypothesis, has led to the widespread
use of so-called single-hit models for microbial dose-response in QMRA. These models are the
subject of Paper I and Paper II, and are introduced below as these papers are presented.
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2.1 The structure of single-hit models: Paper I

The fundamental assumption of single-hit models is that pathogens, when interacting with
a host, act independently of each other in overcoming the host defenses and that infection
results if at least one pathogen succeeds. In practice this means that a clinically identifiable
infection results not from the cumulative effect of several pathogens multiplying, but from
the overwhelming multiplication of one of the pathogens contained in the inoculum. Note
that this does not imply that several pathogens cannot contribute to an identifiable infection;
only that among those pathogens contributing, there will always be one that in itself would
have sufficed to make the infection identifiable. While Greenwood and Yule (1917) employed
similar ideas in developing statistical methods for the dilution assay1, Halvorson (1935) and
Druett (1952) are credited for introducing the concept in the context of microbial infection
in animal-pathogen systems. Kunkel (1934) is being cited for an experimental demonstration
in a plant-pathogen system. Similar concepts were also introduced in the context of cancer
dose-response (Crowther, 1924; Iversen and Arley, 1950).

Paper I is essentially a detailed review of the structure and properties of single-hit models. In
order to introduce them, let r be the probability that a single pathogen establishes infection.
Then the probability that at least one pathogen succeeds is the complement to the probability
that no pathogens succeed:

pI = f c(x) = 1− (1− r)x (2.2)

If r is variable for some reason, we treat it as a random variable R with probability density
function (pdf) fR and get

pI = f c(x) = 1−
∫ 1

0
(1− r)xfR(r) dr (2.3)

This is the general expression for a single-hit model if the dose x is known precisely, and has
been termed a conditional (Haas, 2002) dose-response model in the literature. If X also varies
according to a pmf pX(x), we get

pI = fm(λd) = 1−
∫ 1

0

∞∑

x=0
(1− r)xpX(x)fR(r) dr (2.4)

where we assume that we may choose the order of summation and integration freely. The
summation in the integrand is, by definition, the probability generating function (pgf) of X,
GX , evaluated at 1− r:

pI = fm(λd) = 1−
∫ 1

0
GX(1− r)fR(r) dr (2.5)

This is a general formulation of the single-hit models. A basic review of the properties of pgfs
may be found in the appendices of Paper I and Paper II. Making use of the pgf-formulation
was instrumental in arriving at many of the results in these papers. Moran (1954a) and Moran
(1954b) asserted that variability in R, as opposed to a constant r equal to E(R), will make the
dose-response curve flatter, a property that is expressed formally in Proposition 1 in Paper I.

1The dilution assay is performed to quantify the number of organisms in some sample and is essentially
dose-response backwards. One observes the response (e.g. bacterial growth in a test tube) and infers the dose.
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2.1.1 Separating host and pathogen properties

A key motivation for developing Paper I was to identify, in general, the role played by
pathogen and host properties in determining the distribution of R. The early single-hit lit-
erature appears to have been consistent in interpreting variability in R as representing host
variability and that pathogen variability is averaged out (Armitage, 1959; Armitage and Spicer,
1956; Moran, 1954b; Peto, 1953). Fazekas de St Groth and Moran (1955), in particular, came
to this conclusion after studying a detailed model of host-pathogen interaction.2 The more
recent QMRA literature tends to diverge somewhat on this issue and it has sometimes been
implied that variation between pathogen individuals also enters into the variability in R (e.g.
Teunis et al., 2008).

In order to study this problem in Paper I, random variables were introduced to represent
both pathogen and host properties and we precisely defined a probabilistic experiment, whose
outcome is described by the dose-response model (Paper I, p. 147):

1. Randomly select one host from the population of hosts, i.e. obtain a sample of S, a
random vector describing host properties.

2. Take a random sample from the water source; this will contain a random number X of
pathogens from the population of pathogens. That is, obtain X samples of T, a random
vector that describes pathogen properties.

3. Let the host ingest the water sample.

By applying single-hit assumptions and a sequence of statistical independence assumptions
among these variables, one can arrive at a single-hit model formulation in terms of these
variables, which will show (Paper I, eq. (12)) that the random variable R may be written as

R = R(S) = ET|S[g(S,T)] (2.6)

Here, the interaction function g maps these variables onto [0, 1] and represents the proba-
bility that any randomly chosen pathogen individual in a randomly chosen host succeeds in
establishing infection. ET|S denotes conditional expectation; hence the pathogen properties T
are integrated out and R represents host variability. No statistical independence assumption
between S and T is needed. For eq. (2.6) to be directly useful in practice, further specifica-
tion of g, S and T is required; an example was given by Fazekas de St Groth (1955) and in
Paper I. Ideally, this expression may help facilitate incorporation of measurable properties
of pathogens and hosts into parametrized dose-response models (Teunis et al., 2002a,b), in
particular as such properties become more experimentally available.

Having established eq. (2.6), the remainder of Paper I is concerned with firmly establishing
some consequences of the fact that variability in R only stems from host variability, and
conveniently formulating the single-hit model in terms of generating functions. Some of the
results are briefly reviewed here. In order to use the general single-hit expression in (2.5) in
applications, parametrization of X and R is needed. First, it was shown in Paper I that a
model-consistent representation of complete host immunity in part of the host population is a

2The paper by Fazekas de St Groth and Moran (1955) appears not to be cited in the QMRA literature and
was not known to us when Paper I was developed. Only after our paper was accepted did we become aware of
it. Some of our results may be said to be a rediscovery of their results, using a slightly more general approach
and modern probability nomenclature.
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simple scaling of equation (2.5):

pI = fm(λd) = (1− φ)
(

1−
∫ 1

0
GX(1− r)fR,s(r) dr

)
(2.7)

where φ is the proportion of immune hosts and fR,s is the distribution of R in the susceptible
portion of the host population. We have fR(r) = φδ(r)+(1−φ)fR,s(r) where δ is Dirac’s delta
function. Often, the data used for fitting dose-response models was obtained using subjects
that was pre-selected for susceptibility so that the fitted model may not be representative for
the whole host population if it is not adjusted for immunity (which rarely seems to be done).

In the following it is assumed that φ = 0. The baseline assumption on X is that it is Poisson
distributed (see Section 2.2), which gives

pI = 1−
∫ 1

0
e−λdrfR(r) dr = 1−MR(−λd) (2.8)

where MR is the moment-generating function (mgf) of R (Moran, 1954b; Paper I). Any
model on the form (2.8) exhibits low-dose linearity (Paper I, p. 154). Two choices for R has
dominated in QMRA. Either R is taken to be a constant, i.e. a single point mass distribution,
which gives the exponential model

pI = 1− e−λdr (2.9)

Alternatively, R is taken to have a beta distribution, which has probability density function

fR(r) = rα−1(1− r)β−1

B(α, β) (2.10)

where α, β > 0 are shape parameters and B(α, β is the beta function. Using (2.10) in (2.8),
we get Euler’s integral representation of Kummer’s confluent hypergeometric function 1F1
(Abramowitz and Stegun, 1964):

pI = 1− 1F1(α, α+ β,−λd) (2.11)

Evaluating 1F1 numerically is challenging and something of a research field in itself (Pearson,
2009; Pearson et al., 2015). Moran (1954b) suggested replacing the beta-distribution with a
gamma-distribution with a small mean (since the gamma distribution has support on [0,∞)),
thereby arriving at the same parametric form that Furumoto and Mickey (1967a,b) derived,
using series-expansions, as an approximation to (2.11), known as the approximate beta-Poisson
model:

pI = 1−
(

1 + λd
β

)−α
(2.12)

The joint criteria β � 1 and β/α� 1 (as well as keeping λd small) have been used to delineate
a region where the approximation is sufficiently good. These criteria ensure that a Gamma-
distributed R has negligible probability mass at values r > 1 (Schmidt et al., 2013b). Teunis
and Havelaar (2000) showed that parameter estimates using the two variants of the beta-
Poisson model tended to be very close, but confidence intervals for the approximate version
could exceed the probability of exposure, which is unnatural. Equation (2.12) is unique in the
sense that no other distribution fR than the Gamma-distribution turns equation (2.8) into
equation (2.12) (Paper I, Proposition 2), which means that (2.12) is not strictly a single-hit
model (since the support of the Gamma distribution is the entire positive real line).
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Figure 2.1: Influence of parameter values on the shape of the exponential model and
beta-Poisson models in a linear plot, semilog plot and log-log plot. Note that these curves
do not share the same value of E(R).

The exponential and approximate beta-Poisson models may conveniently be written in terms
of the ID50 by solving fm(ID50) = 0.5 and eliminating r and β, respectively:

pI = 1− e−λd ln 2/ID50 = 1− 2−λd/ID50 (2.13)

pI = 1−
[
1 + λd

ID50

(
21/α − 1

)]−α
(2.14)

It is easily shown that the slope of (2.14) with respect to λd is lower than the slope of (2.13),
both evaluated at ID50. Some example plots to illustrate the shape of these two models are
given in Figure 2.1. Most available human dose-response data can be fitted to one of these two
equations and pass a goodness-of-fit test (QMRA Wiki; Teunis et al., 1996). Experimental
data to support (or not) single-hit models is reviewed in Section 2.4.

2.1.2 Risk from repeated exposures

The most important consequence of the interpretation that R represents host variability, is
related to the computation of risk from repeated exposure events. Conventionally, the risk
from n repeated exposures (assuming no acquired immunity), each drawn from independent
and identically distributed (iid) dose distributions with mean λd, is computed as

pI,n = 1− [1− fm(λd)]n (2.15)

It was shown inPaper I, p. 156-157, that this expression represents the probability of infection
if n random hosts each are exposed once. Instead, we want the risk when a single random host
is exposed n times. The model-consistent expression for this is actually given by

pI,n = fm(nλd) (2.16)

More generally, the risk from repeated exposures is obtained by interpreting GX in equation
(2.5) on page 25 as the pgf of the accumulated dose instead of the single-exposure dose. It was
also established in Paper I that (2.16) gives smaller risk estimates than (2.15) when R is not
a point mass distribution (Paper I, Proposition 3).
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Figure 2.2: Ratio of (2.16) to (2.15) for annual risk estimates (n = 365). λd is the
per-exposure dose and the exact beta-Poisson, equation (2.11), is the dose-response model
used. From Paper I.

The difference between these two expressions is not merely of academic interest - they play a
direct role in the calculation of annual or lifetime risk, for which regulatory or guideline limits
have been set (Macler and Regli, 1993; Smeets et al., 2009; World Health Organization, 2011).
Figure 2.2 and Figure 2.3 on the following page demonstrate this difference, showing the ratio
of risk calculated with (2.16) to that calculated with (2.15), using the exact beta-Poisson as
the dose-response model. It is clear that the conventional expression (2.15) is considerably
more conservative for some parameter values.

Further exploration is needed to investigate for which pathogens and under what exposure
scenarios the difference between these expressions become important in practice. Based on a
superficial review of pathogen parameter estimates available at QMRA Wiki, most estimates
seem to be located in the middle of the plots in Figures 2.2 and 2.3, which means that the
difference between eq. (2.16) to eq. (2.15) would be moderate. However, the figures were
made by assuming iid Poisson dose distributions for all exposures, and the effect of other dose
distributions, including overdispersion, should be investigated. For practical risk character-
izations, care should be taken in correctly representing the risk from repeated exposures in
Monte Carlo methods.

Finally, in Paper I, p. 157-158, it was also established that previous recommendations (Haas,
1996b) on the appropriate way to average microbial concentrations from multiple samples for
risk assessment survives even if equation (2.16) is used as a starting point instead of equation
(2.15).
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Figure 2.3: Ratio of (2.16) to (2.15) for lifetime risk estimates (n = 365 ·80 = 29200). λd
is the per-exposure dose and the exact beta-Poisson, equation (2.11), is the dose-response
model used.

2.2 Single-hit models with overdispersed dose-distributions:
Paper II

Until data suggests otherwise, the microbial count X (with support N0) in a water sample is
usually assumed to conform to the Poisson distribution with probability mass function

pX(x) = λd
xe−λd

x! (2.17)

and the single parameter λd > 0. The Poisson distribution is applicable when sampling from
a water source in which microbes are fully and randomly dispersed in the water source, i.e.
not clustered or systematically concentrated in space or time. For the Poisson distribution,
E(X) = Var(X) = λd and λd may be interpreted as the product of microbe concentration in
the water source (number of organisms pr. unit volume), c, and the sample volume, v.

2.2.1 Overdispersed microbial count distributions

While the assumption of Poisson-distributed doses is usually adopted in controlled laboratory
dose-response studies, it is often observed that environmental microbial counts are overdis-
persed compared to the Poisson, i.e. the variance is larger than what can be accommodated by
the one-parameter Poisson distribution (Haas and Heller, 1988; Schmidt and Emelko, 2011).
This may be caused by true deviations from the Poisson distribution or imperfections in
enumeration methods, in particular variable recovery efficiencies (Schmidt et al., 2014). If
overdispersion is caused solely by temporal variations in microbial concentrations, the Pois-
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son distribution may still be appropriate if we restrict the analysis to a fixed point in time;
overdispersion may then be modeled as random variation in λd, a so-called mixed Poisson
distribution. The pmf of a mixed Poisson distribution is given by

pX(x) =
∫ ∞

0

λd
xe−λd

x! fΛd(λd) dλd (2.18)

where fΛd is known as the mixing distribution (Gamma or log-normal distributions are com-
mon).

However, if spatial variation, i.e. clumping/clustering, is responsible for the overdispersion,
the Poisson distribution is not appropriate even if we fix a point in time. Clustering of
microorganisms and pathogens is often discussed in many microbiological studies (Gale et al.,
1997, 2002; Grant, 1994; Langlet et al., 2007; Silva et al., 2011; Teunis et al., 2005), but
it is unclear how common the phenomenon is in drinking water, even though coagulation-
flocculation processes are designed to promote particle aggregation. It is also possible that
pathogens that are shed with faeces may be introduced into the water environment in an
already clustered form, or that multiple pathogens adsorb to a common particle and thereby
become clustered. If clustering is present, it can be argued (Haas et al., 2014; Paper II;
Teunis et al., 2008) that the count distribution is naturally modeled by a Poisson-stopped sum
of discrete random variable, whose distribution is called a stuttering Poisson distribution:

X =
Nc∑

n=1
An (2.19)

Here An, n = 1, 2, . . ., is a set of iid random variables representing the distribution of cluster
sizes, and the number of terms to be summed (i.e. the number of clusters) is a Poisson
distributed variable N c (if N c = 0, we have the empty sum). Under certain conditions the
distribution of X in (2.19) is equivalent to a mixed-Poisson distribution, so there is some
overlap between the two categories of distributions (Haas et al., 2014). A recursive formula
exists for the pmf of X in (2.19) that works with any parametrization of An (Kemp, 1967).
The corresponding pgf has a simple, explicit expression and is what we need for the single-hit
model formulation in (2.5). The details are given in Paper II.

Apart from the effect on the dose-distribution, clustering of pathogens draws into question the
appropriateness of the independent action hypothesis of single-hit models, since any pathogens
that are clustered are likely to encounter host barriers at the same location and same time.
Nevertheless, the available dose-response data for norovirus (summarized in Paper II) has
prompted the application of single-hit models that discard the Poisson assumption (Messner
et al., 2014; Schmidt, 2014; Teunis et al., 2008) since some of the inoculum in norovirus feeding
trials has been observed in electron microscopy to consist of aggregated viruses. Teunis et al.
(2008) considered a negative-binomial dose-distribution, which is both a mixed-Poisson and
stuttering Poisson distribution. When the pgf of the negative binomial is used in eq. (2.5) on
page 25, along with a beta-distributed R, an integral formulation for Gauss’ hypergeometric
function 2F1 is obtained as the dose-response model:

pI = 1− 2F1(λd/b, α;α+ β,−b) (2.20)

Here, b is a dispersion parameter. The numerical evaluation of this function is similarly
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challenging as for 1F1 (Pearson, 2009; Pearson et al., 2015). Messner et al. (2014) studied
a simplified model that assumed hosts were either fully immune or fully susceptible; this
obliviated the need to consider the full dose-distribution and only required specification of
the mean dose and the mean number of viruses per cluster. Schmidt (2014) showed that the
maximum likelihood estimates of the dose-response parameters in these models are poorly
identifiable given the currently available data. He also introduced a parameter to represent
complete immunity in part of the host population and showed that this can dramatically alter
the parameter estimates.

2.2.2 Effect on single-hit risk

The speculation in the literature that clustering of pathogens may occur in water, and the
studies on norovirus dose-response, motivated the development of Paper II. The goal was
to investigate, in some generality, the effect on risk estimates of clustering/overdispersion
when incorporated into the dose-distribution of single-hit models. It is emphasized that the
independent-action-hypothesis was retained even in the case of pathogen clustering.

The details are left to Paper II. The main result is that, in general, compared to using a Pois-
son distribution with an equivalent mean dose, the single-hit risk estimate is reduced with both
stuttering Poisson distributions (Paper II, Proposition 1) and mixed Poisson distributions
(Paper II, Proposition 2). Thus, if the mean dose for an exposure scenario is known with
(sufficient) certainty, using the Poisson distribution is conservative in a single-hit framework.
This may be convenient since closed form expressions are available in this case, and one can
rest assured that further data collection efforts to characterize the dose distribution in greater
detail will only contribute to increased precision in the risk estimate, and not conservativeness.

Furthermore, it was shown in Paper II that moderate overdispersion in the form of a Hermite
distribution (no clusters with more than two pathogens in it; Kemp and Kemp, 1965) is unlikely
to significantly affect the risk estimate as long as E(R) � 1. In dilute suspension, only
moderate clustering seems plausible (Grant, 1994) unless pathogens are introduced into the
water in a clustered form. However, extensive overdispersion, which may occur as a result of
temporal variations in pathogen concentrations (Englehardt et al., 2012) will lead to a marked
decrease in the single-hit risk. For this case, the bound presented below may be useful.

2.2.3 An improved upper bound on risk

The risk computed with a Poisson distribution represents an upper bound on risk, as estab-
lished by Propositions 1 and 2 of Paper II. However, at the expense of introducing another
parameter (in addition to the mean dose) pX(0), a better bound can be obtained for highly
overdisperse dose-distributions. The following risk bound was derived using Jensen’s inequality
(Paper II, Proposition 3):

pI ≤ (1− pX(0)) · f c

(
λd

1− pX(0)

)
(2.21)

This bound is valid for any dose-distribution and any concave conditional dose-response func-
tion f c that can be defined on the whole real line. In Paper II, we used f c as defined in
eq. (2.3) on page 25 and treated x as a continuous variable. The bound may be sharpened
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1 − Exact beta−Poisson (fitted)

2a − Beta−neg.bin. (fitted)

2b − Exact beta−Poisson (derived)

3a − Fractional Poisson (fitted)

3b − Dispersed fractional Poisson (derived)

4a − Jensen bound (fitted)

4b − Exact beta−Poisson (derived)

5a − Jensen bound with immunity (fitted)

5b − Exact beta−Poisson with immunity (derived)

Figure 2.4: Norovirus dose-response data and fitted models. “Derived” models are
identical to fitted models, but a dispersion parameter is fixed to a value corresponding to
fully dispersed pathogens. The full details are given in Paper II, from which this figure
is taken.

somewhat by taking f c in (2.3) as the (continuous) piecewise linear function constructed by
connecting the function values at integer x with line segments.

Numerical simulations in Paper II showed that the bound in (2.21) tends to be considerably
closer to the exact risk estimate, compared to a simple Poisson-model, when there is extensive
overdispersion in the dose-distribution. For example, it closely approximated the risk com-
puted with the discrete Weibull distribution (Englehardt et al., 2009; Englehardt and Li, 2011;
Englehardt et al., 2012), suggested as a distribution that can model extreme overdispersion in
long-term microbial counts in drinking water resulting from e.g. treatment plant upsets. This
suggests that the two parameters λd and pX(0) contain the bulk of the information on the
dose distribution that is relevant for a single-hit dose-response model. However, for moderately
overdisperse dose-distributions the simple Poisson bound may be more precise.

The closeness of the bound to exact risk computations suggests that it may serve as an ap-
proximate single-hit dose-response model. This was illustrated by fitting the bound, with
beta-distributed R, to the currently available norovirus dose-response data, using maximum
likelihood estimation (see next section). Figure 2.4 shows the results. It was found that
estimated beta parameters were very similar to those obtained by fitting the beta-negative
binomial model in equation (2.20). Similarly to Schmidt (2014), we found that including an
immunity parameter in the model has a dramatic effect on the estimated beta parameters,
with a reduction in the mean single-hit probability E(R) of three orders of magnitude. Given
that the doses in the feeding trials were determined by qPCR, it seems somewhat unlikely that
E(R) could be close to 0.7 as estimated by the beta-neg.bin. model, since more commonly
only a fraction of PCR-units are actually infectious. More experimental data on norovirus
dose-response would therefore be valuable, and progress in developing a culturing method for
norovirus may lead to better assessment of infectivity in future studies (Jones et al., 2014).
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2.3 Model fitting

Data for dose-response assessment stems either from feeding trials or from outbreak data.
Regardless of the source, the data will be of the same type. Groups of subjects, indexed by i,
will be fed varying levels of mean doses λd,i. The total number of subjects is ni and the number
of positive responses (infection, illness) is pi. A general reference for modeling this type of
data, so-called quantal response, is Morgan (1992). Maximum likelihood (ML) methods are
typically used to to estimate parameters. The likelihood function is given by the product of
binomial likelihood functions, where each factor corresponds to a certain dose level:

L(ω) =
∏

i

(
ni
pi

)
[fm,i(λd,i, ω)]pi [1− fm,i(λd,i, ω)]ni−pi (2.22)

Here, ω is a parameter vector and we allowed the functional form of fm,i to depend on i. The
MLE is given by the value of ω that maximizes L; the binomial coefficient may be dropped
in the optimization since it doesn’t affect the MLE. It is often convenient to work with the
logarithm ln(L) instead of L. The deviance of the model is given by

Y = −2 ln L(ω)
Ls

(2.23)

where Ls is the likelihood function for the saturated model, i.e. a model with one parameter
for each data point so that the data is fitted exactly:

Ls =
∏

i

(
ni
pi

)(
pi
ni

)pi (
1− pi

ni

)ni−pi
(2.24)

Maximizing likelihood corresponds to minimizing deviance; numerical optimization is required.
There may be several local maxima which warrants care in the numerical search. The curvature
of the likelihood surface in the neighbourhood of the MLE is related the confidence interval
for the parameter estimates.

Once the MLE has been found, goodness-of-fit may be checked by a likelihood-ratio test (Haas
et al., 2014). The null hypothesis of acceptable fit is rejected if the minimized deviance, Y min,
exceeds the critical value of the χ2-distribution with k −m degrees of freedom at the chosen
confidence level, k being the number of dose levels in the data and m the number of fitting
parameters in the chosen dose-response model. Uncertainty analysis may be performed by
likelihood-ratio methods, bootstrapping methods or Markov chain Monte Carlo methods.

2.4 Empirical support for single-hit models

The single-hit concept has historically been contrasted with ideas of a “threshold” or “minimal”
dose for infection to be established (Meynell and Stocker, 1957), i.e. a postulate that requires a
minimum number of pathogens to be ingested or a minimum number to succeed in multiplying
before the host suffers an identifiable infection.3 Threshold hypotheses are also known as

3Meynell and Stocker (1957) seem to imply an ingestion threshold while the QMRA references (Haas, 1983;
Haas et al., 2014) employ models that specify a threshold for the number of multiplying pathogens. The latter
was used in the supporting material of Paper II.
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hypotheses of cooperation or synergism. The threshold models have the property that their
slope at a dose equal to ID50 is steeper than a single-hit model with the same ID50 (Haas
et al., 2014). Data to support such steeper microbial dose-response relations are almost non-
existent4 (Haas et al., 2014), and practically all available human dose-response can be fitted
to the exponential model or the (approximate) beta-Poisson model and pass a goodness-of-fit
test (QMRA Wiki).

There are other lines of evidence besides generally acceptable single-hit model fits to data.
Meynell (1957a) and Rubin (1987) reviewed these and concluded that the independent-action-
hypothesis (IAH) is generally supported.5 First, several authors (e.g. Meynell (1957b) and
Meynell and Stocker (1957)) have inoculated test animals (typically mice) with a well-defined
mix of bacteria differing only in some marker property and not in their virulence or rate of
in-vivo multiplication. Under the IAH it is expected that at high doses, i.e. well above the
ID50, the proportion of each marker type recovered post-infection from blood or stools should
be similar to the composition of marker types in the inoculum. Furthermore, at doses below
the ID50, one expects that one of the marker types in the inoculum will dominate among those
recovered post-infection, while under a cooperative infection mechanism one would expect a
mix of strains even at doses less than ID50. The single-hit expectations are generally consistent
with the observed data for both bacteria and viruses.

A modern test of the IAH along these ideas was presented by Zwart et al. (2009) in virus-
larvae systems, using RT-qPCR methods to quantify different genotypes (i.e. markers). They
found that the IAH could not be rejected in two out of six host-virus systems studied, but
they acknowledged that an oversimplified model, which did not consider host variability and
variability in ingested dose, may have contributed to the rejection of the IAH in the other four
cases. A subsequent study confirmed that the observations could be reconciled with the IAH
if host variability was properly accounted for (Werf et al., 2011). Zwart et al. (2011) tested
the IAH in a plant-virus system using similar methods and found that the IAH could not be
rejected.

A second line of evidence cited by Meynell (1957a) and Rubin (1987), is the observation
that the time course of inoculation of a given total inoculum (i.e total dose) seems to be
non-essential to the development of infection. Under a cooperation hypothesis, one would
expect the probability of infection to be higher when all of the inoculum is administered
instantaneously. Meynell (1957a) also cited observations that the incubation time seems to be
dose-independent once the inoculum falls below the ID50, which is consistent with the IAH.

Finally, Rubin (1987) notes that there are observations of the ID50 being very low (2-3 organ-
isms) and, of estimated doses in detected drinking water outbreaks being well below the ID50,
both of which which go against an hypothesis of cooperation. There have been several (fairly
successful) attempts to validate dose-response models that were developed based on data from
feeding trials against data from outbreaks, e.g. for E.coli O157:H7 (Haas et al., 2000) and
Giardia (Zmirou-Navier et al., 2006). Haas et al. (2014) assert that a Cryptosporidium dose-
response model has been validated against the 1993 Milwaukee outbreak (Mac Kenzie et al.,
1994).

4Though frequently observed in chemical dose-response.
5The literature does not distinguish very well between the “one-may-be-enough” hypothesis fc(1) 6= 0 and

the real IAH hypothesis fc(x) = 1 − (1 − r)x (where the latter implies the first, but not vice versa), and it
is really not clear which part of the IAH is being tested, but more often it seems that it is the first of these
assertions that is being discussed.
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However, recently the IAH has been called into doubt by the increasingly numerous obser-
vations of fundamental cooperative behavior among microorganisms (Raymond et al., 2012),
in particular for pathogens that cause disease by toxin production. In fact, Cornforth et al.
(2015) entitled their paper “Bacterial cooperation causes systematic errors in pathogen risk
assessment due to the failure of the independent action hypothesis.” They presented an insect-
bacteria system in which the bacteria produce a toxin that enhances their ability to cause
septicemia, i.e. invasion of the blood stream. The interaction of toxins and bacteria pro-
duced mortality rates that were inconsistent with IAH assumptions. Furthermore, the authors
showed that fitting an IAH model to only high-dose data significantly overestimated the low
dose mortality rates in this system.

In summary, the available data is generally consistent with single-hit models, but the lack of
data to test the low-dose behavior of models as well as fundamental biological observations
of cooperative behavior among some pathogens, signal that future advances in dose-response
modeling may involve some modification of the single-hit concept.

2.5 Alternative and extended modeling approaches

Here, some alternative and extended dose-response modeling approaches are briefly mentioned.
There have been occasional attempts to use models from chemical dose-response for microbial
agents (Kodell et al., 2002; Moon et al., 2004). Examples are the log-logistic, log-probit and
Weibull models. These may generally be written

pI = fm(λd) =
∫ λd

0
fY (y) dy (2.25)

where fY (y) is the so-called tolerance distribution in the population of interest (Haas et al.,
2014). Unless fm′′(λd) = f ′Y (λd) < 0 for all λd, these models are convex in part of their
domain and therefore resembling threshold-models, which are not well-supported empirically.

Most commonly, morbidity and mortality ratios (the probability of illness and death, respec-
tively, given that infection is already established) have been treated as independent of dose.
Teunis et al. (1999a) and Havelaar and Swart (2014) developed models that relaxed this as-
sumption.

Most dose-response studies (experimental and theoretical) disregard the time it takes from
inoculation to a response is observed, i.e. the incubation time. Some early papers studied this
problem as a birth-death process of pathogens (Armitage et al., 1965; Williams, 1965). Haas et
al. (2014) assert that the Williams formulation implicitly specifies an exponential dose-response
model. More recently, Huang and Haas (2009) incorporated the incubation time in single-hit
models by simply making the parameter r (exponential model) or ID50 (beta-Poisson model)
an explicit function of time. Mayer et al. (2011) and Pujol et al. (2009) developed extended
birth-death models that explicitly incorporate immune system responses, and may account for
dose-timing effects.



3. Deep-bed Filtration of Viruses:
Papers III and IV

Deep-bed filtration (also known as granular filtration, sand filtration, rapid filtration, depth
filtration or packed-bed filtration) refers to the retention of suspended and/or colloidal particles
by a granular (or fibrous) porous medium as the suspension passes through it, and is a process
of interest in many areas of science and engineering (Tien and Ramaro, 2007). For water quality
control, the prime examples are sub-surface particle transport (Bradford et al., 2014; Ryan
and Elimelech, 1996; Sen and Khilar, 2006) and water and waste water treatment (Hijnen and
Medema, 2010; Jegatheesan and Vigneswaran, 2005). There are numerous other applications,
including e.g. air-filters and certain types of oil production methods where the goal is typically
to limit filtration (Alvarez, 2005; Zamani and Maini, 2009).

From the outset we should clearly distinguish granular filtration from membrane filtration,
which is also used for particle removal, including viruses (Fiksdal and Leiknes, 2006). In
membrane filtration, suspended particles are removed mainly because they are larger than
the pores of the filter, i.e. we have removal by straining/sieving. Particle removal during
granular filtration, on the other hand, is effected through a range of mechanisms of both
physical/mechanical and chemical character, and there is a potential to remove particles that
are much smaller than typical pore sizes of the medium. Hereafter, “filtration” is taken to
mean deep-bed filtration.

The purpose of this chapter is to put Paper III and Paper IV in context and present and
discuss their main findings. Section 3.1 introduces filtration for drinking water treatment with
an emphasis on the Nordic context and summarizes the literature on virus removal in drinking
water filters. Section 3.2 reviews removal mechanisms and both fundamental models as well as
macroscopic models that aim to capture the dynamic aspects of filtration. Section 3.3 presents
the methods and results from the pilot-plant study (Paper III) and Section 3.4 presents the
results from Paper IV on the effect of dynamic filtration effects on risk estimates.

3.1 Filtration for drinking water treatment

Rapid sand filtration became a mainstay of drinking water treatment during the early 20th
century. Its main original purpose was to remove particles from the water, including pathogens,
but it may also be made effective in removing natural organic matter (NOM) following coag-
ulation. NOM refers to the complex array of organic compounds that is present in natural
waters, often dominated by high molecular weight molecules such as humic acids that straddle
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Figure 3.1: Position of filtration in the treatment train. From Ødegaard et al. (2010).

the border between dissolved and suspended matter, but behaves much like colloids during
coagulation (Matilainen et al., 2010). Traditionally, NOM was mainly an aesthetic nuisance in
that it imparts color to the water, but during the 1970s studies showed that reactions between
chlorine and NOM resulted in disinfection by-products (DBP; mainly trihalomethanes) that
were carcinogenic (Boorman, 1999). This led to shift a in the drinking water industry, wherein
removal of DBP precursors became important. Coagulation-separation processes that target
NOM removal in addition to particle removal are often called enhanced coagulation (Edzwald
and Tobiason, 1999) and typically involves higher coagulant doses and stricter pH-control than
is common for particle removal alone. The NOM-content has been observed to be increasing
in Norway for several decades (Eikebrokk et al., 2004a).

3.1.1 Design, operation and regulations

In order for filtration to be effective, it is usually necessary to employ coagulation as a pre-
treatment, i.e. add a chemical (the coagulant) to the water in order to destabilize the parti-
cles/NOM and thereby promote particle growth and particle-filter grain attraction. Thus, in
designing a filtration process, the filter unit should not be viewed in isolation from its pre-
treatment and vice versa (Bache and Gregory, 2010; O’Melia, 1985). The most commonly
used coagulants are salts of iron and aluminum, which go through a series of hydrolyzing
reactions when added to the water. Often, pre-hydrolyzed versions of these salts are used,
partly because they consume less alkalinity (Ødegaard et al., 1990). The mechanisms by
which the coagulant destabilizes the NOM/particles are complex (Amirtharajah and Mills,
1982), but are usually categorized as (1) adsorption of positively charged metal species on
negatively charged particles (“adsorption-charge neutralization”), (2) enmeshment of parti-
cles/NOM in large amorphous metal precipitates (“sweep coagulation”), (3) compression of
the diffuse part of the electric double layer and (4) bridging of negatively charged particles
by positively charged polymeric metal species. Among these, the third mechanism is typically
less important in water treatment, but it may be difficult to identify the relative contribution
of each.

Coagulation-filtration comes in several configurations, as shown in Figure 3.1. The conven-
tional setup is used for waters that are high in suspended solids. It includes a flocculation
step to promote particle aggregation into larger flocs and then a sedimentation step (or in
some cases, flotation) before filtration. For waters that are lower in suspended solids, the
sedimentation step may be dropped (direct filtration) or both flocculation and sedimentation
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(a) Typical filter design.
(b) Typical filter cycle progression
(ripening period not to scale).

Figure 3.2: Typical filter design and filter cycle progression. From Crittenden et al.
(2005).

may be dropped (contact filtration). In the latter case, flocculation may instead occur to
some extent in the pores of the filter. Direct and contact-filtration are the more common
configurations used in Norway, where raw waters are usually low in turbidity and medium to
high in NOM-content (Ødegaard et al., 2010; Ødegaard et al., 1999). The efficiency of the
filtration process depends on the suspension to be filtered (particle size, density and surface
charge properties), the filter media (grain size and surface charge properties) and operational
conditions (coagulation, filtration rate, filter depth etc.). Rapid mixing of the coagulant with
water is usually important (Amirtharajah and Mills, 1982; Vrale and Jorden, 1971), but possi-
bly less so for the contact filtration configuration (Eikebrokk, 2012). Filter design is generally
based on practical experience and/or pilot testing, although it has been suggested that more
rational design methods may now be possible (Lawler and Nason, 2006).

Figure 3.2a shows a typical filter design. The more common situation is to have the filters
operating in downflow mode with two or sometimes three1 different filter media. The top layer
has coarser grains with lower mass density and the bottom layer has finer grains with higher
mass density. The size gradient is there to promote utilization of the entire filter bed and the
density gradient ensures that the layering stays the same after backwashing. The filter bed
rests on a foundation of gravel that protects the underdrains, and there are systems to control
the flow of water, backwash water and backwash air (if used). A filter will usually have to be
backwashed with an interval of 12-36 hours. A water treatment plant usually contains at least
two filters, connected in hydraulic parallel, so that water production can continue when one
filter is being backwashed. Unless there is advanced flow-control systems, this will usually lead
to an increased hydraulic load for the filters that are not being backwashed, which may have
an adverse effect on the filtrate quality (Kim and Lawler, 2012), including pathogens such as
Cryptosporidium (Emelko, 2001).

Effluent turbidity is universally used to monitor the filtration process. Figure 3.2b shows the
progression of a typical filter cycle in terms of turbidity and headloss. The dynamic behavior
occurs because captured particles effectively alter the physico-chemical character of the grain
surfaces as well as the pore geometry, which in turn affects the rate of particle capture and the

1A common configuration in Norway, the “Molde-process” has a third layer of crushed limestone to control
pH, alkalinity and calcium content.
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resistance to flow through the medium. Initially, it takes some time for the effluent turbidity
to stabilize; this period is called the ripening period and water is filtered to waste until effluent
turbidity improves. The early peak in turbidity stems from remnant backwash water in and
above the media (Amirtharajah, 1985). Then turbidity declines as the filter begins to capture
particles, which further enhances the particle-removal capacity (O’Melia and Ali, 1979). After
ripening, there is a prolonged period during which turbidity remains quite stable - this is the
operational period when water is directed to the consumer. Eventually, the filter capacity
is exceeded and turbidity starts to rise - the breakthrough period. Sometimes, a so-called
filter-aid (usually a cationic polymer) is also added before the filter in order to increase floc-
strength and delay break-through. After breakthrough, the filter is backwashed using high
flowrates (often aided by pressurized air) to clean the filter media and restart the process.
Also, as particles captured by the filter, the resistance to flow increases and manifests itself
as increased headloss. Unless, there is extensive (undesirable) surface filtration, the rate of
headloss increase is approximately linear as in the lower panel of Figure 3.2b.

Figure 3.2b shows only the effluent turbidity and not what is going on inside the filter bed.
In fact, at any given time, much of the particle removal occurs in a relatively small portion
of the bed, as observed by Adin and Rebhun (1974) during contact-filtration. This active
layer moves down the bed as the cycle progresses, i.e. there are ripening and breakthrough
fronts that propagate down the depth of the filter in wave-like manner and breakthrough
occurs when the wave reaches the filter outlet. Hence, the dynamic behavior of the filter
is a spatiotemporal phenomenon. Furthermore, turbidity performance may not reflect the
behavior of variably sized particles. Several studies have found ripening to occur faster for
larger particles than smaller particles (Clark et al., 1992; Kim and Lawler, 2008; Moran
et al., 1993a) and breakthrough to occur earlier for larger particles than smaller particles
(Moran et al., 1993a). Thus, ripening, stable performance (if at all) and breakthrough occur
simultaneously for different particles sizes, an observation that is central to the removal of
pathogens by filtration processes.

It is well-known that filtration processes are capable of achieving significant pathogen removal
rates (Hijnen and Medema, 2010). As mentioned in Section 1.2.4, the Norwegian drinking
water regulations (Drikkevannsforskriften, 2001) require the presence of at least two hygienic
barriers in a water supply system. The associated guidance document (Mattilsynet, 2011)
to the regulations further specify that a treatment process should be able to remove 99.9
% (3 log10) of bacteria/viruses and 99 % (2 log10) of parasites for it to be considered a
hygienic barrier against pathogens. This document also specifies criteria in terms of process
indicator parameters that, if met, are taken to ensure that the process meets the hygienic
barrier requirement. The criteria that apply to coagulation-filtration processes are shown in
Table 3.1.

However, according to the recent revision of the Microbial barrier analysis tool (Ødegaard et
al., 2016a,b, see Section 1.2.4), direct filtration and contact filtration systems are only credited
with a removal-capacity for viruses of 1.5 log10 if turbidity is less than 0.2 NTU and 2 log10
if enhanced coagulation is used with effluent turbidity < 0.1 NTU and color removal is better
than 70 %. The corresponding removal credits for both bacteria and parasites are 2.25 and 2.5,
respectively. The Norwegian water industry has also issued guidelines (Eikebrokk, 2012, 2014)
on the operation of coagulation-filtration processes, focused on ensuring a hygienically safe
operation. It was observed that, often, the upper limit on residual aluminum determines the
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Table 3.1: Criteria for a coagulation-filtration process to be recognized as a hygienic
barrier according to the guidance document (Mattilsynet, 2011) to the Norwegian drinking
water regulations (Drikkevannsforskriften, 2001).

Parameter Upper limit Comment
Aluminium [mg Al/l] 0.15 If Al is used for coagulation
Iron [mg Fe/l] 0.15 If Fe is used for coagulation
Color [mg Pt/l] 10 Should be less than 5 if Al/Fe is used for coagulation
TOC [mg C/l] 3 If volume < 10000 m3/day, COD may be measured instead
Turbidity [FNU] 0.2 Applies to each filter individually
Particle counts [1/ml] 500 Particle size 2-400 µm; applies to each filter individually

coagulant dose, i.e a higher coagulant dose is needed to achieve < 0.15 mg/l Al in the effluent
than is required to meet the other criteria in Table 3.1. It was recommended by Eikebrokk
(2012) that the virus removal capacity of the high NOM and low turbidity contact-filtration
process used in Norway be investigated, since the available data on virus removal under these
conditions is limited, as seen in the next section.

3.1.2 Observations on virus removal

Many studies on virus removal during rapid filtration have been reported in the literature. The
earliest appear to be Carlson et al. (1942), Kempf et al. (1942) and Neefe et al. (1947). Carlson
et al. (1942) studied the removal of poliovirus by inoculating mice with pre- and postfiltration
water. They observed a reduction in paralysis in the mice after filtration, and in particular
when the filter surfaces had been covered with alum floc. Kempf et al. (1942) similarly studied
the removal of poliovirus, but used monkeys instead of mice. Only one or two monkeys
were used per experiment, but poliomyelitis occurred in two monkeys after sedimentation and
filtration, and was taken as an indication that the process could not remove all viruses. Neefe
et al. (1947) observed a 40 % reduction (as compared to a control) in Hepatitis incidence, and
an increase in incubation time, in volunteers ingesting water that had been coagulated and
passed through a diatomite filter, although the sample size was too small to judge statistical
significance.

These early studies did not allow an estimation of the fraction of virus removed, but later
studies often have. Reviews have been provided by Berg (1973), Leong (1983), Payment and
Armon (1989) and more recently by Hijnen and Medema (2010). The experimental conditions
have varied greatly, with bench-scale to full-scale studies and different filter configurations,
raw water qualities and viruses used. For the summary in Tables 3.2 and 3.3, the literature
was searched for those studies that (1) studied drinking water in particular (not waste water)
(2) employed coagulation in at least some of the reported runs (in general, poor removal is
observed without coagulation) and (3) quantified removal across the filtration unit instead
of the combined effect of multiple unit processes. All studies were performed with surrogate
viruses added to the filter influent water, except for the full-scale studies that employed high-
volume sampling to quantify viruses that were naturally present in the water.

The most obvious observation that can be made from these tables is the highly variable
removal efficiencies that are reported. This may be related to differences between viruses (e.g.
Abbaszadegan et al., 2008, runs 49-52), between different raw water qualities and experimental
conditions (e.g. Hendricks et al., 2006, runs 39 vs. 40) and probably also variations in analytical
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methods. This makes it rather challenging to make general statements on the virus removal
capacity of deep-bed filters. The authors that studied the effect of varying filter media types
and depths found only moderate variations in removal (Harrington et al., 2003; Hendricks
et al., 2006). Indeed, Hijnen and Medema (2010) reported no systematic correlations between
removal and process conditions (including wastewater studies). Furthermore, they concluded
that coliphages appeared to be good surrogates for enteric viruses in the filtration process.

One clear trend, though, is that the studies that were carried out under full-scale conditions
tend to report lower removal efficiencies than pilot or bench-scale studies. Although full-
scale studies are a priori desirable and are favored by some authors (Hijnen and Medema,
2010; Payment and Armon, 1989), they rely on methods that involve high-volume sampling
and subsequent concentration in order to detect and enumerate viruses. Such methods suffer
from low and variable recovery efficiencies (Petterson et al., 2015), which leave the removal
estimates uncertain. An indication of this is the frequent reporting of negative removal in
full-scale studies. On the other hand, bench and pilot-scale studies may suffer from scale-
associated effects that are not present in full-scale, and they use influent concentrations of
lab-cultured viruses that are much higher than what occurs naturally. Hence, extrapolating
such results to full-scale conditions is not straightforward.

Although a number of studies were performed under direct or contact filtration conditions, few
studies reported a turbidity and organic matter content (if they reported at all) that are clearly
representative of Norwegian filtration practice. Hendricks et al. (2006) are probably those who
come closest in experiments 37 and 38 (experiment 40 was to study the effect of underdosing).
They also studied conventional filtration in run 39 (compare with 37) and found similar removal
for MS2 as compared to contact filtration, but better removal during conventional filtration
for φX174. Robeck et al. (1962) compared contact filtration and conventional filtration under
similar conditions (runs 3 vs. 4 and 5 vs. 6), and observed lower removal and prolonged
ripening during contact filtration.

Most of the reported studies did not attempt to capture the full dynamics of the filter cycle,
but relied on samples taken during the stable period. However, Robeck et al. (1962) sampled
more frequently and were able to observe prolonged ripening of viruses compared to turbidity
in several instances. Templeton et al. (2007) took samples during each of the filter stages
and observed significantly lower removal during ripening and breakthrough. Harrington et
al. (2003) observed increasing effluent virus concentrations during turbidity breakthrough.
However, none of these studies used sufficiently frequent sampling to compute true average
removal efficiencies for the entire filter cycle and it appears that only Templeton et al. (2007)
sampled from within the filter bed (one sampling event during stable operation from the
interface between the anthracite and sand layers, showing approximately equal log-removal in
the two layers). These were shortcomings that motivated the work behind Paper III, and
may also explain some of the variation in reported removal rates.

The next section will briefly review fundamental filtration theory and models. It is worth
noting, though, that viruses to be removed in drinking water filters are likely to be associated
with flocs (Gerba, 1984; Tanneru et al., 2013; Templeton et al., 2007; Templeton et al.,
2008), which are highly complex particles (Bache and Gregory, 2010; Gregory and Dupon,
2001), whose properties depend on local conditions. Thus, the virus-filter grain interaction
may actually be dominated by the floc-filter grain interaction, and theoretical expectations
based on virus-grain interactions may be of limited value in understanding virus removal in
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coagulation-filtration processes.

3.2 Filtration mechanisms and models

Models to describe or predict the behavior of filters have been widely researched. Reviews by
at various times in the history of the field include Ives (1964), Ives and Cleasby (1972), Tien
and Payatakes (1979), McDowell-Boyer et al. (1986), Amirtharajah (1988) and Jegatheesan
and Vigneswaran (2005). Schijven and Hassanizadeh (2000) reviewed virus transport in the
subsurface.

In rapid-filtration applications, transport is usually assumed to be one-dimensional and advection-
dominated (high Peclet numbers; Logan (2001)). A particle conservation equation for the
porous filter, modeled as a continuum, may then be written as

∂

∂t
(εc+ σ) + q

∂c

∂z
= 0 (3.1)

Here, t is time, z is the space coordinate, q is the filtration rate (Darcy velocity), c represents the
aqueous phase mass concentration of particles (mass of particles pr. unit volume of aqueous
suspension), ε is the porosity of the medium (volume of voids per unit volume of porous
medium) and σ is the mass of particles deposited on the filter grains (mass of particles per
unit volume of porous medium). Note that q does not change with depth. Furthermore, the
filtration rate is usually kept constant (except in declining rate filtration) by hydraulic control
so that q is a given constant. Hence, the unknowns are c and σ (and possibly ε). In addition
to initial and boundary conditions, a constitutive equation for the relation between c and σ
is needed. Filtration modeling started with Iwasaki (1937) suggesting the following first-order
(in space) relation, which remains the starting point for most analyses:

∂c

∂z
= −λc (3.2)

Ideally, a complete model for the filtration process should be capable of (1) predicting the
initial removal efficiency before significant particle capture takes place, (2) describe the effect
of already captured particles on the particle capture rate and (3) describe the effect of already
captured particles on the resistance to flow through the medium. However, two main lines of
research may be identified:

1. Fundamental, microscopic models take λ as a constant, which is assumed to be valid in
the early stages of filtration before deposited particles alter the conditions for filtration;
hence the name clean-bed theory. The goal is to predict λ from first-principles descriptions
of particle transport and attachment at the pore-scale in idealized geometries, using
measurable properties of the particles, filter medium and water.

2. Phenomenological, macroscopic models take λ as a function of σ and aim to describe the
behavior of the entire filter cycle. Parametrizations of the filtration function λ(σ) are
given in the literature, but case-specific parameters must be determined using data from
experiments. A related problem is to determine the resistance to flow throughout the
cycle, which similarly involves parameter-estimation of a headloss function (Tien and
Ramaro, 2007). When q is given externally, these two problems become decoupled.
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In the following, a brief overview of filtration mechanisms is given.

3.2.1 Transport, attachment, straining and detachment

At the pore-scale, the mechanisms responsible for particle removal may be categorized in two
(Elimelech et al., 1995):

1. Transport of a particle from the bulk pore water to the surface of a filter grain (termed
collector in filtration theory).

2. Interaction between the filter grain and the particle, resulting in attachment (or not).

The interaction forces between a filter grain and particles are generally very short-ranged,
on the order of a few dozen nanometers, while the typical dimension of a pore may be 1000 -
10000 times larger. Hence, the transport step and attachment step are considered to be largely
independent and are also treated as such in most fundamental mathematical models.

Transport

Figure 3.3 gives a schematic overview of transport mechanisms assumed to be operating during
the transport step. If particles simply followed the fluid streamlines perfectly, they would never
encounter the collector except when a streamline is very close to the collector (interception -
a). Hence, there are other mechanisms that are responsible for transporting particles across
streamlines. Brownian motion (b), the random movement of particles due to collisions with
thermally vibrating water molecules, is an important mechanism for colloidal-sized particles (
< 1-3 µm) such as viruses. For particles that are not neutrally buoyant, inertial deviation (c)
from streamlines and sedimentation (d) are important. Hydrodynamic forces (e) refer to such
effects as non-uniform frictional drag across the particle (especially for non-spherical particles)
that cause rotations and deviations from streamlines, as well as hydrodynamic resistance that
arises as a particle comes close to the collector.

Attachment

The two main forces considered for the attachment step in fundamental filtration models are
electrostatic interactions and van der Waals forces, which formed the basis for the original
DLVO-theory (see below). Electrostatic interactions may be attractive or repulsive while van
der Waals forces are always attractive.

Most particles dispersed in aqueous electrolytes carry a net positive or negative surface charge,
which sets up a potential difference between the surface and the bulk solution. The surface
charge is balanced by an accumulation of oppositely charged ions (counter-ions) in the vol-
ume surrounding the particle. The surface-charge and the layer of accumulated counter-ions
together constitute the electrical double-layer. Except for the very near-surface region, the
layer of counter-ions is only loosely adsorbed to the particle and referred to as the diffuse
layer and the ionic composition of the diffuse layer approaches that of the bulk solution as
the distance from the particle increases. The extent of the double-layer is heavily dependent
on the ionic strength, with higher ionic strength resulting in compression of the diffuse layer,
but usually between 1 and 100 nm in aqueous solutions (Elimelech et al., 1995). For most
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Figure 3.3: Pore-scale transport mechanisms. From Ives (1970).

practical and modeling purposes, the surface potential is equated with the experimentally
available electro-kinetic potential (or zeta-potential), which is the potential at the shear-plane
separating mobile ions and immobile ions. When two particles/surfaces approach each other,
their diffuse layers start to overlap which leads to repulsion or attraction, depending on the
surface charges. Models exist to compute the interaction energy, most relying on simplified
geometries, ions as point charges, and assumptions on thermodynamic equilibrium (Elimelech
et al., 1995).

One important way in which particles acquire surface charge is by ionization of surface func-
tional groups. The pH which results in a net surface charge of zero is called the isoelectric
point (IEP), and for most mineral surfaces and biocolloids (including viruses, Michen and
Graule (2010)), the IEP is found at pH-values (significantly) less than neutral and therefore
most surfaces become negatively charged in natural waters.

Van der Waals forces are intermolecular forces that arise from the interaction of permanent
and/or induced dipoles, and are always attractive due to a correlation of the fluctuating
electromagnetic fields associated with the induced dipoles. Hamaker’s method (Hamaker,
1937) is usually used for computing van der Waals forces between macroscopic bodies, and
relies on an assumption that the pairwise interaction between every molecule may be simply
added to compute the total net force. The non-geometric aspect of this problem is characterized
by the Hamaker constant, A, which depend on material properties, largely the polarizibility,
of the materials involved, i.e. particles and suspending medium, e.g. water (Elimelech et al.,
1995).

DLVO-theory was developed independently by Derjaguin and Landau (1941) and Verwey and
Overbeek (1948), from whom the theory derives it name. The fundamental idea of DLVO-
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theory is to interpret colloidal stability in terms of the sum of interaction energies from electro-
static forces and van der Waals forces (interaction energy as a function of separation distance
between two particles), see Figure 3.4.

Figure 3.4: Examples of DLVO energy profiles. In a), VR is the electrical double layer
interaction energy and VA is the van der Waals interaction energy for two equal spherical
particles of 1 µm diameter. VT is the sum of these two energies. The profile was calculated
based on a 1-1 electrolyte, a zeta potential of 30 mV, electrolyte concentration of 50 mM
and Hamaker constant of 8.3 ·10−21. In b), three qualitatively different energy profiles are
shown. From Elimelech et al. (1995).

We see from the figure that we can have quite different energy profiles, depending on the
properties of the particles involved. There will always be an energy well at close separation
distance to the surface (primary minimum) that results from the increasing van der Waals
force as the particle approaches the surface. When electrostatic interactions are repulsive,
there will be a peak (energy barrier) in the energy profile that, if higher than the thermal
energy of particles, poses a hindrance for attachment in the primary minimum. If there is an
energy barrier, there may also be a small energy well at large separation distances (secondary
minimum). If there is no energy barrier, every particle that comes close enough will in theory
be deposited in a primary energy minimum, and deposition is said to be transport-limited.

While DLVO-theory is widely applied in particle deposition problems (Adamczyk andWeroński,
1999; Hermansson, 1999), often non-DLVO forces are invoked to explain observations (Grasso
et al., 2002). These include steric forces, bridging, Born repulsion and hydration forces (Elim-
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elech et al., 1995), hydrophobic forces (Donaldson et al., 2015) and depletion forces (Weroński
et al., 2003).

Straining and detachment

The importance of interstitial straining and detachment of previously captured particles has
been somewhat controversial in the filtration literature. A conventional rule of thumb (Herzig
et al., 1970) is that straining is relatively insignificant if particle diameters are less than 5 %
of the porous medium grain diameter. In porous medium micromodels straining was observed
to be important for particle to pore throat ratios larger than 40 % (Auset and Keller, 2006).
Note that there is no simple relationship between grain size distribution and pore throat size
distribution. It has been argued that researchers have been too quick to invoke straining as
a mechanism when conventional filtration theory fails to explain experimental observations
(Johnson et al., 2011).

Regarding detachment, the early filtration literature contained the opposing views of Ives
and Mints (the “Mints-Ives controversy”), where Ives (e.g. Ives, 1969) held that detachment
did not occur while Mints (e.g. Mints, 1966) considered it important. A growing body of
theoretical (Bai and Tien, 1997; Bergendahl and Grasso, 2003) and experimental evidence
(Kim and Lawler, 2006; Kim and Tobiason, 2004; Moran et al., 1993b) suggests that particle
detachment do play a role, in particular during the latter stages of a filter cycle (Moran et al.,
1993b) and during hydraulic shock loads (Kim and Lawler, 2006). However, there seems to be
no general consensus on the relative importance of attachment and detachment. Furthermore,
models for the detachment process are not as well-developed as for the attachment step and
consequently detachment tend to be overlooked in applications.

3.2.2 Fundamental models

First-principles models to predict λ employ mathematical descriptions of the transport and
attachment mechanisms in the previous section. To this end, an idealized porous medium
model is needed so that the pore-scale fluid flow field can be computed (Payatakes et al.,
1974). Stokes flow is usually assumed, neglecting inertial terms in Navier-Stoke’s equation.
Early studies (Yao et al., 1971) relied on the isolated sphere model, but the most commonly
used model has been the Happel-sphere-in-cell model (Happel, 1958), which is considered
to represent the influence of nearby grains more realistically (Nelson and Ginn, 2005, 2011;
Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004).

Regardless of which porous medium conceptual model is chosen, the goal is to compute the
single collector efficiency, which is defined as

η = Rate at which particles attach to the collector
Rate at which particles approach the collector = Iattachment

Iapproach
(3.3)

where the rate of approach is usually computed simply from the particle flux towards the
projected area of a single collector. The difficult part is to compute the rate of particle
attachment to the single collector.

In fact, it has proven very difficult to obtain agreement with experimental data when there
is an electrostatic energy barrier to deposition (Johnson et al., 2007; Tufenkji, 2007). In the
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presence of energy barriers, the relative deposition of differently charged particles (including
viruses; e.g. Dowd et al. (1998)) may be qualitatively consistent with theoretical expectations,
but the observed deposition rates tend to be orders of magnitudes higher than predicted by
theory. Deposition in the secondary energy minimum and heterogeneity of grain surfaces (e.g.
Tufenkji and Elimelech, 2005), as well as straining (e.g. Bradford et al., 2006) have been
invoked to explain this phenomenon. There are also shortcomings in the classical DLVO-
theory (Adamczyk and Weroński, 1999) and, at least in the case of microbial particles, it has
been suggested that more refined models are needed to characterize their electrohydrodynamic
properties (Dika et al., 2011; Duval and Gaboriaud, 2010; Langlet et al., 2008). Developments
in pore-scale experimental techniques may also help in making progress in understanding
filtration mechanisms at a fundamental level (Keller and Auset, 2007).

Because of these challenges, models have instead focused on computing η in the absence of
energy barriers, which is assumed to be equal to normalized collision rate and called the
single-collector contact efficiency η0:

η0 = Rate at which particles collide with the collector
Rate at which particles approach the collector = Icollision

Iapproach
(3.4)

With this approach, η is computed as

η = η0
Iattachment
Icollision

= η0α (3.5)

where α is known as the sticking efficiency and is determined by fitting the model to exper-
imental data. The relationship between η and λ is most often obtained by considering the
number density of collectors in the porous medium (Elimelech et al., 1995) and results in:

λ = 3(1− ε)αη
2dc

(3.6)

where dc is the grain diameter of the medium. Logan et al. (1995) and Nelson and Ginn (2011)
discussed the issue of which reference velocity (pore-water velocity or approach velocity) to
use for fundamental pore-scale modeling and the appropriateness of equation (3.6).

Several studies have focused on obtaining practically useful expressions for η0 (Long and
Hilpert, 2009; Long et al., 2010; Ma et al., 2009; Nelson and Ginn, 2011; Rajagopalan and
Tien, 1976; Tufenkji and Elimelech, 2004; Yao et al., 1971). They differ in the porous medium
model chosen, which mechanisms are included and the choice between Eulerian approaches
(solving a convection-diffusion equation; Tufenkji and Elimelech, 2004; Yao et al., 1971) and
Lagrangian approaches (solving a particle trajectory equation; Long and Hilpert, 2009; Long
et al., 2010; Ma et al., 2009; Rajagopalan and Tien, 1976). Except for Yao et al. (1971),
they all share the feature that closed-form expressions for η0 are developed by regressing exact
numerical computations for η0, obtained by exploring a large part of the parameter space,
against dimensionless variables that are assumed to characterize the problem; hence the name
“correlation” equations.

The most widely used equation is the one developed by Tufenkji and Elimelech (2004) (TE),
which was shown to fit experimental data somewhat better than previous models. Building
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Table 3.4: List of dimensionless parameters used in equations (3.8)-(3.10). Adapted from
Tufenkji and Elimelech (2004).

Parameter Definition Name Physical interpretation

As
2(1− p5)

2− 3p+ 3p5 − 2p6 Happel parameter Inherited from the Happel
model; p = (1− ε)1/3

NR
dp
dc

Aspect ratio Ratio of particle diameter to col-
lector diameter

NPe
qdc
D

Peclet number Ratio of convective transport to
diffusive transport

NvdW
A

kbT
van der Waals number Ratio of van der Waals interac-

tion energy to thermal energy
NA

A

3πµdp2q
Attraction number Represents the combined influ-

ence of van der Waals forces and
fluid velocity on deposition rate
due to interception

NG
dp

2(ρp − ρw)g
18µq Gravity number Ratio of Stokes settling velocity

to fluid approach velocity
ε - porosity; dp - particle diameter; dc - collector diameter; q - approach velocity
D - particle diffusion coefficient from Stokes-Einstein equation; A - Hamaker constant
kb - Boltzmann’s constant; T - absolute temperature; µ - dynamic viscosity
ρp - particle density; ρw - water density; g - acceleration of gravity

on the earlier studies, they used the additivity assumption

η0 = ηD + ηI + ηG (3.7)

where ηD, ηI and ηG are the single-collector contact efficiencies obtained when only diffusion,
interception and sedimentation is included in the numerical model, respectively. They found
the following after regression analysis:

ηD = 2.4A1/3
S N−0.081

R N−0.715
Pe N0.052

vdW (3.8)

ηI = 0.55ASN
1.675
R N0.125

A (3.9)

ηG = 0.22N−0.24
R N1.11

G N0.053
vdW (3.10)

Definitions of all the dimensionless terms may be found in Table 3.4. Similarly to the other
correlation equations, η0 has a U-shape when plotted against particle size (see Figure 3.10 on
page 61) with a minimum close to 1 µm. For smaller particle sizes, η0 is dominated by ηD
(Brownian particles) and for larger particles by ηI and ηG.

3.2.3 Macroscopic models for filtration dynamics

The fundamental models presented in the previous section do not attempt to describe the
effect of already captured particles on the filter efficiency. There are pore-scale first-principles
attempts at this too (Tien and Ramaro, 2007), but conventionally a macroscopic approach
has been adopted which includes a filtration function whose parameters must be determined
from experimental data. The problem is briefly presented here as a skeletal background for
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the model sketch presented in the Appendix of Paper III.

The starting point are the fundamental equations introduced earlier:

∂

∂t
(εc+ σ) + q

∂c

∂z
= 0 (3.1)

∂c

∂z
= −λc (3.2)

By either comparing the size of terms or introducing a “corrected” time coordinate, the particle
conservation equation has usually been simplified by, in effect, dropping the first term on the
left hand side (Dábrowski, 1988; Horner et al., 1986):

∂σ

∂t
+ q

∂c

∂z
= 0 (3.11)

The inaccuracy inherent in this simplification is generally considered negligible (Dábrowski,
1988), except possibly for the very early stages of a filter run. With equation (3.1) replaced
by equation (3.11), the Iwasaki expression can be replaced with a first-order (now in time)
filtration rate expression:

∂σ

∂t
= λqc (3.12)

As the filter cycle progresses, the filter coefficient λ is assumed to change with the amount of
deposited particles so one defines

λ = λ(σ) = λ0F (σ) (3.13)

where λ0 is the initial filter coefficient and F (σ) is a correction factor known as the filtration
function. In order for the filtration equations to describe an entire filter run, with ripening,
stable operation and breakthrough, F needs to be first increasing, than decreasing with σ.
Several parametrized expressions for F that have this property have been presented in the
literature (Jegatheesan and Vigneswaran, 2005; Tien and Ramaro, 2007). The one that is
considered the most flexible was suggested by Ives (1969):

F (σ) =
(

1 + bσ

ε0

)n1 (
1− σ

ε0

)n2 (
1− σ

σult

)n3
(3.14)

where b, n1, n2, n3 and σult are fitting parameters, and ε0 is the clean-bed porosity. The
parameter σult represents the maximum value that σ can attain and is considerably smaller
than ε0.

Generalizations of the problem above may be required. If detachment is considered non-
negligible, equation (3.12) must be modified to include a detachment term (e.g. Adin and
Rebhun, 1987), or in general one needs an expression on the form

∂σ

∂t
= F gen(c, σ, q) (3.15)

where the property F gen(0, σ, q) < 0 for at least some σ > 0 expresses the possibility of
detachment. If the filtration rate q is not given, it becomes a variable to be determined together
with c and σ, which requires another constitutive expression (and a boundary condition) for
the relationship between headloss and σ (Tien and Ramaro, 2007). Finally, if there are multiple
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particle types, one may need separate mass balance and filtration rate expressions for each
particle type.

Initial and boundary conditions for the set of equations (3.11) and (3.15) are usually taken as:

c(z, 0) = σ(z, 0) = 0 z ≥ 0 (3.16)
c(0, t) = cin(t) t > 0 (3.17)

Herzig et al. (1970) showed that when the filtration rate is on the form (3.12), this coupled sys-
tem of partial differential equations can be rewritten as a set of ordinary differential equations
that can be solved sequentially.

The inverse problem of determining the parameters of F gen from experimental data involves
optimization of some objective function, typically minimizing a sum of squared errors (Bai and
Tien, 2000), using for example the Levenberg-Marquardt method or possibly Markov chain
Monte Carlo methods. The problem has been studied from a more mathematical viewpoint
(in an oil production setting) by Alvarez et al. (2013), Alvarez (2005), and Alvarez et al. (2006,
2007).

3.3 Pilot-scale filtration experiment: Paper III

The observation that previous studies on virus removal during coagulation-filtration in drinking
water treatment had practically only sampled from the filter effluent, using only relatively
coarse sampling frequencies, was the main motivation for undertaking the experimental study.
In addition, it was desirable to obtain more data for virus removal for the contact-filtration
process. The main purpose of the study was therefore to characterize in detail the spatio-
temporal pattern of virus retention in a filtration system that was reasonably representative of
Norwegian filtration practice, and investigate how virus removal relates to particle removal (as
measured by turbidity) throughout the depth of the filter and the entire filter cycle. Hopefully,
the collected data can be used to fit a dynamic filtration model, but this is still work in progress.
The impact of different experimental conditions was not a focus of this study, since the work
load associated with such high-resolution sampling is substantial. There were plans to run
replicate filtration cycles, which unfortunately had to be discarded due to considerations of
time, cost and raw water availability.

3.3.1 Experimental setup and methods

A summary of the experimental approach is provided here; the full details may be found in
Paper III.

Pilot plant and operational conditions

A pilot-scale filtration plant was designed and constructed specifically for the purposes of this
experiment. A schematic overview of the plant is given in Figure 3.5 on the following page and
a photograph in Figure 3.6 on page 55. The filter column was a 10 cm diameter PVC pipe and
the filter media were chosen to conform with the filter design at Nedre Romerike Vannverk
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Figure 3.5: Schematic overview of the pilot-plant. From Paper III.

(NRV), Strømmen.2 Physical characteristics of the two media are given in Table 3.5a on
page 56. The top layer, Filtralite NC 0.8-1.6 mm (normal density, crushed), is an expanded
clay material with a high internal grain porosity. The performance of Filtralite has generally
been on par with the more conventional anthracite media, but with slower headloss increase
(Eikebrokk and Saltnes, 2001, 2002; Saltnes et al., 2002a,b). The bottom layer, Rådasand
0.4-0.8 mm, is a typical quartz sand. The ratio of column diameter to effective grain size
was greater than 50, the recommended minimum ratio to minimize wall effects (Lang et al.,
1993; Mehta and Hawley, 1969). A shallow support layer of graded gravel covered the outlet
arrangement.

The pilot-plant was equipped with an extensive system for control, monitoring, sampling
and dosing of chemicals/microorganisms, as shown in Figure 3.5. The filtration rate was
kept constant at 5.9 m/h by a feed pump while hydraulic head at the filter outlet was kept
constant by an overflow. Thus, the filter was run in constant flow, rising head mode. The
coagulant used was PAX-18 (Kemira AS), a 42 % basicity poly-aluminium chloride that is
being used at NRV and is a commonly used coagulant in Norway. No filter aid was used.

2This plant uses a conventional configuration with sedimentation before filtration. The total filter depth
may be somewhat greater than usual.
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Figure 3.6: Photograph of the pilot-plant.
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Table 3.5: Filter material data, raw water characteristics and operational conditions.
From Paper III.

(a) Filter material physical data, based on the respective
manufacturer’s information.

Parameter Filtralite Rådasand

Layer depth (m) 0.79 0.5
Grain size, nom. range (mm) 0.8-1.6 0.4-0.8
Effective grain size, d10 (mm) 0.95 0.4
Column diameter/d10 (-) 105 250
Uniformity coefficient, d60/d10 (-) < 1.5 < 1.8
Primary porosity (-) 0.58 0.45
Bulk porosity (-) 0.80 0.45
Grain density (kg/m3) 1260 2600
Bulk density (kg/m3) 530 1440

(b) Raw water characteristics and opera-
tional conditions.

Parameter Value

Raw water turbidity (NTU) 0.7-0.8
Raw water color (mg Pt/l) 26
Raw water TOC (mg/l) 3.03±0.61
Raw water UV absorption (1/m) 13.1
Raw water SUVAa (l/(m·mg)) > 4.3
Raw water pH (-) 7.3
Raw water alkalinity (mM) 0.28
Raw water temp. (◦C) 15-16

Filtration rate (m/h) 5.9
Flow rate (l/min) 0.77
PAX-18 dose (mg Al/l) 1.5
HCl dose (mM) 0.12
Initial total headloss (cm) 26
aSpecific UV absorption (UV abs./DOC)
TOC/DOC: Total/dissolved organic carbon

Hydrochloric acid (HCl) was used for pH adjustment. Pressure transmitters and ports for
automatic sampling were installed with non-uniform spacing along the column in order to focus
data-collection on the regions where the largest changes were expected to occur. Sampling
ports protruded approximately 5 mm into the filter media to avoid wall effects, and were
connected through equal-length tubes to an automatic sampler that was designed to take
samples (12 times 8 samples) from all ports simultaneously at programmed intervals and store
them in a refrigerated box. Prior to each sampling event, three tube volumes would be drained
by the sampler to discard “old” water. The flow rate of the sampler was adjusted so as to
not disturb the flow in the column excessively. Manual samples could be taken from ports M1
(before coagulant), M2 (after coagulant) and M3 (from the effluent).

Raw water was collected from the river Glomma at NRV and stored at campus in an un-
derground tank. After some initial sedimentation, turbidity remained stable. Raw water
characteristics and operational conditions are given in Table 3.5b. The relatively high value
of >4.3 for the specific UV absorption (SUVA) indicates that the organic material is rich in
aromatic compounds and well suited to treatment by coagulation (Matilainen et al., 2010).
The optimal dosing regime was determined by testing in the pilot plant itself since jar-tests
are not fully informative for the optimal dosing in a contact-filtration system. The lowest dose
that resulted in compliance with the criteria (aluminium, color, turbidity) in Table 3.1 was 1.5
mg Al/l and a coagulation pH of 5.8 seemed optimal. This dose is in agreement with empirical
models for the optimal dose developed by Eikebrokk et al. (2004b). A test run then showed
that turbidity breakthrough occurred after approximately 15 hours.

Prior to a filter-run, a batch of raw water was pumped from the underground tank to a smaller
steel tank in the lab. The column would be backwashed with tap water at a rate of 50-60 m/h
for approximately 15 minutes. Some intermixing of the filter materials were observed after
settling even when the backwash rate was gradually reduced. The column was then run with
raw water for approximately 15 minutes to displace the tap water in the column as this was
consider to give a more realistic initial condition for the experiment. Dosing of HCl, coagulant
and microorganisms were then initiated simultaneously and dosing continued throughout the
filter cycle.



3.3. PILOT-SCALE FILTRATION EXPERIMENT: PAPER III 57

Microorganisms

Two model viruses were included in this study. F-specific coliphage MS2 is an icosahedral
single-stranded RNA virus with a diameter of 27 nm (Strauss and Sinsheimer, 1963), while
Salmonella Typhimurium phage 28B (Lilleengen, 1948) is double-stranded DNA virus with
a 50 nm head attached to a ∼10 nm baseplate, and infects Salmonella Typhimurium type 5
(Svenson et al., 1979). The former was included since it is commonly used as a pathogenic
virus surrogate (Table 3.3) and the latter was included since our research group has used it
extensively (Heistad et al., 2009a; Heistad et al., 2009b) for wastewater studies and the virus
is easy to work with. We believe this study, along with Willumsen (2015), is the first to use
it for deep-bed filtration experiments, but it has been used previously in a drinking water
biofiltration study in Sweden (Persson et al., 2005).

MS2 was enumerated (relative concentrations) primarily by reverse transcription quantitative
polymerase chain reaction (RT-qPCR) as described in Paper III. Preliminary investigations
found no inhibitory effects of the coagulant in the RT-qPCR assay. Some samples were also
enumerated by double-layer plaque assay against E.coli Famp for comparison with RT-qPCR
results. Previous studies, and preliminary investigations for this study, have shown an inacti-
vation effect in plaque assays of poly-aluminium chloride coagulants on F-specific phages like
MS2 (Kreißel et al., 2014; Matsui et al., 2003; Matsushita et al., 2011). In order to reduce the
impact of this effect, a modification of the method proposed by Matsushita et al. (2004) was
used.

Phage 28B was enumerated by double-layer plaque assay. Preliminary studies, reported in the
master’s thesis of Willumsen (2015), revealed a slow inactivation and/or aggregation effect of
PAX-18 on 28B, resulting in a reduction of concentrations of up to 2 log10 units during one
week of storage. In order to reduce the impact of this effect, all 28B samples were plated
within 4 hours after sampling. Not all dilutions could be plated in replicates (due to hundreds
of plates < 24 hours), but at least two plates were incubated for every sample (two dilutions
and/or parallels of the same dilution). Concentration estimates for a sample were computed
as

ĉ = x

vp
∑k
i=1 di

(3.18)

where x is the total plaque count for all plates, di is the dilution factor for plate i (counting
duplicates twice) and vp is the volume of sample per plate. This corresponds to a maximum-
likelihood estimate, assuming Poisson-distributed counts.

For comparison with the viruses, the bacterium E.coli was also included in the study and
enumerated using the Colilert-18 method (IDEXX Laboratories) with Quanti-Tray/2000 trays
(one tray per sample). Stock microorganism suspensions were mixed with distilled water in the
ice-cooled and stirred feed tank. No adverse effects on the filtration process could be observed
from adding the microorganism suspension, when comparing with the trial filter runs that were
performed without microorganisms. Approximately 150 water samples were taken during the
filter cycle; all samples were analysed for 28B and a subset were analysed for MS2 and E.coli.
An overview of the sampling regime is given in the supporting material to Paper III.
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Table 3.6: Water quality results and influent microorganism concentrations. From Pa-
per III.

Parameter Value

Influent turbidity (-) 2.05
Influent SS (mg/l) 8.2
Influent coagulation pH (-) 5.8

Effluent pH (-) 5.9-6.0
Effluent color (mg Pt/l) 3
Effluent residual Al-content (mg Al/l) 0.031a/<0.010b

Influent mean (M1 and M2) 28B conc. (PFU/ml) 2.57 ·105

Influent mean (M1) MS2 conc. (PFU/ml) 1.96 ·106

Influent mean (M1 and M2) E.coli conc. (MPN/100ml) 9.31 ·105

aDuring dose optimization, total Al; bDuring experiment, dissolved Al
SS - suspended solids; PFU - plaque forming units; MPN - most probable number

3.3.2 Results and discussion

Measured water quality parameters and mean influent microorganism concentrations cin are
shown in Table 3.6. Influent microorganism concentrations were quite stable and these mean
concentrations were used in computing removal efficiencies. It took 2-3 hours for the effluent
pH to decline from about pH 7 to pH 5.9, which is likely a result of a pH-increasing effect of
the Filtralite medium, which ceased when the grains were covered with deposit.

Figures 3.7a - 3.7c on the facing page shows the logarithm of the probability of passage,
log10(π) = log10(c/cin), for all sampling points for 28B, MS2 and E.coli respectively. Here c is
the microorganism concentration in a sampling point. The conventional log-removal is simply
− log10(π). Figure 3.7d shows the manual turbidity measurements on a log-scale. Time zero
in these figures corresponds to the arrival of coagulated water at the filter surface. Effluent
turbidity became completely stable only after approx. 3 hours and turbidity breakthrough
started at 14.2 hours.

From Figure 3.7a we can clearly see ripening and breakthrough fronts for 28B moving in a
wave-like manner through the filter. The first auto-sample at 1 h 20 min was apparently
taken too late to capture the breakthrough (i.e. concentration minimum) in ports A-C. After
breakthrough in a port, the concentrations increase and eventually reach a stable value. There
is some removal in the upper part of the column even at the end of the cycle. The effluent
samples (M3) show that ripening for 28B continued for most of the cycle until breakthrough
occurred after approx. 13 hours, about 1 h before turbidity breakthrough.

The MS2 data in Figure 3.7b has a coarser temporal resolution, but is qualitatively similar
to the 28B data, with the exception that there is a mid-cycle peak in effluent concentrations
(M3). It may be speculated that this is related to a breakthrough in the upper parts of the
sand layer (where some intermixing with Filtralite was observed) before sufficient ripening
had occurred for MS2 in the bottom part of the sand layer. However, the samples that were
analysed by plaque assay do not show any sign of following the same trend. Thus the peak
may also be related to poor mid-cycle removal of some non-infectious MS2 or some unknown
measurement artifact. Apart from this observation, the plaque assay samples are largely in
agreement with the RT-qPCR samples, but showing slightly higher removal. This could be due
to some residual inhibition from PAX-18 which couldn’t be reversed by the methods described
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ent concentrations. All datapoints obtained with RT-
qPCR except those labeled as PFU.
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enumeration limits (see supporting material of Pa-
per III).
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Figure 3.7: Spatio-temporal passage of microorganisms and turbidity. From Paper III.

in Paper III.

The autosampler E.coli data for ports A-G in Figure 3.7c should be interpreted with caution
since several samples were above the enumeration limit (see supporting material of Paper III).
The E.coli results are nevertheless qualitatively similar to the virus results. The effluent
samples (M3), however, show that ripening was faster for E.coli and breakthrough occurred
earlier, as compared to viruses. The breakthrough was also not as sharp as for viruses, as seen
by the lesser curvature at the concentration minimum.

Finally, the turbidity data show a similar pattern as for 28B, but noise in the low-turbidity
region makes it difficult to discern ripening in the ports below port E. The rising limbs of the
turbidity breakthrough curves are slightly steeper than the 28B curves for the Filtralite layer
and less steep than the 28B curves for the sand layer. It is currently not clear how to interpret
this observation. It might simply be an artifact related to the greater precision of the virus
analyses for low concentrations, where turbidity measurements hit the noise floor.

For all microorganisms, no systematic differences between samples from M1 (before coagulant
addition) and M2 (after coagulant addition) could be observed (Figures 3.7a - 3.7c). For 28B
and E.coli, which were enumerated by culturing methods, this indicates that the coagulant
did not have any significant inactivating effect during the time span in question and also that
there was no excessive aggregation. For MS2, which was enumerated by RT-qPCR, aggregation
cannot be assessed, but the similarity between M1 and M2 samples confirmed the results of
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Paper III.

preliminary investigations that did not show inhibitory effects of the coagulant.

Figure 3.8 compares the passage of all three microorganisms in a single plot. This makes it clear
that the two viruses behave quite similarly while E.coli is both removed to a greater extent
and shows different dynamics in that ripening was faster and breakthrough occurred earlier.
These observations are consistent with earlier observations on the ripening and breakthrough
behavior of differently sized particles (Clark et al., 1992; Kim and Lawler, 2008; Moran et al.,
1993a). However, towards the end of the cycle the removal efficiencies appear to converge,
which suggests that removal mechanisms that are more independent of particle properties
dominate at this stage.

No dynamic model has yet been fitted to the data, but work is ongoing. A sketch of how a
coupled model for virus (28B) and particle removal (as measured by turbidity) in both filter
media may be constructed is given in the Appendix to Paper III. If successful, this may give
a more precise description of the dynamics of the system and the and the relationship between
overall particle removal and virus removal. However, we may gain some insight by working
directly with the data. Figure 3.9 on the facing page shows mean filter coefficients between
two sample ports computed directly from the data based on the solution to equation (3.2),
assuming a constant λ:

λi,i+1 = 1
zi+1 − zi

ln
(
ci
ci+1

)
(3.19)

Here i and i + 1 indexes two consecutive sample ports. Again we see the wave moving down
the filter bed, with all three microorganisms and turbidity behaving similarly, qualitatively
speaking. Note the lower temporal resolution of the MS2/E.coli data, which masks some of
their dynamics. Note also that the distance between sample ports varied so that one may
expect that some peaks are “averaged down” as one moves the rightmost panels in Figure 3.9.
For the bottom layer (sand), the peak in λ occurs approximately when the hydraulic gradient is
at its steepest. The hydraulic gradient between ports G and H started to rise before turbidity
breakthrough, and thus served as an "‘early warning"’ of imminent breakthrough.

The peak in λ-values in Figure 3.9 may be interpreted as corresponding to fully favorable
conditions to particle deposition, i.e. α = 1. Obviously, these are not clean-bed conditions,
but we will assume that we can apply ideal filtration theory at the time when the peak
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Figure 3.9: Estimated filter coefficients from a solution to equation (3.2), and hydraulic
gradients. Filter coefficients for E.coli could not be computed for several layers/times
because samples were above the enumeration limit. FL- Filtralite; RS - Rådasand. From
Paper III.
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occurred, under the conditions that prevailed in the bed at that time. This has been done for
Figure 3.10, where we compared the peak λ-values to those predicted by the TE correlation
equation (eqs. (3.7) - (3.10)), assuming a very wide range of the input parameters. It is seen
that the observed λ-values are not consistent with those predicted based on the size of each
microorganism, but are more consistent with particle sizes in the neighborhood of 20 µm. It is
unlikely that straining plays any role for singly dispersed viruses. Hence, the most reasonable
interpretation is that most viruses (as well as E.coli) were adsorbed to flocs and removed with
flocs. This is not surprising, given that viruses (as well as E.coli) are known to be removed
even during coagulation-sedimentation processes (e.g. Abbaszadegan et al., 2008), which rely
completely on virus-floc associations.

The observed differences in removal between each microorganism (E.coli � 28B > MS2) is
more difficult to explain. There could be differences between them in the proportion of mi-
croorganisms that are adsorbed to flocs. As discussed in Paper III, 28B may be slightly more
negatively charged than MS2 at the pH in the experiment and therefore adsorb a little better
to positively charged aluminium-flocs, and thereby show a little better removal. However, the
difference between the two viruses is slight and may also be related to the different enumer-
ation techniques used. The better removal observed for E.coli is currently unexplained. It is
larger than the viruses (approx. 1 µm × 3 µm), rod-shaped, and its surface charge appears
to lie between those of the viruses (Lytle et al., 2002). If it were not floc-bound, one would
expect poorer removal than for the viruses (Figure 3.10), but the opposite is observed.

As noted before, the experiments in Tables 3.2 and 3.3 on pages 42-43 that come closest to our
experimental conditions are the ones by Hendricks et al. (2006), labeled 37 and 38. Compared
to our experiment, their filtration rate was about twice as high and their alum dose in terms
of aluminum (approx. 2.4 mg Al/l) was higher. Their reported removal efficiency for the MS2
virus, 2.9 log10 units, is still quite similar to our results. However, some other researcher have
reported significantly lower removals for MS2 (Table 3.3) under other experimental conditions.

Even though our results were obtained in a single filter run, and generalizations of our com-
puted removal efficiencies should be performed with care, the dynamic microorganism removal
observed, even during the period of stable effluent turbidity, signals that care should be taken
when characterizing microbial removal efficiencies during filtration. Either samples should be
taken frequently, such as in this study, or at flow-proportional continuous sampling should be
employed so that one can obtain a correct mean removal efficiency, as discusses in the next
section.

The usefulness of surrogates, such as phages, for studying removal and inactivation of pathogenic
viruses is a continuous concern (Mesquita and Emelko, 2012; Sinclair et al., 2012). Hijnen and
Medema (2010) suggested that coliphages are appropriate surrogates for pathogenic viruses in
deep-bed filtration. Since Salmonella typhimurium phage 28B is easy to work with, it would
be a useful addition to the set of candidate surrogate phages if it can be confirmed that it
behaves similarly to MS2 and/or other coliphages under a wider range of conditions.

A final concern regarding the applicability of these results, and those from most other pilot-
scale studies, is the high influent concentrations used for the microorganisms; much higher
than what occurs naturally. If it can be assumed that microorganisms behave independently
of each other during both coagulation and filtration, then removal rates are not expected to
depend on influent concentrations. However, Assavasilavasukul et al. (2008) observed better
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removal of Cryptosporidium during conventional treatment with higher Cryptosporidium in-
fluent concentrations, and Prasanthi et al. (1997) observed better removal with higher influent
particle concentrations in laboratory columns without coagulation. It is not clear, though, if
these results would apply to viruses in our experiment. The virus volume is negligible com-
pared to the total floc volume, virus aggregation was not observed, and according to standard
theory for hetero-flocculation the virus-floc aggregation rate is expected to scale linearly with
virus concentrations (Crittenden et al., 2005). Further research is needed to clarify these is-
sues. The role of virus detachment in extrapolating results from pilot-scale to full-scale is
also not clear (Kim and Tobiason, 2004). If virus detachment is not negligible compared to
virus attachment, the observed removal efficiencies may be a function of the amount of viruses
available for detachment and thereby a function of influent concentrations. This should also
be further explored in future studies.

3.4 Filtration dynamics and health risks: Paper IV

3.4.1 Conceptual model

The purpose of Paper IV is to explore the role of such dynamic effects uncovered in Paper III
on optimal filter operation and health risk estimates in QMRA. That is, for a filter operating as
observed in Paper III, when should the filter-to-waste period be terminated and when should
backwash be initiated in order to minimize pathogen passage? And is the variation in filter
performance throughout the cycle relevant to health risk estimates or is it sufficient to work
with the mean performance? The studies mentioned in Section 1.2.3 that claim correlations
between short-term variations in turbidity and incidence of AGI signal that the dynamic effects
cannot be ruled out a priori.

Several assumptions need to be made in order to facilitate analysis. First, the data from the
pilot-experiment must be assumed to be representative of the performance of a full-scale filter.
Second, it is assumed that the raw water pathogen concentration and the performance of
other treatment processes are both stable on the time-scale of a single filter cycle. This means
that filtration is the only source of short-term temporal variation in pathogen concentrations
leaving the treatment plant. Third, simplifying assumptions on the operation of filters in
parallel is made (Figure 3.11 on the next page), in that filters perform identically except for
time-shifts in their filtration cycles, and flow through every filter is kept constant when another
filter is being backwashed. Fourth, a distinction is made between dispersive and non-dispersive
distributions systems, where the former is assumed to smooth out all temporal variations while
the latter conserve them. Finally, it is assumed that water consumers may be considered to be
flow-proportional samplers, i.e. each volume of water produced has the same chance of being
ingested by a consumer. It is acknowledged that there are several strong assumptions here,
which will be discussed below. Still, Paper IV demonstrates what kind of computations can
be made when high-resolution data on removal efficiency is available.

We will relegate most of the technical details to Paper IV. The main thing to establish is that
under these conditions the dose distribution experienced by a consumer in a non-dispersive
distribution system is naturally assumed to be mixed Poisson (aggregation assumed negligible)
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Paper IV.

and given by

pX(x) =
∫ ∞

0

e−λdλsx

x! fΛd(λd) dλd (3.20)

where Λd = kΠ is a random variable that represents the temporal variation in the Poisson
parameter λd, k represents the combination of raw water pathogen concentrations, ingestion
volume and removal by non-filtration processes (all assumed constant) and Π is a random
variable that represents the temporal variation in passage probability across a set of parallel
filters due to filtration dynamics. Under identical conditions in a dispersive distribution system,
the dose is simply Poisson-distributed with mean dose equal to E(Λd) = kE(Π). We know
from Paper II, Proposition 2, that the computed risk will be smaller in the non-dispersive
distribution system, the question is whether it can be said to be of any practical relevance.

3.4.2 Results and discussion

The mean pathogen passage probability during filtration is important both in a dispersive and
a non-dispersive distribution system. For a dispersive distribution system, in our simplified
model, it is the only quantity associated with filtration that matters. Figure 3.12 on the
facing page shows how the mean passage probability (blue curves) develops as the filter cycle
progresses. These curves were obtained by direct trapezoidal integration of experimental
datapoints. Each curve represents a different starting point for the filter cycle, at turbidity
0.1 NTU, 0.2 NTU or at stable turbidity (after 3 hours), respectively. The latter is hardly an
option in practice since a large amount of water then must be filtered to waste.

It is easily demonstrated mathematically (Paper IV) that, for any “u-shaped” curve for the
instantaneous passage probability (red curves in Figure 3.12), the minimum mean passage
probability (blue curves in Figure 3.12) occurs when the instantaneous and mean passage
probabilities are equal, which occurs after breakthrough of the microorganism in question,
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Figure 3.12: Turbidity, normalized cumulative passage and instantaneous and mean
probability of passage. From Paper IV.

i.e. after the minimum of the instantaneous passage. This results depends only on the qual-
itative shape of the passage curve, and is therefore expected to be robust. For example, for
E.coli, breakthrough occurred around 9 hours after filtration started, while the minimum mean
passage occurred after about 13 hours when filtration is started at 0.1 or 0.2 NTU. For the
viruses, this time difference between the respective minima is smaller. Furthermore, the dif-
ference between the minimum instantaneous passage and the minimum mean passage is up
to 1 log10 unit for all microorganisms. The minimum mean passage occurred before turbidity
breakthrough for bacteria, concurrently with turbidity for MS2 and slightly after turbidity
breakthrough for 28B.

The idea that the optimal time to stop filtration for a given pathogen occurs after breakthrough
for that pathogen may appear counterintuitive. In the beginning of the filter cycle, poor
performance incurs a “debt” that must be repaid during periods of better performance later in
the cycle. Repayment should continue until the current performance is worse than the mean
performance up to the current time. Continuing filtration until turbidity reaches 0.2 NTU,
which would still comply with the criteria in Table 3.1, is detrimental to overall performance,
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in particular for bacteria.

The extensive variation in microorganism removal efficiency observed during a single filter
cycle in our experiment may explain some of the variation in reported removal efficiencies
in previous studies (Table 3.3 on page 43). In order to facilitate comparison of results from
different studies, it is suggested that (1) high temporal resolution sampling regimes be used in
future studies and (2) results be reported as both instantaneous and mean removal efficiencies
as a function of filtered water volume per unit filter area (multiply axis-values in Figure 3.12
by 5.9 m/h). Using filtered volume will normalize for differences in filtration rate.

In order to test whether filtration dynamics affects risk estimates, the net performance of a
set of parallel filters were constructed by assuming that each filter performs identically to the
filter in our experiment. Each filter cycle was displaced in time from a reference filter cycle by
an integer multiple of a time shift δ, so that the net performance curve of all filters depends
on this δ. Figure 3.13 shows an example. We assumed that the flow through each filter stayed
constant when one of the other filters were being backwashed. In reality there may be hydraulic
steps that worsen filter performance (Kim and Lawler, 2012), in which case the dips in π in the
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lower panel of Figure 3.13 would not be so pronounced. This would complicate modeling since
the mean performance of the parallel filters would likely depend on δ, unlike in our simplified
model. Performance curves as in the lower panel of Figure 3.13 were used to construct dose
distributions of pathogens and used in conjunction with the exponential dose-response model
to compute risks. The exponential model was convenient since its parameter r is incorporated
into the parameter k as presented following equation (3.20).

Results show (figures presented in Paper IV) that filtration dynamics, as displayed by the 28B
data and E.coli data, is unlikely to affect risk estimates at pathogen concentrations normally
encountered in drinking water, since risk estimates accounting for the dynamics are very close
to risk estimates that are based on equivalent mean constant pathogen concentrations. This is
of course related to the linearity of exponential models in the low-dose region and is expected
to generalize to other single-hit models that are flatter than the exponential model (Paper I,
Proposition 1). The only situation where filtration dynamics appears to play a potential role is
in extremely high-risk situations where the attack rate is above 10 %. In this case, accounting
for filtration dynamics gives a lower risk estimate. Furthermore, reducing δ reduces the risk
and more so when there are only a few filters. Thus, in theory, in a non-dispersive distribution
system, timing backwashes so that they occur consecutively may have some dampening effect
on attack rates in extreme outbreaks. However, this cannot be recommended as an operational
strategy until more research is conducted on the effect of backwashing/hydraulic steps on the
net removal efficiency of a set of filters in parallel.

Our model assumed that raw water concentrations and the performance of other treatment
processes stayed constant on the time-scale of a filter cycle. This is not necessarily so in reality.
If there are other short-term variations present, the finished water pathogen concentration may
be written:

C = CrΠf
∏

i

Πo,i (3.21)

where Cr is the raw water concentration, Πf the passage probability of filtration and Πo,i the
passage probability of other treatment processes indexed by i. If all quantities are mutually
statistically independent, the mean of C is simply the product of the mean of each quantity in
(3.21) and the mean passage probabilities in Figure 3.12 are still perfectly relevant. However,
the variance of C will be greater than in our model, and the dynamic effects discussed in the
preceding paragraph may be even more pronounced.

The independence assumption is not obviously valid though, as microbial raw water quality
may very well be correlated with other raw water quality parameters that affect treatment
performance. Furthermore, there may be interactions between the treatment performance
of sequential treatment units. For example, Templeton et al. (2007) found a reduced virus
inactivation of downstream UV-processes when treating water from the breakthrough stage
of the upstream rapid filter, a result which could imply that the optimal time to terminate
a filter cycle occurs earlier than the time of minimum mean passage in Figure 3.12. Another
complication is related to the time-scales of variation of the processes that generate the random
variables in (3.21), which may be vastly different among the variables. This means that it may
take a very long time, longer than the time period of interest, to obtain a realization of C.
In fact, it may be difficult to meaningfully assign a probability distribution to variables that
are dominated by rare events, in which case C and its mean is ill-defined. Thus, proper
considerations of time-scales of variation should be a focus of QMRA.
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Figure 3.14: Probability density functions derived from π1(t) in the example data of
Figure 3.8, using the methods outlined in the appendix of Paper IV. From Paper IV.

The variability in removal that was observed in our experiment may be used as an input
to Monte Carlo models for risk characterization. In Figure 3.14 the probability distributions
generated by sampling from Π uniformly in time for the duration the filter cycle are shown. The
distribution was computed directly from the experimental data as explained in the Appendix
of Paper IV. Smoother versions may be developed. Also shown in Figure 3.14 is a distribution
of Π developed by Teunis et al. (2009) based on methods developed by Teunis et al. (1999b).
They used data for F-specific phage removal from two plants in the Netherlands to develop
this distribution. The mean of the distribution is close to -1.5, and it is obvious that the
variability is very much greater than observed in our filter cycle. However, the distribution
was developed based on a total of 17 samples and uncertainty intervals were very wide.



4. Metabolic Lag in Bacterial
Growth: Paper V

4.1 Background and model development

Figure 4.1 shows a typical growth curve for a bacterial culture after inoculation in a closed
system (except possibly for gases), i.e. a system where there is limited space, no replenishment
of nutrients and no elimination of wastes. An initial lag phase, which is our interest here, is
followed by a phase of exponential growth until environmental limitations enforce a plateau
and eventually a net die-off. The lag phase may occur in response to changes in substrate
availability, e.g. because of the need to synthesize compounds that are needed for substrate
utilization or because of the need to perform cell repair before substrate utilization can begin
(Huang, 2015).

There have been attempts to model bacterial growth using systems biology approaches with
descriptions of internal cell metabolism and gene regulation (Koutinas et al., 2011; Steinmeyer
and Shuler, 1989), which in principle could include explicit descriptions of the mechanisms
that cause the appearance of a lag phase (Hassan et al., 2014). However, simpler models that
disregard internal cell processes are used in most applications.

Natural bacterial communities are usually not confined to closed systems, and growth may
instead be limited by the availability of a few substrate types (possibly only one) called limiting
substrates, with concentration denoted by s. We may then assume that the growth rate of a

Figure 4.1: Typical growth curve for bacteria. From Haas et al. (2014).
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bacterial community in the absence of lag effects may be written as

dMb
dt = Ψmax(Mb, s) (4.1)

where Mb is the bacterial mass and Ψmax is the growth rate function. The Monod equation
(Monod, 1949) is often adopted:

dMb
dt = µMb

s

Ks + s
(4.2)

Here, µ is the maximum specific growth rate and Ks is the so-called half-saturation constant.
Equation (4.2) should be coupled with equations that describe depletion of substrate as it is
being utilized by the bacteria, as well as external influences on substrate availability (transport,
interacting microbial communities etc.).

The above growth expressions must be modified if a lag phase is to be described. Several
approaches have been suggested, which range in complexity from postulating simple substrate
thresholds for growth to begin (Park et al., 2001) to models that employ delay differential
equations (Bocharov and Rihan, 2000; Cushing, 1977; Driver, 1977). With the latter, the rate
of change of the system variables can be made dependent on the history of these variable and
not just the current state of the system. In Paper V, we explore the latter approach, as
described in the following.

Wood et al. (1995) cited Powell (1967) as the source of the following modification to account
for metabolic lags:

dMb
dt = Ψmax(Mb, s)λm(t) (4.3)

Here, λm = Ψ/Ψmax is a scalar between 0 and 1 and is called the metabolic potential, and Ψ is
the actual growth rate. λm is a functional, assumed to depend on the past history of substrate
concentrations, s(τ)|τ<t. Based on the previous studies by Powell (1967) and Caperon (1969),
Wood et al. (1995) suggested the following convolution integral:

λm(t) =
∫ t

−∞
H[s(τ)]K(t− τ) dτ (4.4)

Here H is some function that maps s onto the unit interval and K is a weight function that
should have the properties of a normalized probability density function on the positive real
line. Thus (4.4) represents a weighted average of the history of H. It has been suggested
(Edwards, 1970) that the onset of growth is sensitive to the limiting substrate s crossing a
certain critical substrate concentration sc. It is therefore natural to look for sigmoidal-shaped
candidates for H and in Paper V we suggest the Hill function:

H(s) = sp

scp + sp
(4.5)

where p is a steepness parameter. As p → ∞, H approaches the Heaviside function, which
was used by Wood et al. (1995).

Wood et al. (1995) postulated a piecewise linear form for λm(t) in response to s crossing sc
and deduced the functional form of K needed to produce the desired behavior. This approach
required several parameters and special care was needed to handle fluctuations of s around
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Figure 4.2: Examples of the kernel used in the distributed delay formulation. From
Paper V.

sc. In Paper V we instead propose a function K that will turn out to simplify the problem,
namely the probability density for a Gamma distribution (Figure 4.2) with integer shape
parameter n and positive rate parameter a:

Kn
a (t) = an+1tne−at

n! (4.6)

In the appendix of Paper V, it is shown how this weight function transforms the convolution
integral (4.4) into a system of n + 1 differential equations in auxiliary variables z1, . . . , zn+1,
using what is known as the linear chain trick (MacDonald, 1978):

λm = zn+1(t)
z′1(t) = a{H[s(t)]− z1(t)}
z′2(t) = a[z1(t)− z2(t)]

...
z′n+1(t) = a[zn(t)− zn+1(t)]

(4.7)

This reformulation of the convolution integral may be useful both from the point of view of
implementing the lag formulation numerically, but it may also facilitate analysis since one
may now draw upon the theory for systems of ordinary differential equations. The approach
may be generalized to integral kernels different from the Gamma distribution (Ponosov and
Shindiapin, 2003).

4.2 Validation against data and discussion

In order to test whether the proposed lag formulation can match real data, we used experimen-
tal data from Chen et al. (1992) for the transport and biodegradation of benzene in laboratory
sand columns. They built a numerical model of coupled PDEs for this system that did not
match the experimental data unless they assumed that only 1/8 of the biomass was able to
degrade benzene. This shortcoming was what motivated Wood et al. (1995) to incorporate a
lag formulation into the model of Chen et al. The full model is presented in Paper V. Briefly,
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Figure 4.3: Performance of the lag formulation in a biodegradation experiment. From
Paper V.

it involved advection/dispersion of benzene and hydrogenperoxide (the final electron accep-
tor) in a mobile aqueous phase, equilibrium adsorption for benzene, mass exchange of both
compounds between the mobile phase and an immobile biomass phase, and biodegradation in
the biomass phase described by Monod kinetics. All parameters except those associated with
our lag formulation were known. We used a simple method-of-lines approach for the numerical
implementation, which involved discretization of spatial derivatives using finite-differences and
yielded a system of ordinary differential equations in the time variable that were solved using
built-in solvers in MATLAB. The numerical implementation was verified graphically against
data presented by Wood et al. (1995).

The results of the simulations are shown in Figure 4.3, where the vertical axis represents
effluent benzene concentrations normalized to the constant influent benzene concentration.
With no lag formulation included, the model overestimates the benzene degradation. For the
parameters of the Hill function (eq. (4.5)), sc was taken from Wood et al. and results were
found to be insensitive to the steepness parameter p. For the Gamma kernel (4.6), it was
found that having n > 0 did not improve the fit as compared to n = 0. Hence, there is only
one fitting parameter left, a, which was adjusted manually to produce a good fit. This is one
less parameter than the lag model of Wood et al. (1995), but these authors used parameters
that were estimated from independent data and not during fitting. A comparison with another
set of experimental data from Park et al. (2001), using a slightly less complicated transport
model, is given in Paper V.

It is interesting to note that Huang (2015), in investigating the distribution of lag times
among individual bacterial cells, found that the data could be fitted well by many probability
distributions, including the Gamma distribution. It is also worth noting that some previous
models for lag phenomena in response to changes in substrate levels (not only switching from
absence to presence of substrate), as presented by Haas et al. (2014, pp. 255-256), have the
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structure

dMb
dt = κMb

ke(s) = µ
s

Ks + s
dκ
dt = a(ke(s)− κ)

(4.8)

Comparing with equations (4.3) - (4.7), the system (4.8) is equivalent to identifying κ with
λm, setting Ψmax = Mb, H(s) = ke(s) (the Monod specific growth rate) and n = 0. It seems
that the interpretation of this system as reflecting an exponentially decaying weight function
of past values of ke has not been made, though.

Although the lag formulation was presented here in a setting of biodegradation in a porous
medium, we may speculate that it may be useful in settings more relevant to microbial risk as-
sessment. Specifically, one could investigate whether it may be useful for modeling growth of
environmental pathogens (Ashbolt, 2015). Furthermore, widely used compartmental SIR-
models (susceptible-infected-recovered; Eisenberg et al., 1996; Kermack and McKendrick,
1927) in epidemiology describe distributions of incubation times using convolution integrals.
Finally, it could be interesting to investigate whether it could be useful for modeling biological
treatment processes, such as biofiltration or slow sand filtration for drinking water or activated
sludge processes for waste water.





5. Conclusions and Outlook

The main conclusions emanating from this thesis may be stated as follows, with recommen-
dations for further research and practical implications in bullet points:

Host/pathogen properties in single-hit models. Equation (2.6) provides a general ex-
pression for the single-hit probability R as a function of host/pathogen random variables.

– This expression may possibly guide future efforts to develop dose-response models
that take pathogen and host properties as parameters.

Risk from repeated exposures. The model-consistent expression for the risk from repeated
exposures deviates from the conventional expression, and is obtained by interpreting the
dose-distribution in the general single-hit model (2.5) as the distribution of the accumu-
lated dose from multiple exposures.

– The model-consistent expression for risk from repeated exposures should be used
for risk characterization, including Monte-Carlo simulations.

– The full practical relevance of this result should be explored for a range of exposure
scenarios and pathogens with known dose-response parameters.

Dose overdispersion and risk. The single-hit risk computed with stuttering or mixed Pois-
son distributions is lower than that computed with a Poisson distribution, assuming
identical mean doses. Overdispersion from moderate clustering of pathogens in the form
of a Hermite distribution is unlikely to significantly affect the risk estimate under most
conditions. However, extensive overdispersion significantly reduces the risk estimate.

– If management decisions are based on mean risk estimates, using point estimates
of the mean dose λd rather than a distribution of λd-values may be a conservative
approach.

Improved bound on risk. Equation (2.21) gives an improved bound on the single-hit risk
and appears to be close to exact computations when doses are extensively overdispersed.
It takes the probability of zero dose as a parameter, in addition to the mean dose.

– The bound may be useful for applications since it doesn’t require a full dose-
distribution.

– In a single-hit framework, efforts should be directed at estimating these two param-
eters with precision.
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Filtration dynamics. Spatio-temporal removal patterns of viruses and bacteria were in qual-
itative agreement with expectations, based on their respective sizes. However, peak
observed removal rates within the filter bed were higher than expected from filtration
theory. Overall removal efficiencies were observed to be highly variable, even during
periods of stable effluent turbidity.

– Further pilot-scale experiments with high-resolution sampling should be performed
under a range of conditions to corroborate these experimental results.

– The role of microorganism detachment in extrapolating log-removal values from
high-spike experiment to real-world settings should be explored.

Filtration dynamics and mean removal efficiency. The peak mean removal efficiency of
a microorganism in a filter run occurs after breakthrough of that organism, a result which
appears robust. Time differences of 2-4 hours were observed. The mean removal efficiency
may deteriorate drastically if filtration is continued past turbidity breakthrough, e.g.
until typical regulatory limits of 0.1, 0.2 or 0.3 NTU are reached.

– At the very latest, filtration should be stopped at turbidity breakthrough, i.e. the
time when effluent turbidity starts to increase.

– As a basis for comparison, results from filtration experiments should be reported
as mean removal efficiency as a function of produced water volume per unit filter
area.

Filtration dynamics and risk. In isolation, filtration dynamics is unlikely to affect single-
hit risk estimates except in a situation with extremely high pathogen concentrations,
assuming that the correct mean removal efficiency of the filter is known. The main
challenge presented to QMRA by filtration dynamics is therefore to obtain correct mean
removal efficiencies. However, filtration dynamics does represent a vulnerability when
coupled with other short-term variations in pathogen concentrations or removal efficien-
cies.

– The effect of realistic concurrent short-term fluctuations in filtration performance,
disinfection performance and raw water pathogen concentrations should be ex-
plored.

– Proper consideration of time-scales of variation in different parts of the water supply
system should be a focus of QMRA.

Microbial metabolic lag. The microbial metabolic lag model presented in Chapter 4 is
simple to implement numerically and was shown to simulate the example biodegradation
system as well as previous models.

– The possibility of using the metabolic lag model in population disease transmis-
sion, growth of environmental pathogens or biological treatment processes may be
explored.
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QMRA for Drinking Water: 1. Revisiting the Mathematical
Structure of Single-Hit Dose-Response Models

Vegard Nilsen∗ and John Wyller

Dose-response models are essential to quantitative microbial risk assessment (QMRA), pro-
viding a link between levels of human exposure to pathogens and the probability of negative
health outcomes. In drinking water studies, the class of semi-mechanistic models known as
single-hit models, such as the exponential and the exact beta-Poisson, has seen widespread
use. In this work, an attempt is made to carefully develop the general mathematical single-hit
framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen
infectivity. This allows a precise interpretation of the so-called single-hit probability and pre-
cise identification of a set of statistical independence assumptions that are sufficient to arrive
at single-hit models. Further analysis of the model framework is facilitated by formulating the
single-hit models compactly using probability generating and moment generating functions.
Among the more practically relevant conclusions drawn are: (1) for any dose distribution,
variation in host susceptibility always reduces the single-hit risk compared to a constant host
susceptibility (assuming equal mean susceptibilities), (2) the model-consistent representation
of complete host immunity is formally demonstrated to be a simple scaling of the response,
(3) the model-consistent expression for the total risk from repeated exposures deviates (gives
lower risk) from the conventional expression used in applications, and (4) a model-consistent
expression for the mean per-exposure dose that produces the correct total risk from repeated
exposures is developed.

KEY WORDS: Dose response; microbial risk; QMRA; single hit

1. INTRODUCTION

Dose-response models are at the core of quanti-
tative microbial risk assessment (QMRA) since they
provide a quantitative relationship between micro-
bial exposure (the dose) and the resulting health
consequences (the response) in exposed populations.
However, determining the appropriate mathematical
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∗Address correspondence to Vegard Nilsen, Department of
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form of such models is not an easy task. First, the
host-pathogen interaction is complex and not easily
observed or modeled. Second, due to the difficulty
of quantifying the low-probability responses to low
doses, the dose levels in available data (either from
feeding trials or epidemiological outbreak data) for
fitting dose-response model parameters are usually
orders of magnitude above the typical background
dose levels in drinking water. Therefore, drinking
water risk assessments often require a rather bold ex-
trapolation assumption that can only be strictly jus-
tified if the mathematical form of the dose-response
model is appropriate for the whole range of doses, in-
cluding the low-dose range, and if the available data
allow reliable model fitting.
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The above remarks motivate the development
of (semi)mechanistic dose-response models, as op-
posed to any arbitrary best-fitting model, to provide
a rationale for the extrapolation. So-called single-hit
models(1–5) provide the most important example, as
they have dominated QMRA applications for drink-
ing water. It is the purpose of this article to take a
closer look at their derivation and general proper-
ties. In short, they are based on the main assump-
tions that (1) a single pathogen may be capable of
causing an infection and (2) pathogens act indepen-
dently of each other. They represent a simple semi-
mechanistic dose-response framework, but a good
understanding of the models’ origins and structure
may provide hints to the mechanistic underpinnings
in cases of poor fits to data, as well as suggest strate-
gies to construct improved semi-mechanistic models.

The microbial quality of drinking water is an
ever-present concern in the promotion of public
health. The regulatory practice in many countries
has been to prescribe maximum allowable con-
centrations of fecal indicator microorganisms in
drinking water, with the assumption that elevated
levels of fecal indicators signal the presence of fecal
contamination, a condition for the presence of fecal
pathogens. In recent years, QMRA has emerged
as an alternative theoretical framework for evalu-
ating the microbial safety of drinking water supply
systems.(6) By keeping account of the concentration
of pathogenic organisms from the raw water source
to the tap, by measurements and/or modeling, an
estimate of a population’s exposure to pathogens
in drinking water is obtained. This estimate forms
the input to the dose-response model that allows
the probability of infection, and possibly disease,
to be estimated. Thus, QMRA aims to provide a
framework for a more rational, detailed, and quan-
titative analysis of microbial drinking water quality.
It may serve as a management tool to optimize the
design and operation of a drinking water system with
respect to microbial quality,(7) and form the basis for
risk-based regulations(8) and guidelines.(9)

Three main sources of variation are usually
considered in conventional dose-response model-
ing: (1) variation in infectivity between individual
pathogens, (2) variation between individual hosts in
their susceptibility to infection by the pathogens, and
(3) randomness (e.g., Poisson) in the exact number
of pathogens ingested. Many authors have developed
the single-hit framework(1–5) and it has been shown
previously(4,5,10) that under single-hit assumptions,
the variation between individual pathogens gets

integrated out of the model and is not a source of
variation in the so-called single-hit probability; only
variation in host susceptibility is. The purpose of the
present work was to introduce slightly more detail
to the analysis; i.e., carefully develop the single-hit
framework by introducing random variables to
explicitly represent all three sources of variation;
essentially a generalization in a QMRA context of
the host-pathogen interation model of Fazekas de st
Groth and Moran.(10) This allows precise identifica-
tion of a minimal set of sufficient statistical indepen-
dence assumptions for arriving at single-hit models,
and a precise expression for the single-hit probability
as a certain function of pathogen- and host-related
variables. Further specification of this function and
variables may provide interesting extended single-hit
models and opportunities for interpretation, partic-
ularly as tools and data to characterize relevant host
and pathogen properties become more available.

As mentioned above, it has been demonstrated
previously that variation in host susceptibility is
the only source of variation in single-hit probabil-
ities. This conclusion leads to some interpretive
consequences that are developed in this work, re-
garding risks in homogeneous versus heterogeneous
host populations, representation of complete host
immunity, and the correct treatment of repeated ex-
posures. The analysis of single-hit models is greatly
facilitated by formulating them compactly using
probability generating (pgf) and moment generating
functions (mgf). The mgf formulation can be used to
place a useful theoretical restriction on the class of
functions that can serve as a single-hit model when
doses are Poisson distributed. The pgf formulation is
utilized in full in the companion article,(11) where the
effect of (spatial) pathogen clustering on health risk
estimates is studied.

2. PROBLEM FORMULATION
AND NOMENCLATURE

Suppose there is a population of human hosts
and that, for each individual host, the susceptibility
to infection from a particular type of pathogen may
be characterized by a set of properties, collected in
a vector of variables s. Suppose further that there is
a population of the particular type of pathogen and
that, for each individual pathogen, its infectivity may
be characterized by a set of properties, collected in a
vector of variables t. Vectors are used here because
it seems too restrictive to characterize such complex
properties as susceptibility and infectivity by scalar
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Table I. Random Variables Used in the Model Development (Some Variables Have Indexed Versions in the Text)

Symbol Support Meaning (See Text for Precise Definitions)

Y {0, 1} Host infection state in the experiment of Section 2 (Y = 1 if infected, Y = 0 if not)
PI [0, 1] Pr(Y = 1)
W {0, 1, . . . , n} The sum of n iid variables Y
X N0 = {0, 1, 2, . . .} Dose, i.e., the total number of pathogens ingested by a host
S Not specified A vector of variables that characterizes the susceptibility of an individual host
T Not specified A vector of variables that characterizes the infectivity of an individual pathogen
I [0,1] I characterizes the fate of a pathogen (I = 1 if it establishes infection, I = 0 if not)
R [0,1] Equation (12): The conditional expected probability that a single pathogen infects a random host

variables. Finally, assume that the population of
pathogens is dispersed in a drinking water source
from which we take a small volume sample. For the
purposes of this article, we are concerned with the
total number of pathogens contained in the sample,
which will be denoted x. Table I gives an overview
of the random variables used in developing the
dose-response framework.

In formulating the single-hit framework, we will
be concerned with the outcome of a particular hypo-
thetical, probabilistic experiment described by:

(1) Randomly select one host from the population
of hosts.

(2) Take a random sample from the water
source; this will contain a random number of
pathogens from the population of pathogens.

(3) Let the host ingest the water sample.

This means we obtain one instance s of the
random variable1 S, one instance x of the random
variable X, and x instances t1, . . . , tx of the random
variables T1, . . . , Tx (or, more precisely, one instance
of each of the x variables). We need the indexing
here to allow for statistical dependence between the
infectivity of individual pathogens.

In the experiment, there are two outcomes of in-
terest. First, there is the establishment or not of an
infection (or, alternatively, illness) by the pathogens
in the host. In conventional single-hit models, this
outcome is a binary random variable Y that takes
the value 1 if infection is established and 0 if not.
For enteric pathogens, the presence of an infection
is usually operationally defined as the detection of
the pathogen in stool samples. Second, we are also
interested in the probability of infection for the host

1Throughout this article, strict adherence is made to the conven-
tion of denoting random variables with uppercase letters and par-
ticular instances of the same variables with the corresponding
lowercase letters.

selected in the experiment, PI, a random variable
assumed to be some (deterministic) function of the
underlying random variables S, X, and TX, where TX

is a matrix collecting T1, . . . , Tx:

PI = h(S, X, TX). (1)

PI will have some probability density function (pdf)2

fPI (pI) that depends on the function h and the joint
distribution of its arguments.

The joint distribution fY,PI of the two experi-
mental outcomes Y and PI may be written using the
probability mass function (pmf) pY(y) of a Bernoulli
variable, conditioned on the random parameter PI

(i.e., the success probability is random):

fY,PI (y, pI) = pY|PI (y|pI) fPI (pI)

= pI
y(1 − pI)1−y fPI (pI). (2)

The pmf of Y is then obtained by marginalizing over
PI:

pY(y) =
∫ 1

0
fY,PI (y, pI) dpI

= [E(PI)]y[1 − E(PI)]1−y, (3)

where E(·) is the expectation operator. We recognize
Equation (3) as the pmf of a Bernoulli variable with
constant success probability E(PI). Thus, the fact
that the success probability is a random variable
instead of a constant does not affect the distribution
of the Bernoulli variable Y (or a binomial variable
derived from it); it merely requires an interpretation
of the success probability as an expectation value.
This is a basic fact of probability, but it is highlighted
here since essentially the same argument leads to the
conclusion(4,5) that variation in pathogen infectivity
is “averaged out” of the single-hit dose-response

2Actually, because X is discrete, it will be a mixed discrete and
continuous distribution, as explained in the Appendix.
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model, a fact that seems to not be universally rec-
ognized in the single-hit literature. The single-hit
dose-response model is given as the expression for
E(PI) as a function of the parameters of the dose
distribution, and is developed in Section 3.

One is usually interested in performing the ex-
periment above many times. If we restrict our inter-
est to infections that are the direct result of ingesting
contaminated drinking water and exclude secondary
infections from the count, it is reasonable to assume
that the outcome of Y and PI in any single experi-
ment is independent of the outcomes in every other
experiment. Thus, the total number W of infected
hosts after n experiments is:

W =
n∑

j=1

Yj , (4)

where the Yj ,s are independent and identically (iid)
distributed as Y. W is therefore binomially dis-
tributed with success probability E(PI) and number
of trials n.

3. SINGLE-HIT MODELS

3.1. General Framework

In this section, we obtain expressions for E(PI)
by applying a sequence of statistical independence
assumptions on S, X, and T1, . . . , Tx. Our goal in the
end is to arrive at the single-hit dose-response model,
which has the form:

E(PI) = EX [ER(PI)] . (5)

Here, R is the so-called single-hit probability and it
is independent of X. It is a function of S and the T,s,
defined more precisely below. The notation EX (ER)
denotes expectation with respect to X (R).

3.1.1. Model Derivation

By assumption in a single-hit model, a single
pathogen may have a nonzero probability of estab-
lishing infection in a host. The probability of infec-
tion PI may then be expressed as the complement
to the probability that none of the pathogens estab-
lishes an infection. Let Ii (i = 0, . . . , X) denote the
fate of pathogen i (Ii = 1 if pathogen i establishes in-
fection, Ii = 0 if not) with I0 ≡ 0. Using the chain rule
of probability, we then have:

PI = 1 − Pr (I0 = I1 = I2 = · · · = IX = 0)

= 1 −
X∏

i=1

Pr (Ii = 0 | I0 = · · · = Ii−1 = 0)

= 1 −
X∏

i=1

[1 − Pr (Ii = 1 | I0 = · · · = Ii−1 = 0)] ,

(6)

where the number of factors in the product, X, is
random. For X = 0, the product becomes the empty
product (which is 1, by definition) so in the absence
of any ingested pathogens, no infection will occur.
Note that no independence assumptions are needed
for Equation (6).

The independence assumptions that are sequen-
tially employed in the derivation below are sum-
marized in Table II. The first of them (IA1) is
the following. We fix a set of host properties S =
s, a dose X = x, and a set of pathogen properties
T1 = t1, . . . , Tx = tx. Then, Pr(Ii = 1) is assumed to
be independent of both the number and “identity” of
individual pathogens that fail (Ij = 0 for j �= i) to es-
tablish infection. This means that Pr(Ii = 1) is com-
pletely determined by s, x, and t1, . . . , tx. Note that
IA1 is not equivalent to making the slightly stronger
assumption that all the Ii ,s are mutually independent
since we do not have to worry about the situation
where more than one pathogen infects the host; i.e.,
conditional probabilities like Pr(Ii = 1| ∑ j<i Ij ≥ 1)
do not enter the problem. IA1 implies that Equation
(6) may be written:

PI = h(S, TX, X) = 1 −
X∏

i=1

[1 − g(S, Ti , X)], (7)

where the function g(S, Ti , X) maps S, Ti , and X onto
the unit interval [0, 1] and equals the probability that
an individual pathogen indexed by i initiates an in-
fection in a host. For generality, we have included X
as an argument of the function g. Following Fazekas
de St Groth and Moran,(10) the functions g and h may
be termed interaction functions.

Put another way, IA1 implies that the knowl-
edge that the host has successfully defeated one
or more pathogens in a given dose does not pro-
vide information on the probability that the other
pathogens will establish an infection; this probability
is fixed once we fix the host, the dose, and the
individual pathogens. IA1 would be violated if the
immune system and/or pathogens mobilize/employ
some sort of signaling in response to the fate of an
individual pathogen, which changes the probability
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Table II. Independence Assumptions Employed Sequentially in Developing the Single-Hit Dose-Response Framework

Name Description

IA1 If s, x, and t1, . . . , tx are given, Pr (Ii = 1 | I0 = · · · = Ii−1 = 0) = g(S, Ti , X) for all i
In words: Given a host, a dose, and particular pathogens, the number and identity of pathogens that fail
to establish infection does not affect the probability that other pathogens will establish infection

IA2 If s and x are given, the Ti ,s are mutually independent
In words: Given a host and a dose, the infectivities of individual pathogens are mutually independent

IA3 If s is given, X and every Ti are mutually independent
In words: Given a host, the dose and the infectivity of every pathogen are mutually independent

IA4 S and X are mutually independent
In words: The host susceptibility and the dose are mutually independent

IAnet IA1 + pair-wise independence between all variables (Ti iid as T), except possibly between S and T

of infection for the other pathogens. This assumes
that the fate of each pathogen may be determined
sequentially in time even if the ingestion of the dose
is instantaneous.

There is also a practical, clinical aspect to
the single-hit assumption that deserves mentioning:
pathogen detection/enumeration methods have a de-
tection limit (or perhaps a probability of detec-
tion for a given concentration of pathogens), and
clinical symptoms may exist without an observed
infection.(12,13) If there are enough pathogens in a
given stool sample to exceed the detection limit and
these pathogens stem from more than one infectious
focus in the intestinal system, single-hit theory can be
strictly correct only if at least one of the infectious
foci produced enough pathogens on its own to ex-
ceed the detection limit. Otherwise, there would be
instances where two or more infectious foci (originat-
ing from at least two pathogens) would be required
to produce an observable infection. The interesting
scientific question in this regard is, of course, the re-
lationship between clinically relevant infections (i.e.,
levels of multiplication that increase the probability
of illness) and infections that can be detected in stool
samples. It would also be interesting to see if one
could develop dose-response models that explicitly
estimate the probability of pathogen counts exceed-
ing the detection limit in stool samples. One could
still assume independent pathogen action in the host,
but one would have to somehow account for the total
numbers shedded.

As stated above, the conventional dose-response
models of QMRA will be derived by taking the
expectation value of the random variable PI =
h(S, TX, X) as expressed in Equation (7). By the law
of total expectation, we may decompose the expecta-
tion operation using conditional expectations:

E(PI) = 1 − E

{
X∏

i=1

[1 − g(S, Ti , X)]

}

= 1 − EX

[
ES|X

(
ETX|S,X

{
X∏

i=1

[1 − g(S, Ti , X)]

})]
.

(8)

The notation EA|B,C denotes expectation with respect
to A while holding B and C constant (conditional
expectation). We could have used another ordering
in the sequence of conditional expectations, but the
choice made above will be convenient.

The second independence assumption (IA2)
will now be imposed, namely, that the vectors Ti

contained in the matrix TX are mutually indepen-
dent, conditioned on S = s and X = x. This means
that knowledge of the infectivity properties ti for
pathogen i does not provide information about t j

for pathogen j (i �= j), i.e., there is no tendency for
pathogens with particular infectivity properties to
occur simultaneously (i.e., be included in the same
sample). IA2 implies that the innermost expectation
in Equation (8), which is with respect to TX, may
be written as a product of expectations taken with
respect to the Ti ’s:

E(PI) = 1 − EX

[
ES|X

(
X∏

i=1

{1 − ETi |S,X[g(S, Ti , X)]}
)]

= 1 − EX

[
ES|X

(
{1 − ET|S,X[g(S, T, X)]}X

)]
. (9)

Here, T denotes a random variable whose distribu-
tion is the common distribution of the Ti ’s.

The third independence assumption (IA3) is that
T and X are mutually independent if S = s is given.
This means that there is no correlation between the
number of pathogens ingested and their individual
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infectivity properties. With this assumption, we may
write:

E(PI) = 1 − EX
[
ES|X

({1 − ET|S[g(S, T, X)]}X)] .
(10)

The last independence assumption (IA4) is that S
and X must be mutually independent, i.e., there is
no correlation between host susceptibility and the
number of ingested pathogens. This may be a ques-
tionable assumption, since those members of the host
population with a weakened immune system (e.g.,
infants, elderly, and hospitalized people) may also
reasonably be expected to drink less water and
hence experience lower doses. It is also plausible
that ingesting a higher dose of pathogens may trigger
a stronger immune response, which could effectively
alter the host susceptibility s. However, ignoring
these possible correlations seems to constitute a
conservative approach (overestimation of risk) and
we find:

E(PI) = 1 − EX
[
ES
({1 − ET|S[g(S, T, X)]}X)] .

(11)

It will also be assumed that g does not depend de-
terministically on X, i.e., g(S, T, X) ≡ g(S, T).3 This
implies that the only place X appears as a parameter
when taking the expectation with respect to S is in
the exponent. The quantity ET|S[g(S, T)] may be
considered a random variable in its own right, and is
a function of S alone since T has been integrated out.
It is known as the single-hit infection probability and
denoted by R:

R = R(S) = ET|S[g(S, T)]. (12)

With this, Equation (11) is written:

E(PI) = 1 − EX(ES
{
[1 − R(S)]X}). (13)

Assuming that S has a pdf fS(s) and X a pmf pX(x),
Equation (13) may be written explicitly as:

E(PI) = 1 −
∞∑

x=0

pX(x)
∫

S
[1 − r(s)]x fS(s) ds, (14)

where the integration is over the whole support of
S, and r is a particular instance of the random vari-
able R. The only thing that is needed now to arrive at

3This is not a very strong additional assumption, as we have al-
ready assumed X is independent of S and T. If g is required to
somehow depend on X, a more plausible approach would proba-
bly be to introduce statistical dependence by relaxing IA3 and/or
IA4.

a conventional single-hit dose-response formulation
is a multivariate substitution in Equation (14) to al-
low an integration over r instead of s. Assuming that
there exists such a substitution, we may write:

E(PI) = 1 −
∞∑

x=0

pX(x)
∫ 1

0
(1 − r)x fR(r) dr. (15)

If S can be assumed to be a scalar S, i.e., S is the sus-
ceptibility of the hosts, we can easily perform the sub-
stitution explicitly. Then, we have:

r(s) = ET|S=s[g(s, T)] (16)

and, assuming r is a differentiable function of s, let
r ′(s) = dr

ds . It is reasonable to assume that r must be
a monotonically increasing function of s so that its
inverse s(r) exists. Substituting in Equation (14), we
again arrive at Equation (15), now with:

fR(r) ≡ fS[s(r)]
r ′[s(r)]

, (17)

which is guaranteed to be a well-defined probability
density if r ′(s) is nonzero and smooth. Finally, this
may be written:

E(PI) =
∞∑

x=0

pX(x)
∫ 1

0
[1 − (1 − r)x] fR(r) dr

=
∞∑

x=0

pX(x)ER(PI) = EX [ER(PI)] . (18)

This is the form in which the single-hit dose-response
model structure has been given previously.(4) The
integral expression ER(PI) has been termed a
“conditional” dose-response model, as it gives the
(expected) probability of infection given that ex-
actly x pathogens have been ingested.4 The model
in Equation (18) may be parameterized by spe-
cific choices of distributions for pX and fR(r)
(Section 3.2). Usually pX is taken to be the Poisson
distribution, which has a single parameter that equals
its expected value, E(X). One could therefore argue
that a more precise term for the single-hit models
would be “mean dose-mean response.”

To sum up the most important points: in the
framework laid out above, (IA1)–(IA4) constitute
sufficient assumptions to arrive at the single-hit
dose-response model in Equation (18). It is not
clear whether they are necessary assumptions,
since specific choices of some of the distributions

4Note that this does not mean that the distribution of R depends
on X; they are independent variables.
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involved could possibly produce a similar form.
The only possible statistical dependence that is left
after employing (IA1)–(IA4) is the dependence
between S and T. This is convenient since it could
be difficult to make a sharp distinction between
host susceptibility and pathogen infectivity in
practice. In fact, this dependence makes it impos-
sible to distinguish pathogen infectivity from host
susceptibility only based on fitting a conventional
single-hit model to data. It could, however, become
possible with further specification of the function
g and variables S and T (an example is given in
Section 3.2.3), possibly together with some kind of
additional recorded data (covariables) on pathogens
and/or hosts. If the response variable is treated not
as binary, but instead as a quantitative variable(14)

(discrete or continuous), so that we may speak of
“degrees of infection,” pathogen and host effects
could possibly be more easily identified based on
model fitting alone, but such models are beyond the
scope of this article.

Equation (12) gives a precise expression for the
single-hit probability R as a conditional expecta-
tion value, where the expectation is with respect to
pathogen infectivity T. Thus, we may say, as has been
shown previously,(4,5,10) that variation in pathogen in-
fectivity is “integrated out” and the random variable
R derives its variation (randomness) from the varia-
tion in the host susceptibility S. In other words, if we
fix S = s, we also fix R = r . The basic explanation for
this is essentially the same as that following Equa-
tion (3): in a sequence of independent Bernoulli
trials where the success probability (i.e., infectivity)
is randomly and individually selected for each trial,
only the expected success probability matters. Con-
sequently, if a data set can be adequately described
by a dose-response model with a constant R (such as
the exponential model; see Section 3.2), this would
indicate, in a single-hit framework, that the host
population is relatively homogeneous with respect
to its susceptibility to infection.

We note that our variables S and T are very
closely related to the concept of covariables that
are employed in some dose-response papers, where
the single-hit probability is expressed as a certain
function of such covariables. Covariables represent
properties that can be measured on hosts (more of-
ten) or pathogens and are treated as independent
variables in the dose-response model in addition to
the mean dose (in case of Poisson distributed doses).

Hosts’ score on a test for anti-Cryptosporidium im-
munoglobulin G has, for example, been used as a
covariable.(13) Translating the term to the terminol-
ogy of this article, a host covariable would simply be
equivalent to a parameter of the distribution of S, in
much the same way that the mean dose is a parameter
of the distribution of X. These parameters become
independent variables in the dose-response model.

It is also noted that, frequently,(15,16) the mean
dose input to a dose-response model is obtained
using only those pathogens that are viable (often
termed “infectious”) by some culturing method (but
not always, as when pathogens are enumerated using
quantitative polymerase chain reaction (PCR)). This
does not, however, eliminate the need to consider in-
fectivity in the development of dose-response mod-
els, since the relationship between in vitro viability,
as measured by some laboratory method, and in vivo
infectivity is usually not clear. The important thing is
that the enumeration method used for the mean dose
when generating data for dose-response parameter
fitting is consistent with the method that is used for
the mean dose in subsequent risk assessments that
rely on the fitted model.

Finally, it is made explicit that the distributions
of S, T, and X may in principle incorporate temporal
variation, with the understanding that the experi-
ment in Section 2 then effectively involves sampling
a random point in time as well. However, temporal
variation is usually considered external to the dose-
response model itself (for X, this is done during the
exposure assessment). What cannot be accounted
for in single-hit models is the dynamics of the host-
pathogen interaction, and this renders the connection
between any single dose and the response somewhat
obscure. This is less of a problem when there is an
isolated (in time), instantaneous exposure since an
observed infection during the period that follows
has a clear connection to the exposure. For repeated
exposures within a time interval that is on the order
of the incubation time, the problem is more serious:
What is the effect of ingesting an additional dose
while the host is still in the process of responding to
the first dose? This problem has been studied(17) and
the dynamic effects were found to be significant un-
der plausible assumptions (there is very little exper-
imental data available to test such dynamic models).
As is shown in detail in Section 3.3, the single-hit
framework dictates that for repeated exposures, it is
only the accumulated dose that is important.
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3.1.2. A Useful Simplification

Consider the general expression for E(PI) in
Equation (15), and assume that we may interchange
the order of summation and integration, i.e., the or-
der (with respect to the variables R and X) in which
we take expectations is immaterial:

E(PI) = 1 −
∫ 1

0

∞∑
x=0

(1 − r)x pX(x) fR(r) dr. (19)

If the series (the integrand) converges uniformly
on the interval r ∈ [0, 1] and (1 − r)x pX(x) fR(r)
is continuous in r for every x, the interchange is
justified. These properties can usually be established
for distributions fR of practical interest by employing
Weierstrass’s M-test, possibly with some tweaking
to handle the endpoints of the interval. For example,
the beta distribution (Table III, Section 3.2) with
parameter values α, β < 1 requires this tweak-
ing to establish the validity of the interchange in
Equation (19).

It is possible to make a quite useful simplification
in Equation (19): the sum in the integrand is, by def-
inition, the pgf GX of the dose distribution X, eval-
uated at 1-r . Formulations using pgfs have appeared
in the hit-theory literature previously, for example,
in Turner(18) in the context of radiation induced dam-
age. We therefore have:

E(PI) = 1 −
∫ 1

0
GX(1 − r) fR(r) dr. (20)

As explained in the Appendix, the pgf is an alter-
native representation of the distribution of a count
random variable and possesses some nice proper-
ties. Simple expressions exist for the pgf of most
dose distributions of theoretical and practical interest
(Section 3.2). The pgf formulation can also facili-
tate the analysis of general properties of single-hit
models. For example, we may formulate the follow-
ing proposition about single-hit models in a compact
way. It states that the risk computed with a constant
single-hit probability rc is always greater than the
risk computed with a variable single-hit probability
R with mean E(R) = rc.

PROPOSITION 1. For any dose distribution, host het-
erogeneity reduces the risk in a single-hit model in the
following sense:

E(PI) ≤ 1 − GX[1 − E(R)]. (21)

Proof. We need Jensen’s inequality, which says that
for a random variable R and convex function φ,

φ[E(R)] ≤ E[φ(R)]. (22)

The inequality is reversed for concave functions,
and becomes a strict inequality if φ is strictly con-
vex/concave and R does not have a point mass
distribution (i.e., is not a constant). Differentiating
GX(1 − r) term by term twice with respect to r shows
that G′′

X(1 − r) ≥ 0 for r ∈ [0, 1] and hence GX(1 − r)
is convex in r . This gives Equation (21). It becomes
a strict inequality if Pr(X = 2) > 0 and R is not a
constant. �

3.2. Parameterized Dose-response Models

Table III gives an overview of some (classes of)
dose-response models that may result when we par-
tially or fully specify the probability distributions of
X and R. They are discussed below.

3.2.1. fR with Point Masses and Host Immunity

Since the variation of R stems from variation
in host susceptibility (for a given population of
pathogens), R may be considered a property of a
host. Hence, if a host is completely immune, we must
have R = 0 for this particular host. However, when
R is constructed as a continuous random variable on
[0, 1], then Pr(R = 0) = 0 and the distribution fR will
not strictly be able to represent complete immunity
in part of the host population. It is worth noting that
the commonly used beta distribution (Table III) with
support on the unit interval does have some ability
to approximate variables that have a point mass of
probability at 0. This happens when the parameter α

is close to zero, and this is indeed what is often ob-
served when the beta distribution is used to fit dose-
response models to data. However, in some cases it
may be that better fits can be obtained by defining R
as a mixed random variable, in which case the distri-
bution of R has both a continuous and a discrete part
(some point masses of probability).

Formally, we may define a probability “density”
fR for a mixed random variable R using Dirac’s delta
functions.5 In general, if the distribution of R has k
point masses, we have:

fR(r) =
k∑

i=1

φiδ(r − ri ) + φc fR,c(r), (23)

5Strictly, the notion of generalized functions is needed for defin-
ing Dirac’s delta function, and more general notions than the
Riemann integral for its integration. However, it can be formally
manipulated as a function for our purposes.
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where φi = Pr(R = ri ) and δ is Dirac’s delta function.
The function fR,c represents the continuous part of
fR and may be any properly normalized pdf on [0,
1]. This fR has 2k + 1 parameters in addition to those
associated with fR,c. We have the normalization re-
quirement

∑k
i=1 φi + φc = 1. Using Equation (23) in

Equation (20), we find:

E(PI) = 1 −
k∑

i=1

φi GX(1 − ri )

−φc

∫ 1

0
GX(1 − r) fR,c(r) dr. (24)

If there is a point mass at 0 (some immune hosts), we
may write:

fR(r) = φimδ(r) + (1 − φim) fR,sus(r), (25)

where φim = Pr(R = 0) and corresponds to the pro-
portion of hosts that are immune. fR,sus is the pdf for
R in the susceptible part of the population. Using this
in Equation (20), it is found that:

E(PI) = (1 − φim)
(

1 −
∫ 1

0
GX(1 − r) fR,sus(r) dr

)
, (26)

where we used GX(1) = 1. We see that the for-
mally correct representation of host immunity in a
single-hit model is a simple scaling, which agrees
with intuition and is indeed how it typically has
been represented in practice.(20,21) One may specu-
late that by introducing a point mass at 0, the den-
sity function fR,sus may take a simpler form since it
no longer has to incorporate an approximate repre-
sentation of complete immunity. We note that, re-
cently, models incorporating complete host immu-
nity have been found relevant for Norovirus dose-
response assessment.(21,22)

For modeling acquired immunity, assume that
a population of hosts is exposed to a pathogen, or
may be vaccinated, so that the proportion with com-
plete immunity changes to φ′

im. If the hosts that de-
velop immunity after this exposure can be assumed
to be randomly drawn from the population of non-
immune hosts and the remaining hosts have an un-
changed susceptibility to infection, only φim needs to
be changed to φ′

im in Equation (26); the parameters
of fR,sus remain unchanged. An analogous situation
occurs when extending a dose-response model that
was developed for nonimmune hosts(19) to a popula-
tion including some immune hosts; one only needs to
know the proportion of immune hosts in the popula-
tion to perform the extension.

3.2.2. Specifying GX and fR

The baseline assumption in QMRA is that X is
Poisson distributed with parameter λ (equal to both
the mean and variance of the dose), which gives a
useful expression for the single-hit model for any fR

(see, e.g., Moran(23) for an early reference in a similar
setting):

E(PI) = 1 −
∫ 1

0
e−λr fR(r) dr = 1 − MR(−λ). (27)

Here, MR(−λ) is the moment generating function
(mgf; see Appendix) of R, evaluated at −λ. The
mgf expression facilitates the use of alternative dis-
tributions for R when X is Poisson distributed (ex-
ample with the uniform and triangular distribution in
Table III) since closed-form expressions for the mgf
are readily available for most distributions of inter-
est. Conversely, the only functions that strictly can
serve as single-hit models when X is Poisson dis-
tributed are of the form of Equation (27), where
MR is the mgf of a variable supported on [0, 1].
The general properties of the moment sequence of
such a random variable are studied in the Haus-
dorff moment problem.(24) The theory developed for
this problem could therefore be useful if one has an
empirical dose-response model and wishes to check
whether it conforms to single-hit assumptions. For a
useful low-dose approximation, one can use the se-
ries representation of the mgf (Equation (A.6)), to
arrive at:

E(PI) = λE(R) − λ2E(R2)
2!

+ λ3E(R3)
3!

+ · · · ≈ λE(R), (28)

where the latter approximation applies at low doses
for any fR.

The most commonly used single-hit models
are the exponential model, the exact beta-Poisson
(eBP) model, and the approximate beta-Poisson
(aBP) model. The differences between the two for-
mulations of the beta-Poisson model have been
studied,(3,5) and the criteria β  1 and β  α were
proposed for ensuring their similarity. A contour plot
of the ratio of the aBP to the eBP is given in Fig. 1
and provides a convenient graphical comparison of
the two models. It is clear from the figure that the
proposed criteria mentioned above are sufficient for
a good approximation. It is also clear that the close-
ness of the approximation is dose dependent. At low
doses, the approximation is particularly poor (over-
estimation) for small β and large α while at higher
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Fig. 1. Comparison of the exact and approximate beta-Poisson models for a range of parameter values and mean doses. Each contour
represents a constant ratio of the approximate to the exact model. The hypergeometric function was evaluated in R(25–27) and the contours
were generated with MATLAB.(28,29)

doses, the approximation is poor (underestimation)
for small β and small α.

Many authors(3–5,30) have noted that the aBP may
be derived by letting fR(r) in Equation (27) be the
Gamma distribution and integrating over its support
on [0,∞), although probabilities cannot exceed 1.
One might ask if there exists some other (possibly
obscure) fR with support on [0, 1] that gives the aBP
when used in Equation (27). By appealing to the
uniqueness of the mgf, the following proposition es-
tablishes formally that this is not the case. Hence, the
aBP is not strictly a single-hit model, as has been as-
serted previously.(3)

PROPOSITION 2. The aBP model is inadmissible as
a single-hit model when the dose X is Poisson dis-
tributed.

Proof. The term that is subtracted in the aBP is the
mgf of a Gamma distribution, which is inadmissible
as fR in single-hit theory. By the uniqueness property

of mgfs (see the Appendix), no other mgf exists that
can turn Equation (27) into the aBP. �

Finally, to accommodate a larger variance (be-
cause of pathogen clustering, for example) than can
be afforded by the one-parameter Poisson distri-
bution, the two-parameter negative binomial dis-
tribution has sometimes been invoked.(2,19,31) If
pathogen cluster sizes are logarithmic series dis-
tributed (with parameter a) and the number of
clusters in a sample is Poisson distributed, the num-
ber of pathogens in a sample is negative binomial
distributed.(11,19) For dose-response modeling, the
negative binomial should be parameterized in terms
of its mean, λ, and the cluster parameter a, or con-
veniently, b = a/(1 − a) (Table III). Another way
of parameterizing it is to set k = λ/b and eliminate
b. With a constant single-hit probability, we then
get the same parametric form as the aBP model
(Table III: k = α; k/r1 = β). However, choosing the
independent variable λ freely while holding the
other parameter k = α constant implies a systematic
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change in b (the clustering state) with changes in
the mean dose, which seems implausible in a dose-
response model. Thus, parameterization in terms of
λ and a or b seems preferable.

3.2.3. Specifying g(S, T)

In order to illustrate how the function g from
Section 3.1.1 may be constructed to possibly make it
useful, let us choose the simplest possible functional
form we may think of, namely, g(S, T) = ST with
support on [0, 1] × [0, 1]. This means that S is to be
interpreted as the susceptibility of a random host and
T as the infectivity of a random pathogen. We may
also say that S equals the single-hit probability for
a maximally infective pathogen T = 1 and T equals
the single-hit probability for a maximally susceptible
host S = 1. Then, we find from Equation (12):

R = ET|S(ST) = S
∫ 1

0
t fT|S(t |S) dt. (29)

When it is further assumed that S and T are indepen-
dent properties, we get:

R = S
∫ 1

0
t fT(t) dt = SE(T), (30)

which gives, according to Equation (17):

fR(r) = fS[r/E(T)]
E(T)

. (31)

Thus, in this very simple example the expected infec-
tivity of the pathogens, E(T), acts (by definition) as a
scale parameter in the distribution of single-hit infec-
tion probabilities. By a simple property of mgfs, we
have:

MR(−λ) = MSE(T)(−λ) = MS[−E(T)λ]. (32)

This means that for any single-hit model where doses
are Poisson distributed (Equation (27)), E(T) trans-
lates directly into a scale factor on the dose. Par-
enthetically, it is noted that any function g(S, T) =
SgT(T) will give the same result with E[gT(T)]
replacing E(T).

If the parameter E(T) can be reliably esti-
mated, it appears that one may distinguish between
pathogen infectivity and host susceptibility based
on parameter estimation alone. We stress, however,
that this result requires the specific functional form
g(ST) = ST and an independence assumption on S
and T, in addition to ordinary single-hit assumptions.
Fazekas de St Groth and Moran(10) dismissed this
possibility in the special case of egg-influenza virus
systems since log(dose)-response curves had been

shown to change shape (as opposed to shifting along
the dose axis) upon serial passage of the virus in
similar host eggs, contradicting the scale-parameter
expression in Ref. 32. The beta distribution in its
most common form does not have a scale parameter,
but it can be generalized and scaled on the interval
[0, E(T)] (the ordinary beta is recovered by setting
E(T) = 1). For the exponential model and the aBP
model, we can only ever estimate the product rE(T)
and the quotient E(T)/β, respectively, but for the
eBP model it appears that E(T) may be estimated,
in principle, if the data allow.

3.3. Repeated Exposure and Averaging Doses

3.3.1. Risk from Repeated Exposures

QMRA applications often require estimates of
the expected probability of infection resulting from
repeated exposures, for example, to obtain annual
risk estimates. Most often,(32) the overall risk E(PI

nh)
from n exposures, in which the doses are not neces-
sarily identically distributed, is calculated as:

E
(
PI

nh) = 1 −
n∏

i=1

[1 − E(PI)i ]

= 1 −
n∏

i=1

∫ 1

0
GXi (1 − r) fR(r) dr, (33)

where E(PI)i and GXi are the expected probabil-
ity of infection and the pgf, respectively, associated
with dose Xi . The assumptions stated along with
Equation (33) are usually those of no acquired host
immunity and independence between doses Xi . How-
ever, recalling that our probabilistic experiment in
Section 2 started with selecting a random host, the
consistent interpretation of E(PI

nh) is that it repre-
sents the expected probability that at least one host
is infected when we randomly select n hosts (hence
superscript nh) and expose each of them to one
of the doses Xi (randomly allocated among the n
hosts).

What we are instead actually interested in is the
expected probability that a single randomly chosen
host becomes infected if he is exposed to all the doses
Xi . In the single-hit framework, R is fixed once we fix
the host and is therefore the same for each exposure
when there is no acquired immunity. With indepen-
dence between doses Xi , the probability of infection
from repeated exposures in a given host becomes:
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PI
ne = 1 −

n∏
i=1

(1 − R)Xi = 1 − (1 − R)
∑n

i=1 Xi

= 1 − (1 − R)Xne , (34)

where Xne is the accumulated dose and the super-
/subscript ne stands for n exposures. Taking the ex-
pectation value of Equation (34), we find:

E (PI
ne) = 1 −

∫ 1

0
GXne (1 − r) fR(r) dr

= 1 −
∫ 1

0

n∏
i=1

GXi (1 − r) fR(r) dr, (35)

since the pgf of a sum of independent variables is the
product of the corresponding pgfs (Equation (A.4)).
Equation (35) gives the consistent way of calculating
risk from repeated exposures within single-hit the-
ory; simply use the distribution of the accumulated
dose in place of the single dose. Whether this is a
plausible description of the real world is, of course,
another question.(17) Note that, when fR has a single
point mass (i.e., no variation in host susceptibility as,
e.g., in the exponential model), there is no difference
between Equations (33) and (35).

The following proposition shows that the con-
ventional way of calculating risk from repeated
exposures overestimates (i.e., is conservative) the
model-consistent risk. This is useful since the conven-
tional expression is arguably simpler to work with.

PROPOSITION 3. Equation (35) is bounded from
above by Equation (33) when the individual doses
are iid.

Proof. The individual doses are iid with common
pgf GX(z). We may compare the two expressions
in Equations (33) and (35) using Jensen’s inequality
(see Proposition 1). Since the function (·)n is convex,
we get:

(∫ 1

0
GX(1 − r) fR(r) dr

)n

≤
∫ 1

0
[GX(1 − r)]n fR(r) dr,

(36)

which implies that:

E
(
PI

nh) ≥ E (PI
ne) . (37)

We have only shown this result for iid doses, but
it is conjectured that it generalizes to the case of non-
identically distributed doses.

An example of the relative difference between
the two expressions for annual risk, using the eBP
model for single exposure risk, is given in Fig. 2 in
the form of a contour plot. It is apparent that the
difference is small at low doses, which is usually the
case in drinking water QMRA. However, for small α-
values and intermediate β-values, the difference be-
comes significant as the dose increases.

We briefly give the most important special cases
of Equation (35). When every dose is Poisson dis-
tributed, we have GXne (1 − r) = ∏n

i=1 GXi (1 − r) =
e−r

∑n
i=1 λi , which shows that the accumulated dose Xne

is also Poisson distributed with parameter
∑n

i=1 λi .
Hence, if a single exposure is described by the eBP
model, the expression for the risk from repeated ex-
posures becomes:

E (PI
ne) = 1 − 1 F1

(
α, α + β,−

n∑
i=1

λi

)

= 1 − 1 F1(α, α + β,−nλ), (38)

where the latter equality applies when all the doses
Xi have the same Poisson parameter λ. For the aBP
model, the correct expression for repeated exposures
is:

E
(
PI

ne) = 1 −
(

1 +
∑n

i=1λi

β

)−α

. (39)

In contrast to the Poisson case, the product of nega-
tive binomial pgfs is not, in general, the pgf of a neg-
ative binomial distribution and the single-exposure
expression does not easily generalize to the case of
repeated exposures. However, for the special case
when Xi , . . . , Xn are negative binomial variables with
identical cluster parameter b, we get:

E
(
PI

ne) = 1 −
∫ 1

0
(1 + br)−1/b

∑n
i=1 λi

rα−1(1 − r)β−1

B(α, β)
dr

= 1 − 2 F1

(
1/b

n∑
i=1

λi , α; α + β; −b

)
. (40)

3.3.2. Average Dose to Produce Consistent
Total Risk

The average dose distribution pX is the dose dis-
tribution that, when used to replace the actual dose
distributions in repeated exposures, gives the same
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Fig. 2. Comparison of the single-hit consistent and the conventional expressions for the annual (365 exposures) risk, using a range of
parameter values and mean doses (λ is the per exposure mean dose). Each contour represents a constant ratio of Equations (35) to (33), using
the exact beta-Poisson model. The hypergeometric function was evaluated in R(25–27) and the contours were generated with MATLAB.(28,29)

risk estimate as the actual dose distributions. In terms
of pgfs, it is given by the relation:

[GX(1 − r)]n = GXne (1 − r) =
n∏

i=1

GXi (1 − r). (41)

In general, GX(1 − r) will not have a simple expres-
sion, but when the doses Xi are Poisson distributed,
it becomes:

GX(1 − r) =
(

n∏
i=1

e−λi r

) 1
n

= e−r 1
n

∑n
i=1λi , (42)

which is the pgf of a Poisson variable with mean
1
n

∑n
i=1λi . The implication is that, for any single-hit

dose-response model that is based on a Poisson dose
distribution, we may also speak of an average dose
(not just an average dose distribution) and the aver-
age is an arithmetic average. This is consistent with
what has been recommended previously,(32) although
using Equation (33) as a starting point.

As a final point in this section, it is noted that
Equations (33) and (35) lead to different conclusions
regarding the mathematical connection between
dose-response models and the attack rate in models
for disease spread, as has been discussed earlier.(2)

According to the above discussion, Equation (35)
gives the correct expression for a consistent single-hit
approach to this problem.

4. DISCUSSION AND CONCLUDING
REMARKS

In this article, the single-hit dose-response model
framework that has dominated QMRA-applications
for drinking water has been reviewed by explicitly
incorporating random variables to represent general
pathogen and host properties as well as the dose.
Sufficient statistical independence assumptions
for arriving at single-hit models were identified.
Essentially, the only possible mutual statistical
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dependence left is that between pathogen properties
and host properties. The so-called single-hit prob-
ability was precisely defined in Equation (12) and
should be interpreted as a conditional expectation
value, where the expectation is with respect to
pathogen properties. Hence, variation in single-hit
probabilities is due to variation in host properties, as
has been demonstrated previously.(4,5) The single-hit
framework can be formulated compactly in terms of
pgf and mgf, as exemplified in Table III.

The fact that the randomness of R represents
host variation relates directly to all of the conclusions
highlighted in the abstract: Proposition 1 on con-
stant versus variable host susceptibility, the formal
representation of host immunity in fR and E(PI),
mean pathogen infectivity as a scale parameter in fR

(Section 3.2.3), and the total and average risk
in repeated exposures in Section 3.3. While the
model-consistent estimate for the total risk from
repeated exposures differs (gives lower risk;
Proposition 3) from the conventional expression, the
difference is quite small at low doses, which is more
relevant for typical drinking water applications.

In Section 3.2.3, we assumed g(S, T) = ST with
S (host susceptibility) and T (pathogen infectivity)
being two independent random variables on the unit
interval. These may be strong assumptions, but they
produce a very interesting result: E(T) becomes a
scale parameter in the distribution of single-hit prob-
abilities and translates into a scale factor on the mean
dose in the dose-response model if doses are Poisson
distributed. In a situation where there is between-
host variation in susceptibility (i.e., fS is not degen-
erate), this appears to open the possibility of distin-
guishing between pathogen effects (characterized
by E(T)) and host effects (characterized by fS and
its parameters) on the basis of model fitting alone,
at least in principle. In practice, however, reliable
parameter estimation would probably require a
well-behaved data set and a highly appropriate
choice of the distributional form for fS (in ad-
dition to the appropriateness of the assumptions
on g(S, T)). If fS is degenerate, only the product
r = sE(T) can be estimated.

Section 3.2.3 treats the problem of distinguishing
between pathogen effects and host effects when there
is a single pathogen population (and a single host
population). This should be contrasted with attempts
to account for varying infectivity between several
pathogen populations or strains (and/or, equiva-
lently, varying host susceptibility toward each of the

pathogen populations) in one and the same dose-
response model. For example, Teunis et al.(12) pub-
lished such a study, where dose-response data from
three different isolates of Cryptosporidium were
used to construct a single model that allowed quan-
tification of between-isolates variation (due to vari-
ation in infectivity/susceptibility) and within-isolates
variation (due to variation in susceptibility, according
to single-hit assumptions). Thus, experimental design
and appropriate model building may allow distinc-
tion between certain aspects of host and pathogen
properties based on model fitting alone, but in order
to distinguish between pathogen infectivity and
host susceptibility in a conventional single-hit dose-
response experiment, further assumptions such as
those employed in Section 3.2.3 seem to be needed.

Successful dose-response model choice, param-
eter estimation, and parameter interpretation, us-
ing single-hit models or other approaches, requires
detailed knowledge of the conditions under which
the dose-response data were obtained. Careful mod-
eling and data collection may even allow applications
of the model in other or more general settings than
those used for data generation. This article did not
aim to discuss the merits of single-hit models when
fit to experimental data. However, it remains a scien-
tific challenge to probe the appropriateness of single-
hit models for low doses, since many experimental
subjects are needed to obtain reliable estimates for
the probability of infection. Very few such low-dose
data exist and although single-hit models can be fit to
many intermediate to high-dose data sets, applying
single-hit theory in typical drinking water studies re-
lies on an extrapolation in most cases. Furthermore,
the differences between alternative models tend to
become more important at low doses.(1,11,33) It should
be mentioned that adequate fit of a model to a data
set is in itself insufficient evidence to conclude that
the assumptions behind the model are correct. In any
case, a solid understanding of single-hit theory may
provide hints to the underlying mechanistic causes in
cases of poor model fits to data.
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APPENDIX: MATHEMATICAL DETAILS

For reasons of self-containment, the very basics
of probability (pgf) and moment generating func-
tions (mgf) are included here.(24,34) We also give a
brief account of the moments and full distribution of
PI.

A.1. Probability Generating Functions

A random variable whose support is some sub-
set of N0, the set of nonnegative integers, is called a
count random variable. The pgf GX of any count ran-
dom variable X is defined by the power series:

GX(z) = E(zX) =
∞∑

x=0

pX(x)zx, (A.1)

whenever it exists, i.e., converges. Here, pX(x) =
Pr(X = x) denotes the probability mass function
(pmf) of X. The series converges for at least all com-
plex |z| ≤ 1. By the uniqueness of the power series
representation of a function, a pmf is uniquely iden-
tified by its pgf and most common distributions have
nice closed-form expressions for GX(z). The coeffi-
cients of zx are those of a Taylor series and thus the
pmf can be recovered as:

pX(x) = G(x)
X (0)
x!

= 1
x!

dxGX

dzx

∣∣∣∣
z=0

. (A.2)

A new count random variable X may be constructed
as a (possibly infinite) linear combination of indepen-
dent count random variables Xi ,

X =
n∑

i=1

ai Xi = a1 X1 + a2 X2 + · · · + an Xn, (A.3)

where ai ∈ N0 and
∑

ai ≥ 1. The problem of finding
the distribution of X when the sequence {ai } and the
distribution of every Xi are known, is simplified by
the following result, which follows readily from the
definition:

GX(z) = GX1 (za1 )GX2 (za2 ) · · · GXn (zan ). (A.4)

In principle, the pmf of X can now be obtained by re-
peated differentiation of Equation (A.4) with respect
to z and setting z = 0, as in Equation (A.2).

A.2. Moment Generating Functions

The mgf of a random variable R with support on
some subset of the real line is defined by:

MR(t) = E(et R) =
∫ ∞

−∞
et R fR(r) dr, (A.5)

whenever this expectation exists (it does for most dis-
tributions of practical interest). By performing a se-
ries expansion of the exponential function and taking
term-by-term expectations, we find that:

MR(t) =
∞∑

n=0

tnE(Rn)
n!

. (A.6)

The moments of R are recovered by:

E(Rn) = M(n)
R (0) = dn MR

dtn

∣∣∣∣
t=0

. (A.7)

A uniqueness property holds for mgfs as well (al-
though not as easily proved as for pgfs): any two vari-
ables whose mgfs exist and are equal have the same
probability distribution.

A.3. The Moments and Full Distribution of PI

E(PI) is all we need for obtaining the dis-
tribution of W, the number of infected hosts, in
Equation (4). It may still be of interest, though, to
study the full distribution of PI and its moments, in
order to understand how risk is distributed in a pop-
ulation. The random variable PI may be written:

PI = 1 − (1 − R)X, (A.8)

where R has the interpretation given by Equa-
tion (12) and the joint distribution of the indepen-
dent variables R and X is given by:

fR,X(r, x) = fR(r)pX(x). (A.9)

To obtain the raw moments (moments about zero)
of PI, we first expand the kth power of PI using the
binomial formula:

PI
k =

k∑
j=0

(
k
j

)
(−1) j [(1 − R) j ]X. (A.10)

Then the raw moments are obtained by taking the
expectation of Equation (A.10):

E(PI
k) =

k∑
j=0

(
k
j

)
(−1) j

∫ 1

0
GX[(1 − r) j ] fR(r) dr

=
k∑

j=0

(
k
j

)
(−1) j Ij , (A.11)
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where

Ij =
∫ 1

0
GX[(1 − r) j ] fR(r) dr j = 1, 2, . . . (A.12)

with I0 = 1 and I1 = 1 − E(PI). The central moments
(moments about the mean) are then obtained as:

E{[PI − E(PI)]n} =
n∑

k=0

(
n
k

)
[−E(PI)]n−kE

(
PI

k)

=
n∑

k=0

(
n
k

)
(I1 − 1)n−k

⎛
⎝ k∑

j=0

(
k
j

)
(−1) j Ij

⎞
⎠ .

(A.13)

After some algebra, the variance and third/fourth
central moment can be expressed in terms of the in-
tegrals in Equation (A.12) as:

μ2 = var(PI) = I2 − I2
1 , (A.14)

μ3 = − (I3 − 3I1 I2 + 2I3
1

)
, (A.15)

μ4 = I4 − 4I1 I3 + 6I2
1 I2 − 3I4

1 . (A.16)

The coefficient of variation is defined as CV(PI) =√
var(PI)/E(PI).

Obtaining the full distribution of PI analytically
seems somewhat complicated since PI in general will
be mixed continuous/discrete (it always has a point
mass corresponding to X = 0). However, a numerical
approximation may be obtained by generating a set
of random samples of R and X, and constructing a
set of PI-samples. Simulations (not shown) show that
the shape of the distributions tend to resemble that of
the underlying beta distribution, but with a shift that
is controlled by the distribution of X.
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QMRA for Drinking Water: 2. The Effect of Pathogen
Clustering in Single-Hit Dose-Response Models

Vegard Nilsen∗ and John Wyller

Spatial and/or temporal clustering of pathogens will invalidate the commonly used assump-
tion of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment.
In this work, the theoretically predicted effect of spatial clustering in conventional “single-hit”
dose-response models is investigated by employing the stuttering Poisson distribution, a very
general family of count distributions that naturally models pathogen clustering and contains
the Poisson and negative binomial distributions as special cases. The analysis is facilitated
by formulating the dose-response models in terms of probability generating functions. It is
shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribu-
tion is lower than that obtained with a Poisson distribution, assuming identical mean doses.
A similar result holds for mixed Poisson distributions. Numerical examples indicate that the
theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends
to be more pronounced for low mean doses. Furthermore, using Jensen’s inequality, an up-
per bound on risk is derived that tends to better approximate the exact theoretical single-hit
risk for highly overdispersed dose distributions. The bound holds with any dose distribution
(characterized by its mean and zero inflation index) and any conditional dose-response model
that is concave in the dose variable. Its application is exemplified with published data from
Norovirus feeding trials, for which some of the administered doses were prepared from an
inoculum of aggregated viruses. The potential implications of clustering for dose-response
assessment as well as practical risk characterization are discussed.

KEY WORDS: Aggregation; clustering; dose-response; overdispersion; QMRA; stuttering Poisson

1. INTRODUCTION

In both natural and engineered systems, water-
borne microbial pathogens such as viruses, bacteria,
and protozoan parasites may, in principle, exist in
aqueous suspensions as completely dispersed single
pathogens or they may instead be spatially associated
to some extent, in aggregates/clusters/clumps.(1–3)

The extent and strength of the association will de-
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pend on the pathogen concentration, the processes
that resulted in aggregation, the mechanisms by
which pathogens are associated, and the physico-
chemical properties of the water. Some processes
may introduce pathogens in the water in a clumped
form, e.g., if a host sheds pathogens that are aggre-
gated, if solids with accumulated pathogens detach
from filter media, or if parts of biofilms separate. In
the latter two cases, spatially associated pathogens
are likely to be part of a large, complex particle
that may not be easily dissociated. In other cases,
it may be primarily electrostatic forces that hold
pathogens together, and such interaction is likely to
be more sensitive to changes in the environment of
the pathogens.
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Within the field of quantitative microbial risk
assessment (QMRA)(4) for drinking water, a base-
line assumption is that pathogen numbers in water
samples are Poisson distributed. In particular, this
is a common assumption in the development and
application of conventional semi-mechanistic single-
hit dose-response models(4–9) that provide the proba-
bilistic link between pathogen exposure levels (dose)
and the resulting health consequences (response) for
exposed individuals. The Poisson assumption is ap-
propriate when pathogens are completely and ran-
domly dispersed in the water source throughout the
time period of interest.

However, in practice, it is most commonly ob-
served that the variance in pathogen counts is
larger than what can be accommodated by the one-
parameter Poisson distribution.(10–13) This overdis-
persion will result if pathogens accumulate in space
or time in excess of that which could occur by
chance in a completely dispersed suspension. The
phenomenon of temporal variation(13) in pathogen
concentrations is well known, documented, and at-
tempts are often made to account for it in appli-
cations. It can, e.g., be caused by relatively slow
variation in raw water quality due to seasonal ef-
fects or could be the result of sudden changes such
as treatment plant failures. Spatial accumulation of
pathogens in the form of physical clusters, i.e., two or
more pathogens sticking together or to the same sus-
pended particle, is more difficult to document experi-
mentally, and information on the pathogen clustering
state is practically never available in applications.

Conventional water treatment (both drinking
water and waste water) involving coagulation/
flocculation processes is designed to promote parti-
cle aggregation in order to enhance downstream par-
ticle separation processes. This treatment is likely to
affect pathogens (that are particles) to some extent
as well, although difficult to verify and quantify ex-
perimentally. On the other hand, the generally low
concentration of pathogens in drinking water implies
that the average distance between pathogens is much
larger than the pathogens themselves, reducing the
chance of pathogens colliding and sticking together.
Furthermore, colloid stability theory(1,14) predicts in-
creasing dispersion of microorganisms at low ionic
strength and pH-values away from their isoelectric
points (typically less than neutral pH), which coin-
cide with common conditions in drinking water.

Nevertheless, some empirical indications of clus-
tering do exist. Gale and co-workers showed(10,11)

that the variation between replicate counts of bac-

terial spores in water samples increased significantly
after water treatment. Clustering would indeed pro-
duce such overdispersion, but independent confirma-
tion of physical clustering is needed to fundamentally
distinguish it from temporal variation in mean spore
concentrations and/or variation in analytical recov-
ery between samples. In another case of possible
clustering,(15) polio virus plaques grown from sewage
samples were shown to contain two different types of
polio viruses, clashing with the standard assumption
that each plaque arises from a single virus particle.
Among several possible explanations, the authors
found aggregation of viruses to be the more plau-
sible. Clustering was also observed during electron
microscopy in a protein-rich laboratory stock sus-
pension of Norovirus that was used in human feeding
trials for dose-response assessment.(16) The latter has
motivated efforts to represent clustering in single-hit
dose-response models.(16–18)

In general, at least four aspects of QMRA
may be identified, in which the clustering state of
pathogens may impact the analysis:

1. Clustering may obscure interpretation of mi-
croorganism counts from laboratory methods.
First, it could possibly affect the recovery of
concentration procedures. Second, some meth-
ods typically return results that relate to the to-
tal number of organisms, such as quantitative
real-time polymerase chain reaction (qPCR)
that measures the number of genome copies
present. Other methods will tend to return re-
sults that relate more to the total number of
clusters, such as plaque/colony counting meth-
ods where it is difficult to assess whether a
macroscopic plaque/colony stems from a single
organism or a cluster of organisms.(15) A disper-
sion step (e.g., using Tween(10)) may be added
to the laboratory protocol of the latter meth-
ods to obtain the total numbers of organisms
instead.

2. Clustering may play a role in the exposure as-
sessment in a broad sense, since the transport
properties of pathogens in nature and their
removal and inactivation during water treat-
ment and distribution may depend on the ex-
tent of clustering. For example, settling and
filtration processes are size-sensitive, as well
as disinfection processes such as chlorination
(see, for example, Thurston-Enriquez et al.(19))
and ultraviolet radiation (where clustering of
pathogens/particles may shield pathogens from
radiation).
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3. Clustering could affect pathogen infectivity
upon entering a human host. That is, for a given
number of pathogens ingested, is it relevant for
the host-pathogen interaction whether they oc-
cur as single particles or are part of a cluster of
a certain size? Any such dependence would in-
duce a correlation between the dose and the in-
fectivity of a single pathogen (since the dose and
occurrence of certain cluster sizes would be cor-
related), which is inconsistent with traditional
single-hit models (Section 2.1). If such effects
exist and are important, dose-response models
would require modification to account for them,
which would complicate the modeling process.
Designing an experiment that can detect and
quantify such effects, if they are present, ap-
pears challenging.

4. Clustering affects the dose distribution. Even
if the host is insensitive to the pathogen clus-
tering state, clustering of pathogens will affect
the probability distribution for the total number
of pathogens included in a water sample (the
dose), whether the “sample” is for human con-
sumption or for laboratory analysis. The choice
of a dose distribution (usually Poisson) is an
integral part of the development of classical
single-hit dose-response models, as well as in
designing Monte Carlo simulations for practical
risk characterization.

This article focuses on item 4 above; i.e.,
the effect of clustering on the dose distribution
(total pathogen count) as it applies to single-hit
dose-response models. Regarding item 3, it will be
assumed that the host/pathogen interaction is insen-
sitive to pathogen clustering state. This is potentially
unrealistic, but has nevertheless been the assumption
(tacitly or explicitly) in published work on Norovirus
dose response(16–18) and it seems difficult to relax in
a simple way. A primitive generalization of single-hit
models to account for the effects mentioned in item
3 is provided in Section S.5 of the online appendix.

The introductory paragraphs above motivate the
purpose of the present work, which is to

i. Investigate the theoretically predicted effect
of pathogen clustering on single-hit dose-
response models in QMRA; i.e., what is fun-
damentally built into the single-hit risk frame-
work with respect to the effects of pathogen
clustering (or more generally, overdispersion
in the dose distribution)?

ii. Simulate the effects of moderate clustering on
single-hit risk estimates, a situation that may be
particularly relevant for background risk levels
in drinking water. Are single-hit models robust
with respect to unaccounted for clustering?

iii. Introduce a risk bound (the Jensen bound)
that emerged during the investigation of bul-
let point i, which could be useful for many sit-
uations where one has an overdispersed dose
distribution.

For some of the technical derivations, we will
draw upon the dose-response model formulation in
terms of probability generating functions (pgfs) pre-
sented in the companion paper.(9)

In discussing dose-response modeling, we should
distinguish between dose-response assessment and
dose-response models as employed in practical
risk characterization studies. The purpose of dose-
response assessment is to estimate dose-response
parameters for a particular pathogen, which can
subsequently be used in a dose-response model to
estimate infection risk in a risk characterization
study, possibly undertaken as a simulation study
using Monte Carlo methods. The dose distributions
need not be the same in the two cases, and if it is non-
Poisson due to clustering, it will not be known in any
detail. For dose-response assessment, it is very con-
venient1 if the dose-response model can be expressed
in closed form, which limits the choice of dose distri-
bution to simple ones. For risk characterization, this
is less important since a complicated dose distribu-
tion may easily be specified in a Monte Carlo study,
in conjunction with a conditional(7) dose-response
model (Section 2.1). The material presented in this
article should be useful for both purposes.

2. MODEL DEVELOPMENT

The semi-mechanistic single-hit dose-response
framework has been described by many authors.(4–9)

We first recapitulate the essentials of this framework
(Section 2.1) using the formulations of our compan-
ion paper,(9) before introducing some basic concepts
of clustering in Section 2.2. Section 2.3 introduces the
stuttering Poisson distribution, which forms the basis
for the analysis presented in Section 3.1.

1Although not necessary if the required quantities can be com-
puted numerically with sufficient precision.
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2.1. Single-Hit Dose-Response Framework

In a single-hit model, it is assumed that a sin-
gle pathogen may be capable of causing an infection,
and that individual pathogens act independently of
each other. Under more precise assumptions stated
at the end of this section, a randomly selected host
that ingests a random2 number of pathogens X has
a probability PI of becoming infected, which equals
the probability that at least one pathogen establishes
infection:

PI = 1 − (1 − R)X. (1)

Here, R is a random variable that equals the prob-
ability that a single pathogen establishes infection
(the single-hit probability). We allow for the possibil-
ity that X (as in so-called conditional dose-response
models) and/or R (as, e.g., in the exponential model)
may degenerate to constants. It has been shown(7–9)

that within single-hit theory, R derives its random-
ness from the variation in host susceptibility and that
the variation in pathogen infectivity enters only indi-
rectly through its modulating effect on the distribu-
tion of R.

The actual dose-response model is given by the
marginal probability E(PI) (the expected value of
PI) as a function of the dose distribution parameters.
E(PI) serves as a dose-dependent success probabil-
ity in a binomial model for the number of infected
hosts when one or more hosts are exposed. It can be
written as:

E(PI) = 1 −
∫ 1

0

∞∑
x=0

(1 − r)x pX(x) fR(r) dr

= 1 −
∫ 1

0
GX(1 − r) fR(r) dr, (2)

where pX(x) is the probability mass function (pmf)
of X, fR(r) is the probability density function3 (pdf)
of R, and GX(1 − r) is the pgf of X, evaluated at
1 − r . The pgf is an alternative representation of the
distribution of a count random variable, and the ba-
sics of pgfs are reviewed in Section S.1 of the online
appendix since they play a central role in our dose-
response models.

2Throughout this article, strict adherence is made to the conven-
tion of denoting random variables with uppercase letters and par-
ticular instances of the same variables with the corresponding
lowercase letters.

3 R may also be represented as a mixed random variable(9) with
both continuous and discrete parts (e.g., if some hosts are fully
immune), in which case fR is a mixed probability density/pmf.

The baseline assumption in QMRA is that X is
Poisson distributed with pmf:

Pr(X = x) = pX(x) = λxe−λ

x!
, (3)

which has a single parameter λ > 0 and E(X) =
Var(X) = λ. The parameter λ can be interpreted as
the product cv of the pathogen concentration c in the
water source and the sample volume v. The pgf of a
Poisson variable with mean λ is:

GX(z) = eλ(z−1). (4)

With this, Equation (2) reduces to:

E(PI) = 1 −
∫ 1

0
e−λr fR(r) dr. (5)

Various parameterized dose-response models will re-
sult for different choices of fR.(4,9)

Inherent in the simple formulation in
Equation (2) are several statistical independence
assumptions on random variables representing host
susceptibility, pathogen infectivity, and the dose. For
their precise formulation, the companion paper(9)

should be consulted. They can be summarized briefly
as follows:

1. The probability that any single pathogen estab-
lishes infection is independent of the failure of
one or more other pathogens within the same
dose to do so.

2. The infectivities of the individual pathogens in
the water sample are mutually independent.

3. The dose and the infectivity of each individual
pathogen in the water sample are mutually in-
dependent.

4. The dose and the susceptibility of the host are
mutually independent.

2.2. Nomenclature and Basic Concepts

One of the axioms used in a rigorous develop-
ment of the Poisson distribution says that, roughly,
for a very small sample volume, the probability of
observing more than one pathogen is zero.(20) The
presence of pathogen clustering will obviously inval-
idate this assumption and the dose distribution will
not be Poisson anymore. In practice, deviations from
the Poisson distribution may be identified by a sta-
tistically significant difference between the sample
mean and variance. A useful statistic in this respect
is the dispersion index:

δ = Var(X)
E(X)

. (6)
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Fig. 1. Example of mild aggregation.

One may distinguish between the following
situations:� Underdispersion, i.e., δ < 1. This can happen

when there is a tendency toward special unifor-
mity in the distribution of pathogens, and re-
sults in a pathogen count that is “less random”
(its entropy is lower) than a Poisson variable.� Poisson dispersion, i.e., δ = 1.� Overdispersion, i.e., δ > 1. This is the type
of deviation that is most commonly observed
in practice,(10,11) and could be the effect of
pathogen clustering.

Another useful measure of spread that will be
employed below is the zero-inflation index, defined
by:

θ = 1 + ln[pX(0)]
E(X)

. (7)

In general, θ < 1. For a Poisson variable, θ = 0, while
θ > 0 for a situation with clustering, as discussed in
Section 2.3.

Assume now that a sample is taken from a wa-
ter source in which some of the pathogens may be
clustered. Fig. 1 shows a conceptual example of how
pathogens may be distributed in a sample from such
a water source with (moderate) clustering. Some
pathogens exist as single particles, some are clustered
together, and some are attached to other types of
particles of various sizes. We will use the term n-

cluster for any collection of particles that contains n
(n ≥ 1) pathogens, in which the association between
the pathogens is sufficiently strong that the cluster
behaves as a single unit during sampling. With this
terminology, the simplest cluster is the one consist-
ing of a single pathogen (a 1-cluster). Furthermore,
clusters are characterized only by the number of
pathogens they contain, and not by the number and
size of other types of particles included in the cluster.

The number of n-clusters contained in the water
sample is a random variable and will be denoted as
Xn. The total number of pathogens contained in the
sample, X, and the total number of clusters, Xcl, are
functions of the Xns and given, respectively, by:

X =
∞∑

n=1

nXn = X1 + 2X2 + 3X3 + · · · (8)

Xcl =
∞∑

n=1

Xn = X1 + X2 + X3 + · · · (9)

The sums are over all cluster sizes with the assump-
tion that E(X) < ∞ (and hence E(Xcl) < ∞).

Since Xn represents the count of a specific type
of cluster, clustering itself is no longer a source
of overdispersion in the distribution of Xn (e.g., if
two n-clusters form a new cluster, they are instead
counted as a 2n-cluster). Hence, if clusters can be
considered to move about essentially randomly
and independently, it is natural to assume that the
distribution of each Xn is Poisson with corresponding
parameter λn = cnv, where cn represents the concen-
tration (number per unit volume) of n-clusters in the
water source. The general distribution of X under
this assumption is considered in Section 2.3.

It is worth emphasizing again the similarities and
differences between clustering as defined above and
other sources of spatiotemporal heterogeneity in the
distribution of pathogens. If some of the pathogens
tend to stay close in space or time, without actually
being physically clustered, this will also contribute to
overdispersion in the dose distribution and can be
difficult, if not impossible, to distinguish from cluster-
ing only on the basis of observing pathogen counts.
Temporal variation in the mean pathogen concentra-
tion on larger time scales will also induce overdisper-
sion. While these sources of overdispersion may pos-
sibly also be representable by a distribution of the
form of Equation (8), the interpretation of the pa-
rameters in terms of clusters is lost. The main focus of
this article is on suspensions that have a given mean
pathogen concentration λ = E(X), for which some of
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the pathogens are actually clustered, and the clusters
themselves behave as Poisson particles.

2.3. A General Dose Distribution Accounting
for Clustering

We are interested in the distribution of X as
expressed in Equation (8), where the Xns are as-
sumed to be Poisson distributed. It is demonstrated
in Section S.1 of the online appendix that the dis-
tribution of X is, in fact, a general stuttering Pois-
son distribution,(20–22) i.e., a Poisson-stopped sum
of nonnegative discrete random variables. Special
cases of this distribution have, for example, been
used to model bulk arrivals in queuing theory(21)

and the number of radiation-induced chromosome
defects.(23) For the case where there is a fixed
maximum cluster size N > 1, the distribution of X
has been called the Nth-order (univariate) Hermite
distribution.(24) For N = 2, it is known simply as the
Hermite distribution.(25,26) This special case was used
to model bacterial counts as early as 1926(27) (al-
though the name “Hermite” distribution was coined
later) and may be of particular importance for di-
lute suspensions, where larger clusters are unlikely
to form. For the case where the only cluster sizes
are 1 and N, it is known as the generalized Hermite
distribution.(28)

The stuttering Poisson distribution may become
very complicated (e.g., many modes), owing to the
essentially combinatorial character of the problem of
obtaining it (Section S.1 of the online appendix). Its
pmf is generally not expressible in closed form, but
can be obtained as a convenient recursive formula(22)

that evaluates quite rapidly on an ordinary computer
as long as the mean of the stuttering Poisson distribu-
tion is only moderately large. A proof of the follow-
ing expression for the pmf is reproduced in Section
S.1 of the online appendix (Lemma 1):

pX(x) =
{

e−∑∞
n=1 λn if x = 0

= 1
x

∑x
n=1 nλn pX(x − n) if x ≥ 1.

(10)

We may use Equation (10) to compute the dose dis-
tribution resulting from any given clustering state in
the water source, which is specified by the set of pa-
rameters λn = cnv, n = 1, 2, . . . . Table S1 in Section
S.1 of the online appendix gives expressions for δ and
θ as a function of the parameters λn.

A special case of the stuttering Poisson is the
two-parameter negative binomial distribution, which
has been used to accommodate a larger than Pois-
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Fig. 2. Comparison of the Hermite distribution with the Poisson
(equivalent λ) and the negative binomial (equivalent λ and δ, or λ

and θ).

son variance in QMRA studies.(10,16,18) For the
negative binomial, the distribution of cluster sizes
follows a logarithmic series distribution with param-
eter 0 < a < 1. The details are given in Section S.1 of
the online appendix. When parameterized in terms
of the mean λ and a dispersion parameter b = a/(1 −
a), the pmf is given by:

pX(x) = �(x + λ/b)
x!�(λ/b)

(
b

b + 1

)x ( 1
b + 1

)λ/b

. (11)

The variance is Var(X) = λ(1 + b). The negative bi-
nomial reduces to the Poisson distribution with mean
λ as b → 0. Its pgf is:

GX(z) = [1 + b(1 − z)]−λ/b
, (12)

which we will use in Section 3.1.
In Fig. 2, an example of the Hermite distribu-

tion (N = 2) is compared with the Poisson dis-
tribution (identical means) and the negative bino-
mial distribution (identical means/dispersion indexes
or means/zero inflation indexes). The example rep-
resents a situation where as much as 80% of the
pathogens are contained in 2-clusters, which accen-
tuates the jagged nature of the Hermite distribution.
It is seen that, compared to the Poisson, the three
other distributions give a higher probability of ob-
taining zero pathogens and lower probability of ob-
taining exactly 1.

It is interesting to compare some key general
properties of the Poisson distribution with mean λ

and a stuttering Poisson with the same mean, i.e.,
λ = ∑∞

n=1 nλn (in terms of pathogen concentrations,
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c = ∑∞
n=1 ncn). The detailed expressions for the mo-

ments have been left to Table S1 in Section S.1 of
the online appendix. The important fact is that the
variance in the dose distribution will always increase
after clustering, and therefore the dispersion index δ

also increases. If there is a maximum cluster size N,
it can easily be shown that 1 ≤ δ ≤ N, where δ = 1
if and only if X is simple Poisson and δ = N if and
only if all the pathogens are contained exclusively in
N-clusters. Therefore, if a reliable estimate of δ can
be obtained experimentally, it gives an indication of
cluster sizes: there are at least some clusters greater
than or equal to δ. However, obtaining a reliable δ es-
timate may be difficult in practice, requiring that we
sample from a stationary distribution for X and that
analytical procedures have a constant 100% recovery
efficiency.

Since pX(0) increases as a result of clustering
(which means that the zero-inflation index θ also
increases), the probability of getting at least one
pathogen always decreases. Slightly counterintuitive,
the probability of getting exactly one pathogen may
increase or decrease, even though the concentra-
tion of 1-clusters always decreases. The direction of
change depends on details of the clustering state.
However, for low pathogen concentrations (λ < 1),
we can show that pX(1) always decreases after clus-
tering. Consider the fraction:

Pr(X = 1)cl

Pr(X = 1)disp
= λ1e−∑∞

n=1 λn

λe−λ
= λ1e−λ1

λe−λ
e−∑∞

n=2 λn . (13)

The last exponential is always less than 1. Inspection
of the function λe−λ will show that it is strictly in-
creasing for 0 < λ < 1. Thus, since λ > λ1, the frac-
tion (λ1e−λ1 )/(λe−λ) will always be less than 1 for
0 < λ < 1. Typically, the expected pathogen dose in
a glass of water will rarely exceed 1.

3. ANALYTICAL RESULTS AND EXAMPLES

3.1. Dose Response with Stuttering Poisson Doses

Fortunately, the dose-response expression in
Equation (2) requires not the complicated pmf of X,
but instead the pgf, which has a simple expression. In
Section S.1 of the online appendix, it is shown that it
is given by:

GX(z) = exp

( ∞∑
n=1

λn(zn − 1)

)
. (14)

For any given λ, we may reparameterize the stutter-
ing Poisson distribution by letting qn = nλn

λ
, i.e., qn de-

notes the fraction of the total pathogen count that is
contained in n-clusters. With this, Equation (14) be-
comes:

GX(z) = exp

(
λ

∞∑
n=1

qn

n
(zn − 1)

)
. (15)

Using the pgf of the stuttering Poisson
(Equation (14)) in the general single-hit expres-
sion in Equation (2) gives us the dose-response
relation:

E(PI,sPo) = 1 −
∫ 1

0
exp

{ ∞∑
n=1

λn[(1 − r)n − 1]

}
fR(r) dr.

(16)

Thus, within the single-hit theoretical framework,
we may specify the parameters of the stuttering
Poisson distribution corresponding to any given
clustering state, and use Equation (16) to compute
the (expected) probability of infection. Given the
generality of the above expression, it is conjectured
that it may encompass most, if not all, plausible
“single-hit” dose-response relationships unless the
dose distribution is underdispersed (δ < 1), but this
seems to be rare for microbial counts. It reduces
to the conventional dose-response relationships
(exponential, beta-Poisson) for specific choices of
the parameters λn and the distribution fR.(4,9)

The dose-response formulation in Equation (16)
enables us to show quite generally that clustering,
as represented by a stuttering Poisson distribution,
always decreases the (expected) probability of
infection in a single-hit model. We formulate this
main result as a proposition, with the proof left to
the Appendix.

Proposition 1 (Risk with stuttering Poisson doses).
Let the dose X be stuttering Poisson distributed with
λN > 0 for some N > 1 (i.e., there exists some clus-
ters) and fix the mean E(X) = λ = ∑∞

n=1 nλn. Then,
the corresponding single-hit risk E(PI,sPo) is bounded
from above by E(PI,Po), the single-hit risk computed
using a Poisson distribution with the same mean λ.

Proposition 1 is illustrated in Fig. 3, which shows
a contour plot of the following ratio:

E(PI)
E(PI,He)

= 1 − e−λr

1 − e−λr(1− 1
2 q2r)

. (17)

This is the ratio of the risk computed with a
Poisson distribution (i.e., the exponential model)
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Fig. 3. Contour plot of the ratio in Equation (17), comparing the
risk computed with the Poisson distribution (exponential model)
to that computed with the Hermite distribution. q2 is the propor-
tion of pathogens in 2-clusters. A corresponding plot assuming
beta-distributed R is given in Fig. S1 in the online appendix.

to the risk computed with the Hermite dis-
tribution, assuming a constant single-hit prob-
ability r . The denominator is obtained from
Equation (16) with only λ1 and λ2 nonzero, r
constant, and using q2 = 2λ2/λ. It is the sim-
plest possible comparison between a clustered/non-
clustered situation, but it may potentially be of prac-
tical relevance in dilute suspensions for pathogens
that fit the exponential model. Furthermore, it un-
covers some general tendencies of interest. First, for
any r (single-hit probability) and q2 (proportion of
pathogens in 2-clusters), the effect of clustering be-
comes less important as the mean λ of the distri-
butions increases. Second, for any λ and q2, the ef-
fect of clustering becomes negligible when r becomes
small since we are then approaching the lower-left
corner of the plot. Third, even for small λ and large
r , the effect of clustering is negligible unless q2 is
quite large. In summary, the effect of clustering only
becomes important for jointly small λ, large r , and
large q2 (rq2 � 0.2 is required for a ratio of 1.1 or
larger). The ratio in Equation (17) is bounded from
above by 2. Fig. S1 in the online appendix generalizes
Fig. 3 to the case of beta-distributed R, parameter-
ized in terms of E(R) = α/(α + β) and α. The effect
of clustering generally increases with E(R) and q2

and decreases with α. For any given E(R) and q2, the
effect of clustering is relatively small unless both α

and λ are small.
Fig. 4 is similar to Fig. 3 and shows a contour plot
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Fig. 4. Contour plot (solid lines) of the ratio in Equation (18),
comparing the risk computed with the Poisson distribution (ex-
ponential model) to that computed with the negative binomial dis-
tribution. Dotted lines indicate a constant value of λ/b. A corre-
sponding plot assuming beta-distributed R is given in Fig. S2 in the
online appendix.

E(PI)
E(PI,nb)

= 1 − e−λr

1 − (1 + br)−λ/b , (18)

where the denominator is the risk computed using
the negative binomial distribution (no host hetero-
geneity), obtained by using Equation (2) with Equa-
tion (12). Here, the extent of clustering increases with
the dispersion parameter b = δ − 1. The situation is
a bit more complicated than in Fig. 3. It is still cor-
rect that clustering becomes negligible as r or b be-
comes very small. When holding r and b constant
while decreasing λ, the ratio reaches a near steady
state for λr < 1. The ratio is above 1.1 if λr < 1 and
br > 0.25. The effect of increasing r while holding b
and λ constant (moving along dotted lines) depends
on whether λr is below (ratio increases) or above (ra-
tio decreases) 1. For drinking water applications, it
will usually be below 1. Fig. S2 in the online appendix
generalizes Fig. 4 to the case of beta-distributed R.
The effect of clustering generally increases with E(R)
and b and decreases with α.

3.2. Dose Response with Mixed Poisson Doses

For completeness, we now consider an alterna-
tive generalization of the dose distribution known as
mixed Poisson distributions. Here, the Poisson pa-
rameter λ is considered to be randomly drawn from a
so-called mixing distribution that represents the vari-
ation in λ. Such distributions have, e.g., been used to
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model seasonal variations in pathogen count in raw
water (e.g., the Poisson log-normal distribution). In
the case of mixed Poisson doses, the pmf pX(x) of
the dose distribution is obtained by marginalizing the
Poisson distribution over λ:

pX(x) =
∫ ∞

0
pXPo (x) f�(λ) dλ =

∫ ∞

0

λxe−λ

x!
f�(λ) dλ,

(19)

where pXPo is the pmf of a Poisson distribution with
parameter λ and f�(λ) is the pdf of the mixing dis-
tribution. It can be demonstrated that the distribu-
tion in Equation (19) is indeed overdispersed rela-
tive to the Poisson distribution. By the law of total
variance, we have Var(X) = Var(�) + E(�), which
has a minimum when � is point mass distributed
(i.e., X is Poisson and Var(�)=0). When f� is spec-
ified, pX may be used in the general single-hit ex-
pression (Equation (2)) to obtain a (possibly closed-
form) marginal dose-response model. However, vari-
ation in λ is often more relevant for risk characteri-
zation (as opposed to dose-response assessment), for
which it may be easier to sample sequentially from
f� and pX during Monte Carlo simulations than it is
to use a marginal dose-response model.

By an advanced theorem of probability,(20,29) a
mixed Poisson distribution that is constructed from
a so-called infinitely divisible mixing distribution will
also be a stuttering Poisson distribution, so in many
cases, the two families of distributions overlap (e.g.,
the negative binomial affords both interpretations).
For completeness, though, we include the following
proposition, which is the equivalent to Proposition
1, but for Poisson mixtures (the proof is left to the
Appendix).

Proposition 2 (Risk with mixed Poisson doses). Let
the dose X be mixed Poisson distributed with mixing
distribution f�(λ) and pmf given by Equation (19).
Then, the corresponding single-hit risk E(PI,mPo) is
bounded from above by E(PI,Po), the single-hit risk
computed using a Poisson distribution with mean
equal to the mean of the mixing distribution, E(�).

In order to build some intuition for why Propo-
sitions 1 and 2 hold, note that the single-hit model in
Equation (2) may be written:

E(PI) = EX [ER(PI)]

=
∞∑

x=0

pX(x)
∫ 1

0
[1 − (1 − r)x] fR(r) dr, (20)

where the subscripts denote expectation with respect
to the indicated random variables. The integral
expression ER(PI) has been called a conditional
dose-response model(7) since it gives the (expected)
risk if exactly x pathogens are ingested. The essential
property of ER(PI), which may be verified by twice
differentiation under the integral sign, is that it
is always concave4 in x for x ≥ 0. Furthermore,
the variance of X increases when X is stuttering
Poisson or mixed Poisson, as compared to a Poisson-
distributed X with the same mean. Thus, in the
weighted sum EX[ER(PI)] of conditional dose-
response models, more weight is put on x-values
far from the mean of X (on both sides of it). Since
ER(PI) is concave in x (i.e., it becomes progressively
flatter), the dispersion of weights may intuitively be
expected to reduce the risk estimate. This property
may be expected to not hold for a model that incor-
porates between-pathogen cooperation, which tends
to introduce a convex region in the low-dose range
of the conditional dose-response model (see Section
S.4 of the online appendix).

While Propositions 1 and 2 agree with intuition,
their strength is their generality: there exists no stut-
tering or mixed Poisson distribution, no matter how
obscure, that increases the risk estimate compared
to a Poisson distribution with the same mean. One
may still ask how general these families of distribu-
tions are, and whether overdispersed count (dose)
distributions that are not representable as stuttering
or mixed Poisson lead to similar results as Proposi-
tions 1 and 2.5 While we have not succeeded in find-
ing a definitive answer, it has been shown(30) that any
count random variable for which Pr(X = 0) > 0.5
follows a generalized6 stuttering Poisson distribution,
but it is not clear to us whether the proof of Proposi-
tion 1 can be modified to cover this case.

Finally, we want to briefly mention the con-
cept of stochastic dominance,(31,32) widely used in ex-
pected utility theory in economics, and a potentially
useful tool also for microbial risk analysis. In par-
ticular, for any concave conditional dose-response
model, second-order stochastic dominance dictates
that the risk from dose distribution XA is higher than
the risk from dose distribution XB if XB is a so-called

4Often, dose-response models are plotted on log-log or semi-log
plots, which gives the appearance of a convexity in the low-dose
region.

5Section S.3 in the online appendix shows that it also holds when
the Xi s in Equation (8) are binomial random variables with iden-
tical success probabilities.

6The generalized version allows for negative λns.
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mean-preserving spread(33) of XA, i.e., if XB = XA +
Z for some random variable Z and E(Z|xA) = 0 for
all xA.

4. AN APPROXIMATE DOSE-RESPONSE
MODEL FROM JENSEN’S INEQUALITY

From Propositions 1 and 2, it is clear that
the single-hit risk obtained with an overdispersed
dose distribution in the form of stuttering or mixed
Poisson-distributed doses is bounded from above by
the risk obtained with Poisson-distributed doses. As
shown in Figs. 3 and 4 and Figs. S1 and S2 in the
online appendix, the difference in risk between the
Poisson case and the overdispersed case may become
substantial for extreme overdispersion. The follow-
ing proposition gives another bound on risk that ap-
pears to be significantly closer (shown below) to the
exact single-hit risk for highly overdispersed dose dis-
tributions, and could be useful for practical purposes.
It is valid for any dose distribution (not necessar-
ily stuttering or mixed Poisson) and any conditional
dose-response model that is concave in the dose vari-
able (not necessarily single-hit), and it requires only
one additional parameter (the zero-inflation index)
of the dose distribution compared to the Poisson dis-
tribution. The proof is again left to the Appendix.

Proposition 3. Introduce the notation P0
I(x) ≡

ER(PI)|X=x for a general concave (in x) condi-
tional dose-response model. Then, the risk E(PI) =∑∞

x=0 pX(x)P0
I(x) is bounded from above by:

E(PI,J) = [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
, (21)

where θ is the zero-inflation index of the distribution
of X.

It is readily verified that Equation (21) satisfies
some fundamental requirements of a dose-response
model:

0 ≤ E(PI,J) ≤ 1,

lim
λ→0

E(PI,J) = 0, (22)

lim
λ→∞

E(PI,J) = 1.

The latter property holds only if there are no com-
pletely immune hosts.(9) The Jensen bound takes par-
ticular forms depending on which conditional dose-

response model P0
I we choose. If R has a single point

mass, the Jensen bound becomes:

E(PI,J) =
(

1 − eλ(θ−1)
)

·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

. (23)

If R is beta distributed, the Jensen bound is:

E(PI,J) =
(

1 − eλ(θ−1)
)

·
(

1 − B
[
α, β + λ/

(
1 − eλ(θ−1)

)]
B(α, β)

)
,

(24)

where B denotes the beta function.
As mentioned, Equation (21) seems to be a very

good risk bound in the single-hit case, i.e., it is quite
close to the exact single-hit risk. Figs. 5 and 6 illus-
trate this. Fig. 5 shows a contour plot for the follow-
ing ratio of the risk from the Jensen bound to the risk
computed with a Hermite distribution (no host het-
erogeneity, i.e., a constant R = r):

E(PI,J)
E(PI,He)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 − e−λr(1− 1
2 q2r)

. (25)

Also shown (red curves (color visible in on-line ver-
sion)) is the ratio in Equation (17) for comparison.
For all parameter values, the Jensen bound stays
within about 10% of the exact risk. In those cases
where the exponential model (red curves) severely
overestimates risk, the Jensen bound is markedly
closer to the exact risk from the Hermite model.
In other cases, where clustering is less pronounced,
the exponential model tends to give a slightly more
precise estimate of the exact risk than the Jensen
bound. Fig. S1 in the online appendix generalizes
Fig. 5 to the case of beta-distributed R, and the
trends are similar; the Jensen bound performs very
well overall and particularly in those cases where the
exact beta-Poisson model overestimates risk.

Fig. 6 shows a contour plot for the following ra-
tio of the risk from the Jensen bound to the risk com-
puted with a negative binomial distribution (again,
no host heterogeneity):

E(PI,J)
E(PI,nb)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 − (1 + br)−λ/b
. (26)

Also shown (red curves) is the ratio in Equation (18)
for comparison. Again, the bound seems to be very
good in those cases where the exponential model
(red curves) severely overestimates risk; for some pa-
rameter values close to two orders of magnitude bet-
ter. Fig. S2 in the online appendix generalizes Fig. 6
to the case of beta-distributed R, and the trends are
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Fig. 5. Black curves are contours for the ratio in Equation (25),
comparing the risk computed with the Jensen bound to that com-
puted with the Hermite distribution. Red curves are contours for
the ratio of risk computed with the Poisson distribution to that
computed with the Hermite distribution. This figure is based on a
constant R = r ; Fig. S1 in the online appendix shows the case of
beta-distributed R.

similar; the Jensen bound performs very well overall
and particularly in those cases where the exact beta-
Poisson model overestimates risk.

Finally, we compare the Jensen bound risk
to the risk computed with the discrete Weibull
distribution.(34) This distribution has been
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Fig. 6. Black curves are contours for the ratio in Equation (26),
comparing the risk computed with the Jensen bound to that com-
puted with the negative binomial distribution. Red curves are con-
tours for the ratio of risk computed with the Poisson distribution
to that computed with the neg.bin. distribution. This figure is based
on a constant R = r ; Fig. S2 in the online appendix shows the case
of beta-distributed R.

suggested(12,13,35) as a natural model for long-term
pathogen counts in drinking water with the ability
to account for rare, high-consequence events such
as treatment plant failures. Hence, it can potentially
model pathogen counts that are subject to temporal
clustering. Its pmf, mean, and zero-inflation index
are given by, respectively:

pX(x) = qxη − q(x+1)η

, (27)
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λ =
∞∑

x=1

qxη

, (28)

θ = 1 + ln(1 − q)
λ

, (29)

with shape parameters η > 0 and 0 < q < 1. The infi-
nite sum for the mean was computed in this work by
means of an approximation given by Englehardt and
Li.(12) It can be shown that Equations (28) and (29)
uniquely determine q and η for any given pair λ > 0
and θ < 1; hence, we may reparameterize the distri-
bution in terms of λ and θ . This was used in Figs. 7
(low θ values; θ on vertical axis) and 8 (high θ values;
1 − θ on vertical axis), which show contour plots of
the following ratio:

E(PI,J)
E(PI,dW)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 −∑∞
x=0 pX(x)(1 − r)x

, (30)

where X is discrete Weibull distributed. The denom-
inator was computed to full numerical precision,
i.e., until the term pX(x)(1 − r)x evaluated to 0.
The trends in these figures are similar to those for
the Hermite and negative binomial distribution;
the Jensen bound performs very well in those cases
where overdispersion causes a marked reduction in
the exact risk, while it is also reasonably close to
the exact risk when there is little overdispersion.
Fig. S3 in the online appendix generalizes Figs. 7 and
8 to the case of beta-distributed R, and the trends are
similar; the Jensen bound performs very well overall
and particularly in those cases where the exact
beta-Poisson model overestimates risk. In summary,
the Jensen bound examples in this section appear
to indicate that the single-hit risk is only moderately
sensitive to the details of an overdispersed dose
distribution, but quite sensitive to the overall degree
of overdispersion, as expressed by the zero-inflation
index.

5. APPLICATION OF THE APPROXIMATE
MODEL: DOSE-RESPONSE FOR
NOROVIRUS

Dose-response assessment for Norovirus(16–18)

has been complicated by aggregation of viruses in the
inoculum used for human feeding trials. Here, we fit
the beta-Jensen bound (Equation (24)) to the avail-
able Norovirus dose-response data for the purposes
of demonstrating its application, and for simple com-
parison with previous studies.
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Several studies have reported Norovirus dose-
response data from human feeding trials.(16,36–38) The
essential data from those studies are given in Table I.
In the study by Teunis et al.,(16) the suspension used
as inoculum had been stored for a long time and, us-
ing electron microscopy, the viruses were observed to
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Table I. Norovirus Dose-Response Data from Human Feeding Trials (16,36–38)

Designation Aggregated Source Mean Dose (PCR Units) Total Subjects Infected Subjects

8fIIa GI.1 Y Teunis et al.(16)

3.24×100 8 0
3.24×101 9 0
3.24×102 9 3
3.24×103 3 2
3.24×105 8 7
3.24×106 7 3
3.24×107 3 2
3.24×108 6 5

8fIIb GI.1 N Teunis et al.(16)

6.92×105 8 3
6.92×106 18 14
2.08×107 1 1

8fIIb GI.1 N (presumed) Seitz et al.(36)

6.50×107 13 10
8fIIa GI.1 Y (presumed) Atmar et al.(37)

1.92×102 13 1
1.92×103 13 7
1.92×104 8 7
1.92×106 7 6

GII.4 Y (presumed) Frenck et al.(38)

2.00×107 23 16

Note: 8fIIa: “Primary” inoculum from the original Norwalk isolate. 8fIIb: “Secondary” inoculum from stool samples of an infected individ-
ual. GI.1: Genogroup I/genotype 1. GII.4: Genogroup II/genotype 4.

be significantly clustered and could not be dispersed
by sonication. The assumptions on aggregation in the
other studies have been adopted here from Messner
et al.(17) The dose levels in all these studies were de-
termined by quantitative PCR. Recently, Norovirus
was cultivated in vitro for the first time,(39) which may
pave the way for quantification by culturing methods
that will arguably be more relevant for dose-response
assessment.

Table II gives an overview of the models that
were fitted to the data in this work. The exact
beta-Poisson model assumes completely dispersed
pathogens and is included as a reference. The
beta-negative binomial model was suggested and
fitted by Teunis et al.(16) and refitted7 to an extended
data set by Messner et al.(17) Messner et al.(17) also
suggested a model, termed fractional Poisson, in
which R is Bernoulli distributed, i.e., hosts are either
fully immune or fully susceptible. In that case, the
model does not require the full dose distribution;

7Note that we arrive at parameter estimates for the beta-negative
binomial model in this work that are different from those of Mess-
ner et al.,(17) using the same data set. We believe that the esti-
mates reported here are correct, as our computed likelihood val-
ues agree to full reported precision with those of Schmidt.(18)

only pX(0) is needed. The model contains two fitting
parameters: the fraction of (fully) immune hosts, φ,
and the mean aggregate size μ. Schmidt(18) inves-
tigated a range of models, including the previously
mentioned ones, but extended all models to include
a host immunity parameter and showed that the
omission/inclusion of an immunity parameter may
have a large effect on the results.

When fitting the Jensen bound, we have to
assume that θ is constant across all dose levels, which
is an assumption that warrants some attention. If
we can assume that the only effect of dilution is
to scale the concentration of each cluster size, it
can be seen from the expression for θ in Table S1
(online appendix, Section S.1) that θ can be expected
to be conserved across dilutions of a suspension,
since every λn is scaled by the same (expected)
factor. Equivalent assumptions have been made
in the previously published models on Norovirus,
either by stating the assumption explicitly(18) or
implicitly by treating the aggregation parameter as a
constant across all dose levels in a feeding trial.(16,17)

In practice, however, the diluent may affect the
colloidal stability and hence clustering state of the
pathogens, and mechanical mixing procedures may
also have an effect. Thus, there is some uncertainty
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Table II. Dose-Response Models Fitted to Data in Table I

Distr. of R Dose distr. − agg. E(PI) − agg. E(PI) − disp. θ

Exact beta-Poisson Beta Poisson 1 − 1 F1(α, α + β, −λ) As for agg. ≡ 0
Beta-neg.bin. Beta Neg.bin. 1 − 2 F1(λ/b, α; α + β; −b) Ex. b.-Po. 1 − ln(b + 1)/b

= 1 − 1/μ

Fractional Poisson Bernoulli pX(0) = e−λ/μ (1 − φ)(1 − e−λ/μ) As for agg. with μ ≡ 1 1 − 1/μ

Beta-Jensen Beta. Not fully specified Equation (24) Ex. b.-Po. 1 − 1/μ

Beta-Jensen with imm. Beta. Not fully specified (1 − φ) times Eq. (24) Ex. b.-Po. 1 − 1/μ
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Fig. 8. Black curves are contours for the ratio in Equation (30),
comparing the risk computed with the Jensen bound to that com-
puted with the discrete Weibull distribution for high θ values. Red
curves are contours for the ratio of risk computed with the Poisson
distribution to that computed with the d.Wei. distribution. This fig-
ure is based on a constant R = r ; Fig. S3 in the online appendix
shows the case of beta-distributed R.

associated with treating the aggregation parameter
as a constant.

For parameter fitting, maximum likelihood esti-
mation was used. The likelihood function for this ex-
perimental setup is given by the product of binomial
likelihood functions, where each factor corresponds
to a certain dose level:

L(ω) =
I∏

i=1

(
ni

wi

)
{E(PI)i [λi , ω]}wi {1 − E(PI)i [λi , ω]}ni −wi .

(31)

Here, ω is a parameter vector, I is the number of dose
levels, λi , wi , and ni are the dose, number of positive
(infected) subjects, and total number of subjects, re-
spectively (at dose level indexed by i). E(PI)i [λi , ω]
is the dose-response model as a function of the mean
dose and parameters to be fitted. Note that when
constructing the likelihood function, we use differ-
ent model formulations for data stemming from the
use of aggregated and dispersed viruses, respectively
(except in the case of the exact beta-Poisson model).
Table II specifies which model formulation was used
in each case. Thus, both the aggregated and dispersed
data can be used simultaneously to estimate the pa-
rameters of the distribution of R, as well as the ag-
gregation parameter. The maximum likelihood esti-
mate of the unknown parameter vector ω is given by
numerical optimization of Equation (31), which was
performed in MATLAB.(40) The deviance, Y, also
stated in Table III, is given by:

Y = −2 ln
(

L(ω)
LS

)
, (32)

where LS is the likelihood of the so-called saturated
model:

LS =
I∏

i=1

(
ni

wi

)(
wi

ni

)wi
(

1 − wi

ni

)ni −wi

. (33)

The p-value stated in Table III is for a chi-square
goodness-of-fit test with the null hypothesis being
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Table III. Parameter Estimates for the Dose-Response Models Fitted to Data in Table I

α̂ β̂ θ̂ φ̂ ˆE(R) Deviance p-Value

Exact beta-Poisson 0.1103 29.55 ≡ 0 ≡ 0 3.719×10−3 21.030 0.136
Beta-neg.bin. 8.128 × 10−3 3.756 × 10−3 0.999024 ≡ 0 0.6840 13.270 0.505
Fractional Poisson – – 0.999096 0.2775 0.7225 13.288 0.580
Jensen-beta 7.663×10−3 3.504×10−3 0.999045 ≡ 0 0.6862 13.273 0.505
Jensen-beta with imm. 2.478 2,186 0.993140 0.2756 8.200×10−4 13.080 0.442
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Fig. 9. Dose-response models (solid curves) in Table II fitted to the data in Table I. Dashed curves are derived from the respective fitted
models by setting the value of the aggregation parameter to that corresponding to fully dispersed pathogens.

“acceptable fit” and the alternative hypothesis “lack
of fit.”

Table III and Fig. 9 give the results from pa-
rameter estimation. There are several points to note.
First, the fitted models and their associated deviances
are similar, except for the exact beta-Poisson model,
which shows a somewhat poorer fit. Second, the
fitted beta parameters of the beta-Jensen model
(without immunity) are remarkably similar to those
of the beta-negative binomial model. This result may
not carry over to other cases, though, as the fitted
beta distribution is quite extreme with almost all
probability mass concentrated at 0 or 1.(17) Third,
the mean single-hit probabilities of the exact beta-
Poisson model and the beta-Jensen model with im-
munity deviate sharply from those in the three other

models. Fourth, when eliminating the aggregation
parameter from the fitted models (dashed curves in
Fig. 9), the resulting dose-response curves are very
different from their counterparts with the aggrega-
tion parameter, except for the beta-Jensen model
with immunity, which almost does not change when
compared with the exact beta-Poisson model (the
corresponding dispersed model). This sensitivity to
the inclusion/omission of an immunity parameter is
consistent with what was reported by Schmidt.(18)

It should be noted, though, that the parameter
estimates returned by the optimization routine for
the beta-negative binomial model and the Jensen
models seem quite sensitive to the initial guess that
is supplied to the routine. The estimates reported
here were obtained by maximizing the likelihood
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over a range of initial values until the routine de-
livered consistent results. Worryingly, there seems
to exist a wide range of parameter sets, correspond-
ing to a “ridge” or “plateau” in the likelihood sur-
face, that gives approximately the same likelihood
(i.e., changes in one parameter may be compensated
by corresponding changes in (an)other parameter(s)
without affecting the likelihood significantly). Simi-
lar challenges with nearly nonunique maximum like-
lihood estimates were reported by Messner et al.(17)

when refitting the model used by Teunis et al.,(16)

and by Schmidt(18) for several models incorporat-
ing aggregation. There is significant nonmonotonicity
in the data, and there may not be enough informa-
tion to fit three parameters (or even four, as for the
beta-Jensen model with immunity) reliably.

6. DISCUSSION AND CONCLUDING
REMARKS

In this work, we have argued that the stutter-
ing Poisson distribution (Equation (10)) is a gen-
eral and natural model for the dose distribution in
the presence of pathogen clustering. By formulating
the single-hit dose-response model in terms of a pgf,
the stuttering Poisson leads to a simple expression
for the dose-response model (Equation (16)). It was
shown formally that the single-hit risk computed with
a stuttering Poisson distribution is bounded from
above by the risk computed with a Poisson dis-
tribution (Proposition 1) with the same mean. An
equivalent result was obtained for mixed Poisson
distributions (Proposition 2). We derived another
risk bound (the Jensen bound; Proposition 3), valid
for any dose distribution and any concave conditional
dose-response model, which appears to approximate
the single-hit risk quite closely for highly overdis-
persed dose distributions. This bound may also serve
as an approximate dose-response model and its ap-
plication to a real data set was demonstrated in
Section 5.

Throughout this article, we have maintained
the single-hit assumption of independently acting
pathogens, even in the presence of pathogen clus-
tering, as has been assumed in the published work
on Norovirus clustered dose response.(16–18) This is a
potentially unrealistic assumption that deserves some
further attention in future work, although it may be
challenging to test it experimentally with sufficient
rigor. Propositions 1 and 2, as well as the Jensen
bound, suggest that reduced risk from overdispersion
(assuming equivalent mean doses) is a property that

is fundamentally built into the single-hit framework,
and as such is a theoretical prediction that can pos-
sibly be tested against data. In the remaining para-
graphs, we make an attempt to discuss some potential
practical implications of the theoretical results in the
event that they actually do coincide with real-world
effects. We should distinguish between risk charac-
terization using an already calibrated dose-response
model and dose-response assessment or parameter es-
timation in dose-response models.

The figures in Section 3.1 and in Section S.2
of the online appendix indicate that the effects of
clustering in a single-hit model tend to be more
pronounced at low doses, coinciding with typical
background dose levels in most cases of drinking
water risk characterization. However, the effects
seem to become relevant only when there is pro-
nounced clustering and when r is simultaneously
large (or E(R) large and α small in the case of
beta-distributed R). Therefore, it appears that
moderate unaccounted for clustering in drinking
water, as exemplified by the Hermite distribution,
is unlikely to introduce much additional uncertainty
or error into a single-hit risk characterization study,
given that QMRA studies often have to quantify
uncertainties by order-of-magnitude estimates. In
the case of significant temporal variation in pathogen
concentrations, periods/events of high doses may
dominate the long-term mean risk. Since the theo-
retical effects of clustering become smaller at larger
doses, it appears relatively unimportant to account
for any physical clustering during these events.

Given the (likely) modest importance of ac-
counting for clustering in single-hit drinking water
studies, and the theoretical prediction that the risk
computed using a Poisson distribution forms an up-
per bound for the risk computed using overdispersed
distributions (stuttering or mixed Poisson), we have
compelling arguments to direct our efforts at ob-
taining a correct mean dose rather than character-
izing the dose distribution in greater detail. That is,
provided that we can obtain a reliable estimate of
the mean pathogen concentration (and, of course,
the single-hit probability, or its distribution), using a
Poisson distribution for the single-hit dose-response
model during risk characterization will produce a
higher (more conservative) mean risk estimate than
using an overdispersed distribution with the same
mean. Note, however, that it may be very difficult in
practice to obtain a good estimate of the pathogen
concentration, in particular for clustered suspen-
sions or when temporal variation(12,35) is important,
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which may leave the risk estimate imprecise or even
biased.

If one is interested in accounting for overdisper-
sion, the Jensen bound in Equation (21) may prove
useful. If a reliable estimate of both the mean concen-
tration and the zero-inflation index (experimentally
available from the proportion of zero counts) can be
obtained, a significantly more precise single-hit risk
estimate may be obtained for a situation with a highly
overdispersed dose distribution without needing to
consider further details of that dose distribution. For
relatively dispersed suspensions, however, this bound
may be more conservative than the risk obtained us-
ing a Poisson distribution, which means that the two
should be compared before choosing which risk esti-
mate to use.

When fitting a dose-response model to data, the
implications of clustering are somewhat different.
The risk computed with Poisson-distributed doses
represents an upper bound on risk, so using the
Poisson distribution when pathogens are, in fact,
significantly clustered is likely to lead to an underes-
timation of the (mean) single-hit probability E(R),
exemplified by the exact beta-Poisson parameters in
Table III. This is because the parameters of the dis-
tribution for R will be chosen by the fitting procedure
to compensate for the tendency toward increased
risk enforced by the Poisson-distributed dose X.
This problem may be somewhat counteracted by
fitting the Jensen bound instead of a Poisson-based
model, but only in those cases where the data allow
reliable estimation of the additional parameter θ

introduced in this model, which may represent a
challenge.

The application of the Jensen bound in fit-
ting dose-response data was illustrated in Section 5
with published data from human feeding trials on
Norovirus. For this application, the Jensen bound
model produced results that were very similar to the
previously suggested beta-negative binomial model.
However, like Schmidt,(18) we have some reserva-
tions regarding the possibility of reliably fitting three
parameters to this data set. There appears to be a
wide range of parameter values that gives roughly the
same likelihood. Furthermore, Schmidt showed that
the inclusion or omission of a host immunity param-
eter has a large effect on the results, which was also
seen for the Jensen bound model in this work. Thus,
there is still a need to obtain more dose-response
data for Norovirus, preferably using nonaggregated
viruses.
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APPENDIX

This appendix contains proofs of the three
propositions that were presented in the main text. An
overview of the contents of the online supplementary
appendix can be found after the list of references.

A.1 Proofs of Propositions

Proposition 1 (Risk with stuttering Poisson doses).
Let the dose X be stuttering Poisson distributed with
λN > 0 for some N > 1 (i.e., there exists some clus-
ters) and fix the mean E(X) = λ = ∑∞

n=1 nλn. Then,
the corresponding single-hit risk E(PI,sPo) is bounded
from above by E(PI,Po), the single-hit risk computed
using a Poisson distribution with the same mean λ.

Proof. Consider the difference:

E(PI,Po) − E(PI,sPo) =
∫ 1

0
[GX(1 − r) − e−λr ] fR(r) dr,

(A.1)

where we used the general expression of Equation
(2) for E(PI,sPo) and Equation (5) for E(PI,Po). We
need to show that Equation (A.1) is positive when
X is stuttering Poisson. Since fR ≥ 0 for all r ∈ [0, 1]
and fR > 0 on some subset of the unit interval, it will
suffice to take r > 0 and show the positivity of the
remaining factor in the integrand, �G:

�G = GX(1 − r) − e−λr

= [
GX(1 − r)eλr − 1

]
e−λr

= exp
{∑∞

n=1 λn [(1 − r)n − (1 − nr)]
}− 1

eλr
.

(A.2)

Here, we used the pgf of a stuttering Poisson distri-
bution (Equation (14)) and the identity (by assump-
tion) λ = ∑∞

n=1 nλn. We now show that the numer-
ator in Equation (A.2) is positive. Let h(n) = (1 −
r)n − (1 − nr). We have h(1) = 0 and for n ≥ 1, we
have the difference:

h(n + 1) − h(n) = r [1 − (1 − r)n] > 0, (A.3)

since (1 − r)n < 1 for n ≥ 1. By mathematical induc-
tion, h(n) > 0 for n ≥ 2. Since there exists some N >

1 such that λN > 0, we have exp[
∑∞

n=1 λnh(n)] > 1,
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which shows that �G > 0. This proves the
proposition. �
Proposition 2 (Risk with mixed Poisson doses). Let
the dose X be mixed Poisson distributed with mixing
distribution f�(λ) and pmf given by Equation (19).
Then, the corresponding single-hit risk E(PI,mPo) is
bounded from above by E(PI,Po), the single-hit risk
computed using a Poisson distribution with mean
equal to the mean of the mixing distribution, E(�).

Proof. We need the pgf of X, which is given by:

GX(z) =
∞∑

x=0

zx
∫ ∞

0
pXPo (x) f�(λ) dλ

=
∫ ∞

0

∞∑
x=0

zx pXPo (x) f�(λ) dλ (A.4)

=
∫ ∞

0
eλ(z−1) f�(λ) dλ,

where we assumed that we may interchange integra-
tion and summation. Inserting Equation (A.4) in the
general single-hit expression (Equation (2)), we get:

E(PI,mPo) = 1 −
∫ 1

0

∫ ∞

0
e−λr f�(λ) dλ fR(r) dr. (A.4)

Since e−λr is a strictly convex function of λ on [0,∞),
we may use Jensen’s inequality to conclude that:∫ ∞

0
e−λr f�(λ) dλ > e−E(�)r . (A.6)

This leads to:

E(PI,mPo) < 1 −
∫ 1

0
e−E(�)r fR(r) dr, (A.7)

where the rhs. is recognized as E(PI,Po), the single-hit
risk computed with a Poisson distribution with mean
E(�), which concludes the proof. �
Proposition 3 (The Jensen bound). Introduce the no-
tation P0

I(x) ≡ ER(PI)
∣∣

X=x for a general concave (in
x) conditional dose-response model. Then, the risk
E(PI) = ∑∞

x=0 pX(x)P0
I(x) is bounded from above

by:

E(PI,J) = [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
, 21

where θ is the zero-inflation index of the distribution
of X.

Proof. We need Jensen’s inequality in the follow-
ing form. Let φ be a concave function on [0,∞), ux

points in the domain of φ and wx ≥ 0 be weights such
that

∑
wxux < ∞. Then, Jensen’s inequality states

(possibly involving infinite sums):∑
wxφ(ux)∑

wx
≤ φ

(∑
wxux∑
wx

)
. (A.8)

Make the identifications ux = x, wx = pX(x), and
φ(ux) = φ(x) = P0

I(x). Summing from x = 1 to infin-
ity, inequality (A.8) becomes:∑∞

x=1 pX(x)P0
I(x)∑∞

x=1 pX(x)
≤ P0

I

(∑∞
x=1 xpX(x)∑∞
x=1 pX(x)

)
. (A.9)

Using P0
I(0) = 0, we thus have:

E(PI) =
∞∑

x=0

pX(x)PI
0(x) =

∞∑
x=1

pX(x)P0
I(x)

≤
( ∞∑

x=1

pX(x)

)
· P0

I

(∑∞
x=1 xpX(x)∑∞
x=1 pX(x)

)

= [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
= E(PI,J),

(A.10)

where we used Equation (7) to introduce the zero-
inflation index. �
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SUPPORTING INFORMATION
This supplementary appendix contains the fol-

lowing:
S.1. A compact review of the mathematical con-

cepts, in particular probability generating
functions, needed to fully understand the main
paper.

S.2. A collection of numerical examples to show
how clustering may affect single-hit models
when R is beta distributed, and how the
Jensen bound performs in these examples.

S.3. A parallel to Propositions 1 and 2 for
binomially distributed clusters.

S.4. A simple example to show that the conclusion
from Proposition 1 (reduced risk from clus-
tering) fails if the conditional dose-response
model has a convex portion in the low-dose
range, as in the 2-hit model.

S.5. A primitive generalization of the single-hit
concept to account for the effects discussed in
bullet point 3 in the introduction of the main
paper, i.e. if the host-pathogen interaction
for each pathogen depends on that pathogen
being part of a cluster or not.

S.6. A section to show how a single-hit risk
estimate may be affected by misinterpreting
clusters as single pathogen during enumera-
tion, as discussed in bullet point 1 in the
introduction to the main paper.

S.1. Mathematical concepts

For reasons of self-containment, the very basics
of probability generating functions and stuttering
Poisson distributions is presented here. The material
is covered in most mathematical statistics textbooks,
e.g. the classics by Feller. (1,2)

Probability generating functions

A random variable whose support is N0, the set
of non-negative integers, is called a count random
variable. The probability generating function (pgf)
GX of any count random variable X is defined by
the power series

GX(z) = E(zX) =
∞∑

x=0
pX(x)zx (S.1)

whenever it exists, i.e. converges. Here
pX(x) = Pr(X = x) denotes the probability mass
function (pmf) of X. The series converges for at

least all complex |z| ≤ 1. By the uniqueness of the
power series representation of a function, a pmf is
uniquely identified by its pgf. The coefficients pX(x)
of zx are those of a Taylor series and thus the pmf
can be recovered as

pX(x) = G
(x)
X (0)
x! = 1

x!
dxGX
dzx

∣∣∣∣
z=0

(S.2)

A new count random variable X may be constructed
as a (possibly infinite) linear combination of indepen-
dent count random variables Xn,

X =
∞∑

n=1
anXn = a1X1 + a2X2 + · · · (S.3)

where an ∈ N0 and
∑
an ≥ 1. The problem of finding

the pmf of X when the sequence {an} and the pmf of
every Xn are known, is most easily tackled by means
of pgfs. The utility of pgfs lies in the following result,
which follows readily from the definition, for the pgf
of the linear combination in (S.3):

GX(z) = GX1(za1)GX2(za2) · · · (S.4)
In principle, the pmf of X can now be obtained by
repeated differentiation of (S.4) with respect to z and
setting z = 0, as in (S.2).

The pgf of a Poisson variable Xn with parameter
λn is found by inserting the Poisson pmf from (3) into
(S.1). The resulting series is easily recognized as

GXn(z) = eλn(z−1) (S.5)

Stuttering Poisson distributions

We begin with a definition:

Definition 1 (Compound and stuttering Poisson):
Consider the sum

W =
M∑

m=1
Ym (S.6)

where the number of terms to be added is a Poisson
distributed random variable M with parameter
λM and Ym, m = 1, . . . ,M , are independent
and identically distributed variables that are also
independent of M . For the case M = 0, W
becomes the empty sum which is 0 by definition. The
distribution of W is known as a compound Poisson
distribution or Poisson-stopped sum. Furthermore, if
the Ym’s are count random variables, the distribution
of W is known as a stuttering Poisson distribution.

Assume from now that W is stuttering Poisson. By
using the rule of total expectation, one can show that
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the pgf of W is the pgf of M (which is Poisson)
composed with the common pgf of the Ym’s:

GW (z) =E(zW ) = E(z
∑M

m=1
Ym) = E

(
M∏

m=1
zYm

)

=EM

[
EY1,...,YM

(
M∏

m=1
zYm |M

)]

=EM

[
M∏

m=1
EY
(
zY
)
]

= EM
{

[GY (z)]M
}

=GM [GY (z)] = eλM [GY (z)−1]

(S.7)
where the subscript on E denotes expectation with
respect only to the indicated variables and Y has the
common distribution of the Ym’s.

Assume now that in (S.3), an = n and every Xn

is Poisson distributed with corresponding parameter
λn. Equation (S.3) becomes

X =
∞∑

n=1
nXn = X1 + 2X2 + · · · (S.8)

which is the linear combination in equation (8) in
Section 2.2. Using the Poisson pgf in (S.5) and the
result from (S.4), the pgf of X in (S.8) becomes

GX(z) =eλ1(z−1)eλ2(z2−1) · · ·

= exp
( ∞∑

n=1
λn(zn − 1)

)
(S.9)

In the following, we first obtain the pmf of this
X before showing that X is actually a completely
general stuttering Poisson distributed variable.

The pmf of stuttering Poisson distributions

Computing derivatives of (S.9) is cumbersome
both analytically and numerically, and no general
closed-form expression for the pmf exists. Fortu-
nately, a more practically useful recurrence relation
for the pmf can be derived. A simple proof of this
was given by Kemp, (3) which we reproduce here with
slightly more detail.

Lemma 1: The pmf of X in (S.8) can be
expressed recursively as

pX(x) =





e−
∑∞

n=1
λn if x = 0

1
x

x∑

n=1
nλnpX(x− n) if x ≥ 1

(S.10)

Proof. For x = 0, we have simply pX(0) =
GX(0). For x ≥ 1, we start by equating the definition
of the pgf with the expression for GX in (S.9):

∞∑

x=0
pX(x)zx = exp

( ∞∑

n=1
λn(zn − 1)

)
(S.11)

Taking logarithms and then differentiating with
respect to z on both sides, we find
( ∞∑

x=0
pX(x)zx

)−1( ∞∑

x=0
xpX(x)zx−1

)
=
∞∑

n=1
nλnz

n−1

(S.12)
We simplify, reorganize and relabel the index on one
of the sums:( ∞∑

x=1
xpX(x)zx−1

)
=
( ∞∑

n=1
nλnz

n−1

)( ∞∑

s=0
pX(s)zs

)

(S.13)
We equate the coefficients of terms of equal power
with respect to z:

xpX(x) =
∑

s+n−1=x−1
nλnpX(s) =

∑

s=x−n
nλnpX(s)

(S.14)
For any given x ≥ 1, we may now express the
latter sum by letting n run from 1 through x. This
establishes the result:

pX(x) = 1
x

x∑

n=1
nλnpX(x− n) (S.15)

X in (S.8) is stuttering Poisson

Lemma 2: The distribution of X in equation
(S.8) is that of a general stuttering Poisson distribu-
tion.

Proof. The pgf in (S.9) may be rewritten

GX(z) = exp
[( ∞∑

n=1
λn

)(∑∞
n=1 λnz

n

∑∞
n=1 λn

− 1
)]

(S.16)
The ratio is a power series with coefficients ∈ [0, 1]
that sum to 1, i.e. it is a pgf. Comparing (S.16) with
(S.7), we therefore find that X is stuttering Poisson
distributed where M has Poisson parameter λM =∑∞
n=1 λn and the pgf of Y is

GY (z) =
∑∞
n=1 λnz

n

∑∞
n=1 λn

(S.17)

Note that in (S.9), the summation may be extended
to include n = 0 without affecting the expression
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since λ0 cancels out. Thus, there is no loss of
generality by summing from n = 1 above, and
hence X is a general stuttering Poisson variable. The
pmf of Y is easily derived by differentiating (S.17)
repeatedly and using (S.2):

pY (y) =





0 if y = 0
λy∑∞
n=1 λn

if y ≥ 1
(S.18)

Moments of the stuttering Poisson distribution

We are interested in the expected value (µ), the
variance (σ2), the skewness (α3) and the kurtosis
(α4) of X. These are most easily obtained using
the cumulant-generating function (cgf) gX(t) of X.
The reader may be more familiar with the moment-
generating function (mgf) MX(t). The two are
related through

gX(t) = ln[MX(t)] (S.19)

The mgf is also related to the pgf by

MX(t) = GX(et) (S.20)

Combining (S.9), (S.19) and (S.20) yields the cgf for
X:

gX(t) =
∞∑

n=1
λn(ent − 1) (S.21)

The cumulants κi of X are obtained by

κi = digX
dti

∣∣∣∣
t=0

(S.22)

After some algebra, the desired moments are ob-
tained as

µ = κ1 =
∞∑

n=1
nλn (S.23)

σ2 = κ2 =
∞∑

n=1
n2λn (S.24)

α3 = κ3

κ
3/2
2

=
∑∞
n=1 n

3λn

(
∑∞
n=1 n

2λn)
3
2

(S.25)

α4 = κ4
κ2

2
=

∑∞
n=1 n

4λn

(
∑∞
n=1 n

2λn)2 (S.26)

The negative binomial is stuttering Poisson

Finally it is ascertained that the negative
binomial distribution is also stuttering Poisson. We

do this by deriving the pgf of the negative binomial
from the general expression for a stuttering Poisson
pgf in (S.7). Assume that Y is logarithmic series
distributed with parameter 0 < a < 1. Its pgf is
known as

GY (z) = ln(1− az)
ln(1− a) (S.27)

Inserting this in (S.7), defining b = a/(1 − a) and
simplifying, we find

GW (z) = (1 + b(1− z))
−λM

ln(b+1) (S.28)

From a property of pgfs, we can find the mean λ of
this W :

λ = lim
z→1−

dGW (z)
dz

= λMb

ln(b+ 1) (S.29)

Using this to eliminate λM from (S.28), we arrive at

GW (z) = (1 + b(1− z))
−λ
b (S.30)

which is the pgf for the negative binomial distribu-
tion as parametrized in equation (12) in Section 2.3.

Combinatorial interpretation of stuttering Poisson
distributions

We take a brief look at the problem of obtaining
the pmf of a stuttering Poisson variable from a
different perspective, in order to show more clearly
why closed-forms are difficult. Let x denote an
instance of the random variable X, xn an instance
of Xn and let n be finite, i.e. n < N . Instead
of the pgf-approach, one can consider all possible
combinations of xn’s that satisfy (S.8) for every x
of interest. We have assumed that all the Xn’s are
mutually independent, so that the probability of
seeing any given combination of xn’s can be written
as
∏N
n=1 Pr(Xn = xn). Since the occurrence of any

two such combinations are disjoint events, Pr(X = x)
is given by summing over all possible combinations:

Pr(X = x) =
∑

all xi

[
N∏

n=1
Pr(Xn = xn)

]
(S.31)

where xi is a non-negative integer solution {xn,i}Nn=1
of the equation
N∑

n=1
nxn,i = x1,i + 2x2,i + 3x3,i + · · ·+NxN,i = x

(S.32)
Solving this equation for x = 0, 1, . . . gives the
pmf of X. The problem of solving it is known as
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Table S1. Properties of the Poisson distribution compared with the stuttering Poisson. Note that λ =
∑∞

n=1 nλn.

Dispersed (Poisson) Clustered (Stutt. Poisson) Change

Key probabilities

Pr(X = 0) e−λ e
−
∑∞

n=1
λn Increases

Pr(X = 1) λe−λ λ1e
−
∑∞

n=1
λn Depends

Pr(X ≥ 1) 1 − e−λ 1 − e
−
∑∞

n=1
λn Decreases

Moments
Mean (µ) λ

∑∞
n=1 nλn None

Variance (σ2) λ
∑∞

n=1 n
2λn Increases

Skewness (α3) λ−1/2 (
∑∞

n=1 n
3λn)/(

∑∞
n=1 n

2λn)
3
2 Depends?

Kurtosis (α4) λ−1 (
∑∞

n=1 n
4λn)/(

∑∞
n=1 n

2λn)2 Depends?
Other spread measures
Dispersion index (δ) 1 (

∑∞
n=1 n

2λn)/(
∑∞

n=1 nλn) Increases
Zero inflation index (θ) 0 1 − (

∑∞
n=1 λn)/(

∑∞
n=1 nλn) Increases

a linear diophantine problem. An attempt to apply
Faa di Bruno’s formula, which gives the higher-order
derivatives of composite functions, to (S.9) leads
to very similar problems. Obtaining the solutions
to (S.32) numerically for moderately large x is a
computationally intensive task. A recursive formula
for the number of solutions has been published. (4)

Recursive formula to evaluate 2F1 for large mean
doses

In this work, we used the function hypergeom in
the MATLAB Symbolic Math Toolbox (5) to compute
the risk from the beta-neg.bin. model:

E(P I) = 1− 2F1(λ/b, α;α+ β;−b) (S.33)

For large values of the mean dose λ, hypergeom
tends to be very slow or even fail. For this case,
we used a recursive algorithm to compute 2F1. We
are thankful to user uranix on the mathematics
section of StackExchange for pointing us to this
solution, which is reproduced below. Introduce the
notation 2F1(u1, u2; l1; z). Our problem is thus with
large u1. A recursive formula exists that is useful
for this situation (Abramowitz & Stegun, (6) formula
15.2.10):

(l1 − u1)2F1(u1 − 1, u2; l1; z)
+ (2u1 − l1 + (u2 − u1)z)2F1(u1, u2; l1; z)
+ u1(z − 1)2F1(u1 + 1, u2; l1; z) = 0

(S.34)

If we define G(u1) = 2F1(u1, u2; l1; z), we may write

G(u1 + 1) =2u1 − l1 + (u2 − u1)z
u1(1− z) G(u1)

+ l1 − u1
u1(1− z)G(u1 − 1)

(S.35)

This may be used to compute G(u1) for large values
of u1 by starting from two initial values G(u1−bu1c+
1) and G(u1 − bu1c + 2). These initial values could
readily be computed by hypergeom. For comparison,
the method were tested with parameter ranges that
also allowed direct computation using hypergeom and
results agreed to excellent precision.

S.2. Beta-distributed single-hit probabilities
and clustering

The figures below are extensions of Figures 3
to 8 in the main article, included to show the
effect of using a beta-distributed R in the respective
risk comparisons. Since MATLABs hypergeom had
difficulties tackling some combinations of parameter
values that are integer powers of 10, the chosen
parameter values have somewhat odd values. The
number of parameter values were chosen to keep the
computational time within reasonable bounds. The
numerical precision in Figures S1 and S3 should not
be trusted to be better than a couple of decimals.

The beta-Hermite model

The red numbers in Figure S1 are point values
for the following ratio of the risk computed with the
exact beta-Poisson to the risk computed with the
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beta-Hermite model:
E(P I)

E(P I,He) = 1−1F1(α,α+β,−λ)

1− 1
B(α,β)

∫ 1

0
e
−λr(1− 1

2 q2r)
rα−1(1−r)β−1 dr

(S.36)

The integral in the denominator was difficult to
evaluate numerically using available software because
of the factor e 1

2λq2r
2 . Instead it was computed by

truncating the following series expansion, usually
requiring only a handful of terms to achieve excellent
precision:

E(P I,He)=1− 1
B(α,β)

∫ 1

0
e

1
2λq2r2

e−λrrα−1(1−r)β−1 dr

=1− 1
B(α,β)

∫ 1

0

∑∞
n=0

( 1
2λq2)n

n! r2ne−λrrα−1(1−r)β−1 dr

=1− 1
B(α,β)

∑∞
n=0

( 1
2λq2)n

n!

∫ 1

0
e−λrr2n+α−1(1−r)β−1 dr

=1− 1
B(α,β)

∑∞
n=0

( 1
2λq2)n

n! B(2n+α,β)×···

1F1(2n+α,2n+α+β,−λ)

(S.37)

The black numbers in Figure S1 are point values
for the following ratio of the risk computed with
the Jensen bound (with a beta-binomial conditional
dose-response model) to the risk computed with the
beta-Hermite model:

E(P I,J)
E(P I,He) =

(1−eλ(θ−1))·
(

1−
B[α,β+λ/(1−eλ(θ−1))]

B(α,β)

)

1− 1
B(α,β)

∫ 1

0
e
−λr(1− 1

2 q2r)
rα−1(1−r)β−1 dr

(S.38)

The beta-neg.bin. model

The red numbers in Figure S2 are point values
for the following ratio of the risk computed with the
exact beta-Poisson to the risk computed with the
beta-neg.bin. model:

E(P I)
E(P I,NB) = 1− 1F1(α, α+ β,−λ)

1− 2F1(λ/b, α;α+ β;−b) (S.39)

The black numbers in Figure S2 are point values
for the following ratio of the risk computed with
the Jensen bound (with a beta-binomial conditional
dose-response model) to the risk computed with the
beta-neg.bin. model:

E(P I,J)
E(P I,NB) =

(1−eλ(θ−1))·
(

1−
B[α,β+λ/(1−eλ(θ−1))]

B(α,β)

)

1−2F1(λ/b,α;α+β;−b) (S.40)

The beta-discrete Weibull model

The red numbers in Figure S3 are point values
for the following ratio of the risk computed with the
exact beta-Poisson to the risk computed with the

beta-discrete Weibull model
E(P I)

E(P I,dW) = 1− 1F1(α, α+ β,−λ)
1−∑∞x=0 pX(x)B(α,β+x)

B(α,β)

(S.41)

where X is discrete Weibull distributed. The black
numbers in Figure S3 are point values for the
following ratio of the risk computed with the
Jensen bound (with a beta-binomial conditional
dose-response model) to the risk computed with the
beta-discrete Weibull model

E(P I,J)
E(P I,dW) =

(1−eλ(θ−1))·
(

1−
B[α,β+λ/(1−eλ(θ−1))]

B(α,β)

)

1−
∑∞

x=0
pX (x)B(α,β+x)

B(α,β)
(S.42)

where X is discrete Weibull distributed. The
numerical precision of the denominator in these
equations was controlled by requiring the error
bound pX(N)(1 − PX(N)) on the truncation error
(x < N) to be 1/1000 of the numerator (the Jensen
bound). For θ = 0.1, the error bound was required
to be less than 10−12.

S.3. A result for binomially distributed
clusters

The stuttering and mixed Poisson distributions
considered in the main paper all prescribe a non-
zero probability for any positive pathogen count.
When taking a sample of volume vs from a larger,
fixed volume v that contains a finite number nb of
dispersed pathogens (e.g. a stock suspension in a
laboratory), it can be argued that a natural model for
the pathogen count is the binomial distribution with
success probability p = vs/v and number of trials nb.
The pgf of the binomial distribution is

GXb(z) = [(1− p) + pz]nb (S.43)

If the suspension becomes clustered, the number of
pathogens in a sample is given by

X =
k∑

i=1
iXi = X1 + 2X2 + · · ·+ iXi + · · ·+ kXk

(S.44)
where Xi is the number of i-clusters. The Xi’s are
independent and binomially distributed with equal
p, but differing ni’s. The pgf of X is

GX(z) =
k∏

i=1
[(1− p) + pzi]ni (S.45)

We assume that the means of Xb and X are equal,
which implies that nb =

∑k
i=1 ini. We want to
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Fig. S1. Point values for the ratios in equations (S.36) and (S.38), respectively, comparing the risk computed with the exact
beta-Poisson model (red numbers) and the Jensen bound (black numbers) to that computed with the Hermite model. q2 is the
proportion of pathogens in 2-clusters.
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Fig. S2. Point values for the ratios in equations (S.39) and (S.40), respectively, comparing the risk computed with the exact
beta-Poisson model (red numbers) and the Jensen bound (black numbers) to that computed with the neg.bin. model.
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Fig. S3. Point values for the ratios in equations (S.41) and (S.42), respectively, comparing the risk computed with the exact
beta-Poisson model (red numbers) and the Jensen bound (black numbers) to that computed with the discrete Weibull model.
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show that the single-hit risk using X as the dose-
distribution is less than the single-hit risk using Xb
as the dose distribution. Proceeding as in the proof
of Proposition 1, we need to show that the following
quantity is positive for 0 ≤ z < 1 (corresponding to
0 < r ≤ 1 since z = 1− r):
∆G = GX(z)−GXb(z)

=
k∏

i=1
[(1− p) + pzi]ni − [(1− p) + pz]

∑k

i=1
ini

=
k∏

i=1
[(1− p) + pzi]ni −

k∏

i=1
[(1− p) + pz]ini

=
k∏

i=1
[(1− p) + pfi(z)]ni −

k∏

i=1
{fi[(1− p) + pz]}ni

(S.46)

Here, fi(z) = zi, which is a convex function on
[0, 1] for i ≥ 1 and strictly convex for i > 1. The
latter applies if there are some clusters. Therefore,
by Jensen’s inequality,

(1− p) + pfi(z) > fi[(1− p) + pz] (S.47)

Thus, the first product in (S.46) is factor by factor
larger than the second product and ∆G > 0.

It may be noted that if nb is itself a Poisson
random variable with mean λ, then Xb becomes
Poisson distributed with mean pλ. Also, in many
cases the Poisson approximation to the binomial is
very good. Thus, the difference between a binomially
based model and a Poisson model may not be that
relevant in practice.

S.4. Dependence between pathogens:
Example

As the possibly simplest imaginable example of
how clustering may impact the risk in a “non-single-
hit” model, and how different this is from the single-
hit case, we include Figure S4. This figure shows level
curves for the following ratio (no host heterogeneity):

E(P I)
E(P I,cl)

=
1−GXPo(1− r) + r d

drGXPo(1− r)
1−GXH(1− r) + r d

drGXH(1− r)

= 1− e−λr(λr + 1)
1− e−λr(1− 1

2 q2r)(λr(1− q2r) + 1)
(S.48)

The numerator is the risk from a so-called 2-hit
model (7) with Poisson distributed doses XPo, (7,8)

and the denominator is the risk from the same model,

but with Hermite distributed doses XH. In such
a 2-hit model, the host suffers an infection only
if two or more pathogens succeed in establishing
infectious foci, but the assumption of independent
action is retained from the single-hit model. These
are two somewhat contradictory and maybe im-
plausible assumptions (generally not in agreement
with human dose-response experimental data), but
the resulting model may still serve as a primitive
representation of pathogen cooperation, which tends
to introduce a convex region in the low-dose range
of the dose-response model. The figure shows a very
different pattern compared to the single-hit model
in Figure 3 in the main article. For the lowest
doses, clustering increases the risk markedly. For
high doses, clustering decreases the risk, although not
by a large amount. For intermediate doses, there is
a peak in the ratio, corresponding to a maximally
decreased risk due to clustering. Intuitively, this
happens when the mean of the dose distribution is
close to the most concave region in the conditional
dose-response model ER|X(P I).

The multiple-hit models, of which the 2-hit
model above is a special case, may be formulated
using pgfs in the following way. Let K, a random
variable, be the number of pathogens that succeed
in establishing infection after a given exposure
event. Out of exactly x ingested pathogens, the
probability that n or more (for an n-hit model)
succeed in establishing infection is given by the
binomial expression

Pr(K ≥ n) = 1−
n−1∑

k=0

x!
k!(x− k)!r

k(1− r)x−k

= 1−
n−1∑

k=0

(−r)k
k!

dk
drk (1− r)x

(S.49)
Marginalizing over the dose X, we find

E(P I) =
∞∑

x=0
Pr(K ≥ n)pX(x)

= 1−
n−1∑

k=0

(−r)k
k!

dk
drkGX(1− r)

(S.50)

Generalizing to a variable hit-probability R is then
straightforward in principle.

S.5. Generalization to independent clusters

Throughout our paper, we made the assumption
of independently acting pathogens, even when the
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Fig. S4. Contour plot of the ratio in (S.48), comparing the
risk computed with a 2-hit model with Poisson doses to that
computed with the 2-hit model with Hermite doses. No host
heterogeneity.

pathogens were part of a cluster of pathogens.
As noted in the Introduction, this may not be a
realistic assumption. In this section, we outline how
the assumption can be generalized. Further work is
needed to make this useful in practice, however, in-
cluding specification of cluster-size distributions and
specifying how the single-hit probability associated
with a cluster depends on cluster size.

Equation (5), the single-hit risk with Poisson-

distributed doses, may be written

E(P I) = 1−
∫ 1

0
e−λrfR(r) dr = 1−MR(−λ) (S.51)

Here MR is the moment-generating function (mgf)
of R, defined by

MR(t) ≡
∫ ∞

−∞
etrfR(r) dr =

∫ 1

0
etrfR(r) dr (S.52)

where the latter equality is due to the compact
support of R. In (S.51), the mgf is evaluated at the
negative Poisson parameter.

The single-hit framework outlined in Section
2.1 may easily be generalized to a situation where
pathogens are clustered by applying the list of as-
sumptions to individual clusters instead of individual
pathogens. Let Rn denote the probability that an
individual n-cluster causes an infection and Xn the
dose (number) of n-clusters in a water sample. Then
we get for the general probability of infection, P I,cl

P I,cl =1− (1−R1)X1(1−R2)X2(1−R3)X3 · · ·

=1−
∞∏

n=1
(1−Rn)Xn

(S.53)

where all the random variables involved are assumed
to be mutually independent. The product in (S.53) is
over all cluster sizes. The expectation value of (S.53)
is

E(P I,cl) = 1− · · ·
∞∏

n=1

∫ 1

0

∞∑

Xn=0
(1− rn)XnpXn(xn)fRn(rn) drn

= 1−
∞∏

n=1

∫ 1

0
GXn(1− rn)fRn(rn) drn

(S.54)

This is a general “single-hit” dose-response expres-
sion for a situation with clustering. It can serve
as a starting point for analytical or numerical
investigations (by postulating specific functions for
fRn and GXn) on the effect of clustering on single-hit
dose-response modeling, with allowance for cluster-
size dependent single-hit probabilities.

With the natural assumption that every Xn is
Poisson distributed with respective parameter λn,
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equation (S.54) reduces to

E(P I,cl) =1−
∞∏

n=1

∫ 1

0
e−λnrnfRn(rn) drn

=1−
∞∏

n=1
MRn(−λn)

(S.55)

This is to be compared with equation (5) for
the completely dispersed situation, using a dose
distribution with the same mean, i.e. λ =

∑∞
n=1 nλn,

and noting that R = R1:

E(P I) = 1−MR1

(
−
∞∑

n=1
nλn

)
(S.56)

While equation (S.55) provides a starting point
for theoretical analysis, it is less useful for real-
world applications since it requires specification of
the mean dose λn and corresponding distribution of
single-hit probabilities fRn for each cluster size. In
practice, we are restricted to working with either
the total pathogen count X (with corresponding
distribution fR for individual pathogens) or the total
cluster count Xcl (with corresponding distribution
fRcl for individual clusters (regardless of cluster
size)). Thus, there are only two practical options for
the expression for P I,cl:

P I,cl =
{

1− (1−R)X for pathogens (S.57)
1− (1−Rcl)Xcl for clusters (S.58)

The choice of which count (X or Xcl) to use and the
possible effects of clustering on pathogen infectivity
results in a range of possible dose-response models.
Table S2 summarizes eight alternatives. In most
cases, clustering necessarily induces a dependence
relation between X and R, or between Xcl and
Rcl, which complicates the dose-response expression
significantly. Only two of the eight possibilities
result in simple dose-response relationships where the
dose and the single-hit probability are independent
variables:

1. The single-hit probability of pathogens in a
cluster is the same as if the pathogens were
dispersed, i.e. Rn = 1− (1−R)n. Inserting
this in equation (S.53) gives equation (S.57):

P I,cl = 1− (1−R)
∑∞

n=1
nXn

= 1− (1−R)X
(S.59)

E(P I,cl) = 1−
∫ 1

0
GX(1− r)fR(r) dr

(S.60)

Thus, in this case, the only effect of
clustering on the dose-response relationship
is to alter the dose distribution so that it
is not Poisson anymore. It is a priori non-
trivial to predict what effect this will have
on E(P I,cl). It has been conjectured that
E(P I,cl) decreases (9) and this is confirmed
analytically in Propositions 1 and 2 for
stuttering Poisson and mixed Poisson dose
distributions, respectively.

2. The single-hit probability of a cluster is the
same as for a single dispersed pathogen, i.e.
Rn = Rcl = R. Inserting this in equation
(S.53) gives equation (S.58) with Rcl = R:

P I,cl = 1− (1−R)Xcl (S.61)

E(P I,cl) = 1−
∫ 1

0
GXcl(1− r)fR(r) dr

= 1−MR(−λcl)
(S.62)

Here, Xcl is Poisson distributed with pa-
rameter λcl =

∑∞
n=1 λn. Note also that, if

equation (S.60) is the correct dose-response
relationship, equation (S.62) can also be in-
terpreted as the erroneous relationship that
results if clusters are interpreted as single
pathogens when microbes are enumerated,
and vice versa.

S.6. Mistaking clusters as single pathogens

Figure 3 also applies to the following ratio

E(P I)
E(P I,err.)

= 1− e−λr
1− e−λr(1− 1

2 q2) (S.63)

when the vertical axis is interpreted as showing q2
instead of q2r. The denominator in this expression is
the risk obtained if the mean of the dose distribution
is obtained by an enumeration error (interpreting
clusters as single particles). It becomes significant
for small r and λ, and large q2. Since q2 > q2r (by
a factor 1/r), we see that, at least in this case, the
enumeration error underestimates the true single-hit
risk more than the failure to account for clustering
overestimates it, i.e. |E(P I)− E(P I,err.)| > |E(P I)−
E(P I,cl)|. In other words, for a precise (as well as
conservative) risk estimate, it is more important to
use a correct mean than accounting for clustering.
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Table S2. Categorization of dose-response models for clustering, as expressed in equations (S.57) and (S.58).

Count used
Total pathogens X Total clusters Xcl
X is not Poisson Xcl is Poisson

In
fe

ct
iv

ity
po

st
ul

at
e

Infectivities of individual
clusters are mutually
independent, but dependent
on cluster-size; Rn = g(n)

Cluster infectivity as if
pathogens were dispersed;
Rn = 1 − (1 −R)n

R and X are independent. Rcl and Xcl are dependent;
joint distribution determined
only by clustering state.

Increased cluster infectivity;
Rn > 1 − (1 −R)n

R and X are dependent;
joint distribution determined
by g(n) and clustering state.

Rcl and Xcl are dependent;
joint distribution determined
by g(n) and clustering state.

Decreased cluster infectivity;
Rn < 1 − (1 −R)n

R and X are dependent;
joint distribution determined
by g(n) and clustering state.

Rcl and Xcl are dependent;
joint distribution determined
by g(n) and clustering state.

Infectivities of individual clusters are mutually indepen-
dent and independent of cluster-size; Rn = Rcl = R

R and X are dependent;
joint distribution determined
only by clustering state.

Rcl and Xcl are indepen-
dent.
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Abstract

Microorganism removal rates in deep-bed filters vary with time and depth in the filter bed as the filter collects particles. Improved
knowledge of such dynamics is relevant for the design, operation and microbial risk assessment of filtration processes for drinking
water treatment. Here we report on a high-resolution spatio-temporal characterization of virus and bacteria removal in a pilot-
scale dual-media filter, operated in contact-filtration mode. Bacteriophage Salmonella typhimurium 28B was enumerated by plaque
assay (n=154), fRNA bacteriophage MS2 was enumerated both by plaque assay (n=17) and RT-qPCR (n=78), and a bacterial
reference E.coli was enumerated by Colilert-18 (n=73). Microscopic and macroscopic filtration models were used to investigate
and characterize the removal dynamics.

Results show that ripening and breakthrough fronts for turbidity, viruses and E.coli progressed in a wave-like manner down
the filter column. Virus removal improved continuously throughout the filter cycle and broke through almost simultaneously with
turbidity. E.coli removal continued to improve well past the turbidity ripening phase, but broke through mid-cycle. Instantaneous
log-removal rates peaked at 3.2, 3.0 and 4.5 for 28B, MS2 and E.coli, respectively. However, true average log-removal rates
throughout the cycle was significantly lower at 2.5, 2.3 and 3.6, respectively. Observed filter coefficients λ were significantly
higher than predicted by ideal filtration theory and suggests that all microorganisms were to a large extent floc-bound. This study
demonstrates the importance of carefully designed sampling regimes when characterizing microorganism removal efficiencies of
deep-bed filters. The implications for microbial risk assessment are explored in parallel work.

Keywords:
drinking water, filtration, virus, dynamics, modeling

1. Introduction

Provision of hygienically safe drinking water is an essential
part of public health protection across the world (World Health
Organization, 2011). Waterborne microorganisms of concern
include pathogenic viruses, bacteria and protozoan parasites,
which may reach a point of consumption either by entering raw
water sources and overcoming treatment barriers (Mac Kenzie
et al., 1994) or by post-treatment introduction into a distribu-
tion system (Nygård et al., 2007). Treatment barriers include
dedicated disinfection processes as well as general particle sep-
aration processes (Hijnen and Medema, 2010). Traditionally,
most larger water treatment plants employ some combination
of coagulation and deep-bed filtration for particle separation.

However, viruses may be relatively difficult to remove in
particle separation processes (Hijnen and Medema, 2010) and
some may be quite resistant to inactivation by disinfection (e.g.
Thurston-Enriquez et al., 2003). In fact, enteric viruses have
been found in finished drinking water on several occasions
(Keswick et al., 1984; Rose et al., 1986; Payment and Armon,

∗Corresponding author. Tel.: +47 930 94 406
Email address: vegard.nilsen@nmbu.no (Vegard Nilsen)

1989). Therefore, in a multiple-barrier approach to micro-
bial water quality, operational optimization and good estimates
of virus removal efficiencies of each unit process are needed.
Virus removal during filtration, and its relationship to turbid-
ity, was recently identified as a knowledge gap in microbial risk
assessment (Petterson and Ashbolt, 2016).

Since typical Norwegian surface waters are low in turbidity,
but high in natural organic matter (NOM) most plants are de-
signed as direct filtration or contact filtration plants (Ødegaard
et al., 1999, 2010), i.e. filtration without a preceding sedimen-
tation step. A coagulation-filtration system that meets specific
regulatory requirements, mainly with respect to effluent turbid-
ity, color and residual coagulant content, is recognized as a hy-
gienic barrier in Norwegian regulations and assumed to be ca-
pable of removing viruses, bacteria and parasites by 3, 3 and
2 log10-units, respectively. However, guidelines issued by the
Norwegian water industry association (Ødegaard et al., 2016),
partly modeled on the USEPA Surface Water Treatment Rule
(USEPA, 2006), only credit direct filtration systems with a log-
removal capacity for viruses of 1.5 if effluent turbidity is < 0.2
NTU, or 2 if enhanced coagulation is used with effluent tur-
bidity < 0.1 NTU and color removal is better than 70 %. A
recent report (Eikebrokk, 2012) in Norway recommended that

Manuscript prepared using Elsevier’s elsarticle.cls LATEX class June 13, 2016



the virus removal efficiency of contact-filtration processes in
particular be investigated in greater detail.

The deep-bed filtration process is inherently dynamic, even
when the influent water quality is stable: filter performance
vary with time and depth in the filter bed as the filter collects
particles (Adin and Rebhun, 1974; Tien and Ramaro, 2007). Al-
though there is usually a prolonged period of stable effluent tur-
bidity after ripening and before breakthrough, the performance
with respect to individual particle types, such as microorgan-
isms, may be more dynamic than for turbidity (e.g. Clark et al.
(1992)) and is important for determining optimal filter opera-
tion to minimize pathogen passage (Huck et al., 2001). The pro-
cess is also periodic and discontinuous since regular backwash-
ing is required to restore the particle removal capacity. Hence,
average removal efficiencies during filtration may be challeng-
ing to estimate or, at worst, insufficient for characterizing health
risks since the temporal variation in pathogen concentrations
may be needed for a proper quantitative microbial risk assess-
ment (QMRA; Haas et al., 2014).

The dynamic characteristics of the process imply that fre-
quent sampling is needed in order to capture the full variation
and allow true average removal efficiencies to be computed.1

However, high-resolution spatio-temporal characterization of
virus removal efficiency in deep-bed filters has hardly been un-
dertaken, with most studies relying only on samples from the
filter outlet at relatively coarse time intervals. Presumably, this
is partly due to the cost and labor-intensive experiments that are
needed for a detailed characterization. Obtaining more com-
plete characterizations of the virus removal efficiency could
lead to a better understanding of the virus removal dynamics,
which could subsequently inform QMRA studies and decisions
on the design and operation of deep bed filters.

Tables B.6 and B.7 in the online supporting material give a
summary of 24 previous studies on virus removal in deep-bed
filtration for drinking water where coagulation was employed
at some point upstream of the filter (in general, very poor re-
moval is observed if coagulation is not employed). The re-
sults vary significantly, from almost no removal to more than
5 log-removal. While it is difficult to pinpoint the exact rea-
sons for this variation in each case, differences between virus
types certainly may play a role, and it is obvious that the con-
ditions under which the results were obtained also varied sig-
nificantly. There appears to be a trend in that removal effi-
ciencies obtained from full-scale studies are lower than those
observed at pilot or bench scale. Workers who compared dif-
ferent filter configurations (depth, media, filtration rates) under
otherwise similar conditions found only moderate differences
in removal. Some workers investigated removal during ripen-
ing and/or breakthrough periods and found prolonged ripening
for viruses compared to turbidity (Robeck et al., 1962) and re-
duced removal during these periods (Templeton et al., 2007).
Templeton et al. (2007) also suggested that the degree of virus-
particle-association, relevant for downstream disinfection pro-

1Mean removal may also be obtained through continuous flow-proportional
sampling, but this provides no information on temporal variation in removal
efficiency.

Table 1: Filter material physical data, based on the respective manufacturer’s
information.

Parameter Filtralite Rådasand

Layer depth (m) 0.79 0.5
Grain size, nom. range (mm) 0.8-1.6 0.4-0.8
Effective grain size, d10 (mm) 0.95 0.4
Column diameter/d10 (-) 105 250
Uniformity coefficient, d60/d10 (-) < 1.5 < 1.8
Primary porosity (-) 0.58 0.45
Bulk porosity (-) 0.80 0.45
Grain density (kg/m3) 1260 2600
Bulk density (kg/m3) 530 1440

cesses, may vary during a filter cycle. Except for Templeton
et al. (2007), which sampled mid-cycle from the interface be-
tween anthracite and sand media, none of the 24 studies that
were found sampled from multiple levels of the filter column.

The purpose of the present study was therefore to undertake
a detailed, high-resolution experimental investigation of a pilot-
scale dual-media contact-filtration system with respect to virus
removal throughout the entire filter column and the whole fil-
tration cycle. A tailor-made automatic sampler was constructed
to facilitate controlled, consistent and simultaneous sampling
from eight levels of the filtration column without significantly
disturbing the system hydraulics and thereby filtration behavior.
Two model bacteriophages, Salmonella Typhimurium 28B and
f-specific bacteriophage MS2 were used, while E.coli was also
included as a bacterial reference. Measures were taken to char-
acterize potential aggregation effects and account for known
virucidal/inhibitory effects of the polyaluminium-chloride co-
agulant (Kreißel et al., 2014; Willumsen, 2015), which A sub-
goal of the project was to produce data that were suitable for fit-
ting a dynamic filtration model through inverse modeling, and
use this to characterize virus removal and the relationship be-
tween virus removal and overall particle removal, ideally pro-
viding opportunities for crude extrapolation to other experi-
mental settings. Further implications of filtration dynamics for
QMRA s explored in parallel work (Nilsen, 2016).

2. Materials and experimental methods

2.1. Pilot-plant design

An overview of the pilot-plant is given in Figure 1. The filter
column was made from a transparent PVC cylinder with 10 cm
inner diameter. A 10 cm deep support layer with graded gravel
covered the outlet, a tapered plastic cone with slits. The bottom
filter medium consisted of 50 cm of 0.4-0.8 mm silica sand (Rå-
dasand AB, Sweden). The top filter medium consisted of 79 cm
of 0.8-1.6 mm expanded clay aggregates (Filtralite NC - nor-
mal density, crushed; Weber Saint-Gobain, Norway). Filtralite
has been shown to produce similar filtrate quality as anthracite,
but with slightly slower headloss development (Eikebrokk and
Saltnes, 2001). The physical characteristics of the filter media,
as specified by the manufacturers, are given in Table 1. The ra-
tio of column diameter to effective grain size was greater than
50, the recommended minimum ratio to minimize wall effects
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Figure 1: Schematic overview of the pilot-scale filtration plant. Manual sampling points are labeled with text boxes.

(Mehta and Hawley, 1969; Lang et al., 1993). This media con-
figuration was chosen since it is used at the water treatment
plant Nedre Romerike Vannverk (NRV), Strømmen, Norway,
with whom we collaborated on this study.

Raw water was stored in a 30 m3 underground tank equipped
with a circulation pump. Prior to a filter run, a batch of raw
water was pumped from the underground tank into a smaller
steel tank (1.8 m3, with a paddle stirrer) in the laboratory. Water
was fed from the steel tank at a constant rate by feed pump P1
(Watson Marlow 620U hose pump with 620RE4 pump head
and LoadSure 12 mm tubing) and entered the column through
a (mostly) submerged pipe. The hydraulic head on the effluent
side of the column was kept constant by a container with an
overflow; thus the filter was operated in constant rate, rising
head mode. Tap water was used for backwashing, with the flow
rate controlled manually with a tap.

The microorganism suspension, hydrochloric acid (HCl, for
pH adjustment) and polyaluminium chloride (PACl) coagu-
lant (PAX-18, Kemira AS) were added with peristaltic dosing
pumps (Watson Marlow 120U/DV with 114DV pump head) P2,
P3 and P4, respectively. Venturi-type devices with sudden con-
traction and expansion were used to generate turbulence for
rapid mixing. Online turbidimeters (WTW Visoturb 700 IQ)
were installed on both the influent and effluent sides of the

column, and calibrated for in-pipe-installation according to the
manufacturer’s instructions. An online pH-meter and tempera-
ture sensor (WTW SensoLyt 700 IQ) was installed on the efflu-
ent side in the overflow container. Eight online pressure trans-
mitters H1-H8 (Impress IMP-LR 250 mbar) were installed with
non-uniform spacing in order to focus data collection from the
portions of the filter where the largest hydraulic gradients were
expected to occur. Hydraulic head could also be visually in-
spected in eight standpipes. A LabView application (National
Instruments, USA), communicating with sensors/valves/pumps
through a micro-controller, was used for control, monitoring
and logging of recorded data.

Ports for automated water sampling (A-H) were installed di-
rectly opposite the ports for pressure monitoring (A-G) and in
the column outlet (H). Ports A-G contained a cylinder protrud-
ing about 15 mm into the filter media in order to minimize
the influence of wall effects during sampling. The automatic
sampler consisted of an 8-channel peristaltic pump (Ismatec
ISM843A) that directed samples into a refrigerated (approx. 4
degrees Celsius), insulated box. The box contained a moving
tube rack, controlled by an optical sensor and electrical motor,
for sample collection and storage. Sampling tubes were cut to
equal length and prior to each sampling event, three tube vol-
umes would be drained to waste before actual sampling com-
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menced. The insulated box could take 12 sets of samples, each
consisting of eight 50 ml centrifuge tubes, i.e. 96 samples.

In addition to the automated samples, manual samples could
be taken from locations M1 and M2 (before and after addition
of coagulant, for assessment of possible aggregation and viru-
cidal/inhibitory effects of the coagulant) as well as from the
outlet M3. Manual samples could be taken more frequently
than the automatic samples and allowed better monitoring of
the ripening and breakthrough periods. Samples could also be
taken from the microorganism feed tank (FT).

2.2. Microorganisms

2.2.1. MS2
F-specific bacteriophage MS2 is a 27 nm icosahedral single-

stranded RNA virus (Strauss and Sinsheimer, 1963). It was
included in this study since it is commonly used as a surro-
gate for pathogenic viruses when assessing the performance
of water treatment processes. It was propagated according
to ISO 10705-1 (ISO, 1995) against the host Salmonella Ty-
phimurium WG49 (NCTC 12484). Most MS2 enumerations
were performed using reverse transcription quantitative poly-
merase chain reaction (RT-qPCR), but a few samples were enu-
merated using a plaque assay.

Previous studies (Matsui et al., 2003; Matsushita et al., 2011;
Kreißel et al., 2014) as well as preliminary investigations for
this study have shown that PACl coagulants have a virucidal
effect on f-specific phages like MS2, even at low doses, as mea-
sured by a reduced infectivity in plaque assays. Kreißel et al.
(2014) attributed the effect to inactivation as a result of interac-
tion between MS2-surfaces and dissolved polymeric aluminium
species Al13. In order to decrease the impact of this effect in
the present study, the method of Matsushita et al. (2004) was
performed prior to plaque assay, with some modifications. A
solution of beef extract and urea (BE+U) was prepared by mix-
ing solutions (1:1 v/v) of 13 % BE powder (211520, Becton,
Dickinson and Company, USA) with 9.6 % sterile U (Merck,
Germany) and adjusted to pH 9.5-10.0 with 5 N NaOH. The so-
lution was stored at +4°C and used within three days. All MS2
samples were diluted 10-fold with BE+U and stirred at 1500
rpm at 4°C for a minimum of 5 hours. The plaque assay for
MS2 was then performed on the treated samples as described
by Debartolomeis and Cabelli (1991), using Escherichia coli
Famp as the host.

For RT-qPCR, viral RNA was extracted from 140 µl water
samples with the QIAamp Viral RNA Mini kit and QIAcube
automated purification system according to the manufacturer’s
(Qiagen, Germany) instructions with minor modifications: the
samples were stored in 560 µl lysis buffer at -80°C and were
spiked with carrier-RNA (3.1 µg per sample) prior to RNA-
extraction. RT-qPCR was performed in a Stratagene AriaMx
Real-Time PCR System (Agilent Technologies, USA) using
the RNA UltraSense One-Step Quantitative RT-PCR System kit
(Invitrogen, USA). 3 µl RNA was used in a total volume of 20
µl, using primers and probe as listed in Table 2. The temper-
ature sequence was 30 min at 55°C, 2 min at 95°C, 45 cycles
of 15 sec at 95°C and 30 sec at 58°C. Each sample was run in

Table 2: Primers and probe sequences for MS2 RT-qPCR analyses. Retrieved
from Dreier et al. (2005) with some modifications.

Primers and probe Sequence

MS2-TM2-F (400 nM) TGCTCGCGGATACCCG
MS2-TM2-R (400 nM) AACTTGCGTTCTCGAGCGAT
MS2-TM2FAM (50 nM) ACCTCGGGTTTCCGTCTTGCTCGT

duplicate. ROX was used as passive fluorescence reference and
positive and negative (no template) controls were included on
each plate. Aliquoted homologous RNA was also included on
all plates and used as an inter-plate calibrator (IPC).

Baseline correction was performed automatically by the Ag-
ilent AriaMx 1.1 Software (Agilent Technologies, USA). In-
terplate calibration (Hellemans et al., 2007) was performed by
setting the threshold for each plate individually so as to make
the mean Cq-values (quantification cycles) for the IPCs equal,
while ensuring that all thresholds were in the exponential re-
gion of the amplification curves. One of the plates included
a 10-fold serial dilution series of homologous viral RNA, run
in triplicate, for determination of the amplification efficiency E
(E = 88.7%; R2 = 99.8%), which was assumed to be equal
among plates. Under these conditions, the ratio of concentra-
tions c2/c1 in any two samples (same or different plates), in-
dexed by 1 and 2, is given by the qPCR equation

c2

c1
= (1 + E)Cq,1−Cq,2 (1)

The absolute amount of RNA used for the serial dilution was
not known, but only the ratios from (1) are needed to compute
removal efficiencies as presented in Section 3.

Preliminary experiments were performed to test for poten-
tial interference effects of the coagulant with the PCR assay.
Distilled water was spiked with MS2 (control) and also with
coagulant (samples). No interference effects were observed for
coagulant concentrations up to 10 mg/l.

2.2.2. Salmonella typhimurium 28B
Salmonella typhimurium phage 28B (Lilleengen, 1948) is an

icosahedral double-stranded DNA bacteriophage with a base-
plate that extends approximately 10 nm from its 50 nm diame-
ter head (Svenson et al., 1979). The phage does not occur natu-
rally in the environment and has been shown to be heat resistant
(Sahlström et al., 2008). Also, stock suspensions can be kept for
years at refrigeration temperatures without significantly loosing
the titer. It was included in this study for its relatively simple
and robust propagation and enumeration protocol.

The phage was propagated and enumerated according to an
unpublished protocol from the Public Health Agency of Swe-
den, but essentially as described by Höglund et al. (2002)
and equivalent to ISO (1999), using its host strain Salmonella
enterica subsp. enterica Typhimurium type 5. The growth
medium consisted of distilled water with nutrient broth (0.8 %
w/v; 105443, Merck, Germany) and yeast extract (0.05 % w/v;
111926, Merck, Germany). For propagation, 10 ml/l of chloro-
form were added to kill and lyse the host cells after incubation.
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The suspension was then centrifuged for 10 minutes at 3000rpm
and filtered through a 0.45µm filter. The final concentration was
determined to be 5 · 109 PFU/ml (plaque forming units/ml).

Enumeration was performed as a double-layer agar plaque
assay. Petri dishes with 20 ml solid bottom-agar (growth
medium with 1.5 % w/v agar) were prepared. Four ml molten
top-agar (growth medium with 0.65 % w/v agar) was mixed
with 0.5 ml sample (after serial dilution in 0.9 % NaCl, when
required) and 0.5 ml exponential-phase host culture and poured
over the solid agar. Samples were incubated at 37◦C for approx.
18 hours and plaques were counted.

Preliminary investigations (Willumsen, 2015) revealed that
samples from sampling point M1 (before coagulant addition)
kept their titers during a few days of storage while samples from
M2 and M3 (after coagulant addition) steadily lost their titers by
up to 1.5-2 log10-units during one week. Thus, a slow virucidal
and/or aggregation effect of the coagulant appears to be present.
In order to reduce the impact of this effect, all samples were
analyzed promptly after sampling (plated within 1-4 hours for
all samples). Not all dilutions could be plated in replicates (due
to hundreds of plates < 24 hours), but at least two plates were
incubated for every sample (two dilutions and/or parallels of
the same dilution). Figures with uncertainty estimates for each
sample are included in the online supporting material.

The possibility of virus adsorption in the sampling tubes of
the automatic sampler was assessed by pumping coagulated wa-
ter containing viruses through one of the tubes, and enumerat-
ing phage 28B before and after tube passage. A reduction in
phage concentration of 7% was observed (although not statisti-
cally significant) and considered acceptable.

2.2.3. Escherichia coli
E.coli was also included in this study for comparison with

the viruses and because it is a widely used faecal indicator bac-
terium (Edberg et al., 2000). Cultures were prepared by inoc-
ulating brain-heart infusion broth (237500, Becton, Dickinson
and Company, USA) with E.coli (CCUG 17620). Overnight
cultures were centrifuged and washed twice with peptone saline
diluent (CM0733, Oxoid, United Kingdom) and stored at 4◦C
for not longer than 5 days. Enumeration was performed us-
ing Colilert-18 with Quanti-Tray/2000 (IDEXX Laboratories,
USA) according to the manufacturer’s instructions. The method
is equivalent to a most probable number (MPN) method with
two dilutions and 48/49 tubes at each dilution. Samples were
analyzed only once due to time constraints. Figures with un-
certainty estimates for each sample are included in the online
supporting material.

2.3. Water quality analyses

Manual turbidity measurements were performed with a
HACH 2100N IS benchtop turbidimeter according to the man-
ufacturer’s instructions. Due to time constraints, turbidity mea-
surements of the samples from ports A-H had to be performed
during the days following the experiment. The mean turbid-
ity in the samples from port H before breakthrough was 0.059
units higher than the mean logged turbidity. This difference was

Table 3: Raw water characteristics and operational conditions.

Parameter Value

Raw water turbidity (NTU) 0.7-0.8
Raw water color (mg Pt/l) 26
Raw water TOC (mg/l) 3.03±0.61
Raw water UV absorption (1/m) 13.1
Raw water SUVAa (l/(m·mg)) > 4.3
Raw water pH (-) 7.3
Raw water alkalinity (mM) 0.28
Raw water temp. (◦C) 15-16

Filtration rate (m/h) 5.9
Flow rate (l/min) 0.77
PAX-18 dose (mg Al/l) 1.5
HCl dose (mM) 0.12
Initial total headloss (cm) 26
aSpecific UV absorption (UV abs./DOC)

subtracted from all the turbidity values for ports A-H as a crude
way of accounting for changes in turbidity as a result of storage.

Color and UV-absorption measurements were done on spec-
trophotometer HACH DR 3900 after filtering the samples
through a 0.45 µm filter. Raw water alkalinity was deter-
mined by titration with HCl to pH 4.5, using the dosing pump
and pH meter in the pilot plant. Raw water total organic car-
bon (TOC) was measured by an external lab (ALS Laboratory
Group AS, Norway) according to NS-EN 1484:1997. The sus-
pended solids content of the coagulated water was measured ac-
cording to method NS-EN 872:2005. Total residual aluminium
concentration was determined during a test run using HACH
Aluminon method 8012, adapted from Standard Methods no.
3500-Al (APHA/AWWA/WEF, 2012). During the actual ex-
periment, dissolved aluminium was determined by an exter-
nal lab (Noranalyse AS, Norway) using ICP-OES according to
method NS-EN ISO 11885:2009.

2.4. Raw water quality and coagulant dose determination

The raw water was collected from the river Glomma on two
occasions (August 2014 and May 2015) and mixed in the stor-
age tank at the university. After some initial sedimentation, tur-
bidity remained stable. Raw water characteristics are listed in
Table 3. The specific UV-absorption (SUVA) is relatively high,
indicating that the NOM of this water is rich in aromatic com-
pounds and well suited to treatment by coagulation (Matilainen
et al., 2010).

PAX-18 (Kemira, Finland), a 42 % basicity polyaluminium
chloride with an Al-content of 9 % (w/v), was chosen as the co-
agulant for this study as it is a commonly used coagulant in Nor-
way. No filter aid was used. HCl was used for pH-adjustment
prior to adding the coagulant. The filtration rate was kept con-
stant at 5.9 m/h. The coagulant dose and coagulation-pH were
determined by testing a range of doses and pH-values in the pi-
lot plant, searching for the smallest dose (and the best-working
pH at that dose) that resulted in outlet turbidity values less than
0.2 NTU, color less than 5 mg Pt/l and residual coagulant con-
tent < 0.15 mg Al/l, which are the main Norwegian regulatory
requirements for an Al-based coagulation-filtration plant to be
considered a hygienic barrier.
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It was found that a coagulant dose of 1.5 mg Al/l and
coagulation-pH of 5.8 constituted an optimal dosing regime,
resulting in effluent turbidity of 0.03-0.04 NTU, color < 2 mg
Pt/l and residual aluminium concentration of 0.031 mg Al/l dur-
ing the optimization run. Subsequently, a full filtration cycle
with this dose showed that the cycle was terminated by turbid-
ity breakthrough after approx. 15 hours. The dose and the filter
run length are in agreement with empirical models developed
by Eikebrokk et al. (2004) based on numerous pilot filter runs
with low-turbidity waters and a range of color values.

It should be noted that no microorganism suspension was
added to the influent water during dose optimization. Thus, the
particle content and water chemistry may have changed slightly
during the actual experiment, but no significant changes in the
process could be observed. Approximate net dilution factors for
the addition of stock microorganism suspensions to the influent
water were 26000 (28B), 6500 (MS2) and 11000 (E.coli).

2.5. Experimental protocol

Prior to a filter run, the column was backwashed for approx-
imately 15 minutes at a rate of 50 - 60 m/h, resulting in a filter
expansion of 50-60 %. The backwash rate was reduced gradu-
ally towards the end of the backwash in order to promote good
separation of the two media, but some interfacial mixing was
still observed. The system was then run with raw water for
approximately 15 minutes in order to displace the tap water
present in the filter from backwashing. This was considered to
give a more realistic initial condition since the tap water came
from a different raw water source than the one used for the ex-
periments, and may also have contained some residual chlorine.
After 15 minutes of running raw water, dosing of microorgan-
isms, HCl and coagulant was initiated simultaneously.

Time, cost and raw-water availability meant that only a single
filter-run with high-resolution sampling could be performed.
An overview of the sampling regime employed for this study
is given in Table B.5 in the online supporting material. Sam-
ples were taken uniformly spaced in time except for samples
from point M3, which were taken more frequently during the
ripening and breakthrough periods.

The automatic sampler was programmed to take samples
with a total flow rate of 5 % of the flow rate through the filter
i.e. 0.625 % per sampling port. This ensured that the water ve-
locity through the sampling ports was lower than the pore water
velocity, reducing the risk of eroding the deposit by sampling-
induced shear forces. The sample collection duration was 10
minutes, which is still a short time compared to the time rate of
changes in the local suspended concentrations. Prior to sample
collection, the sampler drained the sampling tubes for 10 min-
utes, corresponding to approximately three tube volumes, using
the same flow rate as during sampling.

2.6. Data presentation

Time points for all samples collected outside of the filter col-
umn (online turbidity, pH, temp., M1, M2 and M3) have been
adjusted for the flow time in tubes/pipes, assuming plug-flow.

Table 4: Water quality results and influent microorganism concentrations.

Parameter Value

Influent turbidity (-) 2.05
Influent SS (mg/l) 8.2
Influent coagulation pH (-) 5.8

Effluent pH (-) 5.9-6.0
Effluent color (mg Pt/l) 3
Effluent residual Al-content (mg Al/l) 0.031a/<0.010b

Influent mean 28B conc. (PFU/ml) 2.57 ·105

Influent mean MS2 conc. (PFU/ml) 1.96 ·106

Influent mean E.coli conc. (MPN/100ml) 9.31 ·105

aDuring dose optimization, total (HACH method)
bDuring experiment, dissolved (external lab)

Time points for the automatic samples have been set to the mid-
point of the 10-minute sampling duration. Time zero corre-
sponds to the estimated arrival of the coagulated water at the
filter surface.

3. Experimental results with discussion

3.1. Water quality

Water quality results are shown in Table 4. These were as
expected based on trial runs. Effluent pH decreased initially
to reach a stable value of 5.9-6.0 after 2-3 hours, which we
suspect is due to a slightly pH-raising effect of the top Filtralite
medium. Online effluent turbidity reached a stable level after
approx. 3 hours and breakthrough started at approx. 14.2 hours.
Online inlet turbidity (Figure 2d, “IN”) showed a rising trend
which we attribute to sludge blanket effects in the vertical pipe
in which the sensor was installed. True influent turbidity likely
remained stable around the initial value of ca. 2.05 NTU.

3.2. Spatio-temporal removal

No major differences in microorganism concentrations were
found between sampling ports M1 (before coagulant) and port
M2 (after coagulant dosing), suggesting that neither microor-
ganism aggregation or inhibition effects from the coagulant
were present to any appreciable extent. Mean influent con-
centrations cin of each organism were calculated from all M1
and M2 samples and are given in Table 4. These were used
to compute the passage probability π = c/cin for all sample
ports, where c is the concentration in the sample port. The log-
removal is simply − log10(π). Figure 2 shows the results of all
spatio-temporal sampling for phage 28B (2a), phage MS2 (2b),
E.coli (2c) and turbidity (2d). Microorganism data is presented
in terms of log10(π).

3.2.1. Salm. typh. 28B
Figure 2a clearly shows the existence of ripening and break-

through fronts that migrated down the filter as the cycle pro-
gressed. Overall removal continued to improve until break-
through of 28B after approximately 13 hours, slightly before
turbidity breakthrough. Log-removal remained below 2.5 for
most of the cycle and peaked at about 3.2. It can be seen that
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at the time of the first auto-sample, breakthrough of 28B had
already occurred at ports A, B and C while the lower parts of
the filter were still in a ripening phase. After breakthrough in
a given port, the concentrations in that port rose and reached a
plateau. At the end of the cycle there was still some removal,
mainly between ports B and C, and between port G and the out-
let.

Sampling from multiple depths effectively allows a study of
the impact of media configuration and filter depths in a single-
filter run. The peak removal in the upper layer (Filtralite, as
measured by port D) was about 2.5, compared to the overall
peak of 3.2. This is in line with previous research that found
only moderate effects of filter depths and media configurations
on virus removal (Hijnen and Medema, 2010; Harrington et al.,
2003; Hendricks et al., 2006). This may be explained by the
fact that only a relatively small part of the filter is responsible
for the majority of the removal at any given time since ripening
occurs progressively down the filter. However, breakthrough
in the Filtralite occurred already after approx. 4 hours. Thus,
while filter depth and media configurations may have a mod-
erate effect on peak removal rates, a deeper filter will extend
the useful operating period and decrease the number of break-
through and initial ripening periods per unit time, thereby im-
proving the overall mean log-removal. These effects may be
investigated more quantitatively if a filtration model can be fit-
ted to the data (Section 4).

There are some inconsistent results in Figure 2a. Early in the
cycle, there is some removal between ports F and G, but not be-
tween ports D and F which is inconsistent with the assertion that
ripening occurs progressively with depth. Also the concentra-
tions in manual samples in the outlet (M3) are above those from
ports G and H early in the cycle. We do not have a firm explana-
tion for these results, although the early G and H concentrations
may have been underestimated because of high plaque counts
on some Petri dishes. In general, we trust the manual sampling
data somewhat more than the auto-sampler data.

3.2.2. MS2

Sampling resolution for the MS2 data (Figure 2b) is coarser
than for 28B, but the results for the auto-samples are qualita-
tively similar. Removal was slightly poorer for MS2 and peaked
at about 3 log10-units after 12-13 hours (RT-qPCR). Data from
plaque assays and RT-qPCR are largely consistent, with plaque
assays indicating a slightly better removal. This may be due to
some residual inhibitory effect of the coagulant even after the
BE+U treatment, or possibly some non-infectious PCR-units
that are more poorly removed than infectious MS2. However,
there is a mid-cycle rise in outlet concentrations from RT-qPCR
that was not observed for the plaque assay or any of the other
organisms. While the data does not allow firm interpretations,
we may speculate that this coudl be related to a breakthrough
in the upper part of the filter before sufficient ripening for MS2
has occurred in the lower parts of the filter. Filtration model-
ing (Section 4) may possibly be used to support or dispel this
hypothesis.

Filtration time (hours)

0 5 10 15 20

T
u
rb

. 
(N

T
U

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Turb. out

M1

M2

M3

A

B

C

D

E

F

G

H

2
8

B
 -

 l
o

g
1

0
(π

) 
(-

)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(a) Phage 28B concentrations normalized to influent concentrations.

Filtration time (hours)

0 5 10 15 20

T
u
rb

. 
(N

T
U

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Turb. out

M1 - PFU

M3 - PFU

M1

M2

M3

A

B

C

D

E

F

G

H

M
S

2
 -

 l
o

g
1

0
(π

) 
(-

)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) Phage MS2 concentrations normalized to influent concentrations. All dat-
apoints stem from RT-qPCR analyses except for the yellow lines/points which
stem from the plaque assay.

Filtration time (hours)

0 5 10 15 20

T
u
rb

. 
(N

T
U

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Turb. out

M1

M2

M3

A

B

C

D

E

F

G

H

E
.c

o
li 

- 
lo

g
1

0
(π

) 
(-

)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(c) E.coli concentrations normalized to influent concentrations. Note that sev-
eral A-G samples were above enumeration limits (see Figure B.10 in online
supporting material) and the data should be interpreted with care.

Filtration time (hours)

0 5 10 15 20

T
u
rb

.,
 o

n
lin

e
 o

u
t 
(N

T
U

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Online out

IN

A

B

C

D

E

F

G

H

T
u
rb

.,
 I
N

 +
 A

 t
o
 H

 (
N

T
U

)

10
-2

10
-1

10
0

(d) Turbidity, online and manual measurements.

Figure 2: Spatio-temporal passage of microorganisms and turbidity.
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Figure 3: Overall log-removal compared. Note that we discarded one suspi-
cious data point for E.coli at approx 11. hours (comp. Fig. 2c), where we had
two data points.

3.2.3. E.coli
Sampling resolution for the E.coli data (Figure 2c) is also

coarser than for 28B, but ripening and breakthrough fronts can
be observed here as well. Note that all A-samples and sev-
eral B- to G-samples were above the enumeration limit for the
Colilert-18 method; hence log10(π) is closer to zero for these
samples than shown in Figure 2c. These samples are clearly
identified in the online supporting material. Removal peaked at
about 4.5 log10-units, but this occurred mid-cycle after approx.
9 hours and E.coli removal had deteriorated significantly by the
time of turbidity breakthrough.

3.2.4. Turbidity
The turbidity data (Figure 2d) from within the filter column

displays a pattern similar to that of the 28B data. At the time
of the first auto-sample, breakthrough had already occurred at
ports A, B and C. For ports D and E, it is possible to discern
a ripening phase, but for the lower ports the noise drowns out
the signal. After breakthrough, turbidity eventually stabilizes.
Compared to the 28B data, the rising parts of the curves after
breakthrough are slightly steeper in the Filtralite medium, but
less steep than in the sand medium, indicating slightly differ-
ent dynamics of turbidity and virus removal in the two media.
The mechanistic interpretation of such a pattern is not presently
clear to us.

3.2.5. Removal compared
Figure 3 shows the passage probability for all organisms in a

single plot. The two viruses behave quite similarly while E.coli
is both removed to a greater extent and shows faster ripen-
ing and earlier breakthrough than the viruses. These observa-
tions are qualitatively consistent with earlier observations on
the ripening and breakthrough behavior of differently sized par-
ticles (Clark et al., 1992; Kim and Lawler, 2008; Moran et al.,
1993). However, towards the end of the cycle the removal effi-
ciencies appear to converge, which suggests that removal mech-

anisms that are independent of particle properties dominate at
this stage.

By direct trapezoidal integration of these curves, the overall
mean log-removal rate between 32 minutes (turbidity dropped
below 0.2 NTU) and 14.2 hours (onset of turbidity break-
through) was computed as 2.5, 2.3 and 3.6 for 28B, MS2 and
E.coli, respectively. This is significantly lower than the corre-
sponding peak removal rates of 3.2, 3.0 and 4.5, respectively,
but higher than the log-credit values suggested by Ødegaard
et al. (2016) (1.5/2.0 for viruses and 2.25/2.5 for bacteria). Hi-
jnen and Medema (2010), in their review, reported much lower
mean removal efficiencies, but their estimates included waste
water studies and were also weighted strongly in favor of full-
scale studies. The study in that comes closest to our study in
terms of raw water characteristics and experimental setup is the
one by Hendricks et al. (2006) (indexed 37 and 38 in the online
supporting material), who reported a log-removal for MS2 of
2.9 (two-hour mean obtained mid-cycle).

The removal efficiency of phages MS2 and 28B appears to
be quite similar under these experimental conditions. These are
both nearly spherical viruses, but 28B is about twice as large
as MS2. The isoelectric point of MS2 has been reported as be-
tween 3.1 and 3.9, with 3.9 most frequently reported (Michen
and Graule, 2010)2. The isoelectric point of 28B has not been
reported, but work on this is underway. In a single measure-
ment, Heistad (2008) reported an electrophoretic mobility of
-2.38 µm cm/(Vs) at pH 7.3 in 10 mM NaCl solution, com-
pared to that of MS2 of approximately -0.7 µm cm/(Vs) under
identical conditions (Penrod et al., 1995). Thus, it appears to
be slightly more negatively charged than MS2 at higher pH.
This might have contributed to a slightly higher affinity for pos-
itively charged aluminum hydroxide flocs, and a slightly better
removal during filtration. The surface charge of E.coli appears
to be between those of the viruses at this pH (Lytle et al., 2002)
and thus cannot alone explain the better removal of E.coli.

3.3. Headloss
Figure 4 shows the Michau-diagram for the filter run, which

confirms that most of the headloss increase occurred in the up-
per part of the Filtralite layer, but there was also some headloss
development in the upper part of the sand layer.

4. Interpretations in terms of filtration modeling

Classical macroscopic filtration models that describe the dy-
namic behavior of the filtration process consist essentially of a
particle volume conservation equation and a constitutive filtra-
tion rate equation (Iwasaki, 1937; Herzig et al., 1970; Tien and
Ramaro, 2007), respectively:

∂σ

∂t
+ u

∂c
∂z

= 0 (2)

∂c
∂z

= −λc (3)

2A single measurement of 2.2 was also reported.
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Figure 5: Estimated filter coefficients from equation (4), and hydraulic gradients. Filter coefficients for E.coli could not be computed for several layers/times because
samples were above the enumeration limit. FL - Filtralite; RS - Rådasand.
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Here c is the suspended particle concentration (volume of par-
ticles per unit volume of suspension, dim.less), σ is the specific
deposit (volume of particles per unit volume of porous medium,
dim.less), u is the Darcy velocity (L/T) and λ is the filter coeffi-
cient (1/L). The former equation assumes that dispersive trans-
port is negligible as well as other simplifying approximations
(Horner et al., 1986). The latter was first proposed by Iwasaki
(1937) and remains a standard assumption. The system above
does not consider particle detachment, which may be a limita-
tion.

The main challenge in deep-bed filtration is that λ changes

with time as the filter collects particles and it also changes with
depth in the filter. Thus, λ is usually taken as a function of
σ, and is called the filtration function. The final purpose of
our modeling efforts will be to estimate this filtration function
for both viruses and total particle content. The details of how
the basic equations (2) - (3) may be refined to account for both
particle and virus transport in both filter media, as well as the
current status of the modeling efforts, are presented in the ap-
pendix. In the following, we rely on the data directly rather then
model results.

4.1. Experimental filter coefficients

Here, crude estimates of the mean filter coefficient in each
layer were determined directly from the experimental data by
computing

λi,i+1 =
1

zi+1 − zi
ln

(
ci

ci+1

)
(4)

where ci is the concentration/turbidity in port i and ci+1 is the
concentration in the port below.

Figure 5 shows the results along with the hydraulic gradi-
ents for each layer. The data are noisy since we are estimating
derivatives based on two data points that are both a little noisy,
but the wave-like progression down the filter of the peak in λ
can clearly be seen. The highest filter coefficients occurred in
the upper part of the sand layer (which was partly mixed with
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Filtralite after backwashing). Note the lower temporal resolu-
tion of the MS2/E.coli data, which masks some of their dynam-
ics. Note also that the distance between sample ports varied
so that one may expect that some peaks are “averaged down”
as one moves the rightmost panels in Figure 5. The hydraulic
gradient in the lower part of the sand layer started to rise after
about 12 hours, thereby giving an “early” warning that turbidity
breakthrough was imminent. The gradient increased some 30-
fold in the upper part of the Filtralite, and there is a difference
in initial hydraulic gradients between the various sand layers,
another indication that there was some mixing of sand and Fil-
tralite.

4.1.1. Comparison with ideal filtration theory
The filter coefficients in Figure 5 may be compared to those

estimated from ideal filtration theory. Substantial research has
been devoted to estimating λ from first-principles and has been
largely successful under favorable conditions for filtration, i.e.
no repulsive electrostatic interactions between particles and fil-
ter grains (Tufenkji, 2007). In this theory, the filter coefficient
is given by:

λ =
3
2

(1 − ε)
dc

αη0 (5)

Here ε is the porosity, dc is the filter grain diameter, η0 is the so-
called single-collector contact efficiency and α the sticking effi-
ciency. The latter is assumed to be 1 under favorable conditions.
The currently most widely used equation for estimating η0 was
developed by Tufenkji and Elimelech (2004). Figure 6 com-
pares peak values of λ taken from Figure 5 (assumed to corre-
spond to complete ripening, hence α = 1) with those predicted
by equation (5), using the expression for η0 from Tufenkji and
Elimelech (2004). For size-graded porous media, as our fil-
ter media, it has been recommended to use a grain size that
emphasizes the smaller grain fractions, such as d10 (Pazmino
et al., 2011). The grey bands in Figure 6 corresponds to a wide
range of input parameters, assumed to cover all plausible val-
ues, even accounting for the effect of the already retained parti-
cles (O’Melia and Ali, 1979).

From Figure 6, it is seen that the observed peak λ-values
are inconsistent with the known microorganism sizes, and more
consistent with a particle size of a few µm to a few dozens of
µm. For both media, the best estimate of η implies a particle
size of about 20 µm. If one accepts this application of filtra-
tion theory, this analysis therefore suggests that microorganism
removal was largely controlled by floc-associated microorgan-
isms, and that the dominating floc-size is around 20 µm.

4.1.2. Deposit distribution at end-of-cycle
Figure 7 shows the results of a simple numerical (trapezoidal)

integration of equation (2) directly from the experimental data
for c, and indicates how the deposit of particles (assumed pro-
portional to turbidity) and 28B was distributed in the filter col-
umn at the end of the experiment. Most of the deposit is in
the upper part of the Filtralite for both particles and 28B, but
there is also a noticeable accumulation of deposit in the upper
part of the sand layer. There is also some non-monotonicity
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Figure 6: Comparison of peak values of λ from Figure 5 with those predicted
by the TE correlation equation. All computations were carried out for water at
15◦C.

within each filter medium which should disappear if the filtra-
tion model can be properly fitted to the data.

5. Overall discussion

Our results were obtained in a single filter run under a single
set of conditions and, as such, generalizations of our computed
removal efficiencies should be performed with care. The filtra-
tion performance may be affected by a range of factors such as
e.g. raw water quality, coagulant type and dose, filtration rate,
backwash strategies etc. (Hijnen and Medema, 2010). How-
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ever, the dynamic microorganism removal observed here, even
during the period of stable effluent turbidity, signals that care
should be taken when characterizing microbial removal effi-
ciencies during filtration. Either samples should be taken fre-
quently, such as in this study, or at least flow-proportional con-
tinuous sampling should be employed.

The usefulness of surrogates, such as phages, for studying
removal and inactivation of pathogenic viruses is a continuous
concern (Mesquita and Emelko, 2012; Sinclair et al., 2012). Hi-
jnen and Medema (2010) suggested that coliphages were ap-
propriate surrogates for pathogenic viruses in deep-bed filtra-
tion. Since Salmonella typhimurium phage 28B is simple to
work with, it would be a useful addition to the set of surrogate
phages if it can be confirmed that it behaves similarly to MS2
and/or other coliphages under a wider range of conditions. We
believe this study is the first to use this phage for deep-bed fil-
tration experiments for drinking water. Examples of previous
applications include waste water transport in soils (Carlander
et al., 2000), small-scale waste water treatment systems (Heis-
tad et al., 2009a,b) and biofilter performance in drinking water
treatment (Persson et al., 2005).

A final concern regarding the applicability of these results,
and those from most other pilot-scale studies, is the high influ-
ent concentrations used for the microorganisms; much higher
than what occurs naturally. Assavasilavasukul et al. (2008) ob-
served better removal of Cryptosporidium during conventional
treatment with higher Cryptosporidium influent concentrations.
Prasanthi et al. (1997) also observed better removal with higher
influent concentrations in laboratory columns without coagula-
tion. However, it is not clear if these results apply to viruses in
our experiment. The virus volume is negligible compared to the
total floc volume, virus aggregation was not observed, and ac-
cording to standard flocculation theory the virus-floc aggrega-
tion rate is expected to scale linearly with virus concentrations.
Further research is needed to clarify these issues. Finally, the

role of virus detachment is also not clear (Kim and Tobiason,
2004). If virus detachment is not negligible compared to virus
attachment, the observed removal efficiencies may be a function
of the influent concentrations.

6. Conclusions

1. Both virus and E.coli filtration was dynamic, showing vari-
ations in removal performance during periods of stable ef-
fluent turbidity.

2. Ripening and breakthrough for E.coli occurred earlier than
for viruses. Both deviated from turbidity.

3. Regulatory limits on turbidity appear not to ensure stable
operation with respect to virus/E.coli removal.

4. True log-removal estimates over entire time periods of wa-
ter production deviated significantly from instantaneous
log-removal values.

5. Careful design of sampling regimes is needed to correctly
estimate mean removal efficiencies in filtration experi-
ments.

6. Reporting the removal efficiency of a deep-bed filter with
a single number may be inappropriate, unless the single
number is a properly computed mean removal efficiency.

7. While filter depth, in previous studies as well as this study,
appears to be only moderately important for peak removal
rates, deeper filters may postpone breakthrough and thus
reduce the number of backwash cycle per unit time. The
latter may be influential in controlling mean health risks
since most of the pathogen passage may happen right be-
fore and right after backwashing.

8. Based on comparison of filter coefficients with ideal fil-
tration theory, viruses and bacteria appeared to be largely
associated with flocs.

9. Repeat studies should be performed in order to corroborate
the results reported in this paper.
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Appendix A. Dynamic modeling sketch

We will refine the model (2) - (3) by introducing concen-
tration variables to represent (1) total particles and (2) viruses.

11



However, we will assume that the contribution of the viruses to
the total particle volume (in suspension or deposited) is com-
pletely negligible, and hence that the filtration functions for to-
tal particles and viruses both depend only on the total particles
specific deposit and not explicitly on the virus specific deposit.
This partly decouples the system of equations and makes solu-
tion algorithms simpler, since the forward problem for particle
volume can be solved independently from the forward problem
for virus volume, but the problem for virus volume uses the so-
lution from the particle volume problem as input to the virus
filtration functions.

Fundamental unknowns to solve for in the forward problem:
c(z, t) - fluid phase particle volume fraction, σ(z, t) - volume
of particles per unit volume of filter, cv(z, t) - fluid phase virus
volume fraction, σv(z, t) - volume of viruses per unit volume of
filter. Other quantities: u - filtration rate (constant). λ - filtration
function for particle volume, λv - filtration function for virus
volume. The filtration functions are specific to each medium
(i.e four filtration functions in total) and contain a number of
parameters to be determined in the inverse problem.

Experimental data is a grid in space-time of c and cv values.
Actually, at best, we can only hope that the turbidity measure-
ments are proportional to c, which may be a reasonable assump-
tion (Clark et al., 1992). The inverse problem is to determine
functions λ and λv such that the experimental data is reproduced
by the solutions to the forward problem. There exists various
parametric forms for the filtration functions. At his point, we
have only considered the following filtration function from Ives
(1969), which is considered very general (assuming particle de-
tachment is negligible):

λ(σ) = λ0

(
1 +

bσ
ε0

)n1
(
1 − σ

ε0

)n2
(
1 − σ

σult

)n3

(A.1)

Here, λ0, b, n1, n2, n3 and σult are fitting parameters and ε0 is
the initial porosity, assumed to be known.

Appendix A.1. PDE formulation
The full system of equations is given below, where we have

required continuity of fluid phase concentration at the boundary
between the two filter media.

Initial conditions:

c(z, 0) = σ(z, 0) = 0 (A.2)
cv(z, 0) = σv(z, 0) = 0 (A.3)

System of equations for particle volume in upper medium,
z ∈ [0, z1]:

∂σ

∂t
+ u

∂c
∂z

= 0 (A.4)

∂σ

∂t
= uλ1(σ)c (A.5)

Boundary conditions:

c(0, t) = cin (A.6)
σ(0, t) from (A.5) (A.7)

System of equations for particle volume in bottom medium,
z ∈ [z1, z2]:

∂σ

∂t
+ u

∂c
∂z

= 0 (A.8)

∂σ

∂t
= uλ2(σ)c (A.9)

Boundary conditions:

c(z1, t) from (A.4) − (A.7) (A.10)
σ(z1, t) from (A.4) − (A.7) (A.11)

System of equations for virus volume in upper medium, z ∈
[0, z1]:

∂σv

∂t
+ u

∂cv

∂z
= 0 (A.12)

∂σv

∂t
= uλv,1(σ)cv (A.13)

Boundary conditions:

cv(0, t) = cv,in (A.14)
σv(0, t) from (A.13) (A.15)

System of equations for virus volume in bottom medium, z ∈
[z1, z2]:

∂σv

∂t
+ u

∂cv

∂z
= 0 (A.16)

∂σv

∂t
= uλv,2(σ)cv (A.17)

Boundary conditions:

cv(z1, t) from (A.12) − (A.15) (A.18)
σv(z1, t) from (A.12) − (A.15) (A.19)

Appendix A.2. Preliminary results
The system in the previous section was implemented in MAT-

LAB and C with filtration function (A.1). It soon became clear
that the third factor in this filtration function forces λ towards
0 too rapidly. When λ becomes close to zero over an extended
depth in the filter, there will be almost no removal across this
depth. However, Figure 2a and 2d clearly demonstrates that
there is stable removal over an extended period of time in the
upper part of the filter in the latter half of the filter cycle. Hence,
a filtration function is needed that doesn’t tend to zero, but in-
stead displays a plateau as σ becomes big. This will be the
focus of upcoming investigations.
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Appendix B. Online supporting material

Table B.5 gives an overview of the number of samples taken from each sampling location and which parameters were analyzed.
Figure B.8 - B.10 shows the microorganism data with uncertainty estimates. These uncertainty estimates are only associated with the
statistics of microbial counts or qPCR-procedures and do not reflect variation that is inherent in the experimental procedures. Tables
B.6 and B.7 give a summary of 24 previous studies on virus removal in deep-bed filtration for drinking water where coagulation
was employed at some point upstream of the filter, and for which the removal efficiency across the filter could be estimated (at least
roughly).

Table B.5: Sampling regime. Numbers in parenthesis represent the number of Petri plates incubated.

Sampling point No. of samples No. of samples analysed for parameter

28B MS2:PFU MS2:RT-qPCR E.coli Turbidity Color Al

RW 5 0 0 0 1 4 4 0
FT 4 4 (8) 0 4 4 0 0 0
M1 6 6 (12) 4 (8) 6 6 6 0 0
M2 7 6 (12) 0 6 6 7 0 0
A-H 96 96 (241) 0 32 32 96 0 0
M3 42 42 (120) 5 (18) 30 24 6 5 1

SUM 160 154 (393) 9 (26) 78 73 119 9 1
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Figure B.8: Phage 28B concentrations with 95 % likelihood-ratio based confidence intervals, assuming that plaque counts are Poisson-distributed. Circles indicate
whether some or all plates had plaques too numerous to count (TNTC) or whether the total count from all plates were less than 20.
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Figure B.9: MS2 RT-qPCR concentrations with uncertainty estimates derived from ± 3 standard deviations of replicate PCR Cq values.
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Figure B.10: E.coli concentrations with 95 % confidence intervals based on MPN-tables provided by IDEXX. Black circles indicate that all wells on the Quanti-
Tray/2000 trays were positive.
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Some aspects of deep-bed filtration dynamics in QMRA for drinking water

Vegard Nilsen∗
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Abstract

Unlike most unit processes in drinking water treatment, the performance of deep-bed filtration processes vary systematically on
short time-scales; the particle removal capacity changes with elapsed time since the previous backwash, even when the influent
water quality remains stable. For microorganisms, the removal efficiency may vary by orders of magnitude. In this work, we study
the potential impact of such dynamics on microbial risk estimates and optimal filter operation, using representative experimental
filtration data for viruses and bacteria. The data is used as input in a simplified conceptual model of a water supply system in
conjunction with dose-response models for microbial infection.

Assuming that filtration is the only source of variation in pathogen concentrations on the time-scale of a single filter cycle, it
is concluded that such variations are unlikely to substantially affect risk estimates, except possibly in an outbreak situation with
extremely high pathogen concentrations; it generally suffices to know the mean pathogen concentrations. Future experimental work
should focus on capturing the variation in performance in order to correctly estimate mean removal rates. Our results suggest that
overall mean removal rates may differ substantially from typical mid-cycle removal rates, and it is demonstrated that the best mean
removal rate actually occurs after breakthrough of an organism and closer to turbidity breakthrough. However, continuing filtration
beyond turbidity breakthrough, even if turbidity remains below 0.1 NTU, may completely negate overall mean removal rates for
the entire filter cycle. Future studies should include concurrent variation in the performance of other unit processes and raw water
pathogen concentrations.

Keywords:
microbial risk, drinking water, filtration, dynamics

1. Introduction

A treatment train consisting of some combination of coagu-
lation, flocculation, sedimentation/flotation and deep-bed filtra-
tion is common in water treatment plants throughout the world.
While designed for removing particles and/or natural organic
matter (NOM) in general, coagulation-filtration processes also
account for a significant portion of the overall microorganism
removal, including pathogens (Hijnen and Medema, 2010).

The microbial removal efficiency of the filtration process
may vary between plants because of differences in design, raw
water quality and operational practices. For a given plant, re-
moval efficiency may also vary slowly in time, e.g. because of
varying raw water composition throughout the year (Westrell
et al., 2006), or it may change rapidly as a result of raw water
contamination events (Signor et al., 2005; Åström et al., 2013)
or upsets in the treatment processes (Hijnen and Medema, 2010;
Huck et al., 2002; Emelko et al., 2003). Variations in removal
rates have previously been modeled by fitting appropriate prob-
ability distributions to data from filter influent and effluent sam-
ples (Teunis et al., 1999, 2009; Smeets et al., 2008). In quan-
titative microbial risk assessment (QMRA; Haas et al., 2014),

∗Telephone: +47 930 94 406
Email address: vegard.nilsen@nmbu.no, vgnils@gmail.com

(Vegard Nilsen)

such fitted distributions may be used together with data on raw
water quality as part of an effort to estimate the exposure of wa-
ter consumers to pathogens. Data on exposure is subsequently
used as input to dose-response models (Haas, 1983; Nilsen and
Wyller, 2016a) for estimating microbial risks associated with
drinking water consumption.

However, superimposed on the variations already mentioned,
there may be systematic short-term variations in removal ef-
ficiency originating from the inherently dynamic character of
the deep-bed filtration process during normal operation, even
if influent water quality characteristics remain constant. Typ-
ically, as measured by filter effluent turbidity, there is an ini-
tial period of improvement in performance as the filter begins
to collect particles (the ripening period), followed by a period
of relatively stable performance until the performance even-
tually deteriorates (the breakthrough phase) when the particle
collection capacity is exhausted, unless terminal head loss is
reached earlier. The filter must then be taken out of service
to be back washed so that the particle collection capacity can
be restored to its initial state (i.e. the process is discontinuous
and essentially periodic). These dynamic characteristics distin-
guish the filtration process from other typical unit processes in
conventional treatment (sedimentation, flotation, chlorination,
UV-irradiation), that are comparatively stable and uninterrupted
during normal operation and when subjected to a constant in-
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fluent water quality.
Turbidity dynamics during filtration is not entirely represen-

tative for microbial filtration dynamics, though, since turbidity
measurements lump the contribution of all particle types into a
single parameter. Several studies have shown that the ripening
and breakthrough behavior is dependent on particle size (Clark
et al., 1992; Kim and Lawler, 2008; Moran et al., 1993), with
smaller particles typically taking longer to both ripen and break
through as compared to larger particles. Some studies have
shown a marked reduction in microorganism removal early and
late in the filter cycle (Robeck et al., 1962; Harrington et al.,
2003; Emelko et al., 2003; Templeton et al., 2007). Still, stud-
ies that aim to characterize microbial removal rates of filtra-
tion processes are usually focused on “typical” removal rates,
or removal rates during periods of stable effluent turbidity, of-
ten employing sampling regimes that are unable to capture the
full variation in treatment efficiency throughout the filter cycle.

Recently, we undertook a pilot-scale dual-media contact-
filtration study in an attempt to generate a high-resolution sam-
ple of such microbial filtration dynamics during an entire fil-
ter cycle (Nilsen et al., 2016). The instantaneous removal effi-
ciency of model viruses and bacteria varied by a factor of about
50 and 200, respectively, within the period when effluent turbid-
ity was less than 0.1 NTU, indicating that the dynamic character
of filtration processes should not be overlooked in risk assess-
ment.

The effect of such short-term systematic variations in micro-
bial filtration efficiency, that are present during normal opera-
tion, has received comparatively little attention in the microbial
risk literature, and is the topic of this paper. We will make an
attempt to develop simplified conceptual models that account
for such variation and analyze its effects when paired with typi-
cal dose-response models. Data from our filtration experiments
will be used to exemplify and demonstrate the type of computa-
tions that can be performed when data of sufficiently high reso-
lution is available. We will draw some preliminary conclusions
on the relevance of filtration dynamics for QMRA and optimal
filter operation.

2. Example data

The filtration experiment that generated the example data is
reported in full elsewhere (Nilsen et al., 2016); here a brief sum-
mary is given. The purpose was to undertake a detailed charac-
terization of virus and bacterial removal during a full filtration
cycle and at several depths of the filter, in a setup represen-
tative of Norwegian filtration practice (Ødegaard et al., 2010).
A pilot-scale circular (10 cm diameter) dual-media filter con-
sisting of Rådasand (0.4-0.8 mm grains; 50 cm depth) above
Filtralite (0.8-1.6 mm grains; 80 cm depth) was run with a con-
stant filtration rate of 5.9 m/h. Raw water (turbidity 0.7-0.8
NTU, color 26 mg Pt/l) was collected from a river and coagu-
lated inline with 1.5 mg Al/l of a 42 % basicity polyaluminum
chloride coagulant at pH 5.9; no dedicated flocculation step was
used (i.e. contact-filtration). Effluent turbidity is shown in Fig-
ure 1 (influent turbidity after coagulation was approx. 2.0-2.1
NTU), effluent color remained at around 3 mg Pt/l and a single

sample taken mid-cycle showed a residual Al-content of 0.031
mg Al/l.

Bacteriophage MS2 (icosahedral, 27 nm), bacteriophage
Salmonella Typhimurium 28B (icosahedral, 60 nm; Lilleengen,
1948; Svenson et al., 1979) and indicator bacterium E.coli (rod-
shaped, approx. 1 µm x 3 µm) were continuously added inline,
before coagulant addition, to provide a constant influent con-
centration of microorganisms. Microorganism concentrations
were determined by RT-qPCR (MS2), plaque assay (28B) and
Colilert-18 (E.coli). Figure 1 shows the logarithm of the esti-
mated probability of passage, π1, as a function of elapsed time
in the filter cycle, t. More precisely,

π1(t) =
ṁ1(t)
ṁin(t)

=
q1(t)c1(t)
q1(t)cin(t)

=
c1(t)
cin(t)

(1)

Here, c1 and cin are, respectively, the effluent and influent con-
centrations (as number of microorganisms/unit volume) from
the filter; cin was estimated from 12 influent samples and taken
as constant. The flow rate is denoted by q1, and the effluent
and influent mass transport of microorganisms by ṁ1 and ṁin,
respectively. Our notation will not distinguish between organ-
isms; it will be clear from context which organism is being dis-
cussed. Some computations in this paper have only been per-
formed for phage 28B and E.coli. We use the subscript 1 here
to denote this reference filter, to distinguish it from hypothetical
copies of it introduced later. The commonly used log-removal
rate is simply − log10(π1). Note that in formulating (1), we ig-
nored the travel time between filter inlet and outlet, which is
short relative to the duration of the filter cycle.

The strict interpretation of π1 as the probability of passage
of a single organism hinges on the assumption that organisms
are removed independently of each other (otherwise π1(t) might
depend on cin(t)), and the assumption that detachment of or-
ganisms from filter grains is negligible compared to attachment
(otherwise c1(t) will depend on the number of organisms avail-
able for detachment, i.e. the history of organism capture). Fi-
nally, it is assumed that π1(t) is determined by the amount and
physico-chemical character of the particles that are already cap-
tured in the filter, of which the microorganisms themselves con-
stitute a negligible proportion and therefore exert no influence
on π1(t). In short: π1(t) is assumed to be independent of both
influent and attached microorganism concentrations.

The data shows that bacteria were generally removed bet-
ter than viruses, and the results are also consistent with ex-
pectations based on the size-difference between the organisms:
ripening for bacteria occurred more rapidly than for viruses, and
bacteria broke through before viruses. We define breakthrough
here as the onset of persistently increasing passage.1 Both or-
ganisms broke through before turbidity, though. It is noted that
the breakthrough of viruses is rather abrupt compared to the
more gradual breakthrough of bacteria. Each of the data se-
ries in Figure 1 has been fitted to a cubic smoothing spline with
smoothing parameter 0.9 using the Curve Fitting Toolbox in

1For turbidity other definitions in terms of reaching a certain threshold value
seem to be in use.
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Figure 1: Data from the filtration experiment described in Section 2. After
backwash, the filter was run briefly with raw water to displace the backwash
water and t = 0 corresponds to the first arrival of coagulated water at the filter
surface. The theoretical clean bed retention time in the filter was approx. 7
minutes.

MATLAB (MathWorks, 2014). Unless otherwise noted, com-
putations reported in this paper were performed directly on the
experimental data, interpolating linearly between data points to
construct a continuous function π1(t).

3. Conceptual framework

In the following sections, the necessary mathematics of
pathogen dose distributions and dose-response models will be
formulated, and we will develop a simplified conceptual model
for a water supply system. The concepts of probability generat-
ing and moment generating functions (abbreviated pgf and mgf,
respectively) will be used; for a short review of these concepts
in a QMRA-setting, the reader may consult Nilsen and Wyller
(2016a) and Nilsen and Wyller (2016b) with online supporting
information.

3.1. Pathogen dose distributions

Let the pathogen count (dose) in a single sample of unboiled
tap water at a given location in a water distribution system be
a non-negative discrete random variable X.2 In the simplest
case of a water supply with completely dispersed pathogens
with a constant mean pathogen concentration c, X is by de-
fault assumed to be Poisson-distributed with a single parameter
E(X) = λ = cvs, where vs is the sample volume for ingestion.
Its probability mass function (pmf) is

pX(x) =
e−λλx

x!
(2)

2We will adhere to the convention of denoting random variables with upper-
case letters and corresponding instances of the variables with lowercase letters.
We will however abuse notation somewhat and let some lower case symbols
(e.g. c) denote both an instance of a random variable C and a function c eval-
uated at t (which could be thought of as a realization of a stochastic process
C(t)).

Temporal variations in c at the point of consumption, i.e. the
concentration may be thought of as a random variable C, will
give rise to mixed Poisson distributions for the dose X,

pX(x) =

∫ ∞

0

e−λλx

x!
fΛ(λ) dλ (3)

where fΛ(λ) is the probability density function (pdf) of Λ =

vsC. Such a mixed Poisson distribution has the following prop-
erties:

E(X) = E(Λ)
Var(X) = E(Λ) + Var(Λ)

θX = 1 +
ln

[
pX(0)

]

E(X)
= 1 +

ln [MΛ(−1)]
E(Λ)

(4)

Here, MΛ is the mgf of Λ, and θX is known as the zero-inflation
index. The latter is useful in formulating some dose-response
models in the next section. As explained further in Section 3.3,
we will assume in this paper that Λ = kΠ, where k is a constant
and Π is a random filtration passage probability.

Our interest in this paper is the systematic temporal varia-
tions in λ(t) = vsc(t) that arise from the filtration process and,
as a working assumption, might persist until a point of con-
sumption. These variations must however be treated as random
from the point of view of the consumer since the consumer sam-
ples essentially randomly from the water supply. We need some
precision in describing this sampling process. Assume that the
consumer samples from a treatment plant effluent with mass
flux of pathogens ṁ, given by:

ṁ(t) = q(t)c(t) (5)

It is natural to assume that every volume of water produced has
the same chance of being ingested by a consumer; i.e. the con-
sumer samples uniformly from the total volume produced (flow
proportional sampling) which, when q(t) is non-constant, is not
equivalent to sampling uniformly in time. The total volume of
water v(t) produced in the time interval [0, t] is given by

v(t) =

∫ t

0
q(τ) dτ ⇐⇒ dv

dt
= q(t) (6)

Since q(t) is positive, v(t) is one-to-one and may be inverted
to give a function t(v). When c(t) is given, we may therefore
express it as a function of v, c[t(v)], and use the approach out-
lined in Appendix A to obtain the probability distribution for
Λ = vsC[t(V)] when V is uniformly distributed on [0, v]. It is
assumed here that vs is so small that we may treat λ(t) = vsc(t)
as constant during the time interval needed to sample a volume
vs.

3.2. Dose-response models

Dose-response models relate the pathogen dose distribution
to the probability of the consumer suffering negative health
consequences, most often identified with the establishment of
an infection. For drinking water studies, the single-hit dose-
response framework (Haas, 1983; Nilsen and Wyller, 2016a),
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of which the exponential and beta-Poisson models are exam-
ples, has served as the de facto standard modeling approach.
It postulates that pathogens act independently of each other in
overcoming host defenses and that infection results if at least
one pathogen overcomes these defenses. A generic formulation
is given by

PI = 1 −
∫ 1

0
GX(1 − r) fR(r) dr (7)

where PI is the probability of infection, GX is the pgf of X and
fR is the pdf of the so-called single-hit probability R, which may
vary between hosts, but variation between individual pathogens
is integrated out (Fazekas de St Groth and Moran, 1955; Haas,
2002; Schmidt et al., 2013; Nilsen and Wyller, 2016b)).

The pgf of the mixed Poisson distribution in (3) can be shown
to be MΛ(−r), in which case equation (7) becomes

PI = 1 −
∫ 1

0
MΛ(−r) fR(r) dr = 1 −

∫ 1

0
MΠ(−kr) fR(r) dr (8)

where the latter equality holds for Λ = kΠ. Since single-hit
models are non-linear (concave) in the dose variable, the risk
computed with a mixed Poisson dose distribution is always less
than the risk computed with a Poisson distribution with the
same mean (Nilsen and Wyller, 2016b, Proposition 2). There
is also a clear tendency that the risk estimate from (7) decreases
with increasing dispersion in X, although we are unaware of a
formal result to make this stronger assertion precise in this con-
text.3 Nevertheless, PI in (7) can be shown to be bounded from
above by the following quantity (Nilsen and Wyller, 2016b,
Proposition 3):

PI,b = [1 − pX(0)] · P0
I

(
E(X)

1 − pX(0)

)

=
(
1 − e(θX−1)·E(X)

)
· P0

I

(
E(X)

1 − e(θX−1)·E(X)

) (9)

Here P0
I(x) represents any concave conditional dose-response

model (Haas, 2002); in the single-hit case, it becomes

P0
I(x) = 1 −

∫ 1

0
(1 − r)x fR dr (10)

The bound (9) can be shown to be decreasing with θX . Thus, if
filter operations can be used to increase θX for given E(X), there
may be some opportunities for optimization. Put another way,
for a given number of pathogens delivered with a water supply,
the single-hit framework suggests that it is better to concentrate
them in a small volume rather than spreading them out.

The treatment above assumed that X is the dose resulting
from a single-exposure. The risk resulting from n doses, in-
dependent and identically distributed (iid) as X, is given by
(Nilsen and Wyller, 2016a):

PI = 1 −
∫ 1

0
[MΛ(−r)]n fR(r) dr (11)

3The concept of stochastic dominance, widely used in expected utility the-
ory in economics, may provide the tools needed to make progress. See Nilsen
and Wyller (2016b).

3.3. Water supply system
In general, the distribution of the dose X depends on (1) the

pathogen concentration in the raw water, (2) the treatment effi-
ciency and (3) any effects of transport through the distribution
system. Each of these three components may be characterized
by their own variation, possibly on multiple time-scales; hence
the actual distribution of X may be very complex. Therefore, in
developing our conceptual model in this section, we will have
to make some simplifying assumptions. To aid in the model de-
veloment, Figure 2 shows a general conceptual layout of a water
supply system with a water treatment plant that includes n filters
operating in hydraulic parallel. The mass fluxes of pathogens
at various locations in the system are denoted as shown in the
figure.

First, we will assume that all filters have identical designs,
receive identically composed influent water and are operated
identically except that their filtration cycles are displaced in
time to accommodate backwashing. Thus, the pathogen pas-
sage probability of a filter indexed by i is given by πi(t) =

π1(t − δi), where δi is a time-shift, or phase-shift, relative to
the reference filter π1(t). Furthermore, we will assume that the
effluent from all filters is instantaneously mixed at the point
where the parallel filter lines merge. The time evolution of
pathogen concentrations in the water at this point, and there-
fore the distribution of X when sampling from it, then becomes
a function of the δ′i s. With reference to Figure 2, the net proba-
bility of passage of n filters as a function of time is given by

π(t) =

∑n
i=1 qi(t)ci(t)

cin(t)
∑n

i=1 qi(t)
=

∑n
i=1 qi(t)πi(t)∑n

i=1 qi(t)
=

∑n
i=1 qi(t)π1(t − δi)∑n

i=1 qi(t)
(12)

where we used the assumption that cin(t) does not vary between
filters.

In order to construct complete yet simple models, we also
need to consider and make simplifying assumptions on the pro-
cesses preceding and following filtration. First, it is conve-
nient to think of the raw water pathogen concentration as a
continuous time stochastic process Cr(t). If Cr(t) displays non-
stationarity solely as the result of catchment processes that vary
on larger time-scales (e.g. seasonal changes), there is likely to
be a high degree of auto-correlation in Cr(t) for small time in-
tervals such as the length of a filtration cycle. However, Cr(t)
may also be influenced by short-term events, such as e.g. a sud-
den sewage leak or overflow. The question for us in this context
is whether Cr(t) displays significant variation on the time scale
of a single filter cycle, i.e. 0.5 - 1.5 days, or whether it can rea-
sonably be taken as constant during such a time interval. For
simplicity, we will mostly assume constant raw water concen-
trations.

Treatment processes upstream of filtration typically include
simple straining and coagulation-sedimentation/flotation and
maybe pre-chlorination. Although upsets may occur, these are
processes that are expected to have a stable performance when
loaded with a constant influent water quality and flow rate, and
we will assume as much by modeling pre-filtration processes
using a constant passage probability φ1. Downstream of filtra-
tion, one typically finds disinfection processes such as chlorina-

4



Filter 1; passage

probability π
1
(t)

Filter 2; passage

probability 

 π
2
(t) = π

1
(t - δ

2
)

Filter i; passage

probability 

 π
i
(t) = π

1
(t - δ

i
)

Filter n; passage

probability 

 π
n
(t) = π

1
(t - δ

n
)

q
1
(t)c

in
(t)

q
2
(t)c

in
(t)

q
i
(t)c

in
(t)

q
n
(t)c

in
(t)

q
1
(t)c

1
(t)

q
2
(t)c

2
(t)

q
i
(t)c

i
(t)

q
n
(t)c

n
(t)

Pre-filtration

processes;

passage

probability

assumed

constant on

time scale of

filter cycle: φ
1

Post-filtration

processes;

passage

probability

assumed

constant on

time scale of

filter cycle: φ
2

Water treatment plant

From raw

water source

q
r
(t)c

r
(t) q

r
(t)c

in
(t) = 

 

φ
1
q

r
(t)c

r
(t)

To distribution

system

      q(t)c(t) = 

 

 φ
2
 Σ

i=1
n  q

i
(t)c

i
(t)

Figure 2: Conceptual layout of a water treatment plant with n filters operating in parallel. The labels represent mass fluxes of pathogens at the locations shown.

tion, UV-radiation or ozonation. These are also processes that
are expected to perform in stable manner (at least on the time
scale of a filter cycle) when supplied with a stable influent water
quality and quantity. Furthermore, they are typically modeled
using first-order decay models (e.g. the Chick-Watson model
for chlorination) so that the passage probability does not de-
pend on the influent pathogen concentration. There are however
some indications that the performance of UV-radiation may de-
pend on the current stage in the filter cycle of a preceding filtra-
tion step, through its effect on particle content (Templeton et al.,
2007, 2008). For the purposes of this paper, we will describe
the effect of post-filtration processes, including inactivation in
the distribution system, by a constant passage probability φ2.
The combined effect of pre- and post-filtration processes is then
φ = φ1φ2.

Once treatment is completed, we particularly have to con-
sider the extent to which temporal concentration variations per-
sist throughout the distribution system and affect the distribu-
tion of the dose X at the tap. We will consider two extreme
cases in our model building:

1. Completely dispersive distribution system. For this case,
we will assume that all filtration-induced short-term varia-
tions in pathogen concentrations are smoothed out during
distribution and that, at the time-scale of a single filtration
cycle, tap water has a stable pathogen concentration equal
to the mean concentration in the treatment plant effluent
(adjusted for inactivation in the distribution system). Such
a situation would be more likely in large systems with
large flow-through reservoirs, long retention times and at
locations far from the treatment plant.

2. Completely non-dispersive distribution system. For this
case, we will assume plug-flow like behavior so that short-
term filtration-induced variations in pathogen concentra-
tions directly affect the distribution of X at the tap; the con-
sumer might as well sample the water immediately after
treatment (adjusted for inactivation in the distribution sys-
tem). Such a situation would be more likely in small sys-
tems with small clear-water wells and reservoirs, short re-
tention times and at locations close to the treatment plant.

In reality, the situation will likely be somewhere between these
extremes and depend on the time-scale of filtration dynamics
compared to the time-scale of dispersion in downstream pro-
cesses and transport systems. Claims in the literature (Mann
et al., 2007) of short-term temporal correlations between efflu-
ent turbidity at the treatment plant during normal operation and
cases of reported acute gastrointestinal illness at hospital emer-
gency units indicate that persistence of short-term variations
throughout distribution networks cannot be ruled out a priori.

Table 1 summarizes the four alternatives for the concentra-
tion distribution experienced by a consumer when considering
stable vs. random raw water concentrations, dispersive vs. non-
dispersive distribution systems and constant passage probability
φ in non-filtration processes. Here, Π denotes the random net
probability of passage through n parallel filters when sampling
uniformly in produced volume from π[t(v)] (equation (12)). We
will not consider explicitly the case of random raw water con-
centrations in combination with a non-dispersive distribution
system. However, if Cr and Π can be taken as independent ran-
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Table 1: Concentration distributions experienced by the consumer for different
scenarios. The distinctions stable/random and dispersive/non-dispersive apply
at the time scale of a single filter cycle.

Post-filtration processes
and distribution system

Dispersive Non-dispersive

Stable; cr c = φcrE(Π) C = φcrΠRaw water
concentration

Random; Cr c = φE(CrΠ) C = φCrΠ

dom variables, we have

Var(φCrΠ) = φ2Var(CrΠ) > (φcr)2Var(Π) (13)

which shows that the variance of C increases in this case as
compared to the case of a constant cr equal to E(Cr). The vari-
ance increases similarly if φ must be treated as random (at least
if it can be considered independent of Cr and Π).

Finally, parallel filters are typically hydraulically connected,
so that taking one filter out of service for backwashing may
increase the filtration rate in the other filters, which in turn may
adversely affect the filtrate quality (Kim and Lawler, 2006) and
possibly lead to detachment of previously captured pathogens
(Emelko, 2001). It seems plausible that the effect may depend
on what stage in the filter cycle a filter is currently in. Further
experimental work is needed to characterize such effects better.
For our modeling, it will be assumed that the flow rate through
each filter is constant and does not increase when backwashing
other filters. This implies that either the flow rate through the
entire treatment plant follows that of the filtration step or there
are some detention volumes.

4. Analysis and results

4.1. Probability distribution implied by π1(t)

First, we will consider the empirical pdf implied by π1(t)
from our example data (Figure 1) when sampling uniformly
from the produced volume or equivalently, in this case, sam-
pling uniformly in time since the flow rate q was constant.
For given start and end times of the production period (end
of filter-to-waste and initiation of backwashing, respectively),
the probability distribution of Π1 may be derived from π1(t) us-
ing the relationships outlined in Appendix A. This has been
done with our example data to produce Figure 3, which shows
pdfs for three different production periods, for viruses and bac-
teria. For viruses, we have also included a comparison with
a pdf derived by Teunis et al. (2009). They used data on F-
specific coliphages from two plants in the Netherlands to es-
timate a beta-distribution for the removal during coagulation-
filtration, assuming paired influent and effluent samples and
gamma-distributed influent concentrations.

As seen in Figure 3, the derived pdfs for viruses and bac-
teria are both right (positively) skewed. The distribution for
bacteria has a lower mean and more concentrated probability
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Figure 3: Probability density functions derived from π1(t) in the example data
of Figure 1, using the method outlined in Appendix A.

mass as compared to viruses, reflecting its better and more sta-
ble removal, also seen in Figure 1. Restricting the length of the
production period displaces probability mass to smaller values.
It is clear that the estimated beta pdf of Teunis et al. (2009) is
vastly more spread out than our empirical pdf from a single fil-
ter run, has a higher mean and a quite different shape (it is left-
skewed). The data that went into estimating the beta pdf is of a
very different nature (high volume sampling with a subsequent
concentration step, only 17 samples in total) than our experi-
mental data, and there was no detailed information on process
characteristics or consideration of the time-scales of variation.
The difference is nevertheless consistent with the observation
that highly variable virus removal efficiencies for filtration are
reported in the literature (Nilsen et al., 2016). The pdfs gener-
ated here, or perhaps some smoother versions of them, may be
used as input for Monte-Carlo simulations in risk assessment.
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4.2. Dispersive distribution system

In a completely dispersive distribution system, during a time
period on the order of the length of a filter cycle, the consumer
is assumed to sample from a water with a constant concentra-
tion of pathogens, c, equivalent to the mean pathogen concen-
tration leaving the treatment plant, adjusted for inactivation in
the distribution system. From Table 1, this concentration is as-
sumed to be given by c = φE(CrΠ) = φE(Cr)E(Π), where the
latter equality holds when Cr and Π are statistically indepen-
dent. Thus, in this simplified scenario, only the expected pas-
sage probability E(Π) enters the problem. At low doses, typi-
cal for normal drinking water, the risk from a single-hit dose-
response model based on the Poisson distribution is approxi-
mately proportional to the mean dose λ = cvs, and hence to
E(Π).

As shown in Appendix A, E(Π) is given by the volume av-
erage of π[t(v)] (passage probability through all filters), which
in turn is equal to the volume average of π1[t(v)] (passage prob-
ability through reference filter 1). We will consider two situa-
tions, one in which the start time of water production (end of
filter-to-waste) is given and only the end time of production is
free to choose, and one in which both the start time and end
time are subject to choice.

4.2.1. End of filter-to-waste period given
Assume that t1 is the time when the filter is put into operation

after a backwash event (end of filter-to-waste). Then the mean
probability of passage, πm

1 , between t1 and t is given by

E(Π1)t = πm
1 (t) =

1
v − v1

∫ v

v1

π1[t(v)] dv

=
1

v − v1

∫ t

t1
π1(τ)q1(τ) dτ =

1
t − t1

∫ t

t1
π1(τ) dτ

(14)

where the latter equality applies when q1(t) is constant, as in
the experiment that generated our example data. Assuming that
π1(t) is differentiable, it is readily verified that potential minima
of πm

1 (t) for t > t1 occur when

πm
1 (t) = π1(t) (15)

which, for a typical U-shaped time evolution of π1(t) has a
unique solution. Thus, if t1 is given, optimization of the filter
operation with respect to minimizing the risk from a pathogen
that passes the filter according to π1(t) consists of ending the
filter run at a time t that solves (15).

This is illustrated in Figure 4, which shows πm
1 (t) for viruses

and bacteria for three values of t1, corresponding to the events
of turbidity falling below 0.2 and 0.1 NTU, and turbidity be-
coming stable (after approximately 3 hours). Also shown is
π1(t) and the normalized cumulative passage from our experi-
mental data, defined as

ω1(t) =

∫ t
0 ṁ1(τ) dτ

∫ tstop

0 ṁ1(t) dt

q1 const.
=

∫ t
0 c1(τ) dτ

∫ tstop

0 c1(t) dt

cin const.
=

∫ t
0 π1(τ) dτ

∫ tstop

0 π1(t) dt
(16)

where tstop is the end time of the experimental run. Thus, ω1(t)
gives the ratio of the number of microorganisms that has passed
at time t to the total number of organisms that passed during the
entire experimental run.
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Figure 4: Normalized cumulative passage and instantaneous and mean proba-
bility of passage for viruses and bacteria.

There are several points to note in Figure 4. First, the nor-
malized cumulative passage curves ω1(t) are quite different for
viruses and bacteria. Approximately 40-50 % of the virus pas-
sage happened in the early stages of the cycle before ripening
brought effluent turbidity down to 0.2 NTU; the equivalent fig-
ure for bacteria is only about 25 %. After turbidity dropped
below 0.2 NTU, ω1(t) is quite flat for bacteria while it contin-
ues to flatten for viruses, reflecting different ripening behaviors.
Consequently, most of the bacterial passage happened towards
the end of the cycle.

Second, the marked difference between π1(t) and πm
1 (t) is ap-
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parent. When starting water production at turbidity 0.2 NTU,
the difference is about 1 log-unit at the time of microorganism
breakthrough. It is also clear that πm

1 (t) varies somewhat de-
pending on when the filter-to-waste period is terminated, and
the effect is particularly noticeable if one postpones the produc-
tion start until turbidity is completely stable, at 3 hours (usually
not feasible). Once breakthrough has occurred, the different
πm

1 (t) curves start to converge.
Third, it is interesting to compare the location of minima in

π1(t), i.e. conventional breakthrough, and minima in πm
1 (t), i.e.

the optimal end time of the filter cycle. For viruses, break-
through occurred slightly before turbidity breakthrough, but the
minimum of πm

1 (t) for viruses occurred at (MS2) or slightly
after (28B) turbidity breakthrough, and 1-2 hours after virus
breakthrough. The location of the minimum of πm

1 (t) for viruses
does not depend strongly on t1, the start of the production pe-

riod, since the passage probability rises so quickly for viruses
after breakthrough. For bacteria, the situation is different; the
minima of both π1(t) and πm

1 (t) occurred several hours before
turbidity breakthrough. The exact location of the minimum of
πm

1 (t) is more sensitive to t1 since the passage probability of
bacteria rises more slowly in the time right after breakthrough.
Continuing water production until turbidity reaches 0.2 NTU is
clearly more detrimental to mean bacteria passage than mean
virus passage, since the overall increase in π1(t) for bacteria is
greater than for viruses. It is clear that one cannot strictly opti-
mize for mean bacteria and mean virus passage simultaneously,
but ending the filter cycle at 13-14 hours is close to optimal for
all microorganisms investigated.

Figure 5 shows identical computations performed for the tur-
bidity data, with the caveat that concepts such as “proportion
of turbidity passed” may not be entirely well-defined for tur-
bidity, which is not a strictly conserved quantity. Nevertheless,
the panel indicates that a greater proportion of the effluent tur-
bidity passage occurred during the period of stable operation,
i.e. less of the turbidity passage happened during ripening and
breakthrough periods, as compared to the microorganisms. Fur-
thermore, the minimum of πm

1 (t) for turbidity occurred almost
immediately after turbidity breakthrough, and practically at the
same location as for viruses.

4.2.2. Length of production period given
Filter run optimization as discussed above assumed that the

starting point of water production, t1, was given. In order to
get one step closer to a truly optimized filter run, this could be
relaxed so that both t1 and the end point t2 are free to be chosen.
On the other hand, we must impose the condition that each filter
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run must produce a certain volume of water in order to satisfy
demand, which consists of consumer demand and the volume
needed for backwashing. For constant-rate filtration, this con-
dition corresponds to fixing the length of the production period
∆t = t2−t1. Thus the problem, assuming constant filtration rate,
is to minimize

πm
1 (t1, t2) =

∫ t2
t1
π1(t) dt

t2 − t1
(17)

subject to the constraint t2 − t1 = ∆t. It is readily verified by
standard methods (e.g. substitution or Lagrange multipliers)
that this occurs only when π1(t1) = π1(t2), which for a U-shaped
time evolution of π1 results in a unique solution (t1, t2) for each
choice of ∆t. Figure 6 shows the result of a numerical solu-
tion of this problem with 28B and E.coli data, using the spline
approximations shown in Figure 1.

From the figure, we can see that the optimal production pe-
riod for viruses is displaced 1.5-3 hours in time compared to the
optimal period for bacteria. The longer the production period
∆t, the smaller is the difference between viruses and bacteria
in terms of the optimal time limits of production. Running the
production from the time when turbidity falls below 0.1 NTU
until turbidity breakthrough, is actually very close to the opti-
mal production time limits for bacteria for ∆t ≈ 14 hours, and
is not so far from the optimal production time limits for viruses
for the same ∆t.

4.3. Non-dispersive distribution system
Limiting the mean concentration of pathogens, as discussed

in the previous section, will limit the risk associated with water
consumption. However, with a non-dispersive distribution sys-
tem, the mean risk on the time scale of a filter cycle depends
theoretically not only on the mean concentration, but also on
the higher moments of the concentration distribution. In our
model (upper right corner of Table 1), where the filtration pas-
sage probability is the only varying quantity on the time scale
of a filter cycle, the concentration distribution is determined by
the time variation of π(t), the net passage probability across n
parallel filters. With reference to Figure 2, this is given by

π(t) =

∑n
i=1 qi(t)ci(t)

cin
∑n

i=1 qi(t)
=

∑n
i=1 qi(t)πi(t)∑n

i=1 qi(t)
(18)

where qi(t) takes only two values, q (during operation) or 0
(during backwashing and filter-to-waste periods). We will fur-
ther be assuming that πi(t) = πi(t+ tp) for all i, i.e. the treatment
performance of each filter is periodic with shared period tp. The
parameters of filter operation that determine π(t) in this simple
situation are the time of production start t1, the time of produc-
tion stop t2 and the filter cycle phase shifts δi between filter i
and reference filter 1 (Figure 2). For simplicity, we will assume
the phase shifts are regularly spaced so that δi = (i − 1)δ2.

Figure 7 shows an example with three filters operating in par-
allel, with filter cycles of the second and third filter displaced
3 and 6 hours, respectively, compared to the reference filter. In
the lower panel, π[t(v)] is shown as a function of produced vol-
ume v per. unit filter area. Sampling uniformly in v from this
function induces the random variable Π, and by assumption, we

have the dose Λ = vscrφ1φ2Π ≡ kΠ to be used in equation (8).
As can be seen from Figure 7, under our assumption that πi(t)
and qi(t) are unaffected by backwashing a filter j , i, the net
passage probability improves when a poor-performing filter is
taken off-line for backwash.
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As equation (8) shows, when Λ = kΠ the single-hit dose-
response model is constructed with the mgf of Π evaluated at
−rk. Furthermore, Appendix A establishes that the mgf of Π,
where Π emerges from sampling uniformly in v from π[t(v)],
may be computed as

MΠ(z) = E(ezΠ) =
1

v2 − v1

∫ v2

v1

ezπ[t(v)] dv (19)

Here, v1 = v(t1) and v2 = v(t2).4 This quantity can be straight-

4Strictly, since π[t(v)] is periodic in both t and v, we can integrate over any
interval with length v2 − v1.
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forwardly evaluated numerically from the example experimen-
tal data in Figure 1.

In order to gain an understanding of the effect of filtration
dynamics on risk in our model, the following risk ratio has been
evaluated, where, for simplicity, we have assumed a constant
single-hit probability r:

PI,nd

PI,d
=

1 − MΠ(−rk)
1 − e−rkE(Π) (20)

The numerator is the single-exposure risk computed with the
full distribution of Λ = kΠ, where k = crφvs, i.e. the risk
we would compute in a non-dispersed distribution system. The
denominator is the single-exposure risk computed with the ex-
ponential model with mean dose E(Λ) = kE(Π), i.e. the risk
we would compute in a dispersed distribution system. Contour
plots of the ratio in equation (20) are shown in Figures 8 and
9 for viruses (28B) and bacteria, respectively. They show the
influence of a) the number of filters in parallel, n, b) the pro-
duction time limits t1 and t2 through their effect on effluent tur-
bidity, c) the time-shifts δi of the filtration cycles with respect
to the reference cycle and, d) the parameter rk through its effect
on the exponential model (horizontal axes). We employed the
restriction that only one filter can be in backwash at any given
time, which excludes the possibility of operating 6 filters with
completely stable turbidity (the missing panel).

As dictated by theory, Figures 8 and 9 show that the ratio in
equation (20) is less than 1. Starting with Figure 8 for viruses,
we see that the effect of variation in π on risk estimates tends
to be more pronounced when there are fewer filters in parallel
and when lesser restrictions are placed on turbidity. It should
be noted that under normal operational conditions, when the
single-exposure risk is typically less than 10−6, variation in π
appears to have negligible influence on risk estimates. It only
becomes important under severe outbreak conditions, when the
single-exposure risk is higher than 0.1 and somewhat away
from 1. Under such conditions, the time-shifts of filter cycles is
predicted to have a non-negligible influence on risk estimates.
For example, for 4 filters operating under a turbidity limit of
0.2 NTU, choosing the smallest instead of the largest possi-
ble δ is predicted to reduce the single-exposure risk by up to
(0.9 − 0.7)/0.9 = 22%.

For Figure 9 for bacteria, we find the same tendencies as for
viruses, but slightly more pronounced due to the characteristics
of the π-variation. For the case of 4 filters operating under a
turbidity limit of 0.2 NTU, choosing the smallest instead of the
largest possible δ is here predicted to reduce the single-exposure
risk by up to (0.7 − 0.4)/0.7 = 42%.

These figures apply to the single-exposure case. For the mul-
tiple exposure case (n iid exposures), we have the correspond-
ing ratio

PI,nd

PI,d
=

1 − [MΠ(−rk)]n

1 − e−nrkE(Π) (21)

It is readily shown that this ratio increases towards 1 as n in-
creases since MΠ(−rk) > e−rkE(Π). Thus, the effect of variations
in π only tend to become less important as the number of expo-
sures increases.

5. Discussion

In this paper, we have attempted to make some incremental
progress in the quantitative understanding of the role of deep-
bed filtration dynamics in microbial risk assessment, using the
only dataset known to us that permits such an analysis. We
have studied the effect of filtration dynamics on the probability
distribution of passage probabilities (Section 4.1) and the mean
passage probability (Section 4.2), as well as the effect of filtra-
tion dynamics on risk estimates when the full distribution of the
passage probability is taken into account (Section 4.3). In light
of the results, we will first discuss the relevance of filtration dy-
namics for risk assessment and optimal filter operation before
addressing the interpretive limitations associated with the lim-
ited example dataset and many idealizations that were made in
the model development.

5.1. Filtration dynamics and risk estimates

The existence of filtration dynamics poses two main chal-
lenges to microbial risk assessment: Correctly estimating the
mean passage probability and hence mean pathogen concentra-
tions, and the possibility that variations around the mean con-
centration may significantly affect risk estimates. The contour
plots in Figures 8 and 9 indicate that concentration variations
around the mean exert all but negligible influence in our risk
model, except possibly in a situation where pathogen concen-
trations approach levels associated with extreme risk and attack
rates. It should be noted that these risk levels are within the
directly observable range of risk in dose-response feeding trials
and therefore the results do not suffer from the usual uncer-
tainty that comes from extrapolating dose-response curves to
unobservable levels of risk.

Correctly estimating the mean passage probability of deep-
bed filters therefore seem to be the more important aspect of
filtration dynamics. As mentioned in the introduction, high-
resolution sampling regimes seem to be the exception rather
than the rule in studies aimed at estimating passage probabili-
ties. In particular, Figure 4 demonstrates that filter performance
in the early and final stages of the filtration cycle may have a
profound impact on the mean passage probability, even when
restricting effluent turbidity to less than 0.2 or 0.1 NTU. If sam-
ples had been taken only mid-cycle in our experiment when
turbidity was stable, the overall mean passage probability might
have been overestimated by roughly 0.75 log-units for viruses
and 1.5 log-units for bacteria.

Efforts to experimentally characterize passage probabilities
of deep-bed filters should therefore be designed with high-
resolution sampling regimes, in particular in the early and late
stages of the filter cycle. This will permit reliable integration
of instantaneous passage probabilities to obtain mean passage
probabilities as a function of elapsed time. To facilitate compar-
ison between different filtration rates, it is suggested that results
are reported as mean passage as a function of volume produced
per unit filter area (Figure 7, lower panel). An alternative ap-
proach which is potentially cheaper and less labor-intensive is
to use flow-proportional composite sampling. By taking sub-
samples for analysis from the composite sample at strategic
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Figure 8: Contour plot of the risk ratio in equation (20) for viruses (28B). Each column corresponds to a pair of t1, t2-values through restrictions on effluent turbidity
and each row to a certain number of filters in parallel. E(Π) differs only between columns. The vertical axis of each panel gives the cycle time-shift (Figure 2;
δi = (i − 1)δ) and the horizontal axis shows the influence of the parameter rk through its effect on the exponential model.
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Figure 9: Contour plot of the risk ratio in equation (20) for bacteria. Each column corresponds to a pair of t1, t2-values through restrictions on effluent turbidity
and each row to a certain number of filters in parallel. E(Π) differs only between columns. The vertical axis of each panel gives the cycle time-shift (Figure 2;
δi = (i − 1)δ) and the horizontal axis shows the influence of the parameter rk through its effect on the exponential model.
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time points (e.g. when effluent turbidity crosses set limits), cor-
rect mean passage probabilities may be obtained. If such tai-
lored sampling regimes are widely adopted, one can hopefully
generate data that may reduce some of the (extreme) variation
in results between different studies (Nilsen et al., 2016).

5.2. Filtration dynamics and optimal filter operation
Again, the challenge is twofold. Primarily one wishes to

choose filter operational regimes that minimize the mean pas-
sage probability. Secondly, due to the non-linearity of dose-
response models, the full distribution of passage probabilities
does theoretically influence the risk estimate. Since single-
hit dose-response models are concave in the dose-variable, the
rule-of-thumb is that, for a given mean dose, it is better to have
as much of that dose concentrated in a small volume of the pro-
duced water rather than having it evenly distributed in the total
produced volume. As mentioned in Section 3.2, we don’t know
of a fully precise mathematical expression of this principle ex-
cept for the bound in equation (9).

Figures 8 and 9, however, indicate that in our model, where
the distribution of doses were controlled by choosing the time-
shifts δi between filter cycles while keeping the mean dose con-
stant, the full dose distribution did not significantly affect risk
estimates except in the case of extremely high doses and asso-
ciated high risks. This, of course, is related to the property of
single-hit models that they become approximately linear as the
mean dose becomes small. Thus, the results indicate that there
may be some potential to reduce the impact of a extremely se-
vere waterborne outbreak by choosing an operational regime in
which filters are backwashed successively, i.e. filter i is back-
washed immediately after filter i − 1 has finished its backwash.
Further work is needed to examine the realism of the model
before this operational regime can be recommended, though.

Optimizing filter operation with respect to mean passage
probability, and hence the mean pathogen dose, is easier to rec-
ommend. From Figures 4 and 6, it is clear that the mean passage
probability is dependent on the choice of start and end times t1
and t2 for the water production period. Postponing the produc-
tion start time will reduce the mean passage probability, but is
likely infeasible in existing treatment plants since a large vol-
ume of water will have to be filtered to waste. Realistically,
therefore, the more influential parameter appears to be t2, the
end time of water production, in particular for bacteria.

Continuing water production beyond turbidity breakthrough
at about 14.2 hours resulted in a rapid decline in mean passage
probability, completely negating the good performance up until
that point. Norwegian regulations specify (among other crite-
ria) a maximum effluent turbidity of 0.2 NTU for a filtration
process to be recognized as a hygienic barrier. While it may
be acceptable to choose the production start t1 based on a pre-
determined turbidity limit such as 0.2 or 0.1 NTU, it would be
unwise to let the end of the filtration cycle, t2, be determined
by similar criteria. Rather, the water production should stop at
the very latest when turbidity starts to increase towards the end
of the cycle, which signals the arrival of the so-called clogging
front (Herzig et al., 1970; Adin and Rebhun, 1974) at the fil-
ter outlet. Pressure monitoring of the lower part of the filter

may aid in predicting turbidity breakthrough before it actually
occurs (Nilsen et al., 2016). Huck et al. (2001) developed a tur-
bidity robustness index that may also inform decisions on filter
operation and health-based performance assessments (Zhang
et al., 2012).

Figure 6 clearly demonstrates that it is not possible, in gen-
eral, to simultaneously minimize the mean passage probability
for both viruses and bacteria. In fact, a rigorous approach to
optimization of filter operation with respect to risk would have
to describe the joint risk from all pathogens of relevance, ac-
counting for their individual raw water concentrations and re-
moval throughout treatment and distribution. Data availability
for QMRA is currently not good enough to perform such rigor-
ous analysis.

5.3. Limitations of the example data and model framework
In our modeling efforts, we relied on an idealized conceptual

model of a water supply system and a single example data set.
Here, we go through some of the limitations associated with our
approach.

5.3.1. Example data
The example dataset represents the most highly resolved

characterization of microbial removal in a single deep-bed fil-
ter cycle that we are aware of, at least for viruses. The observed
variation in performance throughout the filter cycle was sub-
stantial, qualitatively as expected based on virus and bacteria
relative sizes; (Clark et al., 1992; Moran et al., 1993), and is
believed to represent real-world phenomena occurring in wa-
ter treatment plants. Still, the data has been obtained under a
single set of experimental conditions, corresponding to com-
mon filtration practice in the Nordic countries, and is not nec-
essarily representative of filtration processes that operate un-
der different conditions. Specifically, one may wish to con-
duct high-resolution characterizations using pre-sedimentation,
dedicated flocculation steps, different filter rates, declining-rate
filtration, different filter materials, different coagulants, filter
aids/polymers and more particle-rich raw water. Furthermore,
other surrogate organisms for pathogens should be tested in fu-
ture high-resolution characterizations.

5.3.2. Model framework
Some of the model assumptions that should be investigated

and relaxed in future research efforts, include:

• Unaccounted-for variation. In our model, the only vary-
ing quantity on the time scale of a filter cycle was the fil-
tration passage probability. While filtration processes are
distinguished from most other unit processes by their in-
herent systematic variability, even when supplied with sta-
ble influent water quality, there may be random variations
in raw water concentrations and the performance of other
unit processes (e.g. because of operational failure) that are
relevant. If such variations are present and can be consid-
ered independent of the variation in filtration performance,
it will lead to increased variation in the dose distributions,
as shown in equation (13). We also assumed that all filters
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in parallel perform identically with respect to microbial
removal, which needs to be verified experimentally.

• Hydraulic control of filters and effect on π. We assumed
that the flow rate, and therefore also the passage probabil-
ity, through each individual filter were unaffected by one
of the parallel filters being backwashed. This ensured that
the mean passage probability was conserved when vary-
ing the time-shifts δi. If, instead, the performance of the
operative filters deteriorate in response to hydraulic dis-
turbances when one of the filters is being backwashed,
this has to be accounted for in a model as it affects the
mean passage probability. The recommendation that filters
should be backwashed back-to-back may survive, though,
as this will ensure that most/all filters are relatively clean
when other filters are being backwashed and the potential
for scouring/detachment of pathogens is minimized. Fi-
nally, it may be relevant to obtain data and build a model
for declining-rate filtration, although this seems to be less
common.

• The effect of distribution systems. We considered two ex-
treme conceptual models of distribution systems; com-
pletely dispersive systems which smooth out concentration
variations or completely non-dispersive systems which
conserve concentration variations, both considered on the
time-scale of a filter-cycle. It was shown that the difference
between these two seem to be unimportant except under
extreme outbreak conditions. This conclusion may poten-
tially change if there is concurrent variation in other pro-
cesses besides filtration, but it would likely require orders-
of magnitude increases in variation to have an effect on
risk estimates.

• Dose response models. Single-hit dose-response models
are routinely used for drinking water risk assessment and
have been shown to fit data well for medium-to-high doses.
It is, however, a remaining scientific challenge to verify
their applicability for low doses, so that extrapolations be-
yond the range of observations is typically necessary for
drinking water studies. If the true dose-response model is
non-linear even for low doses, this will affect the results
of modeling efforts where variation in doses is accounted
for. Furthermore, we did not consider the case of a vari-
able single-hit probability R in our examples. Such mod-
els are “flatter” than their constant-r counterparts (Nilsen
and Wyller, 2016a, Proposition 1), but qualitatively simi-
lar; we do not expect the main conclusions to change with
such models.

6. Conclusions

In this paper, we have studied the effect of short-term deep-
bed filtration dynamics on microbial risk estimates, using high-
resolution data on filtration performance that is believed to be
representative under the given conditions, together with a sim-
plified conceptual model. Under the assumption that filtration
performance is the only variable quantity on the time-scale of

a single filter cycle, it was shown that concentration variations
induced by filtration is unlikely to affect risk estimates when
compared with a model that uses an equivalent mean concen-
tration, except possibly in an outbreak situation with extremely
high pathogen concentrations. Future studies should probe this
result further by studying the effect of concurrent variation in
filtration performance and other unit processes, as well as raw
water concentrations. In this regard, it is suggested that vari-
ations are experimentally obtained and studied as time series
and stochastic processes, in order to properly account for the
time-scales of variation. This is in contrast to conventional ap-
proaches of QMRA that use simple probability distributions
with no account of variation time-scales. The example data
used in this study will be made available at the publisher’s web-
site, and may be used for Monte Carlo simulations for risk char-
acterization.

Until further studies along the suggestions made above can
be carried out, the main consequence for QMRA of systematic,
short-term dynamic effects in microbial filtration performance,
is related to the conduction of filtration experiments to correctly
estimate mean passage probabilities. When characterizing mi-
crobial removal rates, sampling regimes must be designed so
that varying performance throughout the filtration cycle may be
quantified. This may be performed by frequent sampling, as
in the experiment that generated the example data, or by us-
ing flow-proportional sampling with strategic sub-sampling, as
discussed in Section 5.1.

Regarding optimal filter operation to minimize mean
pathogen passage, it was shown that the minimum mean pas-
sage for an organism occurs after breakthrough of that organ-
ism. This is a result which holds as long as the curve of instan-
taneous organism passage vs. time is U-shaped. Starting water
production at 0.2 NTU vs. 0.1 NTU had only a moderate influ-
ence on the mean passage of viruses and E.coli. The end-point
of the production period was more influential in determining
mean passage and it is a clear recommendation that filtration
should not continue after turbidity starts increasing towards the
end of a cycle, even if turbidity is still low.
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Appendix A. The transformation-rule for functions of ran-
dom variables

Assume that we have a random variable V with associated
probability density function fV (v) and a differentiable function
g : R → R that induces a new random variable W = g(V).
Assume that the domain of the function g may be partitioned
into n intervals such that the function g is monotonic on each
interval. Denote the restriction of g to interval i by gi. Then the
probability density of W is given by

fW (w) =

n∑

i=1

fV [g−1
i (w)]

∣∣∣∣∣∣
dg−1

i (w)
dw

∣∣∣∣∣∣ (A.1)
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It is assumed here that Pr[g′(V) = 0] = 0. If that is not the
case, the above rule can be generalized and the density fW (w)
becomes a mixed discrete-continuous probability distribution,
i.e. it has some point masses of probability.

When V is uniformly distributed on [v2, v1], the rule simpli-
fies to

fW (w) =
1

v2 − v1

n∑

i=1

∣∣∣∣∣∣
dg−1

i (w)
dw

∣∣∣∣∣∣ (A.2)

Introduce another function h : R → [0, 1] that maps w to h(w).
For the expected value E[h(W)], we have according to (A.2) and
a change of variables

E[h(W)] =

∫

W
h(w) fW (w) dw =

1
v2 − v1

∫ v2

v1

h[g(v)] dv (A.3)

Thus, expectations over W are equivalent to simple averages
over V when V is uniformly distributed, which is, of course, in
agreement with intuition.
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[1] Upon introduction of a degradable substrate into the environment of a microbial
community, an appreciable lag may occur before a corresponding increase in microbial
activity is observed. Accounting for this metabolic lag may be of importance when
modeling subsurface transport of contaminants that undergo reactions mediated by
microbes. We present a general technique from mathematical biology that can facilitate
incorporation of metabolic lags in subsurface solute transport models involving immobile
biomass. By making the metabolic activity of bacteria dependent on the local history of
substrate concentrations through a convolution integral, the proposed lag formulation is
conceptually related to a previously suggested approach. Computer implementation of
transport models with the new lag formulation becomes particularly simple when the
numerical scheme (at least partly) reduces the original problem to that of solving systems
of ordinary differential equations. Example simulation results show that transport models
with this lag formulation can be made to fit real experimental data reasonably well by
adjusting the lag parameters. The questions of whether parameter estimates can be
generalized across individual model applications and/or whether parameters can be
determined by independent experiments could be addressed in future research.

Citation: Nilsen, V., J. A. Wyller, and A. Heistad (2012), Efficient incorporation of microbial metabolic lag in subsurface
transport modeling, Water Resour. Res., 48, W09519, doi:10.1029/2011WR011588.

1. Introduction

[2] For survival and growth, bacteria depend on having
available the right type and amount of substrate (“food”).
While bacteria are able to adapt, to some extent, to local
environmental changes in substrate availability, this adap-
tation is usually not instantaneous. A significant time lag is
often observed between changes in the availability of a
substrate and the bacteria’s ability to utilize that substrate
[Wood et al., 1995]. This microbial metabolic lag may be
associated with the need to synthesize intracellular or extra-
cellular compounds that aid in substrate utilization or, espe-
cially after prolonged starvation, with the need to perform
cell repair before growth can begin. The lag effect can
influence the subsurface transport of biodegradable con-
taminants if there are interruptions in the local substrate
availability and the inherent timescale of the metabolic lag is
comparable to other timescales of the problem [Sandrin
et al., 2001; Park et al., 2001].
[3] Microbial growth and lag effects have been studied

both theoretically and experimentally in the context of che-
mostats, which provide a well-defined and controllable
growth environment [Ellermeyer et al., 2003]. However,

metabolic lags are usually not considered in subsurface
transport models involving microbially mediated reactions.
The reason may be that a fundamental, mechanistic approach
is very difficult and empirical models tend to complicate
the model equations and introduce even more parameters
to be determined experimentally or by inverse modeling.
The authors have found only two studies that focus primarily
on developing methods for incorporating metabolic lags in
transport modeling:Wood et al. [1995] employed a temporal
convolution integral to make the metabolic state of an
immobile (not transported in the aqueous phase) biomass
dependent on the history of spatially local substrate con-
centrations, while Ginn [1999] developed a more general
“exposure time” approach that is applicable even to mobile
biomass, e.g., in those cases where growth or metabolic
change may induce detachment of bacteria from the solid
material. Şengör et al. [2009] extended the model by Wood
et al. [1995] slightly to account for the effect of toxic com-
pounds. Park et al. [2001] also developed a simple lag model,
detailed below, to improve the fit to experimental data.
[4] The purpose of the work reported in this paper was to

assess the utility of a general mathematical lag model,
encountered in several areas of mathematical biology [e.g.,
Nordbø et al., 2007], when integrated into subsurface con-
taminant transport models and tested against earlier models
and experimental data. This was motivated by the fact that
this lag formulation is fairly flexible, easy to implement
numerically, and that it is consistent with some observed lag
phenomena [Park et al., 2001], as argued below. The model
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is based on the same integral convolution approach as Wood
et al. [1995], but uses a quite different integral kernel.

2. Model Development

[5] For our purposes, the temporal change in biomass of
an immobile subsurface microbial community that can
be adequately represented by a single concentration variable
X(x, t) is expressed in general terms as

∂X
∂t

¼ Ymax X ; cð Þl clð Þ ð1Þ

where Ymax is some function describing the nondelayed
kinetics of biomass growth, c(x, t) is a vector of substrate
concentrations inside the biofilm and cl(x, t) is a set of lim-
iting substrate concentrations that control the rate of growth
(a subset of c, possibly only one substrate). The factor l
characterizes the physiological state of the microbial com-
munity and is called the metabolic potential function, origi-
nally suggested by Powell [1967]. It is defined as the ratio
Y/Ymax, where Y is the actual (delayed) kinetics of bio-
mass growth; it is therefore a scalar between 0 and 1.
[6] Building on chemostat studies by Powell [1967] and

Caperon [1969], Wood et al. [1995] assumed that the met-
abolic potential is determined by the past history of the
limiting substrate concentrations through a convolution
integral. We adopt the same approach and postulate the
following formulation for l:

l cl x; tð Þ½ � ¼
Z t

�∞
H cl x; tð Þ½ �K t � tð Þdt ð2Þ

This expression should be interpreted as a weighted, smooth
time average of the function H, where the integral kernel K
plays the role as a weight function. H is some function that
maps the limiting substrate concentrations onto the interval
[0, 1]. It was suggested [e.g., Edwards, 1970] and later
assumed [Wood et al., 1995] that when cl crosses some

critical level cl,c (assuming from now, for simplicity, that we
have only a single limiting substrate), a change in the met-
abolic state of the bacteria is induced. A candidate for H that
captures this behavior is the Hill function:

H clð Þ ¼ cpl
cpl;c þ cpl

ð3Þ

H is point symmetric around (cl,c, 1/2) and as p → ∞,
H → u(c � cl,c), where u(c) is the unit step (Heaviside)
function (this was used by Wood et al. [1995]). Ginn [1999]
suggested a slightly different expression for H.
[7] While Wood et al. [1995] deduced the functional form

of K by postulating a piecewise linear function for l, we
begin in the other end of the problem and suggest for K a
family of functions Ka,d

n that look complicated at first sight,
but enables us to simplify the final lag formulation:

Kn
a;d vð Þ ¼ 0 0 ≤ v < d

Kn
a v� dð Þ d ≤ v

�
ð4Þ

where Ka
n is the gamma distribution,

Kn
a vð Þ ¼ anþ1vne�av

n!
ð5Þ

and d, n ≥ 0 and a > 0 are constant parameters. It can be
checked that this kernel is a normalized weight function (as

is required to have 0 ≤ l ≤ 1):

Z ∞

0
Kn
a;d vð Þdv ¼ 1. Figure 1

shows how the graphs of these temporal kernels look.
Equation (4) simply shifts Ka

n(v) d time units to the right,
thereby introducing a time interval adjacent to present time,
during which the weight function is 0, which may be of
relevance in modeling bacterial growth.
[8] In the terminology of delay differential equations

(DDEs) [Driver, 1977], this lag model could be described as a
combination of distributed (due to the convolution integral
formulation) and absolute (due to the time shifting of the
kernel) delay. The distributed part could possibly be thought of
as representing a (weighted) distribution of different lag times
in a diverse microbial population. For n = 0 we have so-called
weak delay, where the weight given to a point in time in the
past increases monotonically as one approaches present time,
while n ≥ 1 corresponds to strong delay, where there exists
some point in time in the past that is more influential than all
other times (the kernel has a global maximum there). In both
cases, naturally, the influence of the past goes to zero as we
move far away from present time. For a recent discussion on
the appropriateness of DDEs in modeling microbial popula-
tion growth, see the paper by Vadasz and Vadasz [2010].
[9] The main result of Appendix A is that the integral

expression (2) for l, when combined with kernel (4)–(5),
can be transformed into a system of ordinary differential
equations in the time variable, by what is known as the
linear chain trick. We obtain the following, where the z are
auxiliary variables (the dependence on the spatial coordi-
nates x is suppressed in (6)):

l ¼ znþ1 tð Þ
z′1 tð Þ ¼ a H cl t � dð Þ½ � � z1 tð Þf g

z′2ðtÞ ¼ a z1 tð Þ � z2 tð Þ½ �
⋮

z′nþ1 tð Þ ¼ a zn tð Þ � znþ1 tð Þ½ �

ð6Þ

Figure 1. Plot of the temporal kernel Ka,d
n (t) for d = 0 and

various values of the parameters a and n. When used in the
convolution integral, t = 0 corresponds to present time, and
t > 0 corresponds to t time units into the past. A positive d
would simply displace these curves to the right. We see that
the recent past is given more weight as n decreases and a
increases.
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The expression for the initial conditions for this system is
given by (A11) in the appendix. We now see the other
main advantage of using this integral kernel: it eliminates
the integro-differential formulation in (1) and (2) and
replaces it with a system of equations involving no integrals.
In (6) we still have an absolute delay d, though, but this
can be handled numerically, for example by the method
of steps [Driver, 1977; Bocharov and Rihan, 2000]. As we
will see below, letting d = 0 may not always be a serious
restriction.
[10] In applications, the lag formulation above would be

part of a system of partial differential equations for con-
taminant transport with biodegradation, i.e., a system of
advection-dispersion-reaction equations (examples below).
In many common numerical solution strategies, the problem
of solving such systems is (partly) reduced to that of solving
systems of ordinary differential equations. For example, this is
the case for so-called operator splitting schemes [Carrayrou
et al., 2004; Morshed and Kaluarachchi, 1995] in which
(1) a system of pure transport partial differential equations
(no reaction terms) and (2) a system of pure reaction ordinary
differential equations (no transport terms) are solved for
each time step. It is also the case for the method-of-lines
approach in which spatial discretization leaves the original
equations as a system of ordinary differential equations in
time. In each of these cases, the above lag formulation can be
implemented simply by including one or more equations in
the system of ordinary differential equations, allowing for
straightforward inclusion in existing numerical codes and the

use of efficient packages for the numerical solution of ordi-
nary and delay differential equations.

3. Simulation Results and Discussion

[11] The proposed lag formulation was tested with models
and experimental data from two previously published labo-
ratory column studies on the transport of organic con-
taminants. The first model, originally constructed without an
explicit lag formulation, was used by Chen et al. [1992] to
interpret their results from sand column experiments where
benzene was degraded by microbes in the presence of
hydrogen peroxide as the final electron acceptor. This model
was expanded by Wood et al. [1995] with their lag formu-
lation. The model equations, with the lag formulation of this
paper on integral form, are the following:

R
∂C
∂t

¼ DC
∂2C
∂x2

� V
∂C
∂x

� kChq�1X C � cð Þ ð7Þ

∂O
∂t

¼ DO
∂2O
∂x2

� V
∂O
∂x

� kOhq�1X O� oð Þ ð8Þ

∂ wcð Þ
∂t

¼ kChX C � cð Þ � mX
Y

c

cþ KC

� �
o

oþ KO

� �
l ð9Þ

∂ woð Þ
∂t

¼ kOhX O� oð Þ � mXf
Y

c

cþ KC

� �
o

oþ KO

� �
l ð10Þ

∂X
∂t

¼ mX
c

cþ KC

� �
o

oþ KO

� �
l� kdX ð11Þ

w ¼ gX ð12Þ

l c x; tð Þ½ � ¼
Z t

�∞
H c x; tð Þ½ �K t � tð Þdt ð13Þ

[12] All variables and parameters are defined in the
Notation section and the parameter values used by Wood
et al. [1995] are stated in Table 1. Equations (7) and (8)
are mass conservation equations for benzene (C) and
hydrogen peroxide (O) in a mobile aqueous phase where the
solutes undergo equilibrium adsorption (only benzene),
advection and dispersion. Equations (9) and (10) express
mass conservation for benzene (c) and hydrogen peroxide (o)
in an immobile biomass phase where solutes are biodegraded
by Monod kinetics (scaled by the metabolic potential l).
A first-order mass transfer relation governs the mass
exchange between the phases. Equation (11) describes lag-
adjusted growth and cell maintenance kinetics for the bio-
mass (X). The water content of the aqueous phase, q, is
assumed to be practically unaffected by the fluctuations in
biomass so that q is constant, while the water content of the
immobile phase, w, is assumed to be proportional to the
concentration of biomass (equation (12)). Equation (13)
gives the lag formulation, with c as the limiting substrate
concentration; for numerical implementation, this is replaced
by the chain of equations in (6). Note that Chen et al. [1992]
(but not Wood et al. [1995]) assumed a semisteady state

Table 1. Parameter Values and Boundary/Initial Conditionsa

Parameter

Value

Wood et al. [1995] Park et al. [2001]

Domain and Boundary Condition Parameters
L (m) 0.56 0.141
T (days) 10 19
Cb (mg L�1) 20.0 See Figure 3
Ob (mg L�1) 132.7

Initial Condition Parameters
Cin (mg L�1) 0 0
Oin (mg L�1) 8.0
Xin (mg (L soil)�1) 1.64 3.72

Model Equations Parameters
q 0.38 0.35
DC (m2 days�1) 7.47 � 10�3 5.23 � 10�4

DO (m2 days�1) 7.58 � 10�3

V (m days�1) 0.33 0.29
R 1.40 1.12
kC (m days�1) 0.689
kO (m days�1) 0.119
h (m2 g�1) 1.19
f 2.15
m (days�1) 4.15 1.13
Y 0.5 0.5
KC (mg L�1) 12.2 1.20
KO (mg L�1) 0.1
kd (days

�1) 0.1 0.06
g (L mg�1) 6.10 � 10�5

aAll values are either cited directly or straightforwardly calculated from
data reported by Wood et al. [1995] (originally from Chen et al. [1992]
and Alvarez [1992]) and Park et al. [2001] (with permission from
Elsevier). Parameter values associated with the lag formulation are given
in Figures 2 and 3.
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solution at each time step by setting the derivatives in (9) and
(10) equal to zero.
[13] Constant flux and no dispersive flux boundary con-

ditions were employed at the influent (x = 0) and effluent
(x = L) sides of the column, respectively:

�DC
∂C
∂x

þ VC

����
0;tð Þ

¼ VCb; �DO
∂O
∂x

þ VO

����
0;tð Þ

¼ VOb ð14Þ

∂C
∂x

����
L;tð Þ

¼ 0;
∂O
∂x

����
L;tð Þ

¼ 0 ð15Þ

The initial functions are spatially uniform:

C x; 0ð Þ ¼ c x; 0ð Þ ¼ Cin ð16Þ

O x; 0ð Þ ¼ o x; 0ð Þ ¼ Oin ð17Þ

X x; 0ð Þ ¼ Xin: ð18Þ
[14] The system of equations consisting of (7)–(18), along

with (3)–(6) (where (6) is used to replace (13)) was solved
by a method-of-lines approach, in which the spatial deriva-
tives were discretized by centered finite differences. This
results in a [5 + (n + 1)] � J-dimensional system of ordinary
differential equations (ODEs), where J is the number of grid
points in the spatial discretization. The system of ODEs was
integrated with a built-in MATLAB solver for stiff (due to
the small parameter g) ODE systems.
[15] Simulated breakthrough curves are shown in

Figure 2. The initial value for l was taken to be 0 (complete
substrate starvation) for these simulations. Since the influent
concentration cb ≫ cc (the critical benzene concentration cc
was taken from Wood et al. [1995]), the simulation results
were insensitive to variations in the parameter p (p → ∞ is

shown). Several values for n were tested and it was found
that having n > 0 (not shown) did not result in improved
results for the height and timing of the breakthrough peak as
compared to the case n = 0. Because no solver for systems of
stiff delay-differential equations was available to the authors,
the case of d > 0 was not tested with this model.
[16] As can be seen from Figure 2, the new lag formula-

tion gives a fit to the data that is of roughly the same quality
as the lag model by Wood et al. [1995]. This is obtained by
adjusting one lag parameter, a (we fix cc = 10�5 mg L�1 and
p→ ∞, as inWood et al. [1995], and consider the fixation of
n = 0 and d = 0 as model selection rather than parameter
fitting). In comparison, Wood et al. [1995] used one more
lag parameter, but it should be clearly noted that their para-
meters were estimated based on data from batch experiments
reported by Alvarez [1992], in contrast with a above, that
was used as a fitting parameter. The model by Chen et al.
[1992], also shown in Figure 2, produced the fit to the data
by assuming that only a certain proportion (1/8) of the initial
biomass was able to degrade benzene.
[17] In general, the formulation by Wood et al. [1995]

allows for the use of different kernels (asymmetrical
response) depending on whether cl crosses cl,c from above or
from below. However, to ensure 0 ≤ l ≤ 1 it requires special
treatment of any such crossings that occur too close to each
other in time. We note that the kernel formulation in this
paper is robust, in the sense that it produces 0 ≤ l ≤ 1 for any
time evolution of the limiting substrate concentrations. In its
present formulation, however, it lacks the possibility of
specifying different responses to decreases versus increases
in cl, which could be a limitation, as discussed further below.
[18] In the second case we study here, Park et al. [2001]

used a simplified version of the model above [Chen et al.,
1992] to interpret the results of column experiments in
which toluene was degraded by microbes in the presence of
oxygen as the final electron acceptor. Based on a priori

Figure 2. Comparison of models with experimental data for the system studied by Chen et al. [1992]
and Wood et al. [1995]. Experimental data and the blue and green curves have been precision-read from
figures in these articles.

NILSEN ET AL.: MICROBIAL METABOLIC LAG IN TRANSPORT MODELING W09519W09519

4 of 9



calculations, Park et al. [2001] assumed that (1) the bio-
phase and aqueous phase concentrations (oxygen/toluene)
would always be in equilibrium and (2) the toluene bio-
degradation rate would not be oxygen limited. With these
assumptions, the model above simplifies to the following
(with our lag formulation on integral form and C as the
limiting substrate concentration; C now representing aque-
ous phase toluene concentrations):

R
∂C
∂t

¼ DC
∂2C
∂x2

� V
∂C
∂x

� m
qY

C

C þ KC

� �
Xl ð19Þ

∂X
∂t

¼ m
C

C þ KC

� �
Xl� kdX ð20Þ

l C x; tð Þ½ � ¼
Z t

�∞
H C x; tð Þ½ �K t � tð Þdt ð21Þ

The boundary/initial conditions are given by (14)–(16)
and (18). Parameter values used by Park et al. [2001] are
given in Table 1. Again the initial value for l was set to 0.

[19] Park et al. [2001] implemented their own simple lag
model to get a (better) fit to the data. For that model, two fitting
parameters were introduced: (1) a toluene concentration
threshold (Cth; 0.06 mg/L) and (2) a lag time (Tlag; 1.68 h). It
was assumed that only after the concentration of toluene has
exceeded the threshold for the duration of the lag time, does
toluene degradation begin. Also, in batch experiments, Park
et al. [2001] determined the decline of the specific toluene
degradation rate (expected to be proportional to l) of sus-
pended bacteria as a function of the duration of toluene star-
vation. They found the decline to follow a first-order formwith
a rate constant of 4.68 d�1. The first-order form for the decline
in metabolic potential is consistent with setting n = 0 in the lag
model of this paper (see equation (6)). However, this in itself
does not indicate that n = 0 is appropriate for modeling a rise in
metabolic potential.
[20] The simplified system was also solved with a method-

of-lines approach and since it is nonstiff, a MATLAB solver
for delay differential equations with constant absolute delays
was used to test the effect of having d > 0. Simulation results
for this system for various values of the critical toluene
concentration Cc (not independently estimated by Park et al.

Figure 3. Comparison of experimental data from Park et al. [2001] with various models with and with-
out lag. The inset shows the whole duration of the experiment, while the main view is zoomed in on the
first breakthrough peak. Experimental data and the green curve have been precision-read from figures in
Park et al. [2001] (with permission from Elsevier).
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[2001]), a, p and d are shown in Figure 3. As before, it was
found that having n > 0 (not shown) did not improve the
results significantly.
[21] From Figure 3, we note several points: (1) For rela-

tively large values of Cc, the breakthrough peak is higher
and C tends to level off around Cc, but in an oscillatory
manner (not clearly visible in the figure). As soon as C drops
below Cc, the metabolic potential starts to decrease and C
will tend to increase. When C again exceeds Cc, the meta-
bolic potential will start to increase and C will eventually
decrease again. These oscillations can probably be expected
whenever a model employs a single value of Cc, independent
of whether C is increasing or decreasing, and C is controlled
mainly through biodegradation. (2) The effect of changing p
is more pronounced for larger values of Cc. In Figure 3,
p = 100 was visually indistinguishable from p → ∞. (3)
Having d = 0 and setting a equal to the measured first-order
rate constant (4.68 d�1) of Park et al. [2001] produced only a
moderately good fit. To produce a good fit with d = 0, it was
found necessary to decrease a below the range of measure-
ment uncertainty stated by Park et al. [2001]. (4) To produce
a good fit with a = 4.68 d�1, it was found necessary to
introduce d > 0. The results seem to be very sensitive to the
value of d.
[22] As seen in the inset of Figure 3, the influent con-

centration of toluene was time varying, with two distinct
troughs and subsequent injections of toluene. Following the
toluene injections, there are two distinct, surprisingly high
peaks in the breakthrough curve (the hydraulic retention
time was around 11 h). Park et al. [2001] concluded that
these peaks could only have resulted from the time-varying
influent toluene concentrations. We note that none of the
models in Figure 3 are able to reproduce these latter peaks,
even though they match the first peak reasonably well. Some
mechanism may be acting, that is not understood at present.

4. Conclusions

[23] This paper has presented a temporal convolution
integral approach for including microbial metabolic lags in
subsurface contaminant transport modeling. It was demon-
strated that the convolution formulation can be translated
into a system of ordinary differential equations through the
linear chain trick, allowing simple numerical implementa-
tion. Comparing simulation results with Wood et al. [1995],
it was shown that the two formulations produced equally
good fits to experimental data. The present formulation
produced the fit with one less parameter, but only the for-
mulation of Wood et al. [1995] had available independent
parameter estimates. Comparing simulation results with
Park et al. [2001], both models produced a good fit (by
parameter fitting) to the first of the breakthrough peaks.
None of the considered models could reproduce the two
subsequent breakthrough peaks, and it is unclear how these
could be modeled. It was noted that setting n = 0 in our lag
model is consistent, for the declining portion of the meta-
bolic potential function, with measurements made by Park
et al. [2001] on substrate-starved bacteria. However, when
setting a in our lag formulation equal to the corresponding
measured first-order rate constant, only a moderately good
fit to the data was obtained. Further research is needed to
elucidate what is the proper form for a lag model, and

whether independent and generalizable parameter estimates
can be obtained for the lag formulation of this paper.

Appendix A: The Linear Chain Trick

[24] The transformation of the convolution integral to a
system of differential equations, as in (6), is made possible
by a specific choice of integral kernel (memory function). In
this appendix we substantiate this technique, known as the
“linear chain trick” [Cushing, 1977; MacDonald, 1978]. We
begin with a general M-dimensional system of ordinary
differential equations with so-called distributed delay:

y′ tð Þ ¼ f y tð Þ;l tð Þ½ � ðA1Þ

y tð Þ ¼ f tð Þ; t ≤ 0 ðA2Þ

where y(t) = [y1(t) y2(t) … yM(t)]
T and l(t) denotes the

functional

l tð Þ ¼
Z t

�∞
H y tð Þ½ �K t � tð Þdt ðA3Þ

The function H[y(t)] may, as far as the linear chain trick is
concerned, be any mathematically admissible function. The
initial history function f(t) needs to be defined for all t ≤ 0
since the convolution integral depends on an infinite previ-
ous history.
[25] It can be shown, relatively easily, thatKa,d

n (v) in (4)–(5)
has the following properties, which we will make use of below
(at v = d, derivatives must be interpreted as right-hand deri-
vatives for the last two properties to hold, since the equivalent
two-sided derivatives only exist for n ≥ 2):

lim
v→∞

Kn
a;d vð Þ ¼ 0

Kn
a;d dð Þ ¼ 0; n ≠ 0

K0
a;d dð Þ ¼ a

Kn
a;d vð Þ

h i
′ ¼ a Kn�1

a;d vð Þ � Kn
a;d vð Þ

h i
; n ¼ 1; 2;…

K0
a;d vð Þ

h i
′ ¼ �aK0

a;d vð Þ

ðA4Þ

We also need the following differentiation rule, known as
Leibniz’s rule, which holds with mild continuity assumptions
on the integrand:

∂
∂t

Z r tð Þ

q tð Þ
h t; tð Þdt ¼ h r tð Þ; t½ �r′ tð Þ � h q tð Þ; t½ �q′ tð Þ

þ
Z r tð Þ

q tð Þ

∂
∂t
h t; tð Þdt ðA5Þ

We now introduce the following auxiliary variables

zj tð Þ ¼
Z t

�∞
H y tð Þ½ �Kj�1

a;d t � tð Þdt

¼
Z t�d

�∞
H y tð Þ½ �Kj�1

a t � t þ dð Þ½ �dt;
j ¼ 1; 2; 3;…; nþ 1 ðA6Þ

This seemingly complicated choice of new variables will
actually simplify our system. By differentiating these
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equations with respect to t, making use of (A5) (with con-
stant lower limit and t� d as the upper limit) and (A4), we find
for j = 1

z′1 tð Þ ¼ H y t � dð Þ½ �K0
a 0ð Þ þ

Z t�d

�∞
H y tð Þ½ � �aK0

a t � t þ dð Þ½ �� 	
dt

¼ aH y t � dð Þ½ � � a

Z t�d

�∞
H y tð Þ½ �K0

a t � t þ dð Þ½ �dt
¼ a H y t � dð Þ½ � � z1 tð Þf g ðA7Þ

and for j = 2, 3, …, n + 1

z′j tð Þ ¼ H y t � dð Þ½ �Kj�1
a 0ð Þ

þ
Z t�d

�∞
H y tð Þ½ � ∂

∂t
Kj�1
a t � t þ dð Þ½ �� 	

dt

¼ a

Z t�d

�∞
H y tð Þ½ �

n
Kj�2
a t � t þ dð Þ½ �dt

� a

Z t�d

�∞
H y tð Þ½ � Kj�1

a t � t þ dð Þ½ �� 	
dt

¼ a zj�1 tð Þ � zj tð Þ

 � ðA8Þ

We also find that

l tð Þ ¼
Z t

�∞
H y tð Þ½ �Kn

a;d t � tð Þdt

¼
Z t�d

�∞
H y tð Þ½ �Kn

a t � t þ dð Þ½ �dt
¼ znþ1 ðA9Þ

The initial history function (A2) translates to

y 0ð Þ ¼ f 0ð Þ ðA10Þ

zj 0ð Þ ¼ a j �1ð Þ j�1ead

j� 1ð Þ!
Z �d

�∞
H f tð Þð Þ t þ dð Þ j�1eatdt; all j

ðA11Þ

The final result is therefore that the M-dimensional system
with combined distributed and absolute delays given by (A1)–
(A2) and (4)–(5) has been transformed into the following
M + (n + 1)-dimensional system with only absolute delay

y′ tð Þ ¼ f y tð Þ; znþ1 tð Þð Þ ðA12Þ

z′1 tð Þ ¼ a H y t � dð Þ½ � � z1 tð Þf g; j ¼ 1 ðA13Þ

z′j tð Þ ¼ a zj�1 tð Þ � zj tð Þ

 �

; j ¼ 2; 3;…; nþ 1 ðA14Þ

with initial conditions given by (A10) and (A11). It should be
noted that the linear chain trick will work as long as the kernel
in the convolution integral is defined as above - its success
does not depend on the particular system of differential equa-
tions of which the convolution integral is part.

[26] Finally, we note that we can generalize the integral
kernel (perhaps to accommodate a very diverse microbial
population) by considering a linear combination of the form

Kgen vð Þ ¼
XL
l¼0

XN
n¼0

al;nK
n
al ;d

vð Þ ðA15Þ

where the coefficients al,n are chosen so that al,n ≥ 0 andXL

l¼0

XN

n¼0
al;n ¼ 1. Here, L + 1 is the number of different

values of al and N = max(n). Note that if we have only one
al and one n = N, then L = l = 0 and all al,n = 0 except for

a0,N = 1. As before,

Z ∞

0
Kgen vð Þdv ¼ 1. With this kernel, the

final transformed system is M + (L + 1)(N + 1)-dimensional

y′ tð Þ ¼ f y tð Þ;
XL
l¼0

XN
n¼0

al;nzl;nþ1 tð Þ
 !

ðA16Þ

z′l;1 tð Þ ¼ al H y t � dð Þ½ � � zl;1 tð Þ� 	
; all l; j ¼ 1 ðA17Þ

z′l; j tð Þ ¼ al zl; j�1 tð Þ � zl; j tð Þ

 �

; all l; j ¼ 2; 3;…;N þ 1 ðA18Þ

with initial conditions given by

y 0ð Þ ¼ f 0ð Þ ðA19Þ

zl;j 0ð Þ ¼ a j
l �1ð Þ j�1eald

j� 1ð Þ!
Z �d

�∞
H f tð Þð Þ t þ dð Þ j�1ealtdt

all l; j ðA20Þ

Since the number of parameters becomes very large in this
generalized formulation, it can probably be made to fit many
real systems. However, the system insight and the possibility
of generalizing to other systems is likely to suffer as a result.

Notation

X(x, t) mass of microorganisms per unit volume of
porous medium, M L�3.

x(x), t 3-D (1-D) space (L) and time coordinates (T),
respectively.

Ymax(X, c) microbial growth kinetic function, M L�3 T�1.
l(cl) metabolic potential function, dimensionless.
c(t) vector of substrate concentrations in a biofilm,

M L�3.
cl(t) vector of limiting substrate concentrations in a

biofilm, a subset of c(t), M L�3.
H(cl) the Hill function (or an alternative sigmoidal

function), dimensionless.
K(v) general label for the temporal kernel, T�1.

t variable of integration in the convolution
integral, T.

cl,c parameter of the Hill function; critical limiting
substrate concentrations in a biofilm, M L�3.

p steepness parameter of the Hill function,
dimensionless.

u(c) unit step function (Heaviside function),
dimensionless.
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Ka
n(v) conventional linear chain trick temporal

kernel, T�1.
Ka,d
n (v) time-shifted conventional linear chain trick

temporal kernel, T�1.
n parameter of Ka

n(v), separates weak and strong
delay, dimensionless.

a parameter of Ka
n(v), characteristic time

constant, T�1.
d parameter of Ka,d

n (v), magnitude of time
shift, T.

zj auxiliary variables of the linear chain trick,
dimensionless.

C, c concentration of contaminant (benzene,
toluene) in the aqueous phase and the
biophase, respectively, M L�3.

O, o concentration of hydrogen peroxide in the
aqueous phase and the biophase, respectively,
M L�3.

q water content of the aqueous phase,
dimensionless.

w water content of the biophase, dimensionless.
R retardation factor due to equilibrium

adsorption of contaminant (benzene, toluene),
dimensionless.

DC, DO dispersion coefficients of contaminant
(benzene, toluene) and hydrogen peroxide,
respectively, L2 T�1.

V pore water velocity, L T�1.
kC, kO mass transfer coefficients of benzene and

hydrogen peroxide, respectively, L T�1.
h effective surface area of biomass per unit

biomass, L2 M�1.
m maximum specific growth rate of

biomass, T�1.
Y biomass created per unit mass of substrate

(benzene, toluene) consumed (yield
coefficient), dimensionless.

f mass of oxygen consumed per unit mass of
benzene consumed, dimensionless.

KC, KO Monod half-saturation constants for
contaminant (benzene, toluene) and hydrogen
peroxide, respectively, M L�3.

kd microbial decay coefficient, T�1.
g volume of immobile phase (biophase) per unit

biomass, L3 M�1.
CB, OB boundary condition parameters for

contaminant (benzene, toluene) and hydrogen
peroxide, respectively, M L�3.

Cin, Oin, Xin initial condition parameters for contaminant
(benzene, toluene), hydrogen peroxide, and
biomass, respectively, M L�3.

cc, Cc critical limiting substrate concentrations of
benzene (in the biophase) and toluene
(in the aqueous phase), respectively, M L�3.

L length of column in experiments/domain of
model, L.

T duration of experiments/simulation time, T.
J number of spatial grid points in numerical
simulations, dimensionless.

Cth toluene concentration threshold in lag model of
Park et al. [2001], M L�3.

Tlag lag time in lag model of Park et al. [2001], T.

y dependent variable in the system of ODEs in
Appendix A, dimensionless.

f right-hand side of the system of ODEs in
Appendix A, dimensionless.

f(t) initial history function of the system of ODEs
in Appendix A, dimensionless.

r, q, h variables used for expressing the
differentiation rule in Appendix A,
dimensionless.

M dimension of original system of ODEs in
Appendix A, dimensionless.

Kgen(v) generalized temporal kernel in
Appendix A, T�1.

al parameters of generalized temporal
kernel, T�1.

al,n superposition parameter (weight) of
generalized temporal kernel, dimensionless.

L + 1 number of different values of al in generalized
temporal kernel, dimensionless.

N max(n) in generalized temporal kernel,
dimensionless.
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