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2 Summary

For grass-based agriculture at high latitudes, poor overwintering of peren-
nial forage grasses often has economic consequences due to yield loss and
re-establishment of grass fields. In order to assess the performance of grass
cultivars currently used in Norway under a future changing climate, a whole-
year grassland model has been developed. The basis of this whole-year model
was a grassland model developed for the growing season. In order to incorpo-
rate the winter season, this grassland model needed additional sub-models for
simulating snow cover, soil frost, ice encasement and the development of frost
tolerance in the plants. The main objective of this thesis has been to develop
these additional sub-models, calibrate them using Bayesian methods and iden-
tifying key parameters using sensitivity analysis. The sub-models were also
used to construct agroclimatic indices in order to assess the impact of climate
change on the winter survival of two forage grasses.

There are several challenges emerging when applying Bayesian calibration
to a dynamic model. The Bayesian approach regards parameters as random
and allows integration of prior knowledge. Using the snow cover sub-model
as case study, it is here demonstrated how prior information and new data
affect the calibration process, parameters and model outputs, with focus on
uncertainty. Point estimates and uncertainties are calculated and visualized for
both parameters and model outputs. Generally, uncertainty decreased when
new data were incorporated. Uniformly distributed priors gave the best fit for
this model according to root mean square error, while the more informative
beta distributed priors gave more physically meaningful parameter estimates.
Markov chains of samples from the posterior distribution of the parameters
were obtained by the random walk Metropolis-Hastings algorithm. Crucial
points when using these methods are reaching and determining convergence of
these chains. In order to reach convergence faster, informative priors, Sivia’s
likelihood, reflection and updating the proposal distribution with parts of the
data gave successful results. To determine convergence objectively and cor-
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rectly, the use of multiple chains and the Gelman Rubin method was found
useful. Several decisions must be made when implementing Bayesian calibra-
tion, and we highlight and visualize the choices that were found to be most
effective.

We developed a simple model SnowFrostIce which simulates depth of snow
cover, the lower frost boundary of the soil and the freezing of surface puddles.
We parameterised the model by means of Bayesian calibration, and identified
important model parameters using the sensitivity analysis method of Morris.
Verification of the model suggests that the results are reasonable. Due to the
simple model structure, some overestimation occurs in snow and frost depth.
Both the calibration and the sensitivity analysis suggested that the snow cover
module could be simplified with respect to snow melt and liquid water content.
The soil frost module should be kept unchanged, while the surface ice module
should be changed when more detailed topographical data become available,
such as better estimates of the fraction of the land area where puddles may
form.

Timothy (Phleum pratense L.) is the most important forage grass in Scan-
dinavia and it is therefore highly interesting to study how it will perform in a
changing climate. In order to model winter survival, the dynamics of hardening
and dehardening must be simulated with satisfactory precision. We investi-
gated an early timothy frost tolerance model (LT50 model), and an LT50 model
for winter wheat. Based on the assumption that timothy has no vernalization
requirement, unlike winter wheat, but does have the ability to adapt to cold
temperatures in a process linked to stage of development, two alternative ver-
sions of the winter wheat model were also constructed. These four models were
calibrated by a Bayesian approach using observations on LT50 for the timothy
cultivar Engmo. The models were validated using independent observations at
different locations reflecting differences in climate. A sensitivity analysis us-
ing the Morris method to identify important model parameters suggested that
there is a connection between frost tolerance and stage of plant development,
even if there is no vernalization requirement. The simplified winter wheat
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model was selected as the best candidate based on model selection criteria and
its ability to capture the hardening and dehardening processes. The results
from the Bayesian calibration suggests that there are no major regional dif-
ferences in Norway calling for regional calibration. However, cultivar-specific
calibration is probably required, since there are hardy and less hardy cultivars
within the same species. A functional LT50 model would allow risk assessments
to be made of future winter survival using specifically tailored and downscaled
climate scenarios.

We assessed the impact of climate change on the winter survival of timothy
(Phleum pratense L.), and perennial ryegrass (Lolium perenne L.) under Nor-
wegian conditions using agroclimatic indices and a simulation model of frost
tolerance. Available to this study was locally adjusted climate scenarios (two
for the period 2071-2100; one for the period 2020-2049) for six important agri-
cultural regions, represented by one location each. We proposed and validated
a rough way to estimate the daily minimum air temperatures from scenario
data. Compared to the control period 1961-1990, the hardening period would
be shortened by up to 21 days. As a consequence the modelled maximum frost
tolerance is expected to be reduced by up to 3.9℃ and 1.9℃ for timothy and
perennial ryegrass, respectively, under the warmest scenario. In spite of this
reduction in hardiness, the plants are expected to be hardy enough to with-
stand the predicted autumn frosts, and also we expect a general reduction in
risk of winter frost injuries. The plant data available to this study suggests
that the agroclimatic indices developed for Canadian conditions can be useful
for assessing the hardening status in timothy and perennial ryegrass. They
are, however, less suitable for assessing the risk of plant injury related to frost
and ice encasement in Norway since the dynamics of cold adaptation is not
accounted for by these indices. Although less snow is expected, this is in most
cases not accompanied by an increase in the risk of ice encasement injuries.
There is little risk of winter injuries related to frost and ice encasement in the
hardier grass species timothy. The better overwintering conditions in general
indicate that it will be possible to grow perennial ryegrass in areas where it is

4



not grown today, given that the risk of fungal diseases is not increased.

3 Sammendrag

For norsk grasbasert landbruk vil ofte dårlig overvintring av enga få økonomiske
konsekvenser i form av tapt avling, eller omsåing. For å kunne studere hvordan
ulike grassorter vil klare seg under forskjellige klimascenarioer er det utviklet
en helårsmodell for simulering av grasvekst. Denne helårsmodellen er basert
på en eksisterende grasmodell for vekstsesongen. For å kunne utvide denne
sesongbaserte grasmodellen til også å omfatte vinteren, var det nødvendig å
utvikle nye delmodeller til å simulere snødekke, teledyp og dannelse av isdekke
samt en delmodell for plantenes evne til å utvikle frosttoleranse. Hovedmålet
med denne avhandlingen har vært å utvikle disse delmodellene, kalibrere dem
ved hjelp av Bayesianske metoder og identifisere de viktigste parameterne ved
hjelp av sensitivitetsanalyse. Disse delmodellene har blitt brukt til å konstruere
agroklimatiske indekser som i sin tur har blitt brukt til å vurdere effekten av
et endret klima på vinteroverlevelsesevnen til to arter fôrgras.

Man støter på flere utfordringer når Bayesianske metoder skal brukes til å
kalibrere en modell. I modellkalibrering ved bruk av den Bayesianske tilnær-
mingen betrakter man parametere som tilfeldige variable, og tillater integrering
av tidligere (a priori) kunnskap om parameterne. Ved å bruke delmodellen for
snødekke ble det demonstrert hvordan a priori kunnskap og nye observasjoner
påvirket kalibreringsprosessen, og hvordan dette førte til at usikkerheten til
både parameterne og modellresultatet ble påvirket. Generelt ble usikkerheten
redusert når flere observasjoner ble benyttet. Uniforme a priori fordelinger
til parameterne gav best modellresultat med hensyn på prediksjonsfeil (root
mean squared error), mens mer informative beta a priori fordelinger gav mer
fornuftige parameterverdier. Markov kjeder, som representerer et utvalg fra
den estimerte a posteriori fordelingen til parameterne, ble fremskaffet ved å
bruke Metropolis-Hastings algoritmen (random walk). Et nøkkelelement ved
bruken av disse metodene er å avgjøre når Markov kjedene har konvergert.
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For å oppnå forholdsvis hurtig konvergens brukte vi informative beta a pri-
ori fordelinger, Sivias sannsynlighetsfunksjon (likelihood) og refleksjon ved
parameternes grenser. Det ble også gjort innledende forsøk med å bruke en
oppdatert forslags-fordeling basert på et begrenset datasett; noe som viste seg
å gi lovende resultater. For å avgjøre konvergens til Markov kjedene på en
objektiv måte valgte vi å bruke flere kjeder samt Gelman Rubins metode. Når
Bayesianske metoder skal brukes til modellkalibrering må flere beslutninger
tas. Vi understreker og visualiserer de beslutningene vi fant som viste seg å
være mest effektive.

Vi utviklet en enkel modell SnowFrostIce for å simulere snødekke, den ne-
dre telegrensa i jorda og frysing av vann i overflatedammer. Denne modellen
ble kalibrert ved hjelp av Bayesianske metoder. Vi brukte Morris’ metode til
å identifisere de viktigste parameterne. Verifisering av SnowFrostIce-modellen
viste at modellresultatene var fornuftige. På grunn av modellens enkle form
forekommer noe overestimering av både snø- og teledyp. Både kalibreringen og
sensitivitetsanalysen antyder at snømodulen kan forenkles noe med hensyn på
simuleringen av flytende vann i snølaget. Teledypmodulen kan i første omgang
beholdes som den er. Modulen som simulerer isdekket bør endres når mer de-
taljerte opplysninger om topografi på jordoverflaten blir tilgjengelig. På denne
måten kan bedre estimater av landområder som potensielt kan bli dekket av
dammer oppnås.

Timotei (Phleum pratense L.) er det viktigste fôrgraset i Skandinavia, og
derfor veldig interessant å studere med tanke på hvordan den vil klare seg un-
der et endret klima. For å simulere frosttoleranse i timotei må både herding
og avherding simuleres tilfredsstillende. Vi undersøkte en tidligere frosttoler-
ansemodell (LT50 modell) for timotei og en LT50 modell for høsthvete. Basert
på antakelsen om at timotei ikke har noe vernaliseringskrav, i motsetning til
høsthvete, men allikevel har evnen til å tilpasse seg lave temperaturer som følge
av utviklingsstadium, foreslo vi to alternative LT50 modeller for timotei basert
på høsthvete modellen. Disse fire kandidatmodellene ble så kalibrert med den
Bayesianske metoden der vi brukte observerte LT50 verdier til timoteisorten
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Engmo. De fire kandidatmodellene ble validert mot observasjoner hentet på
forskjellige steder med ulikt klima. Sensitivitetsanalysen av høsthvete mod-
ellen, som identifiserte de viktigste parameterne, indikerte en sammenheng
mellom frosttoleranse og plantens utvikling selv om timotei ikke har vernalis-
ering. En av de forenklede høsthvete modellene ble valgt som den beste kan-
didaten basert både på utvalgskriterier og dens evne til å fange herdings- og
avherdingsprosessene. Resultatene fra den Bayesianske kalibreringen antydet
at det ikke var noen regionale forskjeller i Norge som skulle tilsi at modellen må
kalibreres lokalt. På den andre siden vil sortspesifikk kalibrering sannsynligvis
være påkrevd siden det finnes både herdige og mindre herdige sorter innen
samme art. Dersom lokalt nedskalerte klimascenarioer blir tilgjengelig kan
LT50 modellen brukes til å vurdere fremtidig risiko for vinterrelaterte skader i
eng.

Vi vurderte effekter av et endret klima på vinteroverlevelsesevnen til timotei
(Phleum pratense L.) og flerårig raigras (Lolium perenne L.) for norske forhold
ved beregning av agroklimatiske indekser og en simuleringsmodell for frosttol-
eranse. Tilgjengelige klimadata var lokalt tilpassede klimascenarioer (to for
perioden 2071-2100; og ett for perioden 2020-2049) for seks viktige landbruk-
sregioner. Vi foreslo og validerte også en enkel metode for å estimere døgnmin-
imums temperatur ut fra scenario data. Sammenliknet med kontrollperioden
1961-1990, vil herdeperioden bli kortet inn med inntil 21 dager. En konsekvens
av økt temperatur om høsten er at den simulerte maksimale frosttoleranse blir
redusert med opp til 3.9℃ and 1.9℃ for henholdsvis timotei og flerårig raigras
under det varmeste scenarioet. På tross av denne reduksjonen i frosttoleranse
forventer vi at plantene oppnår tilstrekkelig med herdighet til å klare frost
om høsten, samt at vi også forventer en generell reduksjon i risikoen for vin-
terrelaterte skader. De observasjonene på frosttoleranse som var tilgjengelige
for denne studien antyder at agroklimatiske indekser utviklet for kanadiske
forhold kan være nyttige for å anslå graden av herdighet til timotei og flerårig
raigras. Disse kanadiske indeksene er imidlertid mindre egnet til å vurdere
risiko under norske forhold for skader forårsaket av frost og innkapsling i is
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siden dynamikken i herdingsforløpet ikke blir fanget opp. Selv om simulerin-
gene antyder mindre snø under klimascenarioene er dette ikke etterfulgt av økt
risiko for isdekkeskader. Det forventes lav risiko for skader relatert til frost og
is-innkapsling for den herdige timotei planten. Generelt indikeres bedre overv-
intringsforhold, noe som kan gjøre det mulig å dyrke flerårig raigras i områder
det ikke gjøres i dag. Det tas da forbehold om at risiko for biotiske skader
(som sopp) ikke øker samtidig.

4 Introduction

4.1 Background

The global temperature is increasing, and accompanied by increasing amounts
of CO2 in the atmosphere. Conclusions made by Olesen and Bindi (2002) sug-
gests these changes will be positive for agriculture at high latitudes. Although
the overall picture appears positive, there may still be some challenges for agri-
culture in these regions related to changed overwintering conditions (Bélanger
et al. 2002). Also, plant diseases and many weeds are likely to become more
serious constrains under warmer and a more humid climate; a consequence of
which might be an increased use of fungicides and herbicides to avoid yield
losses (Olesen and Bindi 2002). In Norway, the yearly average air temperature
is expected to increase by 2,3 to 4,6℃ by the end of this century (Hansen-Bauer
and Førland 2009). The largest temperature increase is expected during win-
ter, and in the northernmost county, Finnmark, the temperature is expected
to increase by 3 to 5,4℃ on a yearly basis. The smallest increase is expected
along the western coast, where an increase is expected to lie between 1,9 and
4,2 ℃. The yearly average precipitation in Norway is expected to increase
by 5 to 30% by the end of this century, specifically winter precipitation is
expected to increase by up to 40% and more of the winter precipitation will
fall as rain at the expense of snow. A consequence of the predicted increase
in temperature and changed precipitation pattern during winter is that spring
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floods occurs earlier, and the risk of floods during late fall and winter increases.
For crops this means increased risk of water-logging (the soil is completely sat-
urated with water, and water accumulates in puddles), and less snow cover to
protect the plants from lethal subzero temperatures. These climate predictions
are uncertain, and hence the effects of climate change on agriculture are more
uncertain. Prediction models might serve as a useful tool to investigate the
effects of climate change on agricultural systems.

4.2 Purpose and scope of this thesis

Some of the most important segments of Norwegian agriculture is grass-based
milk and livestock production. The proportion of perennial forage grasses in
Norwegian feed ratios are typically high. In 2007 these segments comprised
70% of the income in the Norwegian agriculture (Rognstad and Steinset 2008).
Poor overwintering of perennial forage grasses often has economic consequences
for these farm systems due to substantial yield loss and subsequent costs re-
lated to the re-establishment of grass fields. In this context, the prediction of
overwintering of forage grasses under a changing climate is of great importance
for Norwegian agriculture.

In order to study the ability of grass plants to withstand winter condi-
tions like e.g. reduced photosynthesis due to snow cover, anaerobic conditions
caused by ice encasement and periods of physiological drought we developed a
model for their overwintering ability. This model was in turn linked to an ex-
isting model for the growing season resulting in a whole-year grassland model.
This grassland model needed additional sub-models for simulating snow cover,
soil frost, ice encasement and the development of frost hardiness in the plant.

The purpose of this thesis was to develop sub-models for snow cover, soil
frost and soil surface ice cover in order to simulate these winter conditions. We
also developed a model for frost tolerance in grasses in order to simulate the
response of the plants to winter conditions. The philosophy behind the grass-
land model was to keep it as simple as possible since parameter rich models are

9



difficult to keep track of, and they easily can give right answers for the wrong
reasons. The soil part of the grassland model consists of one layer, and this
placed constrains on the choices we had to make, e.g. for the soil frost module.
We therefore wanted to keep the sub-models developed during this work simple
and robust, and with as few parameters as possible. The sub-models were to
undergo both uncertainty and sensitivity analysis.

Models in the literature

Snow depth and soil frost models

In the literature there are numerous examples on approaches how to model
the accumulation and ablation of snow. Models simulating snow cover are
designed and implemented in a wide range of areas, which in turn dictates
the allowed degree of complexity. In the simplest end of the complexity scale,
we find degree-day index models (low complexity), in the mid range we find
the snow models used in land surface schemes for general circulation models,
and in the high end we find snow-physics models used for instance in avalanche
forecasting. Rutter et al. (2009) presents a comprehensive evaluation of thirty-
three snowpack models varying in complexity and purpose, with the intention
to find a suitable candidate for modelling snow water equivalent (SWE) in
forested areas. Melloh (1999) presents a review of seven selected one dimen-
sional (considers only vertical direction) snow melt models used in operational
model systems.

There are also quite a few methods developed for estimating soil freez-
ing. From simple index-based methods for estimating maximum frost depth,
to parameter rich state-of-the-art simulation models coupling heat and mass
transport in soil. Kennedy and Sharratt (1998) compares the performance
of four models soil frost models using two different approaches. Two models
which are based on the finite difference method (SHAW by Flerchinger and
Saxton (1989), and SOIL by Jansson (1991)) and two models which are based
on balancing heat fluxes.
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Models for frost tolerance in plants

In the literature there exist quite a few papers on the ability of plants to ac-
climate to freezing temperatures (often referred to as cold hardening) and the
effect of freezing temperatures on plant survival. A review of current research
on this topic is summarized by Kalberer et al. (2006). Only a few examples
of models for frost tolerance in crops that can be grown in Norway today are
available in the literature. Relevant models are the frost tolerance models for
winter wheat presented by Bergjord et al. (2007); Fowler et al. (1999); Lecomte
et al. (2003), a model for freezing injury in alfalfa presented by Kanneganti
et al. (1998), and a model for the separate processes of cold hardening and
dehardening in ryegrass is presented by Gay and Eagles (1991). I was unable
to find any published work on models regarding frost tolerance in timothy;
one of the most important grass species in Norwegian agriculture, and also
the grass species for which the grassland model in the WINSUR project was
developed together with perennial ryegrass.

4.3 Aspects of modelling

A model is called upon whenever a scientist wants to describe the interconnec-
tion of processes underlying a certain set of observations. The purpose could
be for instance to explain underlying processes of the observations, or use the
model for predictions. The purpose of the models presented in this thesis is
mainly prediction (depths of snow cover and soil frost, occurrence of soil sur-
face ice and frost tolerance in timothy) although especially the frost tolerance
model can also be seen as the first step towards an explanatory model with
sub-processes. One important issue to bear in mind, is that all models are
simplifications of a limited part of reality (often referred to as a system), and
can never represent the full spectrum of behavior of the real system (de Wit
1993). Thus, models fail if they are used beyond their scope. One of the
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challenges in modelling is therefore to simplify wherever possible, and focus on
the parts of reality that are essential for the problem at hand (Goudriaan and
Van Laar 1994). Another important issue to consider when building a model
is setting the boundaries between the real system, and the limited part we are
currently interested in. These boundaries should sought to be selected in such
a way that the environment might affect the system, but the system should
affect the environment as little as possible. For example, in the SnowFrostIce
model that was developed as part of this thesis (see Papers I and II), we use
inputs from the environmental inputs (air temperature and precipitation) to
model the change in depths of snow cover, soil frost and ice cover; but we are
only considering one dimension (the vertical direction). These types of one di-
mensional models (other examples are COUP and SHAW) are therefore often
referred to as point-scale models in hydrology literature. However we make
the assumptions that the meteorological inputs (air temperature and precipi-
tation) are homogeneous, and that there is no spatial variation at the model
scale. The spacial scale of the model we consider is typically a part of a field
where we assume homogeneous environmental conditions (i.e. soil conditions,
snow cover, plants and climate). For the frost tolerance models, we consider a
grass population at the same plot size as for the SnowFrostIce model.

When building models, it is considered good modelling practice to perform
uncertainty and sensitivity analysis, followed by validation of the model us-
ing independent observations (Jakeman et al. 2006). These additional tasks
in the modelling process often lead to suggestions on how to further develop
and eventually simplify the original model. Together with the documentation
of the original model and the steps taken to modify the original model, this
comprises what can be regarded as the pedigree of the final model. This is
the framework within which the models presented in this thesis was developed
and documented.
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4.4 Methods used in this thesis

In this thesis I have focused especially on the application of methods for per-
forming calibration and sensitivity analysis of simulation models. To illus-
trate the methods of calibration and sensitivity analysis I have used, I have
constructed an example snow model which is presented together with these
methods below.

Description of Snow2par

This section presents the simple snow model constructed for visualizing the
calibration and sensitivity methods employed in this thesis. The snow model
consists of two parameters. The first parameter Tms (℃) is the threshold tem-
perature determining both precipitation form (rain or snow) and snow melt.
It is assigned as prior distribution a normal distribution with zero mean and
standard deviation of 3 ℃. The second parameter is the snow melt rate M
(mm ℃-1 day-1). Since this is a so called scaling parameter, I followed the
suggestion by Sivia (2006) and assigned as prior the Jeffrey’s prior (P ∝ 1/M).
The prior range of the parameter M was set to (0.01, 10.0) mm ℃-1 day-1.
The state variable in the model is the snow water equivalent SWE (mm) (the
amount of liquid water obtained if the snow cover melted instantaneously).
The observations used when calibrating the model Snow2par was snow depth
(m) observations from Kise, Norway, the winter of 1988-1989. To relate SWE
to snow cover depth, we used a common assumption regarding the water equiv-
alent of falling snow of 10:1, i.e. 10 cm of fresh snow melts down to 1 cm of
water (Judson and Doesken 2000). This corresponds to assuming a density of
new snow of 100 kg m-3. A conceptual representation of Snow2par is presented
in Figure 1.

Calibration of Snow2par

When faced with the challenge of calibrating a model which contains several
parameters, and provides multiple outputs, the Bayesian framework is very
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Figure 1: A conceptual representation of the snow model Snow2par

well suited. We consider the model parameters θ not to be known precisely,
and that this uncertainty can be represented as a probability distribution over
the parameters π(θ). Given a dataset D on model output, we can use Bayesian
calibration to update the distribution of the parameters θ as new observations
becomes available by applying Bayes’ theorem: π(θ|D) = π(θ)f(D|θ)/f(D),
where π(θ|D) is the posterior distribution of θ given the data D, f(D|θ) is the
likelihood of the data given the model outputs using parameters θ, and f(D)

is a normalisation constant (see Van Oijen et al. (2005) for a full description
of this method). The parameters of the models presented in this thesis are all
considered to be uncertain, as is the structure of the models. We use Bayesian
calibration to reduce the uncertainty of the parameters, and thereby also the
model output. To visualize the calibration method used, a simple snow model
containing two parameters, called Snow2par was used (see Figure 1). Details
regarding the implementation of this calibration method are presented in Pa-
pers I and II in this thesis.

Relevant information on model parameters (e.g. found from literature or
previous studies) are considered as prior knowledge. Observations on snow
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depth together with model output are evaluated through a likelihood func-
tion, and together with the prior information this forms the basis for a joint
posterior probability distribution of the parameters. All this is achieved by
using the Bayes theorem. The general idea used in this thesis when calibrat-
ing the models is to randomly walk through the multidimensional parameter
space, eventually ending up at the highest peak indicating the region with the
highest probability of the parameter values given our observations. This sam-
pling technique is a Markov Chain Monte Carlo (MCMC) method known as
the Metropolis-Hastings random walk. When the sample sequence eventually
stabilizes, meaning that the resulting distribution of the sampled parameter
values reach stationarity, the chain is said to have converged. This way of
sampling the parameter space forms eventually a Markov chain (i.e. when the
sequence is converged) since each new candidate point is selected as a multi-
variate random step away from the current point in parameter space. In all
calculation steps in the implementation of the MCMC-algorithms we used log-
arithms to avoid numerical problems, as suggested by Van Oijen et al. (2005).

Figure 2 shows a 3D plot of the joint posterior distribution of the two param-
eters Tms and M . In this figure, the joint posterior probability is calculated
at each grid point with the intention to visualize the landscape map of the
joint posterior distribution. Superimposed on the x-y-plane in this figure are
the contours of the joint posterior probability indicating the region with the
desired peak. Superimposed on the joint posterior surface are parameter val-
ues from each 50th step of the random walk from the calibration showing that
the calibration eventually stabilized at the peak. Figure 3 shows histograms
of the parameter values from the Markov chain obtained from the calibration.
We can see that marginal posterior distributions in this constructed example
was different from the prior distributions, suggesting the calibration procedure
reduced the initial uncertainty for both parameters.

15



−3
−2

−1
0

1
2

3

2
4

6
8

10
−900

−800

−700

−600

−500

−400

TsmM

lo
gP

os
te

rio
r

Figure 2: 3D-surface showing log-posterior calculated for the parameters Tms

for all combinations of parameter values. Superimposed as black dots are the
log-posterior corresponding to each 50th step from the calibration of the model
Snow2par. The limits for Tms was set to [−3, 3] for convenience.

Sensitivity analysis

When working with models, sensitivity analysis (hereafter referred to as SA)
is recommended as part of the development process (Jakeman et al. 2006). A
review of various SA methods is presented by Saltelli et al. (2006). For the
SA to be meaningful, the modeller should decide beforehand on what type of
question the SA is expected to answer (Saltelli et al. 2008). When developing
models, they tend to rapidly increase in complexity, so as a candidate model
evolves, the question of simplification often arises. In this thesis this was the
question addressed to the models described in Papers II and III, i.e. we wanted
to identify which parameters of the model were the important ones. A suitable
SA method for this purpose is the screening method of Morris. The Morris
method is designed to identify the important parameters within a complex
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Figure 3: Trace plots from the calibration (left) and marginal posterior dis-
tributions for the temperature threshold parameter Tms and the melt rate M

from the calibration of the model Snow2par

model. The results from this SA then prepares the grounds for further model
simplification by suggesting which parameters can be fixed anywhere within
their prior bounds without affecting model outputs, i.e. which parameters are
not important. Although this method is a One Parameter at a Time (OPT)
approach, (Campolongo et al. 2007) empirically showed this method to be an
acceptable proxy for a more sophisticated variance-based sensitivity measure.
Despite it’s simplicity, the Morris method is still seldomly used (ibid) by the
modelling community.

The Morris method proposes two sensitivity measures, whose main purpose
is to determine which of the parameters of the model that can be considered
to be either (i) not important, (ii) linear and additive, or (iii) non-linear or
involved in interactions with other parameters. For each of the parameters,
two sensitivity measures are computed; μ, which evaluates the overall influ-
ence of the parameter on the model output (main effect, or elementary effect
EE), and σ, which evaluates collectively all the higher order effects due to
non-linearity and/or to interaction with other parameters.
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The Morris method was originally used for parameters following uniform
distributions in [0, 1]. However, if parameters follow other distributions, Cam-
polongo et al. (1999) suggest that rather than sampling directly from these
distributions, the sampling should be performed in the space of the quantiles
of these distributions (e.g. each parameter distribution is discretized into p lev-
els, were each quantile qp varies in [0, 1]). The actual parameter values would
subsequently be derived from their known distributions. These quantiles will
then comprise the sub-set Ω from which parameter sets θ are sampled, i.e.
θ ∈ Ω. For a model with k parameters, the elementary effect of parameter θi

is defined as
EEi(θ) =

f(θ1, . . . , θi + Δ, . . . , θk) − f(θ)

Δ
(1)

where f(θ) is a scalar representation of model output, Δ is the sampling step,
and θ is a point in Ω which is chosen such that (θ + eiΔ) remains within Ω,
and ei is a vector of zeros except for its ith element having the value one.
What follows is when sampling random parameter sets θ from Ω according
to the Morris method, we obtain the distribution associated with the elemen-
tary effect of each parameter. This distribution is finite and can be denoted
as EEi(θ) ∼ Di. As suggested by Campolongo et al. (2007), a convenient
choice for p is an even number, and a convenient choice for the sampling in-
crement Δ is setting Δ = p/ [2(p − 1)]. The number of elements in Di is
pk−1 [p − Δ(p − 1)] (ibid.). The sensitivity indices for parameter θi from the
Morris method is the mean μ and standard deviation σ of Di. The design
proposed by Morris (1991) is to sample r elementary effects from each Di by
constructing r trajectories of k + 1 parameter sets from Ω, where each trajec-
tory provides k elementary effects (one elementary effect for each parameter).
A detailed description of the implementation of the Morris method is presented
in Saltelli et al. (2008).

In this example, the parameter values were sampled from p = 6 equidistant
quantiles of their prior distributions, and using the increment Δ = 3/5 yields
the following subset Ω of parameter values:
Tms ∈ {−9.7,−2.7,−0.8, 0.7, 2.4, 10.7} and
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M ∈ {0.01, 0.045, 0.17, 0.61, 2.65, 10.0}. We sampled three trajectories in the
example with the Snow2par model (see Figure 4). Outputs from Snow2par
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Figure 4: Trajectories obtained via the Morris method. The parameter values
are sampled in six equidistant quantiles from their prior distributions.The tem-
perature parameter is assumed to have a normal prior, i.e. π(Tms) ∼ N(0, 3);
the snow melt index parameter is assumed to follow Jeffreys’ prior, i.e.
π(M) = 1

M

are time series, and the Morris method requires a scalar output value for
the SA. Thus, for the simulation runs required, we used as scalar output the
log-transformed likelihood from the calibration; the likelihood being the prob-
ability of the observed data given a certain model parameterisation θ. If the
model is non-monotonic, some elements of Di may have opposite signs. This
may cause elementary effects to cancel each other out resulting in a μ-value
close to zero. To remedy this Campolongo et al. (2007) suggests an alternative
sensitivity index, called μ∗, which is the mean of the absolute values of Di.
The three trajectories used in this example are shown in Figure 4 where they
are superimposed on a contour plot of the posterior distribution obtained from
the calibration. The sensitivity indices μ∗ and σ are interpreted as follows: a
high σi value for parameter θi implies that the corresponding EEi-value for θi
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at one point in Ω is considerably different from another EEj-value (i �= j) for
the same parameter θi located somewhere else in Ω, i.e. that this particular
EE-value is influenced by the values of the other parameters or nonlinearities.
A low value for σi suggests that the EEi-value associated with θi is less in-
fluenced by the values of the other parameters and thus it is not involved in
interactions or nonlinearities.

Since the example model Snow2par only has two parameters (which are
equally important) the results from the sensitivity analysis presented in Pa-
pers II and III are more interesting due to more complex models.

5 Summary of included papers

The outline of the papers is as follows. Paper I describes the calibration meth-
ods we used, highlighting some implementing issues where the literature was
scarce. Solutions to these issues are suggested. This calibration method is
further used throughout this thesis. The case study in Paper I is a snow cover
model which is calibrated for one location. In paper II we describe the develop-
ment of the SnowFrostIce model. This model contains a further development of
the snow model investigated in paper I and includes new modules to simulate
soil frost and surface ice cover. In addition to calibrate the model, we perform
a sensitivity analysis and describe the method used. In paper III we compare
four candidate models simulating frost tolerance in the forage grass timothy.
The SnowFrostIce model is an essential part of all these frost tolerance mod-
els. We used Bayesian methods for both calibration and model comparison. In
paper IV we used the best frost tolerance model together with the SnowFros-
tIce model to develop agroclimatic indices used to assess the impact of climate
change scenarios on Norwegian agriculture.

20



5.1 Paper I

The objective in paper I was to explore challenges emerging when applying
Bayesian methods to calibrate complex models. Bayesian methods are be-
coming increasingly popular as means of both calibrating complex models and
comparing the performance of different candidate models for specific data set.
When implementing Bayesian calibration methods we encountered challenges
not described properly in the literature. Paper I describes these challenges and
proposes a set of solutions. The case study in this paper was a model which
simulates accumulation and melting of a snow cover. This snow model is a
combination of a previous snow depth model proposed by Riley and Bonesmo
(2005) and a snow water equivalent (SWE) model proposed by Sorteberg et al.
(2001). In the Bayesian calibration, model parameters are described by distri-
butions rather than estimates of true values. Instead of searching for the best
possible parameter values, we search for the probability distribution of these
parameters which reduce model uncertainty.

The effect of adding more observations was a reduction in uncertainty of
both parameter estimates and model output. On the other hand, reaching
convergence became increasingly difficult when adding more data.

Using informative priors (beta-distributions) compared to uniform priors,
resulted in more realistic parameter values and faster convergence of the chains.
Using uniform priors gave on the other hand better model fit. We used beta-
distributions for the parameters found in the literature.

We investigated the use of Gaussian distribution and a uniform distribution
as proposal distribution in the Metropolis Hastings random walk. The Gaus-
sian was most efficient, however, it’s covariance matrix needed adjustments by
trial and error to obtain the desired acceptance rate. We successfully used this
sampling algorithm with reflection at parameter boundaries to avoid sampling
outside the prior intervals. The sampling with reflection was used when cali-
brating all models.

We investigated both a Gaussian likelihood function, and Sivia’s constrained
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Gaussian likelihood function. The latter gave faster convergence, and this was
therefore used in the following works.

5.2 Paper II

In paper II we present the simple winter model SnowFrostIce, constructed with
the intention (and thereby also accompanying restrictions) to be incorporated
in a larger grassland model designed to simulate the regrowth dynamics and
winter survival of forage grasses in Norway. The SnowFrostIce model simulates
the depth of snow cover, the lower frost boundary of the soil and the freezing
of surface puddles. The snow depth module in SnowFrostIce is the same snow
model as the case study in Paper I, whereas the modules for soil frost and soil
surface ice are new additions.

The snow module simulates snow accumulation based on a threshold tem-
perature (deciding whether precipitation should be simulated as snow or rain)
and a calibrated parameter describing the density of falling new snow. Snow
melt is simulated based on a degree-day temperature melting index K which
is described by a sinusoidal curve. The reason for predetermining K in this
way is to incorporate the seasonal variation. Incoming radiation increases and
albedo decreases in spring, and since Norway is located at a high latitude,
this sinusoidal is defined as having period of one year with trough and crest
coinciding with the dates of the solstice.

The lower frost boundary is estimated using an energy balance approach.
The soil frost module relies heavily on certain key assumptions. First, follow-
ing Benoit and Mostaghimi (1985), we assume that the daily mean soil surface
temperature on snow free days can be estimated by the daily mean air tem-
perature at 2 m. Secondly, when simulating the soil surface temperature, we
assumed a constant ratio of the thermal conductivities of frozen soil and the
the snow cover, respectively (Jansson and Karlberg 2001). Thirdly we assume
a linear variation in soil temperature with respect to soil depth in the frozen
soil layer, and that all available soil water within this frozen layer freezes.
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The SnowFrostIce model is one-dimensional, meaning spatial variation is
not considered. We assume that within the grid area where the model oper-
ates, a fraction of this area might be flooded with water if the soil conditions
prohibit infiltration. The model does not simulate hydraulic properties of the
soil, so the only situations when infiltration will be prohibited is when an ad-
equately thick frozen soil layer is simulated (the implementation of the soil
water balance of SnowFrostIce is described in Höglind et al. (2001)). We as-
sumed this limit to be 20 cm, i.e. liquid water from rainfall or snow melt is
drained as long as the simulated frost depth is less than 20 cm. This assump-
tion is supported by observations Iwata et al. (2008). When a surface puddle
is formed, the water may freeze and form a basal ice layer. By regarding this
puddle as an extremely dilute soil, and setting the water content to unity, we
use the same approach to estimate the thickness of this ice layer as we did for
estimating soil frost depth.

The available data set containing observations on snow depth and lower
frost boundary was divided in two parts; one part used for calibration and one
part used for validation. We had data at four locations available for calibration
and validation: Kise (6 years of data), Kvithamar (four years of data), Vågønes
(five years of data) and Holt (five years of data). We calibrated SnowFrostIce
using observations on snow depth and lower frost boundary. The frost bound-
ary was measured using a frost tube. Observations on surface ice was scarce,
and data were only available for two locations. Based on literature review we
defined upper and lower boundaries and mode value for the nine model pa-
rameters. For parameters where both range and mode value were suggested,
we used a beta distribution as prior. Otherwise we used a uniform distribution
as prior. We used the likelihood function suggested by Sivia (2006) which was
slightly modified to account for model discrepancy. Also, as in Paper I, we
used a Gaussian proposal distribution where the covariance matrix was ad-
justed by trial and error to obtain the desired acceptance rate. Convergence
of the MCMC was determined by running two chains in parallel and calculat-
ing the scale reduction factor suggested by Gelman and Rubin (1992). Model

23



uncertainty was assessed by sampling 20 parameter sets from the posterior
distribution and calculating and plotting the subsequent means and standard
deviations of the model outputs. The resulting marginal posterior distribu-
tions for the parameters were either multi-modal, skewed or both. For most
of the parameters, their initial uncertainty was reduced. This is shown by
comparing the marginal posterior to the respective prior distributions. For the
parameters related to liquid water within the snow cover, it was evident that
snow depth observations alone was not adequate for reducing their initial pa-
rameter uncertainty. It was also difficult to obtain convergence of the Markov
chains for these parameters.

We conducted a sensitivity analysis (SA) of the SnowFrostIce model to
identify the least important parameters. For this task we used the simple yet
efficient method originally proposed by Morris (1991) and improved by Campo-
longo et al. (2007). We did not find suggestions in literature on how to handle
correlated parameters when using the Morris method, and therefor parameter
sets were sampled from the assumed uncorrelated prior distributions. The SA
was performed at the same locations used in the calibration. Results from
the sensitivity analysis shows that the least important parameters are those
related to liquid water within the snow cover. This implies that varying these
parameters within their prior bounds will not affect model output markedly.
These results are in accordance with the results from the calibration, in the
sense that their prior uncertainty was not much reduced, implying that no new
information was added through the observations.

5.3 Paper III

In paper III we incorporated the SnowFrostIce model in four empirical can-
didate models for the estimation of frost tolerance in forage grasses. These
candidate models were subjected to calibration and sensitivity analysis using
the methods outlined in this thesis. Results from the calibration was also used
for model selection, as one of three model selection criteria.
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Based on model selection criteria in combination with visual assessment
of model performance, a candidate model was selected. This candidate model
was developed from a model predicting frost tolerance in winter wheat. Results
from the calibration suggests that there are no major regional differences in
Norway calling for regional calibration. This is verified in the validation plots
where the same parameterization θMAP (the posterior distribution) was used
at all locations. Therefore the parameter distribution obtained from the multi-
site calibration can be used for our specific grass species. The model most likely
needs to be calibrated for each grass cultivar separately, since there are both
hardy and less hardy cultivars within the same species, but this assumption
has to be verified in further modelling studies.

5.4 Paper IV

Climate plays a very important role in agriculture because it directly influ-
ence production. In Norwegian agriculture, milk and livestock production are
amongst the most important segments. Poor over wintering of forage grass
therefore represents a potential for economic loss both in relation to yield and
to reestablishment of fields with dead plants. The SnowFrostIce model from
Paper II, in combination with the frost tolerance model from Paper III was
used to develop agroclimatic indices designed to assess the impact of three
future climate change scenarios on the development of frost tolerance in two
important forage grasses. The most important results for Norway under these
scenarios was a delay in the hardening period, and earlier start of growth in
spring. This means a prolonged thermal growing season. Additional harvests
and cultivation of more productive but less winter hardy crops are possible out-
comes. However, some coastal locations may experience a slightly increased
risk of frost injury after start of growth in spring which is related to an earlier
onset of growth in spring. A slightly increased risk of ice encasement injury
may also be expected at some locations where the length of the snow period
is dramatically decreased. However, the general trend is for a reduced risk of
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plant injury related to ice encasement. The results suggests agroclimatic in-
dices can be useful supplements when assessing the hardening status of forage
grasses.

5.5 Concluding remarks and suggestions for continued
work

Calibration:
In this thesis predictive models have been developed. The level of complexity of
these models was kept at an absolute minimum because they were designed to
be incorporated in a larger grassland model, and because over-parameterized
models easily can give the right answers for the wrong reasons. The models can
therefore be characterized as being empirical. This implies that few parame-
ters are directly measurable in experiments, and therefore literature values for
the parameters are non-existent, or at least hard to come across. In situations
like this the Bayesian method of calibrating complex models enables us to re-
duce the uncertainty of the model by using observations on state variables in
combination with limited prior knowledge on model parameters.

One way of obtaining convergence faster is to use part of the observation
data set in a preliminary investigation to obtain an effective proposal distribu-
tion. In this way it is possible to construct a full covariance matrix, and not
only use a diagonal matrix as we did with the Metropolis Hastings random
walk with reflection. If we use a full covariance matrix, then the steps taken
during the MCMC sampling will not have the symmetry properties required
when using the reflection at the boundaries, therefore we must use the stan-
dard Metropolis Hastings without reflection.

Sensitivity analysis:
In this work we implemented and used one simple yet effective method for
sensitivity analysis in parallel with the calibration. In future applications we
will perform the sensitivity analysis at an earlier stage, i.e. before calibrating
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the models. This is also one of the reasons why perform a sensitivity analysis.
It would be interesting to compare results obtained by first doing sensitivity
analysis, secondly calibrate the model; to an alternative approach of using
part of the available data to design a proposal distribution to be used in the
calibration. Which of these two paths will converge to the desired posterior
first, and which path leads to the largest reduction in model uncertainty are
interesting questions.

It would also be interesting to investigate other sensitivity analysis meth-
ods, i.e. based on variance decomposition. These methods are more expensive
to perform (in terms of model runs) but this is affordable if the CPU time of
one model run is low (< 1 min.). They are on the other hand not as straight
forward to implement as the Morris method. One option is to investigate the
applicability of existing available implementations, e.g. the SimLab framework
(http://simlab.jrc.it/).

Model limitations :
It is tempting to continue developing the physical model SnowFrostIce with
respect to all it’s constituents. The grassland model sets the premises for any
sub-model to be incorporated. Regarding the simulation time step (which is
one day in the grassland model) the sub-models should not operate using a
shorter time step, i.e. the processes with diurnal variation e.g. those related
to snow cover, soil frost and surface ice still must be approximated by daily
averages.

Further restrictions in the current grassland model is the soil layer. The
grassland model has one soil layer (thickness of 60 cm). This relates to the
depth of the rooted zone of a grassland field. This means that the soil water
balance, which is based on a tipping bucket approach, considers the average
soil water content within this single soil layer. With regards to modelling soil
frost, which is directly related to the soil water content, we simulate the dy-
namics of the lower frost boundary based on an algebraic expression using this
average soil water content. If the simulated frost boundary exceeds the rooted
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zone, we assume the soil water content at this depth is at field capacity. Other
models, like e.g. COUP (Jansson and Karlberg 2001) and SHAW (Flerchinger
and Saxton 1989) uses a finite element approach where the soil profile is di-
vided into layers according to the user, and soil frost is simulated with the
vertical resolution of these layers.

Simulating surface ice cover requires knowledge on field geometry. This
kind of information was not available for this project. The fractional area of
a field where surface puddles may form is a kind of information that can be
interpreted as field geometry. The literature might hold references to surface
runoff models that could be useful here. When we can simulate ice cover in
these puddle areas in more detail it is also possible to make better estimations
of lost yield via the grassland model.

Snow cover:
When simulating snow cover depth, the density of the falling new snow is im-
portant. Also estimation of the density of the snow cover is needed. Both these
snow related densities are difficult to cope with (since they are both influenced
by several climatic factors), yet in simple, empirical models they are impor-
tant. If the simulated output was snow water equivalence (SWE), on the other
hand, the density of falling new snow might not be necessary. The standard
meteorological variable of precipitation rate would suffice. However, SWE is
not a common variable to measure at meteorological stations, and therefore
the data available for calibration at relevant agricultural locations would be
scarce. Results from the sensitivity analysis identified parameters related to
liquid water within the snow cover as being less important. These same non-
important parameters were the ones for which convergence was most difficult
to obtain, and they had the least reduction in parameter uncertainty. SWE is
frequently used as output variable in hydrological models, but we did not have
access to measurement data gathered at locations which also recorded temper-
ature and precipitation. An interesting approach to simulate snow cover depth
would be to incorporate a functional description of the density of falling new
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snow, based not only on daily average temperatures but also incorporate daily
minimum and maximum temperatures.

Soil surface temperature:
The soil surface temperature turned out to be an important variable. It is used
as driving temperature both in the soil frost dynamics and in the frost toler-
ance model to simulate the temperature around the plant when a snow cover is
present When simulating soil surface temperature in SnowFrostIce we assume
constant values for the average thermal conductivities of both the frozen soil
layer and the snow cover; only the first of these thermal conductivities was
calibrated. The reason for this was that we had only observations on the lower
frost boundary and not observations that could be linked to the thermal prop-
erties of the snow cover. A step to improve this approach could be to include
an average thermal conductivity of the snow cover in the calibration. For this
to be effective, observations on the soil surface temperature is required. Ob-
servations on soil surface temperature are not performed today, and since it
is an important climatic variable for crops it should be incorporated in the
automated meteorology services of Bioforsk (http://lmt.bioforsk.no).

Soil frost:
The literature has numerous examples of methods for simulating soil frost dy-
namics. Thawing of soil frost in spring takes place both from the bottom of the
frozen soil layer, and from the soil surface, however the thawing from above
is limited as long as a snow cover is present. The upper layers of the soil has
the highest root density. Also, freezing of soil water is experienced by plants
as drought. This is a motivation to investigate other simple approaches to
simulate soil frost dynamics. An alternative approach to simulate soil frost
on a daily time scale could be to estimate daily soil temperature profiles and
identifying the depth where the soil temperature is 0℃.

Frost tolerance:

29



The empirical frost tolerance model for timothy showed very promising results
following multi-site calibration. For use with other cultivars of timothy, the
model is likely to need re-calibration since there are both hardy and less hardy
cultivars. We will investigate the effect of linking the calculation of hardening
rate to the availability of carbohydrates within the plants, and also alternative
methods of relating the hardening rate to plant development.
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Abstract 

This paper explores the challenges emerging when applying Bayesian calibration to a 

complex deterministic dynamic model. The Bayesian approach regards parameters as random 

and allows integration of prior knowledge. It is here demonstrated how prior information and 

new data affect the calibration process, parameters and model outputs, with focus on 

uncertainty. Point estimates and uncertainties are calculated and visualized for both 

parameters and model outputs. Generally, uncertainty decreased when new data were 

incorporated. Uniformly distributed priors gave the best fit for this model according to root 

mean square error, while the more informative beta distributed priors gave more physically 

meaningful parameter estimates. Markov chains of samples from the posterior distribution of 
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the parameters were obtained by the random walk Metropolis algorithm. Crucial points when 

using these methods are reaching and determining convergence of the chains. In order to 

reach convergence faster, informative priors, Sivia's likelihood, reflection and updating the 

proposal distribution with parts of the data gave successful results. To determine convergence 

objectively and correctly, the use of multiple chains and the Gelman Rubin method was found 

useful. Several decisions must be made when implementing Bayesian calibration, and we 

highlight and visualize the choices that were found to be most effective. 

Key words: convergence diagnostics, model uncertainty, parameter estimates, parameter 

uncertainty, random walk Metropolis 

 

INTRODUCTION 

The potential effects of climate change on Norwegian agriculture are studied in the 

Norwegian Research program WINSUR (winter survival). A primary goal is to predict the 

impact of climate change on winter wheat and grass by making climate scenario driven plant 

growth models. Van Oijen et al. (2005b) developed a plant model for timothy and perennial 

ryegrass to forecast winter climate impacts on forage crops. Motivated by the need for daily 

information about snow depth, which is an important climate factor for winter survival of 

perennial plants, a model is built for predicting the not-commonly-measured variable snow 

depth, based on two commonly-measured variables, air temperature and precipitation 

(Thorsen and Haugen 2007). The model is based on a model computing the snow water 

equivalent developed by Vehvilainene (1992) and the parametrization is based on previous 

modeling work of Riley and Bonesmo (2005) for a site located at Bioforsk Arable Crops 

Division, Kise, Norway. 

Our snow model is an example of a large category of environmental models, which are 

deterministic and dynamic and aim to represent the processes underlying the behaviour of the 

system. The processes are defined by differential equations which the model solves by – 

computationally demanding - numerical simulation. No such environmental model simulates 

the real world system perfectly, but still predictions are often made conditional on the model 

being correct. Predictions related to climate change will not be tested until several decades or 

maybe a century ahead. It is therefore important to provide decision makers with predictions 

that are transparent with respect to uncertainty (Thyer et al. 2009). There are three major 
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sources of uncertainty related to any model (Goldstein and Rougier 2006): (1) the model 

contains parameters whose values are not certain, (2) the model is an imperfect analog of the 

system and (3) the collected data contain measurement error. In this paper, we shall focus on 

uncertainty derived from (1) and (3). Our approach is that of Bayesian calibration (Van Oijen 

et al. 2005a) which unifies the two goals of model parameterization and uncertainty 

quantification. Uncertainty with respect to model structure (2) can be addressed in this 

framework as well, provided multiple models of the same system are available, but we do not 

carry out Bayesian model comparison in this paper. 

 In practice, parameter values of environmental models are either inferred from the literature 

or found by trial and error when little information is available. Calibration is the process of 

finding the best parameter estimate for the model using data from the system. Maximum 

likelihood (Miller and Miller 1999) is a well used traditional calibration routine that 

maximizes the probability of the data given the parameters, . Limitations of the 

maximum likelihood approach are that uncertainties can not readily be quantified and 

conclusions made by the modeler are conditional on the model being correct. An alternative 

Bayesian approach is more rarely used for complex models (Van Oijen et al. 2005a, Hue et al. 

2008, Luo et al. 2009), partly because of practical problems addressed in the present paper. A 

key issue is the computationally demanding numerical solution of differential equations, 

which limits the number of model evaluations for calibration that is feasible. Despite these 

computational problems, the application of the Bayesian method to environmental models has 

been increasing in recent years (e.g. Reinds et al. 2008, Lehuger et al. 2009) because it 

improves on the traditional approach by automatically including uncertainty quantification 

(Campbell 2006). It also allows for prior information about the parameters and conclusions 

are made conditional on the data. 

Much pioneering work on the Bayesian calibration of environmental models has been carried 

out in hydrology (e.g. Kavetski et al. 2006, Smith and Marshall 2008, Thyer et al. 2009), often 

for stochastic models of water flow in response to precipitation. However, experience with the 

approach for the slow environmental models is sill limited and, as Campbell (2006) states in a 

recent review of calibration of computer simulators, “much work is still to be done to place 

calibration on a sound and practical statistical footing”. 

The main objective for this paper has been to apply Bayesian calibration to a complex model 

in order to explore practical problems with the calibration as well as work out solutions. Point 



4 
 

estimates are calculated and uncertainties visualized for both the parameters and the model 

outputs. In order to obtain convergence of the chains (and thus reasonable results) by 

simulation in a limited amount of time, the usefulness of informative priors, Sivia's 

constrained likelihood, the reflection method and different proposal distributions including 

optimizing the proposal distribution with parts of the data are tested. To detect the state of 

convergence, we have checked the usefulness of multiple chains and Gelman-Rubin. 

 

SNOW DEPTH MODEL 

The SnowFrost model, described in detail in Thorsen and Haugen (2007) is a one dimensional 

model which simulates the dynamics of depth of snow cover  (m) and soil frost  

(m). SnowFrost is integrated in a grassland model which simulates the regrowth dynamics of 

timothy (Phleum pratense L.). This grassland model by Van Oijen et al. (2005a) is under 

further development. There are two main modules in SnowFrost; one module relates to the 

dynamics of the snow cover, and one module relates to the formation of soil frost. In 

SnowFrost, the formation of soil frost is affected by the presence of a snow cover, but the 

snow cover is not affected by the presence of soil frost. In this paper the focus is on the snow 

module (Figure 1) and the calibration of its parameters, and thus we leave out issues related to 

soil frost. Preliminary calibration of SnowFrost suggested some modifications, and this new 

snow depth model is presented below. 

 

Figure 1: Description of the system simulated in the snow depth model. 
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Table 1: Symbol and description of the 9 parameters in the snow depth model. 

 Interpretation Symbol 
1 Precipitation falls as rain if   
2 Precipitation falls as snow if )   
3 Threshold temperature for snow melt  and refreezing   
4 Densification of snow cover (mm mm-1 day-1)  
5 The difference between the maximum and minimum value for the melting 

rate of snow pack  (mm -1 day-1) 
 

6 Minimum value for the melting rate of snow pack  (mm -1 day-1)  
7 Degree-day temperature refreezing index (mm -1 day-1)   
8 The density of fresh snow (kg m-3)  
9 The retention capacity of snow cover (mm mm-1)   
 

Based on precipitation rate  (mm day-1), mean air temperature  (ºC) and two threshold 

temperatures  (ºC) and  (ºC) (see Table1), the snow model determines the 

precipitation form (rain  (mm day-1) or snow  (mm day-1), where falling new snow has 

the density  (kg m-3)) by calculating a fraction of liquid water  (mm mm-1) of the 

precipitation according to 

 

where the corresponding amounts of  and  are 

 

The snow cover consists of water in solid state  (mm) (snow and ice), and liquid water 

within the snow cover  (mm). In SnowFrost snow melt occurs when  exceeds the base 

temperature  (ºC), and refreezing of  occurs when  drops below  (ºC). 

Preliminary calibration of the SnowFrost model showed that the marginal posterior 

distributions for the two threshold temperatures  and  was practically equal. We 

therefore replaced  and  with one threshold temperature  (ºC), that determines 

whether snow is melting  (mm day-1), when , or liquid water within the snow is 

refreezing  (mm day-1), when . The snow cover, being a porous medium, can 

retain a limited amount of liquid water  resulting from rain or melted snow. Similar to 



6 
 

Engseth et al. (2000), we estimate the potential retention capacity of the snow cover as 

 where  (mm mm-1) is the retention capacity of the snow cover. Liquid 

water within the snow cover may refreeze at the rate  (mm ºC-1 day-1). Also, following 

the idea of Engseth et al. (2000), we calculate the rate of snow melt using a temperature 

dependent rate  (mm ºC-1 day-1) described by a sinusoidal curve; the period is one year 

with maximum snow melt rate  (mm ºC-1 day-1) occurring on 23. June, and minimum 

snow melt  (mm ºC-1 day-1) on 23. December. To avoid situations like  

during the calibration, we replaced  by  and calibrate  

(mm ºC-1 day-1). If the entire snowpack melted instantaneously, the resulting depth of water 

is known as the snow water equivalent  (mm).  is defined as the sum of  and 

, and the density of the snow cover  (kg m-3) is defined as  (note: 1 mm of 

precipitation equals 1 kg m-2). Densification of the snow cover due to change in physical 

properties (e.g. change in shape of snowflakes and the increase in weight of overlying snow 

following accumulation) is incorporated through the empirical compaction parameter  (mm 

mm-1 day-1). We use the following equations for the snow cover dynamics: 

 

Snow depth model parameters to be calibrated are listed in Table 1. 

 

STATISTICAL METHOD 

The model,  simulates output variables  using input variables  and parameters . In 

the Bayesian calibration approach, parameters are regarded as random variables and thus 

follow some probability distribution. Instead of searching for the best parameter estimates , 

we actually search for the probability distribution of these parameters. The calibration routine 

collects samples from these distributions and parameter uncertainties may be visualized 

together with point estimates. 

 



7 
 

Bayesian learning 

Bayes theorem is the building block in Bayesian calibration. It was formulated by Thomas 

Bayes in 1763 (Berger 1985), and may be reformulated as 

 

where the parameters  (  is the whole parameter space) and   is the 

collected data. The formula reverses conditional probabilities by looking at the unknown 

parameter set  as random variables. The posterior probability distribution , is the 

probability distribution of the parameters given the collected data. According to Bayes 

formula it is found by combining the original parameter uncertainty, expressed by a prior 

probability distribution  and the conditional probability density function of the collected 

data given the parameters,  (often called the likelihood function and denoted ). 

The so called 'evidence' or 'integrated likelihood' term  is constant and found by the 

integral . This gives us the proportionality 

 (1) 

which shows that the posterior information is a combination of prior knowledge and new 

information incorporated through the likelihood function of the collected data. 

 

The prior distribution 

The prior distribution quantifies the original uncertainty we have about the parameters. 

According to Ellison (1996) there are three different interpretations of the prior distribution: 

(1) a frequency distribution based on existing data. As long as the same data is not used twice, 

a part of the collected data can be used, or existing data from an earlier investigation, (2) an 

“objective” statement of what is rational to believe about the parameters and (3) a subjective 

measure of what the investigator actually believes about the parameter values. 

Although limited, the prior information that reflects the initial population basis will assist in 

the probability distribution of the posterior prediction (Gelman et al. 1996b and Marshall et al. 

2004). If the prior dominates the likelihood, the prior will have much greater effect on the 

posterior probability function than the subsequent experiment can supply. Most of the 
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criticism of Bayesian inference is that Bayesian analysis can produce results consistent with 

any point of view when specifying a subjective prior based on personal belief (Dennis 2004). 

It is therefore of great importance, not to use unrealistically informative prior. If non-

informative prior distributions were used for all the individual parameters, then the model 

would fit the data very closely, but often also with scientifically unreasonable parameters. 

This may motivate the researcher to specify a prior distribution using external information 

(Gelman 2002). If no prior information of the parameters is available, non-informative priors 

(one approach introduced by Jeffrey (1961)) may be used, so that the inferences are 

unaffected by information external to the experiment (Gelman et al. 1996 b). As usual, we 

will assume prior independence between the parameters. When having more than one 

parameter, the joint prior density can be written 

 

where L is the total number of parameters in the model.   

 

The Likelihood function 

The likelihood function is the data distribution, conditional on the model used and, expressed 

as a function of the model parameter values. Measurements d made in the true observable 

quantity y are not perfect. At the same time, the model Y(θ,x) is a simplification of the real 

world system.  

 

where ε is both measurement and representational error. After some simplifications (Rougier 

2007), the likelihood function can be written as: 
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where φ is the univariate normal probability density function and σm is the m’th diagonal 

element of the diagonal variance matrix Σ of the errors. The likelihood function can then be 

written: 

 

 

Outliers in the collected data may produce bad results. Sivia (2006) solves this problem by 

formulating a constraint on the Gaussian likelihood function. He used a variant of Jeffreys’ 

prior to specify a lower boundary (σ0) for the standard deviation 

 

for , and zero otherwise.  

The formula of the constraint likelihood function with the unknown σ integrated out is written 

 

Where  is the lower bound of the standard deviation and . 

The equation is not defined for , but the limit likelihood when goes through zero is 

found as 

 

By series expansion (not shown here). The total constraint Gaussian likelihood function is 

finally defined as 

 

The variance-covariance matrix, Σ0 of model and measurement error in the likelihood 

function is unknown. The measurement error may be found by investigating how reliable the 

measurement instrument used is. The representational error including both simplifications in 

the model and the fact that the model and the data are not talking about the exact same 

parameter (the model predicts mean snow depth while the measurements are point estimates), 
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would be much harder to find. The problem of estimating the covariance matrix of model 

errors has been simplified by using a fixed diagonal covariance matrix. Conform Van Oijen et 

al (2005a), we set the standard deviation of each measurement to 30 % of the mean observed 

value. 

 

To avoid a standard deviation of zero, when no snow is observed, the standard deviation was 

redefined to be 

 

This gives a standard deviation of 0.1 if the mean collected snow depth is less than 0.33m. 

The difference between observed and simulated output ( ), will be dominated 

by zeros, because no snow depth will be both observed and simulated most of the year. A 

student-t distribution, having a fatter tail (Miller and Miller 1999) is an alternative 

recommended when outliers occurs, but is not tested here. Probably a zero-inflated 

distribution (Agarwal et al. 2002) would be an even better choice  

The likelihood function is what modifies the prior knowledge into a posterior distribution. 

According to Bayes theorem, the more experimental data added, the more will the likelihood 

dominate the prior, and have much greater effect on the posterior probability distribution.   

 

Random Walk Metropolis 

There are four different techniques that can be used to find the posterior distribution in 

Bayesian calibration; exact calculation, analytical approximation, numerical integration and 

Monte Carlo simulation. Integration problems makes the exact calculation impossible, 

especially when  is high dimensional. We will use a MCMC algorithm, random walk 

Metropolis.  

The Metropolis Algorithm is the cornerstone of all Markov chain-based Monte Carlo 

methods. It was proposed as early as in 1953 in a short paper by Metropolis et al. (1953). The 

idea is of great simplicity and power, and its variations are in use by many researchers in 

several different scientific fields. 
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We implemented the random walk Metropolis algorithm in Matlab. We start with some initial 

parameter values, , where  is the number of parameters in the model. 

For each iteration step , we have these steps: 

1. Draw , where  is a spherically symmetric distribution, independent 

distributed for different , centered at the current state. 

2. Compute the ratio   

3. Draw , where  is the uniform probability density function, and set  

 

The draws  will in the long run converge to the posterior distribution of the 

parameter set (Liu 2001).  

To avoid the joint likelihood to be too large to be represented by a digital computer, that 

round off to infinity, the natural logarithm was used in all steps in the random walk 

Metropolis algorithm. 

The step length  is the distance between the current and the proposed parameter vector. 

Small  ensures that the proposed parameter vector is close to the current position, so the 

probability of accepting it is high. With small average δ, the Markov chain will converge 

slowly since all its moves will be small. On the other hand, a large step length  places the 

new proposed parameter further away from the current parameter vector, which leads to a low 

probability of accepting it. The Metropolis algorithm will then reject a too high proportion of 

its proposed moves. Most of the computation time goes to costly evaluation of the posterior 

density. The step length  therefore controls the effectiveness of the Metropolis algorithm. 

According to Roberts et al. (1997), an acceptance rate of roughly 0.23 is desired. We 

considered an acceptance rate between 0.15 and 0.5 to be acceptable (Roberts 1996). 

The choice of a proposal distribution may be a crucial factor for convergence of the 

algorithm. Adaptive MCMC algorithms (Andrieu and Thoms 2008, Smith and Marshall 2008) 

solve this problem by using the chain history in order to continually tune the proposal 

distribution. 
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Convergence Diagnostics 

The random walk Metropolis algorithm produces a Markov chain whose stationary 

distribution is the target posterior distribution. If the iterations before stationarity are used to 

summarize the target distribution, they can give false answers. To detect the state of 

stationarity (``burn-in'' state) or lack of stationarity, different methods exist. Gelman and 

Rubin (1992) pointed out that in many problems, lack of convergence can be easily 

determined from multiple independent sequences but can not be diagnosed using simulation 

outputs from any single sequence. The sequence may remain in a region heavily influenced by 

the starting point, although it has not converged to the true posterior distribution (Gelman et 

al. 1996b). In contrast, Geyer (1992) states that one should concentrate all computational 

resources in a single chain, since it is more likely that for example the latter 90.000 iterations 

from a single run of 100.000 iterations come from the target distribution than the final 

samples from 10 parallel runs of 10.000.  

When running parallel sequences, the most obvious approach to assess convergence is to plot 

the chains as time series and assess by visual inspection whether the sequences have 

converged to each other. A more quantitative approach based on the ratio of between- and 

within-chain variance was formulated by Gelman and Rubin (1992). Convergence is 

identified when the empirical distribution of simulations obtained separately from each 

sequence is approximately the same as the distribution obtained by mixing all the sequences 

together. Before the parallel sequences have converged, the simulations from each sequence 

will be much less variable than the sequence combined. We assume  parallel simulations, 

each of length  and with starting points drawn randomly from the prior distribution that is 

over-dispersed in the sense of being more variable than the target posterior distribution. The 

first  iterations are discarded to diminish the effect of the starting distribution. The 

estimated potential scale reduction factor  is calculated at each iteration step 

 

where  is the variance between the sequence means and  is the average within-sequence 

variance.  refers to the degree of freedom in a t-distribution approximation to the empirical 

distribution of . For large number of samples,  can be ignored. 
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When  is close to 1 (less than 1.2 in practice (Gelman 1996)), the parallel Markov chains 

are essentially overlapping. We should also make sure that the mixture of sequence variance 

 and the within sequence variance  stabilizes as a function of  (Brooks and Gelman 

1998). 

 

The iterations before the ``burn-in'' state are discarded. Typically one will discard only a small 

fraction of the run. So, if after ``burn-in'' state you are left with less than half the run, you 

haven't run the iterations for long enough (Kass et al. 1998). 

 

DATA 

The snow depth model is calibrated using snow depth data from Kise, Norway, which is 

situated 60.77N, 10.8E, 127 meters above sea level. Kise has a continental climate, and the 

landscape is dominated by arable land and the largest lake in Norway, Mjøsa. The model is 

calibrated using data from 10 years, 1988 to 1998, and it is tested using data from the 5 

following years. Temperature and precipitation observations are obtained from Bioforsk 

Agrometeorological service, the snow depth observations are obtained from both Bioforsk 

Agrometeorological service (1988-1997) and from The Norwegian Water Resources and 

Energy Directorates service (1997-2003). On average there was snow cover 120 days of the 

year, with an average depth of 0.16 m. Variation between years was from 160 days with snow 

cover and an average of 0.36 m the winter 1993/1994 to only 77 days with snow cover and an 

average of 0.06 m the winter 1989/1990,  
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RESULTS AND DISCUSSION 

Tuning the MCMC 

To run the Bayesian calibration algorithm, several decisions must be made by the researcher. 

 

The number of observed data 

Usually, we will use all available data. Here, 10 years of snow depth data are used to fit the 

model and 5 years to test the model. To see the effect of the number of data used to fit the 

model, the calibration algorithm was also run using 2, 4, 6 and 8 years of collected data. The 

results from  and  are plotted as three dimensional figures to visualize the 

change in uncertainty about the respective parameter when adding data (Figure 2). In 

agreement with Bayesian learning (Equation 1), we can see that the uncertainty, i.e. the width 

of the histograms, decreases when adding more data. Also the position of the histograms 

changes, most dramatically up to 8 years, but also from 8 to 10 years. The weather situation 

varies from year to year, and the parameter estimates do depend on what kind of years used. A 

period of 8 years does not contain all variability in weather, and the estimates do therefore 

change further when adding two more years. Most probably, the estimates will still change 

when adding more years of data, until the whole specter of weather situations are included.  

Reaching convergence for the posterior chains was easy when 2 or 4 years of collected data 

were used. With 6 or more years of data, convergence became much harder to reach. 

 

The prior distribution 

We have chosen to use relatively wide uniform prior distributions. Usually, we will not 

consider all values between the upper and lower limit in the prior distribution as equally 

believable. We therefore constructed a beta distribution between the boundaries and used 

results from Engseth et al. 2000 (Table 2) as modal values. Comparing the results of 

calibration starting from beta distributions rather than uniform ones, showed that the more 

informative beta priors gave much easier convergence and different point and interval 

estimates for the parameters. These new estimates permitted more meaningful physical 

interpretation, but showed worse fit according to RMSE for both the training and the test data.  



15 
 

 

Figur 2: Changes in parameter uncertainty when using respectively 0, 2, 4, 8 and 10 years with collected data in 
the calibration routine. Figure (a) shows parameter uncertainty for and . 

 

RMSE is now commonly reported in environmental modeling in comparsions of different 

calibration approaches (e.g. Reinds et al. 2008, Lehuger et al. 2009). The lower RMSE with 

the uniform prior was not necessarily expected because our likelihood function was not 

Gaussian nor did our data all have the same standard deviation. 
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The Likelihood function 

Both the Gaussian likelihood function (Equation 2) and the Gaussian likelihood function with 

constraints (Equation 3) were tested and the constrained function gave much faster parameter 

convergence than the ordinary Gaussian. Less iteration were needed to reach convergence and 

since each iteration step is time requiring; only the constrained function was used.  

 

The proposal distribution 

The choice of an effective proposal distribution for the MCMC is essential in order to obtain 

convergence in a limited amount of time. Both a uniform and a Gaussian proposal distribution 

centered at the current state were tested. The Gaussian distribution, which predominantly 

samples close to zero turned out to be the most efficient one and was therefore used. The 

covariance matrix was defined as diagonal with the l'th diagonal element proportional to the 

width of the prior interval for the respective parameter . In order to 

achieve efficient convergence, the constant  was set by trial and error to produce an 

acceptance rate of roughly 0.23 (Roberts et al. 1997). To prevent the most sensitive 

parameters , ,  and  (according to sensitivity analysis 

calculated for the entire SnowFrostIce model (Thorsen et al. 2009)) to control the whole 

accept/reject procedure, the constant  was individually corrected up for all other parameters. 

The sensitive parameter  proved most challenging. If its proposal stepsize was not 

weighted down, it controlled most of the accept/reject procedure and made it impossible for 

all other parameters to converge. At the same time, if weighted down enough, convergence is 

not reached within a proper time when having a starting value for the parameter far away 

from the target posterior distribution. Our solution was to weigh the parameter down after a 

number of iterations. To keep the rule that the step length has to be identically distributed for 

different iterations (Liu 2001), this is done during the ``burn-in'' phase only. 

Adaptive MCMC algorithms (Andrieu and Thoms, 2008, Smith and Marshall 2008) were not 

used, but we did use adaptation informally, as follows. The information obtained by the 

calibration using two years of observations was used to form a suitable proposal distribution 

for the calibration using all ten years of observations. The new covariance matrix was 

calculated from the variances of the proposal distribution and the correlation matrix calculated 

from the resulting parameter chains after convergence when using two years of observations. 
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Then only a scaling factor for the entire covariance matrix had to be found by trial and error 

to produce an efficient acceptance rate. Preliminary tests of this method showed it to be 

highly efficient for the calibration of our model, but it was not used to produce the results 

reported here. 

 

Convergence 

The calibration algorithm was run for 300.000 iterations, requiring about 40 hours computing 

time. The usefulness of running parallel sequences to detect convergence was found during 

model development from the first version of the snow model (Thorsen and Haugen 2007) to 

this version. The Markov chain for  (Lower limit temperature for snow melt) is plotted in 

Figure 3a for 150.000 iterations, which objectively seems like a large enough number. 

Running only one chain, we would determine ``burn-in'' after 10.000 iterations by eyes, and 

treat the remaining 140.000 iterations as draws from the true posterior distribution. When 

running two chains in parallel instead (Figure 3b), we found that the two chains had not 

converged to each other during this run. We therefore ran the algorithm for 150.000 more  

 

 

Figure 3: Markov chain of  (parameter not included in the finial version of the snow depth model) (a) one 
chain for 150.000 iterations and (b) two chains in parallel for 300.000 iterations 
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iterations and clearly they converge to each other after 175.000 iterations. With more 

confidence, we can now treat the last 125.000 iterations as draws from the posterior 

distribution. In most cases, four sequences were run in parallel, but during the development of 

the model only two. The method of Gelman and Rubin was used to detect ``burn-in''. 

 

Reflection 

When using upper and lower limits in the prior distribution, new proposal parameters may be 

generated outside these boundaries and consequently be rejected in the random walk 

Metropolis algorithm. Here, , which stabilized near the lower boundary of the prior 

interval, caused a high rejection rate. To avoid proposal parameters generated outside the 

prior boundaries, reflection at the boundaries (Yang 2006) is used. If the proposal parameter 

 is outside the prior interval ( ) the excess is reflected back into the interval; that 

is, if  ,  is reset to , and if ,  is reset to 

. The proposal parameter distribution will still be symmetric

 and thereby the acceptance of the Metropolis algorithm correct, since 

 and a step length  from the current state  with reflection will give the state  

( ), while the same step length  from  will reflect the 

proposal parameter back to current state  ( ). 

 

Uncertain vs. fixed values of the parameters 

To reach convergence for all parameters turned out to be difficult. We therefore reduced the 

number of parameters by setting some of them to fixed values in the early investigation. This 

showed that convergence problems emerged when four or more parameters were included in 

the calibration. It was therefore tempting to treat some of the less sensitive parameters as 

fixed values. But this has the problem of producing inaccurate estimates and it underestimates 

uncertainty when the parameters to be fixed are not known accurately (Gelman et al. 1996a). 

Especially the posterior distribution of  changed dramatically when the last three 

parameters were fixed. In the results, all 9 parameters are treated as uncertain. By performing 

a sensitivity analysis, e.g. using the Morris method as described in Campolongo et al. 2007, it 
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is possible to identify the least important parameters which are candidates for fixed values. 

This was done for a similar snow depth model by Thorsen et al. 2009. 

 

Statistical Inference 

The model is calibrated using wide uniform prior distributions (Table 2) and four sequences 

are run in parallel, each for 300.000 iterations. All parameters converged after less than 

100.000 iterations (according to Gelman and Rubins criteria) with an acceptance rate of 

approximately 0.25. The potential scale reduction factor, at the end of the calibration is 

listed in Table 3. The highest value is 1.02 for both  and  suggesting 

that additional simulation might reduce the posterior interval for these parameters by only up 

to a factor of 1.02. The 95 % highest posterior density (HPD) interval is calculated for each 

parameter and listed in Table 3. Each interval is a measure of how certain we are about the 

respective parameter, and we can clearly see a decreased uncertainty compared to the prior 

information (Table 2) for all parameters except . 

Three point estimates are calculated, the mean , the mode  and the maximum a 

posteriori estimate ( ) (Gilks et al. 1996).  Both the mean and the 

mode estimates are calculated for each parameter one by one, while the MAP estimate is the 

largest mode for the joint posterior distribution. All three estimates are different (Table 3)  

 

Table 2:  Minimum and maximum values used to define limits in the uniform prior interval and parameter 
estimates from Engseth et al. (2000), . Lack of number indicates that the specific parameter does not occur in 
Engseth’s model.  

 Symbol    
1  -5 10 0.5 
2  -10 5 0.5 
3  -10 10 0.5 
4  0 1  
5  0 10 1.25 
6  0 10 2 
7  0 10 0.01 
8  10 250  
9  0 1 0.1 
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which may be explained by skewness and several peaks in the parameter densities and by 

correlations (Table 3) between the different parameters. The MAP estimate, which is the only 

estimate considering the entire parameter set concurrently is the estimate giving the smallest 

root mean square error (RMSE) for both the training data and for the test data. It is important 

to note that the MAP estimate is the parameter set having the largest posterior density among 

our 800.000 iterations. Each of our four parallel chains gave a different MAP estimate, 

suggesting that the parameter space is not totally searched and additional simulation might 

give even better MAP estimates. The Bayesian calibration method does not search for the best 

parameter estimates, but for the posterior distribution of them.  

Bayesian calibration simply combines prior parameter information with the likelihood of the 

data given the model. Since the model is not a perfect representation of the system, parameter 

estimates may deviate from physically meaningful values. Here, especially  seems 

unrealistic (Table 3). To reach a more realistic estimate, the model could have been improved, 

a more informative prior distribution could have been used or a separating parameter could 

replace  and . Since the purpose of our model is not to learn about the 

system, but prediction and we do not want a too complex model, both the model and the 

parameters are retained while a more informative prior was tested. 

 

Table 3: Results from Bayesian Calibration using MCMC with chains of 300000 iterations. The potential scale 

reduction factor , the mean parameter value , the mode parameter value , the maximum a’ 

posteriori estimate , the coefficient of variation (CV), the 95 % HPD interval and the parameter with 
which parameter is correlated at greater absolute values than 0.3 (underlined if negative). 

     CV 95 % HPD Correlated 
 

1 1.00 1.95 1.87 1.99 0.12 [1.60, 2.42]  
2 1.00 -9.32 -10.00 -9.92 -0.06 [-10.00, -8.11]  
3 1.01 0.58 0.54 0.61 0.14 [0.43, 0.74]  

4 1.01 0.03 0.03 0.03 0.10 [0.02, 0.03]  

5 1.02 2.27 1.05 1.63 0.73 [0, 5.40]  
6 1.01 6.69 7.01 6.69 0.10 [5.36, 7.86]  
7 1.00 5.07 1.05 1.56 0.56 [0.51, 10]  
8 1.00 65.12 63.25 62.10 0.08 [54.96, 75.75]  

9 1.02 0.25 0.18 0.31 0.46 [0.06, 0.50]  
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The coefficient of variation (CV) is a normalized measure of dispersion of a probability 

distribution defined as the ratio of the standard deviation to the mean. Three parameters 

 stand clearly out with greatest CV values (Table 3). 

These parameters are also the parameters having the largest relative distance between the 

three point estimates, having the longest ``burn-in'' phase and having the smallest relative 

decrease in uncertainty when comparing the prior interval with the 95 % HPD interval. This 

indicates that the information from new data had little effect on these three parameters, not 

only on their parameter values, but on general knowledge about the parameter characterized 

by their posterior distribution. A sensitivity analysis done for the whole SnowFrostIce model 

(Thorsen et al. 2009) gave the result that changes in these three parameters also gives the 

smallest rate of changes in the output of the model. In summary, the results from the Bayesian 

calibration can tell us how new information from data are allocated within the model and 

accumulated as increased knowledge for some parameters while leaving others unaffected. 

While sensitivity analysis tells us about the sensitivity of model outputs to changes in 

parameters, Bayesian calibration tells us about how new information affects our knowledge 

about the parameters and model outputs.  

Predictive uncertainty in model outputs is visualized in Figure 4 together with snow depth 

observations for the two test years 1998/1999 and 1999/2000. Prior and posterior uncertainties 

are calculated by sampling randomly 100.000 samples from the prior distribution and from 

the posterior chains respectively. Model outputs are then calculated for each parameter set, 

and the uncertainty plotted as one standard deviation above and below the mean model output 

for each day. Wide prior intervals were used for the parameters and we can see that the 

predictive posterior uncertainty is much reduced compared to the prior uncertainty for the 

outputs. The calibrated model approximates the data fairly closely, except for some 

underestimation during periods of prolonged large snow depth. Standard goodness of fit 

assessment is also done by constructing a predictive qq plot (Dawid 1984 and Thyer et al. 

2009), checking if the predictive distribution is consistent with the observed data (Figure 5). If 

the cumulative distribution function (cdf) of the predictive distribution of snow cover 

(assumed Gaussian distributed with mean and standard deviation calculated from the 100.000 

random samples drawn from the posterior chains) is independent uniform U[0,1] variables, 

the observations are realizations of the predictive distribution. The shape of the qq plot 

(Figure 5) indicates underestimated predictive uncertainty (according to Thyer et al. (2009)). 

We expect that this underestimation in the current case is caused by representational error,  
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Figure 4: Prior and posterior uncertainties in the model output snow depth plotted as one standard deviation 

above and below the mean output from 100.000 model runs for (a) 1998/1999 (b) 1999/2000. Dotted line 

denotes prior uncertainty and solid line denotes posterior uncertainty. The stars denote observed values. 

 

which we have not quantified (see introduction), but also measurement error not included in 

the likelihood of the data may add to the predictive uncertainty. Further more, the information 

in the calibration data may not span the variation range sufficiently, causing an additional 

parameter uncertainty (e.g. Figure 2).  The posterior uncertainty is also visualized by 

frequency histograms of estimated snow depth values for each day during the winter 

1998/1999 (Figure 6). We can see snowing and snow melt periods as changes in the snow 
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depth position of the frequency histograms over time. We can also see a larger uncertainty for 

larger snow depth values as wider frequency histograms for the larger snow depth values. 

 

 

Figure 5: Predictive QQ plot. 

 

Figure 6: Posterior uncertainties on the output for the period 1. October 1998 to 1. May 1999, plotted as 
frequency histograms of the output each day. 
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CONCLUSIONS 

We have used Bayesian calibration to calibrate a complex model of snow depth. The Bayesian 

approach regards parameters as random and prior information of the parameters is combined 

with observed data to form a joint posterior parameter distribution. 

Here, point estimates were calculated and uncertainties visualized for both parameters and 

model outputs. Clearly, the uncertainty of both the parameters and the model outputs 

decreased when adding more data. Also, the amount of data affected the parameter estimates 

since the input data varied from year to year and the data used did not include the whole 

specter of varieties in the input space. The best fit of the model was found when using less 

informative priors, while more informative priors gave more meaningful physical values for 

the parameters. To detect ``burn-in'' both objectively and correctly, both multiple chains and 

Gelman Rubin were found to be useful. The choice of treating some uncertain parameters as 

fixed values simplified the calibration procedure, but changed the parameter estimates and led 

to underestimated parameter uncertainty. 

We used the Markov chain Monte Carlo algorithm, random walk Metropolis. Both the idea 

and the implementation of the algorithm are relatively simple, but the use of the method for 

calibration of the complex model was far from straightforward in practice. The major problem 

was to obtain convergence of the chains in a limited amount of time. With regard to the prior 

parameter distributions, we found that informative beta distributions led to faster convergence 

of the posterior parameter chains than less informative uniform priors. Faster convergence 

was also achieved by the use of Sivia's constraint likelihood rather than the more common 

Gaussian likelihood function. The choice of an effective proposal distribution was difficult, 

but optimizing the proposal distribution with parts of the data was found to be useful. To 

avoid spending time on proposal parameters generated outside the prior interval, the reflection 

method was successfully used. 
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Modelling the dynamics of snow cover, soil frost and 
surface ice in Norwegian grasslands 
 
Stig Morten Thorsen*†, Anne-Grete Roer‡§, Marcel Van Oijen**  
 

Abstract 
Studying the winter survival of forage grasses under a changing climate requires 
models that can simulate the dynamics of soil conditions at low temperatures. We 
developed a simple model which simulates depth of snow cover, the lower frost 
boundary of the soil and the freezing of surface puddles. We parameterised the 
model by means of Bayesian calibration, and identified the least important model 
parameters using the sensitivity analysis method of Morris. Verification of the 
model suggests that the results are reasonable. Due to the simple model structure, 
some overestimation occurs in snow and frost depth. Both the calibration and the 
sensitivity analysis suggested that the snow cover module could be simplified with 
respect to snow melt and liquid water content. The soil frost module should be 
kept unchanged, while the surface ice module should be changed when more 
detailed topographical data become available, such as better estimates of the 
fraction of the land area where puddles may form. 
Keywords 
Modelling; snow cover; frost depth; ice cover; calibration; sensitivity analysis 
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Introduction 
 
Grasslands are important components of Norwegian terrestrial ecosystems. In order 
to investigate the impacts of climate change, parts of the Norwegian strategic 
research programme WINSUR are dedicated to developing a grassland model to 
study the winter survival of different crops. The grassland model, currently 
simulating the regrowth dynamics of timothy (Phleum pratense L.), has been 
developed by Van Oijen et al. (2005a). The same model will be adapted to simulate 
the regrowth dynamics of perennial ryegrass (Lolium perenne L.). During the 
winter, a significant number of plants may die due to frost, ice encapsulation and 
other physical and biological stresses (Larsen 1994). Snow cover provides insulation 
from lethal freezing temperatures, while also reducing the amount of 
photosynthetically active radiation at plant level. However, more variable winter 
climate in Norway (Beldring et al. 2008) may lead to less snow cover and thus 
increase plant exposure to killing frosts (Belanger et al. 2002). 
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If the ground is frozen, water (rain or snow melt) can accumulate in small 
depressions, freeze and cause plants to be encapsulated in ice. Ice encasement can 
severely reduce gas exchange between the plant and the surrounding atmosphere, 
leading to a transition from aerobic to anaerobic respiration and accumulation of 
respiration products (esp. CO2) to toxic levels (Gudleifsson and Larsen 1993). 

In order to make predictions on the effects of climate change on plant 
performance over more than one growing season, the grassland model needs an 
additional set of functions to describe the winter survival of the sward. The 
grassland model must be able to simulate effects of winter climate on soil and soil 
surface processes. The main objective of this work is to develop a simple winter 
module that can easily be incorporated into the existing grassland model. 
Therefore the structure of the winter module needs to be kept as simple as 
possible. 

Regarding the simulation of winter climate effects on soil and soil surface 
conditions (e.g. snow cover and soil frost), the literature provides examples of 
different approaches (Benoit and Mostaghimi 1985; DeGaetano et al. 2000; Engeset 
et al.  2000; Flerchinger and Saxton 1989; Jansson and Karlberg 2001; Jordan 1991; 
Kokkonen et al. 2006; Melloh 1999; Vehvilainen 1992). We implemented and tested 
different algorithms for snow cover and soil frost already being applied for Nordic 
conditions. Based on preliminary modelling work, including site-specific model 
calibration, we developed a new snow module using ideas from a snow model 
currently being used by the Norwegian Water Resources and Energy Directorate 
(NVE) (Engeset et al. 2000). The NVE model has 10 parameters, and is used 
throughout Norway for operational snow forecasts. This model simulates snow 
accumulation based on daily precipitation rates and daily mean air temperature. 
Snow melt is a function of a degree-day temperature index described by a 
sinusoidal curve and daily mean air temperature. The NVE model is mainly designed 
for hydrological purposes (hydroelectricity production and spring flood warnings), 
and thus simulates the liquid water equivalent of snow SWE (mm) and snow melt 
runoff, but not snow depth. 

Different models for simulating snow accumulation and snow melt are 
described in the literature, ranging from hydrological purposes (Engeset et al. 
2000; Jordan 1991; Kokkonen et al. 2006) to agricultural and hydrological 
applications (Flerchinger and Saxton 1989) and soil-plant-atmosphere systems 
(Jansson and Karlberg 2001). These models simulate point estimates of a single-
layered homogeneous 1-D (z-direction) snow cover, whereas Jordan (1991) presents 
a multi-layered 1-D snow model. Melloh (1999) provides a review of several snow 
melt models. Comprehensive state-of-the-art snow models such as the COUP model 
(Jansson and Karlberg 2001) (graphical user interface) and the SNTHERM model 
(Jordan 1991) (FORTRAN-77 code) are very complex and rich in parameters (> 100). 
The COUP model was considered as a potential candidate early in the project, but 
the model version available at that time required a special graphical user interface 
and therefore could not be incorporated into the grassland model, which was 
developed using another programming environment (MATLAB® and Simulink®). The 
combination of a special user interface and extensive data requirements (as 
regards number of parameters and driving climate variables) makes it very difficult 
to incorporate state-of-the-art snow cover and soil frost models as sub-modules 
into other models. The ability to incorporate a snow and soil frost model into a 
larger grassland model was our main motivation for developing a new model. Our 
proposed model is simple; it only requires nine calibrated parameters and two 
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input variables to simulate daily values of the depths of snow cover, soil frost and 
surface ice and the temperature between the soil surface and the snow cover. 

A study comparing four models simulating soil frost (Kennedy and Sharratt 
1998) (the two finite difference models SHAW and SOIL, and the two energy 
balance models by Benoit and Gusev, respectively) concluded that the simpler 
energy balance models generally overestimate frost depth. However, one weakness 
of all four models compared by Kennedy and Sharratt (1998) is the estimation of 
snow depth (the Gusev model uses snow depth as input). Snow cover has a strong 
influence on the estimation of soil frost depth, e.g. through snow depth and snow 
density; both affecting the thermal conductivity of the snow cover. Therefore 
accurate simulation of snow cover is important for the simulation of soil frost 
depth. 

As regards modelling the formation of ice on the soil surface, we did not find 
examples in the literature of models simulating this process or ice encapsulation of 
the ground vegetation. 

Following the conclusions by Kennedy and Sharratt (1998), the present work 
describes a new model that simultaneously simulates the depths of snow and soil 
frost and surface ice and explains how it was calibrated for sites across Norway 
using Bayesian methods. We also conducted a sensitivity analysis of the model using 
the Morris method, which identifies the parameters to which the model is most 
sensitive. 
 
Materials and methods 
 
The snow model 
 
Our snow module is based on ideas presented by Engeset et al. (2000) and Melloh 
(1999, and references therein). While snow models used for hydrological purposes 
usually simulate snow water equivalent (SWE), SnowFrostIce also simulates the 
actual depth of the snow cover Sdepth (m). To run SnowFrostIce, the only required 
meteorological inputs are daily values of mean air temperature Tair (°C) and 
precipitation rate P (mm d-1). These parameters, which need to be locally 
calibrated, are listed in Table 1. 

In SnowFrostIce the precipitation form is determined by a threshold 
temperature Trs (°C). If Tair > Trs, precipitation fall as rain Pr (mm d-1). Otherwise it 
falls as snow Ps (mm d-1), having the density �ns (kg m-3). There is no intermediate 
form as sleet. The snow cover consists of water in solid state Sdry (mm) (snow and 
ice), and liquid state Swet (mm). The threshold temperature Tmf (°C) determines 
whether snow is melting M (mm d-1), when Tair < Tmf, or liquid water within the 
snow cover is refreezing Mrf (mm d-1), when Tair < Tmf. The numerical values of Trs 
and Tmf are sampled from the posterior distribution obtained in the Bayesian 
calibration. Since the model is calibrated locally, the estimates of Trs and Tmf are 
different for each location. Instead of using a constant melt rate (mm snow melt 
per degree celsius and day, also known as the degree-day temperature index 
method), we use a degree-day temperature index K (mm °C-1 day-1), which is 
described by a sinusoidal curve (see Equation (4)). The reason for describing K by a 
sinusoidal curve is to incorporate the seasonal variation. Incoming radiation 
increases and albedo decreases in spring. In Norway, located between latitudes 58° 
N and 71° N in the northern hemisphere, the dates of the solstice are December 21 
and June 21. 
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Table 1: Parameter description for the SnowFrostIce model. �min and �max represent parameter 
lower and upper boundaries; �mode and �def represent parameter mode and default values, 

respectively. When e
i
modθ  values are presented, a beta prior distribution is used for parameter 

�i, otherwise a uniform prior distribution is assumed between �min and �max. 

Symbol Unit 
min
iθ  max

iθ  e
i
modθ  def

iθ  References 

Trs °C -5 5 0.5 0.5 Engeset et al. (2000) 

Tmf °C -5 5 0.5 0.5 Engeset et al. (2000) 

� mm mm-1 day-1 0 1 - 0.02 
Thorsen and Haugen 

(2007) 

� Kmax mm °C-1 day-1 0 5 1.25 1.25 Engeset et al. (2000) 

Kmin mm °C-1 day-1 0 5 2 2 Engeset et al. (2000) 

SWrf mm °C-1 day-1 0 5 0.01 0.01 Engeset et al. (2000) 

�ns kg m-3 10 250 - 100 
Judson and Doesken 

(2000) 

SWret mm mm-1 0 1 0.1 0.1 Engeset et al. (2000) 

�fs J m-1 °C-1 day-1 8.6·104 21.6·104 - 17.3·104 
Jansson and Karlberg 

(2001) 
 
 
The sinusoidal curve is therefore defined as having a period of one year; with a 
trough, termed Kmin (mm °C-1 day-1), on December 21, and a crest, termed Kmax 
(mm °C-1 day-1), on June 21. The simulated snow melt intensity M is proportional 
to the number of degrees above Tmf (see Equation (5)). To avoid situations such as 
Kmax < Kmin during the calibration, we replaced Kmax by �Kmax = Kmax - Kmin and 
calibrated �Kmax (mm °C-1 day-1) (see Table 1). 

Liquid water within the snow cover may refreeze. The simulated refreezing 
intensity Mrf is proportional to the number of degrees below Tmf (see Equation (6)) 
where SWrf (mm °C-1 d-1) is a degree-day temperature index for refreezing. We 
calculated the potential retention capacity of the snow cover as SWret * Sdry where 
SWret (mm mm-1) is the retention capacity of the snow cover. The snow water 
equivalent SWE is defined as the sum of Sdry and Swet, and the density of the snow 
cover �s (kg m-3) is defined as SWE/Sdepth. As snow is accumulated on the surface of 
a snow cover, there is a rapid metamorphosis as snow crystals break down, and at 
lower snow depths densification occurs at a slower rate which is largely determined 
by the overburden pressure (Gray and Morland 1995). In SnowFrostIce we make the 
assumption that the combined effects of the metamorphosis of snow crystals and 
the densification of the lower snow layers is captured by the empirical compaction 
parameter � (mm mm-1 d-1). We use the following Equations (1-6) to describe the 
snow cover dynamics: 



 5

( )
( ) (6)                                           

(5)                                                  

(4)     
28

3
365
2sin

2

(3)                                  

(2)                                           

(1)                                           

max
min

max

airmfrfrf

mfair

depth
sns

sdepth

rfr
wet

rfs
dry

TTSWM
TTKM

KKtKK

SMP
t

S

MMP
t

S

MMP
t

S

−=

−=

�
�
�

�
�
� Δ++�

�
�

�
�
� +Δ=

−−=
Δ

Δ

−+=
Δ

Δ

−+=
Δ

Δ

ππ

ξ
ρρ  

 
Snow model parameters to be calibrated are listed in Table 1. 
 
The soil frost model 
 
When modelling soil frost we use an energy balance approach. Our simple approach 
does not include an annual energy budget for the soil system. SnowFrostIce 
simulates only the lower frost boundary Fdepth (m), resulting in one frozen soil layer 
ranging from the soil surface to Fdepth. For the soil water balance we use the 
routines implemented in the grassland model by Höglind et al. (2001) to obtain 
daily values of available soil water content xw (m3 m-3) (i.e. what is left from 
surplus liquid water after transpiration and evaporation is subtracted), which is 
used in the calculation of Fdepth. The soil layer is parameterised as in that grassland 
model. SnowFrostIce requires site-specific soil type parameters for soil water 
retention, but the only soil parameter to be calibrated is the thermal conductivity 
of the frozen soil �fs (J m-1 °C -1 d-1). 

Our way of estimating the lower frost boundary Fdepth is based on certain 
assumptions. Regarding surface temperature, we follow along the lines of the 
assumption made by Benoit and Mostaghimi (1985) that in any given 24-h period, 
the mean surface temperature of the soil or snow cover can be approximated by 
the daily mean air temperature for that same period. However, instead of using the 
daily mean air temperature at the snow cover surface (as Benoit and Mostaghimi 
(1985)) when calculating Fdepth, whenever a snow cover is simulated we use a 
simulated soil surface temperature Tsurf (°C) from Equation (15) as an 
approximation to the soil surface temperature to incorporate the insulating effect 
of the snow cover (note to Equation (7): during snow-free periods we assume Tsurf 
can be approximated by Tair). We assume a unidirectional stationary flow of heat 
between Fdepth and the soil surface, ignoring additional heat from e.g. lower 
unfrozen soil layers, percolating water, radiation and no freeze-point depression. 
We further assume a linear variation in soil temperature T(z) (°C) with respect to 
soil depth z (m) in the frozen soil layer, and that all available soil water xw within 
this layer freezes. It is the temperature difference between the soil surface and 
Fdepth that drives the process of soil frost formation in the model: 

(7)                                                         )(
*

depth

surf
surf F

TT
zTzT

−
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where Tsurf is the simulated temperature just above the soil surface, T* (°C) is the 
temperature where soil water freezes (we assume T* = 0°C). Following the 
assumption regarding T(z), Equation (7) is only valid when Fdepth > 0. We denote the 
heat flux density released when the soil water freezes QE (J m-2 d-1). Following an 
existing idea (Thorsen and Haugen 2007), we express QE using the above 
assumptions as: 

(8)                                                                  
t

F
LxQ depth

fwwE ∂
∂

−= ρ  

where xw is available soil water content, �w (1000 kg m-3) is density of water and Lf 
(335 kJ kg-1) is latent heat of fusion. When the soil cools down during autumn and 
winter, the heat released QE when the soil frost penetrates deeper into the soil is 
transported through the previously frozen soil. Using Fourier's Equation for heat 
transport in one-dimensional form, we express the heat transport through the 
frozen soil, termed Qfs (J m-2 d-1), as: 

(9)                                                                  )(
z
zTQ fsfs ∂

∂−= λ  

 
From the assumption of linear variation in soil temperature T(z) with depth z in 

frozen soil, we obtain 
z
zT

∂
∂ )(

 from Equation (7), and insert this into Equation (9): 

(10)                                                                  
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Equating Equations (8) and (10) and using the assumption T* = 0°C, we obtain an 
algebraic expression for the rate of change in Fdepth: 
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Equation (11) as 
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, by solving this Equation we can 

express the daily increase in frost depth as ( ) α22)1( −=+ t
depth

t
depth FF . Provided 

( ) 022)( >− αt
depthF , we can express the rate of change in Fdepth as follows: 
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The presence of a snow cover has an insulating effect on the soil. Following 
Jansson and Karlberg (2001) we assume a steady state heat flow through the frozen 
soil layer and the snow cover. The heat flux density through the frozen soil Qfs from 
Equation (10) thereby equals the heat flux density through the snow cover Qsnow (J 
m-2 d-1): 
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where �s (J m-1 °C -1 d-1) is the thermal conductivity of the snow cover. The 
parameter �s is treated as a constant and not calibrated. According to  Jansson and 
Karlberg (2001), a reasonable estimate for the ratio �fs/�s in our situation  
is �fs/�s � 10. We rearrange the above Equation to derive the following 
approximation of Tsurf: 

( )( ) (15)                                                       /101/ depthdepthairsurf FSTT +≈  
(note: during calculations Fdepth > 0 when soil frost is present). In the case of an 
existing snow cover but no soil frost (Fdepth = 0), we assume Tsurf to lie around 0°C. 
This assumption is in accordance with observations made by Iwata et al. (2008), 
and it is incorporated by an additional empirical expression preserving the 
insulating effect of the snow cover: 

( ) (16)                                                                                   e depthS
airsurf TT γ−≈  

where the empirical parameter � (m-1) is set to 65. This parameter � is not 
calibrated. 
 
Puddle formation and infiltration of meltwater 
 
Since we were unable to obtain topographical information for any location during 
this study, we assume the hypothetical field of interest to be an even, rectangular 
surface sloping at a low angle towards a water-blocking barrier at the lower end. 
The height of this barrier determines the maximum depth of the surface puddle. 
This maximum storage level is set to 50 mm. Baker and Spaans (1997) report that 
infiltration from puddles can occur despite the presence of a frozen soil layer of 
20-40 cm. Based on this observation, surface water (snow melt and rain) in 
SnowFrostIce is allowed to infiltrate into the soil if Fdepth < 20 cm. This assumption 
is also confirmed by Iwata et al. (2008). In reality, the surface water transfers heat 
to the soil, and since the frozen soil initially remains cold this may create a thin ice 
layer at the soil surface which impedes water infiltration and increases surface 
runoff (Stähli et al. 2004). Therefore, when Fdepth penetrates below 20 cm, we 
assume that the soil becomes impermeable to any further infiltration and the 
surface water is re-directed to the puddle area. If the maximum depth of the 
barrier at the end of the field is exceeded, the additional surface water runs off. 
When the soil starts thawing we let the infiltration rate of the puddle water follow 
the thawing rate (according to observations by Hayashi et al. (2003)) until  
Fdepth > 20 cm, when the remaining puddle water is drained as if the soil were 
unfrozen. 
 
Formation of ice layer 
 
When a surface puddle is formed, the water may freeze and form a basal ice layer. 
By regarding the puddle as an extremely dilute soil and setting the water content 
to unity, we use the same approach to calculate Idepth (mm) as we do for the soil 

frost. Provided ( ) 022)( >− βt
depthI , we get the following expression for the daily 

change in Idepth: 
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where 
fw

surfi

L
T

ρ
λ

β = , the thermal conductivity of ice is �i (19.4·104 J m-1 °C -1 d-1), 

the density of water is �w and the latent heat of fusion is Lf. 
 
Description of locations and data used in calibration 
 
The SnowfrostIce model was calibrated using observed depths of snow cover and 
lower frost boundary. The snow cover depth was measured in cm according to the 
Norwegian Meteorological Institute. The depth of the lower frost boundary was 
measured in cm using a frost tube (as used by DeGaetano et al. (2001) and 
described in Iwata et al. (2008)). We were unable to obtain information on the 
accuracy of the observations. We were also unable to obtain information on normal 
depths of snow cover and soil frost. We therefore present values of mean air 
temperature and precipitation sums from autumn to spring and frost sums. Table 2 
presents a geographical description of the locations, and Tables 3-6 provide a 
summary of the climate for each location for the current normal period in Norway 
(1961-1990) and for the calibration and validation periods. For each location we 
calculated the following from autumn to spring (i.e. from 1 September to 30 April): 
the mean 2 m air temperature, denoted mean(Tair); the temperature sum for days 
when Tair < 0, denoted � airT ; the sum of daily precipitation rates, denoted 

�Prec . 
 
Table 2: Locations used for calibrating the SnowFrostIce model 

Location     Grid              Elevation    Climate    Measurement  period 

                                     (m.a.s.l.)             Calibr.      Validation 

Kise            60° 77' N  127  Interior,  1993-1996   1996-1999 

                 10°  8' E              lake                 

Kvithamar   63° 49' N  40  Coastal    2001-2003   2003-2005 

                 10° 88' E                                   

Vågønes  67° 28' N  30  Coastal    1998-2001   2001-2003 

                 14° 45' E                                   

Holt           69° 65' N  20  Coastal    1996-1999   2005-2007 

                 18° 91' E                                   

Karasjok     69° 28' N  149  Interior       -       1998-1999 

                 25° 31' E                                       
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During the calibration period at Kise (Table 3), the first and third winter 
were both colder and had more frost compared with the normal period. The second 
winter was milder and had less frost. The first winter received more precipitation 
compared with the normal period, while the latter two were dryer. In the 
validation period all winters were slightly milder and had less frost than normal; 
the first winter was dryer than normal while the latter two were wetter. 

 
Table 3: Climate summary for Kise. Values are calculated for the months September-April for 
the current normal period in Norway (1961-1990), and for the respective calibration and 
validation periods. Mean(Tair) (°C) is the average 2 m air temperature, �Tair (°C day) is the 
temperature sum on frost days and � Prec (mm) is the precipitation sum 

Sept - Apr       61/90   93/94   94/95  95/96  96/97  97/98  98/99  

Mean(Tair)  -1 -2.5 1.1 2.2 0.8 1.2 0.2 

� Tair -761 -1068 -400 -1214 -629 -439 -611 

� Prec 340 368 294 188 273 421 436 
 

 
At Kvithamar (Table 4), both winters in the calibration period were milder 

than normal, but they had more frost. The first winter was wetter, and the second 
winter was dryer than normal. In the validation period, both winters was milder 
and wetter compared with the normal period. 
 
Table 4: Climate summary for Kvithamar. See caption to Table 3 for explanations 

Sept - Apr     61/90   01/02   02/03  03/04  04/05 

Mean(Tair)  1.5 3.2 1.7 3.2 3.3 

� Tair -269 -272 -385 -245 -225 

� Prec 597 682 508 604 891 
 
 

At Vågønes (Table 5), all winters in the calibration period were milder 
compared with the normal period, but the first and third winters had more frost 
days, while there were fewer frost days in the second winter. The first two winters 
were wetter, and the third winter was dryer than normal. In the validation period, 
both winters had more frost than normal, but only the first winter was milder than 
normal. The first winter was wetter than normal, and the second was dryer. 
 
Table 5: Climate summary for Vågønes. See caption to Table 3 for explanations 

Sept - Apr       61/90   98/99   99/00  00/01  01/02  02/03 

Mean(Tair)  1.3 1.9 2.6 2.3 2.6 1.2 

� Tair -284 -323 -264 -368 -330 -372 

� Prec 811 902 1156 561 983 735 
 
 

At Holt (Table 6), all winters in the calibration period were milder and had 
more frost than normal. The first winter was wetter while the latter two were 
dryer than normal. Both winters in the validation period were milder, had less frost 
and were wetter when compared with the normal period. 
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Table 6: Climate summary for Holt and Karasjok. Values within brackets represent the normal 
period for the Karsjok location. 98/99† represents the Karasjok location.  See caption to Table 3 
for explanations 

Sept - Apr       61/90        96/97  97/98  98/99  05/06  06/07  98/99† 

Mean(Tair)   -0.8 (-8.3)   -0.1 0.2 0.3 1.6 1.1 -8.5 

� Tair  -375 (-2199)  -468 -483 -432 -317 -322 -2295 

� Prec  765  (172)    804 627 578 831 817 207 
 

 
The winter in the validation period at Karasjok (Table 6) was approximately 

the same as the normal period, but slightly wetter. 
In addition to simulating Sdepth and Fdepth, SnowFrostIce simulates the 

thickness of ice Idepth resulting from the freezing of soil surface puddles. However, 
data on surface ice were scarce and there was no description of field topography 
available, forcing us to make assumptions on field topography. Thus we present full 
simulation results for only two locations; Holt in Troms county and Karasjok in 
Finnmark county. Based on data availability, we chose four locations for site-
specific calibration of the model spanning the south-north variation in regional 
climate. Table 2 gives a brief description of these locations. Karasjok was not 
included in the calibration. 

Observations of surface ice cover were scarce and data were only available 
for two sites: Holt (97/98, 98/99) and Karasjok (98/99). Ice observations from Holt 
came at a later stage in the project, and thus we had to use observations on snow 
cover and frost depth from the calibration period. 
 
Bayesian calibration of the SnowFrostIce model 
 
The SnowFrostIce model represents a simplification of different physical processes. 
Parameters used in process-based models have a physical meaning, but these are 
seldom precisely known, or are at best difficult to measure. We represented this 
uncertainty as a probability distribution over the parameters. Thus, if we define a 
parameter vector � for the model, then �(�) is said to be a joint probability 
density function (pdf) expressing our initial prior belief in the parameters. Given a 
data set D of model outputs, we update the joint pdf of the parameters by applying 
the Bayes Theorem: ( ) ( ) ( ) ( )D/|DD| ff θθπθπ =  where �(�|D) is the posterior 
distribution of � given the data D, f(D|�) is the likelihood of the data given the 
model outputs using parameters �, and f(D) is a normalisation constant. In Bayesian 
calibration of dynamic models, a large number of model runs are carried out, often 
in a Markov Chain Monte Carlo (MCMC) approach. We used the MCMC algorithm 
known as the Metropolis Random Walk. For further details on using Bayesian 
methods to calibrate complex models see Van Oijen et al. (2005b). The target 
posterior distribution was the stationary distribution of the Markov chain produced 
by the Metropolis Random Walk. 
 
Metropolis Random Walk 
 
The general idea is to randomly walk through the parameter space, running the 
model at each visited point, eventually forming a Markov chain. The starting point 
of this chain �0 is randomly chosen from the prior distributions for the parameters. 
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A new proposal parameter vector �’ is then chosen based on the current parameter 
vector �t 

(18)                                                           ' δθθ += t  
where � is the step length vector. It is also important that p(�) = p(-�) i.e. there is 
equal probability of stepping in either direction from the current point. We then 
compute the so-called Metropolis ratio 
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The next step is to generate a uniform random number ( )1,0~ Uu  and accept the 
proposal parameter vector �’ as the new �t+1 if u � r. Otherwise let �t+1 = �t. The 
chain consisting of all �t forms our Markov chain, which is our sample from the 
posterior distribution. 

The posterior distribution is thus a combination of prior knowledge and new 
information obtained from the data using the likelihood function. Measurement 
errors are used in the determination of how likely a model-data mismatch might 
be, i.e. if the data are informative and have a sharply peaked distribution (i.e. a 
small variance), the resulting posterior distribution will be narrower and more 
peaked than the prior distribution. This indicates that the parameter uncertainty is 
reduced. 
 
Defining prior probability distributions of the parameters 
 
Based on literature review, we defined the likely ranges [ ]maxmin , ii θθ  and mode 
values for the nine parameters. For parameters where range and mode value were 
suggested, we used a beta distribution as prior. For parameters �, �ns and �fs only a 
suitable range was found. For these three parameters we selected a flat uniform 

distribution within their range [ ]maxmin, ii θθ . In the calibration process we assumed 
the parameters to be independent a priori, implying that their joint prior 
distribution is equal to the product of their individual marginal pdfs. The 
parameters, along with their prior distributions, are presented in Table 1. 
 
Defining the data-likelihood function 
 
We used measurements on snow depth and lower frost boundary for the calibration 
of SnowFrostIce. Specific information about the precision of the measurements was 
not available, and thus we used the same approach as Van Oijen et al. (2005b) and 
chose the standard deviation of each measurement to be 30% of the mean value. 
To avoid a standard deviation of zero (if the observed variable was zero), the 
standard deviation was redefined as ( )ijD0.1;0.3max ⋅=o

ijσ  where Dij are the 
measurements on output j at time i. Assuming the measurement errors to be 
independent and Gaussian, we used Sivia's formulation (Sivia 2006) which was 
slightly modified to account for model discrepancy: 
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where o
ijσ  represent the lower bounds on the data noise and the residual is 

represented by ( )( ) o
ijijijij XMR σθ /,D −= , where ( )XM ij ,∗θ  are model outputs using 

input variables X and parameterisation �*. 
 
Determining jumps in the Metropolis Random Walk algorithm 
 
The step length vector � in the Metropolis Random Walk algorithm is very 
important in order to obtain convergence of the Markov chain produced, i.e. the 
targeted posterior distribution of the parameters. In our implementation the new 
candidate value 'iθ  for parameter i was i

t
ii δθθ +=' , where ( )ii aN ,0~δ . If the 

elements in the step length vector � are too small, the random walk algorithm will 
not move far enough from the current point in parameter space �t when proposing 
a new candidate parameter vector �’, and consequently the acceptance rate will 
be too large; and vice versa. In our case, choosing ai so that the acceptance rate 
was between 0.15 and 0.5 (according to Roberts (1996)) was done by trial and 
error. Each element ai of the vector � was chosen according to ( )minmax

iiii ca θθ −= , 

where ci is a constant found by trial and error, and ( )minmax
ii θθ −  is the width of prior 

pdf of parameter �i. 
 
Determining convergence of the Markov chains 
 
A central issue when using an iterative simulation method such as the Metropolis 
Random Walk algorithm is to determine when the chain has converged to the 
desired posterior distribution. One option, suggested by Gelman and Rubin (1992), 
is to generate multiple chains followed by calculation of the scale reduction factor 

R̂ , which is used to determine the length of the "burn-in" phase. The "burn-in" of 
the chain is the first part where the chain is influenced by the starting point until it 
reaches stationarity. We determined the "burn-in" phase to last until 2.1ˆ <R  
according to Gelman (1996); when R̂ is near 1 it means that the Markov chains are 
essentially overlapping. We randomly sampled two starting points from the prior 
distribution, and used the R̂  to determine when the two chains had converged to 
the desired posterior distribution. 
 
Sensitivity analysis of SnowFrostIce 
 
When working with models, sensitivity analysis (hereafter referred to as SA) is 
recommended as part of the process (Kokkonen et al. 2006). For the SA to be 
meaningful, the practitioner should decide beforehand on how to define the 
importance of the parameters, i.e. the type of question the SA is expected to 
answer (Saltelli et al. 2008). In our case, we would like to know which of the 
parameters can be fixed anywhere within their prior bounds without affecting 
model outputs, i.e. which parameters are not important. This is helpful in relation 
to model simplification. 

In order to identify non-important parameters in the model, we carried out a 
screening exercise using the improved sensitivity indices from the Morris method as 
described by Campolongo et al. (2007). This method is relatively simple to 
implement. 
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The Morris method proposes two sensitivity measures, the main purpose of 
which is to determine the model k parameters that can be considered to be either 
(i) not important, (ii) linear and additive, or (iii) non-linear or involved in 
interactions with other parameters. For each of the parameters, two sensitivity 
measures are computed; 	, which evaluates the overall influence of the parameter 
on the model output (main effect, or elementary effect EE), and �, which 
evaluates collectively all the higher order effects due to non-linearity and/or to 
interaction with other parameters. The Morris method was originally used for 
parameters following uniform distributions in [0, 1]. If the k parameters follow 
other distributions, Campolongo et al. (1999) suggest that rather than sampling 
directly from these distributions, the sampling should be performed in the space of 
the quantiles of these k distributions (i.e. each parameter is discretised into p 
levels, and each quantile qp varies in [0,1], producing as sampling space a k-
dimensional unit hypercube). The actual parameter values would subsequently be 
derived from their known distributions. In this SA of SnowFrostIce, we investigated 
the k = 9 parameters from the calibration (Table 1). The input space we used was 
the sub-space � comprised of the k-dimensional unit hypercube of the p = 6 
equidistant quantiles in [0,1] from the prior distribution of the parameters ( )θπ . 
Outputs from SnowFrostIce are time series, and for this SA we needed a scalar 
value. Thus, for the simulation runs required in the SA, we used as output the log-
transformed likelihood from Equation (20), i.e. log(f(D|�)); the likelihood being the 
probability of the observed data D given a certain model parameterisation �. 
  By randomly sampling parameter vectors � from � and calculating EE (see 
Campolongo et al. (2007) for details) for each of the nine parameters, we obtained 
a sample from the distribution for each EE, termed EEi ~ Fi(	i, 
i). The sensitivity 
measures 	i and 
i proposed by Morris are the mean and standard deviation of Fi, 
respectively. To estimate 	i and 
i, the sampling strategy proposed by Morris is to 
create r trajectories in parameter space �. Each of these r trajectories contains 
(k+1) points and results in k elementary effects (i.e. estimates of one EE per 
parameter), leading to a total of r(k+1) sample points corresponding to the number 
of model runs required for the complete SA. A very nice stepwise presentation of 
this method is presented in Saltelli et al. (2008). 

A high 
i value for parameter �i implies that the corresponding EEi-value for 
�i at one point in � is considerably different from another EEj-value (i � j) for the 
same parameter �i located somewhere else in �, i.e. that this particular EE-value is 
influenced by the values of the other parameters or nonlinearities. A low value for 

i suggests that the EEi-value associated with �i is independent from the values of 
the other parameters and thus it is not involved in interactions or nonlinearities. 

To avoid type II errors of failing to identify important parameters, 
Campolongo et al. (2007) suggest replacing 	 by 	*; an estimate of the mean of the 
distribution of the absolute values of the elementary effects Gi, i.e.  
|EEi| ~ Gi(	*i, 
i). To properly characterise non-influential parameters one must 
therefore simultaneously consider the vectors �* and � (see Figure 1 for SA results 
for the Kise site). 
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Figure 1: Sensitivity analysis results for the location Kise showing �* vs. � based on r = 100 
trajectories. Low values for both �* and � identifies SWret, SWrf and �Kmax as the least 
important parameters. 
 

 
When conducting the SA, we tried the same approach for all locations. First 

we sampled trajectories from the prior distribution and calculated �* and �. Then 
we sampled from the posterior distribution and calculated �* and �. Sampling 
trajectories from the prior distribution gave very similar results for all sites (as 
those for Kise, Figure 1). When we sampled from the correlated posterior 
distribution the results in �* and � were different when comparing sites. For all but 
one site the same non-important parameters were identified, but highly correlated 
parameters influenced the results. For example, at Kise, the parameter Trs was 
wrongly recognised as being non-important. This illustrates that the Morris method 
can produce different results depending on whether the parameters are correlated 
or not. We did not find examples in the literature of how to handle correlated 
parameters when using the Morris method. Trs is an important parameter, as was 
clearly shown when sampling trajectories from the prior distribution. Based on this 
observation, we decided to use the assumed uncorrelated prior distribution when 
sampling trajectories for the screening exercise. 
 
Model validation and predictive uncertainty 
 
The data sets for each location were divided in two and one part was used for 
calibration and one for validation (Table 2). To evaluate the predictive uncertainty 
of the model after calibration, we sampled 20 parameter sets from the posterior 
distribution and calculated the subsequent mean and standard deviations of the 
model outputs. 
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Results 
 
Results from the Bayesian calibration 
 
The main result of the Bayesian calibration procedure is the estimated joint 
posterior distribution of the model parameters. This correlated multi-dimensional 
joint distribution is difficult to visualise, so we present the marginal posterior 
distribution for single parameters. 

We determined the success of the calibration by evaluating the estimated 
marginal posterior distributions. If they are narrower than their corresponding prior 
distribution, this indicates that the parameter uncertainty has been reduced. The 
calibration at each location used two chains of length 300,000, and a unique step 
length vector for that location. 

The part of the Markov chains succeeding the burn-in point, which we 
determined as the point from where R̂  remains below 1.2, comprises the 
marginal posterior distribution of the parameter (Gelman 1996). The right column 
of Figure 2 shows plots of R̂  for the parameters �, �ns and Trs, and the centre 
column shows the estimated marginal posterior distribution for the same 
parameters. Panels in the left column in Figure 2 show trace plots of the Markov 
chains for parameters �, �ns and Trs calibrated at the Kise site. These trace plots 
are used to verify that the two chains for each parameter stabilise around the same 
value, and that the posterior distribution is properly explored. 

 
Table 7: Parameter values for SnowFrostIce which gave highest posterior  
density �MAP, and the median values θ~ for the sites Kise, Kvithamar, Vågønes  

and Holt 
Parameter Kise Kvithamar Vågønes Holt 

�i �MAP(i) )(
~

iθ  �MAP(i) )(
~

iθ  �MAP(i) )(
~

iθ  �MAP(i) )(
~

iθ  

Trs -0.1 -0.1 -0.6 1 2.3 2 3.1 3 

Tmf -1.4 -1.5 3.1 2.1 0.7 1.3 -3 -2.3 

� 0.02 0.02 0.025 0.12 0.15 0.13 0.01 0.02 

�Kmax 4.5 3.6 0.79 1.5 1.8 1.5 0.5 2 

Kmin 1.1 1 0.43 1.6 0.2 2.3 2.6 3.5 

SWrf 0.002 0.48 0.87 0.68 2.61 0.63 3.65 0.78 

�ns 128 124 216 89 84 95 250 231 

SWret 0.32 0.07 0.21 0.22 0.18 0.22 0.35 0.2 

�fs (104) 8.6 8.8 12.6 10.3 17.6 13.1 13.7 13.8 
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Figure 2: Panels in top row show results for parameter �; centre row shows results for 
parameter �ns; bottom row shows results for parameter Trs. Panels in the left column show 
trace plots of the two parallel chains (red - chain 1, black - chain 2). Panels in the centre 
column show the marginal posterior distribution of the parameter �(�i|D). Panels in the right 

column show the scale reduction factor R̂ , calculated at each 20th iteration. 
 
In order to visualise the marginal posterior distributions for all locations 

simultaneously, we fitted continuous distributions to the samples from the 
posterior generated by the MCMC. They are shown, together with the prior 
distributions, in Figure 3. The marginal posterior distributions are either multi-
modal, skewed or both. It was thus informative to present both the maximum 
posterior estimate and the median value of � (�MAP and θ~ , respectively) from the 
marginal posterior distributions as summary statistics (see Table 7), complemented 
by plots of the marginal posterior distributions in Figure 3 showing posterior 
parameter uncertainty. The parameter vector �MAP represents the single best 
parameter vector at the different locations. For most of the parameters, when 
comparing the marginal posterior distributions in Figure 3 to their respective prior 
distribution (black lines), it is clear that the calibration process reduced the prior 
parameter uncertainty. However, for the parameters related to liquid water in the 
snow cover, SWrf and SWret, we can see that measurements on snow depth alone 
did not provide enough information to depart from our prior estimates (for the Kise 
site, they are more peaked). For the precipitation threshold temperature Trs the 
parameter uncertainty was least reduced at Kvithamar compared with the other 
locations. For Tmf the parameter uncertainty was reduced more at Kise and Holt 
than at Kvithamar and Vågønes. For Kvithamar the median value of Tmf (see Table 
7) was larger than the median value of Trs (this is shown in Figure 4 (b) where the 
green line is located slightly above the red line). The uncertainty in �Kmax and Kmin 
was reduced for Kise and Holt, but for Kvithamar and Vågønes there was not much 
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improvement. The parameter uncertainty was reduced for the remaining �, �ns and 
�fs. 

 
 

 
Figure 3: Continuous density function estimations of the prior distributions (black) and the 
marginal posterior distributions for all locations: Kise (blue), Kvithamar (red), Vågønes (green), 
Holt (magenta). 
 
 
Results from the sensitivity analysis 
 
At each of the locations used in the calibration, we randomly generated r = 100 
different trajectories for the computation of EE; i.e. r(k+1) = 1000  parameter 
vectors were sampled from � and thus 1000 model runs were used for the SA. The 
results were very similar for each location. Figure 1 shows the sensitivity indices �*i 
and �i for each parameter for the Kise site. We find the parameters SWret, SWrf and 
�Kmax in the lower left-hand corner, and the remaining parameters almost linearly 
spread. Inspection of histograms of the sampled parameter values suggests that the 
ranges of the prior intervals were adequately explored. 

The parameter �fs was excluded from the SA since Sdepth affects Fdepth and not 
vice versa. 
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Figure 4: Climate during validation period for locations (a) Kise, (b) Kvithamar, (c) Vågønes and 
(d) Holt. Solid lines show Tair (blue) and bars show daily precipitation; median values for Trs 
(red) and Tmf (green). See Table 7 for parameter values. 
 
 
Validation of the model 
 
The SnowFrostIce model was validated at all locations used in the calibration. For 
each of the locations we sampled 20 parameter vectors from the posterior 
distribution and calculated the mean and standard deviation of the model output. 
Variation in model output is shown as the mean ± one standard deviation. Figure 5 
shows validation results for each of the four locations. The sub-figures show the 
variation between model output and observed values on depths of snow and soil 
frost. Figure 4 shows the meteorological variables during the validation period at 
each location; daily mean air temperature, daily precipitation rate and the median 
values from the posterior distribution of the threshold temperatures for 
precipitation Trs and snow melt/refreezing Tmf. If the median value of Trs is close to 
that of Tmf they appear as one line in the sub-figures. See Table 7 for these 
parameter values. The validation at the Kise site shows little variation in model 
output. At this site Sdepth is overestimated during the winter of 97/98. This is as 
expected when considering that Tair < Trs for most of the precipitation events (see 
Figure 4 (a)). Frost depth at Kise during 97/98 is initiated earlier than observed, in 
addition to being slightly underestimated. Fdepth during the 98/99 winter is 
overestimated; too high frost rates initially caused Fdepth to be shifted downwards  
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Figure 5: Validation of model SnowFrostIce for locations (a) Kise, (b) Kvithamar, (c) Vågønes and 
(d) Holt. Solid lines (mean ± one standard deviation) show Sdepth (blue) and Fdepth (red); 
observed snow cover depth (*); observed lower frost boundary (	). 
 
compared with observations. The validation for Kvithamar, Figure 5 (b), shows 
more variability in model output compared with Kise, especially towards the end of 
springtime for Sdepth. The data points here are captured within this variation. At 
Vågønes, Figure 5 (c), model performance for Sdepth is quite good, but Fdepth is 
overestimated (more severely during 01/02 than 02/03). At Holt, Figure 5 (d), Sdepth 
is overestimated during 05/06 (as with Kise 97/98) because Tair < Trs for most of the 
precipitation events in this winter. Note especially events between January and 
May 2006 with P > 20 mm, see Figure 4 (d), where precipitation is simulated as 
snow. Fdepth looks reasonably accurate, but complete thaw is predicted too early 
for both validation years. Variation in model output is in general higher for 
Kvithamar and Holt than for Vågønes and Kise. Figure 6 shows all output (snow 
cover, soil frost and surface ice) for Holt (97/98) and Karasjok (98/99). We had no 
data to calibrate SnowFrostIce for Karasjok. For Karasjok we sampled parameter 
values from �(�|D) obtained for Kise; both locations having interior climate. Holt 
and Karasjok were the only locations where ice observations were available. 
 
Discussion and conclusions 
 
In this paper we present a new model for the simulation of snow depth, soil frost 
depth and depth of surface ice cover. We calibrated the model by means of well-
documented Bayesian methods, and conducted a qualitative sensitivity analysis. As 
far as we know this practice is still relatively new for this kind of model. The 
results presented here, both regarding assumptions on prior pdfs and the resulting 
posterior pdfs, and the simple yet very effective method of sensitivity analysis, are 
useful for the modelling community. 
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Figure 6: Simulation results for the two locations (a) Holt and (b) Karasjok. In the top panel of 
the sub-figures, solid lines show simulated values (mean ± one standard deviation) and (*) 
indicate observed values; blue represents snow cover, and red represents lower frost boundary. 
In the bottom panel, solid green lines represent simulated (mean ± one standard deviation) ice 
cover depth, and (x) indicate observed values for ice cover depth. 
 

A study comparing four models simulating soil frost (Kennedy and Sharratt 
(1998)) (the two finite difference models SHAW and SOIL, and the two energy 
balance models by Benoit and Gusev, respectively) concluded that the simpler 
energy balance models generally overestimate frost depth. However, one weakness 
of the models (investigated by Kennedy and Sharratt (1998)) that also simulate 
snow cover is the estimation of snow depth. Snow cover has a strong influence on 
the estimation of soil frost depth, e.g. through snow depth and snow density; both 
affecting the thermal conductivity of the snow cover. Therefore accurate 
simulation of snow cover is important for the simulation of soil frost depth. 

Our new model SnowFrostIce for simulating the effects of winter climate on 
soil surface is designed to be included in a grassland model. This restricts 
SnowFrostIce with regards to the number of parameters included. We calibrated 
SnowFrostIce against independent data from four locations in Norway, capturing 
climatic variation from south to north and coastal to inland. We also identified the 
key parameters by conducting a sensitivity analysis. 

It is important to bear in mind that SnowFrostIce represents simplifications 
of real world processes which are described at various levels of complexity. Some 
of the parameters used have a physical interpretation, but they are seldom 
measured and quantitative data are scarce in the literature. This means the 
parameters and thereby also the model outputs are subjected to uncertainty. The 
Bayesian method we used aims to quantify and reducing these uncertainties rather 
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than maximizing model fit. When selecting an optimal parameter set for a 
simulation run for a specific location, we chose the parameter values which 
maximized the posterior distribution �MAP (Table 7). A consequence of this 
procedure was that these specific parameter values must be interpreted 
accordingly (i.e. reducing model uncertainty) rather than given a clear-cut physical 
interpretation. 

When carrying out the Bayesian calibration, it was difficult to obtain 
convergence of the Markov chains for the parameters relating to liquid water in the 
snow cover (SWret and SWrf). This may imply that the calibration data were not 
sufficient for improving the prior knowledge related to these parameters. 

The estimated posterior distribution is different for each location. We 
expected some regional differences for the melting parameters Kmin and �Kmax due 
to e.g. regional differences in radiation, altitude (m.a.s.l.) and ocean vicinity, but 
not for the threshold temperatures for precipitation Trs and snow melt/refreezing 
Tmf, or the density of new snow �ns. This might indicate that the model needs 
geographical adjustments and a functional description of �ns. The differences in the 
results for the thermal conductivity of frozen soil �fs were expected, since the soil 
types are different for each of the locations. 

A reason for erroneous estimation of Sdepth could be that the calibrated value 
of Trs is wrong, leading to observed rain being simulated as snow or vice versa. In 
addition, by using daily mean air temperatures the model might associate incorrect 
air temperatures to precipitation events. For instance, observed air temperature 
could be below 0°C for most of the day, followed by above 0°C at the end of the 
day, resulting in mean daily temperature below Trs. If precipitation had been 
observed as rain by the end of the day, it would still have been simulated as snow. 
The overestimation of Sdepth might be due to important processes being omitted, 
e.g. the heat content of rain is not incorporated in the model and thus this kind of 
additional snow melt is not included. A third reason for erroneous estimation of 
Sdepth might be redistribution of snow by wind, a factor not taken into account in 
the model. 

The amount of available observations for the calibration is important. Using 
data from two and three years is not sufficient to capture the inter annual 
variation in snow cover and soil frost. The limited amount of observations on both 
snow cover and soil frost at the same location has an effect on the results from the 
calibration. In a preliminary study, the snow module of SnowFrostIce was 
calibrated for the Kise location using two, four, six, eight and finally 10 years of 
snow depths observations (unpubl. ms.). Including increasingly more data resulted 
in a more narrow posterior distribution, but convergence was also increasingly 
harder to obtain. Including more observations also resulted in a shift in the location 
of the posterior parameter distribution. This showed that the inter annual variation 
in winter weather will affect the results of the calibration. As long as more data 
are included, the results are likely to keep varying until the whole spectrum of 
weather situations is included. Ideally we should have had observations comprising 
a full climate period (thirty years) to capture the variation within a normal period. 
In a study comparing thirty-three snowpack models by Rutter et al. (2009) only two 
years of observations were available. In the present study, the data set was split in 
two in order to conduct the validation which otherwise would have to be postponed 
until more observations became available. 

The parameters related to snow melt (Tmf, Kmin and �Kmax) are less uncertain 
for Kise than for the other locations (see Figure 3). This contributes to less 
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uncertainty in the snow depth simulation at Kise compared to the other locations. 
At Kvithamar, in addition to the uncertainty of Tmf, this parameter also has a high 
numerical value (see Table 7) compared to the other locations. This leads to more 
uncertainty in the melting period at Kvithamar and also a delayed onset of snow 
melt in the simulations compared to e.g. Kise. The results from the sensitivity 
analysis showed that �Kmax was the least important parameter related to snow 
melt. It is therefore reasonable to attribute the uncertainty and delay in snow melt 
mainly to the uncertainty of the parameters Tmf and Kmin. 

In this study we used the likelihood of a sampled parameter set given the 
data (see Equation (20)) as a scalar output when calculating the sensitivity indices 
	* and 
. If we on the other hand were to use e.g. daily simulated snow depth 
values as scalar output in the SA, we would have to calculate one pair of  	* and 
 
for each of these Sdepth values. This would provide an answer to the question of 
which parameters that were most important on which day during the whole 
simulation period. However, by performing two SA where the first SA uses depth of 
snow cover on a specific day during midwinter, and the second SA uses depth of 
snow cover on a specific day towards the end of winter might give further 
indications on which parameters are most important regarding snow melt in cold 
and mild periods, respectively. 

The purpose of our SA was to identify key parameters in the model. Here we 
used the Morris screening method to identify the non-important parameters. In 
Figure 1,  the parameters SWrf, SWret and �Kmax are recognised as being less 
important (low values for 	* and 
). Following how we defined parameter 
importance in our SA, the SA results suggest that varying these parameters within 
their prior bounds would not markedly affect model output. We can also find 
support for this conclusion in the calibration results. Figure 3 shows that the 
posterior distribution for the three non-important parameters has not changed 
much compared with the prior distribution, implying that no new information is 
added through the data. 

The ability of SnowFrostIce to simulate the maximum depth of the snow 
cover (solid black circle �), and the maximum depth of the soil frost (solid black 

square 
) is presented in Figure 7. Each pair of points (� and 
) represent one of 
the winters from the validation periods. Thus, three pairs correspond to Kise, two 
pairs each to Kvithamar, Vågønes and Holt, and one pair to Karasjok. The points lie 
close to the 1:1 line, indicating satisfactory model performance. The maximum 
depths of snow cover and soil frost are good indices to show the trends of the snow 
cover and soil freezing in each winter, and they are both appropriately estimated 
by the model.  

The approach to calculating soil frost, by balancing energy, is similar to that 
proposed by Benoit and Mostaghimi (1985). Our soil frost model, although we made 
some critical assumptions (e.g. estimation of the soil surface temperature, a 
constant thermal conductivity of frozen soil, a constant thermal conductivity of 
snow), is even simpler than the Benoit model and, as shown when tested on 
independent data sets (see Figure 7), the ability of SnowFrostIce to estimate 
maximum lower frost boundary is also quite good. 
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Figure 7: Collective scatterplot of measured and estimated maximum values of the depths of 
snow cover Sdepth (�) and soil frost Fdepth (
); each point represents one independent set of 
data from the validation periods (including Karasjok). 

 
 
The simulation of ice cover at Holt and Karasjok were based on the 

assumptions outlined in the sections 'Puddle formation and infiltration of 
meltwater' and 'Formation of ice layer'. The results shown in Figure 6 indicate that 
our simple approach is a sound starting point for further development of this 
module. 

We conclude that our simple yet effective method for modelling depths of 
snow cover, lower frost boundary and soil surface ice provides reasonable results, 
making it suitable for incorporation into more complex models. 
 
Continued work 
 
In order to simulate crop damage due to e.g. ice encasement, there is a need for 
better description of local field topography, such as quantifying the area of the 
field that can potentially be covered by surface puddles. This will be of help when 
simulating the amount of plants dying due to ice-related stresses. These 
refinements should be followed by further model validation. 

The results from the calibration and SA indicate scope for model 
improvement. A modification motivated by the calibration results is a functional 
description of �ns. In addition, the results from the SA suggest lumping together (or 
disregarding) the processes related to liquid water within the snow cover and 
replacing the sinusoidal snow melt function by a constant melt rate. 
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Nomenclature 
Fdepth   simulated depth of lower frost boundary (m) 

Idepth   simulated thickness of surface ice cover (m) 

K       degree-day temperature index for snow melt (mm °C-1 d-1) 

Kmin    minimum value of K (mm °C-1) 

Kmax    maximum value of K (mm °C-1) 

Lf      latent heat of fusion (J kg-1) 

M          snow melt rate (mm d-1) 

Mrf     refreezing rate (mm d-1) 

P          precipitation rate (mm d-1) 

Pr      simulated daily precipitation rate as rain (mm d-1)

Ps      simulated daily precipitation rate as snow (mm d-1)

QE   heat flux density from freezing of soil water (J m-2 d-1)

Qfs   heat flux density through frozen soil (J m-2 d-1)

Qsnow   heat flux density through snow cover (J m-2 d-1)

Sdry    water constituent of snow cover in solid state (snow and ice) (mm)  

Swet    liquid water constituent of snow cover (mm) 

SWE          snow water equivalent (mm) 

SWret   retention capacity of snow cover (mm mm-1) 

SWrf   degree-day temperature index for refreezing of liquid water within snow cover (mm °C-
1 d-1) 

Sdepth   depth of simulated snow cover (m) 

Tair   daily mean air temperature at 2 m height (°C)

Tsurf   simulated temperature in void between soil surface and snow cover (°C)  

Trs      daily mean air temperature below which precipitation is simulated as snow (°C) 

Tmf      daily mean air temperature below which water within snow cover refreezes (°C) 

T*   daily mean air temperature below which soil water freeze (°C) 

xw   volumetric content of available soil water (m3 m-3) 

z           soil depth (m)  

�   empirical parameter (m-1)

�fs   thermal conductivity of frozen soil (J m-1 °C -1 d-1) 

�i   thermal conductivity of surface ice cover (J m-1 °C -1 d-1) 

�s   thermal conductivity of snow cover (J m-1 °C -1 d-1) 

�ns   density of falling new snow (kg m-3) 

�w    density of water at 0 \, °C (kg m-3) 

�s    density of snow cover (kg m-3) 

�  snow cover compaction parameter (mm mm-1 d-1)
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Abstract

Timothy (Phleum pratense L.) is the most important forage grass in Scandinavia and it is
therefore highly interesting to study how it will perform in a changing climate. In order to model
winter survival, the dynamics of hardening and dehardening must be simulated with satisfactory
precision. We investigated an early timothy frost tolerance model (LT50 model), and an LT50
model for winter wheat. Based on the assumption that timothy has no vernalization requirement,
unlike winter wheat, but does have the ability to adapt to cold temperatures in a process linked to
stage of development, two alternative versions of the winter wheat model were also constructed.
These four models were calibrated by a Bayesian approach using observations on LT50 for the
timothy cultivar Engmo. The models were validated using independent observations at different
locations reflecting differences in climate. A sensitivity analysis, using the Morris method, to
identify important model parameters suggested that there is a connection between frost tolerance
and stage of plant development, even if there is no vernalization requirement. The simplified
winter wheat model was selected as the best candidate based on model selection criteria and
its ability to capture the hardening and dehardening processes. The results from the Bayesian
calibration suggest that there are no major regional differences in Norway calling for regional
calibration. However, cultivar-specific calibration is probably required, since there are hardy and
less hardy cultivars within the same species. A functional LT50 model would allow risk assess-
ments to be made of future winter survival using specifically tailored and downscaled climate
scenarios.

Key words: Modelling, frost tolerance, timothy, Bayesian calibration, sensitivity analysis

1. Introduction

Overwintering is a central issue in forage production in Scandinavia. Plants adapt to winter
conditions by reallocating assimilates from growth to storage organs and by undergoing a num-
ber of physiological changes aimed at avoiding or mitigating cellular injuries caused by sub-zero
temperatures. This acclimation to cold temperatures is often referred to as cold hardening. When
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springtime comes, or during mild spells in mid-winter, the plants deharden (de-acclimate), and
if the mild period is sufficiently long or the temperature is sufficiently high, growth is resumed.
Timothy (Phleum pratense L.) is the most important forage grass in Scandinavia, and it is there-
fore interesting to study how it will perform in a changing climate. In order to model winter sur-
vival, the dynamics of hardening and dehardening must be simulated with satisfactory precision.
The hardening status of plants is often quantified by measuring the LT50, i.e. the temperature
at which 50% of the plants are killed in controlled freezing experiments. In the present study
we explored different ways of simulating LT50 in timothy. The starting point was the model
for timothy presented by Van Oijen et al. (2008). Preliminary studies showed that this model
did not simulate LT50 with satisfactory precision (ibid.), and therefore a model for winter wheat
developed by Bergjord et al. (2007) was also included. As this latter model seems to capture
the LT50 dynamics of winter wheat in Norway with relatively good precision, we wanted to test
whether it could also be used for simulating LT50 in timothy. Timothy and winter wheat are both
graminoids, and as relatives they have many common morphological and physiological traits.
However, there are also important differences. Winter wheat needs to be vernalized in order to
develop flowering stems, whereas timothy does not (Heide, 1994). Moreover, in winter wheat
there is a link between vernalization and hardening, more specifically plants that are fully vernal-
ized cannot harden at the same rate as pre-vernalization plants (Fowler et al., 1999; Fowler and
Limin, 2004). The lack of vernalization requirement in timothy suggests that the wheat model
can be simplified in order to simulate LT50 in timothy. However, although timothy has no vernal-
ization requirement, the ability to harden may still be linked to plant development (Rapacz, 2002;
Kalberer et al., 2006). Based on this assumption, we constructed two alternative versions of the
winter wheat model, with the vernalization requirement replaced by simpler functions describing
plant development, and with links between these functions and plant hardening ability.

The aim of the work was to present different versions of the model and to identify the best
candidate for further work, based on comparison of simulations and observations of LT50 data
from field experiments carried out at five different locations in Norway. Data from one year
at three different locations were used for multi-site calibration, and independent data from four
locations were used for site-specific validation. We used a Bayesian approach to obtain an esti-
mate of the joint posterior distribution of the model parameters based on non-informative prior
distributions for the parameters and an observational data set. We also conducted a sensitivity
analysis identifying the least important parameters in order to aid in the model simplification
process. Obtaining an LT50 model that performed satisfactorily would make it possible to per-
form risk analyses for future winter survival using specifically tailored and downscaled climate
scenarios.

2. Methods

2.1. Frost tolerance (LT50) models

We compared four LT50 models, each simulating the course of frost tolerance in timothy.
In the following we give a description of each model, using the original parameter names to
facilitate comparisons with the original literature. All model parameters were assumed to be
cultivar-dependent. A common feature of the LT50 models investigated in this study is that we
used the SnowFrostIce model (Thorsen et al., 2009) to simulate winter climate effects (snow
cover, soil frost and soil surface temperature) on the soil surface. This is where the main apex
of the grass plant is located during winter. The simulated soil surface temperature Tsurf (°C) was
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used as driving temperature in all LT50 models. Driving variables for the SnowFrostIce model,
in turn, are observed daily mean air temperature Tair (°C) and precipitation Prec (mm day-1) (see
Table 1). The differential equations for LT50 were solved numerically using the Euler method
with a fixed time step of one day. This also applied for the SnowFrostIce model.

2.1.1. Model 1: LINGRA timothy model
The first model candidate is based on the key assumptions: (1) a target LT50 value exists

for the test cultivar that is a linear function of the ambient soil surface temperature Tsurf; (2) one
equation applies to both hardening and dehardening rates. Both the hardening and dehardening
rates are proportional to the difference between target and actual LT50 value, using the same
proportionality constant KLT50 (°C °C-1). The daily change in LT50 for Model 1 is calculated
as follows:

d
dt

(LT50) =
1

TCLT50
([LT50MX + α(T ) KLT50] − LT50) (1)

α(T ) =
{

Tsur f − THard if Tsur f < THard

0 otherwise

where TCLT50 is a scaling parameter (d), LT50MX (°C) is the maximum LT50 value (i.e. the
LT50 value of unhardened plants), KLT50 (°C °C-1) is a proportionality constant, THard (°C) is
the threshold temperature for hardening and LT50 (°C) is the current LT50 value.

2.1.2. Model 2: FROSTOL wheat model
A detailed description of Model 2 is presented by Bergjord et al. (2007). This model simu-

lates LT50 in winter wheat and is based on a Canadian model for LT50 in winter wheat proposed
by (Fowler et al., 1999) and further developed by Bergjord et al. for use in an oceanic climate. As
input data, Model 2 requires observed soil temperature at 2 cm depth and snow cover depth. Our
implementation of Model 2 was linked to the SnowFrostIce model, which provides estimates for
both the soil temperature at 2 cm depth and snow cover. Thus Model 2 only requires daily input
on mean air temperature and precipitation rates. The frost tolerance in Model 2 is calculated as:

d
dt

(LT50) = RATED + RATES + RATER − RATEH (2)

where frost tolerance is increased by hardening (RATEH), and decreased by dehardening (RATED)
and two stress-related functions. The first of these stress functions (RATES) is related to the
exposure of plants to very low temperatures, and the second function is related to anaerobic con-
ditions (RATER) when the soil temperature is approximately 0 °C and the soil is simultaneously
covered by snow. All rates have units (°C d-1). Hardening takes place when Tsur f < 10 °C:

RATEH = Hparam(10 − Tsur f )(LT50 − LT50MN) (3)

where Hparam (d-1 °C-1) is a scaling parameter originally assumed to be independent of cultivar,
LT50 is the current LT50 value, and LT50MN is the maximum frost tolerance of the cultivar. The
loss of frost tolerance due to dehardening RATED is also calculated according to Fowler et al.
(1999):

RATED = Dparam(LT50i − LT50)(Tsur f + κ)ξ (4)

where Dparam (d-1 °C-ξ) is a scaling parameter assumed to be independent of cultivar, κ (°C)
is a temperature shift constant and LT50i is the upper threshold for dehardening for the cultivar,
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Table 1: Variables and parameters used in the LT50 models. Original parameter names have been kept to facilitate
comparisons with source literature

Common LT50 simulated frost tolerance (°C)
variables and Tair daily mean air temperature (°C)
parameters: Prec daily precipitation rate (mm d-1)

Tsurf simulated soil surface temperature (°C)
LT50MX maximum LT50-value (°C)
THard threshold temperature for hardening

or dehardening (°C)
Model 1: TCLT50 scaling parameter (d)

KLT50 proportionality constant (°C °C-1)
Model 2: RATER respiration under snow stress (°C d-1)
FROSTOL RATES low temperature stress (°C d-1)
winter wheat VR daily rate of vernalization (-)
model VD vernalization days (d)

TmaxV maximum temperature for vernalization (°C)
TminV minimum temperature for vernalization (°C)
ToptV optimum temperature for vernalization (°C)
Sparam low temperature stress coefficient (°C-1)
Rparam respiration stress coefficient (d-1)
SdepthMN min snow depth for respiration stress (m)

Common RATED daily rate of dehardening (°C d-1)
parameters RATEH daily rate of hardening (°C d-1)
for models LT50MN minimum LT50-value (°C)
2, 2a and 2b: Hparam hardening coefficient (d-1 °C-1)

Dparam dehardening coefficient (d-1 °C-ξ)
ξ empirical exponent (-)
κ temperature shift constant (°C)

Model 2a dψ start day of reduction in
rehardening ability (d)
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calculated according to Fowler et al. (1999) as LT50i = −0.6 + 0.142 LT50MN. The constant
κ was originally equal to 4 in the FROSTOL model, and was therefore not calibrated for this
model.

The calculation of both RATEH and RATED requires an estimate of the state of vernalization.
At the time of vernalization completion, the threshold temperature for dehardening is lowered,
and the plant’s ability to harden and reharden is switched off. The daily rate of vernalization
(VR) is calculated according to Wang and Engel (1998) as:

VR =
2(Tsur f − TminV )α(ToptV − TminV )α − (Tsur f − TminV )2α

(ToptV − TminV )2α (5)

where α = ln 2/ ln
[
(TmaxV − TminV )/(ToptV − TminV )

]
. Necessary inputs to Equation (5) are the

critical temperatures TminV , ToptV and TmaxV (all having units (°C)) and representing minimum,
optimum and maximum temperatures for vernalization, respectively. No vernalization is as-
sumed if Tsurf<TminV or Tsurf>TmaxV . For technical reasons, in the calibration and sensitivity
analysis we introduced an alternative formulation of the temperature parameters TmaxV and ToptV :

TmaxV = TminV + ΔTmaxV

ToptV = TminV + ΔToptV

where we calibrated the parameters TminV , Δ TmaxV and Δ ToptV . The accumulated VR gives a
number of vernalization days VD. If the plants are exposed to a temperature equal to ToptV for
one day, then one VD is acquired. Otherwise a fraction of VD is acquired. When Tsurf remains
within the range of the critical temperatures TminV and TmaxV , the duration of the vegetative phase
of winter wheat is shortened and, as the vernalization requirement is gradually fulfilled, the level
of maximum frost tolerance is reached. Streck et al. (2003) presents a function relating the
number of accumulated VD to the winter wheat plant’s stage of development when the transition
from vegetative to reproductive growth is initiated (i.e. the plant’s state of primary induction):

f (VD) =
(VD)5[

(22.5)5 + (VD)5] (6)

where the value 22.5 represents the number of days until half saturation is reached. f(VD) has a
sigmoid shape varying from 0 (unvernalized plants) to 1 (fully vernalized plants). Experiments
have shown winter wheat plants to be fully vernalized after 49 VD (Bergjord et al., 2007, and
references therein). According to Equation (6), f(VD)>0.98 when VD>50. Bergjord et al. (2007)
assumed in Model 2 that when f(VD)≥ 0.99 the plants would be fully vernalized. When this
vernalization requirement is met, Model 2 does not simulate additional hardening. In addition,
the threshold temperature for dehardening is lowered, from 10 °C to -4 °C.

In accordance with Fowler et al. (1999), the low temperature stress function RATES (which
contributes to decreased winter survival) calculates the effects of exposing the plants to near-
lethal temperatures over a longer period of time as:

RATES =

⎛⎜⎜⎜⎜⎜⎜⎝ LT50 − Tsur f

exp
(
−Sparam(LT50 − Tsur f ) − 3.74

) ⎞⎟⎟⎟⎟⎟⎟⎠ 1
dt

(7)

where Sparam (°C-1) is a scaling parameter assumed to be independent of cultivar. When win-
ter wheat plants are exposed to near-lethal temperatures for some time, their winter survival is
decreased.
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The respirational stress RATER, assumed to be caused by anaerobic conditions under the
snow cover, which also contributes to decreasing the frost tolerance, is calculated as:

RATER = Rparam × RE × f (snow depth) (8)

where Rparam (d-1) is a scaling parameter assumed to be independent of cultivar, RE (°C) is a
respiration variable which, according to Bergjord et al. (2007) and references therein, is calcu-
lated as RE =

[
exp(0.84 + 0.051 Tsur f ) − 2

]
/1.85. Finally, f (snow depth) is a linear function of

snow depth which increases from 0 to 1 as the snow depth reaches a maximum level SdepthMN
(m).

2.1.3. Model 2a: Modified wheat model
Using Model 2 as a reference model, we investigated two simpler versions. In the first of

these, Model 2a, we kept the calculations of hardening RATEH and dehardening RATED rates
and the parameter κ. We discarded the low temperature and respirational stress functions. From
hardening and dehardening experiments performed at Særheim, it is clear that dehardening in
timothy can occur from the onset of the hardening process until spring and therefore we did not
include a switch-function for the hardening and dehardening processes as in Model 2. The ability
of the timothy plants to reharden declines towards the springtime. We assumed that their ability
to reharden was lost completely by 1 April. We thus scaled the hardening rate RATEH using a
linear function which is switched on at the day of year called dψ (d) and declines to zero on a
date which was always set to April 1 (day of year 91):

d
dt

(LT50) = RATED − g(d) × RATEH (9)

where g(d) is the linear scaling function by which dψ is calibrated.

2.1.4. Model 2b: Modified wheat model
The other simplified model version, Model 2b, is a further simplification of Model 2a. In

this model version the linear declination function g(d) was preset to start on 1 January, i.e. the
parameter dψ was fixed at value 366 and, as for Model 2a, the function g(d) was set to reach zero
on 1 April.

2.2. Datasets
The LT50 observations used to calibrate and validate the models were taken from frost tol-

erance experiments performed at different locations in Norway. Særheim (58.45°N, 5.39°E, 80
m.a.s.l.), Fureneset (61.18°N, 5.3°E, m.a.s.l.), and Kvithamar (63.29°N, 10.52°E, 20 m.a.s.l.)
are all situated in or close to coastal regions, while Apelsvoll (60.42°N, 10.51°E, 250 m.a.s.l.)
is inland and Holt (69.39°N, 18.54°E, 20 m.a.s.l.) is on the northern coast. Weather data were
collected from automated stations located within 300 m of the experimental fields. We used
daily observations on mean air temperature Tair (°C) and precipitation rate P (mm d-1) in our
study. Table 2 shows seasonally-averaged (autumn: September- November; winter: December-
February; spring: March-May) values for air and soil temperature and cumulative precipitation.
We estimated the number of days with a snow cover depth of more than 10 cm for each location
using the SnowFrostIce model (Thorsen et al., 2009). The estimated snow cover at Særheim
during the calibration winter of 05-06 lasted 36 days, and for the validation winter of 06-07
zero days. At Fureneset, the estimated snow cover for the validation winter 05-06 lasted 12
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days. At Apelsvoll, the estimated snow cover for the calibration winter 91-92 lasted 13 days. At
Kvithamar, the estimated snow cover for the validation winter 06-07 lasted 121 days. At Holt,
the estimated snow cover for the calibration winter of 05-06 lasted 94 days and for the validation
winter of 06-07 103 days.

The LT50 data from Apelsvoll originate from Sunde (1996), while the data from the other
locations originate from the WINSUR project presented by Höglind et al. (2008). The total LT50
dataset was divided into two parts, one for calibration and one for validation (see Table 3).

2.3. Parameterization and model uncertainty
The models presented here represent simplifications of complex, real world processes. They

try to describe, at various levels of complexity, the temporal variation in frost tolerance in tim-
othy. Our models simulate the combined dynamics of hardening and dehardening. Some of
the parameters used have a physical interpretation, but they are seldom measured and quantita-
tive data are scarce in the literature. Hence, the parameters and thereby also the model outputs
are influenced by uncertainty. We used Bayesian methods to quantify the uncertainty in model
parameters and model output, with the intention of reducing these uncertainties rather than max-
imizing model fit, which is the classical way to calibrate and develop models. Van Oijen et al.
(2005) give a detailed description of how to use Bayesian methods to calibrate complex plant
models.

Calibration in the Bayesian way calls on the Bayes theorem to decrease both parameter and
model uncertainty based on prior knowledge of the parameters and measurements. The prior
knowledge is reflected by the prior probability density function for the parameters (pdf). If we
say that all model parameters to be calibrated are elements of the vector θ, then π(θ) is a joint pdf
expressing our initial belief about plausible values for the parameter. Given a dataset D on vari-
ables that are also model outputs, we can update the joint pdf of the parameters π(θ) by applying
the Bayes theorem: π(θ|D) = π(θ) f (D|θ)/ f (D), where π(θ|D) is the distribution of the model
parameters given the observations D, often referred to as the posterior distribution for the pa-
rameters. The likelihood of the observations given a model output generated using the particular
parameter set θ is denoted by the likelihood function f (D|θ), and f (D) is a normalization con-
stant. In order to calibrate a dynamic model, a large number of parameter sets must be sampled
and the corresponding model runs must be carried out. To sample these parameter sets, we used
the Markov Chain Monte Carlo (MCMC) algorithm known as the Metropolis-Hastings Random
Walk. Our target posterior distribution π(θ|D) was the stationary distribution of the Markov chain
produced by the Metropolis-Hastings Random Walk.

2.3.1. Metropolis-Hastings Random Walk
The general idea of the MCMC is to randomly walk through the parameter space, running

the model at each point visited. The first step in the random walk is to generate a starting point
(i.e. t = 0) of the Markov chain. This starting point, denoted θ0, is randomly sampled from the
prior distributions of the parameters. The starting point could also have been chosen as e.g. the
mid-point of the prior distribution. We randomly sampled three different θ0 because we used
three different Markov chains in our analysis. As the MCMC algorithm proceeds, every new
proposal parameter vector θ′ is chosen based on the current parameter vector θt:

θ′ = θt + δ

where δ is a stochastic step length vector. It is important to note that the probability of jumping
from the point θt to the point θt + δ is equal to the probability of jumping from the point θt + δ
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to the point θt. We will shortly return to the step length vector δ when describing its importance
in the Metropolis-Hastings random walk. After sampling a proposed parameter set θ′, the model
was run using this parameter set to obtain π(θ′|D). Subsequently the so-called Metropolis ratio
was computed:

r =
π(θ′|D)
π(θt |D)

=
π(θ′) f (D|θ′)
π(θt) f (D|θt)

The next step when deciding whether or not to accept θ′ was to generate a uniform random
number u ∼ U(0, 1), accepting the proposed parameter vector θ′ as the new θt+1 if u ≤ r, or
otherwise keeping the current parameter vector, θt+1 = θt. When the chain consisting of all θt

converged (i.e. reached stationarity), it formed the Markov chain serving as our sample from the
posterior distribution π(θ|D).

The posterior distribution is thus a combination of prior knowledge and new information
obtained from the data using the likelihood function. Measurement errors are used in the deter-
mination of how likely a model-data mismatch might be. For example, if the data are informative
and have a sharply peaked distribution, the resulting posterior distribution will be narrower and
more peaked than the prior. This indicates that the parameter uncertainty is reduced.

2.3.2. Defining the prior probability distribution for the parameters
Since literature is scarce regarding LT50 models, we had to select non-informative distri-

butions as prior distributions with generously set minimum and maximum values. Regarding
scaling parameters, we defined the boundaries so wide that they spanned orders of magnitude.
Therefore as priors for the scaling parameters, we used the Jeffreys prior according to Sivia
(2006) (π(θ) ∝ 1/θ). For the remaining parameters we used flat uniform distributions with gen-
erously set boundaries (see Tables 4-7).

In the calibration process we assumed that the parameters were independent a priori, implying
that their joint prior distribution is equal to the product of their individual marginal pdfs.

2.3.3. Defining the data-likelihood function and multi-site calibration
We used measurements on LT50 in timothy cv. Engmo at three different locations in the

calibration of the LT50 models, as described above. The likelihood associated with a particular
parameter set θ∗ is derived by comparing model output (using θ∗) with data. Outliers in the
observed data can produce poor results. According to Sivia (2006), this problem can be solved
by formulating a constraint on the Gaussian likelihood likelihood function. We assumed the
measurement errors to be independent, and we used the formulation for the constraint on the
Gaussian likelihood function f (D|θ) according to Sivia (2006):

f (D|θ) =
N∏

i=1

1

σo
i

√
2π

⎡⎢⎢⎢⎢⎣1 − expR2
i /2

R2
i

⎤⎥⎥⎥⎥⎦ (10)

where σo
i represents the lower boundary of the expected mismatch between a datum Di and

model output Mi at time t = i (i.e. the standard deviation), Ri = (Mi − Di)/σo
i is the residual

for the datum Di, and N is the number of data points. The standard deviations of the Apelsvoll
data were not available. From the estimation of LT50 values in timothy, 95% of the observations
fell within ± 1°C (Höglind et al., 2008). We thus decided to use σo = 2°C for all data when
calibrating the models.
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Table 2: Seasonal average values for air and soil temperature (°C) and cumulative precipitation (mm). Air temperature
and precipitation values are from the 30-year normal period 1961-1990, while soil temperatures are based on all available
observations from on-location weather stations. Soil temperature was measured at 10 cm depth in an adjacent short-cut
grass field

Fall (SON) Winter (DJF) Spring (MAM)
Location Tair Tsoil Prec Tair Tsoil Prec Tair Tsoil Prec
Særheim 8.2 9.2 156.7 1.0 2.5 101.7 5.7 6.8 70.0
Fureneset 7.7 8.9 244.3 1.7 2.5 181.0 5.7 5.9 113.3
Apelsvoll 4.6 6.5 59.0 -6.9 -0.1 34.0 2.5 3.8 35.0
Kvithamar 5.5 7.0 96.3 -2.8 0.4 67.7 4.3 3.7 52.7

Holt 3.4 4.6 111.7 -3.2 0.2 93.3 1.2 1.5 58.3

Table 3: Locations used for calibration and validation of the LT50 models. Number of data points in brackets

Year
Location Calibration Validation
Særheim 05-06 (5) 06-07 (3)
Fureneset - 05-06 (5)
Apelsvoll 91-92 (12) -
Kvithamar - 06-07 (3)

Holt 05-06 (5) 06-07 (2)

Table 4: Description of parameters calibrated for Model 1, the LINGRA timothy model: Prior intervals (the Jeffreys
prior indicated by †, otherwise Uniform prior), maximum a posteriori estimates θMAP and mode values θ̃. Non-influential
parameters (their value having little effect on model outputs) are indicated by ‡

Symbol Unit Prior θMAP θ̃ References
interval

T‡Hard °C [5, 15] 11.1 13.5 This study
LT50MX‡ °C [−7,−3] -6.9 -6.8 This study
KLT50 °C°C-1 [0, 200]† 1.49 1.34 This study
TCLT50‡ d [0, 15]† 5.0 5.2 This study
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Table 5: Description of parameters calibrated for Model 2, the FROSTOL wheat model: Prior intervals (Jeffreys prior
indicated by †, otherwise Uniform prior), maximum a posteriori estimates θMAP and mode values θ̃. Non-influential
parameters (their values having little effect on model outputs) are indicated by ‡

Symbol Unit Prior θMAP θ̃ References
interval

Dparam‡ d-1 °C-ξ [0, 0.0027]† 1.05E-6 5.02E-5 Bergjord et al. (2007)
LT50MN °C [−35,−20] -33.5 -26.9 This study
ξ - [0, 10] 5 3 Bergjord et al. (2007)
LT50MX‡ °C [−7,−3] -6.9 -6.9 This study
Rparam‡ d-1 [0, 50]† 2.98 0.081 Bergjord et al. (2007)
S‡depthMN m [0, 0.3] 0.06 0.20 Bergjord et al. (2007)
Sparam‡ °C-1 [0, 200]† 178.41 0.93 Bergjord et al. (2007)
Hparam d-1 °C-1 [0, 1]† 0.0017 0.0097 Bergjord et al. (2007)
T‡minV °C [−3.0, 1.0] 0.97 0.88 This study
ΔT ‡maxV °C [13, 19] 13.2 13.1 This study
ΔT ‡optV °C [3, 7] 4.9 5.4 This study
THard °C [5.0, 15.0] 14.4 14.8 This study

Table 6: Description of parameters calibrated for Model 2a, the modified wheat model: Prior intervals (Jeffreys prior
indicated by †, otherwise Uniform prior), maximum a posteriori estimates θMAP and mode values θ̃. Non-influential
parameters (their values having little effect on model outputs) are indicated by ‡

Symbol Unit Prior θMAP θ̃ References
interval

Dparam‡ d-1 °C-ξ [0, 0.0027]† 2.5E-3 5.3E-6 Bergjord et al. (2007)
ξ - [0, 10] 1 1 Bergjord et al. (2007)
LT50MX‡ °C [−7,−3] -6.7 -6.8 This study
κ‡ d [0, 10] 9.9 7.5 This study
T‡Hard °C [5, 15] 11.2 9.3 This study
LT50MN °C [−35,−20] -31.5 -23.3 This study
Hparam d-1 [0, 1]† 8.0E-3 0.0172 Bergjord et al. (2007)
d‡ψ d [300, 451] 352 381 This study
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Table 7: Description of parameters calibrated for Model 2b, the modified wheat model: Prior intervals (Jeffreys prior
indicated by †, otherwise Uniform prior), maximum a posteriori estimates θMAP and mode values θ̃. Non-influential
parameters (their values having little effect on model outputs) are indicated by ‡

Symbol Unit Prior θMAP θ̃ References
interval

Dparam‡ d-1 °C-ξ [0, 0.0027]† 6.40E-6 8.00E-7 Bergjord et al. (2007)
ξ - [0, 10] 4 4 Bergjord et al. (2007)
LT50MX‡ °C [−7,−3] -6.8 -6.9 This study
κ‡ d [0, 10] 6.0 5.8 This study
T‡Hard °C [5, 15] 13.5 10.5 This study
LT50MN‡ °C [−35,−20] -25.2 -23.3 This study
Hparam d-1 [0, 1]† 0.0187 0.0299 Bergjord et al. (2007)

2.3.4. Determining jumps in the Metropolis-Hastings Random Walk algorithm
The step length vector δ in the Metropolis-Hastings Random Walk algorithm is very im-

portant in order to obtain effective convergence of the Markov chain produced, i.e. a sample
from the targeted posterior distribution of the parameters. In our implementation a new proposal
parameter set was generated by sampling from a multivariate normal distribution with variance
proportional to the prior ranges of the parameters. We successfully used a variance equal to the
square of 5% of the prior range, and zero covariances. If the elements in the step length vector δ
are too small, the random walk algorithm will on average not move far enough from the current
point in parameter space θt when proposing a new candidate parameter vector θ′, and conse-
quently the acceptance rate will be too large, or vice versa. The key issue when determining the
step length is selecting a value to ensure an adequate exploration of the parameter space, and
ideally obtaining an acceptance rate between 0.15 and 0.5 (Roberts, 1996).

2.3.5. Determining convergence of the Markov chains
A central issue when using an iterative simulation method such as the Metropolis-Hastings

Random Walk algorithm is to determine when the chain has converged to the desired posterior
distribution. One option, suggested by Gelman and Rubin (1992), is to generate multiple chains
followed by calculation of the scale reduction factor GR for each parameter, which is used to
determine the length of the ’burn-in’ phase. The burn-in of the chain is the first part, where
the chain is still influenced by the starting point in the walk through parameter space, prior to
reaching stationarity. Following Gelman (1996) we determined the burn-in phase to last until
GR remained below 1.2 (when GR is near 1 it means that the Markov chains are essentially
overlapping). This meant that our independent chains had located the same region in parameter
space. We randomly sampled three starting points from the prior distribution, and used the GR
to determine when the three chains had converged to the desired posterior distribution.

2.4. Sensitivity analysis

In order to identify non-influential parameters that can be omitted from the calibration, we
carried out a screening exercise using the improved sensitivity indices from the Morris method
as described by Campolongo et al. (2007). This method is relatively simple to implement, yet it
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provides a good estimate for the main effects of the parameters (Campolongo et al., 2007). The
results from this screening are also helpful in relation to model simplification.

The Morris method proposes two sensitivity measures, the main purpose of which is to deter-
mine those of the model’s k parameters that can be considered to be (i) not important, (ii) linear
and additive, or (iii) non-linear or involved in interactions with other parameters. For each of the
parameters, two sensitivity measures are computed; μ, which evaluates the overall influence of
the parameter on the model output (main effect, or elementary effect), and σ, which collectively
evaluates all the higher order effects due to non-linearity and/or interactions with other param-
eters. The Morris method was originally used for parameters following uniform distributions
in [0, 1]. Campolongo et al. (1999) suggest how to treat parameters with different distributions.
Rather than sampling directly from the prior distribution for the parameters, the sampling should
be performed in the space of equidistant quantiles of these k distributions (i.e. each prior distri-
bution is discretized into a predetermined number of p levels, where each quantile qp varies in
[0, 1], producing as sampling space a k-dimensional unit hypercube). We performed the sensi-
tivity analysis (SA) for each of the candidate models, sampling from the quantiles of the prior
distributions listed in Tables 4 - 7. We call this sampling space Ω.

Outputs from the LT50 models are time series, and for this SA we needed a scalar value as
response variable. Thus instead of performing the SA at one single point in time, we used as
scalar response the log-transformed likelihood from Equation (10), i.e. log( f (D|θ)); the likeli-
hood being the probability of the observed data D given a certain model parameterization θ.

By sampling random parameter sets θ from Ω according to the Morris method, we obtained
the distribution associated with the elementary effect of each parameter. This distribution is fi-
nite and can be denoted EEi(θ) ∼ Di. As suggested by Campolongo et al. (2007), a convenient
choice for p is an even number, and a convenient choice for the sampling increment Δ is setting
Δ = p/

[
2(p − 1)

]
. The number of elements in Di is pk−1 [p − Δ(p − 1)

]
(ibid.). The sensitivity

indices for parameter θi from the Morris method are the mean μ and standard deviation σ of Di.
The design proposed by Morris (1991) is to sample r elementary effects from each Di by con-
structing r trajectories (each trajectory having k + 1 points in Ω), where each trajectory provides
k elementary effects (one elementary effect for each parameter). This leads to a total of r(k + 1)
sampling points, giving us the number of model runs required for the SA. A detailed description
of the implementation of the Morris method is presented in Saltelli et al. (2008).

The sensitivity indices are interpreted as follows. A highσi value for parameter θi implies that
the corresponding elementary effect EEi for this parameter θi at one point in Ω is considerably
different from the elementary effect for the same parameter calculated somewhere else in Ω,
i.e. that this particular EE value is also influenced by the values of the other parameters or
nonlinearities/interactions. A low value for σi suggests that the EEi value associated with θi is
less influenced by the values of the other parameters and thus that it is not involved in interactions
or nonlinearities.

If the distribution Di contains both positive and negative elements (i.e. the model is non-
monotonic), we might get the situation where effects are cancelling each other out and thereby
producing a low μi value, even for an important parameter. Therefore the value of μi should be
considered together with σi. This kind of cancelling effect yielding a low μi would be accom-
panied by a high σi value. If the model is non-monotonic (as the LT50 models), Campolongo
et al. (2007) suggest replacing μ by μ∗; an estimate of the mean distribution of absolute val-
ues of the elementary effects Gi, i.e. |EEi| ∼ Gi(μ∗i , σi). This solves the problem of opposite
signs on the elementary effects. However, to properly characterize non-influential parameters,
one must therefore simultaneously consider μ∗ and σ (the standard deviation of the distribution
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Di). Important parameters are those having large values of μ∗ and σ compared with the results
for the other parameters. This means that the non-influential parameters will be identified by
having values of μ∗ and σ lying in the lower left-hand corner of the scatter plot μ∗ vs. σ. A
non-influential parameter has the property that when it is varied freely within its boundaries (as
defined for the SA), it will not markedly affect the model output. Therefore by identifying the
non-influential parameters, these may be left out of the calibration and prepare the ground for
model simplification.

2.5. Parameter estimation and model selection
We used the same MCMC settings with regard to number of iterations and sampling steps

in the Metropolis-Hastings random walk for all four models. From the prior distributions we
randomly sampled three sets of initial values, and ran three chains for 50,000 iterations each.
We assessed the convergence of the chains for each model by investigating time-series plots of
GR. Convergence was obtained when GR remained below 1.2. To make sure we obtained a
sample from the stationary posterior distribution, we used the final 20,000 iterations from each
of the three chains as our posterior. From this final posterior sample, consisting of n = 60, 000
elements, we identified two parameter vectors: the parameter vector with the highest posterior
probability θMAP, and the parameter vector consisting of the mode values of the marginal poste-
rior distributions θ̃.

To quantify the uncertainty in LT50 simulations from each model, we sampled 9,000 param-
eter sets from the posterior π(θ|D) and ran the model using weather data from the validation data
set. The resulting LT50 time series are the members of what we call the ensemble LT50 for the
corresponding model. The average of all ensemble members is referred to as the ensemble mean
LT50, termed M. As suggested by Iizumi et al. (2009) we quantified the model uncertainty by
calculating root-mean-square deviation (RMSDL) for each model at each location using M. We
calculated RMSDL as follows:

RMSDt =
1
E

√√√ E∑
e=1

(Me,t − M�t)2 (11)

RMSDL =
1
J

J∑
t=1

RMSDt (12)

where M�t is the ensemble mean at simulation time t, Me,t is the model output of ensemble
member e at simulation time t, and E and J are the total numbers of ensemble members and
simulation time steps, respectively. The resulting RMSD reported in Table 8 is the weighted
mean of the RMSDL calculated for each location.

To evaluate the model accuracy we calculated RMSE using the independent observations in
the validation data set. The RMSEs are presented in Table 8, and calculated as follows:

RMSE =

√√√
1
N

N∑
i=1

(Mi − Di)2 (13)

where Mi is model output, Di is observed LT50 value at time ti, and N is the total number of
observations used. For each model, we calculated two sets of RMSE based on two different
sets of model output. The first set, called RMSEMAP, was calculated based on simulation results
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Table 8: Model selection criteria (AIC and BIC) calculated from the MCMC results and Goodness of Fit (root-mean-
squared errors RMSE) and model uncertainty (root-mean-squared deviation RMSD) calculated using validation data

Selection criteria RMSE RMSD
LT50 model AIC BIC MMAP M

Model 1 141.25 145.62 5.47 5.19 2.54
Model 2 135.47 148.56 8.83 6.98 12.85
Model 2a 131.26 139.98 4.00 4.19 8.44
Model 2b 132.43 140.10 4.93 4.57 6.33

obtained using the parameter set that produced the maximum posterior probability, denoted θMAP.
MMAP

t is model output at time t using θMAP parameterization. The second set of RMSE, denoted
RMSEM , was calculated using the ensemble mean LT50, where Mt is the ensemble mean LT50
at time t.

To aid in the model selection process, we calculated two commonly used model selection
criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC):

AIC = −2 log(ML) + 2p (14)
BIC = −2 log(ML) + p log(N) (15)

where ML is the estimated maximum likelihood from the MCMC, p is the number of model
parameters and N is number of data points used in model calibration (Kass and Raftery, 1995).
As pointed out in Hastie et al. (2001), there is no clear choice between AIC and BIC for model
selection purposes. We calculated both to compare the two different ways of weighting model
complexity.

As suggested by Van Oijen et al. (2005), we also performed a Bayesian model comparison
by calculating Bayes factors. The Bayes factor represents the evidence provided by the data in
favour of one model as opposed to another (Kass and Raftery, 1995). The BIC criterion pro-
vides a rough approximation to the logarithmic Bayes factor (ibid.). The Bayes factor is the
ratio of integrated likelihoods, here referred to as f (D|Modeli), which represent the probability
of the observations D given Modeli. According to Kass and Raftery (1995), the integrated likeli-
hood f (D|Modeli) can be estimated from the MCMC results by taking the harmonic mean of the
likelihood:

f (D|Modelk) =

⎧⎪⎪⎨⎪⎪⎩1
n

n∑
i=1

1
f (D|θi)

⎫⎪⎪⎬⎪⎪⎭
−1

(16)

where n = 60, 000 is the size of the sample from the posterior (comprised of the last 20,000
iterations of each of the three Markov chains for each model).

3. Results

The Markov chains for all models converged relatively fast (GR<1.2) except for Model 2,
which reached convergence after 30,000 iterations. Calibration results for the parameters of each
model are shown in Table 4-7.

The calibration data set contained more information from the hardening period than the val-
idation data. This is likely to have affected the model performance when comparing simulation
results to calibration data and validation data.
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Figure 1: LT50 simulated with Model 1 using the best parameter set MMAP (blue) and ensemble mean M (red). Obser-
vations with standard deviations indicated with circles. Simulated daily soil surface temperature Tsurf (black).

3.1. Model evaluation

Figure 1 shows LT50 time series produced by Model 1, the LINGRA timothy model, using
the best parameter set MMAP (blue) and ensemble mean M (red). Model 1 captured the hardening
process reasonably well, but stayed at lower LT50 for a longer time, leading to underestimation
at nearly all subsequent data points. This means the plants remained hardened too long. This
was also reflected by the high RMSE values for Model 1. Hardening is also simulated towards
the end of the dehardening period. The RMSE for Model 1 was 5.47 and 5.19, when using MMAP

and M, respectively. Model 1 had the highest RMSE of all candidate models but produced the
lowest RMSD (2.54) at all locations (Table 8). The non-influential parameters in Model 1, i.e.
the parameters that least affected the model output when varied within their boundaries, were
TCLT50, LT50MX and THard.

Figure 2 shows LT50 simulated with Model 2. The hardening process was captured relatively
well for all locations except Holt. Based on MMAP, the vernalization requirement from Equation
(6) was met on December 24 ± one day for Særheim, Fureneset and Kvithamar, respectively. This
led to a lowering of the threshold temperature for dehardening from 10°C to -4°C in the model,
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Figure 2: LT50 simulated with Model 2 using the best parameter set MMAP (blue) and ensemble mean M (red). Obser-
vations with standard deviations indicated with circles. Simulated daily soil surface temperature Tsurf (black).

with the consequence that dehardening was simulated too early, and LT50 was overestimated
compared with the observations. At the Holt location, the vernalization requirement was met
even earlier, on November 12. The hardening process was therefore terminated too soon, and due
to the insulating effect of the snow cover (Tsurf at around 0 °C) the dehardening was completed
too early. The RMSE for Model 2 was 8.83 and 6.98 when using MMAP and M, respectively. The
large difference in RMSE for Model 2 is due to the difference between the two LT50 time series,
MMAP and M (Figure 2). The RMSD for Model 2 was the highest amongst the candidate models,
with value 12.85. The non-influential parameters in Model 2 were ΔToptV, SdepthMN, ΔTmaxV ,
TminV , LT50MX, Rparam, Dparam, and Sparam (data not shown).

Figure 3 shows LT50 simulated with Model 2a. LT50 was underestimated at Særheim and
Fureneset, but had a very good fit at Kvithamar and Holt. Gay and Eagles (1991) report that
hardening rates are generally lower than dehardening rates. This trait appears to be captured best
by Model 2a (see Figure 3). The RMSE for Model 2a was 4.00 and 4.19 when using MMAP and
M, respectively. Model 2a had the overall lowest RMSE, and thus had the best fit at all locations.
The RMSD for Model 2a was 8.44. The non-influential parameters in Model 2a were dψ, κ,
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Figure 3: LT50 simulated with Model 2a using the best parameter set MMAP (blue) and ensemble mean M (red). Obser-
vations with standard deviations indicated with circles. Simulated daily soil surface temperature Tsurf (black).

LT50MX, THard and Dparam (Figure 4).
Figure 5 shows LT50 simulated with Model 2b. The hardening process was captured well,

but the loss of hardiness towards the beginning of spring was underestimated (i.e. the ability
to reharden was overestimated), which resulted in the LT50 being underestimated for a longer
period compared with Model 2a. The RMSE for Model 2b was 4.93 and 4.57 when using MMAP

and M, respectively. The RMSD for Model 2b was 6.33. The least important parameters in
Model 2b were Dparam, κ, THard and LT50MX (not shown).

At the Kvithamar location, there were two distinctive mild episodes during the winter (Tsurf>0°C),
while at Holt there was one such episode. These mild episodes were captured well by all models
except Model 2 in the sense that the simulated dehardening was followed by rehardening.

The selection criterion AIC ranked model 2a as the best model, slightly better than model 2b.
Model 2 and model 1 were ranked third and fourth, respectively. According to the BIC criterion,
models 2a and 2b were ranked first and second, respectively, while models 2 and 1 were ranked
fourth and third, respectively. This indicates that the likelihood for models 2a and 2b was higher
than that for models 1 and 2, and thereby they were ranked higher. One reason for the difference
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Figure 5: LT50 simulated with Model 2b using the best parameter set MMAP (blue) and ensemble mean M (red). Obser-
vations with standard deviations indicated with circles. Simulated daily soil surface temperature Tsurf (black).
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Table 9: Bayesian model comparison using integrated likelihoods f (D|Modelk) from MCMC. For example, Model 2a is
compared with Model 1 using the ratios of their integrated likelihoods, i.e. f (D|Model2a)/ f (D|Model1)

f (D|Modelk) Model 1 Model 2 Model 2a Model 2b
LT50 model vs. vs. vs. vs.

Model 1 4.29E-31 43.06 189.65 289.45
Model 2 1.85E-29 0.02 4.40 6.72
Model 2a 8.14E-29 0.01 0.23 1.53
Model 2b 1.24E-28 0.00 0.15 0.66

between AIC and BIC for models 1 and 2 might be that BIC tends to favour simpler models more
than AIC (Kass and Raftery, 1995) due to the heavier penalty on complexity (Hastie et al., 2001).
The results for AIC and BIC are presented in Table 8.

We calculated the Bayes factors according to Kass and Raftery (1995) using equation (16).
Model 1 and Model 2 were ranked last according to Bayes factor, suggesting that these two
models were least supported by the data. For the two simplified wheat models, the simplest
version (Model 2b) received most support from the data, thereby obtaining the highest value of
the Bayes factor. The results for the Bayes factors are presented in Table 9.

4. Discussion

The earlier work of Gay and Eagles (1991) presents a method for quantitatively investigat-
ing the processes of hardening and dehardening as dependent on time and temperature. Their
approach considers these two processes separately. In the present study we propose and de-
scribe four candidate models that simulate the combined effect of hardening and dehardening
in timothy (Phleum pratense L.) cv. Engmo based on standard meteorological variables. Each
candidate model was calibrated by means of Bayesian methods, and validated using independent
observations.

Calibration of models by means of Bayesian methods begins with stating the initial degree
of belief about parameter values. This is what is done when defining the prior distributions. If
initial knowledge about the parameters is limited, the most common approach is to use so-called
non-informative priors and to assume that the parameters are uncorrelated. In this study we used
either uniform distributions with generously set maximum and minimum values, or the Jeffreys
prior for scaling parameters (Sivia, 2006). The price we paid for choosing non-informative priors
was that the resulting posterior distribution was less accurate, i.e. the resulting variance in model
output was larger. Other aspects to consider when evaluating the results from the calibration are
the data quality and the number of observations available. Only one location had data covering
the whole hardening and dehardening period (location Apelsvoll, n=12). The other two locations
used in the calibration had 5 data each for the whole period. Together with non-informative
priors, this resulted in less accurate predictions, and more variability in model output.

In the sensitivity analysis we sampled parameter values from six equidistant quantiles of the
posterior. This rough partitioning might cause important parameter values to be left unchecked,
causing the Morris method to miss peaks of the likelihood. On the other hand, by following the
sampling scheme of the Morris method, the main regions of the parameter space were explored,
yielding a qualitative assessment of parameter sensitivities.
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Judging by the model selection criteria AIC and BIC and the RMSEs, Model 2a (modified
wheat model) was the best candidate (Table 8). This is also clear when comparing model output
from Model 2a (Figure 3) with outputs from the other candidate models. The Bayes factors (Table
9) ranked Model 2b as having the highest probability in view of the data and prior information.
On the other hand, the model selection criteria AIC and BIC both favoured Model 2a over the
other three candidate models (Table 8).

The RMSE presented here describe the goodness of fit for the independent validation data,
and thereby the capabilities of the individual models in capturing variation in the observations.
For models 1, 2 and 2b, the RMSE obtained when using M was smaller than that obtained when
using MMAP. However, this result is of little use in prediction because it requires a large number
of ensemble members from which to estimate an ensemble mean. One reason why RMSEM >

RMSEMAP for only one model might be insufficient reduction in parameter uncertainty in the
calibration, which might have caused the posterior to have a broad, flat peak rather than being
narrow and sharp, in turn causing many parameter sets to have similar likelihood values. Thus
by sampling extensively from the posterior distribution, the ensemble mean simulation M might
result in a lower RMSE than the use of only one parameter set, namely θMAP. The RMSE for
Model 2a calculated from MMAP was slightly lower than the RMSE obtained using the ensemble
mean. This indicates that the use of only one parameter set, the maximum posterior parameter
set θMAP, for this particular model gave good results compared with the results obtained using
the ensemble mean M. Considering the performance of the candidate models using the valida-
tion data and the selection criteria AIC and BIC, we proceeded with models 2a and 2b. These
models are modest with respect to number of parameters and both the hardening and deharden-
ing processes are well simulated. Results from the sensitivity analysis of Model 2 suggest that
the parameters related to the particular stress functions of low temperatures and anaerobic con-
ditions (RATES and RATER) as used by Bergjord et al. (2007), and also parameters related to
the vernalization requirement, as used by Fowler et al. (1999), are not needed when modelling
frost tolerance in timothy, at least under our climate conditions. The removal of these stress func-
tions and the vernalization requirement constituted the main differences between Model 2 and
the two simplified versions 2a and 2b. The findings from the sensitivity analysis thus support our
assumption that the stress and vernalization functions are not necessary in our case. Our sugges-
tion of gradually reducing plant ability to reharden by using a linear reduction of the hardening
rate (in contrast to not reducing this rehardening ability at all as in Model 1) was supported,
indicating that there is still a connection between frost tolerance and plant developmental stage
(Rapacz, 2002; Kalberer et al., 2006), even if this is not linked to a vernalization requirement. A
similar approach of modifying hardening rates linearly has been suggested by Kanneganti et al.
(1998), who also distinguished between dehardening due to high temperatures in the hardening
period and dehardening towards the initiation of the growth period. Models 2a and 2b underes-
timated the frost tolerance in late winter/early spring at Særheim and Fureneset. These are the
two locations with the mildest winters (see Table 2). It may be that the lack of snow cover at
these locations, leading to more fluctuating soil surface temperatures, puts the plants under more
severe stress, resulting in additional dehardening not accounted for in the models. There may
also be a connection between plant carbohydrate content and LT50 that is not accounted for in
the models. In perennial ryegrass, both rate and maximum level of hardening have been shown
to increase with the level of carbohydrates in the stubble up to a threshold value (Hanslin and
Höglind, 2009).
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5. Conclusions

From the model selection criteria in Tables 8 and 9 and the capability of the model to cap-
ture the hardening and dehardening processes, we concluded that Model 2a is the best candidate
for further use when simulating the winter survival of timothy. Although Model 2b was ranked
above Model 2a according to Bayes factors, Model 2a was better developed with regard to plant
development. The results from the Bayesian calibration suggest that there are no major regional
differences in Norway calling for regional calibration, since in the validation plots the same pa-
rameterization θMAP (the posterior distribution) was used at all locations. Therefore the parame-
ter distribution obtained from the multi-site calibration can be used for a specific grass species.
However, the model most likely needs to be calibrated for each grass cultivar separately, since
there are both hardy and less hardy cultivars within the same species, but this assumption has to
be verified in further modelling studies.

In coming works, we will examine whether the models can be improved further by making the
rate of hardening dependent on the availability of carbohydrates within the plant, i.e. restricting
the rate of hardening at carbohydrate contents below a threshold value. We will also test more
refined ways of relating the rate of hardening to plant development. More observations capturing
a larger part of both the hardening and dehardening periods would be helpful in increasing the
precision and reducing the uncertainty in the candidate models.
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simulating potential frost tolerance in combination with simple agroclimatic indices 

 
Stig Morten Thorsen*†‡, Mats Höglind† 

 

Abstract 

Norwegian agriculture is mainly dominated by grass-based milk and livestock production, so 

winter damage to overwintering grasses may have large economic consequences. We assessed 

the impact of climate change on the winter survival of timothy (Phleum pratense L.) and 

perennial ryegrass (Lolium perenne L.) under Norwegian conditions using agroclimatic 

indices and a simulation model of frost tolerance. This study was based on locally adjusted 

future climate scenarios (two for the period 2071-2100; one for the period 2020-2049) for six 

important agricultural regions, represented by one location each. We proposed and validated a 

rough way to estimate the daily minimum air temperatures from scenario data. Compared 

with the control period 1961-1990, the future hardening period will be shortened by up to 21 

days. As a consequence, the modelled maximum frost tolerance is expected to be reduced by 

up to 3.9°C and 1.9°C for timothy and perennial ryegrass, respectively, under the warmest 

scenario. In spite of this reduction, the plants are expected to be hardy enough to withstand 

the predicted autumn frosts, and we also expect a general reduction in the risk of winter frost 

injuries. The plant data available to this study suggest that agroclimatic indices developed for 

Canadian conditions can be useful for assessing the hardening status in timothy and perennial 

ryegrass. However, such indices are less suitable for assessing the risk of plant injury related 

to frost and ice encasement in Norway, since they do not account for the dynamics of cold 

adaptation. Although less snow is expected, in most cases this will not be accompanied by an 

increase in the risk of ice encasement injuries. However, a slight increase in the number of ice 

encasement events was predicted for one location. An earlier start of growth was predicted for 

all locations, accompanied at one coastal location by a slightly increased predicted risk of 

spring frosts. There is little risk of winter injuries related to frost and ice encasement in the 

hardier grass species timothy. The better overwintering conditions in general indicate that it 
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will be possible to grow perennial ryegrass in areas where it is not grown today, provided the 

risk of fungal diseases does not increase. 

 

Key words: agroclimatic indices, climate change, frost tolerance, timothy, perennial ryegrass 

1. Introduction 

Two of the most important sectors in Norwegian agriculture are grass-based milk and 

livestock production. In 2007 these sectors accounted for 70% of the total income in 

Norwegian agriculture (Rognstad and Steinset, 2008). Poor overwintering of forage grasses 

often has negative economic consequences due to substantial yield losses and subsequent 

costs related to the re-establishment of grass swards and the purchase of supplementary 

feedstuffs. The global climate is changing, and during the next 100 years the global 

temperature is expected to increase by 1.4-5.8°C. In Norway, this temperature increase is 

likely to be larger in northern areas of the country than in the south, and the winter weather is 

projected to include milder temperatures with more precipitation as rain (NOU, 2009). These 

changes may affect the winter survival of perennial crops (Bélanger et al., 2002), although no 

scientific analysis has yet been carried out on the consequences of climate change for 

overwintering of forage grasses in Norway or in the rest of Scandinavia.  

 

A quick way to characterise plant-climate interactions is by calculating agroclimatic indices 

(often based on degree-day heat units, which are related to plant growth and development) as 

opposed to using process-based models for this characterisation (Eitzinger et al., 2008). 

Bélanger et al. (2002) assessed the potential impact of climate change on overwintering of 

perennial forage crops in Eastern Canada using agroclimatic indices reflecting the risks of 

winter injuries. The results suggested that the risk of winter injury in that area will likely 

increase because of less cold hardening during autumn and reduced protective snow cover 

during the cold period, which will increase the exposure of plants to killing frosts, soil heave 

and ice encasement. Similar calculations have not been performed for future Norwegian 

climate conditions. In addition, the climate in the area studied by Bélanger et al. (2002), 

eastern Canada, is different from the Norwegian climate in many ways. This study therefore 

investigated the indices proposed by Bélanger et al. (ibid.) for Norwegian climatic conditions.  

 

In the study, we considered two of the most important forage grasses in Norway, timothy 

(Phleum pratense L.) and perennial ryegrass (Lolium perenne L.), to investigate how the 
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changing climate will affect their winter survival abilities. Grass plants prepare for winter by 

re-allocating sugars produced during photosynthesis to storage organs, along with other 

physiological adjustments aimed at increasing their tolerance to sub-zero temperatures and 

other abiotic and biotic winter stress factors (Andrews, 1987). The process of acquiring frost 

tolerance is often referred to as cold acclimation, or cold hardening. When springtime comes, 

or during mild spells in mid-winter, the plants de-acclimate (deharden), and if the mild period 

is long enough or the temperature high enough, growth is resumed and dehardening becomes 

irreversible (Kalberer et al., 2006). The more hardened plants are, the better they survive 

stressful winter conditions. The state of frost tolerance of plants, i.e. their hardening status, 

can be characterised by their LT50 value, i.e. the temperature at which 50% of the plants are 

killed. Thorsen and Höglind (2009) proposed a model which simulates LT50 in timothy, and 

this model was used here for assessing the risk of frost-related injuries under future climate 

scenarios.  

 

In the present study, we assessed the impact of climate change on winter survival in timothy 

and perennial ryegrass in Norway i) by calculating three of the agroclimatic indices suggested 

by Bélanger et al. (2002) reflecting the conditions for hardening in autumn, the risk of 

dehardening in winter and the risk of injuries related to rain in winter; and ii) by calculating 

the risk of frost and ice encasement-related injuries using a model that simulates LT50 in 

timothy and perennial ryegrass (Thorsen and Höglind, 2009), together with a model for soil 

surface temperature and the development of snow and ice in the field (Thorsen et al., 2009). 

In addition, we calculated the length of the autumn hardening period, the winter period and 

the starting day of the thermal growth period. The calculations were carried out for six 

locations and three climate scenarios (one for the period 2025-2040; two for 2071-2100). The 

resulting risks of injuries were compared against those obtained from similar calculations 

performed using a control period (1961-1990). Neither models nor indices can provide 100% 

reliable answers, but they can serve as alternative approaches to the problem at hand – 

assessing the risk of winter damage to forage grasses.  
 

2. Materials and Methods 

2.1 Definition of autumn, winter and thermal growth periods 

We assumed that the plant year consisted of three periods: the thermal growth period (GP), 

the hardening period (HP) and the winter period (WP). The hardening period was defined to 
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start at the end of the thermal growth period, and the winter period was defined to end at the 

start of the thermal growth period. The literature mentions several ways to define the thermal 

growth period (e.g. Walther and Linderholm, 2006), and thus implicitly the hardening and 

winter periods. According to Bonesmo (1999), the start of the thermal growth period for 

timothy can be estimated as being the fifth day of the first five-day spell with daily mean air 

temperature above 5°C on snow-free ground. We used this definition by Bonesmo (1999) to 

estimate the start of the growing period, GPstart. In the field, hardening is initiated when the 

daily mean air temperature drops below approximately 10°C, and increases as the air 

temperature continues to drop below 5°C (Bélanger et al., 2002). We assumed that the end of 

the thermal growth period could be approximated in the opposite way to the start and thus we 

defined the start of the hardening period, HPstart, as the fifth day of the first five-day spell 

when Tair < 5°C.  For the plants to achieve maximum frost tolerance, a final phase of sub-zero 

temperatures is required (Kacperska-Palacz, 1978). According to frost tolerance experiments 

carried out in Norway (Larsen, 1994; Höglind et al., 2006), grass plants usually reach 

maximum frost tolerance towards the end of the year. To estimate the end of the hardening 

period, HPstop, we used simulations of LT50 produced using the model developed by Thorsen 

and Höglind (2009). We located the day of the year when the lowest LT50 occurred and 

defined this day as HPstop. We defined the start of the winter period, WPstart, as the day 

following HPstop. The end of the winter period, WPstop, was defined as the day prior to GPstart. 

The three periods HP, WP and GP, and the agroclimatic indices used in this study are 

presented in Table 1. 

 
Table 1 Description of periods and agroclimatic indices used in this study. Units in brackets 
Period   Description 

HP   Autumn hardening period (d) § 
WP   Winter period (d) § 
GP   Thermal growth period (d) § 

Index   

FH-COLD   Net accumulation of cold degree-days during HP (°C d) † 
W-THAW   Mean daily accumulation of degree-days during WP (DD0 d-1) † 
W-RAIN   Mean daily rainfall during WP (mm d-1) † 
AF  Autumn frost, number of days with lethal temperatures during HP (d) ‡ 
WF   Winter frost, number of days with lethal temperatures during WP  (d) ‡ 
ID   Ice damage, number of days with ice damage conditions during WP  (d) ‡ 
SF   Spring frost, number of days after start of growth when frost occurs (d) ‡ 
§ defined in section 2.1 
† defined in section 2.2.1 
‡ defined in section 2.2.2 
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2.2 Agroclimatic indices 

2.2.1. Previously proposed agroclimatic indices 

Bélanger et al. (2002) proposed five agroclimatic indices for assessing the relative risks 

associated with climatic causes of damage to perennial forage crops during autumn and 

winter. Two indices express the influence of temperature and rainfall on the acquisition of 

frost hardiness during fall (FH-COLD, FH-RAIN), and three indices reflect the loss of 

hardiness due to high temperatures (W-THAW), damage due to frost exposure (W-COLD) 

and damage due to frost heave and ice encasement during winter (W-RAIN). For the present 

study, we chose the indices FH-COLD, W-THAW, W-RAIN, and ignored the other two.  

 

The fall hardening index FH-COLD is calculated as the net accumulation of cold degree-days 

during the autumn (see McMaster and Wilhelm (1997) for interpretation of degree-days). The 

assumption underlying FH-COLD is that degree-days above 5°C (DD5) (the temperature sum 

using 5°C as base temperature) and cold degree-days, between 0°C and 5°C (CDD5), can be 

used to express the impact of temperature on growth and hardening, respectively, and that 

DD5 and CDD5 have equal but opposite effects. Thus, accumulated CDD5 could be negated 

by a following accumulation of an equal amount of DD5. In our implementation, the index 

FH-COLD was calculated based on daily mean air temperature as follows: 

                 (1) 

 

where HPstartB and HPstopB mark the start and stop of the hardening period, CDD5 is degree-

days when 0 < Tair � 5, and DD5 is degree-days using 5°C as base temperature. HPstartB and 

HPstopB were calculated according to Bélanger et al. (2002). HPstartB and HPstopB are not to be 

confused with HPstart and HPstop as defined in section 2.1. 
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Figure 1: Scatter plot of fall hardening index FH-COLD versus observed LT50 values for timothy 
cultivars Grindstad and Engmo, and perennial ryegrass cultivars Riikka and Gunne. 
 

Bélanger et al. (2002) proposed that the potential loss of hardiness during winter could be 

expressed by the index W-THAW, calculated as the mean daily accumulation of degree-days 

above 0°C (DD0) during the winter period divided by the length of the winter period. In the 

present study, the index W-THAW (units DD0 d-1), was calculated based on the simulated 

soil surface temperature Tsurf. This estimated soil surface temperature (Thorsen et al., 2009) 

represents the daily mean temperature between the soil surface and the snow cover. Using this 

Tsurf temperature instead of the daily mean air temperature incorporates the insulating effect of 

the snow cover. The refined index W-THAW was calculated as follows: 

           (2) 

 

where DD0 is degree-days above 0°C based on Tsurf, which is the simulated soil surface 

temperature, and the difference (GPstart - HPstop) represents the duration of winter. FH-COLD 

and W-THAW were originally constructed for Canadian environmental conditions, which 

differ in many aspects from Norwegian conditions. Before applying them to Norwegian 

conditions, we therefore evaluated their usefulness by comparing calculated indices with 
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observed LT50 values from Norwegian field experiments on the winter survival of timothy 

and perennial ryegrass. Based on the results presented in Figures 1 and 2, we concluded that 

the indices FH-COLD and W-THAW were indeed useful for Norwegian conditions. 

 

 

 
Figure 2: Scatter plot of winter dehardening index W-THAW versus observed LT50 values for 
timothy cultivars Grindstad and Engmo. 
 

Bélanger et al. (2002) proposed that damage related to ice encasement and soil heave could be 

expressed by the index W-RAIN. This index was calculated as the mean daily rainfall during 

the cold period, a period lasting from the date of the first occurrence of Tmin � -15°C to the 

date of the last occurrence of Tmin � -15°C. In our study, W-RAIN was calculated as the 

average daily rainfall during the winter period WP. 

 

Norwegian experiments reviewed by Höglind et al. (2008) provided inconclusive results on 

the effect of autumn rainfall on frost hardening in forage grasses. We therefore omitted the 

index related to rainfall intensity during autumn hardening, FH-RAIN (Bélanger et al., 2002) 

from the present study. We also omitted the index expressing the number of days the grasses 

are potentially exposed to freezing temperatures, W-COLD, which is defined as the difference 

between days with a snow cover depth more than 10 cm and the number of days in the cold 

period. This gives a relatively rough estimate of the risk of frost injury, although it does not 

take into account the frost tolerance of the plants at the time of frost exposure. As an 

alternative, we constructed a new winter frost index WF as described below.  
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2.2.2. New agroclimatic indices: frost and ice-related indices  

In order to assess the risk of exposure to lethal temperatures during the hardening and winter 

periods, we used simulated LT50 time series obtained using the frost tolerance model 

developed by Thorsen and Höglind (2009) to estimate the number of days when lethal 

temperatures occurred, i.e. the number of days when the estimated daily minimum air 

temperature Tmin was lower than the simulated LT50-value, Tmin < LT50 or, if snow was 

present, the number of days when Tsurf < LT50. The estimated number of days was called  

Autumn Frost (AF) or Winter Frost (WF) depending on whether these days occurred during 

the autumn hardening or winter period. Index subscripts T and R indicate timothy and 

ryegrass, respectively. The frost tolerance model was originally developed for timothy grown 

in Norway, an application for which it has been validated (Thorsen and Höglind, 2009). 

Simulations of LT50 for perennial ryegrass were performed using the same parameterisation 

as for timothy except that two parameter values were changed: initial LT50 was set to -4°C, 

and minimum LT50-value was set to -16°C (see Thorsen and Höglind (2009) for details on 

LT50-model) based on data for the perennial ryegrass cultivars Riikka and Gunne, which are 

well adapted to Norwegian conditions (Höglind et al., 2006). This parameterisation yielded 

good agreement with observed LT50 for the perennial ryegrass cultivars for most of the 

autumn and winter (Thorsen and Höglind, unpublished data), as illustrated in Figure 3 with 

examples from two locations (Særheim  and Holt), together with examples for timothy cv. 

Engmo.  
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Figure 3: Simulated LT50 values (dashed) for timothy and perennial ryegrass, and simulated soil 
surface temperature (solid). Circles with vertical line segments denote observed LT50 values ± 
one standard deviation. The top two diagrams show results for timothy cv. Engmo at Særheim 
(located approximately 13 km south of Sola) and Holt, both for winter 05-06. The bottom two 
diagrams show results for perennial ryegrass cvs. Gunne and Riikka for Særheim during winter 
05-06. 
 

If water from snowmelt or rain were to accumulate in soil depressions due to the reduced 

infiltration capacity of frozen soil, a surface ice cover might be induced, leading to ice 

encasement and damage caused by anoxia and accumulation of CO2, lactic acid, ethanol and 

ethylene (Gudleifsson, 1993). The number of days plants can withstand being encapsulated in 

ice is correlated to their degree of frost tolerance at the start of the ice period. Höglind et al. 

(2008) found that the ice encasement tolerance of plants, expressed as LD50, was linearly 

related to their estimated LT50 value at the start of the ice period. For timothy, using 

underlying data from Höglind et al. (2008) and Jørgensen et al. (2008), we estimated LD50 

as:  

 

LD50T = 1.3403 - 2.1128 LT50T                                                                   (3) 

 

where the coefficient of determination was r2 = 0.65 based on n = 12 observations.  
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For ryegrass, we estimated LD50 as: 

 

LD50R = -7.7041 - 1.5387 LT50R                                                                  (4) 

 

where the coefficient of determination was r2 = 0.90 based on n = 12 observations. LT50T and 

LT50R in equations (3) and (4) represent simulated LT50 values for timothy and ryegrass, 

respectively. The occurrence of ice encasement in the field was simulated using the 

SnowFrostIce model (Thorsen et al., 2009), which has been calibrated and partly validated for 

Norwegian conditions. Outputs from the SnowFrostIce model include depth of snow cover 

and depth of soil frost for different soil types, using standard meteorological measurements on 

daily average air temperature and precipitation as driving variables. If surface water is 

simulated in soil surface depressions during winter, the SnowFrostIce model simulates 

formation of an ice layer. As long as surface water is present and the simulated soil surface 

temperature is below 0°C, ice is simulated. A thick snow cover can protect plants from frost 

exposure. In the present study we therefore considered periods when the simulated snow 

cover was relatively thin (< 20 cm), and estimated the number of days when a simulated ice 

cover coincided with this reasonably thin simulated snow cover when assessing the risk of 

ice-related injuries. We then compared the duration of this snow and ice cover period with the 

estimated LD50 values for timothy and ryegrass at the beginning of the snow and ice period. 

If the duration of the ice and snow cover outlasted the ice encasement tolerance estimated for 

the start of the ice encasement period (snow and ice days > LD50) for timothy and ryegrass, 

this was characterised as one ice damage event. The indices IDT and IDR were then calculated 

as the total number of such ice damage events in timothy and ryegrass, respectively, during 

one winter. 

 

After the start of thermal growth in spring, here called GPstart, plants are particularly 

vulnerable to the occurrence of low temperatures, as they have generally lost most of their 

frost tolerance. We proposed an index to reflect the risk of spring frost, defined as the number 

of days after GPstart when the daily minimum air temperature, Tmin, dropped below -5°C, 

reflecting the fact that unhardened plants of timothy and perennial ryegrass typically have an 

LT50 value around -5°C (Gay & Eagles, 1991). If a snow cover was simulated during this 

period, we used the temperature Tsurf if the snow cover depth was less than 10 cm. This index, 

reflecting the risk of injuries due to spring frost following start of growth in spring, was 

termed SF. 
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2.3. Climate scenarios and weather stations 

The data sets used in this study were empirically adjusted outputs from two different 

atmosphere-ocean general circulation models (GCM). We selected one GCM model from the 

Hadley Centre for the control period 1961-1990 (HaCtrl), and the two emission scenarios A2 

and B2 for the period 2071-2100 (HaA2 and HaB2 respectively); and output from one GCM 

from the Max Planck model using the IS92a emission scenario (MPI) for the period 2020-

2049 (available from http://noserc.met.no/effect/dynamic/PM1/index.html). These model 

outputs were downscaled to produce locally adjusted scenario data sets (Engen-Skaugen, 

2007). The data sets consist of daily mean air temperature and daily precipitation sum. We 

used the HaCtrl data set as the baseline climate for comparisons with the other scenarios.  

 

Since the scenario data sets did not include daily minimum air temperatures, Tmin, these 

needed to be estimated. We selected six different locations in Norway, representing important 

agricultural regions, where both empirically adjusted climate scenarios and automatically 

recorded weather data were available (Table 2). 

 
Table 2 Description of the six representative locations included in this study 

Agricultural region,   Represent.    Elevation   Latitude Longitude  
climate                     location        m.a.s.l.     North    East     
South-west, coastal    Sola             7   58° 53'   5° 38'  
South-east, lowland    Oslo             94   59° 56'   10° 43'  
South-east, inland      Løken          525   61° 7'      9° 4'  
Central Norway, 
fiord               Værnes        12   63° 27'   10° 56'  
Northern, coastal       Bodø            11   67° 16'   14° 26'  
Northern, coastal       Tromsø        100   69° 39'   18° 55'  
 

From weather stations at each of the six representative locations in this study, we obtained 

data on daily average air temperature and daily minimum air temperature for each day of the 

calendar year. At each weather station, approximately 20 observations were available for each 

day. We estimated mean and standard deviation of the difference between daily average and 

daily minimum air temperatures. Based on these daily temperature differences, termed �Td, 

we estimated the daily minimum temperature on day d, Tmin,d as: 
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where Tair,d is the daily mean temperature from the climate scenario, �Td is the estimated 

daily temperature difference, and ��T is the standard deviation of �Td. The net global 

radiation is less on cloudy days than on clear days, and thus on cloudy days the temperature 

amplitude is likely to be smaller. The climate scenarios did not contain information on 

cloudiness, so we assumed days with precipitation to be cloudy, and days with no 

precipitation to be clear. To incorporate this information, we used the temperature difference 

�Td on days with precipitation, while on days with no precipitation we used the temperature 

difference �Td plus a ��T from the 75% quantile (assuming the difference �Td follows a 

normal distribution, this means adding 0.68 ��T to the temperature difference �Td). 

 

 
Figure 4: Scatter plot of observed versus estimated daily minimum air temperature at Værnes 
for the period using data from 1988-2008. 
 

Figure 4 shows a scatter plot of observed versus estimated daily values of Tmin for Værnes  

(Nord-Trøndelag) using observations from the period 1.9.1988 – 31.8.2008. The root mean 
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squared error was calculated as �
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1  RMSE , where TminObs,d was 

observed daily minimum air temperature on day d. The median value of the residuals 

(TminObs,d - Tmin,d ) was 1.23, indicating that Tmin,d was underestimated. Figure 4 indicates that 

this underestimation mostly occurred on days when the minimum air temperature was above 

0°C. 

 

2.4. Statistical analysis 

 

To assess whether the results for the different scenarios differed from those for the control 

period, we used the Wilcoxon rank sum test and did a pair-wise comparison of the results 

from the control period and the scenarios. This test performs a two-sided rank sum test of the 

null hypothesis that indices, calculated for the control period and the different scenarios, 

respectively, are independent samples from identical distributions with equal medians, against 

the alternative that the medians are not equal. We rejected the null hypothesis at the 5% 

significance level. Significant differences are marked in Figures 6-13 with asterisks (*). All 

calculations were performed using MATLAB. 

 

3. Results 

3.1. Length of autumn hardening period HP 

Mean dates of the estimated start and end of the autumn hardening period (HPstart and HPstop) 

for all locations and scenarios are presented in Table 3, together with the mean length of the 

autumn hardening period (HPstop - HPstart). Both HPstart and HPstop were delayed for all 

locations and future scenarios in comparison with the control period, and the hardening period 

was shortened as a result of HPstart being more delayed than HPstop. This is also illustrated 

graphically for the warmest scenario HaA2 in Figure 5. The delay in HPstart varied between 8 

and 34 days and was significant for all scenarios and locations. The delay in HPstop varied 

between zero and 21 days and was significant for all scenarios at the Tromsø site; for two 

scenarios at Bodø, Værnes, Oslo and Sola, and for one scenario at Løken. As a result, the 

autumn hardening period was shortened for all scenarios and locations except MPI at Tromsø. 
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The largest reduction, 21 days, was observed for HaB2 at Sola. Significant reductions in the 

length of HP are indicated by * in Table 3. 

 
Table 3 Mean dates of start and end of the hardening period (HPstart and HPstop, respectively), 
mean length of the hardening period (HPstop - HPstart) and mean dates for start of growth in 
spring (GPstart) for the control period and the three future climate scenarios. Significant 
reduction in length of hardening period indicated by * 
Location   HPstart       HPstop  Length of   GPstart 
Scenario                         HP         

Sola                                       
HaCtrl     13 Nov 02 Jan 50 09 Mar 
MPI         22 Nov 02 Jan 41 * 31 Jan 
HaB2       15 Dec    13 Jan 29 * 08 Feb 
HaA2       14 Dec    20 Jan 37  09 Feb 
Oslo                                       
HaCtrl     24 Oct     20 Dec  57 15 Apr 
MPI         02 Nov  27 Dec    55 01 Apr 
HaB2       13 Nov 03 Jan 51  02 Apr 
HaA2       21 Nov  31 Dec    40 * 28 Mar 
Løken                                   
HaCtrl     30 Sep  3 Dec   64  16 May 
MPI          10 Oct    12 Dec   63   12 May 
HaB2        26 Oct    16 Dec   51 *  02 May 
HaA2        25 Oct    11 Dec   47 * 27 Apr 
Værnes                                
HaCtrl      2 Oct     25 Dec   65 11 Apr 
MPI         01 Nov  30 Dec    59 26 Mar 
HaB2       15 Nov 11 Jan 57 27 Mar 
HaA2       22 Nov 14 Jan 53 24 Mar 
Bodø                                    
HaCtrl     19 Sep  23 Dec  65  06 May   
MPI          27 Oct    26 Dec  60 01 Apr 
HaB2       11 Nov 03 Jan 53 29 Mar 
HaA2       13 Nov 07 Jan 55 02 Apr 
Tromsø                                 
HaCtrl     26 Sep  8 Dec    73 02 Jun 
MPI          7 Oct      20 Dec   74  09 May 
HaB2        26 Oct     26 Dec  64 26 Apr 
HaA2        30 Oct     29 Dec  60 * 16 Apr 
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Figure 5: Cumulative frequency curves for the start (solid) and the end (dashed) of the 
hardening period. Blue lines represent the control period 1961-1990, and red curves represent 
climate scenario HaA2 for the period 2071-2100. 

 

3.2. Fall hardening index FH-COLD 

Values of the FH-COLD index, representing the hardening status of the plants according to 

Bélanger et al. (2002), are shown in Figure 6. 
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Figure 6: Box plots of the index FH-COLD calculated for the different locations and scenarios; 
upper and lower edges of boxes indicate 75th and 25th percentiles, line within boxes indicates 
median, whiskers extend to extreme values and possible outliers marked by +. Asterisks* 
indicate significant differences. 
 

For some combinations of location and scenario, a decrease in FH-COLD compared with the 

control period was predicted, whereas for others no change or a non-significant increase in 

FH-COLD was predicted. The predicted decrease in FH-COLD was significant for all three 

scenarios at Sola. Here, the largest reduction was expected under MPI, where the median FH-

COLD value was reduced from 43.2 CDD5 to -30.3 CDD5. The negative values of FH-COLD 

for Sola suggest more days with temperatures above 5°C during the hardening period. At 

Løken a significant reduction was found for HaB2 and HaA2. For the remaining locations, 

none of the differences between scenario and control period were significant.  

 

3.3. Maximum frost tolerance LT50 

Values of maximum frost tolerance LT50 at the end of autumn hardening are shown in Figure 

7 for timothy (top panel) and perennial ryegrass (lower panel). For Sola, a significant decrease 

in frost tolerance was predicted for all scenarios compared with the control period. For both 

timothy and perennial ryegrass, the largest reduction was expected under the HaA2 scenario, 
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where the median maximum LT50-value was reduced by 3.9°C and 1.9°C for timothy and 

ryegrass, respectively. The predicted decrease at the other locations varied between 0 and 

2°C. A significant decrease in maximum frost tolerance was also predicted for scenarios 

HaB2 and HaA2 for Oslo, Løken, Værnes and Bodø, and for HaA2 for Tromsø.  

 

 
Figure 7: Box plots of simulated maximum frost tolerance (LT50) for timothy (top panel) and 
perennial ryegrass (bottom panel) calculated for the different locations and scenarios; upper 
and lower edges of boxes indicate 75th and 25th percentiles, line within boxes indicates 
median, whiskers extend to extreme values and possible outliers marked by +. Asterisks * 
indicate significant differences.  
 

3.4. Risk of frost injury during autumn hardening AFR  and  AFT 

Values of the autumn frost index for perennial ryegrass (AFR) are shown in Figure 8. For 

Oslo, a significant decrease in AFR was predicted for HaB2 and HaA2 (both to zero days) 

compared with the control period (one day), while for Sola there was a significant decrease to 

zero occurrences for the MPI scenario.  
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Figure 8: Box plot of the autumn frost index AF for perennial ryegrass calculated for the 
different locations and scenarios; upper and lower edges of boxes indicate 75th and 25th 
percentiles, line within boxes indicates median, whiskers extend to extreme values, possible 
outliers marked by +. Asterisks * indicate significant differences.  
 
 

At Værnes, the results indicated a relative large but non-significant increase in AFR for MPI 

and HaB2. The remaining results for AFR were small and non-significant. There was no 

significant effect of climate change on AFT at any location. 

 

3.5. Risk of frost injury during winter WFR and WFT 

Values for WFR are shown in Figure 9. Oslo and Værnes had the largest risk of frost injuries 

among locations during the control period. A significant decrease from 3 days in the control 

period to 1 day was predicted for all scenarios at Oslo and for HaA2 at Værnes.  A smaller 

significant reduction was predicted for two scenarios at Sola and Bodø, and for one scenario 

at Løken. For the remaining locations, the main difference between the control period and the 

scenarios was a tendency for fewer WFR days overall under the scenarios.  
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Figure 9: Box plot of the winter frost index WF for perennial ryegrass calculated for all locations 
and scenarios; upper and lower edges of boxes indicate 75th and 25th percentiles, line within 
boxes indicates median, whiskers extend to extreme values, possible outliers marked by +. 
Asterisks * indicate significant differences. 
 

There were practically no occurrences of winter frost events for timothy at any of the 

locations for all three scenarios and the control period (not shown). 

 

3.6. Risk of ice damage ID and W-RAIN 

Values for the index ID are presented in Figure 10. For Oslo, a significant decrease was 

predicted from 1 event under HaCtrl to 0 events under all scenarios. A significant decrease in 

ID compared with the control period was also predicted for two scenarios at Værnes and two 

at Bodø. For Tromsø, a small but significant increase was predicted for HaB2. There were no 

significant changes in ID for Sola and Løken. 
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Figure 10: Box plot of results for the number of ice damage events ID per year for perennial 
ryegrass calculated for all locations and scenarios; upper and lower edges of boxes indicate 75th 
and 25th percentiles, line within boxes indicates median, whiskers extend to extreme values, 
possible outliers marked by +. Asterisks * indicate significant differences. 
 

Values for W-RAIN for the different scenarios and locations are shown in Figure 11. For 

most combinations of location and scenario, an increase in W-RAIN was predicted compared 

with the control period. The predicted increase was significant for all scenarios for Oslo and 

Tromsø, for two of the scenarios (MPI and HaB2) for Bodø and for one of the scenarios 

(MPI) for Sola and Værnes. The largest change was predicted for Sola, where W-RAIN was 

expected to increase from 2.6 mm per day under HaCtrl to 5.0 mm per day under MPI. 
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Figure 11: Box plots of results for the ice damage index W-RAIN calculated for all locations and 
scenarios; upper and lower edges of boxes indicate 75th and 25th percentile, line within box 
indicates median, whiskers extend to extreme values, possible outliers marked by +. Asterisks * 
indicate significant differences. 

 

3.7. Risk of dehardening during winter W-THAW 

Mean values for W-THAW are presented in Figure 12. For all but one combination of 

location and scenario, W-THAW was predicted to increase, suggesting an elevated risk of 

dehardening. This increase was significant for all three scenarios compared with the control 

period at all locations except Løken, where W-THAW was significantly larger only for 

scenario HaA2. The largest increase was expected at Sola, where W-THAW increased from 

3.0 DD0 per day under HaCtrl to 5.0 DD0 per day under MPI.  
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Figure 12: Box plot of results for the dehardening index W-THAW calculated for the different 
locations and scenarios; upper and lower edges of boxes indicate 75th and 25th percentile, line 
within boxes indicates median, whiskers extend to extreme values, possible outliers marked by 
+. Asterisks * indicate significant differences. 

 

3.8. Risk of frost injury during spring growth SF 

Values of SF for the different locations and scenarios are shown in Figure 13. A significant 

increase was predicted for all scenarios at Bodø. No significant changes were predicted for the 

remaining locations and scenarios. However, the results shown in Figure 13 indicate that Sola 

was expected to experience more SF events under the scenarios, although the increases were 

not significant according to the Wilcoxon tests.  
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Figure 13: Box plots of results for the spring frost index SF calculated for all locations and 
scenarios; upper and lower edges of boxes indicate 75th and 25th percentile, line within boxes 
indicates median, whiskers extend to extreme values, possible outliers marked by +. Asterisks * 
indicate significant differences. 

 

4. Discussion 

The climate data used in this study were generated by two global circulation models (one 

from the Hadley Centre and one from the Max Planck Institute) and further locally adjusted 

using dynamic downscaling by a regional climate model followed by empirical local 

adjustments (Engen-Skaugen, 2007). As a baseline climate we used the control period 1961-

1990 from the Hadley Centre (termed HaCtrl) when comparing effects under the projected 

scenarios IPCC SRES A2 and B2 (termed HaA2 and HaB2, respectively) and IS92a (termed 

MPI). The general pattern in Norway under these scenarios is for a marked west-east and  

south-north temperature gradient, with the highest increases in the east and north (under the 

scenario HaA2 the increase was < 3°C in the west to > 3.5°C in the east and > 4.0°C in the 

north-east) (Engen-Skaugen, 2007). Another trait in these scenarios is for the temperature 

increase to be larger during winter, i.e. the winters are projected to be milder, with more 

precipitation as rain (Beldring et al., 2008). 
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All calculations made using the simulation model were based on the assumption that current 

cultivars, well adapted to Norwegian conditions, were used. Any possible change in winter 

hardiness as a result of plant breeding were not considered. In general, plant breeding could 

be expected to result in cultivars with improved performance. However, it is important that 

cultivars adapted to the specific photoperiodic pattern at higher latitudes are available (Rognli, 

1998).  

 

4.1. The hardening period 

Our calculations suggest that the increase in temperature will have largest negative effect on 

frost hardening in autumn in areas of Norway already experiencing a variable autumn climate, 

such as the south-west region, represented in this study by Sola. Regions like this coastal area, 

currently receiving little snow which may serve as protective insulation, are in this respect 

particularly vulnerable to freezing temperatures. However, at the same time minimum air 

temperatures are less extreme at these coastal locations. Our index AF (as well as WF) 

captured this by calculating the risk of frost actually hitting the plant, accounting for the 

insulating effect of snow cover if present. Hardening was predicted to start later at all 

locations studied, especially under the HaA2 scenario (between 3 to 5 weeks; Table 3). For 

inland locations predicted to receive much snow and experience stable winters even in the 

future (e.g. Løken), the end of hardening will not change much, but the hardening period will 

still be shortened due to delayed onset of hardening. Our finding of up to three weeks shorter 

hardening periods in the future confirmed earlier results produced by Engen-Skaugen and 

Tveito (2004) using a slightly different definition of thermal growth period than ours. In 

comparison, Bélanger et al. (2002) predicted an average decrease in the length of hardening 

period in the range of 1 to 6 days for Canadian conditions.  

 

The results for the index reflecting the hardening status of the plants by the end of the 

hardening period, FH-COLD, gave similar results to the simulations of the maximum frost 

tolerance LT50 for the locations Sola, Løken and Tromsø. This was in contrast to Oslo, 

Værnes and Bodø,  where LT50 and  FH-COLD gave opposite results. It would be interesting 

to run our frost tolerance model for the Canadian climate scenarios used by Bélanger et al. 

(2002), to see whether we get similar disagreement of predictions by FH-COLD and 

simulated maximum LT50, and to clarify which method gives the most accurate results. 
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The results of the index FH-COLD do not indicate quantitatively how much differently the 

plants will harden in the future, only that there will be a change. In contrast, the model 

simulations give a quantitative estimate. Based on the simulations of LT50, we concluded that 

even if the hardening period becomes shorter in the future, it will still be long enough to 

provide substantial hardening, so in the end the maximum frost tolerance will only be reduced 

by 3°C at worst, and most often by less than 2°C.  The predicted decrease in frost tolerance is 

in agreement with observations from an open top chamber experiment at Særheim, 15 km 

from Sola, where a 2°C increase in air temperature throughout autumn and winter compared 

with ambient temperatures caused a decrease in frost tolerance of about 1°C (Höglind et al., 

2008).  

 

According to AFR and AFT, the risk of frost injury during the autumn period will decrease or 

remain unchanged in the future compared with today. Thus, even if the frost tolerance is 

reduced during the hardening period, the plants will still be hardy enough to withstand the 

predicted autumn frosts as they are generally less intense than those in the control period. 

 

4.2. The winter period 

Our model simulations (which formed the basis for calculating WFR, WFT and ID) indicated 

that even if plants harden less in the future, frost and ice encasement-related injuries during 

winter will decrease at most locations. General warming of the climate is likely to be 

accompanied by less frost exposure for plants and soil, leaving the soil more able to maintain 

its drainage capabilities (little or no ice in the soil pores to impede soil water infiltration). 

Better drainage capability will lead in turn to a reduced risk of ice encasement episodes, or at 

least a reduction in the duration of such episodes, as reflected by the ice damage index ID. 

One exception is Tromsø, for which an increased risk of ice encasement injuries is predicted 

due to a rather dramatic decrease in snow cover (snow data not shown here) accompanied by 

increased precipitation as rain in combination with frost episodes where ice can form on the 

surface. Other locations in Norway with similar winter conditions to Tromsø may also 

experience an increased risk of ice encasement. However, the increase will not be dramatic, 

and the general trend for Norway will be a reduction in the risk of ice encasement events.  

 

The results from the W-RAIN index mostly contradicted the results from the ice damage 

index ID. The cold inland regions of Norway have a longer protective snow cover than milder 
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coastal regions in Norway or in Eastern Canada. For these inland regions of Norway, rain 

during winter might just as well be absorbed by the snow cover (the snow cover being a 

porous medium with the ability to retain a limited amount of liquid water) rather than forming 

an ice cover. The Canadian winter conditions are expected to have less protective snow cover 

than in the Norwegian inlands (Bélanger et al., 2002), leaving the crops and soil more 

exposed to rain and frost events. In the milder regions of Norway there is currently not much 

soil frost, so rain during winter is more likely to cause waterlogging than ice sheeting. Thus 

the index W-RAIN, which was developed for eastern Canadian conditions, might be less 

suitable for Norwegian conditions. On the other hand, the SnowFrostIce model has only been 

partly validated for the ice cover simulation due to lack of data (Thorsen et al., 2008). When 

more data become available, the model should be revalidated, and if necessary the scenario 

simulations should be repeated with an improved ice encasement model.   

 

The south-west location Sola had the highest W-THAW values, indicating that this region is 

most vulnerable to a temperature increase during winter in terms of the risk of warm spells 

causing the plants to deharden. The high W-THAW values for Sola can be related to the 

shorter winter period predicted for this location compared with the others. Locations having a 

relatively long and stable snow cover, e.g. Løken, are less prone to experience serious 

dehardening according to W-THAW (Figure 9). W-THAW gives a rough estimate of the risk 

of dehardening but does not quantify the number or intensity of dehardening events followed 

by temperature drops causing frost kills. The index Winter Frost (WF) gives a more detailed 

picture by calculating the number of events where the simulated LT50 value is lower than the 

simulated daily minimum temperature. For ryegrass, WFR showed a significant decrease in 

the risk of frost events during winter for Oslo, whereas for the remaining locations no 

significant change was predicted, although the general trend was for a slight decrease in the 

number of events. 

 

The index WFT suggests there is little or no risk of frost injuries in timothy swards in winter, 

either under the future scenarios or in the control scenario at any location. 

 

4.3. Spring frost 

The risk of frost injury in spring depends on how much the growing season is extended into 

the winter period, the number of air frosts during the prolonged growing season, and the 
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absence or presence of a protective snow cover during frost exposure. Spring growth will start 

earlier at all locations according to our calculations. At Bodø, the earlier start of growth will 

be accompanied by an increased risk of frost injury after the start of growth, as reflected by 

the increased SF compared with the control period. For the other locations, the risk of frost 

injury in spring will not change significantly, although a strong tendency for increased SF was 

also evident for Sola. At coastal locations such as Bodø and Sola, the sea acts like a thermal 

buffer, keeping temperatures high enough so that growth can start early in spring. However, 

freezing temperatures may still occur during the initial growth phase, which is rather long 

compared with inland locations where the temperature curve after start of growth often has a 

steeper slope. The spring frost (SF) and start of growth (GP) indices are dependent upon 

accurate simulation of snow cover, and modelling studies have shown that snow simulation in 

coastal areas is more difficult than in more continental regions (Thorsen et al., 2008). Hence 

these indices (SF and GP) are also subject to the uncertainty related to the snow cover 

simulations. Even though an increase in SF was predicted for Bodø, it should be noted that 

this increase was relatively small and mainly due to a limited number of years when SF > 6 

days. 

 

4.4. Agronomic implications 

The results of our research indicate a longer growing season in autumn and an earlier start of 

growth in spring throughout Norway. This implies that farmers might get one or two extra 

grass harvests in the future, and/or a prolonged grazing period, compared with the situation in 

the control period. On the other hand, if the increase in the growing season in autumn is 

accompanied by more precipitation as rain, the fields may be too wet to harvest the extra 

regrowth. In countries such as Norway with relatively harsh winter conditions, winter survival 

is a critical factor. The present study indicates better overwintering conditions in general for 

timothy and perennial ryegrass in the future. However, at some locations, some types of 

winter stress may increase, e.g. the risk of spring frosts may increase at some coastal locations 

such as Bodø, and there may also be an increased risk of ice encasement injury in areas where 

the length of snow period is drastically reduced, as in Tromsø. The better overwintering 

conditions in general indicate that it will be possible to grow perennial ryegrass in areas where 

it is not grown today, provided that the risk of fungal diseases does not increase.  
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It should be borne in mind that the present study deals with the risk of abiotic winter injuries. 

When models for biotic winter injuries become available, it is greatly important that the 

present study be supplemented with a study of winter survival in future climate scenarios in 

relation to the risk of winter injuries related to biotic factors (e.g. snow mould fungi). 
 

4.5. Usefulness of combining model simulations with simpler agroclimatic indices  

The plant data available for this study suggest that the agroclimatic indices developed for 

Canadian conditions (Bélanger et al., 2002) can be useful for assessing the hardening status in 

Norwegian forage grasses, but they are less suitable for assessing the risk of plant injury 

related to frost and ice encasement in Norway since the dynamics of hardening are not 

accounted for. The simulated frost tolerance in timothy and perennial ryegrass was useful 

when assessing a more complex interaction between winter survival and climate effects, such 

as snow and ice cover. Results from simulation models can be summarised and presented as 

agroclimatic indices for the use of decision-makers and agricultural advisors. 

5. Conclusions 

Climate scenarios for Norway indicate an increase in temperature for all seasons. Based on 

simulations, we concluded that even if the hardening period is shorter in the future, it will 

remain long and cold enough to provide substantial hardening. Thus, the maximum frost 

tolerance will in most cases be reduced by less than 2°C. For most locations, the risk of frost-

related injuries during the hardening, winter and spring growth periods will be somewhat 

reduced according to existing scenarios. However, some coastal locations may experience a 

slightly increased risk of frost injury after start of growth in spring. A slightly increased risk 

of ice encasement injury may also be expected at some locations where the length of the snow 

period is dramatically decreased. However, the general trend is for a reduced risk of plant 

injury related to ice encasement. Our predictions are directly related to snow and ice cover 

simulations, and thereby subject to the uncertainty in the underlying snow model. 
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