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Abstract 

The thesis is about quantification of uncertainties in complex models. Models are built to 

describe, explain or predict a real world outcome. It is well known that models are related 

with uncertainty, and that uncertainties are related to how close the simulation is to the real 

world outcome. Still, uncertainties are rarely quantified in dynamic models. We have focused 

on parameter uncertainty and output uncertainty derived from the parameters. Uncertainty 

originated from the empirical data is integrated into the posterior parameter distributions 

through the likelihood functions.  Additionally, uncertainty related to the representativeness of 

the collected data to the population has been focused. 

The Bayesian statistical framework, with the Markov chain Monte Carlo algorithm random 

walk Metropolis was used for model calibration in the four papers. The algorithm was found 

simple in idea and implementation into the computer program Matlab, but challenges emerged 

when the method was used at complex models. In this work these challenges have been 

pursued together with searching for efficiency improvements in order to make as few model 

evaluations as possible.   

Paper I: explores the challenges emerging when applying Bayesian calibration to a complex 

deterministic dynamic model of snow depth. How prior information and new data affect the 

calibration process, the parameter estimates and model outputs were demonstrated. Parameter 

uncertainty and model uncertainty derived from the parameters were quantified, visualized 

and assessed. The random walk Metropolis algorithm was used and in order to reach 

convergence more effectively, informative priors, Sivias’ likelihood, reflection at the prior 

boundaries and updating the proposal distribution with parts of the data gave successful 

results. Methods for objective and correct determination of Markov chain convergence were 

studied, and the use of multiple chains and the Gelman-Rubin method was found useful.  

Paper II: presents a dynamic model for snow cover, soil frost and surface ice. The Bayesian 

approach was used for model calibration and sensitivity analysis identified the non-important 

parameters.  

Paper III: shows the importance of splitting the data several times in two for model 

development and assessment/selection, for the model to fit well to novel data from the system 

and not only to the specific data at hand. Different models of ascospore maturity of Venturia 
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inaequalis were further developed and compared by the deviance information criterion and 

root mean square error of prediction to show model improvements, and the analysis of 

variance was used to show significance of the improvements. 

Paper IV: examines the potential effects of selection of likelihood function when calibration a 

model. Since the likelihood function is rarely known for certain, but gives a reasonable 

quantification of how probable the data are given model outcome, it is of great importance to 

quantify the effect of using different likelihood functions on parameter uncertainty and on 

model output uncertainty derived from the parameters.   
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Sammendrag 

(Norwegian summary) 

Denne avhandlingen omhandler kvantifisering av usikkerhet i komplekse modeller. Modeller 

bygges for å beskrive, forklare og predikere virkelige systemer. Selv om det er kjent at 

usikkerhet er knyttet til modeller og dermed er relatert til hvor lik den simulerte og den 

virkelige verdien er, blir usikkerhet sjeldent kvantifisert i dynamiske modeller. Det har i 

denne avhandlingen blitt lagt vekt på parameterusikkerhet og usikkerhet i utgangsdata fra 

modeller med opprinnelse i parametrene og empiriske data. I tillegg har det blitt fokusert på 

usikkerhet i forhold til hvor godt de innsamlede observasjonene representerer populasjonen.  

Bayesiansk statistikk har blitt anvendt til å kalibrere modellene i de fire påfølgende artiklene 

ved hjelp av Markov chain Monte Carlo algoritmen random walk Metropolis. Algoritmen er 

enkel å forstå og å implementere i dataprogrammet Matlab, men utfordringer oppstod ved 

anvendelse på komplekse modeller. Disse utfordringene og effektivitetsforbedringer ved å 

minimere antall modellevalueringer har blitt vektlagt. 

Artikkel I: utforsker utfordringer ved bruk av Bayesiansk kalibrering på en kompleks 

deterministisk dynamisk modell for snødybde. Fokus er lagt på hvordan den opprinnelige 

usikkerheten, a’priori usikkerheten, sammen med nye innsamlede data gjennom 

rimelighetsfunksjonen påvirker kalibreringsprosessen, parameter estimatene og modellens 

utgangsdata. Parameterusikkerhet og modellusikkerhet grunnet parametrene ble kvantifisert, 

vist og vurdert. Random walk Metropolis algoritmen ble anvendt, og for å oppnå konvergens 

raskere ble informative fordelinger på parametrene, Sivias’ rimelighetsfunksjon, refleksjon og 

å oppdatere forslagsfordelingen med deler av dataene testet med gode resultater. Det ble 

dessuten lagt vekt på viktigheten av en metode for å avgjøre både objektivt og korrekt når 

kjedene konvergerte, hvor parallelle kjeder og Gelman-Rubins metode ble funnet nyttig. 

Artikkel II: presenterer en dynamisk modell for snødybde, frostdybde og overflate-is. 

Bayesiansk rammeverk ble anvendt for å kalibrere modellen og sensitivitetsanalyse 

identifiserte de mindre viktige parametrene. 

Artikkel III: viser hvor viktig det er å dele data flere ganger i to for modell utvikling og 

modell validering for at modellen ikke kun skal passe de spesifikke dataene, men også nye 

data fra det samme systemet. Ulike modeller for sporemodning av Venturia inaequalus ble 
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videreutviklet og sammenlignet ved bruk av kriteriene devianse informasjons kriteri (DIC) og 

prediksjonsfeil (RMSEP) for å vise modellforbedringer. Variansanalyse ble anvendt for å angi 

statistisk signifikans til forbedringene. 

Artikkel IV: undersøker effekten av rimelighetsfunksjonen på en snødybdemodell. Siden 

rimelighetsfunksjonen sjelden er kjent, men kun gir en fornuftig kvantifisering av hvor 

sannsynlig data er gitt modellens utdata, er det viktig å kvantifisere effekten av å anvende 

ulike rimelighetsfunksjoner på parameterusikkerhet og på usikkerheten relatert til modellens 

utgangsdata med opprinnelse i apriori parameterusikkerhet og empiriske data.     
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Introduction 

Background 

Computer models are abstract representations of real world systems. They are made in 

different complexities and are constructed in place of conducting experiments either because 

it is found more convenient, more efficient or because it can not at all be done in reality. They 

usually take a set of state variables and unknown or uncertain values (parameters) as inputs, to 

generate simulations of the real world outcome. The models are built to describe, explain or 

predict a real world system, to generate new insight in the system and about the response. 

Unfortunately, there will always be a difference between the prediction and the observation. 

This error is translated to uncertainty in conclusions drawn from the model. According to 

Goldstein and Rougier (2006), there are three sources of uncertainty 

1. Models often contain parameters whose values are not known 

2. Models contain simplifications of the real world system 

3. Data involved are induced by measurement error 

Measurement error includes the possibility that the specific data at hand do not represent the 

population (Bøvelstad et al. 2007).  

Models are generated to make statements about their underlying real world system. In some 

cases model prediction will not be tested until several decades or a century ahead (e.g. models 

related to climate change). Since uncertainties are related to the models, the question of how 

to learn about the actual physical system through the model becomes important (e.i. provide 

predictions that are transparent with respect to uncertainty (Thyer et al. 2009)). Still 

uncertainties are rarely quantified and conclusions are usually made conditional on the model 

being correct.  

In situations with substantial uncertainties, it is natural to adapt a Bayesian approach 

(Kennedy and O’ Hagan 2001). The Bayesian framework automatically includes uncertainty 

quantification and makes conclusions conditional on the collected data. The use of the 

Bayesian framework to environmental models has been increasing in recent years (e.g.  

Reinds et al. 2008, Lehuger et al. 2008), and it has also been introduced to models within the 

agronomy science, such as plant pathology and epidemiology (Dunson 2001, Mila et al. 
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2003), where decision making models e.g. made to alert the farmer about when and where to 

spray fungicide on the crop has become more popular.  

 

Main objectives 

The aim of this work has been quantification of uncertainty and its propagation by use of the 

Bayesian framework. Different models related to plant protection were used as case studies. 

Specifically, the objectives were:   

 Application of Bayesian calibration (learning about the model parameters using data 

from the system) to complex models in order to explore practical problems with the 

calibration as well as work out solutions. 

 Uncertainty quantification including propagation of uncertainty, and assessment of 

whether the predictive uncertainty is over or under estimated. 

 Model development and model selection in order to obtain a robust and reliable 

model. 

 

Modelling 

A model is a simplified abstract view of the complex reality of a system. In computer science, 

a simulator is the software program to model a real-life situation on a computer so that it can 

be studied to see how the system behaves. The simulator can typically be divided into three 

parts (Goldstein and Rougier 2009) 

 

Where the model usually evolves in time and space, and describes fundamental laws and 

equations of the state that variables exist. The treatment contains initial conditions that make 

the model applicable to a particular instance and the solver turns the model and the treatment 

into calculations that approximates the evolution of the state vector. Computer simulations 

have become a useful part of mathematical modeling of many natural systems in e.g. physics, 

astrophysics, chemistry and biology.  
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Computer models in biology are commonly classified into empirical or process based models. 

The empirical models are statistical oriented while the process based models are explicitly 

represented (mechanistically) by the known underlying processes (Radtke and Robinsom 

2006). 

To validate models, the best approach is to divide the dataset in two parts: a training set and a 

test set (Hastie et al. 2001). The training set is used for model development and test set used 

for model validation. We have generally used about 2/3 of the data for model development 

and 1/3 for model validation.  

The nature is complex, and models searches to describe and capture the main interacting 

factors by simplifications of the reality. They are built in all kinds of complexity, and as 

Figure 1 shows, there is an optimal model complexity that gives minimum prediction error 

(the expected error over an independent test sample). The figure also shows that the training 

error (the average loss over the training samples) is not a good estimate of the prediction 

error. It will consistently decrease with model complexity and typically converge to zero if the 

model complexity is increased enough. Also, there is a bias-variance tradeoff in choosing the 

appropriate complexity of the model, where bias refers to squared directional error in an 

estimator and variance refers to squared random error.  

 

Figure 1: Behavior of test sample and training sample error as the model complexity is varied. The figure is 

taken from Hastie et al. (2001). 
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Statistical Issues 

Classical versus Bayesian framework 

Statistical science can be divided into two different philosophical directions; the classical 

approach by Fisher, and the Bayesian approach named after Thomas Bayes (Berger 1985) the 

founder of Bayes theorem. In the classical statistical approach, collected data are considered 

to be the only available source of information, and calibration is e.g. done using the maximum 

likelihood method or least sqare, giving point estimates for the parameters. Uncertainty may 

only be established through large sample arguments and they are addressed by putting 

confidence limits on the unknown parameters accordingly, from studying the frequency 

behavior of the parameter estimates (Frey and Burmaster 1999). The alternative Bayesian 

framework regards parameters as random variables that follow some probability distribution. 

Uncertainties are automatically included as probability distributions, and prior information 

allowed and formally incorporated through the prior distribution. Bayes theorem (Equation 1) 

is the building block and states that the posterior parameter distribution; the probability 

distribution of the parameters given the collected data (π(θ|D), when θ is the parameter vector 

and D data) which we seek in calibration, is a combination of prior parameter knowledge 

before data is collected, determined by the prior probability distribution (π(θ)) and currently 

incorporated information through the likelihood function; the conditional probability density 

function of the collected data given the parameters, regarded as a function of the parameters 

(LD(θ)) of the collected data. 

 

 

The prior distribution 

The prior parameter distribution reflects our parameter knowledge before the study takes 

place (Gelman 2002). It can be based on earlier studies, literature review or expert opinions, 

and if no prior information is available, uninformative priors can be used (Jeffrey 1961).  

Prior independence is assumed, and the joint distribution found as the product of the marginal 

distributions. In the following thesis, uniformly and beta distributed priors based on literature 

or expert opinions were used. 
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The Likelihood function 

The likelihood function reflects the new incorporated information through collected data, and 

is rarely known for certain. It should then be a reasonable quantification of how probable the 

data are given the model output. For complex models the likelihood can be determined as the 

product of the likelihood of the individual data points, determined by the distribution of the 

errors (Rougier 2007). Both the Gaussian likelihood and a fat tailed Gaussian likelihood 

function (Sivia 2006) were used in this thesis. For binary outputs, the binomial distribution 

(Gelman et al. 1996b) was used.  

 

The posterior distribution 

The posterior distribution reflects out parameter uncertainty after updating our prior 

knowledge with new incorporated information through Bayes theorem. The prior will have 

larger effect on the posterior if the sample size is small or if the available data only provide 

indirect information about the parameters (Gelman 2002). 

 

Calculations  

There are four different techniques that can be used to find the posterior distribution in 

Bayesian calibration; exact calculation, analytical approximation, numerical integration and 

Monte Carlo simulation. Integration problems, especially when the parameter space is high 

dimensional, often make exact calculation impossible and it is therefore not used here.  

In the following papers, the Markov chain Monte Carlo (MCMC) algorithm random walk 

Metropolis was used. It is an iterative algorithm, starting with a guessed parameter set θ0 = 

(θ1
0, θ2

0,…, θm
0) where m is the total number of unknown parameters. Then for each iteration 

step i=1:N 

1. Draw a candidate parameter set θ’, from a spherically symmetric and independent 

distribution for different i, centered at the current state.  

2. Compute the ratio  
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3. Draw a random number u from the standard uniform distribution and set 

 

This results in a Markov chain of parameter sets, θ0, θ1,…, θN, and the idea is that the chain 

will in the long run converge to the posterior parameter distribution (Liu 2001). The stationary 

distribution of the Markov chain can then be regarded as samples from the posterior 

parameter distribution. To monitor convergence (burn-in) correctly is important, and if parts 

of the chain not converged is treated as samples from the posterior distribution, false 

conclusions may be produced. In the following papers, chains were run in parallel and burn-in 

detected by using the Gelman-Rubin diagnostic (Gelman and Rubin 1992) that compares the 

variability between and within the sequences.   

       

Model assessment 

Model selection in the Bayesian framework is often done using Bayes factor (BF) (Kass and 

Raftery 1995). The method determines which of a set of models is most probable in view of 

the data and prior information, and how strong it is supported relative to the alternative 

models in the set. It is a pairwise model selection criterion that is not effective when a high 

number of models are to be compared, and it is therefore not used in this thesis.  

 The Deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a model comparison 

method, combining model fit and penalty on model complexity using the training data. It is 

defined by 

 

where  is the posterior mean of the deviance (quality of fit, calculated as -2 times the log-

likelihood ratio of the reduced model compared to the full model, Agresti (2007)) and  is 

the estimated model complexity. The model with the lowest DIC is preferred.  

Root mean square error of prediction (RMSEP) (Hastie et al. 2001) compares models and 

estimates the prediction errors.  
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Where T is the number of test samples, Dt is the observed value at time t and Mt is predicted 

model output at time t.  

 

Uncertainty assessment 

There are many ways to visualize and assess uncertainty in models and parameters. Three 

methods will be present here. 

The 100(1-α) % highest posterior density (HPD) credible set (Berger 1985) is a measure for 

posterior parameter uncertainty. It is the subset C of the parameter space Θ of the form 

 

where k(α) is the largest constant such that P(C|x) ≥ 1-α.   

Root mean square deviation (RMSD) (Iizumi et al. 2009) calculates the model output 

uncertainty derived from the parameters, and is defined by  

 

where T is the number of test samples, E is the number of parameter sets used (ensembles), 

Met is model output at time t using parameter set number e, and  is the mean model 

estimate at time t. 

Predictive QQ plot (Dawid 1984, Thyer et al. 2009) assess whether the predictive uncertainty 

is consistent with the observed data. By comparing the empirical cumulative distribution 

function (cdf) of the sample of p-values with the cdf of the standard uniform distribution, the 

QQ plot showes whether the predictive uncertainty is over or under estimated. The 

interpretation of the QQ plot is showed in Figure 2.   
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Figure 2: Interpretation of the predictive QQ plot. The figure is taken from Thyer et al. (2009). 

 

Results and discussion 

The Bayesian framework was used to calibrate models by updating the prior parameter 

knowledge with new incorporated information through the study, and Markov chains of 

samples from the updated posterior parameter distribution were generated through Monte 

Carlo simulation. I addition to reflect parameter uncertainties and proportion of the 

uncertainties, this study explored and worked out solutions to challenges that emerged when 

the method was applied to complex models. 

 

Optimizing Bayesian calibration  

Model evaluations were computationally expensive for the complex models of snow cover, 

soil frost and surface ice (papers I, II and IV). Model complexity in combination with high 

dimensional parameter spaces and larger amounts of training data made convergence hard to 

reach (paper I). The effectiveness of the random walk Metropolis algorithm was controlled by 

the proposal distribution. While small step lengths generating proposed parameter sets close 

to the current state gave high probability of acceptance but also slow convergence caused by 
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the small length of each movement, large step lengths rejected a too high proportion of the 

proposed movements. In the following papers, a multivariate Gaussian distribution (compared 

to the uniform distribution in paper I), with mean at its current state, zero covariance and 

variances found as the square of a proportion of the prior range was used. The proportion was 

found individually for each parameter by trial and error to give an efficient acceptance rate 

between 0.15 and 0.5 (Roberts et al. 1996). Some parameters were more sensitive and 

controlled most of the acceptance procedure, and made it impossible for Markov chains of the 

less sensitive parameters to converge if not weighted down by a low proportion (paper I). 

While larger step lengths reach the position of the posterior chain within a limited amount of 

time they would not accept new proposed parameters when the position was reached. Some 

parameters were more challenging and their belonging proportion was tuned once or twice 

during burn-in to reach convergence within a limited amount of time. All parameter chains 

were studied during the calibration, and tuned in order to give convergence for all parameters. 

To overcome the time requiring period of trial and error to find the variances, the Adaptive 

Metropolis algorithm (Andrieu and Thoms 2008, Smith and Marshall 2008), which solves the 

problem of finding the step length by using the chain history in order to continually tune the 

proposal distribution can be used. It was tested during the early work of paper III, but only 

found to be efficient for a small number of parameters, and therefore not included. Also, the 

adaptation were successfully used informally by using the information obtained by calibrating 

the model for only a fraction of the data to form a new covariance matrix for the proposal by 

use of both the proposal distribution used and the correlation matrix calculated from the 

resulting parameter chains (paper I). Additionally the component-wise random walk 

Metropolis (Ntzoufras 2009) and Importance sampling (Liu 2001) were tested in an early 

stage of the papers, but non of them were found to be better alternatives then random walk 

Metropolis.   

Models are imperfect representations of the real world systems, and consequently the physical 

interpretations of the parameters are not exactly correct. The calibration process may therefore 

prefer parameter values with an unrealistic interpretation. When prior intervals, as the uniform 

or beta distribution are used to reflect prior knowledge, the resulting posterior distribution will 

certainly lie within the prior range. When a Markov chain converges at its prior boundary 

(papers I - IV), it may indicate that the prior limits the exploration of the posterior 

distribution. The choice of using widened prior intervals which presumably will result in 

parameter estimates with unrealistic physical interpretation that fit the training data better, 
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instead of estimates with realistic physical interpretation but worse fit comes up. During the 

work of paper III, widened priors were tested for the parameters that converged to their 

boundaries. The widened priors gave unrealistic interpretation of the parameters, better fit to 

the training data and worse fit to the test data. This was according to average RMSEP over ten 

different splits of the data, and should therefore not reflect a training and a test set not coming 

from the same population. It may indicate over fitting of the training data (Figure 1). 

A Markov chain that converges to the prior boundary (papers I - IV) will cause a high 

rejection rate. To avoid generating proposal parameters outside the prior boundaries, that will 

regardless be rejected, reflection (Yang 2006) can be used. When having the uniform prior 

interval [θmin, θmax], a proposed parameter θ’>θmax will be reset to θmax-(θ’-θmax), while a 

proposed parameter θ’<θmin will be reset to θmin+(θmin-θ’). When using a multivariate Gaussian 

proposal distribution, the reflection method only allowes for a diagonal covariance matrix 

(else the method is not symmetric and random walk Metropolis will be incorrect). 

The use of the Bayesian framework for scientific decision making has been debated based on 

the use of prior knowledge and whether the prior knowledge affects the integrity of the study 

(Dennis 1996 and Ellison 2004). Both uniformly distributed priors and more informative 

priors were tested in paper I, where the uniform distribution gave the best fit of the model to 

the data, while the more informative priors permitted more meaningful physically 

interpretation of the parameter values. The integrity of the collected data and the belonging 

likelihood function is more rarely debated (Papers III and IV). The likelihood function is 

rarely known for certain, but gives a reasonable quantification of how probable the data are 

given the model outcome. The choice of likelihood function and covariance matrix did have 

an effect on model output (paper IV).   

Fixing parameters makes convergence of the chains much easier to reach (papers I and IV). 

But it has the problem of underestimating uncertainty when the parameters to be fixed are not 

known accurately (Gelman 1996a). 

 

Propagation of uncertainty 

The importance of visualizing how much model outputs are to be trusted, has made 

uncertainty quantification including proportion of uncertainty an important part of models. 
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Through Bayesian calibration, uncertainties are quantified by use of probability theory. The 

obtained Markov chains from the calibration, regarded as samples from the posterior 

parameter distributions are summarized in 95 % HPD credible intervals (papers I and III) and 

in frequency plots or histograms (papers I-IV) to show posterior parameter uncertainty. 

According to the idea of Bayesian calibration, knowledge will either increase or remain the 

same through the study. The decrease in parameter uncertainty caused by the study is showed 

by comparing the credibility intervals with the prior parameter intervals (papers I and III), 

and by plotting the prior together with the posterior in the frequency plot (papers I - III). The 

effect on the posterior parameter knowledge by adding data is visualized by making three 

dimensional frequency plots of the Markov chains as a function of the amount of data (papers 

I and III). Uncertainties in model output derived from the parameters are showed by 

calculated RMSD based on 10.000 ensembles of parameter sets randomly drawn from the 

resulting Markov chains (paper IV) and as plots of mean model output ± 1 std calculated over 

respectively 10.000 and 20 ensembles (paper I and II). Also, output uncertainty derived from 

the parameters were showed by three dimensional frequency plots of the model output derived 

from the 10.000 ensembles of parameter sets (paper I). The different predictions derived from 

different choices of likelihood function and covariance matrix was plotted and the dispersion 

of the predictions indicated the uncertainty of the estimated outputs derived from the choice 

of likelihood function and covariance matrix (paper IV). Finally, predictive qq-plot (paper I) 

showed over or under estimation of predictive uncertainty. 

 

Model assessment 

Model outputs were plotted together with observations (papers I-IV) using the MAP 

parameter estimate of men ± 1 std. To show model performance a scatterplot of measured and 

estimated values was made (paper II).  

Both the model selection criteria used (DIC and RMSEP) and different splits of the data may 

be crucial for which model is selected as the best (paper III). To make more general 

conclusions, both criteria were used and the differences between the different models selected 

assessed. Also, the data were split ten times in two and the mean result over the splits used to 

obtain a model fitting well to more general novel data from the same population. Analysis of 

variance (Montgomery 2005) including the F-test and Tukeys-test were used to show 
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significance of the model improvements. RMSEP were additionally used to compare different 

calibration approaches as different prior distributions (paper I) and different likelihood 

functions (papers IV). Frequency plots of the posterior parameter distribution showed how the 

uncertainty changed while adding data to the study (papers I and III). Not only did the 

uncertainty decrease, but also the position of the distribution changed. This indicated that new 

information was added through the new data that was not included at the current data set. 

Before the position of the distribution stabilized, the conclusions would not be general for 

novel data from the same population, but apply only to the specific data at hand. In classical 

statistic, it is of great importance to have large enough sample sizes, in order to make general 

conclusions and not only conclusions for the data at hand. In Bayesian statistics, prior 

knowledge makes it possible to run the calibration process for even fewer samples, if having 

informative reliable priors. When more data are collected, it is possible to update the posterior 

with the new data, by treating the old posterior distribution as the prior. 

 

Further work 

There are clearly many more important and exciting aspects to study related to the use of 

Bayesian calibration methodology, propagation of uncertainty and to the use of dynamic 

models beyond what this thesis was able to deal with.  

Firstly, the dynamic model for snow cover, soil frost and surface ice (papers I, II and IV) was 

difficult to calibrate. A sensitivity analysis could therefore be run in front of the calibration 

for fixing the least important parameters in order to gain convergence more easily for the 

chains.  

Secondly, generalized linear models with logit link function did not fit the model generated to 

estimate maturity of ascospores of Venturia inaequalis (paper III), and asymmetrical models 

as the Gompertz function (Vieira and Hoffman 1977) could be tested to improve the model.    

Thirdly, the comparison of the effect of using different likelihood functions combined with 

different covariance matrixes (paper IV) could be repeated on different studies to make the 

conclusions of more general value.  

Fourthly, predictive uncertainty was underestimated (paper I) and the source of this 

underestimation should be explored further. 



21 
 

References 

Agresti, A. (2007). An introduction to categorical data analysis. Wiley 

Andrieu, C., Thoms J. (2008). A tutorial on adaptive MCMC. Stat. Comput., 18:343-373 

Berger, O. J. (1985) Statistical Decision Theory and Bayesian Analysis. New York, Springer-

Verlag 

Bøvelstad HM, Nygård S, Størvold HL, Aldrin M, Borgan Ø, Frigessi A, Lindgjære OC. 

(2007). Predicting survival from microarray data – a comparative study. Bioinformatics 

23:2080-2087 

Dawid, A. P. (1984). Statistical theory: The prequential Approach. J.R. Stat. Soc., Ser. A 

147:278-292 

Dennis, D. B. (2001) Discussion: Should Ecologists become Bayesian? Ecological 

Applications 6(4)1095-1103 

Dunson, D. B. (2001). Commentary:Practical Advantages of Bayesian Analysis of 

Epidemiologic Data. American Journal of Epidemiology 153:1222-1226 

Frey, H. C., and Burmaster, D. E. (1999). Methods for Characterizing Variability and 

Uncertainty: Comparison of Bootstrap Simulation and Likelihood-Based Approaches. Risk 

Analysis 19:109-130 

Gelman, A., Rubin, D. B. (1992). Inference form Iterative Simulation Using Multiple 

Sequences. Statistical Science 7:457-511 

Gelman, A. (2002). Prior distribution. Encyclopedia of Environmetrics. 3:1634-1637 

Gelman, A., Bois, F., Jiang, J. (1996a) Physiologival pharmacokinetic analysis using 

population modeling and informative prior distributions. Journal of the American Statistical 

Association 91:1400-1412 

Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (1996b). Bayesian Data Analysis. 

Chapman & Hall 



22 
 

Goldstein, M., Rougier, J. (2006). Bayesian Linear Calibrated Prediction for Complex 

Systems. Journal of the American Statistical Association 101:1131-1143  

Goldstein, M., Rougier, J. (2009). Refied Bayesian Modelling and Inference for Physical 

Systems. Journal of Statistical Planning and Inference 139:1221-1239 

Hastie, T., Tibshirani, R., Friedman, J. (2001). The elements of Statistical Learning. Data 

Mining, Inference, and Prediction. Springer 

Iizumi, T., Yokozawa, M., Nishimori, M. (2009). Parameter estimation and uncertainty 

analysis of a large scale crop model for paddy rice: Application of a Bayesian approach. 

Agricultural and Forest Meteorology 149:333-348| 

Kass, R. E., Raftery, A. E. (2005). Bayes Factor. Journal of the American Statistical 

Assosiation 90:773-795 

Kennedy, M. C., O’Hagan, A. (2001). Bayesian Calibration of Computer Models. Journal of 

the Royal Statistical Society, Series B 63:425-464  

Lehunger, S., Gabrielle, B., Van Oijen, M., Makowski, D., Germon, J.-C., Morvan, T. and 

Hénault, C. (2009). Bayesian calibration of the nittrous oxide emission module of an 

agroecosystem modell. Agriculture, Ecosystems and Environment 133:208-222 

Liu, J. S. (2001). Monte Carlo stratigies in Scientific Compution. Springer-Verlag, New york 

Mila, A.L., Yang, X.B., Carriquiry, A. L. (2003). Bayesian Logistic Resgression of Soybean 

Sclerotinita Stem Root Prevalence in the U.S, North-Central Region: Accountion for 

Uncertainty in Parameter Estimation. The American Phytopathology Society 758-764 

Ntzoufras, I. (2009). Bayesian Modelng using WinBUGS. Wiley 

Radtke, P. J., Robinson, A. P. (2006). A Bayesian strategy for combining predictions from 

empirical and process-based models. Ecological Modelling 190:287-298 

Reinds, G.J., Van Oijen, M., Heuvelink, G.B.M., Kros, H. (2008). Bayesian calibration of 

VSD soil acidification modell using European forest monitoring data. Geoderma 146:475-

488. 



23 
 

Roberts, B. O. (1996). Markov Chain concepts related to sampling algorithms. In: Gilks, W. 

R., Richardson, S., Spiegelhalter, D. J., (Eds.), Markov Chain Monte Carlo in Practice.  

Chapman & Hall. 

Rougier, J. (2007). Probabilistic Inference for Future Climate Using an Ensemble of Climate 

Model Evaluations. Climatic Change 81:247-264 

Sivia, D. S. (2006). Data Analysis, A Bayesian Turtorial. Oxford University press. 

Smith, T.J. & Marshall, L.A. (2008). Bayesian methods in hydrologic modeling: A study of 

recent advancements in Markov chain Monte Carlo techniques. Water Resources Research 

44: W00B05 

Spiegelhalter, D. J., Best, N. G., Carlin, P. B., Van der Linde A. (2002). Bayesian measures of 

modell complexity an fit (discussion). Journal of the Royal Slatisrical Society 54:583-616 

Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S.W. and Srikanthan, S. (2009). 

Critical evaluation of parameter consistency and predictive unccertainty in hydrological 

modeling: A case study in using Bayesian total error analysis. Water Resources Research 45: 

W00B14 

Vieira S, Hoffman R. (1977). Comparison of the Logistic and the Gompertz Growth 

Functions Considering Additive and Multiplicative Error terms. Applied Statistics. 23:143-

148 

Yang, Z. (2006). Computational Molecular Evolution. Oxford University press 

 



I





1 
 

 

Fine-tuning Bayesian calibration for complex systems with 

application to a snow depth model 

Anne-Grete Roer*ab, Stig Morten Thorsencd, Trond Rafossa, Marcel van Oijene,  

Trygve Almøyb 

 

a Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division. 

Høgskoleveien 7, N-1432 Ås, Norway 

b Norwegian University of Life Science, Department of Chemistry, Biotechnology and Food Science, N-1432 

Ås, Norway 

c Norwegian Institute for Agricultural and Environmental Research, Grassland and Landscape Division. 

Postvegen 213, N-4353 Klepp st., Norway 

d Norwegian University of Life Science, Department of Mathematical Science and Technology, N-1432 Ås, 

Norway 

e CEH-Edinburgh, Bush Estate. Penicuick, EH26 0QB, UK 

*Corresponding author. Tel.: +47 922 83 427; fax: +47 649 46 110. 

Email address: anne-grete.roer@bioforsk.no, (Anne-Grete Roer) 

 

Abstract 

This paper explores the challenges emerging when applying Bayesian calibration to a 

complex deterministic dynamic model. The Bayesian approach regards parameters as random 

and allows integration of prior knowledge. It is here demonstrated how prior information and 

new data affect the calibration process, parameters and model outputs, with focus on 

uncertainty. Point estimates and uncertainties are calculated and visualized for both 

parameters and model outputs. Generally, uncertainty decreased when new data were 

incorporated. Uniformly distributed priors gave the best fit for this model according to root 

mean square error, while the more informative beta distributed priors gave more physically 

meaningful parameter estimates. Markov chains of samples from the posterior distribution of 
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the parameters were obtained by the random walk Metropolis algorithm. Crucial points when 

using these methods are reaching and determining convergence of the chains. In order to 

reach convergence faster, informative priors, Sivia's likelihood, reflection and updating the 

proposal distribution with parts of the data gave successful results. To determine convergence 

objectively and correctly, the use of multiple chains and the Gelman Rubin method was found 

useful. Several decisions must be made when implementing Bayesian calibration, and we 

highlight and visualize the choices that were found to be most effective. 

Key words: convergence diagnostics, model uncertainty, parameter estimates, parameter 

uncertainty, random walk Metropolis 

 

INTRODUCTION 

The potential effects of climate change on Norwegian agriculture are studied in the 

Norwegian Research program WINSUR (winter survival). A primary goal is to predict the 

impact of climate change on winter wheat and grass by making climate scenario driven plant 

growth models. Van Oijen et al. (2005b) developed a plant model for timothy and perennial 

ryegrass to forecast winter climate impacts on forage crops. Motivated by the need for daily 

information about snow depth, which is an important climate factor for winter survival of 

perennial plants, a model is built for predicting the not-commonly-measured variable snow 

depth, based on two commonly-measured variables, air temperature and precipitation 

(Thorsen and Haugen 2007). The model is based on a model computing the snow water 

equivalent developed by Vehvilainene (1992) and the parametrization is based on previous 

modeling work of Riley and Bonesmo (2005) for a site located at Bioforsk Arable Crops 

Division, Kise, Norway. 

Our snow model is an example of a large category of environmental models, which are 

deterministic and dynamic and aim to represent the processes underlying the behaviour of the 

system. The processes are defined by differential equations which the model solves by – 

computationally demanding - numerical simulation. No such environmental model simulates 

the real world system perfectly, but still predictions are often made conditional on the model 

being correct. Predictions related to climate change will not be tested until several decades or 

maybe a century ahead. It is therefore important to provide decision makers with predictions 

that are transparent with respect to uncertainty (Thyer et al. 2009). There are three major 
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sources of uncertainty related to any model (Goldstein and Rougier 2006): (1) the model 

contains parameters whose values are not certain, (2) the model is an imperfect analog of the 

system and (3) the collected data contain measurement error. In this paper, we shall focus on 

uncertainty derived from (1) and (3). Our approach is that of Bayesian calibration (Van Oijen 

et al. 2005a) which unifies the two goals of model parameterization and uncertainty 

quantification. Uncertainty with respect to model structure (2) can be addressed in this 

framework as well, provided multiple models of the same system are available, but we do not 

carry out Bayesian model comparison in this paper. 

 In practice, parameter values of environmental models are either inferred from the literature 

or found by trial and error when little information is available. Calibration is the process of 

finding the best parameter estimate for the model using data from the system. Maximum 

likelihood (Miller and Miller 1999) is a well used traditional calibration routine that 

maximizes the probability of the data given the parameters, . Limitations of the 

maximum likelihood approach are that uncertainties can not readily be quantified and 

conclusions made by the modeler are conditional on the model being correct. An alternative 

Bayesian approach is more rarely used for complex models (Van Oijen et al. 2005a, Hue et al. 

2008, Luo et al. 2009), partly because of practical problems addressed in the present paper. A 

key issue is the computationally demanding numerical solution of differential equations, 

which limits the number of model evaluations for calibration that is feasible. Despite these 

computational problems, the application of the Bayesian method to environmental models has 

been increasing in recent years (e.g. Reinds et al. 2008, Lehuger et al. 2009) because it 

improves on the traditional approach by automatically including uncertainty quantification 

(Campbell 2006). It also allows for prior information about the parameters and conclusions 

are made conditional on the data. 

Much pioneering work on the Bayesian calibration of environmental models has been carried 

out in hydrology (e.g. Kavetski et al. 2006, Smith and Marshall 2008, Thyer et al. 2009), often 

for stochastic models of water flow in response to precipitation. However, experience with the 

approach for the slow environmental models is sill limited and, as Campbell (2006) states in a 

recent review of calibration of computer simulators, “much work is still to be done to place 

calibration on a sound and practical statistical footing”. 

The main objective for this paper has been to apply Bayesian calibration to a complex model 

in order to explore practical problems with the calibration as well as work out solutions. Point 
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estimates are calculated and uncertainties visualized for both the parameters and the model 

outputs. In order to obtain convergence of the chains (and thus reasonable results) by 

simulation in a limited amount of time, the usefulness of informative priors, Sivia's 

constrained likelihood, the reflection method and different proposal distributions including 

optimizing the proposal distribution with parts of the data are tested. To detect the state of 

convergence, we have checked the usefulness of multiple chains and Gelman-Rubin. 

 

SNOW DEPTH MODEL 

The SnowFrost model, described in detail in Thorsen and Haugen (2007) is a one dimensional 

model which simulates the dynamics of depth of snow cover  (m) and soil frost  

(m). SnowFrost is integrated in a grassland model which simulates the regrowth dynamics of 

timothy (Phleum pratense L.). This grassland model by Van Oijen et al. (2005a) is under 

further development. There are two main modules in SnowFrost; one module relates to the 

dynamics of the snow cover, and one module relates to the formation of soil frost. In 

SnowFrost, the formation of soil frost is affected by the presence of a snow cover, but the 

snow cover is not affected by the presence of soil frost. In this paper the focus is on the snow 

module (Figure 1) and the calibration of its parameters, and thus we leave out issues related to 

soil frost. Preliminary calibration of SnowFrost suggested some modifications, and this new 

snow depth model is presented below. 

 

Figure 1: Description of the system simulated in the snow depth model. 
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Table 1: Symbol and description of the 9 parameters in the snow depth model. 

 Interpretation Symbol 
1 Precipitation falls as rain if   
2 Precipitation falls as snow if )   
3 Threshold temperature for snow melt  and refreezing   
4 Densification of snow cover (mm mm-1 day-1)  
5 The difference between the maximum and minimum value for the melting 

rate of snow pack  (mm -1 day-1) 
 

6 Minimum value for the melting rate of snow pack  (mm -1 day-1)  
7 Degree-day temperature refreezing index (mm -1 day-1)   
8 The density of fresh snow (kg m-3)  
9 The retention capacity of snow cover (mm mm-1)   
 

Based on precipitation rate  (mm day-1), mean air temperature  (ºC) and two threshold 

temperatures  (ºC) and  (ºC) (see Table1), the snow model determines the 

precipitation form (rain  (mm day-1) or snow  (mm day-1), where falling new snow has 

the density  (kg m-3)) by calculating a fraction of liquid water  (mm mm-1) of the 

precipitation according to 

 

where the corresponding amounts of  and  are 

 

The snow cover consists of water in solid state  (mm) (snow and ice), and liquid water 

within the snow cover  (mm). In SnowFrost snow melt occurs when  exceeds the base 

temperature  (ºC), and refreezing of  occurs when  drops below  (ºC). 

Preliminary calibration of the SnowFrost model showed that the marginal posterior 

distributions for the two threshold temperatures  and  was practically equal. We 

therefore replaced  and  with one threshold temperature  (ºC), that determines 

whether snow is melting  (mm day-1), when , or liquid water within the snow is 

refreezing  (mm day-1), when . The snow cover, being a porous medium, can 

retain a limited amount of liquid water  resulting from rain or melted snow. Similar to 
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Engseth et al. (2000), we estimate the potential retention capacity of the snow cover as 

 where  (mm mm-1) is the retention capacity of the snow cover. Liquid 

water within the snow cover may refreeze at the rate  (mm ºC-1 day-1). Also, following 

the idea of Engseth et al. (2000), we calculate the rate of snow melt using a temperature 

dependent rate  (mm ºC-1 day-1) described by a sinusoidal curve; the period is one year 

with maximum snow melt rate  (mm ºC-1 day-1) occurring on 23. June, and minimum 

snow melt  (mm ºC-1 day-1) on 23. December. To avoid situations like  

during the calibration, we replaced  by  and calibrate  

(mm ºC-1 day-1). If the entire snowpack melted instantaneously, the resulting depth of water 

is known as the snow water equivalent  (mm).  is defined as the sum of  and 

, and the density of the snow cover  (kg m-3) is defined as  (note: 1 mm of 

precipitation equals 1 kg m-2). Densification of the snow cover due to change in physical 

properties (e.g. change in shape of snowflakes and the increase in weight of overlying snow 

following accumulation) is incorporated through the empirical compaction parameter  (mm 

mm-1 day-1). We use the following equations for the snow cover dynamics: 

 

Snow depth model parameters to be calibrated are listed in Table 1. 

 

STATISTICAL METHOD 

The model,  simulates output variables  using input variables  and parameters . In 

the Bayesian calibration approach, parameters are regarded as random variables and thus 

follow some probability distribution. Instead of searching for the best parameter estimates , 

we actually search for the probability distribution of these parameters. The calibration routine 

collects samples from these distributions and parameter uncertainties may be visualized 

together with point estimates. 
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Bayesian learning 

Bayes theorem is the building block in Bayesian calibration. It was formulated by Thomas 

Bayes in 1763 (Berger 1985), and may be reformulated as 

 

where the parameters  (  is the whole parameter space) and   is the 

collected data. The formula reverses conditional probabilities by looking at the unknown 

parameter set  as random variables. The posterior probability distribution , is the 

probability distribution of the parameters given the collected data. According to Bayes 

formula it is found by combining the original parameter uncertainty, expressed by a prior 

probability distribution  and the conditional probability density function of the collected 

data given the parameters,  (often called the likelihood function and denoted ). 

The so called 'evidence' or 'integrated likelihood' term  is constant and found by the 

integral . This gives us the proportionality 

 (1) 

which shows that the posterior information is a combination of prior knowledge and new 

information incorporated through the likelihood function of the collected data. 

 

The prior distribution 

The prior distribution quantifies the original uncertainty we have about the parameters. 

According to Ellison (1996) there are three different interpretations of the prior distribution: 

(1) a frequency distribution based on existing data. As long as the same data is not used twice, 

a part of the collected data can be used, or existing data from an earlier investigation, (2) an 

“objective” statement of what is rational to believe about the parameters and (3) a subjective 

measure of what the investigator actually believes about the parameter values. 

Although limited, the prior information that reflects the initial population basis will assist in 

the probability distribution of the posterior prediction (Gelman et al. 1996b and Marshall et al. 

2004). If the prior dominates the likelihood, the prior will have much greater effect on the 

posterior probability function than the subsequent experiment can supply. Most of the 
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criticism of Bayesian inference is that Bayesian analysis can produce results consistent with 

any point of view when specifying a subjective prior based on personal belief (Dennis 2004). 

It is therefore of great importance, not to use unrealistically informative prior. If non-

informative prior distributions were used for all the individual parameters, then the model 

would fit the data very closely, but often also with scientifically unreasonable parameters. 

This may motivate the researcher to specify a prior distribution using external information 

(Gelman 2002). If no prior information of the parameters is available, non-informative priors 

(one approach introduced by Jeffrey (1961)) may be used, so that the inferences are 

unaffected by information external to the experiment (Gelman et al. 1996 b). As usual, we 

will assume prior independence between the parameters. When having more than one 

parameter, the joint prior density can be written 

 

where L is the total number of parameters in the model.   

 

The Likelihood function 

The likelihood function is the data distribution, conditional on the model used and, expressed 

as a function of the model parameter values. Measurements d made in the true observable 

quantity y are not perfect. At the same time, the model Y(θ,x) is a simplification of the real 

world system.  

 

where ε is both measurement and representational error. After some simplifications (Rougier 

2007), the likelihood function can be written as: 
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where φ is the univariate normal probability density function and σm is the m’th diagonal 

element of the diagonal variance matrix Σ of the errors. The likelihood function can then be 

written: 

 

 

Outliers in the collected data may produce bad results. Sivia (2006) solves this problem by 

formulating a constraint on the Gaussian likelihood function. He used a variant of Jeffreys’ 

prior to specify a lower boundary (σ0) for the standard deviation 

 

for , and zero otherwise.  

The formula of the constraint likelihood function with the unknown σ integrated out is written 

 

Where  is the lower bound of the standard deviation and . 

The equation is not defined for , but the limit likelihood when goes through zero is 

found as 

 

By series expansion (not shown here). The total constraint Gaussian likelihood function is 

finally defined as 

 

The variance-covariance matrix, Σ0 of model and measurement error in the likelihood 

function is unknown. The measurement error may be found by investigating how reliable the 

measurement instrument used is. The representational error including both simplifications in 

the model and the fact that the model and the data are not talking about the exact same 

parameter (the model predicts mean snow depth while the measurements are point estimates), 
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would be much harder to find. The problem of estimating the covariance matrix of model 

errors has been simplified by using a fixed diagonal covariance matrix. Conform Van Oijen et 

al (2005a), we set the standard deviation of each measurement to 30 % of the mean observed 

value. 

 

To avoid a standard deviation of zero, when no snow is observed, the standard deviation was 

redefined to be 

 

This gives a standard deviation of 0.1 if the mean collected snow depth is less than 0.33m. 

The difference between observed and simulated output ( ), will be dominated 

by zeros, because no snow depth will be both observed and simulated most of the year. A 

student-t distribution, having a fatter tail (Miller and Miller 1999) is an alternative 

recommended when outliers occurs, but is not tested here. Probably a zero-inflated 

distribution (Agarwal et al. 2002) would be an even better choice  

The likelihood function is what modifies the prior knowledge into a posterior distribution. 

According to Bayes theorem, the more experimental data added, the more will the likelihood 

dominate the prior, and have much greater effect on the posterior probability distribution.   

 

Random Walk Metropolis 

There are four different techniques that can be used to find the posterior distribution in 

Bayesian calibration; exact calculation, analytical approximation, numerical integration and 

Monte Carlo simulation. Integration problems makes the exact calculation impossible, 

especially when  is high dimensional. We will use a MCMC algorithm, random walk 

Metropolis.  

The Metropolis Algorithm is the cornerstone of all Markov chain-based Monte Carlo 

methods. It was proposed as early as in 1953 in a short paper by Metropolis et al. (1953). The 

idea is of great simplicity and power, and its variations are in use by many researchers in 

several different scientific fields. 
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We implemented the random walk Metropolis algorithm in Matlab. We start with some initial 

parameter values, , where  is the number of parameters in the model. 

For each iteration step , we have these steps: 

1. Draw , where  is a spherically symmetric distribution, independent 

distributed for different , centered at the current state. 

2. Compute the ratio   

3. Draw , where  is the uniform probability density function, and set  

 

The draws  will in the long run converge to the posterior distribution of the 

parameter set (Liu 2001).  

To avoid the joint likelihood to be too large to be represented by a digital computer, that 

round off to infinity, the natural logarithm was used in all steps in the random walk 

Metropolis algorithm. 

The step length  is the distance between the current and the proposed parameter vector. 

Small  ensures that the proposed parameter vector is close to the current position, so the 

probability of accepting it is high. With small average δ, the Markov chain will converge 

slowly since all its moves will be small. On the other hand, a large step length  places the 

new proposed parameter further away from the current parameter vector, which leads to a low 

probability of accepting it. The Metropolis algorithm will then reject a too high proportion of 

its proposed moves. Most of the computation time goes to costly evaluation of the posterior 

density. The step length  therefore controls the effectiveness of the Metropolis algorithm. 

According to Roberts et al. (1997), an acceptance rate of roughly 0.23 is desired. We 

considered an acceptance rate between 0.15 and 0.5 to be acceptable (Roberts 1996). 

The choice of a proposal distribution may be a crucial factor for convergence of the 

algorithm. Adaptive MCMC algorithms (Andrieu and Thoms 2008, Smith and Marshall 2008) 

solve this problem by using the chain history in order to continually tune the proposal 

distribution. 

 

 



12 
 

Convergence Diagnostics 

The random walk Metropolis algorithm produces a Markov chain whose stationary 

distribution is the target posterior distribution. If the iterations before stationarity are used to 

summarize the target distribution, they can give false answers. To detect the state of 

stationarity (``burn-in'' state) or lack of stationarity, different methods exist. Gelman and 

Rubin (1992) pointed out that in many problems, lack of convergence can be easily 

determined from multiple independent sequences but can not be diagnosed using simulation 

outputs from any single sequence. The sequence may remain in a region heavily influenced by 

the starting point, although it has not converged to the true posterior distribution (Gelman et 

al. 1996b). In contrast, Geyer (1992) states that one should concentrate all computational 

resources in a single chain, since it is more likely that for example the latter 90.000 iterations 

from a single run of 100.000 iterations come from the target distribution than the final 

samples from 10 parallel runs of 10.000.  

When running parallel sequences, the most obvious approach to assess convergence is to plot 

the chains as time series and assess by visual inspection whether the sequences have 

converged to each other. A more quantitative approach based on the ratio of between- and 

within-chain variance was formulated by Gelman and Rubin (1992). Convergence is 

identified when the empirical distribution of simulations obtained separately from each 

sequence is approximately the same as the distribution obtained by mixing all the sequences 

together. Before the parallel sequences have converged, the simulations from each sequence 

will be much less variable than the sequence combined. We assume  parallel simulations, 

each of length  and with starting points drawn randomly from the prior distribution that is 

over-dispersed in the sense of being more variable than the target posterior distribution. The 

first  iterations are discarded to diminish the effect of the starting distribution. The 

estimated potential scale reduction factor  is calculated at each iteration step 

 

where  is the variance between the sequence means and  is the average within-sequence 

variance.  refers to the degree of freedom in a t-distribution approximation to the empirical 

distribution of . For large number of samples,  can be ignored. 



13 
 

 

 

When  is close to 1 (less than 1.2 in practice (Gelman 1996)), the parallel Markov chains 

are essentially overlapping. We should also make sure that the mixture of sequence variance 

 and the within sequence variance  stabilizes as a function of  (Brooks and Gelman 

1998). 

 

The iterations before the ``burn-in'' state are discarded. Typically one will discard only a small 

fraction of the run. So, if after ``burn-in'' state you are left with less than half the run, you 

haven't run the iterations for long enough (Kass et al. 1998). 

 

DATA 

The snow depth model is calibrated using snow depth data from Kise, Norway, which is 

situated 60.77N, 10.8E, 127 meters above sea level. Kise has a continental climate, and the 

landscape is dominated by arable land and the largest lake in Norway, Mjøsa. The model is 

calibrated using data from 10 years, 1988 to 1998, and it is tested using data from the 5 

following years. Temperature and precipitation observations are obtained from Bioforsk 

Agrometeorological service, the snow depth observations are obtained from both Bioforsk 

Agrometeorological service (1988-1997) and from The Norwegian Water Resources and 

Energy Directorates service (1997-2003). On average there was snow cover 120 days of the 

year, with an average depth of 0.16 m. Variation between years was from 160 days with snow 

cover and an average of 0.36 m the winter 1993/1994 to only 77 days with snow cover and an 

average of 0.06 m the winter 1989/1990,  
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RESULTS AND DISCUSSION 

Tuning the MCMC 

To run the Bayesian calibration algorithm, several decisions must be made by the researcher. 

 

The number of observed data 

Usually, we will use all available data. Here, 10 years of snow depth data are used to fit the 

model and 5 years to test the model. To see the effect of the number of data used to fit the 

model, the calibration algorithm was also run using 2, 4, 6 and 8 years of collected data. The 

results from  and  are plotted as three dimensional figures to visualize the 

change in uncertainty about the respective parameter when adding data (Figure 2). In 

agreement with Bayesian learning (Equation 1), we can see that the uncertainty, i.e. the width 

of the histograms, decreases when adding more data. Also the position of the histograms 

changes, most dramatically up to 8 years, but also from 8 to 10 years. The weather situation 

varies from year to year, and the parameter estimates do depend on what kind of years used. A 

period of 8 years does not contain all variability in weather, and the estimates do therefore 

change further when adding two more years. Most probably, the estimates will still change 

when adding more years of data, until the whole specter of weather situations are included.  

Reaching convergence for the posterior chains was easy when 2 or 4 years of collected data 

were used. With 6 or more years of data, convergence became much harder to reach. 

 

The prior distribution 

We have chosen to use relatively wide uniform prior distributions. Usually, we will not 

consider all values between the upper and lower limit in the prior distribution as equally 

believable. We therefore constructed a beta distribution between the boundaries and used 

results from Engseth et al. 2000 (Table 2) as modal values. Comparing the results of 

calibration starting from beta distributions rather than uniform ones, showed that the more 

informative beta priors gave much easier convergence and different point and interval 

estimates for the parameters. These new estimates permitted more meaningful physical 

interpretation, but showed worse fit according to RMSE for both the training and the test data.  
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Figur 2: Changes in parameter uncertainty when using respectively 0, 2, 4, 8 and 10 years with collected data in 
the calibration routine. Figure (a) shows parameter uncertainty for and . 

 

RMSE is now commonly reported in environmental modeling in comparsions of different 

calibration approaches (e.g. Reinds et al. 2008, Lehuger et al. 2009). The lower RMSE with 

the uniform prior was not necessarily expected because our likelihood function was not 

Gaussian nor did our data all have the same standard deviation. 
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The Likelihood function 

Both the Gaussian likelihood function (Equation 2) and the Gaussian likelihood function with 

constraints (Equation 3) were tested and the constrained function gave much faster parameter 

convergence than the ordinary Gaussian. Less iteration were needed to reach convergence and 

since each iteration step is time requiring; only the constrained function was used.  

 

The proposal distribution 

The choice of an effective proposal distribution for the MCMC is essential in order to obtain 

convergence in a limited amount of time. Both a uniform and a Gaussian proposal distribution 

centered at the current state were tested. The Gaussian distribution, which predominantly 

samples close to zero turned out to be the most efficient one and was therefore used. The 

covariance matrix was defined as diagonal with the l'th diagonal element proportional to the 

width of the prior interval for the respective parameter . In order to 

achieve efficient convergence, the constant  was set by trial and error to produce an 

acceptance rate of roughly 0.23 (Roberts et al. 1997). To prevent the most sensitive 

parameters , ,  and  (according to sensitivity analysis 

calculated for the entire SnowFrostIce model (Thorsen et al. 2009)) to control the whole 

accept/reject procedure, the constant  was individually corrected up for all other parameters. 

The sensitive parameter  proved most challenging. If its proposal stepsize was not 

weighted down, it controlled most of the accept/reject procedure and made it impossible for 

all other parameters to converge. At the same time, if weighted down enough, convergence is 

not reached within a proper time when having a starting value for the parameter far away 

from the target posterior distribution. Our solution was to weigh the parameter down after a 

number of iterations. To keep the rule that the step length has to be identically distributed for 

different iterations (Liu 2001), this is done during the ``burn-in'' phase only. 

Adaptive MCMC algorithms (Andrieu and Thoms, 2008, Smith and Marshall 2008) were not 

used, but we did use adaptation informally, as follows. The information obtained by the 

calibration using two years of observations was used to form a suitable proposal distribution 

for the calibration using all ten years of observations. The new covariance matrix was 

calculated from the variances of the proposal distribution and the correlation matrix calculated 

from the resulting parameter chains after convergence when using two years of observations. 
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Then only a scaling factor for the entire covariance matrix had to be found by trial and error 

to produce an efficient acceptance rate. Preliminary tests of this method showed it to be 

highly efficient for the calibration of our model, but it was not used to produce the results 

reported here. 

 

Convergence 

The calibration algorithm was run for 300.000 iterations, requiring about 40 hours computing 

time. The usefulness of running parallel sequences to detect convergence was found during 

model development from the first version of the snow model (Thorsen and Haugen 2007) to 

this version. The Markov chain for  (Lower limit temperature for snow melt) is plotted in 

Figure 3a for 150.000 iterations, which objectively seems like a large enough number. 

Running only one chain, we would determine ``burn-in'' after 10.000 iterations by eyes, and 

treat the remaining 140.000 iterations as draws from the true posterior distribution. When 

running two chains in parallel instead (Figure 3b), we found that the two chains had not 

converged to each other during this run. We therefore ran the algorithm for 150.000 more  

 

 

Figure 3: Markov chain of  (parameter not included in the finial version of the snow depth model) (a) one 
chain for 150.000 iterations and (b) two chains in parallel for 300.000 iterations 
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iterations and clearly they converge to each other after 175.000 iterations. With more 

confidence, we can now treat the last 125.000 iterations as draws from the posterior 

distribution. In most cases, four sequences were run in parallel, but during the development of 

the model only two. The method of Gelman and Rubin was used to detect ``burn-in''. 

 

Reflection 

When using upper and lower limits in the prior distribution, new proposal parameters may be 

generated outside these boundaries and consequently be rejected in the random walk 

Metropolis algorithm. Here, , which stabilized near the lower boundary of the prior 

interval, caused a high rejection rate. To avoid proposal parameters generated outside the 

prior boundaries, reflection at the boundaries (Yang 2006) is used. If the proposal parameter 

 is outside the prior interval ( ) the excess is reflected back into the interval; that 

is, if  ,  is reset to , and if ,  is reset to 

. The proposal parameter distribution will still be symmetric

 and thereby the acceptance of the Metropolis algorithm correct, since 

 and a step length  from the current state  with reflection will give the state  

( ), while the same step length  from  will reflect the 

proposal parameter back to current state  ( ). 

 

Uncertain vs. fixed values of the parameters 

To reach convergence for all parameters turned out to be difficult. We therefore reduced the 

number of parameters by setting some of them to fixed values in the early investigation. This 

showed that convergence problems emerged when four or more parameters were included in 

the calibration. It was therefore tempting to treat some of the less sensitive parameters as 

fixed values. But this has the problem of producing inaccurate estimates and it underestimates 

uncertainty when the parameters to be fixed are not known accurately (Gelman et al. 1996a). 

Especially the posterior distribution of  changed dramatically when the last three 

parameters were fixed. In the results, all 9 parameters are treated as uncertain. By performing 

a sensitivity analysis, e.g. using the Morris method as described in Campolongo et al. 2007, it 
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is possible to identify the least important parameters which are candidates for fixed values. 

This was done for a similar snow depth model by Thorsen et al. 2009. 

 

Statistical Inference 

The model is calibrated using wide uniform prior distributions (Table 2) and four sequences 

are run in parallel, each for 300.000 iterations. All parameters converged after less than 

100.000 iterations (according to Gelman and Rubins criteria) with an acceptance rate of 

approximately 0.25. The potential scale reduction factor, at the end of the calibration is 

listed in Table 3. The highest value is 1.02 for both  and  suggesting 

that additional simulation might reduce the posterior interval for these parameters by only up 

to a factor of 1.02. The 95 % highest posterior density (HPD) interval is calculated for each 

parameter and listed in Table 3. Each interval is a measure of how certain we are about the 

respective parameter, and we can clearly see a decreased uncertainty compared to the prior 

information (Table 2) for all parameters except . 

Three point estimates are calculated, the mean , the mode  and the maximum a 

posteriori estimate ( ) (Gilks et al. 1996).  Both the mean and the 

mode estimates are calculated for each parameter one by one, while the MAP estimate is the 

largest mode for the joint posterior distribution. All three estimates are different (Table 3)  

 

Table 2:  Minimum and maximum values used to define limits in the uniform prior interval and parameter 
estimates from Engseth et al. (2000), . Lack of number indicates that the specific parameter does not occur in 
Engseth’s model.  

 Symbol    
1  -5 10 0.5 
2  -10 5 0.5 
3  -10 10 0.5 
4  0 1  
5  0 10 1.25 
6  0 10 2 
7  0 10 0.01 
8  10 250  
9  0 1 0.1 
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which may be explained by skewness and several peaks in the parameter densities and by 

correlations (Table 3) between the different parameters. The MAP estimate, which is the only 

estimate considering the entire parameter set concurrently is the estimate giving the smallest 

root mean square error (RMSE) for both the training data and for the test data. It is important 

to note that the MAP estimate is the parameter set having the largest posterior density among 

our 800.000 iterations. Each of our four parallel chains gave a different MAP estimate, 

suggesting that the parameter space is not totally searched and additional simulation might 

give even better MAP estimates. The Bayesian calibration method does not search for the best 

parameter estimates, but for the posterior distribution of them.  

Bayesian calibration simply combines prior parameter information with the likelihood of the 

data given the model. Since the model is not a perfect representation of the system, parameter 

estimates may deviate from physically meaningful values. Here, especially  seems 

unrealistic (Table 3). To reach a more realistic estimate, the model could have been improved, 

a more informative prior distribution could have been used or a separating parameter could 

replace  and . Since the purpose of our model is not to learn about the 

system, but prediction and we do not want a too complex model, both the model and the 

parameters are retained while a more informative prior was tested. 

 

Table 3: Results from Bayesian Calibration using MCMC with chains of 300000 iterations. The potential scale 

reduction factor , the mean parameter value , the mode parameter value , the maximum a’ 

posteriori estimate , the coefficient of variation (CV), the 95 % HPD interval and the parameter with 
which parameter is correlated at greater absolute values than 0.3 (underlined if negative). 

     CV 95 % HPD Correlated 
 

1 1.00 1.95 1.87 1.99 0.12 [1.60, 2.42]  
2 1.00 -9.32 -10.00 -9.92 -0.06 [-10.00, -8.11]  
3 1.01 0.58 0.54 0.61 0.14 [0.43, 0.74]  

4 1.01 0.03 0.03 0.03 0.10 [0.02, 0.03]  

5 1.02 2.27 1.05 1.63 0.73 [0, 5.40]  
6 1.01 6.69 7.01 6.69 0.10 [5.36, 7.86]  
7 1.00 5.07 1.05 1.56 0.56 [0.51, 10]  
8 1.00 65.12 63.25 62.10 0.08 [54.96, 75.75]  

9 1.02 0.25 0.18 0.31 0.46 [0.06, 0.50]  
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The coefficient of variation (CV) is a normalized measure of dispersion of a probability 

distribution defined as the ratio of the standard deviation to the mean. Three parameters 

 stand clearly out with greatest CV values (Table 3). 

These parameters are also the parameters having the largest relative distance between the 

three point estimates, having the longest ``burn-in'' phase and having the smallest relative 

decrease in uncertainty when comparing the prior interval with the 95 % HPD interval. This 

indicates that the information from new data had little effect on these three parameters, not 

only on their parameter values, but on general knowledge about the parameter characterized 

by their posterior distribution. A sensitivity analysis done for the whole SnowFrostIce model 

(Thorsen et al. 2009) gave the result that changes in these three parameters also gives the 

smallest rate of changes in the output of the model. In summary, the results from the Bayesian 

calibration can tell us how new information from data are allocated within the model and 

accumulated as increased knowledge for some parameters while leaving others unaffected. 

While sensitivity analysis tells us about the sensitivity of model outputs to changes in 

parameters, Bayesian calibration tells us about how new information affects our knowledge 

about the parameters and model outputs.  

Predictive uncertainty in model outputs is visualized in Figure 4 together with snow depth 

observations for the two test years 1998/1999 and 1999/2000. Prior and posterior uncertainties 

are calculated by sampling randomly 100.000 samples from the prior distribution and from 

the posterior chains respectively. Model outputs are then calculated for each parameter set, 

and the uncertainty plotted as one standard deviation above and below the mean model output 

for each day. Wide prior intervals were used for the parameters and we can see that the 

predictive posterior uncertainty is much reduced compared to the prior uncertainty for the 

outputs. The calibrated model approximates the data fairly closely, except for some 

underestimation during periods of prolonged large snow depth. Standard goodness of fit 

assessment is also done by constructing a predictive qq plot (Dawid 1984 and Thyer et al. 

2009), checking if the predictive distribution is consistent with the observed data (Figure 5). If 

the cumulative distribution function (cdf) of the predictive distribution of snow cover 

(assumed Gaussian distributed with mean and standard deviation calculated from the 100.000 

random samples drawn from the posterior chains) is independent uniform U[0,1] variables, 

the observations are realizations of the predictive distribution. The shape of the qq plot 

(Figure 5) indicates underestimated predictive uncertainty (according to Thyer et al. (2009)). 

We expect that this underestimation in the current case is caused by representational error,  
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Figure 4: Prior and posterior uncertainties in the model output snow depth plotted as one standard deviation 

above and below the mean output from 100.000 model runs for (a) 1998/1999 (b) 1999/2000. Dotted line 

denotes prior uncertainty and solid line denotes posterior uncertainty. The stars denote observed values. 

 

which we have not quantified (see introduction), but also measurement error not included in 

the likelihood of the data may add to the predictive uncertainty. Further more, the information 

in the calibration data may not span the variation range sufficiently, causing an additional 

parameter uncertainty (e.g. Figure 2).  The posterior uncertainty is also visualized by 

frequency histograms of estimated snow depth values for each day during the winter 

1998/1999 (Figure 6). We can see snowing and snow melt periods as changes in the snow 



23 
 

depth position of the frequency histograms over time. We can also see a larger uncertainty for 

larger snow depth values as wider frequency histograms for the larger snow depth values. 

 

 

Figure 5: Predictive QQ plot. 

 

Figure 6: Posterior uncertainties on the output for the period 1. October 1998 to 1. May 1999, plotted as 
frequency histograms of the output each day. 
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CONCLUSIONS 

We have used Bayesian calibration to calibrate a complex model of snow depth. The Bayesian 

approach regards parameters as random and prior information of the parameters is combined 

with observed data to form a joint posterior parameter distribution. 

Here, point estimates were calculated and uncertainties visualized for both parameters and 

model outputs. Clearly, the uncertainty of both the parameters and the model outputs 

decreased when adding more data. Also, the amount of data affected the parameter estimates 

since the input data varied from year to year and the data used did not include the whole 

specter of varieties in the input space. The best fit of the model was found when using less 

informative priors, while more informative priors gave more meaningful physical values for 

the parameters. To detect ``burn-in'' both objectively and correctly, both multiple chains and 

Gelman Rubin were found to be useful. The choice of treating some uncertain parameters as 

fixed values simplified the calibration procedure, but changed the parameter estimates and led 

to underestimated parameter uncertainty. 

We used the Markov chain Monte Carlo algorithm, random walk Metropolis. Both the idea 

and the implementation of the algorithm are relatively simple, but the use of the method for 

calibration of the complex model was far from straightforward in practice. The major problem 

was to obtain convergence of the chains in a limited amount of time. With regard to the prior 

parameter distributions, we found that informative beta distributions led to faster convergence 

of the posterior parameter chains than less informative uniform priors. Faster convergence 

was also achieved by the use of Sivia's constraint likelihood rather than the more common 

Gaussian likelihood function. The choice of an effective proposal distribution was difficult, 

but optimizing the proposal distribution with parts of the data was found to be useful. To 

avoid spending time on proposal parameters generated outside the prior interval, the reflection 

method was successfully used. 
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Abstract

Studying the winter survival of forage grasses under a changing climate
requires models that can simulate the dynamics of soil conditions at low
temperatures. We developed a simple model that simulates depth of snow
cover, the lower frost boundary of the soil and the freezing of surface puddles.
We calibrated the model against independent data from four locations in
Norway, capturing climatic variation from south to north (Arctic) and from
coastal to inland areas. We parameterized the model by means of Bayesian
calibration, and identified the least important model parameters using the
sensitivity analysis method of Morris. Verification of the model suggests that
the results are reasonable. Because of the simple model structure, some over-
estimation occurs in snow and frost depth. Both the calibration and the
sensitivity analysis suggested that the snow cover module could be simplified
with respect to snowmelt and liquid water content. The soil frost module
should be kept unchanged, whereas the surface ice module should be changed
when more detailed topographical data become available, such as better esti-
mates of the fraction of the land area where puddles may form.
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Grasslands are important components of Norwegian ter-
restrial ecosystems. In order to investigate the impacts of
climate change, parts of the Norwegian research pro-
gramme Climate Change Effects on Winter Survival of
Perennial Forage Crops and Winter Wheat, and Plant
Diseases and Weed Growth and Control at High Latitudes
(WINSUR) are dedicated to developing a grassland model
to study the winter survival of different crops. The grass-
land model, currently simulating the regrowth dynamics
of timothy (Phleum pratense L.), has been developed by
van Oijen, Höglind et al. (2005). The same model will be
adapted to simulate the regrowth dynamics of perennial
ryegrass (Lolium perenne L.). During the winter, a signifi-
cant number of plants may die as a result of frost, ice
encapsulation, and other physical and biological stresses
(Larsen 1994). Snow cover provides insulation from
lethal freezing temperatures, while also reducing the
amount of photosynthetically active radiation at plant
level. However, a more variable winter climate in Norway

(Beldring et al. 2008) may lead to less snow cover, and
may thereby increase plant exposure to killing frosts
(Bélanger et al. 2002).

If the ground is frozen, water (rain or snowmelt) can
accumulate in small depressions, freeze and cause plants
to be encapsulated in ice. Ice encasement can severely
reduce gas exchange between the plant and the sur-
rounding atmosphere, leading to a transition from
aerobic to anaerobic respiration, and to the accumulation
of respiration products (especially CO2) to toxic levels
(Gudleifsson & Larsen 1993).

In order to make predictions about the effects of climate
change on plant performance over more than one
growing season, the grassland model needs an additional
set of functions to describe the winter survival of the
sward. The grassland model must be able to simulate
effects of winter climate on soil and soil surface processes.
The main objective of this work is to develop a simple
winter module that can easily be incorporated into the
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existing grassland model. Therefore, the structure of the
winter module needs to be kept as simple as possible.

Regarding the simulation of winter climate effects on
soil and soil surface conditions (e.g., snow cover and soil
frost), the literature provides examples of different
approaches (Benoit & Mostaghimi 1985; Flerchinger &
Saxton 1989; Jordan 1991; Vehvilainen 1992; Melloh
1999; Engeset et al. 2000; DeGaetano et al. 2001; Jansson
& Karlberg 2001; Kokkonen et al. 2006). We imple-
mented and tested different algorithms for snow cover
and soil frost that have already been applied to Nordic
conditions. Based on preliminary modelling work,
including site-specific model calibration, we developed a
new snow module using ideas from a snow model cur-
rently being used by the Norwegian Water Resources and
Energy Directorate (NVE) (Engeset et al. 2000). The NVE
model has 10 parameters, and is used throughout
Norway for operational snow forecasts. This model simu-
lates snow accumulation based on daily precipitation
rates and daily mean air temperature. Snowmelt is a
function of a degree–day temperature index, described by
a sinusoidal curve and daily mean air temperature. The
NVE model is mainly designed for hydrological purposes
(hydroelectricity production and spring flood warnings),
and thus simulates the liquid water equivalent of snow
water equivalent (SWE) (mm) and snowmelt run-off, but
not snow depth.

Different models for simulating snow accumulation
and snowmelt are described in the literature, ranging
from hydrological (Jordan 1991; Engeset et al. 2000;
Kokkonen et al. 2006) to combined agricultural and
hydrological applications (Flerchinger & Saxton 1989)
and soil–plant–atmosphere systems (Jansson & Karlberg
2001). These models simulate point estimates of a single-
layered homogeneous one-dimensional (z-direction)
snow cover, whereas Jordan (1991) presents a multi-
layered one-dimensional snow model. Melloh (1999)
provides a review of several snowmelt models. Compre-
hensive state-of-the-art snow models such as the COUP
model (Jansson & Karlberg 2001) with graphical user
interface and the SNTHERM model (FORTRAN-77 code;
Jordan 1991) are very complex and rich in parameters
(>100). The COUP model was considered as a potential
candidate early in the project, but the model version
available at that time required a special graphical user
interface, and therefore could not be incorporated into
the grassland model, which was developed using another
programming environment (MATLAB and Simulink).
The combination of a special user interface and extensive
data requirements (as regards number of parameters and
driving climate variables) makes it very difficult to incor-
porate state-of-the-art snow cover and soil frost models as
sub-modules into other models. The ability to incorporate

a snow and soil frost model into a larger grassland model
was our main motivation for developing a new model.
Our proposed model is simple: it only requires nine cali-
brated parameters and two input variables to simulate
daily values of the depths of snow cover, soil frost and
surface ice, and the temperature between the soil surface
and the snow cover.

A study comparing four models simulating soil frost
(Kennedy & Sharratt 1998)—the two finite difference
models SHAW and SOIL, and two energy balance
models—concluded that the simpler energy balance
models generally overestimate the frost depth. However,
one weakness of all four models compared by Kennedy &
Sharratt (1998) is the estimation of snow depth (one of
the energy balance models uses snow depth as an input).
Snow cover has a strong influence on the estimation of
soil frost depth, e.g., through snow depth and snow
density, with both affecting the thermal conductivity of
the snow cover. Therefore, accurate simulation of snow
cover is important for the simulation of soil frost depth.

As regards modelling the formation of ice on the soil
surface, we did not find examples in the literature of
models simulating this process or ice encapsulation of the
ground vegetation.

Following the conclusions by Kennedy & Sharratt
(1998), the present work describes a new model that
simultaneously simulates the depths of snow, soil frost
and surface ice, and explains how it was calibrated for
sites across Norway using Bayesian methods. We also
conducted a sensitivity analysis of the model using the
Morris method, which identifies the parameters to which
the model is most sensitive.

Materials and methods

The snow model

Our snow module is based on ideas presented by Melloh
(1999, and references therein) and Engeset et al. (2000).
Whereas snow models used for hydrological purposes
usually simulate SWE, SnowFrostIce also simulates the
actual depth of the snow cover Sdepth (m). To run Snow-
FrostIce, the only required meteorological inputs are
daily values of mean air temperature Tair (°C) and pre-
cipitation rate P (mm d-1). The parameters, which need to
be locally calibrated, are listed in Table 1.

In SnowFrostIce, the precipitation form is determined
by a threshold temperature Trs (°C). If Tair > Trs, precipita-
tion falls as rain, Pr (mm d-1). Otherwise it falls as snow Ps

(mm day-1), with density rns (kg m-3). There is no inter-
mediate form for sleet. The snow cover consists of water
in solid state Sdry (mm) (snow and ice), and liquid state
Swet (mm). The threshold temperature Tmf (°C) determines

Modelling snow frost and iceS.M. Thorsen et al.

Polar Research 29 2010 110–126 © 2010 the authors, journal compilation © 2010 Blackwell Publishing Ltd 111



whether snow is in the process of melting M (mm day-1),
when Tair > Tmf, or when liquid water within the snow
cover is in the process of refreezing Mrf (mm day-1), when
Tair < Tmf. The numerical values of Trs and Tmf are sampled
from the posterior distribution obtained in the Bayesian
calibration. As the model is calibrated locally, the esti-
mates of Trs and Tmf are different for each location. Instead
of using a constant melt rate (mm snowmelt per degree
celsius and day, also known as the degree–day tempera-
ture index method), we use a degree–day temperature
index K (mm °C-1 day-1), which is described by a sinusoi-
dal curve (see Eqn. 4). The reason for describing K by a
sinusoidal curve is to incorporate the seasonal variation.
Incoming radiation increases and the albedo of the snow
cover decreases in the spring. Thus K increases in spring.
In Norway, located between latitudes 58° and 71°N in the
Northern Hemisphere, the dates of the solstice are 21
December and 21 June. The sinusoidal curve is therefore
defined as having a period of 1 year, with a trough,
termed Kmin (mm °C-1 day-1), on 21 December, and a
crest, termed Kmax (mm °C-1 day-1), on 21 June. The
simulated snowmelt intensity M is proportional to the
number of degrees above Tmf (see Eqn. 5). To avoid situ-
ations such as Kmax < Kmin during the calibration, we
replaced Kmax by DKmax = Kmax - Kmin, and calibrated DKmax

(mm °C-1 day-1) (see Table 1).
Liquid water within the snow cover may refreeze. The

simulated refreezing intensity Mrf is proportional to the
number of degrees below Tmf (see Eqn. 6), where SWrf

(mm °C-1 day-1) is the degree–day temperature index for
refreezing. We calculated the potential retention capacity
of the snow cover as SWret*Sdry, where SWret (mm mm-1) is
the retention capacity of the snow cover. The snow water
equivalent, SWE, is defined as the sum of Sdry and Swet, and
the density of the snow cover rs (kg m-3) is defined as
SWE/Sdepth. As snow is accumulated on the surface of the
snow cover, there is a rapid metamorphosis as snow crys-
tals break down, and at lower snow depths densification
occurs at a slower rate, which is largely determined by the

overburden pressure (Gray & Morland 1995). In Snow-
FrostIce we make the assumption that the combined
effects of the metamorphosis of snow crystals and the
densification of the lower snow layers is captured by the
empirical compaction parameter x (mm mm-1 day-1). We
use the following equations (1–6) to describe the snow
cover dynamics.
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K= +( ) + +( )Δ Δmax
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2

2

365

3

8 2

π π (4)

M K T Tair mf= −( ) (5)

M SW T Trf rf mf air= −( ) (6)

The snow model parameters to be calibrated are listed
in Table 1.

The soil frost model

When modelling soil frost we use an energy balance
approach. Our simple approach does not include an
annual energy budget for the soil system. SnowFrostIce
simulates only the lower frost boundary Fdepth (m), result-
ing in one frozen soil layer ranging from the soil surface
to Fdepth. For the soil–water balance, we use the routines
implemented in the grassland model by Höglind et al.
(2001) to obtain daily values of available soil water
content xw (m3 m-3) (i.e., what is left from surplus liquid
water after transpiration and evaporation is subtracted),

Table 1 Parameter description for the SnowFrostIce model. qmin and qmax represent parameter lower and upper boundaries; qmode and qdef represent

parameter mode and default values, respectively. When q i
emod values are presented, a beta prior distribution is used for parameter qi, otherwise a uniform

prior distribution is assumed between qmin and qmax.

Symbol Unit θ i
min θ i

max θ i
emod θ i

def References

Trs °C -5 5 0.5 0.5 Engeset et al. (2000)

Tmf °C -5 5 0.5 0.5 Engeset et al. (2000)

x mm mm-1 day-1 0 1 — 0.02 Thorsen & Haugen (2007)

DKmax mm °C-1 day-1 0 5 1.25 1.25 Engeset et al. (2000)

Kmin mm °C-1 day-1 0 5 2 2 Engeset et al. (2000)

SWrf mm °C-1 day-1 0 5 0.01 0.01 Engeset et al. (2000)

rns kg m-3 10 250 — 100 Judson & Doesken (2000)

SWret mm mm-1 0 1 0.1 0.1 Engeset et al. (2000)

lfs J m-1 °C-1 day-1 8.6 ¥ 104 21.6 ¥ 104 — 17.3 ¥ 104 Jansson & Karlberg (2001)
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which is used in the calculation of Fdepth. The soil layer is
parameterized as in the grassland model. SnowFrostIce
requires site-specific soil type parameters for soil water
retention, but the only soil parameter to be calibrated is the
thermal conductivity of the frozen soil lfs (J m-1 °C-1 day-1).

Our way of estimating the lower frost boundary Fdepth is
based on certain assumptions. Regarding surface tem-
perature, we follow along the lines of the assumption
made by Benoit & Mostaghimi (1985), that in any given
24-h period, the mean surface temperature of the soil or
snow cover can be approximated by the daily mean air
temperature for that same period. However, instead of
using the daily mean air temperature at the snow cover
surface when calculating Fdepth, like Benoit & Mostaghimi
(1985), whenever a snow cover is simulated we use a
simulated soil surface temperature Tsurf (°C) from Eqn. 15
as an approximation to the soil surface temperature to
incorporate the insulating effect of the snow cover. (Note
to Eqn. 7: during snow-free periods we assume Tsurf can
be approximated by Tair.) We assume a unidirectional
stationary flow of heat between Fdepth and the soil surface,
ignoring additional heat from, e.g., lower unfrozen soil
layers, percolating water, radiation and no freeze-point
depression. We further assume a linear variation in soil
temperature T(z) (°C) with respect to soil depth z (m) in
the frozen soil layer, and that all available soil water xw

within this layer freezes. It is the temperature difference
between the soil surface and Fdepth that drives the process
of soil frost formation in the model:

T z T z
T T

F
surf

surf

depth

( ) = +
−*

(7)

where Tsurf is the simulated temperature just above the
soil surface, T* (°C) is the temperature where soil water
freezes (we assume T* = 0°C). Following the assumption
regarding T(z), Eqn. 7 is only valid when Fdepth > 0. We
denote the heat flux density released when the soil
water freezes QE (J m-2 day-1). Following an existing idea
(Thorsen & Haugen 2007), we express QE using the above
assumptions as:

Q x L
F

t
E w w f

depth= −
∂

∂
ρ (8)

where xw is available soil water content, rw

(1000 kg m-3) is the density of water and Lf (335 kJ kg-1)
is the latent heat of fusion. When the soil cools down
during autumn and winter, the heat released (QE) when
the soil frost penetrates deeper into the soil is transported
through the previously frozen soil. Using Fourier’s equa-
tion for heat transport in one-dimensional form, we
express the heat transport through the frozen soil, termed
Qfs (J m-2 day-1), as:

Q
T z

z
fs fs= − ∂ ( )

∂
λ (9)

From the assumption of linear variation in soil tem-
perature T(z) with depth z in frozen soil, we obtain
∂ ( )

∂
T z

z
from Eqn. 7, and insert this into Eqn. 9:

Q
T T

F
fs fs

surf

depth

= −
−

λ
*

(10)

Equating Eqns. 8 and 10 and using the assumption
T* = 0°C, we obtain an algebraic expression for the rate of
change in Fdepth:

∂
∂

= −
F

t F
depth

depth

α
(11)

where α
λ

ρ
= fs surf

w w f

T

x L
. If we neglect the diurnal variation

in Tsurf and xw, and consider Eqn. 11 as
d

d

F

t F
depth

depth

= − α
,

by solving this equation we can express the daily in-

crease in frost depth as F Fdepth
t

depth
t+( ) = ( ) −1 2

2α . Provided

Fdepth
t( )( ) − >2

2 0α , we can express the rate of change in
Fdepth as follows:
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The presence of snow cover has an insulating effect on
the soil. Following Jansson & Karlberg (2001), we assume
a steady state heat flow through the frozen soil layer and
the snow cover. The heat flux density through the frozen
soil Qfs from Eqn. 10 thereby equals the heat flux density
through the snow cover Qsnow (J m-2 day-1):

Q Qfs snow= (13)

−
−

= −
−

λ λfs
surf

depth
s

surf air

depth

T T

F

T T

S

*
(14)

where ls (J m-1 °C-1 day-1) is the thermal conductivity
of the snow cover. The parameter ls is treated as a con-
stant, and is not calibrated. According to Jansson &
Karlberg (2001), a reasonable estimate for the ratio lfs/ls

in our situation is lfs/ls ª 10. We rearrange the above
equation to derive the following approximation of
Tsurf:

T T S Fsurf air depth depth≈ + ( )( )1 10 (15)

(Note: for the calculations, Fdepth > 0 when soil frost is
present.) In the case of an existing snow cover but no soil
frost (Fdepth = 0), we assume Tsurf to lie around 0°C. This
assumption is in accordance with observations made by
Iwata et al. (2008), and it is incorporated by an additional
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empirical expression preserving the insulating effect of
the snow cover:

T Tsurf air
Sdepth≈ −( )e γ (16)

where the empirical parameter g (m-1) is set to 65. This g
parameter is not calibrated.

Puddle formation and infiltration of meltwater

As we were unable to obtain topographical information
for any location during this study, we assume the hypo-
thetical field of interest to be an even, rectangular surface
sloping at a low angle towards a water-blocking barrier at
the lower end. The height of this barrier determines the
maximum depth of the surface puddle. This maximum
storage level is set to 50 mm. Baker & Spaans (1997)
report that infiltration from puddles can occur despite the
presence of a frozen soil layer of 20–40 cm. Based on this
observation, surface water (snowmelt and rain) in
SnowFrostIce is allowed to infiltrate into the soil if
Fdepth < 20 cm. This assumption is also confirmed by Iwata
et al. (2008). In reality, the surface water transfers heat to
the soil, and because the frozen soil initially remains cold
this may create a thin ice layer at the soil surface, which
impedes water infiltration and increases surface run-off
(Stähli et al. 2004). Therefore, when Fdepth penetrates
below 20 cm, we assume that the soil becomes imperme-
able to any further infiltration, and that the surface water
is re-directed to the puddle area. If the maximum depth
of the barrier at the end of the field is exceeded, the
additional surface water runs off. When the soil starts
thawing we let the infiltration rate of the puddle water
follow the thawing rate (in accordance with observations
by Hayashi et al. [2003]), until Fdepth > 20 cm, when the
remaining puddle water is drained as if the soil were
unfrozen.

Formation of ice layer

When a surface puddle is formed, the water may freeze
and form a basal ice layer. By regarding the puddle as an
extremely dilute soil, and setting the water content to
unity, we use the same approach to calculate Idepth (mm)

as we do for the soil frost. Provided Idepth
t( )( ) − >2

2 0β , we
get the following expression for the daily change in Idepth:

Δ
Δ Δ
I

t t
I Idepth

depth
t

depth
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where β
λ
ρ

= i surf

w f

T

L
, the thermal conductivity of ice is li

(19.4 ¥ 104 J m-1°C-1 day-1), the density of water is rw and
the latent heat of fusion is Lf.

Description of the locations and data used
in calibration

The SnowfrostIce model was calibrated using observed
depths of snow cover and the lower frost boundary. The
snow cover depth was measured in cm in accordance
with the Norwegian Meteorological Institute. The depth
of the lower frost boundary was measured in cm using a
frost tube, as described by DeGaetano et al. (2001) and
Iwata et al. (2008). We were unable to obtain informa-
tion on the accuracy of the observations. We were also
unable to obtain information on normal depths of snow
cover and soil frost. We therefore present values of mean
air temperature and precipitation sums from autumn to
spring, and frost sums. Table 2 presents a geographical
description of the locations, and Tables 3–6 provide a
summary of the climate for each location for the current
normal period in Norway (1961–1990), and for the cali-
bration and validation periods. For each location we
calculated the following from autumn to spring (i.e., from
1 September to 30 April): the mean 2 m air temperature,
denoted as mean(Tair); the temperature sum for days
when Tair < 0, denoted as STair; and the sum of daily
precipitation rates, denoted as SPrec.

During the calibration period at Kise (Table 3), the first
and third winters were both colder and had more frost
compared with the normal period. The second winter was
milder and had less frost. The first winter received more
precipitation compared with the normal period, whereas
the latter two winters were dryer. In the validation
period, all winters were slightly milder and had less frost
than normal: the first winter was dryer than normal,
whereas the latter two were wetter.

Table 2 Locations in Norway used for calibrating and validating the SnowFrostIce model. The fifth location, Karasjok, was only included in the validation,

and was not used in the calibration.

Location Grid Elevation (m a.s.l.) Climate Measurement calibration Period validation

Kise 60°77′N, 10°8′E 127 Interior, lake 1993–96 1996–99

Kvithamar 63°49′N, 10°88′E 40 Coastal 2001–03 2003–05

Vågønes 67°28′N, 14°45′E 30 Coastal 1998–2001 2001–03

Holt 69°65′N, 18°91′E 20 Coastal 1996–99 2005–07

Karasjok 69°28′N, 25°31′E 149 Interior — 1998–99
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At Kvithamar (Table 4), both winters in the calibration
period were milder than normal, but they had more frost.
The first winter was wetter, and the second winter was
dryer than normal. In the validation period, both winters
were milder and wetter compared with the normal
period.

At Vågønes (Table 5), all winters in the calibration
period were milder compared with the normal period, but
the first and third winters had more frost days, whereas
there were fewer frost days in the second winter. The first
two winters were wetter, and the third winter was dryer
than normal. In the validation period, both winters had
more frost than normal, but only the first winter was
milder than normal. The first winter was wetter than
normal, and the second was dryer.

At Holt (Table 6), all winters in the calibration period
were milder and had more frost than normal. The first
winter was wetter, whereas the latter two winters were
dryer than normal. Both winters in the validation period

were milder, had less frost and were wetter when com-
pared with the normal period.

The winter in the validation period at Karasjok
(Table 6) was approximately the same as the normal
period, but slightly wetter.

In addition to simulating Sdepth and Fdepth, SnowFrostIce
simulates the thickness of ice (Idepth) resulting from the
freezing of soil surface puddles. However, data on surface
ice were scarce, and there was no description of field
topography available, forcing us to make assumptions on
field topography. We therefore present full simulation
results for only two locations: Holt in Troms county and
Karasjok in Finnmark county. Based on data availability,
we chose four locations for site-specific calibration of the
model spanning the south–north variation in regional
climate. Table 2 gives a brief description of these loca-
tions. Karasjok was not included in the calibration.

Observations of surface ice cover were scarce, and data
were only available for two sites: Holt (1997/98 and

Table 3 Climate summary for Kise. Values are calculated for the months September–April for the current normal period in Norway (1961–1990), and for

the respective calibration and validation periods. Mean(Tair)(°C) is the average 2-m air temperature, STair (°C day) is the temperature sum on frost days and

SPrec (mm) is the recorded precipitation.

Sept–Apr 1961–90 1993/94 1994/95 1995/96 1996/97 1997/98 1998/99

Mean(Tair) -1 -2.5 1.1 2.2 0.8 1.2 0.2

STair -761 -1068 -400 -1214 -629 -439 -611
SPrec 340 368 294 188 273 421 436

Table 4 Climate summary for Kvithamar.

Sept–Apr 1961–90 2001/02 2002/03 2003/04 2004/05

Mean(Tair) 1.5 3.2 1.7 3.2 3.3

STair -269 -272 -385 -245 -225
SPrec 597 682 508 604 891

See Table 3 for abbreviations.

Table 5 Climate summary for Vågønes.

Sept–Apr 1961–90 1998/99 1999/2000 2000/01 2001/02 2002/03

Mean(Tair) 1.3 1.9 2.6 2.3 2.6 1.2

STair -284 -323 -264 -368 -330 -372
SPrec 811 902 1156 561 983 735

See Table 3 for abbreviations.

Table 6 Climate summary for Holt and Karasjok.

Sept–Apr 1961–90 1996/97 1997/98 1998/99 2005/06 2006/07 1998/99*

Mean(Tair) -0.8 (-8.3) -0.1 0.2 0.3 1.6 1.1 -8.5
STair -375 (-2199) -468 -483 -432 -317 -322 -2295
SPrec 765 (172) 804 627 578 831 817 207

Values within brackets represent the normal period for the Karsjok location.

* 1998/99 represents the Karasjok location.

See Table 3 for abbreviations.
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1998/99) and Karasjok (1998/99). Ice observations from
Holt came at a later stage in the project, so we had to use
observations on snow cover and frost depth from the
calibration period.

Bayesian calibration of the SnowFrostIce model

The SnowFrostIce model represents a simplification of
different physical processes. Parameters used in process-
based models have a physical meaning, but these are
seldom precisely known, or are at best difficult to
measure. We represented this uncertainty as a probability
distribution over the parameters. Thus, if we define a
parameter vector q for the model, then p(q) is said to be
a joint probability density function (pdf) expressing our
initial prior belief in the parameters. Given a data set D of
model outputs, we update the joint pdf of the parameters
by applying the Bayes theorem: p (q|D) = p(q)f(D|q)/f(D),
where p(q|D) is the posterior distribution of q given the
data D, f(D|q) is the likelihood of the data given the
model outputs using parameters q, and f(D) is a normal-
ization constant. In the Bayesian calibration of dynamic
models, a large number of model runs are carried out,
often using a Markov chain Monte Carlo (MCMC)
approach. We used the MCMC algorithm known as the
Metropolis Random Walk. For further details on using
Bayesian methods to calibrate complex models see van
Oijen, Rougier et al. (2005). The target posterior distribu-
tion was the stationary distribution of the Markov chain
produced by the Metropolis Random Walk.

Metropolis Random Walk

The general idea of the Metropolis Random Walk is to
walk randomly through the parameter space, running the
model at each visited point, eventually forming a Markov
chain. The starting point of this chain, q0, is randomly
chosen from the prior distributions for the parameters. A
new proposal parameter vector q� is then chosen based on
the current parameter vector qt:

′ = +q q dt (18)

where d is the step length vector. It is also important that
p(d) = p(–d), i.e., that there is an equal probability of
stepping in either direction from the current point. We
then compute the so-called Metropolis ratio:
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The next step is to generate a uniform random number
u ~ U(0,1), and to accept the proposal parameter vector q�

as the new qt+1 if u � r. Otherwise, let qt+1 = qt. The chain

consisting of all qt forms our Markov chain, which is our
sample from the posterior distribution.

The posterior distribution is therefore a combination of
prior knowledge and new information obtained from the
data using the likelihood function. Measurement errors
are used in the determination of how likely a model–data
mismatch might be, i.e., if the data are informative and
have a sharply peaked distribution (i.e., a small variance),
the resulting posterior distribution will be narrower and
more peaked than the prior distribution. This indicates
that the parameter uncertainty is reduced.

Defining prior probability distributions of
the parameters

Based on a literature review, we defined the likely ranges
[θ θi i

min max, ] and mode values for the nine parameters. For
parameters where range and mode value were suggested,
we used a beta distribution as prior. A suitable range was
only found for parameters x, rns and lfs. For these three
parameters we selected a flat uniform distribution within
their range [θ θi i

min max, ]. In the calibration process we
assumed the parameters to be independent a priori,
implying that their joint prior distribution is equal to the
product of their individual marginal pdfs. The parameters,
along with their prior distributions, are presented in
Table 1.

Defining the data-likelihood function

We used measurements on snow depth and lower frost
boundary for the calibration of SnowFrostIce. Specific
information about the precision of the measurements was
not available, so we used the same approach as van Oijen,
Rougier et al. (2005), and chose the standard deviation of
each measurement to be 30% of the mean value. To
avoid a standard deviation of zero (if the observed vari-
able was zero), the standard deviation was redefined as
σ ij

o = ⋅( )max . ; .0 1 0 3 Dij where Dij are the measurements on
output j at time i. Assuming the measurement errors to be
independent and Gaussian, we used Sivia’s (2006) for-
mulation, which was slightly modified to account for
model discrepancy:
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where σ ij
o represent the lower bounds on the

data noise, and the residual is represented by
R Mij ij ij ij

o= − ( )( )D q, X σ , where Mij(q *,X) are model
outputs using input variables X and parameterization
q*.
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Determining jumps in the Metropolis Random
Walk algorithm

The step length vector d in the Metropolis Random Walk
algorithm is very important in order to obtain conver-
gence of the Markov chain produced, i.e., the targeted
posterior distribution of the parameters. In our imple-
mentation, the new candidate value qi′ for parameter i
was ′ = +θ θ δi i

t
i, where di ~ N(0, ai). If the elements in the

step length vector d are too small, the random walk
algorithm will not move far enough from the current
point in parameter space qt when proposing a new can-
didate parameter vector q′, and consequently the
acceptance rate will be too large, and vice versa. In our
case, choosing ai so that the acceptance rate was between
0.15 and 0.5 (in accordance with Roberts 1996) was
attained by trial and error. Each element ai of the vector
d was chosen according to a ci i i i= −( )θ θmax min , where ci is a
constant found by trial and error, and (θ θi i

max min− ) is the
width of prior pdf of parameter qi.

Determining convergence of the Markov chains

A central issue when using an iterative simulation
method such as the Metropolis Random Walk algorithm
is to determine when the chain has converged to the
desired posterior distribution. One option, suggested by
Gelman & Rubin (1992), is to generate multiple chains
followed by calculating the scale reduction factor R̂ ,
which is used to determine the length of the “burn-in”
phase. The “burn-in” of the chain is the first part where
the chain is influenced by the starting point until it
reaches stationarity. We determined the “burn-in” phase
to last until ˆ .R < 1 2, following Gelman (1996): when

R̂ nears 1 it means that the Markov chains are essen-
tially overlapping. We randomly sampled two starting
points from the prior distribution, and used the R̂ to
determine when the two chains had converged to the
desired posterior distribution.

Sensitivity analysis of SnowFrostIce

When working with models, sensitivity analysis (here-
after referred to as SA) is recommended as part of the
process (Kokkonen et al. 2006). For the SA to be mean-
ingful, the practitioner should decide beforehand on how
to define the importance of the parameters, i.e., the type
of question the SA is expected to answer (Saltelli et al.
2008). In our case, we would like to know which of the
parameters can be fixed anywhere within their prior
bounds without affecting model outputs, i.e., which
parameters are not important. This is helpful in relation
to model simplification.

In order to identify non-important parameters in the
model, we carried out a screening exercise using the
improved sensitivity indices from the Morris method, as
described by Campolongo et al. (2007). This method is
relatively simple to implement.

The Morris method proposes two sensitivity measures,
the main purpose of which are to determine the model k
parameters that can be considered to be (i) not important,
(ii) linear and additive, or (iii) non-linear or involved in
interactions with other parameters. For each of the
parameters, two sensitivity measures are computed: m,
which evaluates the overall influence of the parameter on
the model output (main effect or elementary effect [EE]),
and s, which collectively evaluates all the higher order
effects resulting from non-linearity and/or interactions
with other parameters. The Morris method was originally
used for parameters following uniform distributions in [0,
1]. If the k parameters follow other distributions, Cam-
polongo et al. (1999) suggest that rather than sampling
directly from these distributions, the sampling should be
performed in the space of the quantiles of these k distri-
butions (i.e., each parameter is discretized into p levels,
and each quantile qp varies in [0,1], producing a
k-dimensional unit hypercube as the sampling space).
The actual parameter values would subsequently be
derived from their known distributions. In this SA of
SnowFrostIce, we investigated the k = 9 parameters from
the calibration (Table 1). The input space we used was the
sub-space W comprised of the k-dimensional unit hyper-
cube of the p = 6 equidistant quantiles in [0,1] from the
prior distribution of the parameters p(q). Outputs from
SnowFrostIce are time series, and for this SA we needed
a scalar value. Thus, for the simulation runs required in
the SA, we used as output the log-transformed likelihood
from Eqn. 20, i.e., log[f(D|q)], with the likelihood being
the probability of the observed data D given a certain
model parameterization q.

By randomly sampling parameter vectors q from W, and
calculating EE (for details, see Campolongo et al. 2007)
for each of the nine parameters, we obtained a sample
from the distribution for each EE, termed EEi ~ Fi(mi, si).
The sensitivity measures mi and si proposed by Morris are
the mean and standard deviation of Fi, respectively. To
estimate mi and si, the sampling strategy proposed by
Morris is to create r trajectories in parameter space W.
Each of these r trajectories contains (k + 1) points, and
results in k elementary effects (i.e., estimates of one EE
per parameter), leading to a total of r(k + 1) sample points
corresponding to the number of model runs required for
the complete SA. A very nice stepwise presentation of this
method is presented in Saltelli et al. (2008).

A high si value for parameter qi implies that the corre-
sponding EEi value for qi at one point in W is considerably
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different from another EEj value (I � j) for the same
parameter qi located somewhere else in W, i.e. that this
particular EE value is influenced by the values of the
other parameters or nonlinearities. A low value for si

suggests that the EEi value associated with qi is indepen-
dent from the values of the other parameters, and thus it
is not involved in interactions or nonlinearities.

To avoid type II errors of failing to identify important
parameters, Campolongo et al. (2007) suggest replacing
m by m*, an estimate of the mean of the distribution of the
absolute values of the elementary effects Gi, i.e., |EEi| ~
Gi(m*i, si). To properly characterise non-influential param-
eters, one must therefore simultaneously consider the
vectors m* and s (see Fig. 1 for SA results for the Kise site).

When conducting the SA, we tried the same approach
for all locations. First, we sampled trajectories from the
prior distribution and calculated m* and s. Then, we
sampled from the posterior distribution and calculated m*
and s. Sampling trajectories from the prior distribution
gave very similar results for all sites (as did those for Kise;
Fig. 1). When we sampled from the correlated posterior
distribution, the results in m* and s were different
when comparing sites. For all but one site the same
non-important parameters were identified, but highly
correlated parameters influenced the results. For
example, at Kise, the parameter Trs was wrongly recog-
nized as being non-important. This illustrates that the
Morris method can produce different results depending
on whether the parameters are correlated or not. We did
not find examples in the literature of how to handle
correlated parameters when using the Morris method. Trs

is an important parameter, as was clearly shown when
sampling trajectories from the prior distribution. Based

on this observation, we decided to use the assumed
uncorrelated prior distribution when sampling trajecto-
ries for the screening exercise.

Model validation and predictive uncertainty

The data sets for each location were divided in two: one
part was used for calibration and the other was used for
validation (Table 2). To evaluate the predictive uncer-
tainty of the model after calibration, we sampled 20
parameter sets from the posterior distribution, and calcu-
lated the subsequent mean and standard deviations of the
model outputs.

Results

Results from the Bayesian calibration

The main result of the Bayesian calibration procedure is
the estimated joint posterior distribution of the model
parameters. This correlated multidimensional joint distri-
bution is difficult to visualize, so we present the marginal
posterior distribution for single parameters.

We determined the success of the calibration by evalu-
ating the estimated marginal posterior distributions. If
they are narrower than their corresponding prior distri-
bution, this indicates that the parameter uncertainty has
been reduced. The calibration at each location used two
chains of length 300 000, and a unique step length vector
for that location.

The part of the Markov chains succeeding the burn-in
point, which we determined as the point from where R̂
remains below 1.2, comprises the marginal posterior dis-
tribution of the parameter (Gelman 1996). The right
column of Fig. 2 shows plots of R̂ for the parameters x,
rns and Trs, and the centre column shows the estimated
marginal posterior distribution for the same parameters.
Panels in the left column in Fig. 2 show trace plots of the
Markov chains for parameters x, rns and Trs calibrated at
the Kise site. These trace plots are used to verify that the
two chains for each parameter stabilize around the same
value, and that the posterior distribution is properly
explored.

In order to visualize the marginal posterior distribu-
tions for all locations simultaneously, we fitted
continuous distributions to the samples from the poste-
rior generated by the MCMC. They are shown, together
with the prior distributions, in Fig. 3. The marginal pos-
terior distributions are either multimodal, skewed or
both. It was therefore informative to present both the
maximum posterior estimate and the median value of q
(qMAP and �q, respectively) from the marginal posterior
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distributions as summary statistics (see Table 7), comple-
mented by plots of the marginal posterior distributions
in Fig. 3 showing posterior parameter uncertainty. The
parameter vector qMAP represents the single best param-
eter vector at the different locations. For most of the
parameters, when comparing the marginal posterior

distributions in Fig. 3 with their respective prior distribu-
tion (black lines), it is clear that the calibration process
reduced the prior parameter uncertainty. However, for
the parameters related to liquid water in the snow cover,
SWrf and SWret, we can see that measurements on snow
depth alone did not provide enough information to

Fig. 2 Panels in top row show results for

parameter x; centre row shows results for

parameter rns; bottom row shows results

for parameter Trs. Panels in the left column

show trace plots of the two parallel chains (red,

chain 1; black, chain 2). Panels in the centre

column show the marginal posterior distribu-

tion of the parameter p(qi|D). Panels in the right
column show the scale reduction factor R̂ ,

calculated at every 20th iteration.
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depart from our prior estimates (for the Kise site, they are
more peaked). For the precipitation threshold tempera-
ture, Trs, the parameter uncertainty was least reduced at
Kvithamar compared with the other locations. For Tmf,
the parameter uncertainty was reduced more at Kise and
Holt than at Kvithamar and Vågønes. For Kvithamar, the
median value of Tmf (see Table 7) was larger than the
median value of Trs (this is shown in Fig. 4b, where
the green line is located slightly above the red line). The
uncertainty in DKmax and Kmin was reduced for Kise and
Holt, but for Kvithamar and Vågønes there was not much
improvement. The parameter uncertainty was reduced
for the remaining x, rns and lfs.

Results from the sensitivity analysis

At each of the locations used in the calibration, we ran-
domly generated r = 100 different trajectories for the
computation of EE, i.e., r(k + 1) = 1000 parameter vectors
were sampled from W, and thus 1000 model runs were
used for the SA. The results were very similar for each
location. Figure 1 shows the sensitivity indices m*i and si

for each parameter for the Kise site. We find the param-
eters SWret, SWrf and DKmax in the lower left-hand corner,
and the remaining parameters are almost linearly spread.
Inspection of histograms of the sampled parameter values
suggests that the ranges of the prior intervals were
adequately explored.

The parameter lfs was excluded from the SA because
Sdepth affects Fdepth, and not vice versa.

Validation of the model

The SnowFrostIce model was validated at all locations
used in the calibration. For each of the locations we
sampled 20 parameter vectors from the posterior distri-
bution, and calculated the mean and standard deviation
of the model output. Variation in model output is shown

as the mean � one standard deviation (Fig. 5). If the
median value of Trs is close to that of Tmf they appear as
one line in the sub-figures. See Table 7 for these param-
eter values. The validation at the Kise site shows little
variation in model output. At this site, Sdepth is overesti-
mated for the winter of 1997/98. This is as expected when
considering that Tair < Trs for most of the precipitation
events (see Fig. 4a). Frost depth at Kise during 1997/98
is initiated earlier than observed, in addition to being
slightly underestimated. Fdepth during the 1998/99 winter
is overestimated: frost rates that were too high initially
caused Fdepth to be shifted downwards compared with
observations. The validation for Kvithamar (Fig. 5b)
shows more variability in model output compared with
Kise, especially towards the end of springtime for Sdepth.
The data points here are captured within this variation.
At Vågønes (Fig. 5c), model performance for Sdepth is quite
good, but Fdepth is overestimated (more severely during
2001/02 than 2002/03). At Holt (Fig. 5d), the Sdepth is
overestimated during 2005/06 (as with Kise in 1997/98)
because Tair < Trs for most of the precipitation events of
that winter. Note the events between January and May
2006 with P > 20 mm (Fig. 4d), where precipitation is
simulated as snow. Fdepth looks reasonably accurate, but a
complete thaw is predicted too early for both validation
years. Variation in model output is in general higher for
Kvithamar and Holt than for Vågønes and Kise. Figure 6
shows all output (snow cover, soil frost and surface ice)
for Holt (1997/98) and Karasjok (1998/99). We had no
data to calibrate SnowFrostIce for Karasjok. For Karasjok,
we sampled the parameter values from p(q|D) obtained
for Kise, as both locations have an interior climate. Holt
and Karasjok were the only locations where ice observa-
tions were available.

Discussion and conclusions

In this paper we present a new model for the simulation
of snow depth, soil frost depth and depth of surface

Table 7 Parameter values for SnowFrostIce that gave the highest posterior density qMAP, and the median values �q for the sites Kise, Kvithamar, Vågønes

and Holt.

Parameter Kise Kvithamar Vågønes Holt

qi qMAP(i)
�θ i( ) qMAP(i)

�θ i( ) qMAP(i)
�θ i( ) qMAP(i)

�θ i( )

Trs -0.1 -0.1 -0.6 1 2.3 2 3.1 3

Tmf -1.4 -1.5 3.1 2.1 0.7 1.3 -3 -2.3
x 0.02 0.02 0.025 0.12 0.15 0.13 0.01 0.02

DKmax 4.5 3.6 0.79 1.5 1.8 1.5 0.5 2

Kmin 1.1 1 0.43 1.6 0.2 2.3 2.6 3.5

SWrf 0.002 0.48 0.87 0.68 2.61 0.63 3.65 0.78

rns 128 124 216 89 84 95 250 231

SWret 0.32 0.07 0.21 0.22 0.18 0.22 0.35 0.2

lfs (¥104) 8.6 8.8 12.6 10.3 17.6 13.1 13.7 13.8
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ice cover. We calibrated the model by means of well-
documented Bayesian methods, and conducted a
qualitative sensitivity analysis. As far as we know this
practice is still relatively new for this kind of model. The
results presented here, both regarding assumptions about
prior pdfs and the resulting posterior pdfs, and the simple
yet very effective method of sensitivity analysis, are
useful for the modelling community.

A study comparing four models simulating soil frost
(Kennedy & Sharratt 1998)—the two finite differ-
ence models SHAW and SOIL, and two energy balance
models—concluded that the simpler energy balance
models generally overestimate frost depth. However, one
weakness of the models (investigated by Kennedy &
Sharratt) that also simulate snow cover is the estimation
of snow depth. Snow cover has a strong influence on the
estimation of soil frost depth, e.g., through snow depth
and snow density, both affecting the thermal conductivity

of the snow cover. Therefore, accurate simulation of snow
cover is important for the simulation of soil frost depth.

Our new model SnowFrostIce for simulating the effects
of winter climate on the soil surface is designed to be
included in a grassland model. This restricts SnowFrostIce
with regards to the number of parameters included. We
calibrated SnowFrostIce against independent data from
four locations in Norway, capturing climatic variation
from south to north and from coastal to inland areas. We
also identified the key parameters by conducting a sensi-
tivity analysis.

It is important to bear in mind that SnowFrostIce rep-
resents simplifications of real-world processes, which are
described at various levels of complexity. Some of the
parameters used have a physical interpretation, but they
are seldom measured, and quantitative data are scarce in
the literature. This means that the parameters, and
thereby the model outputs, are subject to uncertainty.
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Fig. 4 Climate during validation period for locations (a) Kise, (b) Kvithamar, (c) Vågønes and (d) Holt. Solid lines show the daily mean air temperature Tair

(blue) and bars show daily precipitation; median values from the posterior distribution of the threshold temperatures for precipitation Trs (red) and

snowmelt/refreezing Tmf (green). See Table 7 for parameter values.
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The Bayesian method we used aims to quantify and
reduce these uncertainties, rather than maximizing the
model fit. When selecting an optimal parameter set for a
simulation run for a specific location, we chose the
parameter values that maximized the posterior distribu-
tion qMAP (Table 7). A consequence of this procedure was
that these specific parameter values must be interpreted
accordingly (i.e. reducing model uncertainty), rather
than given a clear-cut physical interpretation.

When carrying out the Bayesian calibration, it was
difficult to obtain convergence of the Markov chains for
the parameters relating to liquid water in the snow cover
(SWret and SWrf). This may imply that the calibration data
were not sufficient for improving the prior knowledge
related to these parameters.

The estimated posterior distribution is different for each
location. We expected some regional differences for the
melting parameters Kmin and DKmax as a result of regional
differences in radiation, altitude (m a.s.l.) and ocean
vicinity, for example, but not for the threshold tempera-
tures for precipitation Trs and snowmelt/refreezing Tmf, or
for the density of new snow rns. This might indicate that
the model needs geographical adjustments and a func-
tional description of rns. The differences in the results for
the thermal conductivity of frozen soil lfs were expected,
as the soil types are different for each of the locations.

A reason for the erroneous estimation of Sdepth could be
that the calibrated value of Trs is wrong, leading to
observed rain being simulated as snow, or vice versa. In
addition, by using daily mean air temperatures, the model
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Fig. 5 Validation of the SnowFrostIce model describing the variation between model output and observed values on depths of snow and soil frost at

(a) Kise, (b) Kvithamar, (c) Vågønes and (d) Holt. Solid lines (mean � SD) show Sdepth (blue) and Fdepth (red); observed snow cover depth (*); observed lower

frost boundary (�).
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might associate incorrect air temperatures with precipita-
tion events. For instance, the observed air temperature
could be below 0°C for most of the day, followed by above
0°C at the end of the day, resulting in a mean daily
temperature below Trs. If precipitation had been observed
as rain by the end of the day, it would still have been
simulated as snow. The overestimation of Sdepth might
result from important processes being omitted, e.g., the
heat content of rain is not incorporated in the model, so
this kind of additional snowmelt is not included. A third
reason for the erroneous estimation of Sdepth might be the
redistribution of snow by wind, a factor not taken into
account in the model.

The number of available observations for the calibra-
tion is important. Using data from two and three years

is not sufficient to capture the interannual variation in
snow cover and soil frost. The limited number of obser-
vations on both snow cover and soil frost at the same
location has an effect on the results of the calibration. In
a preliminary study, the snow module of SnowFrostIce
was calibrated for the Kise location using two, four, six,
eight and finally 10 years of snow depth observations
(Roer et al. unpubl. ms.). Including more data resulted
in a narrower posterior distribution, but convergence
was also increasingly harder to obtain. Including more
observations also resulted in a shift in the location of
the posterior parameter distribution. This showed
that the interannual variation in winter weather will
affect the results of the calibration. As long as more data
are included, the results are likely to keep varying until
the whole spectrum of weather conditions is included.
Ideally, we should have had observations comprising a
full climate period (30 years) to capture the variation
within a normal period. In the study comparing 33
snowpack models by Rutter et al. (2009) only two
years of observations were available. In the present
study, the data set was split in two in order to con-
duct the validation, which would otherwise have had
to be postponed until more observations became
available.

The parameters related to snowmelt (Tmf, Kmin and
DKmax) are less uncertain for Kise than for the other loca-
tions (see Fig. 3). This contributes to less uncertainty in
the snow depth simulation at Kise compared with the
other locations. At Kvithamar, in addition to the uncer-
tainty of Tmf, this parameter also has a high numerical
value compared with the other locations (Table 7). This
leads to more uncertainty in the melting period at Kvith-
amar, and also to a delayed onset of snowmelt in the
simulations compared with, for example, Kise. The
results from the sensitivity analysis showed that Tmf and
Kmin were the most important parameters related to
snowmelt. It is therefore reasonable to attribute the
uncertainty and delay in snowmelt mainly to the uncer-
tainty of the parameters Tmf and Kmin.

In this study we used the likelihood of a sampled param-
eter set, given the data (see Eqn. 20), as a scalar output
when calculating the sensitivity indices m* and s. If, on the
other hand, we were to use daily simulated snow depth
values as the scalar output in the SA, for example, we
would have to calculate one pair of m* and s for each of
these Sdepth values. This would provide an answer to the
question of which parameters were most important on
which day during the whole simulation period. However,
performing two SA—where the first SA uses depth of
snow cover on a specific day during midwinter, and the
second SA uses depth of snow cover on a specific day
towards the end of winter—might give further indications
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of which parameters are most important regarding snow-
melt in cold and mild periods, respectively.

The purpose of our SA was to identify key parameters
in the model. Here, we used the Morris screening method
to identify the non-important parameters. In Fig. 1, the
parameters SWrf, SWret and DKmax are recognized as being
less important (low values for m* and s). Following the
way in which we defined parameter importance in our
SA, the SA results suggest that varying these parameters
within their prior bounds would not markedly affect the
model output. We can also find support for this conclu-
sion in the calibration results. Figure 3 shows that the
posterior distribution for the three non-important param-
eters has not changed much compared with the prior
distribution, implying that no new information is added
through the data.

The ability of SnowFrostIce to simulate the maximum
depths of snow cover and soil frost is presented in Fig. 7.
The points lie close to the 1:1 line, indicating satisfactory
model performance. The maximum depths of snow cover
and soil frost are good indices to show the trends of the
snow cover and soil freezing in each winter, and they are
both appropriately estimated by the model.

The approach to calculating soil frost, by balancing
energy, is similar to that proposed by Benoit &
Mostaghimi (1985). Although we made some critical
assumptions (e.g., estimation of the soil surface tempera-
ture, a constant thermal conductivity of frozen soil and a
constant thermal conductivity of snow), we have shown
that when tested on independent data sets (see Fig. 7),
the ability of SnowFrostIce to estimate the maximum
lower frost boundary is also quite good.

The simulation of ice cover at Holt and Karasjok were
based on the assumptions outlined in the sections
“Puddle formation and infiltration of meltwater” and
“Formation of ice layer”. The results shown in Fig. 6
indicate that our simple approach is a sound starting point
for further development of the ice layer module.

We conclude that our simple yet effective method for
modelling depths of snow cover, lower frost boundary
and soil surface ice provides reasonable results, making it
suitable for incorporation into more complex models.

Continued work

In order to simulate damage to plants as a result of ice
encasement, for example, there is a need for a better
description of local field topography, such as quantifying
the part of the study area that can potentially be covered
by surface puddles. This will be of help when simulating
the number of plants dying because of ice-related stresses.
These refinements should be followed by further model
validation.

The results from the calibration and SA indicate scope
for model improvement. A modification motivated by the
calibration results is a functional description of rns. In
addition, the results from the SA suggest lumping
together (or disregarding) the processes related to liquid
water within the snow cover, and replacing the sinusoidal
snowmelt function by a constant melt rate.
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Nomenclature

Fdepth simulated depth of lower frost boundary (m)
Idepth simulated thickness of surface ice cover (m)
K degree–day temperature index for snowmelt (mm °C-1 day-1)
Kmin minimum value of K (mm °C-1)
Kmax maximum value of K (mm °C-1)
Lf latent heat of fusion (J kg-1)
M snow melt rate (mm day-1)
Mrf refreezing rate (mm day-1)
P precipitation rate (mm day-1)
Pr simulated daily precipitation rate as rain (mm day-1)
Ps simulated daily precipitation rate as snow (mm day-1)
QE heat flux density from freezing of soil water (J m-2 day-1)
Qfs heat flux density through frozen soil (J m-2 day-1)
Qsnow heat flux density through snow cover (J m-2 d-1)
Sdry water constituent of snow cover in solid state (snow and ice) (mm)
Swet liquid water constituent of snow cover (mm)
SWE snow water equivalent (mm)
SWret retention capacity of snow cover (mm mm-1)
SWrf degree–day temperature index for refreezing of liquid water within snow cover (mm °C-1 day-1)
Sdepth depth of simulated snow cover (m)
Tair daily mean air temperature at 2 m height (°C)
Tsurf simulated temperature in void between soil surface and snow cover (°C)
Trs daily mean air temperature below which precipitation is simulated as snow (°C)
Tmf daily mean air temperature below which water within snow cover refreezes (°C)
T* daily mean air temperature below which soil water freezes (°C)
xw volumetric content of available soil water (m3 m-3)
z soil depth (m)
g empirical parameter (m-1)
lfs thermal conductivity of frozen soil (J m-1 °C-1 day-1)
li thermal conductivity of surface ice cover (J m-1 °C-1 day-1)
ls thermal conductivity of snow cover (J m-1 °C-1 day-1)
rns density of falling new snow (kg m-3)
rw density of water at 0°C (kg m-3)
rs density of snow cover (kg m-3)
x snow cover compaction parameter (mm mm-1 d-1)
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Abstract 

A pest forecasting model of ascospore maturity of Venturia inaequalis developed in New 

Hampshire, US, were further developed in order to predict spore release more accurately. Five 

alternative models and three tuning alternatives for model optimization were proposed and the 

different model versions compared. The data were split in one set for model development and 

one set for model assessment ten times, and all calculations were done for each split 

individually, to ensure not fitting the model only to the specific data but more generally to 

novel data from the same population. The split of the data turned out to be a crucial factor for 

the conclusions made. As mean value over the ten splits of the data, the best model were 9.2 

% improved compared to the New Hampshire model according to root mean square error of 

prediction (RMSEP), and 19.0 % improved when only looking at the most important spore 

release periods between 5 and 95 % matured ascospores only. Because of a high variance 

between the different splits of the data, the improvements were only significant (p<0.05) for 

the 5 to 95 % interval. Additionally the deviance information criterion (DIC) was used for 
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model comparison, giving a more complex model as the overall best. The criteria used for 

model assessment were thereby crucial in order to which model selected as the best, but the 

two models were not significantly different. The Bayesian statistical approach was used to 

calibrate the models. By regarding parameters as random variables following some 

probability distribution, not as fixed values, calculations of parameter uncertainties were 

automatically included. Model robustness was visualized by showing the effect of adding data 

on the resulting parameter distribution and thereby its uncertainty.            

 

Key words: apple scab, model robustness, model selection, impact of the data, random walk 

Metropolis 

 

INTRODUCTION 

Computer models constitute a key component of modern forecasting systems for plant pests 

and diseases. Generally, they are systemized biological knowledge, which usually takes 

biological observations and weather prognoses as inputs. The main purpose of these models is 

to optimize the precision of disease/pest management applications for optimal crop protection, 

and to avoid unnecessary effort when there is no risk. The models are included in warning 

systems that alert farmers about when and where the disease/pest may attack the crop. 

Model predictions will never be completely perfect. Uncertainty is related to how close the 

true real world quantity will be to the model simulation, but still uncertainties are usually not 

addressed in disease/pest forecasting. According to Goldstein and Rougier (2006), there are 

three sources of uncertainty related to models; (i) the model itself is an imperfect 

representation of the underlying system, (ii) it generally contains unobserved or uncertain 

quantities (parameters), and (iii) collected data from the system used to calibrate (where 

calibration is learning about the parameters using data from the system) the model are 

imperfectly measured. Included in the third source, there will be an uncertainty related to how 

well the specific collected data represents the population. Bøvelstad et al. (2007), pointed out 

that splitting the data into a training and a test set in several different splits is important for the 

model to fit well to novel data from the same system, and not only to the specific data at hand. 
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Model parameters mainly have a physical meaning also outside the model, and prior 

information about them is often known. Although it is a natural desire to incorporate all 

available information in decision making (Wolfson et al. 1996), classical statistical methods 

consider the collected data to be the only available source of information. Also, in classical 

statistical methods, uncertainties may only be established through large samples (asymptotic) 

arguments. Therefore, a combination of prior knowledge and substantial uncertainties makes 

it natural to adapt a Bayesian statistical approach (Kennedy and O’Hagan 2001). In Bayesian 

statistics, probability theory is used to describe uncertainty, and parameters are regarded as 

random variables (not as fixed values as in classical frequentistic statistics) that follow some 

probability distribution. 

The aim of Bayesian calibration is to reduce the prior uncertainty by making use of the 

collected data. Initially, our parameter knowledge before collecting data is described by a 

prior probability distribution. The prior knowledge is then updated by new incorporated 

information, through the likelihood distribution of the collected data. The resulting 

combination, describing our new parameter uncertainty, is called the posterior parameter 

distribution.  

As a case study we used ascospore maturation in the ascomycete Venturua inaequalis, the 

cause of apple scab, a serious disease on apple worldwide. The primary overwintering site for 

the fungus is leaf litter on the ground, and in spring and early summer ascospores are released 

from pseudothecia during periods of rain. The fungus targets its maturation and first release of 

ascospores to match the time when first susceptible tissue is present on the apple trees. 

Numerous studies have been undertaken to examine the seasonal distribution of ascospore 

release in V. inaequalis in various apple producing countries in the world (Childs 1917, 

Stover and Johnson 1924, Frey and Keitt 1925, Schneiderhan 1925, Keitt and Jones 1926, 

Weber 1934-35, Wiesman 1935, Fjelddalen 1948, Weber and Jørgensen 1953, Gjærum 1954, 

Hårdh 1955, Szkolnik 1969, Moller et al. 1971, Szkolnik 1974, Brook 1976, Gadoury and 

MacHardy 1982, Ylämäki 1989, Norin 1989, Rossi et al. 1999). Based on temperature sums 

or temperature sums in combination with moisture, several models have been developed for 

estimation of ascospore maturation in V. inaequalis (Gadoury and MacHardy 1982, James and 

Sutton 1982, Lagarde 1988, Massie and Szkolnik 1974, Stensvand et al. 2005). Both the apple 

tree and the fungus have a development rate dependent on temperature. However, ascosporic 

development is also dependent on available moisture, and protracted periods of dry weather 

slow down or stop the maturation process (Keitt and Jones 1926, Wilson 1928, James and 
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Sutton 1982a, James and Sutton 1982b, O’Leary and Sutton 1986, Schwabe et al. 1989, 

Stensvand 2005). 

In this paper, we have further developed an existing forecasting model for the specific plant 

disease, and the Bayesian statistical framework was used to calibrate the model alternatives. 

The main objective of this work was to select the best model among the model alternatives 

developed. Also, model robustness and comparison of the model selection criteria used was 

investigated. 

 

MATERIALS AND METHODS 

Data used in deriving and testing the model 

Volumetric spore traps (Burkard Manufacturing Co. Ltd, Hertfordshire, UK) sampled 

ascospores during 1992-1995, 1997-2001 and 2003 at Ås (south eastern Norway), 1993 and 

1994 at Hjelmeland (south western Norway), and 2002-2005 at Gorsem (north eastern 

Belgium). A leaf bed of heavily infected, overwintered apple leaves surrounded the spore 

traps. The soil of the study area was drenched with a benzimidazole at 0.5 g a.i. litre-1, to 

preserve the leaf litter during winter and spring. The spore traps sampled air at approximately 

10 litre min-1. The microscope tape attached to the clock cylinder was coated with a thin layer 

of a preheated mixture of Vaseline, toluene and kerosene. The tape was mounted on 

microscopic glass slides, and the number of ascospores recorded was adjusted for the 

proportion of tape examined and volume of air sampled, and recorded as spores m-3 air. 

Electronic data loggers provided records of precipitation, temperature, RH, and leaf wetness. 

Temperature and RH were recorded 1.5 to 2 m aboveground in weather shelters or radiation 

shields. Additionally, ascospores were trapped using the microscope slide technique in 2002-

2004 at Lake Konstanz, southern Germany (Triloff 1997). Microscope slides were placed 4 

mm above heavily infected leaves lying on a metal plate and placed in the orchard next to a 

weather station. Ascospores were released during periods of rain, captured by the slides and 

counted. 

 Daily accumulations of number of ascospores were used in the model development below. 

Environmental data were provided with daily mean air temperature T ( ), daily accumulated 

precipitation P (mm) and number of hours of leaf wetness LW (day-1). Missing meteorological 

observations of air temperature and precipitation at Ås were filled with data from Bioforsk 
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Agrometeorological Service or with data from the Norwegian University of Life Sciences, 

both measured in the same area as the spore trap, but not inside the orchard. In a few cases, 

there were missing meteorological data that were estimated by the least square method.  

The data were randomly divided ten times into one training set (2/3) used for model 

development and one test set (1/3) used to evaluate the model. All following calculations were 

done for the ten splits of the data individually, to ensure not fitting the model to only the 

specific data at hand, but to novel data from the same population (Bøvelstad et al. 2007).  

 

Model development 

A model to estimate ascospore maturation in V. inaequalis was developed by Gadoury and 

MacHardy (1982) in New Hampshire, USA, based on a linear relationship between the probit 

transform of matured ascospores and the degree day accumulation. The model was written  

 

where Φ is the standard normal cumulative distribution function, p is the proportion of mature 

ascospores, and DD is degree day accumulation calculated using a base temperature of 0 °C 

from time of green tip. This model is widely used, but it is not accurate in dry seasons (St-

Arnaud and Neuman 1990, Stensvand et al. 2005). Stensvand et al. (2005) showed that a 

moisture frequency threshold of 7 consecutive dry days (a dry day was defined to have less 

than 0.2 mm precipitation and dew or fog occurring for less than 12 h) to adjust the degree 

day accumulation greatly improved the model for dry years, without substantially affecting 

the accuracy in wet seasons.  

Five different mathematical models for the ascospore maturation in V. inaequalis were further 

developed from the New Hampshire (NH) model. While the original model was a linear 

model of the probit transformed cumulative proportions of mature ascospores, the new models 

were based on generalized linear models (GLM) (Agresti 2007) to directly model the 

cumulative proportion of mature ascospores. GLM consist of both logit and probit link 

functions that are variants of the same modeling, but based on different data assumptions. 

While logit link makes use of the natural logarithm of the odds of the proportion matured 

ascospores, probit makes use of the standard normal cumulative distribution function. The 

main difference is that logit link has slightly flatter tails, i.e; the probit curve approaches the 
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axes more quickly than the logit link curve, and in an early stage of this study, logit link was 

chosen over the probit link function because of a slightly better fit.  The logit link function is 

defined as follow 

 

in which pi is the cumulative proportions of matured ascospores at day i, DDi is the adjusted 

degree day accumulation at day i, and both α and β are unknown model parameters.   

 

Model 1: 

Based on the NH model, the degree day accumulation was calculated with a base temperature 

of 0 . The degree day accumulation at day i was then defined by 

 

with starting point j=1 at bud break of the apple tree and daily mean air temperature Tj at day 

j.  

 

Model 2: 

To adjust for the slow down or stop in the maturation process during dry periods, a halting of 

degree day accumulation was used if periods of 7 consecutive dry days or more occurred, 

according to Stensvand et al. (2005). The adjusted degree day accumulation could then be 

written   

 

were I is the identity function giving the value 1 if the statement is true and 0 otherwise and nj 

is the number of consecutive dry days at day j. 
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Model 3: 

A linear function between 1 and Nd consecutive dry days was formed to slow down or stop the 

maturation process for dry periods. The temperature at day j is weighted by 1 if only one 

consecutive dry day occurred, with 0 if Nd consecutive dry days occurred and with a linear 

function between. The accumulation could then be written 

 

where nj is the number of consecutive dry days at day j. 

 

Model 4: 

In addition to stop the maturity process when periods of 7 or more consecutive dry days 

(Equation 4), the temperatures were weighted differently based on a weighting function for 

daily rate of plant growth based on three cardinal temperatures (Yan and Hunt 1999).   

 

with Tmin fixed at 0 . Following, the degree day accumulation could be written 

 

 

Model 5: 

In addition to slowing down or stop the maturity process during periods of dry days (Equation 

5), air temperatures were weighted differently (Equation 6). The degree day accumulation 

could then be written 
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Model optimization 

All five models were tuned according to technical and statistical approaches to optimize the 

prediction abilities of each model.  

The total number of ascospores released is relatively low both early and late in the season 

(Gadoury and MacHardy 1982), and thus the most important periods of ascospore release and 

infection are between 5 and 95 % maturation. To see whether the prediction model could be 

improved by removing the tails of observations at both ends, calibration was also run when 

using only the observations between 5 and 95 % ascospores trapped in the training data. 

Both the logit link function of GLM and the probit transformation generate models with a 

symmetrical slope around its maximum at 50 % matured ascospores. To account for a real 

world system not behaving symmetrically, the GLM was redefined according to Hosmer and 

Hjort (2002) to allow for asymmetry. The redefined model for the proportion at day i 

(Equation 2) was written 

 

where λ is an unknown parameter.   

The weighting function for air temperatures (Equation 6), originally used a fixed minimum 

cardinal air temperature (Tmin) of 0 , but was additionally estimated by using Kelvin degrees 

to allow for negative air temperatures.  

 

Statistical analysis 

Bayesian calibration 

The Bayesian framework was used to calibrate the models. Based on Bayes theorem (Berger 

1985), the prior parameter knowledge was updated with the new incorporated information 

through sampled data to form posterior functions of distributions of the parameters. The prior 

distributions of the parameters are our knowledge about the parameters before new data is 

collected. The model parameters mostly have physical meaning and available prior 

information based on existing data, expert opinions or literature review. Uninformative priors 

(one approach introduced by Jeffrey, 1961) may be used if no prior information is available. 
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Here, the prior knowledge was described by uniform distributions with minimum, maximum 

and reference given in Table 1. Prior independence was assumed, and the joint distribution 

found as the product of the marginal parameter distributions. If the sample size of collected 

data is small, or if the available data only provided indirect information about the parameters 

(Gelman 2002), the prior parameter knowledge will have a larger effect on the posterior. The 

numbers of mature ascospores were binomially distributed, and the likelihood function 

(Gelman et al. 1996) was defined by 

 

where mi is the total number of ascospores, ri is the number of mature ascospores and pi is the 

proportion of matured ascospores at day i determined as a function of the model parameters θ 

(Equation 2). Calculations were done using the Markov chain Monte Carlo (MCMC) 

algorithm random walk Metropolis (Liu 2001), that was implemented in the computer 

program Matlab. The algorithm is iterative and starts with an initial guessed parameter set 

θ0=(θ0
1, θ0

2,… θ0
n). Then, a candidate parameter set θ’ is generated, here using a multivariate 

normal distribution centered at the current point and with standard deviations found by trial 

and error to give an efficient acceptance rate between 0.15 and 0.5 (Gilks et al. 1996). A 

random variable u is then generated from the standard uniform distribution, and the proposed 

parameter set accepted (θt+1= θ’ )  if the ratio  

  

 

Table 1: Symbols, units and limits for the prior interval and reference for all parameters used in this study 
together with widened priors used for some parameters.   

Symbol Unit Prior 
interval 

References Widened prior interval 

  [-10 0] This study [-10 10] 
  [0 0.7] This study  

Nd  [1 10] Stensvand et. al (2005)  
λ  [1 10] This study [1 100] 
Topt  [16 22] MacHardy (1996)  
Tmin  0 MacHardy (1996) [-2 2] 
Tmax  [23 33] MacHardy (1996)  
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is greater or equal to u. Otherwise, the current parameter set is repeated (θt+1= θt). The main 

idea of the MCMC algorithm is that the resulting chain of parameter sets will in the long run 

converge to the posterior distribution of the parameters. Monitoring convergence (“burn-in”) 

of the chain is an important step in Bayesian analysis, since only the iterations after 

convergence can be regarded as samples from the posterior distribution. We ran two chains in 

parallel and detected burn-in by using the Gelman-Rubin diagnostic (Gelman and Rubin 

1992) that compares the variability between and within the sequences by estimating a 

potential scale reduction factor (GR) for each parameter. Convergence was determined if GR 

was close to 1, less than 1.2 in practice (Gilks et al. 1996). 

 

Model assessment and selection 

The Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) is a model comparison 

method, combining model fit and penalty on model complexity, using the training data. It is 

defined by 

  

where   is the posterior mean of the deviance (quality of fit, calculated as -2 times the log-

likelihood ratio of the reduced model compared to the full model, Agresti 2007) and  is the 

estimated model complexity. Here, it was individually calculated for all sets of training data. 

The model with the lowest DIC was preferred. The models generated using only the data from 

5 to 95 % trapping and the initial NH model is not comparable with the other models 

according to DIC, since the models were based on different training data.  

The model prediction abilities were compared by Root Mean Square Error of Prediction 

(RMSEP) (Hastie et al. 2001) for the ten sets of test data individually 

 

where K is the number of test data, pk is the proportion matured ascospores observed at time k, 

mk is the total number of ascospores and  is the estimated proportion matured ascospores 

(Equation 2).  
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Additionally, RMSEP was calculated using only the conservative (most important infection 

period) test data between 5 and 95 % matured ascospores (RMSEPc). 

Analysis of variance (Montgomery 2005) was used to determine significance of model 

improvements. Both model and the optimization alternatives asymmetry and updating Tmin 

were used as factors and the different splits of the data were treated as a block. The updating 

Tmin option was only valid for Model 4 and Model 5 and for these models a three factors 

mixed model was ran with common restrictions on the fixed effects.  

 

where  μ is the general effect, Mi the ith model effect, Aj is the effect of asymmetry ( j=0 

denotes symmetry and j=1 asymmetry) and Tk is the effect of the optimization alternative 

updating Tmin (k=0 denotes a fixed Tmin at zero, and k=1 denotes updating Tmin). The 

interaction effects are determined by (MA)ij, (MT)ik, (AT)jk and (MAT)ijk,  Bl is the random 

block effect of the splits (Bl~N(0,σ1
2)) and εijkl is the error (εijkl~N(0,σ2)).  

Also, the effect of Tmin was removed from Equation 14, and the effect of model and 

asymmetry tested for all models (i=1,2,…,5). Finally, to test all 19 model versions that were 

calibrated in the study plus the original NH model, a mixed model with only one factor, 

namely the model version was ran, the splits of the data were still treated as a block. 

The analysis of variance models were additionally constructed for RMSEPc, but not for DIC, 

which is not comparable for all models. 

 

RESULTS 

The five models including different alternatives for model optimization were calibrated for all 

ten splits of the data into a training and a test set. Convergence were determined within the 

first half of the run for all model versions according to the shrink factor of Gelman-Rubins 

(1992) and the 50.000 iterations after burn-in were regarded as samples from the posterior 

parameter distributions.  
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Both DIC and RMSEP (including RMSEPc) were calculated for the splits individually and 

listed in Table 2 as means and standard deviations over the splits. RMSEP were calculated 

using the maximum posterior parameter estimate (θMAP) which was the parameter set after 

burn-in that had the highest joint posterior probability (arg max π(θ|D)) (Berger 1985). 

Analysis of variance models were constructed for RMSEP and RMSEPc to show significant 

effects. 

The two factors mixed analysis of variance model (Equation 14 without Tmin) with RMSEP as 

response, gave (according to an F-test) significance of both main effects; model (p<0.0001)  

 

Table2: DIC, RMSE and RMSEc for the model alternatives calculated as mean and standard deviation over the 
ten splits of the data. Values written in italics are only comparable with other values in italics. 

Model DIC ·107 RMSEP RMSEPc  
New Hampshire  0.1811 (0.0343) 0.2228 (0.0395) 

Original    
Model 1 9.3581 (1.9446) 0.1967 (0.0225) 0.2143 (0.0345) 
Model 2 9.3479 (2.0154) 0.1912 (0.0240) 0.2139 (0.0344) 
Model 3 9.1286 (1.9309) 0.1699 (0.0120) 0.1863 (0.0209) 

Model 4 9.4485 (2.0590) 0.1982 (0.0260) 0.2192 (0.0385) 
Model5 9.2519 (1.9674) 0.1864 (0.0181) 0.2044 (0.0286) 

Conservative 
Model 1 8.2059 (1.7948) 0.2297 (0.0226) 0.2204 (0.0166) 
Model 2 8.2320 (1.8299) 0.2213 (0.0169) 0.2172 (0.0139) 
Model 3 8.0835 (1.7803) 0.1954 (0.0177) 0.1934 (0.0119) 

Model 4 8.2719 (1.8534) 0.2301 (0.0192) 0.2221 (0.0157) 
Model 5 8.1420 (1.8048) 0.2080 (0.0223) 0.2034 (0.0124) 

Asymmetric    
Model 1 9.3016 (1.9206) 0.1889 (0.0239) 0.2085 (0.0345) 

Model 2 9.2950 (1.9944) 0.1868 (0.0247) 0.2106 (0.0333) 
Model 3 9.0600 (1.9122) 0.1645 (0.0133) 0.1804 (0.0208) 

Model 4 9.3954 (2.0404) 0.1925 (0.0272) 0.2150 (0.0385) 
Model 5 9.1813 (1.9433) 0.1775 (0.0151) 0.1955 (0.0232) 

Updating Tmin    
Model 4 9.1572 (2.0222) 0.1880 (0.0218) 0.2152 (0.0299) 
Model 5 8.9938 (1.9028) 0.1679 (0.0107) 0.1864 (0.0169) 

Asymmetric and updating Tmin   
Model 4 9.1814 (1.9560) 0.1857 (0.0211) 0.2122 (0.0275) 
Model5 8.9463 (1.8900) 0.1655 (0.0106) 0.1822 (0.0145) 
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and asymmetry (p=0.0011), but not for the interaction effect (p=0.9447). The highly 

insignificant interaction terms determined that the factors produced the same effect in the 

response at different levels. The estimate of the residual variance within groups (one split of 

the data into a training and a test set) were and the variance of the random 

effect between groups   . 

While asymmetry significantly improved the model according to RMSEP, the conservative 

option worsened it and significance was not interesting and therefore not calculated.  

The three factor mixed model (Equation 14) used for only Models 4 and Model 5 gave strong 

significance for both model (p<0.0001) and updating Tmin (p<0.0001), but  weaker 

insignificant effect for asymmetry (p=0.0571) and more highly insignificant effect for the 

interaction terms (p>0.1777). The estimate of the residual variance within groups were 

and the variance of the random effect between groups .  The 

same conclusions were found for RMSEPc, but the variances were larger, still the variance of 

the random effect between groups was larger than the estimate of the residual variance within 

groups.  

As mean value over the different splits of the data, the comparison criteria DIC and RMSEP 

gave two different models as the best. While RMSEP (including RMSEPc) resulted in the 

simple asymmetric version of Model 3 (Model 3’) as the best model, DIC resulted in the more 

complex asymmetric version of Model 5 when updating Tmin (Model 5’) as the best. Both 

models include the linear weight to slow down the maturity process in dry periods (Equation 

4), while Model 5’ additionally contains the weighting function for air temperatures (Equation 

6). The one factor analysis of variance model gave according to Tukeys-test, insignificant 

differences between Model 3’ and the NH model (p=0.6818) and between Model 5’ and the 

NH model (p=0.7782)) according to RMSEP.   According to RMSEPc, both differences were 

significant, Model 3’ and the NH model (p<0.01) and Model 5’ and the NH model (p<0.01)). 

No significant differences between the two models were found for neither of the criteria 

(RMSEP (p=1.0) and RMSEPc (p=1.0)).  

The asymmetric optimization alternative did improve the fit significantly, but the model did 

still not fit the main structure in the data very well (Fig. 1). The prior intervals turned out to be 

a limiting factor for the degree of asymmetry, and widened prior intervals were tested up to a 

level, giving 0.3 % improvements according to RMSEP and 0.1 % improvements according to 

DIC.  
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Fig. 1. Model 3 for one of the splits plotted with the belonging training data, (a) using GLM that makes it 
symmetric around the circle and (b) using the asymmetric version of GLM. 

 

Compared to the NH model, Model 3’ was 9.2 % improved according to RMSEP and 19.0 % 

improved according to RMSEPc, while Model 5’ was 8.6 % improved according to RMSEP 

and 18.2 % according to RMSEPc when looking at the mean value over the ten splits of the 

data into a training and a test set. Fig. 2 shows the NH model (Fig. 2a), Model 1 (Fig. 2b), 

Model 3’ (Fig. 2c) and Model 5’ (Fig. 2d) together with the test data for one of the splits of 

the data into one training and one test set. 

Individually for each of the ten splits of the data, two different models were best according to 

DIC, and five and six, according to RMSEP and RMSEPc,, respectively. The standard 

deviations for Model 3’ and Model 5’ were much reduced compared to the NH model (Table 

2). 

Both the two best models were calibrated using all observations, and point and interval 

estimates for the parameters found (Table 3). Both the mean ( ) and maximum a’ posterior 

( ) estimates were given as point estimates for the parameters. The parameter reflecting 

when to stop the maturity process for dry periods after a slow down period (Nd) was close to 

one for both models and both point estimates. This gave a small weight for the air 

temperatures if one dry day, and zero if more than one consecutive dry days. The potential 

scale reduction factor at the end of the run (GR) was highest for β (GR=1.0044, Table 3) in 

Model 3’, suggesting that additional simulation might reduce the posterior interval for this 

parameter by up to a factor of 1.0044. Parameter uncertainty reduced by collecting data was  
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Fig. 2. Model results plotted together with the test data for one of the splits (a) the original New Hampshire 
model (Gadoury and MacHardy 1982), (b) Model 1, (c) Model 3’ and (d) Model 5’ (Kelvin degree days).  

 

Table 3: The maximum posterior estimate ( ), mean ( ), the coefficient of variation (CV), the 95 % highest 
posterior density credible interval (HPD) and the potential shrink factor (GR) for the two best models found by 
treating all observations as training data.   

Symbol MAP Mean CV 95 % HPD GR 
Model 3’ 

 -0.0000 -0.0001 -1.0053     [ -0.0003    0] 1.0000 
 0.0163 0.0163    0.0012 [  0.0163    0.0164] 1.0044 

 1.0342 1.0330 0.0033 [  1.0254    1.0386] 1.0029 
 5.4261 5.4268 0.0011 [  5.4151    5.4385] 1.0018 

Model 5’ 
 -0.0002 -0.0003 -0.9926     [ -0.0008    0] 1.0008 
 0.0007 0.0007   0.0013     [  0.0006    0.0007] 1.0000 

 1.1657   1.1659   0.0044     [  1.1602    1.1760] 1.0009 
 6.5851 6.5812 0.0012 [  6.5664    6.5967] 1.0027 

Topt 16.0001 16.0001 0.0000 [16.0000 16.0003] 1.0002 
 -2.0000     -1.9992 0.0000 [ -2.0000   -1.9977] 1.0002 
 32.9997 32.9996 0.0000 [32.9988    33.0000] 1.0000 
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determined by comparing the prior parameter intervals (Table 1) with the 95 % highest 
posterior density credible intervals (HPD) (Table 3). 

 

DISCUSSION 

The NH model generated to estimate the maturity of ascospores of V. inaequalis (Gadoury 

and MacHardy 1982) was further developed and optimized to better predict future system 

outcomes. The Bayesian statistical approach was used for model calibration, and ten different 

splits of the data were used in model development and testing. The split of the data turned out 

to be a crucial factor for the conclusions made both according to DIC and RMSEP (including 

RMSPc,). Conclusions drawn based on only one split of the data did depend heavily on the 

split and would consequently not fit well to novel data from the same population. Conclusions 

were therefore based on the mean output and the standard deviation over the ten splits. The 

two model criteria for model comparison (DIC and RMSEP) gave two different models as the 

overall best model (Model 5’ and Model 3’, respectively). According to RMSEP and 

RMSEPc, no significant differences in a Tukey-test were found between the two models. 

Compared to the NH model, significant differences in a Tukey-test were found for both 

models according to RMSEPc, but not for RMSEP. The standard deviation over the ten splits 

was much larger for the NH model than for Model 3’ and Model 5’. This indicated that both 

models gave more similar prediction error over the splits, while the NH model varied more 

with seasons/years. 

Two criteria were used for model comparison, DIC and RMSEP. While RMSEP calculates 

the models prediction abilities by use of the test data, DIC makes use of the training data. By 

using the training data, it is always possible to construct a model with perfect fit, as long as 

the model is complex enough. But, when a model becomes more complex, it is also able to 

adapt more complicated underlying structures, and the prediction error will increase. In 

between there is an optimal model complexity that gives minimum test error (Hastie et al. 

2001), and DIC is one measurement to estimate this optimum. Here, the two model 

comparison methods, gave two different conclusions, where DIC preferred a more complex 

model than RMSEP. Also the more known pairwise model selection criteria Bayes factor 

(Kass and Raftery 1995), providing the relative evidence of one model compared to another, 

could have been used, but the high number of models to be compared, made DIC much more 

efficient.  
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Model improvements were clearly seen while Model 3’ (Fig. 2c) and Model 5’ (Fig. 2d) 

concentrated the data closer together to fit the data better. Although the NH model (Fig. 2a) 

and Model 1 (Fig. 2b) are almost the same models, they looked very different, since the 

different training data used generated different parameter estimates for the models. The 

combination of high degree day accumulations in the data and the symmetry of GLM, gave 

larger gaps between the data and the model for small degree day accumulations in Model 1. 

This was not the case for the NH model, since the model was trained on data not including 

those high degree day accumulations. 

The asymmetric version of GLM significantly improved the models, but still the resulting 

model did not seem to follow the main structure in the data. The prior intervals were a 

limiting factor for the degree of asymmetry. Both the prior intervals for the technical 

parameters α and β were chosen widely to give a shape of the model in the same direction as 

the data. For the third technical parameter λ, there were no available prior information other 

than it had to be higher than one to give asymmetry in the correct direction. Additionally, the 

new parameter had a direct influence on the other parameters and consequently α converged 

at its prior boundary, while an increased prior interval for α, made λ converged at its 

boundary. The prior interval for λ increased up to 100 for its maximum and still the parameter 

chain converged at its boundary, giving only 0.3 % improvements according to RMSEP and 

0.1 % improvements according to DIC. Even more widened priors were not used because of 

increasing computational difficulties with increasing prior intervals combined with only small 

improvements according to RMSEP and DIC. For a better fit, the Gompertz function (Vieira 

and Hoffman 1977) which in contrast to the logit link function is asymmetric, could have 

been tested. 

The cardinal temperatures in the weighting function for air temperatures (Equation 6) also 

converged at their prior boundaries (Table 3). Since the model was not a perfect 

representation of the real world system, the parameters will neither correspond perfectly with 

their corresponding physical values. Widened or other prior distributions could have 

improved the model, but would also give unreasonable physical interpretations of the 

parameters and was therefore not used.  

Fig. 3 shows the development of the parameter distribution of Nd  in Model 3’, from only the 

prior knowledge through added collected data for all sites/years. The distribution of the 

parameter became narrower already when only two years of collected data were included, 
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long before the position of the distribution converged. This indicated a model fitting well to 

the specific data at hand and not to novel data from the same population. The parameter 

estimates will continue to change until the added data reflects the entire population (including 

variation in season dryness, number and length of dry periods, extreme weather). Two seasons 

were clearly not enough to include all those factors, but unfortunately the data were still 

treated as representing the whole population. According to the figure, the posterior parameter  

 

 

Fig. 3. Progress in parameter knowledge from adding data for each year is shown by plotting the estimated 
posterior parameter distribution for Nd in Model 3’, (a) all collected data, (b) adding between 3 and 10 years of 
data and (c) adding 11 to 14 years of data. 
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distribution seemed to converge after only three years of incorporated data (Fig. 3b), but big 

changes happened after 11 years (Fig. 3c). In the first 10 years, only Norwegian data from Ås 

and Hjelmeland appeared. After 11 years, additionally German and Belgian data were 

included, and the posterior distribution became approximately exponential with modal value 

at zero. Then again, after 14 years, only data from Belgium were added, and smaller changes 

appeared in the posterior distribution, that become approximately Gaussian. This may indicate 

that the data from Germany affected the model differently from the other places, and this may 

be due to the different type of spore traps used. The leaves in the spore traps at Lake Konstanz 

were not kept in direct contact with the ground, and this may have lead to an earlier dry-up of 

the leaf litter in periods between rain events. Protracted dry periods will halt the ascospore 

maturation. (Keitt and Jones 1926, Wilson 1928, James and Sutton 1982a, James and Sutton 

1982b, O’Leary and Sutton 1986, Schwabe et al. 1989, Stensvand 2005), and thus the German 

samples may have slowed down their maturation earlier than was accounted for by halting 

degree days from day 7 without rain (Stensvand et al. 2005). This also seems to be the case, 

because a slight delay in spore trapping in comparison to what was predicted by the models 

was observed (A.-G. Roer, unpublished data).   

In the analysis of variance models used, the ten splits of the data were treated as a random 

block effect, which partitioned the total variability in the observations into one component 

that measured the variation between the splits and one component that measured the variation 

within splits. The estimated variances showed that most of the variability was attributed to 

differences between the splits of the data. Each split of data contains the same number of 

years and seasons in combination, but each combination do not contain the same number of 

trapped spores, which may cause the large variability between splits. 

This study has shown the importance of using several splits of the data in model development 

and model assessment. Splits of the data may be of great importance, and conclusions made 

on calculations for only one split may depend heavily on the split and not be general for novel 

data. Additionally, by adding one year of data at a time to the calibration process, we saw that 

lots of data were needed to stabilize the model parameters. We have also seen that the two 

different statistical criteria, DIC and RMSEP gave different conclusions. In a Tukey-test, none 

of the two best models were significantly different from the NH model according to RMSEP, 

but both were significantly different according to RMSEPc. Since differences were found 

when looking at the most important infection period between 5 and 95 % maturation, we will 

recommend the new models over the NH model. In a Tukey-test, no significant difference 
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between the two models was found, and plots of them (Fig. 2) were very similar. Over the two 

models we would therefore recommend the simplest model, Model 3’. Additionally the model 

is constructed for prediction, and Model 3’ had the smallest prediction error both according to 

RMSEP and RMSEPc. 
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Abstract 

The Bayesian statistical framework is used to calibrate a process based model of snow depth 

using the random walk Metropolis algorithm. Different versions of the likelihood function; 

the Gaussian and the fat tailed Gaussian (Sivias’) using fixed standard deviations of 20, 30 

and 40 % of the observed value, estimation from data and estimation as one constant standard 

deviation was used. The calculations were time consuming, and the likelihoods using fixed 

standard deviations gave the most time effective calibration simply because they had one less 

parameter to estimate. Another result was that the fatter tails of the likelihood were, the faster 

the calibration process went. Impact on the estimates was small for different likelihood 

functions; whereas the fat tailed with fixed standard deviations of 40 % gave the overall 

smallest prediction error.      

 

Key words: The Gaussian likelihood, Sivias’ likelihood, estimated covariance matrix, fixed 

covariance matrix 
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INTRODUCTION 

Computer models are built in many fields of science to simulate real world systems. 

Unfortunately, outputs from the model representation of the system will generally not 

correspond perfectly with the behavior of the real world phenomena being modeled, but will 

be hampered by uncertainties. First, the model is a simplification of the real world system, 

second, the model contains unknown parameter values, and third, data used in the model are 

related with measurement error (Goldstein and Rougier 2006). In process based models, the 

model parameters usually have a physical meaning, but they may be difficult to measure and 

therefore hard to obtain precise information about. In situations with substantial uncertainty 

but where prior parameter knowledge is available, the Bayesian calibration approach is 

natural to use (Kennedy and O’Hagan 2001).  

The Bayesian statistical approach differs from the classical approach by regarding parameters 

as random variables instead of as fixed values. Prior knowledge about the parameters 

expressed by a prior probability distribution is combined with information from the available 

data through the likelihood function (the joint probability density function of the data, 

considered as a function of the model parameters for the fixed observed data) to produce 

posterior probability distributions of the parameters, describing the parameter uncertainty 

after new information is incorporated.  

The collected data only affect the posterior distribution through the likelihood function. 

Commonly, the likelihood function is determined by the distribution of the model errors 

assumed to be additive and Gaussian (Marshall et al. 2004, Marcel van Oijen et al. 2005a, 

Hue et al. 2008, Hassan et al. 2009). Outliers can be accommodated by assuming a fat-tailed 

distribution, as the t-distribution (Gilks et al. 1996) or Sivias constrained Gaussian 

distribution (Sivia 2006). The covariance matrix of model error is usually unknown. 

Estimation of it can easily be done for small data sets (Hue et al. 2008), but high dimensional 

parameter spaces (i.e. higher dimensions on the unknown covariance matrix) will follow from 

larger amounts of data and make the computation difficult. The problem is therefore often 

simplified by assuming a constant error variance for all data points (Marshall et al. 2004, 

Hassan et al. 2009) or by using a fixed covariance matrix (Van Oijen et al. 2005a).   

For complex models with high dimensional parameter spaces and large amounts of training 

data, convergence is generally hard to detect and a long period by trial and error to form a 

reasonable proposal parameter distribution is needed.  
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This study compares two different likelihood functions of the data, namely the Gaussian 

distribution and a fat tailed Gaussian distribution (Sivias’). Both distributions applied 

diagonal covariance matrixes that was either estimated as a constant error variance or as a 

percent of the measurements, or fixed at 20, 30 or 40 % of the measurements. 

The main objective of this paper was to learn about the effect on model output caused by the 

choice of likelihood by quantify the effect of the chosen likelihood and the connected 

covariance matrix. It is of great importance to know whether the likelihood distribution and its 

covariance matrix should be carefully chosen or whether a reasonable quantification of the 

joint distribution of the data, giving easier convergence, is adequate. In this paper, a complex 

dynamic model of snow cover (Thorsen and Haugen 2007) was used as case. 

 

MATERIALS AND METHOD 

The snow depth model 

A plant model for timothy and perennial ryegrass was developed to forecast winter climate 

impacts on forage crops (van Oijen et al. 2005b). The model is driven by climate data and 

includes a sub model to estimate snow depth (Thorsen and Haugen 2007). The sub model is a 

process based model using a set of different equations to describe the physical dynamic of the 

system, taking air temperature and precipitation as input to the model containing eight 

parameters. The model was denoted 

 

where  is the observed snow depth at time t,  is the corresponding model output at 

time t, taking the state variables  and parameter set θ as inputs, and is model errors 

reflecting both measurement error and model inadequacy. Further, the error were assumed 

independent Gaussian distributed 

 

where σt is the standard deviation of model error at time t, assumed independent.  

The snow dept data used to calibrate and test the model was collected daily data from Kise in 

Norway, situated 60.77N, 10.8E, 127 meters above sea level in the time period 1988 to 2003. 
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The first 10 years were used for model development (training data), and the remaining 5 years 

for model assessment (test data). 

 

The Bayesian approach 

The posterior distribution of interest ( ) was found as a combination of prior parameter 

knowledge ( ) and new incorporated information through the likelihood function ( ) 

of the measurement data, according to Bayes theorem (Berger 1985) 

 

Exact calculations were impossible because of integral problems in high dimensional spaces, 

and the Markov chain Monte Carlo (MCMC) algorithm random walk Metropolis (Liu 2001) 

was therefore used. The algorithm was implemented in Matlab. It is an iterative algorithm that 

starts with an initial guessed parameter set θ0. A proposal parameter set θ’ is generated, from 

the proposal distribution, which is an independent and identically distributed function 

describing the step length added to the current state. The acceptance rate  

 (4) 

is calculated and the proposed parameter set accepted ( ) if the acceptance rate α 

(Equation 4) is greater of equal to a random number simulated from the standard uniform 

distribution. Otherwise, the previous parameter set is repeated ( ). 

The proposal distribution controls the effectiveness of the Metropolis algorithm. It is here 

used as a Gaussian function, centered at the current state and with standard deviations tuned 

by trial and error to give an acceptable acceptance rate between 0.15 and 0.5 (Gilks et al. 

1996). The idea of MCMC is that the resulting Markov chains of the parameters will inn the 

long run converge to the posterior parameter distributions. To detect the state of convergence 

(burn-in), four chains are run in parallel and the scale reduction factor proposed by Gelman 

and Rubin (1992) used. 

The prior parameter distributions represent our knowledge about the parameters before new 

data are incorporated. Usually, the prior distributions are based on existing data, expert 

opinions or literature. If no prior information is available, non informative priors (Jeffrey 

1961) may be used and the inferences will only be affected by the data. Here, the prior  
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Table 1: Upper and lower limits used to construct the prior distributions. Modal values are present for the beta 

distributed prior parameters distributions.  Uniform distributions were used for the rest of the parameters. 

Parameter Lower limit Upper limit Modal value 
Trs  -10 10 0.5 
Tmf -10 10 0.5 

 0 1 - 
ΔKmax 0 10 1.25 
Kmin 0 10 2 
SWrf 0 10 0.01 
ρns 10 250 - 
SWret 0 1 0.1 

 0 1 - 
 0 1 - 

 

distributions used are uniform and beta distributed (Table 1). The upper and lower limits are 

chosen relatively wide according to expert opinions, and the modal values used in the beta 

distributions are based on results by Engseth et al. (2000). 

Through collected data, the likelihood function modifies the prior information into posterior 

parameter distributions. The more experimental data added the greater effects on the posterior 

distribution will the likelihood function have. The prior information remains important if the 

available data provide only indirect information about the parameters of interest, or if the 

sample size is small (Gelman 2002).  We use the likelihood function after some 

simplifications determined by the distribution of the model errors (including both 

measurement error and model inadequacy) according to Rougier (2007). 

 

were T is the number of training data and φ denotes the Gaussian or Sivias’ probability 

density function with given mean and standard deviation (assumed independent).  

 

Gaussian Likelihood 

The original Gaussian probability density distribution (Miller and Miller 1999) used in 

Equation 5 gives the following likelihood function  
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where Mt(θ*|Xt) determines model output at time t using the specific parameter set θ* and 

input variables Xt. 

 

Sivias’ Likelihood 

Sivias’ probability density distribution (Sivia 2006) is constructed to handle outliers in the 

collected data. A variant of Jeffreys’ prior is used to specify a lower boundary of the standard 

deviation. Sivias’ distribution used in Equation 5 gives the following likelihood function  

 

where is the lower bound of the standard deviation and . 

 

The standard deviation 

The covariance matrix was defined diagonal with variances ( ) at the diagonal. With no 

information about the precision of the measurements or the models inadequacy, the standard 

deviations can be chosen in different ways. According to van Oijen et al. (2005a) it is 

appropriate to assume a standard deviation of 30 % of the measured value and a negligible 

model inadequacy. The standard deviation can generally be defined by 

 

where the minimum of 0.1 is included to avoid a standard deviation of zero, and Dt is the 

observed value at time t. To see the effect of the standard deviation, the calculations were 

done when fixing β at 20, 30 and 40 % of the measured value. Also, β was treated as an 

unknown parameter and estimated. Additionally, the standard deviation was estimated as a 

constant 
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Model assessment 

Root Mean Square Error of Prediction (RMSEP) (Hastie et al. 2001) calculates the prediction 

error of a model. It is here defined as an average ( ) over 10.000 parameter sets 

randomly drawn from the Markov chains  

 

where E is the number of parameter sets (ensembles), K is the total number of test data, Dt is 

the observed value at time t and  is estimated model output at time t using 

parameter set e.  

Root Mean Square Deviation (RMSD) (Iizumi et al. 2009) quantifies the uncertainty in model 

outputs derived from the parameters. Here 10.000 model outputs (ensembles) are estimated 

for each day, using parameter sets randomly drawn from the resulting Markov chains.   is 

the model output at time t using parameter set number e,   is an ensemble mean model 

estimate at time t, K is the number of data in the test set and E is the number of ensembles 

used. 

 

Analysis of variance (Montgomery 2005) was used to determine significant differences in 

estimated  and  for the different combinations of likelihood function and 

covariance matrix.  

 

where yij is the response (either  of ) using likelihood function i and covariance 

matrix j, μ is the general effect, Li is the effect of the choice of likelihood function, Cj is the 

effect of the chosen covariance matrix and εij is he error (εij~N(0,σ2)).  
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RESULTS 

Nine combinations of the choice of likelihood function and covariance matrix (Equation 5) 

were used to calibrate the snow depth model. Four Markov chains were run in parallel for 

100.000 iterations and the shrink factor introduced by Gelman and Rubin (1992) detected 

burn-in for all combinations after less than 50.000 iterations. The last 50.000 iterations were 

kept and regarded as samples from the posterior parameter distributions. Summary statistics 

gave point parameter estimates for each combination of likelihood function and covariance 

matrix, found as the parameter set with maximum posterior probability (

) (Berger 1985). 

For all choices, the covariance matrix in the likelihood function was assumed to be diagonal 

(that means no correlations). In six combinations the standard deviations at the diagonal in the 

covariance matrix were assumed fixed and in three of the combinations they were estimated. 

For both the Gaussian and Sivias’ likelihood function they were estimated as a percent of the 

observed value, defined to be at least 0.1 (Equation 8). Additionally for the Gaussian 

likelihood function, the standard deviation was estimated as a constant (Equation 9).  

Histograms of the Markov chains after burn-in were plotted in Fig. 1 and shows small 

estimated quantities for the standard deviations. When using both the Gaussian (Fig. 1a) and 

Sivias’ (Fig. 1b) likelihood function,  the posterior parameter distribution of the percent of the 

observed value become relatively uniform up to approximately 18 % (0.18) for both 

functions, but with a peak between 15 and 20 % for the Gaussian. The maximum posterior 

parameter (MAP) estimates become respectively 15.93 % (0.1593) and 9.87 % (0.0987) for 

the Gaussian and Sivias’ likelihood function. Both estimates become smaller than the fixed 

percents of 20, 30 and 40 % used. The constant standard deviation was only estimated for the 

Gaussian likelihood function (Fig. 1c), and the Markov chain formed approximately a 

Gaussian distribution ( ) for the constant with MAP estimate of 4.33 % 

(0.0433). 

Snow depths were predicted daily in the test period from 1998 to 2003 at Kvithamar for each 

of the nine combination of likelihood function and covariance matrix, when using the MAP 

parameter estimates. For each day in the test period, the largest difference between the nine 

predictions of snow depth was calculated and plotted in Fig.2. The largest differences were of 

about 25 cm, one the winter 1998/1999 and one the winter 2002/2003, both lasted for only a 

few days. Also, a longer period for almost a month the winter 1998/1999 contains larger  
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Fig. 1: Histograms of the posterior parameter chains for the estimated standard deviations (a) as a proportion of 

the observed value using the Gaussian likelihood, (b) as a proportion of the observed value using Sivias’ 

likelihood and (c) as a constant using the Gaussian likelihood. 

 

Fig. 2: The maximum difference in estimated snow depth each day for the test years, caused by using the 

different likelihood versions. 
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differences of approximately 14 cm at its most, and one period the winter 2002/2003, with 

differences at approximately 7 cm at its most, all with relatively fast reducing differences. The 

rest of the test set includes differences of less than 5 cm, and mostly much smaller. 

 

 

 

Fig. 3: Uncertainty in Snow depth estimates caused by using the different likelihood versions (a) the winter 

1998/1999 and (b) the winter 1999/2000. 
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Fig. 3 shows estimated snow depth using the MAP parameter estimates for all nine 

combinations of the likelihood function and covariance matrix calibrated for the winter 

1998/1999 (Fig. 3a) and 1999/2000 (Fig. 3a). The dispersion of the estimates indicates the 

uncertainty of estimated snow depths derived from the choice of combination of likelihood 

function and covariance matrix used. The predictions fitted partly well to the observations, but 

lots of variations in the snow depth observations were not covered by the predictions. The 

differences between observed and predicted snow depth was large compared to the 

uncertainty caused by the choice of likelihood function and covariance matrix used. 

In the two winters, 1998 to 2000 (Fig. 3), a period of approximately one month the first winter 

and two weeks the second winter, respectively, stands out with larger dispersions. In both 

cases, the fixed standard deviations of 30 and 40 % of the observed value using both the 

Gaussian and Sivias’ likelihood function, underestimated snow depth less compared to the 

other combinations. The first high peak in Fig. 2 of more than 25 cm was recognized in Fig. 

3a as a delay in the melting process for the same combinations and additionally for Sivias’ 

likelihood function using a standard deviation of 20 % of the observed value. A closer look at 

the underlying data for the winter 2002/2003 (not plotted), showed that the high peak of more 

than 25 cm this winter was caused by a delay of 4 days in the melting process when using 

Sivias’ likelihood function with 40 % of the observed value as standard deviation, compared 

to the Gaussian likelihood function using a constant standard deviation. The other 

combinations gave predictions in between. Finally, the period of differences of approximately 

7 cm the same winter was caused by a smaller underestimation when using Sivias’ likelihood 

function compared to all other combinations. 

The different predicted snow depths that derived from the nine combinations were assessed 

according to  which indicates the accuracy of model prediction, and according to 

 which indicates the uncertainty of estimated snow depth derived from the parameters 

(Table 2). Analysis of variance was used in a two factor fixed effect model, to detect the 

significance level of the effect of likelihood function and the effect of the covariance matrix 

used in  and . All combinations were included, except for the fixed standard 

deviations that were only run for the Gaussian likelihood function. In a 5 % level of 

significance, a significant effect of the likelihood function (p=0.0147), and a smaller 

insignificant effects of the covariance matrix (p=0.0757) was found according to . 
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Table 2: Calculated root mean square error of prediction ( ) and root mean square deviation ( ) for 

the model output, when calibrated using the different likelihood versions. 

Model version   

Gaussian likelihood   
·Di) 0.0795 0.0118 
·Di) 0.0798 0.0130 
·Di) 0.0809 0.0127 

·Di) 0.0807 0.0127 
 0.0792 0.0169 

Sivias’ likelihood   
·Di) 0.0787 0.0169 
·Di) 0.0792 0.0166 
·Di) 0.0797 0.0160 

·Di) 0.0792 0.0170 
 

According to , a higher significant effect of the likelihood function (p=0.0054), and an 

insignificant effect the covariance matrix (p=0.6238) were found. While Sivias’ likelihood 

function gave significantly smaller prediction errors than the Gaussian, it gave significantly 

larger uncertainty of the estimates derived from the parameters. Interaction effects were not 

included in the two factor model because of limitations in the degrees of freedom. By 

assessing plots of the factors for both responses, any interaction was found. Sivias’ likelihood 

function with a standard deviation of 40 % of the observations gave the smallest prediction 

error while the Gaussian likelihood function with 40 % of the observed value gave the 

smallest uncertainty in the estimates derived from the parameters. 

Histograms of the obtained Markov chains after burn in are plotted in Fig. 4 for two 

parameters (Fig. 4a for the density of fresh snow ( ) and Fig. 4b for the retention capacity 

of snow cover ( )). The plot is three-dimensional, including all nine combinations of 

likelihood function and covariance matrix used. The figure shows how the posterior parameter 

uncertainty changes depending on the combination of likelihood function and covariance 

matrix used. For both parameters, the constant covariance matrix (Equation 9, which was only 

calculated for the Gaussian likelihood function) gave a narrower distribution with a higher 

peak. This indicates a smaller parameter uncertainty derived from the constant covariance 

matrix compared to all other combinations used.   
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Fig. 4: Parameter uncertainty as a histogram for each likelihood version for (a) the density of fresh snow ρns and 

(b) the retention capacity of snow cover SWret. 

 

DISCUSSION AND CONCLISION 

The Bayesian approach was used to calibrate a model simulating snow depths using different 

combinations of likelihood function and covariance matrix. The uncertainty in model output 
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derived from the different combinations of likelihoods was small compared to the prediction 

error. For the five test years, only four periods gave larger than 5 cm differences in estimated 

snow depth, whereas two of them were caused by a delay in the melting process for only one 

and four days. The prediction error was significantly smaller when using Sivias’ likelihood 

function compared to the Gaussian, but the uncertainty in the estimates derived from 

parameters was significantly higher. The effect of the choice of covariance matrix was not 

significant for none of the assessment criteria. Over all the widest likelihood function being 

Sivias’ likelihood function with a standard deviation of 40 % of the observations gave the best 

model fit to the observed data, but, on the other hand one of the largest uncertainties in the 

estimates derived from the parameters. The smallest uncertainty was found for the Gaussian 

likelihood function with a standard deviation of 40 % of the observations. 

The likelihood function is a probability density function conditional on the parameters, 

considered as a function of the second argument with its first argument held fixed. The 

likelihood function was in this paper determined by the distribution of model errors. Since 

model error is not known accurately, only a reasonable quantification was used, where the 

quantification was a thought of how good we believed the model error was. The nine 

combinations used relied differently on the data and Sivias’ likelihood with a standard 

deviation of 40 % of the observed value was the widest function while the Gaussian 

likelihood with a constant standard deviation was the narrowest.    

The searched posterior distribution is a combination of prior knowledge and new incorporated 

information through the likelihood function. Prior information will dominate if the size of the 

collected data is small or if the data only provide indirect information about the parameters. 

Since the likelihood function is not known, our quantification may be either too certain (when 

using a too narrow probability distribution) or too uncertain (when using a too wide 

probability distribution). When using a too widely distributed likelihood function compared to 

the actual distribution of model error, details in the data will disappear and the model will 

only be fitted to the main structure in the data. On the opposite, by using a too narrow 

likelihood distribution, sporadic variation in the data (representing diversity within the 

population) will be treated as detailed information.       

The smallest prediction error was found for the widest likelihood (Sivias’ likelihood with a 

standard deviation of 40 % of the observed value) used. Sivias’ likelihood (which is a wider 

probability distribution than the Gaussian), gave smaller prediction error than the Gaussian. 
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For the fixed standard deviations at 20, 30 and 40 % of the observed value, the prediction 

error decreased with an increased standard deviation. This shows that the prediction error is 

smallest when looking at only the main structure in the data, not focusing on details. This is 

reasonable since the measurements are point values, while the model predicts average snow 

depth in a large homogeneous field. The second smallest prediction error was found for 

Sivias’ likelihood both when estimating the standard deviation as percent of the observed 

values and fixed as 30 % of the observed value, and for the Gaussian when estimating the 

standard deviation as a constant. The latter choice was the narrowest likelihood version used, 

but also the only one not assuming the standard deviation to be a percent of the observations. 

It is reasonable to believe that the standard deviation increases as the observed snow depth 

measurements increases, but maybe the increase is not linear with the measurements. 

The Gaussian likelihood function gave significantly smaller uncertainty compared to Sivias’ 

likelihood, but the effect of the choice of the standard deviation was insignificant. When 

fixing a parameter that is not known accurately, the parameter uncertainty will be 

underestimated (Gelman et al. 1996a). The quantified output uncertainty derived from the 

parameters ( ) calculated from the fixed and the estimated standard deviations are 

therefore not comparable. Among the fixed standard deviations,  seemed to increase 

with an increased standard deviation, except for the Gaussian likelihood with a standard 

deviation of 40 % of the observed value, which happened to have the all over smallest .    

The structure of the likelihood including its covariance matrix had an impact on the length of 

the trial and error period to obtain an acceptable proposal distribution in order to reach 

convergence for the chains. By increasing the dimension of the parameter space, convergence 

was harder to reach. Caused by the difficulty of reaching convergence within a limited 

amount of time, the posterior distribution was not found for the combination of Sivias’ 

likelihood and the constant standard deviation. Also, we experienced that the wider likelihood 

functions needed shorter periods of trial and error. One explanation of this can be the fact that 

the data were very uncertain or that the details in the data were variations that we would not 

fit the model to.  

In this study we have seen that the choice of likelihood did affect the model results, but to a 

very small extent that much. The smallest prediction error obtained was 2.7 % smaller than 

the highest. All combinations of likelihood function and covariance matrix gave results close 

to each other and in both longer periods with higher differences the wider likelihood versions 



16 
 

underestimated least. The effect of the covariance matrix was not significant. When 

estimating the covariance matrix, convergence of the Markov chains were harder to reach and 

longer periods of trial and error was needed. At the same time, the effect on the prediction 

error and the uncertainty in the estimates caused by the parameters were small. Sivias’ 

likelihood gave significant improvements in and was therefore preferred compared to 

the Gaussian in this case, although it also increased  significantly.  

Based on this study we would prefer using wide likelihood functions with wide fixed standard 

deviations instead of estimating it. But it is important to notice that this was only based on one 

case and similar studies should have been repeated on different cases to generalize the 

conclusion. 
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