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SUMMARY  

Land cover in the Lake Nakuru drainage basin and Eastern Mau Forest Reserve has been changing at 

different spatial and temporal scales. The changes, especially forest conversion, have interfered with 

the provision of ecosystem services, e.g., carbon sequestration. To mitigate the adverse impacts of 

the land cover changes and determine the future landscape scenario for environmental sustainability, 

reliable, consistent, multi-temporal, and spatially-explicit information on the state of land cover and 

other biophysical variables (e.g., soil properties, biodiversity) is necessary. Unfortunately, the 

archives of such information for this specific area, and Kenya in general, are poor. 

This research aimed to fill the existing biophysical information gap and, thereby, contribute 

knowledge to support policy formulation for sustainable land management. The specific objectives 

were to: (i) detect, quantify, and map the land cover changes that had occurred over time, (ii) analyse 

the linkages between the land cover change processes and the geophysical and socio-economic 

factors that determine them, (iii) assess the effects of forest-cropland conversion on soil organic 

carbon (SOC) and total nitrogen (TN) stocks in the Eastern Mau Forest Reserve, and (iv) model and 

map the spatial distribution of SOC and TN stocks in the Eastern Mau Forest Reserve.  

The magnitudes, rates, nature, and spatial patterns of land cover changes from 1973 to 2011 

were derived through integration of field, satellite remote sensing, and GIS methods. Results 

revealed the transformation from natural to human-dominated landscape that occurred within the 38-

year period. Forests-shrublands dominated the landscape from 1973 to 2000, but by 2011, croplands 

had become dominant. The important land cover change processes were conversion of native 

systems (forests-shrublands and grasslands) and expansion of croplands and built-up lands. Forest-

shrublands, grasslands, and croplands had higher magnitudes of change than the other land cover 

types. The hotspots of forest-shrubland conversion were spread in the mid-regions and northern side 

of Lake Nakuru between 1973 and 1985, on the western side between 1985 and 2000, and around 

the Lake Nakuru National Park and on the western and southern parts between 2000 and 2011. 

Built-up lands were the most dynamic given their high annual average rates of change; for example, 

between 1985 and 2000, their annual average rate of change was 17%. 

Moreover, the linkages between the geophysical and socio-economic determinants of the 

important land cover change processes were explored using binary logistic regression models and 

auxiliary data in a spatially-explicit framework. Results indicated that the significance, magnitude, 

and direction of the determining factors varied with time, as well as the nature of land cover change 

process. For example, between 1985 and 2000, rainfall, soil pH, soil cation exchange capacity 

(CEC), topographic wetness index (TWI), aspect, curvature, distance to road, and distance to town 

partly explained the occurrence of forest-shrubland conversion. But between 2000 and 2011, the 

foregoing factors, in addition to slope and distance to river, and with the exception of TWI, were the 

significant determinants of the observed forest-cropland conversions.  

To establish the response of soils to the changing landscape in the Eastern Mau Forest 

Reserve, variations of SOC and TN stocks under natural forests (NF), plantation forests (PF), 

bamboo forests (BF), and croplands established after forest conversion (i.e., NF2C, PF2C, and 

BF2C) were assessed using a combination of field, laboratory, spatial, and linear mixed methods. 

Results showed that converting forests to croplands had reduced SOC and TN concentrations and 

stocks. For example, both SOC and TN stocks decreased significantly by about 51% in the surface 

and about 42% in the subsurface soils after conversion of NF. In the surface soils, the highest SOC 

and TN concentrations were in NF and the lowest in NF2C, while in the subsurface soils, the highest 

concentrations were in NF and the lowest in PF2C. The SOC and TN concentrations and stocks also 

decreased significantly as the soil depth increased. 
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Furthermore, the spatially-distributed patterns of SOC and TN stocks were modelled and 

mapped using field data, auxiliary spatial data, and four spatial statistical methods; namely, 

geographically weighted regression, geographically weighted regression-kriging, multiple linear 

regression, and multiple linear regression-kriging. Elevation, silt content, TN concentration, and 

Landsat 8 Operational Land Imager band 11 (proxy for land surface temperature) explained 72% of 

the variability in SOC stocks, while the same factors (excluding silt content) explained 71% of the 

variability in TN stocks. Soil properties, particularly TN and SOC concentrations, were more 

important than the other environmental factors in controlling the dynamics of SOC and TN stocks, 

respectively. The highest estimates of SOC and TN stocks (hotspots) were on the western and north-

western parts where forests dominated, while the lowest estimates (coldspots) were on the eastern 

side where croplands had been established. Forests stored the highest amounts of SOC and TN (3.78 

Tg C and 0.38 Tg N) followed by croplands (2.46 Tg C and 0.25 Tg N), and grasslands (0.57 Tg C 

and 0.06 Tg N). Overall, the Eastern Mau Forest Reserve stored about 6.81 Tg C and 0.69 Tg N.  

The findings and outputs of this research enhance our understanding of human actions and 

their consequences in the study area. They provide a good base of spatially-explicit biophysical 

information to monitor land resources and formulate spatially-targeted policies for sustainable land 

management. The elaborate field sampling, satellite remote sensing, GIS, and (spatial) statistical 

approaches applied in the research can also be replicated in other data-poor environments in Eastern 

Africa to cost-effectively derive multi-purpose biophysical information. In a broader context, the 

resultant land cover and soil databases can support the activities of other programs, such as REDD+, 

FAO land use-land cover, and ISRIC-World Soil Information programs, to mention but a few.  

In conclusion, spatially-targeted and time-specific policies that will restore and conserve the 

natural ecosystems, as well as enhance agricultural productivity for environmental sustainability and 

socio-economic well-being are recommended. Additionally, adoption of best management practices 

(BMPs), especially agro-forestry practices where fast-growing, highly productive, deep-rooted, and 

N-fixing trees are planted, will be beneficial for mitigating C and N losses in the croplands. For the 

forest soils, long-term storage of C and N will require proper management and protection of the 

forests from further deforestation and degradation.  

 

Keywords: Land cover change • land cover change modelling • soil organic carbon • total 

nitrogen • soil landscape modelling • remote sensing • GIS • Eastern Mau • Lake Nakuru  
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SAMMENDRAG 

Fordelingen av arealtyper (land cover) i nedbørfeltet til Lake Nakuru og i skogsreservatet Eastern 

Mau Forest Reserve har vært i stadig endring, i varierende omfang, tidsmessig så vel som romlig. 

Endringene, spesielt overgang fra en type skog til annen, har virket inn på tilgjengeligheten av ulike 

økosystemtjenester, som for eksempel karbonfangst. For å dempe den uheldige virkningen av 

endringer i arealtype og samtidig legge et grunnlag for en fremtidig miljømessig bærekraftig 

landskapsutvikling, vil det være avgjørende viktig å ha tilgang til pålitelig, konsistent, multitemporal 

og stedfestet informasjon om arealtypenes tilstand og tilknyttede biofysiske variable, som for 

eksempel jordegenskaper og biologisk mangfold. Uheldigvis er slik informasjon svært mangelfull, i 

særdeleshet hva dette området angår, og i Kenya i sin alminnelighet. 

 Formålet med dette forskningsarbeidet har vært å bøte på den eksisterende mangel på 

biofysisk relatert informasjon, for dermed å kunne bidra med kunnskap til støtte for politiske 

beslutninger knyttet til bærekraftig arealforvaltning. De mer detaljerte målsettingene var: (i) 

kartlegging, overvåking og tallfesting av arealtype-endringer som hadde funnet sted over tid; (ii) 

analyse av koblingene mellom arealtype-endringsprosessene og de geofysiske og sosioøkonomiske 

faktorene som bestemte disse; (iii) vurdering av hvilken virkning overgang fra skog til dyrket mark 

har hatt på organisk karbon i jord - (SOC) og totalnitrogenmengden (TN) i skogsreservatet Eastern 

Mau Forest Reserve; og (iv): modellering av den romlige fordeling og kartlegging av organisk 

karbon i jord - og totalnitrogenmengden. 

 Omfang, art, grad av raskhet og romlig fordelingsmønster til endringene i arealtype fra 1973 

til 2011 ble funnet ved å benytte en kombinasjon av GIS relaterte metoder, basert på feltarbeid, 

satellittfjernmåling og andre typer stedfestede data. Resultatet viste en tydelig endring fra et naturlig 

til et landskap dominert av menneskelig aktivitet i løpet av det 38 år lange tidsrommet. Mer presist 

kan det sies at skog og krattskog dominerte landskapet fra 1973 til 2000, mens det fra 2011 var 

dyrket mark som var den dominerende arealtype. De viktigste formene for endringer var reduksjon 

av de opprinnelige arealtypene (skog, krattskog og grasdekke) og utvidelse av dyrket mark og 

bebygde områder. Graden av endring var større for skog, krattskog, grasdekke og dyrket mark enn 

for de andre arealdekketypene. Områder der reduksjon av skog og krattskog i særlig grad fant sted 

(hotspots) var å finne spredt rundt i mellomregionene samt nord for Nakurusjøen mellom 1973 og 

1985, på vestsiden mellom 1985 og 2000, og omkring Lake Nakuru nasjonalpark og i de vestlige og 

sørlige delene av området mellom 2000 og 2011. Med sin høye årlige grad av endring, fremsto 

arealtypen bebygde områder som mest dynamisk, eksempelvis var den årlige graden av endring 17% 

mellom 1985 og 2000. 

 I tillegg ble sammenhengen mellom naturgeografiske og sosioøkonomiske faktorer og de 

viktigste arealtypeendringsprosessene undersøkt med basis i et klart definert romlig rammeverk ved 

bruk av logistisk regresjon og tilleggsdata. Resultatene viste at betydningen, størrelsen og 

virkningsretningen til de bestemmende faktorene varierte både over tid og i forhold til arten av 

arealtypeendringsprosess. Som eksempel kan nevnes at nedbør, jords-pH, kationbyttekapasitet 

(CEC), topografisk fuktighetsindeks (TWI), eksposisjon, helningsform og avstand til vei bare delvis 

forklarte reduksjonen av skog og krattskog mellom 1985 og 2000. Mellom 2000 og 2011 har 

imidlertid de foregående faktorene med unntak av TWI, i tillegg til helningsgrad og avstand til elv 

vært de mest signifikante forklaringsvariablene for den observerte overgangen fra skog og krattskog 

til dyrket mark. 

 De jordrelaterte virkningene av arealtypeendringer, ble nærmere undersøkt.  SOC og TN i 

arealkategoriene naturlig skog (NF), plantasjeskog (PF), bambusskog (BF) og de variantene av 

dyrket mark som var etablert etter overgang fra skog (dvs. NF2C, PF2C og BF2C) i Eastern Mau 

Forest Reserve ble bestemt. Felt- og laboratorie-arbeid i kombinasjon med romlige statistiske 
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metoder ble benyttet til dette. Resultatene viste at endringen av skog til dyrket mark hadde redusert 

mengden og konsentrasjonen av SOC og TN. For eksempel avtok mengden SOC og TN signifikant 

med 51% for hver av variablene på overflaten og med rundt 42% for hver av variablene i 

undergrunnslaget etter endring av NF. På overflaten var de høyeste konsentrasjonene av SOC og TN 

i NF, og de laveste i NF2C, mens de i undergrunnslaget var høyest i NF og lavest i PF2C. Mengden 

og konsentrasjonen av SOC og TN avtok signifikant med økt jorddybde. 

 Videre ble det romlige fordelingsmønsteret til SOC og TN modellert og kartlagt ved bruk av 

feltdata, romlige tilleggsdata og følgende fire romlige statistiske metoder; geografisk vektet 

regresjon, geografisk vektet regresjonskriging, multippel lineær regresjon og multippel lineær 

regresjonskriging. Terrenghøyde, siltinnhold, totalnitrogenkonsentrasjon og Landsat 8 Operational 

Land Imager band 11 (båndet for avledning av overflatetemperatur) forklarte 72% av variasjonen i 

mengden av lagret SOC, mens de samme faktorer med unntak av siltinnhold forklarte 71% av 

variasjonen i mengden av lagret TN. Konsentrasjonen av SOC og TN var viktigere for å forklare den 

romlige variasjonen av henholdsvis lagret SOC og lagret TN, enn de andre miljøfaktorene. De 

høyeste estimatene for lagret SOC og TN var i de vestlige og nordvestlige delene av området som er 

dominert av skog, mens de laveste estimatene var i øst der områder med dyrket mark hadde blitt 

opprettet. Skog lagret den største mengden SOC og TN (3,70 Tg C og 0,38 Tg N) etterfulgt av 

dyrket mark (2,47 Tg C og 0,25 Tg N) og gresslandskap (0,57 Tg C og 0,06 Tg N). Sammenlagt 

lagret Eastern Mau Forest Reserve tilnærmelsesvis 6,84 Tg C og 0,69 Tg N. 

 Funnene og den tilhørende dokumentasjonen fra dette forskningsarbeidet er med på å øke 

vår forståelse av hvilke konsekvenser menneskelig inngripen vil ha i studieområdet. De gir et godt 

romlig eksplisitt biogeografisk informasjonsgrunnlag til støtte for overvåking av arealressurser og 

stedsrettede politiske beslutninger for bærekraftig arealforvaltning. Den vitenskapelige tilnærmingen 

som er anvendt i dette arbeidet kan også benyttes som et verktøy i andre områder med mangelfullt 

datagrunnlag for å skaffe til veie relevant informasjon, anvendbar i flere sammenhenger, på en 

kostnadseffektiv måte. I en større sammenheng vil de resulterende arealtype- og jorddatabasene 

kunne være til støtte for aktiviteter i andre programmer, som for eksempel programmene REDD+, 

FAO land use – land cover og ISRIC – World Soil Information. 

 Til slutt gis det en anbefaling om at det formuleres og iverksettes stedsrettede og 

tidsspesifikke politiske beslutninger for gjenoppretting og konservering av naturlige økosystemer i 

tillegg til at det tas sikte på å oppnå økt miljømessig bærekraftig landbruksproduktivitet og 

velfungerende sosioøkonomiske forhold. Bruk av best mulig forvaltningspraksis vil, særlig 

introduksjon av rasktvoksende, høyproduktive, nitrogensamlende trær med dype røtter (dvs. 

landbruk integrert med produksjon av skog – såkalt agroforestry), være fordelaktig for å minske 

karbon- og nitrogentapet i områdene med dyrket mark. For jord i skogsområdene, vil 

langtidslagring av karbon og nitrogen kreve riktig forvaltning og vern av skogen mot ytterligere 

avskoging og forfall. 

 

Nøkkelord: Arealtypeendringer • modellering av arealtypeendringer • organisk karbon i jord • 

totalnitrogen • jord landskapsmodellering • fjernmåling • GIS • Eastern Mau • Lake Nakuru 
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1.0 BACKGROUND AND STATUS OF KNOWLEDGE 

1.1 Land cover and land cover changes  

Land cover, defined as the biophysical attributes of the Earth surface and immediate 

subsurface (Lambin et al., 2003), is a key determinant of the state of physical and human 

environments. It is quite distinct from land use, which refers to the manipulation of these 

attributes by humans to meet different needs; for example, agriculture, ranching, and 

grazing. This implies that land use affects land cover, and the attendant land cover changes 

affect land use. It also suggests that land cover links the physical and human environments 

by providing various beneficial goods and services, so-called ecosystem services, to 

humans. The ecosystem services per se include: provisioning services (e.g., food, water, 

fuel, fibre), regulating services (e.g., climate regulation, disease control), cultural services 

(e.g., spiritual and aesthetic benefits), and supporting services (e.g., nutrient cycling) 

(Millennium Ecosystems Assessment (MEA), 2005). These goods and services are vital for 

human survival and general well-being (Fig. 1).  

 

Fig. 1: Ecosystem services and their linkages to human well-being. (Source: MEA, 2005). 

 

Land cover varies in space and time. Human manipulations (i.e., land uses) and 

natural processes (e.g., climatic variability) have produced shifts on the Earth’s surface for 

centuries. However, the current rates and magnitudes of land cover changes are 

unprecedented and drive global environmental changes owing to the rapid demographic 

changes and technological advances. Agricultural activities have expanded into the native 
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systems (forests, savannas, and steppes) following the increasing demands for food, fuel, 

and fibre by the rising human population. The land cover changes can either be complete 

replacements of one cover type by another (land cover conversions), or subtle changes that 

affect the character of the land cover without changing its overall classification (land cover 

modifications) (Lambin et al., 2003). Further, the changes can either be gradual and 

localized (progressive), or rapid and abrupt (episodic) due to the interactions between land 

use and climatic factors. The patterns of land cover change are often a culmination of 

complex interactions between the behavioural and structural factors in specific spatial and 

temporal contexts (Briassoulis, 2000; Lambin et al., 2003; Overmars and Verburg, 2005). 

Thus, an understanding of how these factors influence land use decision-making within 

these contexts is important to resolve land cover change issues. Of equal importance is the 

knowledge of the state of land cover, changes that occur, where and when they occur, and 

the rates at which they occur (Lambin, 1997). Human actions that originate from the 

intended land use and alter land cover are known as proximate drivers (e.g., agricultural 

expansion, deforestation), while the forces that underpin these actions are referred to as 

underlying drivers (e.g., population dynamics, policies, climate variability). The former 

mainly operate at the local level, while the latter operate diffusely at the regional and global 

levels. Environmental impacts of land cover changes and socio-ecological responses to 

these impacts may feedback to amplify, or suppress the driving factors leading to new 

changes (Geist and Lambin, 2001). Figure 2 illustrates this conceptualization of the links 

between the proximate drivers, underlying drivers, land-use, and land-cover change.  

 

Fig. 2: Linkages between human activities, land use, and land cover. (Source: Geist and Lambin, 2001, after 

Turner et al., 1993). 
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1.1.1 Impacts of land cover changes  

The impacts of land cover changes are severe, and have been felt globally because of the 

role of land cover on the Earth system’s processes. Some of the impacts include: loss of 

biodiversity, desertification, soil degradation (leading to low productivity, food insecurity, 

and poverty), pollution through biomass burning and agro-chemicals (leading to health 

problems and acidification of precipitation), climatic changes through modification of 

surface albedo and carbon (C) sources, and hydrological changes through alteration of the 

evapotranspiration regime. Land use and land cover change (LULCC) has been an item for 

assessment and action on the agenda of several global environmental change forums over 

the last few decades because of these impacts. For example, calls for substantive studies on 

land use changes were made at the Conference on Human Environment held in Stockholm 

in 1972, as well as at the United Nations Conference on Environment and Development 

(UNCED) in 1992 (Fan et al., 2007). In 1993, the International Geosphere and Biosphere 

Programme (IGBP) and International Human Dimension Programme (IHDP) constituted a 

working group to define the research agenda and promote LULCC research. This working 

group suggested three core areas for LULCC research; namely, situation assessment, 

modelling and projecting, and conceptual scaling. The famous Kyoto Protocol and United 

Nation Framework Convention on Climate Change (UNFCCC) also embraced Land Use, 

Land Use Change, and Forestry (LULUCF) activities among the measures to mitigate 

climate change by the Parties. 

  

1.1.1.1  Impacts of land cover changes on soils 

Soil is a valuable natural resource that sustains life on Earth by providing various ecosystem 

services. For example, it offers a physical matrix, chemical environment, and biological 

setting for producing food, fibre, fodder, renewable energy, and raw materials, as well as for 

regulating the exchange of material, energy, water, and gas within the lithosphere–

hydrosphere–biosphere–atmosphere system (Osman, 2014). The rapid LULCC, especially 

conversion of native- to agro-ecosystems, due to the rising global population is straining the 

soils. Agricultural uses of soil alter its physical, chemical, and biological properties leading 

to soil degradation. This is manifested through erosion, acidification, salinization, nutrient 

and organic matter depletion, compaction, crusting, hardsetting, and decline in soil 

biodiversity, among others. Such alterations further interfere with the composition and 

functions of ecosystems. In the face of climate change, research spotlight has been on the 

impacts of LULCC on soil organic carbon (SOC) storage. The rationale for this is that the 
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world’s soils contain about 1500 Pg C (1 Pg=10
15

g) to 1m depth, which is twice the amount 

of C in the atmospheric (750 Pg C) pool and almost three times the amount in the biotic 

pool (610 Pg C) (Lal, 2004; Smith, 2004, 2008). Thus, even slight changes in SOC pool can 

have repercussions on the global climate and biogeochemical cycles. Many studies have 

reported that converting native systems to croplands diminishes SOC pool (Brown and 

Lugo, 1990; Murty et al., 2002; Osher et al., 2003; Braimoh and Vlek, 2004; Evrendilek et 

al., 2004; Houghton and Goodale, 2004; Powers, 2004; Lemenih et al., 2005; Yimer et al., 

2007; Eaton et al., 2008; Don et al., 2011; Girmay and Singh, 2012; Muñoz-Rojas et al., 

2012; Wiesmeier et al., 2012; Demessie et al., 2013; Jafarian and Kavian, 2013). This is 

ascribed to disruption of the balance between the inputs of C through litterfall, dead roots, 

belowground biomass, and root exudates, and the outputs through leaching, decomposition, 

and erosion in the soil system (Detwiler, 1986; Eaton et al, 2008). 

 

1.1.2 Remote sensing of land cover and land cover changes  

The global concern about the impacts of land cover changes has seen the execution of 

numerous studies with a view to understanding the dynamics and trends of land cover 

changes, processes that drive them, impacts on Earth systems, as well as the future 

trajectories. This has largely comprised characterization of the biophysical cover of the 

Earth’s surface over time to establish what changes occur, where and when they occur, and 

the rates at which they occur. Remote sensing, which is "... the science and art of obtaining 

information about an object, area, or phenomenon through the analysis of data acquired by a 

device that is not in contact with the object, area, or phenomena" (Lillesand et al., 2008, 

p.1), has been instrumental in this respect since the launch of the first Earth Resources 

Technology Satellite (ERTS-1 or Landsat 1) in 1972 for Earth observation. Thereafter, 

many other satellites (e.g., ENVISAT, Terra, SPOT, IRS, EOS) with different sensors (e.g., 

TM, ETM+, OLI, LISS, MODIS, MERIS, VGT, HRV, HRG, HRVIR, ASTER, AVHRR, 

MISR, Hyperion) have been launched (Rogan and Chen, 2003). These provide improved 

data in terms of spatial, spectral, and radiometric resolutions. Essentially, when 

electromagnetic radiation (EMR) from an energy source reaches the Earth’s surface, it is 

reflected, transmitted, or absorbed depending on the properties of the surface features. 

Remote sensors aboard aerial and space-borne platforms detect and record the emitted or 

reflected EMR, which is processed to form remotely-sensed imagery. In the ideal, each 

feature on the Earth’s surface has a unique spectral signature (spectral response over a range 

of wavelengths), which permits its clear discrimination on the remotely-sensed imagery.  
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There has been a growing application of remote sensing in LULCC research because 

it offers synoptic view and inexpensive, detailed, consistent, multi-date, quantitative, 

spatially-explicit, and repetitive Earth’s surface data, which is compatible with geographic 

information systems (GIS). Remote sensing systems also allow processing of large 

quantities of multi-temporal, multi-resolution, and multi-spectral data, as well as multi-

sensor data fusion (Lu et al., 2004). Over the last two decades, a number of global and 

regional land cover mapping projects have been successfully implemented using remote 

sensing and GIS technologies, including, inter alia, the GLOBCOVER 2005, Global Land 

Cover 2000 Project, IGBP Global Land Cover Mapping Project 1997, GeoCover LC, FAO 

Africover Land Cover Mapping Project 2004, FAO Asiacover Land Cover Mapping Project, 

and CORINE Land Cover project of the European Union countries.  

The substantial advances in development of algorithms for discriminating land cover 

and detecting changes on remotely-sensed imagery have also given impetus to the growing 

popularity of remote sensing in LULCC research. Algorithm development is still an active 

area of research (Lu et al., 2014). The image classification algorithms that have been 

developed and applied in LULCC research so far include: parametric per-pixel classifiers 

(e.g., maximum likelihood), non-parametric per-pixel classifiers (e.g., artificial neural 

networks, support vector machine, expert system, decision trees), sub-pixel classifiers (e.g., 

spectral mixture analysis, fuzzy-set), object-oriented classifiers, GIS-based per-field 

classifiers, and contextual classifiers (Lu and Weng, 2007). Similarly, the change detection 

algorithms that have been developed and used in LULCC research vary from simple and 

straightforward ones based on spectral classification of the input remotely-sensed data (e.g., 

post-classification comparison, direct multi-date classification) to complex ones based on 

radiometric changes between the input remotely-sensed data (e.g., principal component 

analysis, change vector analysis, multi-dimensional feature space analysis, temporal 

trajectory analysis, image differencing, vegetation index differencing, image regression, 

image ratioing, background substitution, artificial neural networks, Gramm-Schimdt, chi-

square and bi-temporal linear data transformations, Li-Strahler reflectance models, spectral 

mixture models, biophysical parameter estimation models). These algorithms find their best 

description in Singh (1989), Mas (1999), Coppin et al. (2004), Lu et al. (2004), Chen et al. 

(2012), and Hussain et al. (2013). Since the contexts of landscape changes are diverse and 

complex, selection of appropriate satellite imagery, imagery acquisition dates, image 

classification and change detection schemes and algorithms, as well as the analyst’s skills 

and knowledge of the area are important for successful change analyses.  
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1.1.3 Modelling of land cover changes and soil landscapes  

Mitigation of LULCC impacts demands, not only, the characterization of land cover 

changes, but also the appreciation of the interactions between the biogeophysical and socio-

economic factors, which operate at different spatial and temporal scales resulting in the 

changes (Overmars and Verburg, 2005). However, the interactions are functionally and 

structurally complex; for example, they involve multiple factors that are highly interrelated 

and vary in space and time. Such complexities can limit the understanding of the 

interactions. There are various approaches to complexity. One approach views complexity 

of human-nature systems as the result of a small number of controlling processes, and not 

random association of a large number of interacting factors (Holling, 2001). That is, the 

system’s nature can be captured and described by single key variables since most of the 

system’s features tend to shift based on a small set of key state variables.  

In LULCC research, (spatial) models are pivotal tools for unravelling the complexity 

of the driving factors, as well as for projecting the future evolution of the patterns of 

LULCC. The models use artificial representations of the interactions (i.e., simple and easily 

interpreted proxies) within the land use-land cover system to explore and understand its 

dynamics and possible futures (Verburg et al., 2006). The artificial representations of the 

interactions are constantly refined as deeper insights into the organization and functioning 

of land use-land cover systems is gained. Modelling reveals gaps in knowledge; for 

example, when important LULCC mechanisms in an area, which could not be observed in 

the field, are detected through analysis of the sensitivity of land cover patterns to variations 

in driving factors. The findings may also lead to new insights, guide further analysis of 

LULCC processes, or formalize knowledge (Verburg et al., 2006).   

Over time, several modelling approaches have emerged in LULCC research thanks 

to the utility of models in understanding the human-nature systems. These approaches have 

been classified variously by scholars according to the underlying theories, processes being 

studied, techniques applied, and purpose of the models, among others. Based on the 

techniques applied, Briassoulis (2000), Lambin et al. (2000), and Heistermann et al. (2006) 

categorized LULCC models as: (i) empirical-statistical models, which derive quantitative 

relationships between the observed land cover changes and spatial variables using 

multivariate statistics (e.g., logistic regression, CLUE models), (ii) stochastic simulation 

models, which describe stochastically processes that move in a sequence of steps through a 

set of states (e.g., Markov chain models), (iii) optimisation (economic) models, which apply 

optimisation techniques (e.g., linear programming, general equilibrium model) for optimal 
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allocation of land  resources (e.g., GTAPE-L, GTAPEM), (iv) dynamic (process-based) 

simulation models, which simulate the biophysical and socio-economic processes that 

produce the patterns of LULCC by, systematically, reducing complex ecosystems into a 

small number of differential equations (e.g., SALU model), and (v) integrated (hybrid) 

models, which couple the best elements of the existing models in the most appropriate way 

to answer specific questions (e.g., land use choice module that links IFPSIM and EPIC 

models, IMAGE, Integrated Model to Predict European Land Use (IMPEL)).  

 Besides the human-nature systems, numerical tools have also been instrumental in 

analysing soil-landscape interactions and deriving spatially-exhaustive information on soil 

functional properties (e.g., C and N stocks) to assess, monitor, and manage ecosystems. This 

is the essence of digital soil modelling and mapping (DSMM), which has been an active 

research front since the late 1990s. In DSMM, the variability of a target soil property is 

explained by its relationships with soil-forming factors, such as topography, climate, land 

use, vegetation, and soil type. This is underpinned by Jenny’s (1941) seminal work, which 

considered soil development as a function of climate (c), organisms (o), relief (r), parent 

material (p), and time (a). The function was later expanded by McBratney et al. (2003) to 

include soil properties (s) and space (n) under the well-known scorpan framework. The 

array of statistical, geostatistical, and machine learning tools that have been used in DSMM 

thus far include: multiple linear regression (Meersmans et al., 2008), partial least square 

regression (Amare et al., 2013), generalized linear models (Yang et al., 2008), linear mixed 

models (Doetterl et al., 2013; Karunaratne et al., 2014), geographically weighted regression 

(Mishra et al., 2010; Kumar et al., 2013), kriging (Cambule et al., 2014), regression-kriging
1
 

(Hengl et al., 2004, 2007; Kumar et al., 2012; Dorji et al., 2014; Martin et al., 2014), 

artificial neural networks (Malone et al., 2009; Li et al., 2013; Dai et al., 2014), boosted 

regression trees (Martin et al., 2011), random forests (Grimm et al., 2008), support vector 

regression (Ballabio, 2009), and rule-based models (Lacoste et al., 2014). The interested 

reader is referred to McKenzie and Ryan (1999), McBratney et al. (2003), Scull et al. 

(2003), and Grunwald (2009) for detailed discussions of DSMM.  

 

1.2 Land cover changes in Lake Nakuru drainage basin and Eastern Mau Forest Reserve  

Land cover has changed rapidly in the Lake Nakuru drainage basin and Eastern Mau Forest 

Reserve, since the pre-colonial era to date. Before the British settlement, the area was barely 

                                                           
1
 This includes a combination of any regression-based technique with ordinary kriging.   
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populated and dominated by natural vegetation and wildlife (Krupnik, 2004; Odada, 2006). 

Indigenous trees species characterized the Eastern Mau forest on the eastern slopes of Mau 

escarpment, Eburru forest in the south, Menengai forest in the north, and Dundori (Bahati) 

forest in the north-east. The Ogieks who were hunter-gatherers and bee keepers inhabited 

parts of Eastern Mau forest, while shifting cultivators and pastoralists occupied the valley 

floors and grasslands. By 1900, the area was firmly under the British, who were interested 

in extracting timber from the forests and settling in the fertile lands. Exploitation of forest 

resources intensified as demand on European colonies to supply raw materials (e.g., wood) 

during World War I increased. In areas where indigenous trees were felled, fast-growing, 

exotic tree species were replanted to meet the rising industrial and domestic demand for 

wood. To sustain this, the shamba system was introduced. This system allowed the local 

farmers to grow food crops in small plots where trees had been felled and, simultaneously, 

plant and nurture tree seedlings for a specific period of time.  

After independence in 1963, felling of trees was mainly undertaken by large timber 

enterprises (e.g., Timsales Ltd). During this time until the early 1980s, there was pressure on 

the government to allocate land to the landless people, which led to the establishment of 

several resettlement schemes (i.e., Keriri, Gichobo, Naishi, and Bagaria) on the large-scale 

farms formerly owned by the white settlers. The large-scale farms were divided into smaller 

units and allocated to individuals; hence, the proliferation of small-scale farms in the area. 

Demand for land increased as the population expanded in the 1980s and 1990s resulting in 

illegal encroachments and loggings in the adjacent indigenous forests for settlement, 

cultivation, and fuel. The UNEP (2009) reported that 47% of the Lake Nakuru drainage 

basin was under forest and natural vegetation in 1970, but between 1973 and 2003, 49% of 

these had been cleared. Baldyga et al. (2007) also found that between 1986 and 2003, one-

fifth of the forests in the upper reaches of the Njoro River watershed had been lost.  

The ill-advised political decision made in 1994 (and legitimized in 2001) to excise 

353 km
2
 of the Eastern Mau Forest Reserve (Odada, 2006) partly explains the loss of 

forests. In theory, the government exerted powers provided by the Forest Act 1942 

(Cap.385) to excise part of the forest and resettle about 3,000 Ogiek families that dwelt in 

the indigenous forests, and victims of ethnic clashes that occurred in Molo, Likia, Mauche, 

and Njoro in the 1990s (Government of Kenya, 2009). But in practice, patronage politics 

ensured that most of the people who secured land in Mariashoni, Nessuiet, Teret, Likia, 

Baraget, and Sururu forests were others who came from Koibatek, Baringo, Bomet, 

Kericho, Bureti, and Transmara districts. Consequently, by 1997, almost 50% of the Eastern 
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Mau Forest Reserve had undergone deforestation and degradation (Fig. 3), and over 30,000 

people had migrated to the area (Krupnik, 2004; Odada, 2006). The Lake Nakuru drainage 

basin (including the Eastern Mau Forest Reserve) has also experienced rapid urban growth 

and increase in human settlements because of population growth. Currently, it has over 1.5 

million residents with over 300,000 living in Nakuru municipality. The rest live in small 

towns, market centres, and rural settlements.  

 

Fig. 3: Human activities in the Eastern Mau Forest Reserve: (a, b, and c) illegal felling of trees; (d) charcoal 

burning; and, (e) agricultural expansion and human settlement. (Source: Author).  

 

2.0 RESEARCH PROBLEM AND RATIONALE 

The demographic and landscape changes, especially forest conversion, have had 

implications for ecosystem services in the Lake Nakuru drainage basin and Eastern Mau 

Forest Reserve (Fig. 4). Some studies conducted in the area revealed that water quality 

(Shivoga et al., 2007), hydrological regime (Mwetu et al., 2009), temperature distribution 

(Hesslerová and Pokorný, 2010), soil properties (Enanga et al., 2011), and biodiversity 

(Kibichii et al., 2007; Raini, 2009) had been adversely affected. For example, farmers have 

had to grapple with erratic weather patterns, while wildlife, bird, and fish populations in the 

Lake Nakuru National Park have been threatened by the dwindling discharge of the Njoro 

River. Additionally, sediments and agro-chemicals (e.g., phosphorous) transported by rain 

water from the cultivated areas have severely affected the surface and ground water quality.   

In view of this, there is need to make effective decisions to mitigate the adverse 

impacts of the ongoing land cover changes, and to determine the future landscape scenario 
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for environmental protection and management in the area. This is essential to achieve 

sustainable development, millennium development goals, and Vision 2030 in Kenya as a 

whole. Effective decision-making calls for availability of accurate, consistent, quantitative, 

multi-temporal, and spatially-explicit information on the state of land cover and other 

important biophysical variables, such as soil properties, biodiversity, etc. Such information 

can, for instance, guide the formulation of policies for delineating and managing priority 

areas and land resources. It can also be useful for assessing trends and impacts (e.g., decline 

in SOC storage), explaining processes, and predicting future patterns of land cover changes. 

Unfortunately, the archives of biophysical information are poor in Kenya. Thus, remote 

sensing offers a practical means of deriving such information for systematic mapping and 

monitoring of land cover at multiple spatial and temporal scales, as well as for modelling 

and mapping the spatial patterns of environmental variables (e.g., soil properties). 

Geographic information systems (GIS), on the other hand, offer a platform for analysing, 

manipulating, modelling, and visualizing the remotely-sensed and other spatial data.  

This research aimed to bridge the existing biophysical information gap and, thereby, 

contribute knowledge towards rational policy making for sustainable land management in 

the Lake Nakuru drainage basin and Eastern Mau Forest Reserve.  

 

Fig. 4: Causal loop diagram of the research problem. Each arrow indicates a causal relationship, which can be 

large or small, immediate or delayed, an increasing (+) or decreasing (-) effect. The letters R and B denote 

reinforcing and balancing feedback loops, respectively.    
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2.1 Research goal and objectives 

The overarching goal of the research was to contribute knowledge to support the 

formulation of policies for mitigating the adverse impacts of land cover changes and 

sustainable management of land resources in the Lake Nakuru drainage basin and Eastern 

Mau Forest Reserve. To achieve this, the specific objectives were:  

a) To detect, quantify, and map the land cover changes that had occurred in the Lake 

Nakuru drainage basin and Eastern Mau Forest Reserve over time,  

b) To analyse the linkages between the observed land cover change processes and the 

geophysical and socio-economic factors in the Lake Nakuru drainage basin and 

Eastern Mau Forest Reserve, 

c) To assess the effects of forest-cropland conversion on soil organic carbon (SOC) and 

total nitrogen (TN) stocks in the Eastern Mau Forest Reserve, and 

d) To model and map the spatial distribution of SOC and TN stocks in the Eastern Mau 

Forest Reserve.  

2.2 Research questions 

a) What are the spatial patterns, rates, magnitudes, and nature (trajectories) of the land 

cover changes that have occurred in the Lake Nakuru drainage basin and Eastern 

Mau Forest Reserve over time?  

b) Can remote sensing and GIS techniques classify the past and present land cover in a 

spatially heterogeneous Kenyan landscape to acceptable levels of accuracy? 

c) What are the significant geophysical and socio-economic determinants of the 

observed land cover change processes in the Lake Nakuru drainage basin and 

Eastern Mau Forest Reserve?  

d) How have SOC and TN stocks in the Eastern Mau Forest Reserve responded to the 

forest-cropland conversion? Are the stocks between forests and croplands equal, or 

significantly different?    

e) What are the significant environmental factors that control, and can be used to 

estimate and map the spatial patterns of, SOC and TN stocks in the Eastern Mau 

Forest Reserve?   

 

3.0 MATERIALS AND METHODS 

3.1 Study area 

The study area was the Lake Nakuru drainage basin and Eastern Mau Forest Reserve (Fig. 

5) covering ~2000 km
2
. It lies in the Kenyan Rift Valley system, bounded by the latitudes 0º 
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10´- 0º 45´S and longitudes 35º 40´- 36º 5´E, with the altitudes ranging from 1750 to 3090 

m above sea level. The Makalia, Njoro, Naishi, Lamuriak, Enderit, and Ngosorr Rivers 

drain down the area into Lake Nakuru, while the Nessuiet flow into Lake Bogoria and the 

Rongai River into the Baringo. The landforms include mountains and major scarps, hills and 

minor scarps, plateaus, volcanic footridges, uplands, volcanic and lacustrine plains, and 

bottomlands. The soils are classified as Andosols, Planosols, Vertisols, Nitisols, Regosols, 

Calcisols, Solonetz, and Phaeozems (Jaetzold et al., 2010; Wanjogu et al., 2010), the parent 

materials of which originated from volcanic rocks (e.g., basalts, trachytes, phonolites, 

pumice tuffs, lavas) and associated sediments of tertiary-quaternary age (McCall, 1967).  

 

 
Fig. 5: Geographical location of the study area 

 

The climate varies from cool and humid to hot and humid depending on the altitude and 

topography. Higher areas at Mau escarpment receive substantial rainfall (~1200mm), which 

decreases notably (~700mm) on the lower areas around Lake Nakuru. The rainfall pattern is 

bimodal with the long rains falling between March and May, and short rains between 

November and December because of the seasonal north-south movement of the Inter-

Tropical Convergence Zone (ITCZ) (Odada et al., 2006). The vegetation comprises 

grasslands and scrublands in the lower parts, acacia trees along the lakeshore, riverine 
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vegetation along the rivers, and forests in the higher areas. The major land use systems, 

which also contribute to human economy, are agriculture, ranching, pastoralism, forestry, 

urban and industrial centres, and tourism and wildlife conservation. Land ownership is 

varied with the government owning the national park and forest reserves, subsistence 

farmers owning the small-scale farms, and commercial farmers leasing the large-scale 

farms, or ranches. The area is also an important centre for a growing human population. 

Currently, it has over 1.5 million inhabitants with over 300,000 living in the rapidly 

expanding Nakuru Municipality (www.opendata.go.ke/). The rest live in small towns, 

market centres, and rural settlements.   

 

3.2 Data  

Figure 6 summarizes the data and methods used in the research.  

 

Fig. 6: An overview of the research data and methodological flow 

 

3.2.1 Field data  

Fieldwork was conducted between July and August 2012 to collect land cover, soil, and 

land use management data. Prior to the land cover campaign in the Lake Nakuru drainage 

basin and Eastern Mau Forest Reserve, random sampling strategy was designed for 

http://www.opendata.go.ke/
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objective selection of sampling units into the sample. Sampling units were randomly 

generated in a GIS, the ground size of which was 30×30m to coincide with the spatial 

resolution of the Landsat imagery. In the field, the biophysical land attributes (e.g., percent 

tree cover) were recorded and georeferenced using a hand-held GPS receiver at 450 

sampling locations. Interviews were also conducted with key informants, particularly the 

local administrators, forest managers, farmers, and community group leaders. The data were 

used to determine the land cover types on Landsat imagery, validate the extracted land cover 

map for 2011, and understand the land use-land cover history (Paper I, II, and III). 

 

 

Fig. 7: Different land cover types: (a) natural forest (mixed; NF); (b) plantation forest (pine and cypress; PF);  

(c) Bamboo forest (BF); and, (d) croplands converted from forests (NF2C, PF2C, or BF2C). (Source: Author). 

 

 Similarly, before the soil campaign in the Eastern Mau Forest Reserve, sampling 

points were generated in a completely randomized design using agro-ecological zone map 

as the base in a GIS. A map showing the distribution of the sampling points was produced to 

support their identification in the field. At each sampling point, a 30×30m plot was laid, and 

an auger used to collect samples from the centre and four corners of the plot, at 0-15cm and 

15-30cm depths. The samples taken from corresponding depths were mixed thoroughly and 

bulked into one composite sample of about 500g. To determine bulk density (BD), a core 

sampler (5 cm in diameter and 5cm in height) was used to collect one undisturbed sample at 

the centre of each plot and each depth. The geographical coordinates, elevation, vegetation, 

and land management practices were also recorded at each plot. To fulfil the third objective, 
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soil samples were taken in a similar way at 60 plots within sites with similar climate, soil 

type, and slope in order to minimize variations. Four to fifteen sampling plots were laid out 

in a completely randomized design within the natural forests (NF), plantation forests (PF), 

bamboo forests (BF), and croplands that had been established on natural forests (NF2C), 

plantation forests (PF2C), and bamboo forests (BF2C) at these sites (Fig. 7). In total, 440 

samples (220 for each depth) were collected for chemical and physical analysis, and another 

440 samples for BD determination at the National Agricultural Research Laboratories. The 

results from these data are presented in Paper III and IV.  

 

3.2.2 Remotely-sensed data 

Terrain-corrected Landsat 1 Multispectral Scanner System (MSS), Landsat 5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper plus (ETM+), and Landsat 8 

Operational Land Imager (OLI) imagery acquired in 1973, 1985, 2000, 2011, and 2013, 

respectively, were procured from the USGS archive (http://earthexplorer.usgs.gov/). 

Normalized Difference Vegetation Index (NDVI) was derived after conversion of the digital 

numbers of OLI band 4 (red) and 5 (near infra-red) to top-of-atmosphere reflectance, while 

principal components bands were obtained from principal component analysis of OLI bands 

2, 3, 4, 5, 6, and 7. These data were used for the analyses in Papers I, II, III, and IV.  

 

3.2.3 Cartographical and GIS data 

Digital data in raster and vector formats were obtained from the existing spatial databases, 

pre-processed, and used for the various analyses (Papers I, II, III, and IV). The data 

included: topographical maps (Survey of Kenya), Google™ earth imagery, Africover land 

cover map (www.fao.org), administrative units, towns, villages, roads, forests, rivers and 

agro-ecological zones (www.ilri.org/gis), population (1989 and 2009) 

(www.opendata.go.ke/), digital elevation model (DEM) (http://srtm.csi.cgiar.org/), soils 

(Kenya Soil Survey), and rainfall and temperature (www.worldclim.org). Primary and 

secondary terrain attributes, including slope, aspect, curvature, and compound topographic 

index (CTI) (or topographic wetness index (TWI)) were extracted from the DEM.  

 

3.3 Methods  

Various procedures were followed in order to fulfil the stated research goal and objectives, 

as well as to answer the research questions (see also Fig. 6):  

http://earthexplorer.usgs.gov/
http://www.fao.org/
http://www.ilri.org/gis
http://www.opendata.go.ke/
http://srtm.csi.cgiar.org/
http://www.worldclim.org/
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3.3.1 Spatio-temporal mapping and analyses of land cover changes 

a) Data pre-processing: The downloaded Landsat files were unzipped and stacked, 

transformed to the Universal Transverse Mercator system (UTM WGS84 Zone 37S), 

geometrically co-registered, atmospherically and radiometrically corrected using 

image-based COST method (Chavez, 1996), and subsets extracted.  

b) Classification scheme design: Land cover classes were defined based on the field 

land cover data, as well as on modification of the definitions used by Anderson et al. 

(1976) and the USGS’ National Land Cover Database 2006 

(http://www.mrlc.gov/nlcd06_leg.php). 

c) Image classification, post-classification processing and spatial reclassification: 

Partitioning, hybrid classification, and spatial reclassification technique was applied 

to discriminate the land cover types on the image subsets. This produced land cover 

maps for 1973, 1985, 2000, and 2011.  

d) Accuracy assessment: Visual inspections, ancillary data (topographical maps, 

Africover land cover map), field data, and temporally-invariant land cover data 

(Fortier et al., 2011) were used to qualitatively and quantitatively validate the land 

cover maps. Statistical measures of map accuracy (overall, producer’s, and user’s 

accuracy, Kappa statistic) were computed and presented on error matrices 

(Campbell, 2002; Foody, 2002).  

e) Land cover change detection: The land cover maps for 1973 (resampled to 30 m), 

1985, 2000, and 2011 were overlaid in post-classification comparison to detect the 

pixel by pixel land cover changes between 1973-1985, 1985-2000, 2000-2011, and 

1973-2011. This generated cross-tabulation matrices and land cover change maps 

showing the pathways and spatial patterns of land cover change, respectively.  

 

3.3.2 Analyses of the linkages between land cover change processes and the 

geophysical and socio-economic determinants 

a) Data preparation:  Binary maps of the response variables (presence or absence of 

land cover change) were extracted from the land cover change maps. The maps 

identified areas of: (i) forest conversion versus stable forests, (ii) grassland 

conversion versus stable grasslands, and (iii) conversion to croplands versus stable 

croplands. A suite of 13 candidate geophysical and socio-economic explanatory 

variables were then selected a priori based on existing land use theories, fieldwork 

http://www.mrlc.gov/nlcd06_leg.php
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experience, data availability, and literature review (Chomitz and Gray, 1996; Geist 

and Lambin, 2002; Lambin et al., 2003; Braimoh and Vlek, 2005; Aguiar et al., 

2007). The variables were rainfall, temperature, soil cation exchange capacity 

(CEC), soil pH, elevation, slope, aspect, TWI, curvature, distance to road, distance to 

river, distance to town, and population density. These data were rasterized, 

transformed to UTM WGS84 Zone 37S, clipped according to the areas of interest, 

resampled to 100m, and integrated into the GIS database. 

b) Statistical modelling: This consisted of sampling spatially-balanced random points 

from the binary maps of response variables in a GIS, overlaying the sample points 

with the maps of explanatory and response variables to extract attribute values to the 

points, cleaning the sample points data (e.g., deleting spurious values), exploring the 

data (e.g., correlation analysis), and modelling the probability of occurrence of each 

land cover change process given the set of explanatory variables using binary 

logistic regression method (Montgomery et al., 2006a; Agresti, 2007).  

 

3.3.3 Assessment of the effects of land cover changes on SOC and TN stocks  

a) Physical and chemical soil analysis: The soil samples were air-dried, ground, sieved, 

and analysed for different properties. SOC was determined using Walkley-Black wet 

oxidation method (Nelson and Sommers, 1982), TN using Kjeldahl digestion 

method (Bremner and Mulvaney, 1982), BD using core method (Blake, 1965), 

particle size distribution using hydrometer method (Day, 1965), potassium (K) using 

flame-photometer, calcium (Ca) and magnesium (Mg) using atomic absorption 

spectrophotometer, pH (1:2.5 soil-water) using pH meter (Okalebo et al., 2002), and 

phosphorous (P) using Mehlich method (Okalebo et al., 2002).  

b) Estimation of SOC and TN stocks: SOC and TN stocks (mass C or TN per unit area) 

for each depth, in addition to the percentage changes in the stocks after forest 

conversions were calculated.  

c)  Data preparation: This involved transforming climate (mean annual temperature 

and rainfall), soil (soil type), agro-ecological zones, elevation, slope, and aspect data 

to UTM WGS84 Zone 36S, creating subsets from the thematic layers, rasterizing the 

vector layers, resampling the data to 100m, integrating the field and laboratory data 

into the GIS database as points, extracting attribute values from the raster datasets 

(slope, rainfall, soil type, etc.) to the points, and summarizing the point data by land 

cover types and soil depths for statistical analysis. 
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d)  Statistical analysis: The summarized data were explored using descriptive and 

correlation statistics. Linear mixed models (Montgomery et al., 2006b) were then 

fitted to test the effects of land cover, soil depth, and sampling plot on SOC 

concentrations and stocks, TN concentrations and stocks, and BD for each category 

of forest-cropland conversion: NF to NF2C, PF to PF2C, and BF to BF2C in the 

Eastern Mau Forest Reserve.   

 

3.3.4 Spatially-distributed modelling and mapping of SOC and TN stocks 

a) Physical and chemical soil analysis: see section 2.3.3 

b) Estimation of SOC and TN stocks: see section 2.3.3 

c) Data preparation: Twenty candidate environmental predictors were selected based 

on the scorpan conceptual model (McBratney et al., 2003), including climate (mean 

annual temperature, mean annual rainfall), land cover, elevation, Landsat 8 OLI 

thermal bands, slope, curvature, aspect, CTI, NDVI, soil properties, and principal 

component band of the Landsat 8 OLI optical bands. The data were pre-processed by 

transforming them to UTM WGS84 Zone 36S, extracting subsets from each, 

resampling to 30m where necessary, integrating soil data from the laboratory 

analysis (sand content, silt content, clay content, TN, C, pH, Mg, Ca, P, and K) into 

the geodatabase both as feature points and as raster grids after interpolation, and 

extracting the attribute values of the other raster datasets (e.g., slope, rainfall, 

temperature) to the feature points for spatial modelling.  

d) Spatial modelling: The pre-processed data were explored using descriptive and 

correlation statistics. Different models were then calibrated, validated, and applied to 

map the spatial patterns of SOC and TN stocks in the Eastern Mau Forest Reserve. 

Multiple linear regression (MLR) (Montgomery et al., 2006a), regression-kriging 

(MLRK) (Hengl et al., 2004, 2007), geographically weighted regression (GWR) 

(Fotheringham et al., 2002), and geographically weighted regression-kriging 

(GWRK) (Kumar and Lal, 2011; Kumar et al., 2012) techniques were used to 

calibrate the models.   

 

4.0 RESULTS AND DISCUSSION  

4.1 The spatial and temporal dynamics of land cover changes  

Analysis of multi-temporal Landsat imagery discriminated the six main land cover types in 

the Lake Nakuru drainage basin and Eastern Mau Forest Reserve between 1973 and 2011; 
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namely, forests-shrublands, grasslands, croplands, built-up lands, bare lands, and water 

bodies (Fig. 8). Forests-shrublands dominated the landscape from 1973 to 2000, but by 

2011, croplands had become dominant. This highlights transition from a natural to human-

dominated landscape. The overall accuracy of the extracted land cover maps for 1973, 1985, 

2000, and 2011 ranged between 80 and 89%. These levels of accuracy suggest that the 

partitioning, hybrid classification, and spatial reclassification approach applied in this study 

is a promising alternative for successful mapping of heterogeneous landscapes in Kenya.  

 

 

Fig. 8: Land cover maps for the Eastern Mau Forest Reserve and Lake Nakuru drainage basin 
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Moreover, the results revealed that over the 38-year period, the dominant land cover 

change processes were conversion of native ecosystems (forests-shrublands and grasslands), 

and expansion of croplands and built-up lands (Table 1). That is, the main proximate drivers 

of the land cover changes were agricultural expansion, built-up expansion, and wood 

extraction. Forest-shrublands, grasslands, and croplands had higher magnitudes of change 

than the other land cover types throughout the period. For example, croplands expanded 

from 293km
2
 in 1973 to 953km

2
 in 2011 at the expense of forest-shrublands and grasslands 

(Fig. 9; Table 1). This corresponds with various environmental reports of the region (Odada 

et al., 2006; Baldyga et al., 2007; UNEP, 2009). The ill-advised political decision to excise 

parts of the Eastern Mau Forest Reserve is one of the societal processes that underpinned the 

conversion of forests-shrublands. The hotspots of forest-shrubland conversion were 

distributed in the mid-regions and northern side of Lake Nakuru between 1973 and 1985, on 

the western side between 1985 and 2000, and around the Lake Nakuru National Park, as 

well as the western and southern parts between 2000 and 2011 (Fig. 9). Built-up lands were 

the most dynamic judging by their high annual average rates of change; for example, their 

annual average rate of change was 17% between 1985 and 2000 (Table 1).  This is ascribed 

to high population growth rates. 

 

 
 Note: see also the errata.  

 

The above results depict a clearer picture of land cover changes in the area in terms 

of what, where, and when the changes occurred, as well as the magnitudes and rates of 

change. The outputs are a good base of spatially-explicit land cover information for: (i) 

formulating spatially-targeted policies to restore and conserve the natural ecosystems (e.g., 

forests); (ii) analysing the biophysical and socio-economic drivers of LULCC; and, (iii) 

predicting the future spatial patterns of LULCC. The resultant land cover database can also 

support other research programs, such as soil carbon sequestration, REDD+, and FAO land 

use-land cover programs. Finally, the elaborate classification approach employed in the 

study is a useful tool for successful mapping and monitoring of land cover in other complex 

landscapes in Eastern Africa using the freely available, or inexpensive remotely-sensed data.   
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Fig 9: Maps showing the spatial distribution of land cover changes in the Eastern Mau Forest Reserve and 

Lake Nakuru drainage basin from 1973 to 2011. Quantitative information on the nature of these land cover 

changes is shown in Table 5, Paper I.   

 

4.2 The geophysical and socio-economic determinants of land cover changes 

Binary logistic regression analyses estimated that between 1985 and 2000, rainfall, soil pH, 

soil CEC, TWI, aspect, curvature, distance to road, and distance to town were important in 
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determining the occurrence of forest-shrubland conversions (Table 2). As rainfall and soil 

CEC increased, the probability of forest-shrubland conversion increased, but as distance to 

road and town increased, the converse was true. This was expected because the good road 

network, especially on the western part, provided access to agricultural inputs and markets 

for forest products (charcoal, logs, fuel wood, and timber) in Elburgon, Njoro and Nakuru 

towns. This proximity to roads also lowered the cost of migration, land access, and land 

clearance for subsistence farming (Chomitz and Gray, 1996). This is consistent with 

previous findings; for instance, Müller and Mburu (2009) found that forest clearance in 

Kakamega forest, western Kenya, tended to occur near roads and market centres. In the 

same period, rainfall, slope, aspect, curvature, TWI, and distance to road, town and river 

best explained the occurrence of grassland conversion. Their directions suggested that water 

and land accessibility were more important in agricultural land use decision-making than 

market accessibility, which was in contradiction with the von Thünen’s theory of 

agricultural land use. However, this is common in developing countries where subsistence is 

the overriding goal of agricultural production. In case of surpluses, the middlemen often 

collect and transport the produce from the farm-gates to the market. Further, in the same 

period, temperature, aspect, TWI, soil pH, soil CEC, population density, and distance to 

road, town and river determined the presence of cropland expansion.  

 

 
 

The significance, magnitude, and direction of the explanatory factors varied 

depending on the process of land cover change and time. For example, between 2000 and 
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2011, the foregoing factors, in addition to slope and distance to river, and with the exception 

of TWI, were the significant determinants of forest-cropland conversion (Table 3). This 

indicates that generalizations about the underlying drivers of land cover changes must be 

time-specific. Thus, policies should be both spatially-targeted and time-specific.  

These results enhance our knowledge of the processes involved in land cover change 

in the Lake Nakuru drainage basin and Eastern Mau Forest Reserve where empirical 

evidence of the underlying causal factors is scarce. The knowledge gained can be applied, 

for instance, to spatially predict the possible future trends of land cover changes. Such 

predictions, coupled with the knowledge, are beneficial for environmental policy makers, 

planners, and managers since they can: (i) inform the selection of priority areas for targeted 

policies or detailed analyses in an effective and efficient manner, and (ii) be linked with 

biophysical data, e.g., species distribution or carbon storage data, to identify hotspots of 

biodiversity, or carbon losses after land cover conversion.  

 

 
 

4.3 The effects of land cover changes on SOC and TN stocks  

Linear mixed analyses revealed that soil properties were responsive to the changing 

landscape. Land cover had a highly significant effect on SOC and TN (p<0.0001) in the NF 

vs. NF2C category (Table 4). SOC (p<0.0001), SOCst (p<0.001), TN (p<0.0001), and TNst 

(p<0.001) in NF differed from NF2C. In the surface soils (0-15cm), the highest SOC and 

TN stocks were in NF (71.6 and 7.1 Mg ha
-1

, respectively) and the lowest in NF2C (35.4 

and 3.5 Mg ha
-1

). In the subsurface soils (15-30cm), the highest stocks were in NF (55.7 and 
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5.6 Mg ha
-1

, respectively) and the lowest in PF2C (32.3 and 3.2 Mg ha
-1

). Cultivation of NF 

reduced both SOC and TN stocks by 51% in the surface and 42% in the subsurface soils 

(Fig. 10 & 11). This indicates soil degradation upon cultivation of NF. Soil depth also had a 

highly significant effect on SOC (p<0.0001), SOCst (p=0.0002), TN (p<0.0001), and TNst 

(p=0.0002). SOC (p<0.0001), SOCst (p<0.001), TN (p<0.0001), and TNst (p<0.001) between 

soil depths 0-15cm and 15-30cm were significantly different.  

 

 

Fig. 10: Percentage change in SOC stocks following forest conversions. NF2C = natural forest converted to 

cropland; PF2C = plantation forest converted to cropland; and, BF2C = bamboo forest converted to cropland. 

The SOC concentrations and BD data used to estimate SOC stocks are shown in Table 1, Paper III.  

 

 

Fig. 11: Percentage change in TN stocks following forest conversions. NF2C = natural forest converted to 

cropland; PF2C = plantation forest converted to cropland; and, BF2C = bamboo forest converted to cropland. 

The TN concentrations and BD data used to estimate TN stocks are shown in Table 1, Paper III. 

-60

-50

-40

-30

-20

-10

0

10

NF2C PF2C BF2C

P
e

rc
e

n
ta

ge
 c

h
an

ge
 in

 m
e

an
 S

O
C

 s
to

ck
s 

Land cover conversion 

0 - 15 cm 15 - 30 cm

-60

-50

-40

-30

-20

-10

0

NF2C PF2C BF2C

P
e

rc
e

n
ta

ge
 c

h
an

ge
 in

 m
e

an
 T

N
 s

to
ck

s 

Land cover conversion 

0 - 15 cm 15 - 30 cm



 

25 
 

Similarly, there was a highly significant land-cover effect on SOC (p=0.0001), SOCst 

(p=0.0001), TN (p=0.0002), and TNst (p<0.0001) in the PF vs. PF2C category. SOC 

(p<0.0001), SOCst (p<0.001), TN (p<0.0001), and TNst (p<0.001) between PF and PF2C 

were significantly different. Cultivation of PF reduced both SOC and TN stocks by 28% in 

the surface and 36% in the subsurface soils. Hence, there is the risk of soil degradation upon 

cultivation of PF. There was also a highly significant soil-depth effect on SOC (p<0.0001), 

SOCst (p=0.0038), TN (p<0.0001), and TNst (p=0.0026). SOC (p<0.0001), SOCst 

(p=0.0041), TN (p<0.0001), and TNst (p=0.0026) between soil depths 0-15cm and 15-30cm 

differed significantly. 

 

 

 

In contrast, land cover had no significant effect on SOC (p=0.7894), SOCst 

(p=0.8217), TN (p=0.7460), and TNst (p=0.7749) in the BF vs. BF2C category. SOC 

(p=0.9825), SOCst (p=0.990), TN (p=0.9699), and TNst (p=0.9794) in BF were similar to 

BF2C. Cultivation of BF presented mixed results; that is, in the surface soils, SOC stocks 

increased by 1%, while TN stocks decreased by 0.6%. And in the subsurface soils, SOC and 

TN stocks reduced by about 13%. The absence of land-cover effect can be attributed to the 

establishment of croplands within BF less than 10 years ago. The sample sizes for BF and 

BF2C were also small (n=4), which may have not fully captured the variations within these 

land cover groups. However, soil depth had a significant effect on SOC (p=0.0284), SOCst 

(p=0.0206), TN (p=0.0279), and TNst (p=0.0204). Pairwise comparisons revealed 

differences in SOC (p=0.0157), SOCst (p=0.008), TN (p=0.0158), and TNst (p=0.008) 

between soil depths 0-15cm and 15-30cm. 
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The same trends were observed even when the entire topsoil (0-30cm) was 

considered. The highest stocks of SOC amounting to 127 Mg ha
-1 

were in NF, which 

reduced by 46.8% when converted to croplands, and the lowest stocks amounting to 101.5 

Mg ha
-1 

were in BF, which reduced by 4.4% when converted to croplands. Similarly, the 

highest stocks of TN were in NF (12.7 Mg ha
-1

), which reduced by 47% when converted to 

croplands, and the lowest stocks were in BF (10.3 Mg ha
-1

), which reduced by 5.4% when 

converted to croplands. This coincides with the findings of previous studies in the tropics 

(Detwiler, 1986; Solomon et al., 2000; Bewketa and Stroosnidjer, 2003; Walker and 

Desanker, 2004; Lemenih et al., 2005; Enanga et al., 2011). Disruption of the balance 

between inputs and outputs of C and N in the soil system after forest conversion explains 

the decrease in SOC and TN stocks. Forest ecosystems have higher net primary productivity 

than agro-ecosystems; thus, their inputs of detritus to the soils are also higher (Smith, 2008; 

Eclesia et al., 2012). In the agro-ecosystems, the bulk of biomass is removed from the fields 

after harvest for use as food or fuel, which hinders accumulation of soil organic matter, and 

aggravates SOC and TN losses through erosion. In addition, frequent tillage disintegrates 

the soil aggregates, redistributes crop residues, and alters soil aeration, moisture, and 

temperature conditions. This accelerates microbial decomposition and oxidation of soil 

organic matter to CO2, which is then emitted to the atmosphere (Follett, 2001; Murty et al., 

2002; Lal, 2004; Powers, 2004; Wiesmeier et al., 2012).  

These results highlight the impact of human activities on soils of the area. They have 

important implications for sustainable management of the croplands, forests (NF, PF, and 

BF), and soils at different depths in the area. For example, the reduction of SOC and TN 

concentrations and stocks after forest conversions calls for intervention measures that will 

enhance the storage of C and N. The decrease of these soil properties as soil depth increase, 

on the other hand, suggests that the measures should not only focus on enhancing C and N 

storage in the surface, but also in the subsurface soils. In a broader context, these findings, 

in addition to those presented in sections 3.1 and 3.2 contribute to the body of scientific 

literature describing the dynamics, drivers, and impacts of LULCC at the local, regional, 

and global levels.  

 

4.4 The spatially-distributed estimates and patterns of SOC and TN stocks 

Multiple linear regression results (Table 5) showed that elevation, silt content, TN 

concentration, and OLI band 11 had significant effects on SOC stocks and explained 72% of 

the spatial variability (adjusted R
2
=0.72). Similarly, elevation, OLI band 11, and SOC 
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concentration had significant effects on TN stocks and explained 71% of the spatial 

variability (adjusted R
2
=0.71). Both MLR and GWR model outputs indicated that TN 

concentration had the largest magnitude of effect on SOC stocks, while SOC concentration 

had the largest magnitude of effect on TN stocks (Tables 5 & 6). Therefore, soil properties 

were more important than other environmental factors in controlling the observed patterns 

of SOC and TN stocks. This coincides with the conclusion made by Vågen and Winowiecki 

(2013) after mapping SOC to 30cm depth in four contrasting East African landscapes. 

However, unlike MLR models, GWR models showed that the magnitude of the effects of 

predictors varied with sampling location. That is, the relationships between the target 

variables (SOC and TN stocks) and environmental factors were spatially non-stationary.  

 

 
 

The different prediction maps of SOC and TN stocks produced MLR, MLRK, GWR, 

and GWRK models displayed similar spatial patterns of SOC and TN stocks. Hence, SOC 

and TN stocks responded similarly to the environmental factors. There was a general 

decrease of SOC and TN stocks from west to east (Figs. 12 & 13). The highest estimates of 

SOC and TN stocks occurred on the western and north-western parts, which according to 

the environmental data, had higher forest cover, elevations, and SOC and TN 

concentrations, but lower silt contents and surface temperatures. These hotspots were parts 

of the Logoman, Nessuiet, Kiptunga, and Baraget forests, which had not undergone 
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deforestation. The lowest estimates, on the other hand, occurred on the eastern side where 

croplands had been established, including Teret, Nessuiet, Kapkembu, Tuiyotich, and 

Sururu locations. These coldspots were areas with higher crop cover, silt contents, and 

surface temperatures, but lower elevations, and SOC and TN concentrations. In the northern 

and south-eastern parts where crop cover was also high, the SOC and TN stocks were 

moderate to high.  

The given characteristics of the hotspots of SOC and TN stocks on the western and 

north-western parts, in addition to the highly fertile Andosols, favours accumulation of SOC 

and TN stocks. For instance, the high rainfall and low temperatures associated with higher 

altitudes increase net primary productivity of the forests and decrease SOC turnover. The 

lower silt content relative to clay content in the forest soils is also an indication of the 

presence of organo-complexes, or allophane, imogolite, and ferrihydrite clay minerals, 

which stabilize organic matter and plant nutrients (Lemenih et al., 2005; Chaplot et al., 

2010). The smaller pore spaces of clay particles also promote aggregation and physical 

protection of SOC. In contrast, the characteristics of the coldspots of SOC and TN stocks on 

the eastern side are unfavourable for accumulation of SOC and TN stocks. For example, the 

higher crop cover is attributed to the conversion of forests to croplands, which began in the 

mid-1990s. In these croplands, biomass removal after harvesting, erosive processes, and 

frequent tillage explain the lower SOC and TN stocks (Murty et al., 2002; Smith 2008; 

Eclesia et al., 2012; Wiesmeier et al., 2012). Thus, the coldspots of SOC and TN stocks also 

highlight the human-induced soil degradation, and sources of C and N emissions.  

 

 
 

Based on GWR method, which showed the lowest prediction error indices, forests 

stored the highest amounts of SOC and TN (i.e., 3.78 Tg C and 0.38 Tg N) followed by 

croplands (i.e., 2.46 Tg C and 0.25 Tg N) and grasslands (i.e., 0.57 Tg C and 0.06 Tg N) (1 

Tg = 10
12 

g = 1 million tons) (Table 7). This is because forests covered the largest area 

(32,228 ha), while grasslands covered the smallest area (5,509 ha). Overall, the Eastern Mau 

Forest Reserve stored about 6.81 Tg and 0.69 Tg of SOC and TN, respectively. This 

accounts for 0.36% of the organic C stored in Kenyan soils to 30cm depth based on Batjes’ 
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(2004) estimates of SOC stocks for Kenya. He further reported that Andosols of the humid 

and semi-humid regions in Kenya stored an average of 9.1 Kg C m
-2

 (91 Mg C ha
-1

) to 30cm 

depth, which slightly differs with the present findings (i.e., 10.3 Kg C m
-2

, or 102.7 Mg C 

ha
-1

). This can be attributed to the different spatial and temporal properties of data used in 

the two studies. 

 
Fig. 12: Maps showing the spatial patterns of SOC stocks estimated using MLR, MLRK, GWR, and GWRK 
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Fig. 13: Maps showing the spatial patterns of TN stocks estimated using MLR, MLRK, GWR, and GWRK 

 

The fine-scale, spatially-exhaustive soil information produced for the Eastern Mau 

Forest Reserve for the first time is a fundamental step towards improved monitoring of soils, 

and informed formulation of spatially-targeted and sustainable land management policies. 
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Based on this information, for instance, the western and north-western parts would benefit 

from policies that promote conservation, while the eastern part from those that support 

accumulation of SOC and TN stocks. The information may also be useful for 

parameterization of other environmental models, and for simulation of impacts due to land 

use changes. In addition, the integrated approach of field sampling, GIS, remote sensing, 

and statistical analysis provides a cost-effective framework for deriving knowledge of soil 

processes, as well as multi-purpose soil information in other data-poor environments in 

Eastern Africa. Lastly, the resultant soil database can support the activities of other research 

programs; for example, soil carbon sequestration, REDD+, and ISRIC-World Soil 

Information programs, etc. 

 

4.5 Limitations of the research  

Analysis of the dynamics, drivers and impacts of land cover changes using remote sensing 

and GIS approach is a complex process with many potential factors that may introduce 

uncertainties to the outputs. Several sources of uncertainties, which also present 

opportunities for further research, were identified in this research. To commence with, the 

created land cover maps were not perfect as shown by the overall measures of accuracy 

(Paper I). Classification errors occurred mainly because of spectral confusion, which is 

common when classifying heterogeneous landscapes. The subsequent estimations of the 

magnitudes and rates of land cover changes, as well as the SOC and TN stocks under 

different land cover types were based on these land cover maps. Hence, the inherent 

classification errors may have influenced these estimates. Further, the reference data used 

for validating the land cover maps, and the auxiliary spatial data used for modelling (Paper 

II) were sourced from different databases in various formats and scales; thus, the data 

quality was not uniform. Errors in calibration and validation data can also bias model 

results. The uncertainties attached to the models developed in Paper IV are diverse. The first 

obvious source is errors from the field measurements and laboratory analysis. Besides, the 

soil properties used as predictors were products of interpolation by ordinary kriging. Hence, 

the interpolation errors may have been propagated into the subsequent prediction of SOC 

and TN stocks. Poor coverage of samples in some areas (e.g., thick impenetrable bamboo 

forests) may have also affected prediction accuracies around such areas. Lastly, some soil-

forming factors (e.g., parent material and age) were not accounted for thanks to the absence 

of suitable data. The same applies to the land cover change models where some important 

explanatory factors were not captured owing to lack of spatial data and inability to quantify 
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others (e.g., politics). Inclusion of these factors, if significant, may improve the predictive 

power of the models in future. Finally, like in most empirical studies, the models developed 

are site-specific and may be inapplicable outside the study area.  

 

5.0 CONCLUSIONS, RECOMMENDATIONS AND OUTLOOK 

In a nutshell, this research has demonstrated an integrated approach of field sampling, 

satellite remote sensing, GIS, and (spatial) statistical approaches to study the dynamics, 

drivers, and impacts of land cover changes in the Lake Nakuru drainage basin and Eastern 

Mau Forest Reserve, Kenya. The research outputs fill the existing biophysical information 

gap and, thereby, contribute knowledge to support policy formulation for sustainable land 

management and climate change mitigation in the area. In view of the research questions 

and findings, the following specific conclusions are drawn:  

  

5.1 Conclusions  

a) The Lake Nakuru drainage basin, including the Eastern Mau Forest Reserve, 

transformed from a natural to human-dominated landscape over the 38-year study 

period. The forests-shrublands, which were dominant between 1973 and 2000, had 

been surpassed by croplands in 2011. 

b) Forests-shrublands, grasslands, and croplands had higher magnitudes of change than 

built-up lands, bare lands, and water bodies. But, built-up lands had the highest 

annual rates of change.  

c) The major land cover change processes were conversion of forests-shrublands and 

grasslands to croplands and built-up lands. Forests-shrublands were the biggest 

losers followed by grasslands, while croplands were the biggest gainers followed by 

built-up lands. 

d) The spatial distribution of the land cover change hotspots varied with time. For 

example, the hotspots of forest-shrubland conversion occurred in the middle regions 

and northern side of Lake Nakuru between 1973 and 1985, but were concentrated on 

the western side between 1983 and 2000. 

e) Climatic, topographic, soil, demographic, and accessibility factors (e.g., rainfall, 

proximity to road, town and river) determined the major land cover change processes 

(forest-shrubland conversion, grassland conversion, and agricultural expansion). 

These factors varied with the nature of land cover change process and time.  
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f) Soil properties, particularly SOC and TN concentrations and stocks, declined in 

response to the land cover changes and human impact in the Eastern Mau Forest 

Reserve. The concentrations and stocks of SOC and TN under the forests and 

cropland establishments were significantly different. Thus, the transformation from a 

natural to human-dominated landscape is increasing the risk of soil degradation, and 

restricting the ecosystem’s capacity for SOC and TN storage. 

g) The forests located on the western and north-western parts (i.e., Logoman, Nessuiet, 

Kiptunga, and Baraget forests) were the hotspots, while the croplands established on 

the eastern part (i.e., Teret, Nessuiet, Kapkembu, Tuiyotich, and Sururu locations) 

were the coldspots of SOC and TN stocks in the Eastern Mau Forest Reserve. 

h) Climatic, edaphic, and topographic factors controlled the observed spatial patterns of 

SOC and TN stocks in the Eastern Mau Forest Reserve; however, soil properties, 

particularly TN and SOC concentrations, were the most important determinants. 

 

5.2 Recommendations  

Based on the research findings, formulation and implementation of spatially-targeted and 

time-specific policies that aim to restore and conserve the natural ecosystems, as well as 

enhance agricultural productivity for environmental sustainability and socio-economic 

welfare is recommended. For instance, the western and north-western parts where forests 

dominate need policies that will promote conservation, while the eastern part where 

croplands dominate requires those that will ensure both soil and environmental quality.  

Furthermore, selection and adoption of best management practices (BMPs), which 

increase C and N inputs, and decrease decomposition rate, will be beneficial for the 

croplands. Agro-forestry systems where fast-growing, highly productive, deep-rooted, and 

N-fixing tree species are planted will, particularly, be useful. For the forest soils, long-term 

storage of C and N will be achieved through improved management and protection of the 

forests from further deforestation and degradation.  

 

5.3 Outlook  

The achievements and limitations of this research provide a number of opportunities for 

further research; hence, more LULCC research activities are envisaged in the Lake Nakuru 

drainage basin and Eastern Mau Forest Reserve. The future research directions include:   

a) Re-evaluating and refining the land cover change models to explicitly account for 

other important geophysical and socio-economic drivers of land cover changes that 
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were not considered at present, and to allow the projection of future patterns of land 

cover changes. This will need incorporation of additional detailed input 

environmental data as they become available with time. 

b) Exploring the variations of the relationships among the drivers of land cover change 

processes within the local space. This will require application of local regression 

techniques, such as geographically weighted logistic regression, etc.  

c) Refining the spatial predictions and models of SOC and TN stocks by: (i) 

incorporating other soil-forming factors (e.g., parent material) that may be 

significant in the modelling process as more data becomes available with time, (ii) 

analysing the sensitivity of model parameters to variations in the quality of multi-

source data. This will shed some light on error propagation in the models, and (iii) 

application and evaluation of machine learning (data mining) algorithms, such as 

support vector regression, random forests, and artificial neural networks, etc. 

d) Linking the generated research outputs with a variety of other environmental data in 

a spatially-explicit framework for integrated assessment of the impacts of land cover 

changes on ecosystem services, and formulation of holistic land management 

strategies. For example, within such a framework, the land cover maps and land 

cover change modelling results can be linked with species distribution data to 

identify, or predict the hotspots of biodiversity losses. This will, ultimately, put the 

Lake Nakuru drainage basin and Eastern Mau Forest Reserve on the road to 

integrated management of land resources. 
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ERRATA 

1. An incorrect entry appears in column 2 (Area, km
2
) of Table 4 in Paper I, which is the 

same as Table 1 on page 20 of the introductory part of the thesis. The correct entry should 

be as highlighted in red colour in the table below. The sum of the area under the six land 

cover types for each year (i.e., 1973, 1985, 2000, and 2011) should, ideally, be the same. 

However, the slight differences can be attributed to the effects of partitioning the image 

subsets for each year into several smaller segments for separate classification.  
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2. Incorrect entries also appear in columns 10 (SOCst, Mg ha
-1

, 0-30 cm depth) and 12 (TNst, 

Mg ha
-1

, 0-30 cm depth) of Table 3 in Paper III. The correct entries should be as 

highlighted in red colour in the table below. The values in column 8 (TNst, Mg ha
-1

, 15-30 

cm depth) have also been rounded off to one decimal place like in the other columns.  
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a b s t r a c t

This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake
Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in
1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover
changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution
of these changes. Land cover types were discriminated through partitioning, hybrid classification and
spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated
and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The ac-
curacies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively.
Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and
water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about
1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare
lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-
shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each,
whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and
16% respectively. The key hotspots of these changes were distributed in all directions of the study area,
but at different times. Therefore, policies that integrate restoration and conservation of natural ecosys-
tems with enhancement of agricultural productivity are strongly recommended. This will ensure envi-
ronmental sustainability and socio-economic well-being in the area. Future research needs to assess the
impacts of the land cover changes on ecosystem services and to project the future patterns of land cover
changes.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Land cover is dynamic and varies at different spatial and tem-
poral scales (Cihlar, 2000); yet, its role in the structure and func-
tioning of the earth system is fundamental. The array of ecosystem
services it offers include, provisioning services (e.g. food), regulating
services (e.g. climate regulation), cultural services (e.g. recreation
and ecotourism) and supporting services (e.g. biogeochemical
cycling) (Millennium Ecosystems Assessment, 2005). Thus, land
cover modifications or conversions through human or nature’s
agency can have profound impacts on climate, hydrological and
biogeochemical cycles, biodiversity, soil quality and human well-
being (Foody, 2002; Lambin, Geist, & Lepers, 2003; Overmars &
f Life Sciences, Institute of
003, NO-1432 Aas, Norway.

).

All rights reserved.
Verburg, 2005; Potter et al., 2007). This justifies the importance of
land use and land cover change research in the context of global
environmental change and sustainable development.

In Eastern Africa, land cover is constantly changing, especially in
the major watersheds, due to various biophysical and societal fac-
tors. Lake Nakuru drainage basin, including the entire Eastern Mau
forest reserve, in the Kenyan Rift Valley system is among the hot-
spots where such land cover changes (LCC) have rapidly occurred
over the last 3 decades (Baldyga, Miller, Driese, & Gichaba, 2007;
Daniels & Bassett, 2002). This is an important study area because
Eastern Mau forest is part of the largest closed-canopy montane
forest ecosystem in Eastern Africa. The forest is also among the 5
important water catchment areas in Kenya and a major sink of CO2,
which is the main driver of global warming and climate change.
Lake Nakuru drainage basin has been transformed from a sparsely
populated and densely vegetated area to a highly populated,
rapidly urbanizing and extensively cultivated area. In 1970, 47% of
the area was under natural vegetation, but by 2003, 49% of this had
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been cleared and the number of small-scale farms had grown
(Daniels & Bassett, 2002; UNEP, 2009). Baldyga et al. (2007) also
reported that between 1986 and 2003, about one-fifth of the forests
in the upper catchment of Njoro River were lost. The loss is partly
attributed to illegal encroachments in 1990s and ill-advised polit-
ical decision to excise about 353 km2 of Eastern Mau forest reserve
for human settlement in 2001 (Government of Kenya, 2009).

The demographic and attendant landscape changes, especially
forest losses, have had ramifications onwater quality (Shivoga et al.,
2007), hydrological regime (Mwetu, Mutua, Kundu, Fürst, &
Loiskandl, 2009), temperature distribution (Hesslerová &
Pokorný, 2010) and biodiversity (Raini, 2009) (See Fig. 1). There-
fore, it is imperative to make decisions for mitigating the adverse
environmental impacts of the on-going LCC, promoting restoration
and sound management of ecosystems in the area. This is indis-
pensable for realization of sustainable development, Millennium
Development Goals, Vision 2030 and the National Climate Change
Response Strategy in Kenya. However, effective decision-making
hinges on availability of the past and present land cover informa-
tion. The paucity of land cover data in Kenya renders remote
sensing the only practical means of providing complete, spatially-
explicit, accurate, consistent, quantitative and cost-effective time-
series data for systematic mapping, monitoring and analyses of the
spatial and temporal land cover dynamics using image processing
and Geographic Information Systems (GIS). Space-borne electro-
magnetic sensors have continuously acquired Earth surface data
since the launch of Landsat 1 in 1972 and, thereafter, many other
Earth observing systems (e.g. SPOT and ALOS). Several studies have
demonstrated the utility of such remotely sensed data in moni-
toring LCC in different environments including watersheds (Olang,
Kundu, Bauer, & Fürst, 2011; Wasige, Groen, Smaling, & Jetten,
2013), mountainous regions (Aguirre-Gutiérrez, Seijmonsbergen,
& Duivenvoorden, 2012), urban areas (Dewan & Yamaguchi, 2009;
Stefanov, Ramsey, & Christensen, 2001; Yang & Lo, 2002; Yang, Xian,
Klaver, & Deal, 2003; Yuan, Sawaya, Loeffelholz, & Bauer, 2005; Wu
& Zhang, 2012), estuarine areas (Yang & Liu, 2005), wetlands
(Mwita et al., 2013), forests (Gao & Liu, 2012; Laurin et al., 2013;
Lung & Schaab, 2010; Pellikka, Lötjönen, Siljander, & Lens, 2009;
Schmitt-Harsh, 2013), savannas (Romero-Ruiz et al., 2012), dry
lands (Diouf & Lambin, 2001; Tsegaye, Moe, Vedeld, & Aynekulu,
POPULATION
GROWTH

Demand for
arable land

Land
fragmentation Per capita arable

land availability

Land cover changes
e.g. forest conversion

Environmental impacts on micro-climate,
water quality, hydrological regime, soils,
biodiversity, biogeochemical cycling, etc.

Other drivers of land cover changes, e.g.
wood extraction, agricultural expansion,

human settlement, policies, etc.

+

+

+

+

-

+
+

+

Fig. 1. Causal Loop Diagram illustrating the problem. The positive (þ) sign denotes an
increasing effect while the negative (�) sign denotes a decreasing effect.
2010; Muriuki et al., 2011), river deltas (Abd El-Kawy et al., 2011,
Dewidar, 2004; Seto et al., 2002;Weng, 2002), coastal zones (Kolios
& Stylios, 2013; Rodriguez-Galiano & Chica-Olmo, 2012; Shalaby &
Tateishi, 2007) and agricultural areas (Shalaby & Ali, 2010).

The successful application of remote sensing in LCC research is
due to the subsequent development of image classification and
change detection techniques, improvements on the spatial and
spectral properties of optical data, and open accessibility to Landsat
archives. Coppin, Jonckheere, Nackaerts, Muys, and Lambin (2004),
Lu, Mausel, Brondizio, and Moran (2004), Mas (1999), and Singh
(1989) have provided detailed reviews of change detection
methods ranging from composite analysis and image differencing,
to image ratioing, image regression, linear data transformation,
post classification comparison, change vector analysis, neural
networks, multi-temporal spectral mixture analysis, multi-
dimensional temporal feature space analysis and temporal trajec-
tory analysis. Similarly, Campbell (2002), Lillesand, Kiefer, and
Chipman (2008) and Lu and Weng (2007) have explained some of
the existing classifiers including the parametric (e.g. maximum
likelihood), non-parametric (e.g. artificial neural network), sub-
pixel (e.g. spectral mixture analysis), object-oriented (e.g. extrac-
tion and classification of homogeneous objects (ECHO)), textural
and contextual classifiers.

This paper presents the results of a study that aimed at char-
acterizing land cover and its dynamics for four decades in Eastern
Mau forest reserve and Lake Nakuru drainage basin, Kenya, using
remote sensing techniques. The specific objectives were to: (i)
identify and map the major land cover types in 1973, 1985, 2000
and 2011; (ii) detect and determine the magnitude, rates and na-
ture of the land cover changes that occurred between these dates,
and; (iii) establish the spatial and temporal distribution of the
changes. The outputs formed the basis for spatially distributed
modelling and assessment of the impact of LCC on terrestrial car-
bon storage in Eastern Mau forest reserve.

Materials and methods

Study area

Lake Nakuru drainage basin, including the entire Eastern Mau
forest reserve, is located along the Kenyan Rift Valley system, be-
tween latitudes 0� 100e0� 450 S and longitudes 35� 400e36� 50 E
(Fig. 2). It covers about 2000 km2 with the altitude varying from
1750 to 3090 m above sea level. The Menengai crater borders it to
the north, Ol Doinyo Eburru volcano and Kiambogo hills to the
south, Soysambu hills to the east and the Mau escarpment to the
west. Makalia, Enjoro, Naishi, Lamuriak, Enderit and Ngosorr river
systems drain down this area into Lake Nakuru, whereas Nessuiet
and Rongai rivers flow into Lake Bogoria and Baringo respectively.
Its main geomorphological features are mountains and major
scarps, hills and minor scarps, plateaus, volcanic footridges, up-
lands, volcanic and lacustrine plains and bottomlands. Geologically,
the area is characterized by volcanic rocks (e.g. basalts, trachyte,
phonolites, pumice tuff and lavas) and associated sediments of
tertiary and quaternary age (McCall, 1967). The soils are also of
volcanic origin, which comprise andosols, planosols, vertisols,
nitisols, regosols, calcisols, solonetz or phaeozems (Wanjogu, Kibe,
Wagate, & Mwangi, 2010). The climate varies from cool and humid
to hot and humid depending on the altitude and topography.
Higher areas at Mau escarpment receive substantial rainfall
(w2000 mm), which decreases notably (w700 mm) on the lower
areas around Lake Nakuru. The rainfall pattern is bimodal with the
long rains falling between March and May and short rains between
November and December due to the seasonal north-south move-
ment of the inter-tropical convergence zone (Odada, Raini, &



Fig. 2. Geographical location of the study area.
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Ndetei, 2006). Floristically, indigenous and exotic tree species, e.g.
Pinus patula, Cupressus lusitanica, Eucalyptus spp., Prunus africana,
Arundinaria alpina, Juniperus procera, Olea europaea ssp. africana,
Olea hochstetteri, Podocarpus latifolius and Dombeya torrida, and
grass species, e.g. Cynodon dactylon, Digitaria scalarum and Pen-
nistum clandestinum, cover the area.

Data

The data sources were satellite-based remote sensors, fieldwork
and existing spatial databases. These are summarized in Table 1.

Remotely sensed data
Landsat 1 Multispectral Scanner System (MSS), Landsat 5 The-

matic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus
(ETMþ) imagery, acquired in January 1973, 1985, 2000 and 2011
were obtained from the USGS archive (http://earthexplorer.usgs.
gov/). These had been processed to level L1T (i.e. terrain-
corrected). Landsat data were selected due to their open accessi-
bility, historical record and suitable processing levels, cloud
coverage, swath, and spatial, spectral and temporal resolutions.

Field data
Fieldwork was conducted between July and August 2012 to

collect data for identifying the land cover types on Landsat imagery,
validating the extracted land cover map for 2011, and under-
standing land use/cover history of the area. The biophysical land
attributes (e.g. percent tree cover) were recorded and georefer-
enced using Garmin eTrex 30 handheld GPS device at 450 sampling
locations. Random sampling strategy was used to objectively select
the sampling units into the sample. The sampling units were
randomly generated using ArcGIS 10.1 with the scale of 30 m
selected to coincide with the spatial resolution of the Landsat im-
agery. Interviews were also conducted with key informants,
particularly, the local administrators, forest managers, farmers, el-
ders and community group leaders.

Ancillary data
Existing digital spatial data comprising the topographical maps,

Google Earth imagery and thematic layers (i.e. Africover land cover
map, administrative boundaries, towns, villages, roads, forests,
protected areas, rivers and elevation) were also obtained and
prepared to facilitate fieldwork, image classification, post-
classification processing and validation.

Data preparation and analysis

Image pre-processing, classification scheme design, image
classification, post-classification processing, spatial reclassification,
accuracy assessment and change detection were performed.

Image pre-processing
This involved rectifying the radiometric and geometric distor-

tions of the satellite data prior to classification. Firstly, the

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/


Table 1
Data characteristics.

Data type Date of acquisition Spatial scale Source

Remotely sensed data:
Landsat 7 ETMþ January 2000 Multi-spectral: 30�30 m USGS
(Path 161 row 060) Panchromatic: 15�15 m (http://earthexplorer.usgs.gov/)
Landsat 5 TM January 1985 & 2011 Multi-spectral: 30�30 m USGS
(Path 161 row 060) (http://earthexplorer.usgs.gov/)
Landsat 1 MSS January 1973 Multi-spectral: 60�60 m USGS
(Path 181 row 060) (http://earthexplorer.usgs.gov/)

Ancillary data:
Land cover (Africover) 2003 1: 200,000 FAO

(http://www.africover.org/)
Digital topographical maps

(Sheet 118/4, 119/1, 119/3, 132/2 &133/1)
1975, 1974, 1997, 1975 &1975 1: 50,000 Survey of Kenya

Google Earth imagery e e Google Inc.
GIS thematic layers (administrative, rivers,
towns, villages & roads)

e e ILRI
(http://www.ilri.org/gis)

Field data JulyeAugust 2012 Sampling unit: 30�30 m Field survey
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downloaded Landsat TM and ETMþ data for each date were
unzipped and 6 bands (excluding the thermal band) were stacked
to form multi-band images using ERDAS imagine 2011. Then, the
multi-band images were reprojected to the Universal Transverse
Mercator grid (Zone 37S, WGS 84 ellipsoid and datum) using the
nearest neighbour resampling method, geometrically co-registered
and subsets prepared. Finally, the image-based COST technique for
atmospheric correction coupled with a radiometric model was
applied to compensate for the systematic and random sensor noise,
as well as the atmospheric effects. This implemented the concept of
dark object subtraction (Chavez, 1996) to remove the atmospheric
effects in Landsat’s bands 1e5 and 7. The raw digital numbers were
first converted to at-satellite spectral radiance and then to
atmospherically-corrected reflectance with values ranging be-
tween 0 and 1. The image-based COST technique was adopted
because atmospheric profile data during the satellite overpass,
which are needed for absolute radiometric calibration, were not
available.

Classification scheme design
Due to lack of a standard land cover classification system for

remote sensing applications in Kenya, a classification nomenclature
was developed (Table 2). The land cover classes were defined based
Table 2
Land cover classification scheme.

Land cover class Definition

Forests-shrublands Areas covered by (i) >60% natural
or planted woody vegetation, which are >6 m
tall and have a crown density of >40%,
and; (ii) >60% natural or planted woody
vegetation, which are <6 m tall and have a crown
density of >30%. The latter also includes woody
vegetation with sparse foliage cover (10e30%)
and stunted growth (<5 m tall) found on the drier
parts of Lake Nakuru basin.

Grasslands Areas dominated by >60% grasses, grass-likes or herbs
often mixed with sparse trees, shrubs or scrubs (<20%)
and are managed either by agronomic,
forestry or ecological principles.

Croplands Areas where growing herbaceous crops account for >6
of the cover, or fields have been ploughed for planting

Built-up lands Areas characterized by >60% constructed or imperviou
materials (e.g. asphalt, concrete, buildings).

Bare lands Areas characterized by >60% soils (gravel, sand, silt, cla
rock outcrops, quarries or dry salts,
with or without vegetation (<10%).

Water bodies Open areas covered with water (e.g. Lake)
on the percentage of biophysical cover noted at the sampling sites
during fieldwork and also on modification of the definitions used
by Anderson, Harvey, Roach, and Witmer (1976) and the USGS’
National Land Cover Database (NCLD) 2006 (http://www.mrlc.gov/
nlcd06_leg.php). The main considerations were the spatial resolu-
tion of Landsat data being used and possibility of the classification
system to interface with the others.

Image classification, post-classification processing and spatial
reclassification

Partitioning, hybrid classification and spatial reclassification
approach was used to discriminate land cover types on the image
subsets using ERDAS imagine 2011. Firstly, the subset for each date
was further subdivided into a number of spectrally distinct seg-
ments, using the area of interest (AOI) tool, for separate classifica-
tion. This was to minimize classification errors due to spectral
confusionwithin the highly heterogeneous and fragmented scenes.
Unsupervised classification using ISODATA algorithmwas executed
to define 15 - 30 spectral clusters in each segment depending on the
complexity. The resultant clusters were assigned to the 6 land cover
classes (Table 2) based on ancillary and field data, and analyst’s
knowledge of the area. Where there was misclassification of pixels,
additional spectral signatures were extracted and merged with the
Anderson’s equivalent class NCLD’s equivalent class

Forest land Forest, shrubland

,
,

Rangeland Grassland/herbaceous

0%
crops.

Agricultural land Cultivated crops

s Built-up land Developed

y), Barren land Barren land

Water Open water

http://www.mrlc.gov/nlcd06_leg.php
http://www.mrlc.gov/nlcd06_leg.php
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://www.africover.org/
http://www.ilri.org/gis
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signatures from ISODATA clustering. These were then classified
using the maximum likelihood algorithm. See Campbell (2002) and
Lillesand et al. (2008) for an explanation of the algorithms. The land
cover classes in each classified segment were recoded and, there-
after, the reclassified segments for each date were mosaicked. In
post-classification processing, ancillary data, visual appraisal and
GIS functions (e.g. on-screen digitization, extraction by AOIs,
reclassification and mosaicking) were integrated to improve the
accuracy of the land cover maps. Lastly, a 3 � 3 majority filter was
applied to reduce noise on the final seamless land cover maps.

Accuracy assessment
The quality of the land cover maps was evaluated both quali-

tatively and quantitatively. Firstly, each land cover map and the
corresponding Landsat data were displayed on-screen and visually
inspected. Then the uncertainties related to the land cover products
of 1973, 1985, 2000 and 2011 were quantified by comparing them
with the topographical maps published in 1974, temporally-
invariant land cover data, Africover land cover map produced in
2003 (using Landsat TM images acquired in 1999) and ground data
collected in 2012 respectively. The temporally-invariant land cover
data were created using the steps described by Fortier, Rogan,
Woodcock, and Runfola (2011). These included: (i) overlaying the
imagery for 1973 (MSS) and 1985 (TM); (ii) identifying and digi-
tizing polygons at the centre of invariant sites (e.g. established ur-
ban areas and large forests), and; (iii) assigning land cover labels
using the topographical maps. The Africover land cover map was
also reclassified based on the classes shown onTable 2. Three sets of
600 random feature points were thereafter created on the
temporally-invariant land cover data, reclassified Africover land
cover map and topographical maps. The associated land cover at-
tributes were also extracted to these points. These sets of random
feature points, together with the 450 ground data, were compared
with the corresponding pixels on the land cover products of the
respective years to ascertain the number of correctly and incor-
rectly classified pixels for each land cover class. The results were
presented on conventional error matrices, from which statistical
measures of map accuracy (i.e. Kappa statistics, overall-, pro-
ducer’s- and user’s accuracy) were computed (Campbell, 2002;
Congalton, 1991; Foody, 2002).

Land cover change detection
The validated land cover maps for 1973 (resampled to 30 m),

1985, 2000 and 2011 were overlaid in post-classification compari-
son to detect the pixel by pixel land cover changes between 1973e
1985, 1985e2000, 2000e2011 and 1973e2011. The outputs were
cross-tabulation matrices showing the pathways, and change maps
showing the spatial patterns, of the LCC. The change maps were as
accurate as the product of the overall accuracies of the individual
land cover maps that produced them (Singh, 1989; Yuan et al.,
2005). Such outputs explain the popularity of post-classification
comparison method for change detection. It also reduces the
impact of radiometric and atmospheric differences because the
imagery are classified independently (Coppin et al., 2004; Lu et al.,
2004; Singh, 1989).

Results

Land cover classification and accuracy assessment

The spatial patterns of the six major land cover types in Lake
Nakuru drainage basin and Eastern Mau forest reserve in 1973,
1985, 2000 and 2011 are presented in Fig. 3. Table 4 shows that
forests-shrublands were dominant in 1973,1985 and 2000 covering
about 1067 km2, 893 km2 and 797 km2 respectively, but were
surpassed by croplands (953 km2) in 2011. Bare lands occupied the
least area that varied between 2 km2 and 7 km2 during this period.
Fig. 3 also shows that in 1973, only a few croplands were located in
the northern and southern parts, which by 1985 had diffused
centrally to cover Bagaria, Keriri, Naishi, Pwani mutukanio, Miti
mingi, Lare and Gichobo. The maps of 2000 and 2011 further reveal
awestward pattern of cropland expansion towards the EasternMau
forest. Thus, the forest-shrublands, which dominated the western
and middle regions in 1973, show a general westward pattern of
contraction. On the northern side of Lake Nakuru, the built-up
lands (i.e. Nakuru town and its environs) exhibit a west to east
growth pattern from 1973 to 2011. While on the eastern side,
around Lake Nakuru National Park, Soysambu and Elementaita, the
grasslands show a relatively stable pattern of dominance
throughout the period. This is because most of the land is protected
and dedicated to wildlife conservation and ranching. The water
bodies, mainly Lake Nakuru, also indicate this stability.

Table 3 shows that the overall cartographic accuracies of the
1973, 1985, 2000 and 2011 land cover maps were 88%, 95%, 80% and
89%, with overall Kappa statistics of 82%, 93%, 72% and 84%
respectively. Therefore, the accuracies of the resulting land cover
changemaps (Fig. 5), which are the products of overall accuracies of
the individual land cover maps, were 84% for 1973e1985, 76% for
1985e2000, 71% for 2000e2011 and 78% for 1973e2011. In addi-
tion, the user’s and producer’s accuracies achieved for all classes,
except for grasslands, were above 70%.

Land cover change detection

The magnitudes and the annual average rates of change for the
land cover types are shown in Table 4 and Fig. 4. Fig. 4 reveals that
most of the land cover changes were uni-directional except for the
bare lands and water bodies. Forests-shrublands, grasslands and
croplands had higher magnitudes of change compared to the built-
up lands, bare lands and water bodies during the three periods
(Table 4). More specifically, the forests-shrublands and grasslands
decreased by 428 km2 and 258 km2 at the annual average rates of
1% each, while croplands and built-up lands expanded by 660 km2

and 24 km2 at the annual average rates of 6% and 16% respectively.
Judging by the annual average rates of change, built-up lands were
the most dynamic having grown at the rates of 2%, 17% and 5%
respectively within the three periods. The built-up lands encom-
passes Nakuru town and its environs, where the population has
been growing rapidly at the rate of 5.6% per annum (Mubea &Menz,
2012).

Table 5 comprise the land cover change matrices showing the
nature of the land cover changes. Themajor diagonals represent the
amounts of each land cover type that did not change (persistence)
at a given timewhile the off-diagonals indicate the gains, losses and
trajectories of the conversions. For example, Table 5 (d) reveals that
out of the 1067 km2 of forests-shrublands in 1973, 530 km2 were
stable while 92 km2, 441 km2, 2 km2 and 1 km2 were lost to
grasslands, croplands, built-up lands and bare lands respectively.
The total forests-shrublands losses were 536 km2. Some of the
639 km2 of forests-shrublands in 2011 were gained from grasslands
(87 km2) and croplands (22 km2); hence, the total gains were
109 km2. Similarly, out of the 589 km2 of grasslands in 1973,
230 km2 remained unchanged while 87 km2, 250 km2, 21 km2 and
1 km2 changed to forests-shrublands, croplands, built-up lands and
bare lands respectively. Some of the 331 km2 of grasslands in 2011
were gained from forests-shrublands (92 km2), croplands (7 km2)
and bare lands (1 km2). Croplands increased markedly from
293 km2 in 1973 to 953 km2 after gaining 441 km2 and 250 km2

from forests-shrublands and grasslands respectively. Only 262 km2

of the croplands in 1973 were persistent while the rest were



Fig. 3. Land cover classification maps for Eastern Mau forest reserve and Lake Nakuru drainage basin.
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Table 3
Accuracy statistics (in %) for the land cover classifications.

Land cover class 1973 1985 2000 2011

Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s

Forests-shrublands 91 95 100 88 81 89 92 85
Grasslands 96 62 99 97 81 57 53 59
Croplands 71 99 83 100 78 87 91 90
Built-up lands 79 100 95 100 73 100 84 100
Bare lands 100 100 100 100 85 86 100 100
Water bodies 100 100 100 100 100 91 100 100
Overall accuracy 88 95 80 89
Overall Kappa 82 93 72 84

Table 4
Areal extent, magnitude and the annual average rates of land cover changes.

Land cover class Area (km2) Magnitude of change (km2) Average rate of change p.a (%)

1973 1985 2000 2011 73e85 85e00 00e11 73e11 73e85 85e00 00e11 73e11

Forests-shrublands 1067 893 797 639 �174 �96 �158 �428 �1 �1 �2 �1
Grasslands 589 531 421 331 �58 �110 �90 �258 �1 �1 �2 �1
Croplands 293 521 714 953 228 193 239 660 6 2 3 6
Built-up lands 4 5 18 28 1 13 10 24 2 17 5 16
Bare lands 4 7 7 2 3 0 �5 �2 6 0 �6 �1
Water bodies 42 40 40 43 �2 0 3 1 0 0 1 0
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replaced by forests-shrublands (22 km2), grasslands (7 km2) and
built-up lands (2 km2). Lastly, the growth of built-up lands from
4 km2 in 1973 to 28 km2 in 2011 came at the expense of forests-
shrublands (2 km2), grasslands (21 km2) and croplands (2 km2).
These changes reflect the land cover dynamics, but it is also
acknowledged that some may be attributed to classification and
data errors. For instance, even though changes from croplands to
forests-shrublands and grasslands may be explained by the agro-
forestry practices and agricultural cycles in parts of the area, clas-
sification errors cannot also be ruled out.

The spatial patterns of the land cover changes are displayed on
Fig. 5. It shows that between 1973 and 1985, the major hotspots of
the forest-shrubland conversions were distributed in the mid
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regions (e.g. Gichobo, Naishi, Keriri and Bagaria) and northern side
of Lake Nakuru (e.g. Menengai). Between 1985 and 2000, these
conversions shifted to the western side spanning Baraget, Maria-
shoni, Sokoro, Gichage, Nessuiet, Logoman, Likia and Sururu. In the
last period, forest-shrubland conversion sites not only occurred in
the west, but also in the south (e.g. Kiambogo) and around Lake
Nakuru National park. Similarly, between 1973 and 1985, grassland
transitions were located in the mid and southern regions. Between
1985 and 2000, these conversions spread to other areas in the west
(e.g. Teret and Likia), east (e.g. Mwariki), north (e.g. Tuinuane and
Nakuru) and south (e.g. Kiambogo and Miti mingi). In the final
period, 2000e2011, the western part, particularly Mariashoni,
Gichage, Nessuiet and Sokoro, became the hotspots of grassland
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Table 5
Nature of the land cover changes from 1973 to 2011 (area in km2).

(a) 1973e1985

1973

Fs G C Bt B W Total Gain

1985 Forests-shrublands (Fs) 781 102 10 0 0 0 893 111
Grasslands (G) 140 352 37 1 0 0 531 179
Croplands (C) 144 131 246 0 0 0 521 275
Built-up lands (Bt) 0 2 0 2 0 0 5 3
Bare lands (B) 1 2 0 0 2 2 7 5
Water bodies (W) 0 0 0 0 0 40 40 0

Total 1067 589 293 4 2 42 1997
Loss 285 237 47 2 0 2

(b) 1985e2000

1985

Fs G C Bt B W Total Gain

2000 Forests-shrublands (Fs) 658 106 32 0 1 0 797 139
Grasslands (G) 133 262 25 0 1 0 421 159
Croplands (C) 99 153 461 0 0 0 714 253
Built-up lands (Bt) 2 9 3 5 0 0 18 13
Bare lands (B) 1 1 0 0 5 0 7 2
Water bodies (W) 0 0 0 0 0 40 40 1

Total 893 531 521 5 7 40 1997
Loss 235 269 59 0 2 0

(c) 2000e2011

2000

Fs G C Bt B W Total Gain

2011 Forests-shrublands (Fs) 542 56 41 0 0 0 639 97
Grasslands (G) 95 209 22 3 2 0 331 122
Croplands (C) 157 146 650 0 0 0 953 304
Built-up lands (Bt) 1 10 1 15 0 0 28 13
Bare lands (B) 0 0 0 0 1 0 2 1
Water bodies (W) 1 0 0 0 3 40 43 3

Total 797 421 714 18 7 40 1997
Loss 255 213 65 3 5 0

(d) 1973e2011

1973

Fs G C Bt B W Total Gain

2011 Forests-shrublands (Fs) 530 87 22 0 0 0 639 109
Grasslands (G) 92 230 7 1 1 0 331 101
Croplands (C) 441 250 262 0 0 0 953 691
Built-up lands (Bt) 2 21 2 3 0 0 28 25
Bare lands (B) 1 1 0 0 1 0 2 2
Water bodies (W) 1 0 0 0 0 42 43 2

Total 1067 589 293 4 2 42 1997
Loss 536 359 31 1 1 0

Note: Gain is the sum of the off-diagonal values in a row, loss is the sum of the off-
diagonal values in a column.
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conversions. Finally, the spatial distribution pattern of cropland
change was rather patchy. Between 1973 and 1985, the changes
were located in the southern and northern parts, but in the next two
periods, patches of conversions appeared on all sides of the area.

Discussion

Land cover classification and accuracy assessment

The classification results have shown that forests-shrublands
dominated Lake Nakuru Basin and Eastern Mau Forest Reserve in
1973,1985and2000, butwereovertakenbycroplands between2000
and 2011. This clearly indicates the on-going transition from natural
to human-dominated environment and from timber production to
crop production (agriculture) as the major land use the area.

The overall accuracies of the land cover maps for 1973, 1985,
2000 and 2011 were above 80% and, hence, met the target accuracy
threshold of 80e85% for thematic mapping in satellite remote
sensing (Treitz & Rogan, 2004). These maps were also 70e80%
better than what was expected from random assignment of pixels
to classes based on their overall Kappa coefficients. The user’s ac-
curacies imply that over 70% of each classified land cover type
(except for grasslands) could be reliably located on the ground by
the end-users. Similarly, the producer’s accuracies mean that over
70% of each land cover type (except for grasslands) was correctly
classified by the analyst. Despite the per-class variations, the ac-
curacy levels are generally good considering the complexity of the
study area. Thus, the land cover maps qualify for other applications
depending on the level of accuracy desired by the users. For
instance, for change detection studies as this one, some of the
differences observed over time would be spurious because the
resultant change maps would be just as accurate as the product of
the overall accuracies of the bi-temporal land cover maps that
produced them (Foody, 2002).

The classification errors are mainly attributed to the spectral
confusion between croplands and grasslands and, between forests-
shrublands and croplands. These were compounded by the het-
erogeneity of the landscape and agricultural dynamics that caused
conversions from grass to crops and vice versa at different periods.
This explains the low accuracy values obtained for grasslands.
Despite these challenges, the partitioning, hybrid classification and
spatial reclassification technique that was used proved its utility by
producing satisfactory classification results for the study area. It can
be replicated in mapping other complex landscapes in Kenya. But
the ultimate success of such projects lies in application of suitable
techniques that integrate spectral, spatial and contextual infor-
mation with GIS functions and human intelligence.

Application of temporally-invariant land cover data to evaluate
the quality of the land cover map for 1985 satisfactorily resolved
the problem of missing historical ground data for validation. This
complements the independent visual interpretation of unclassified
satellite imagery that has been employed in other studies (Biro,
Pradhan, Buchroithner, & Makeschin, 2011) to extract information
for validating historical land cover maps. Reference data per se are
never perfect (Congalton, 1991; Foody, 2010); hence, it is also
instructive to highlight some of the uncertainties associated with
the ones used here. Firstly, the Africover land cover map was
vector-based, produced through manual per-field classification of
Landsat imagery, whereas the corresponding classified map was
raster-based, produced through automatic per-pixel classification
of Landsat imagery. The coarseness of the former’s spatial unit for
comparison could, for example, increase its degree of agreement
with the latter. Moreover, the classification scheme of the Africover
land cover map and the one used in the study had different levels of
detail, so the former was reclassified to harmonize the map leg-
ends. Reclassification of mixed polygons that had been assigned 2
different land cover codes was a potential source of bias. Thus, only
pure land cover polygons were included in the reference sample in
order to retain the value of direct comparison of the maps. Lastly,
the timing of Landsat image acquisition in 2011 and fieldwork did
not coincide. The ground data were collected in July and August
2012, while the imagery was acquired in January 2011. Thus, some
areas were bare during image acquisition but fallow, cultivated or
with grass during fieldwork. The appropriate adjustments were
made though using the crop calendar, land use history, ancillary
spatial data and analyst’s experience and knowledge.

Land cover changes

The land cover change results from 1973 to 2011 have been
presented in terms of the magnitude, annual average rates, nature
and spatial distribution. The most important land cover changes



Fig. 5. Maps showing the spatial distribution of the land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin from 1973 to 2011.
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revealed during this 38-year period were forest-shrubland and
grassland conversions in favour of croplands and built-up lands.
This concurs with the reports given by Odada et al. (2006) and
UNEP (2009). Similar trends were also observed in the upper
catchment of Njoro River (Baldyga et al., 2007), which falls within
the study area, and also in the neighbouring Lake Baringo catch-
ment (Kiage, Liu, Walker, Lam, Huh, 2007). Such losses of natural
elements in the landscape affect the climate (Hesslerová & Pokorný,
2010; Otieno & Anyah, 2012), soil properties (Biro et al., 2011;
Braimoh & Vlek, 2004), hydrology and water quality (Mati, Mutie,
Gadain, Home, & Mtalo, 2008; Palamuleni, Ndomba, & Annegarn,
2011; Shivoga et al., 2007) and biodiversity (Raini, 2009). There-
fore, holistic and sustainable environmental strategies that blend
restoration and conservation of the natural ecosystems with
enhancement of agricultural productivity should be formulated and
implemented.

Furthermore, the land cover change maps showed that the
forest-shrubland conversion hotspots, which should be targeted for
restoration, developed in the mid, northern, western and southern
regions at different times. These are consistent with the historical
accounts of land uses and the biophysical and societal processes
that have operated in these parts. For example, Eastern Mau in the
west was covered by indigenous forests and inhabited by the
Ogieks, who were hunter-gatherers and bee keepers, in the pre-
colonial era (Krupnik, 2004). In 1900s, the colonial government
began felling the indigenous trees and replacing them with fast-
growing exotic species to meet the rising industrial and domestic
demand for wood. Consequently, the shamba system, which
allowed farmers to grow food crops in small plots where trees had
been cut and concurrently plant and nurture tree seedlings, was
introduced. But its abuse, particularly cultivation of natural forests
in the ensuing years, led to its ban in 1987. In 1980s, logging was
mostly done by commercial enterprises (e.g. Timsales Ltd). Defor-
estation in 1990s, which occurred at the annual average rate of
Fig. 6. (a) Croplands expansion; (b) charcoal burning, and; (c)
about 1% (Table 4), followed illegal encroachments and excisions of
parts of the Eastern Mau forest (Odada et al., 2006). In theory, the
government exerted powers provided by the Forest Act 1942 (Cap.
385), to excise about 353 km2 plantation forests to resettle the
1990s victims of ethnic clashes fromMolo, Likia, Mauche and Njoro,
and about 3000 Ogiek families that lived in the indigenous forests
(Government of Kenya, 2009). But in reality, patronage politics,
where votes were rewarded with forest resources, especially with
the advent of multi-partyism in 1990s (Klopp, 2012), ensured that
mostly people from particular districts (i.e. Koibatek, Baringo,
Bomet, Kericho, Bureti and Transmara) were allocated land in
Mariashoni, Nessuiet, Teret, Likia, Baraget and Sururu forests. The
weak policy, legal and institutional framework at the time meant,
for instance, that environmental impact assessments were not
conducted for the forest excisions and settlement schemes, and
that stakeholders did not participate in forest management. Clear-
cutting and burning mostly preceded cultivation of the allotted
forest lands in late 1990s and early 2000s. And upon depletion of
trees, the adjacent indigenous forests obviously became the target
for illegal logging and charcoal burning in 2000s (Fig. 6).

Like in Eastern Mau, Gichobo, Lare, Bagaria and Naishi locations,
in the mid regions, were scarcely populated and mostly covered by
woody vegetation in early 1970s. Then in mid-1970s, the govern-
ment resettled evictees from other forests (e.g. Sabatia and Maji
mazuri) in these areas. Workers from the nearby forests (e.g. Nes-
suiet, Logoman and Likia) and white settlers’ farms, and people
from other areas (e.g. Central Province) also benefited from these
settlement schemes. Clearance of natural vegetation preceded
extensive cultivation in 1980s. Additionally, vegetation and large-
scale white settlers’ farms dominated Kiambogo location in the
south prior to 1973. But due to post-independence changes, some
of the farms were subdivided by the government and allocated to
the farm workers, women groups and local people in 1973, 1978
and 1983. This initiated the fragmentation of this rural landscape.
illegal logging in Eastern Mau forest. Source: Were, K.O.
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Conclusions

In conclusion, the major land cover types in Lake Nakuru
drainage basin and Eastern Mau forest reserve in 1973, 1985, 2000
and 2011 were forests-shrublands, grasslands, croplands, built-up
lands, bare lands and water bodies. Partitioning, hybrid classifica-
tion and spatial reclassification technique used for the discrimi-
nation of these land cover types on Landsat imagery thus provides a
promising alternative for classification of the complex tropical Af-
rican landscapes. Within the 38-year period, notable land cover
transformations were detected. The gross loss was highest for
forests-shrublands followed by grasslands, while the gross gainwas
highest for croplands followed by built-up lands. Obviously, the
spatial scale of human activities widened with time. The main
hotspots of these land cover changes occurred in all directions, at
different times, depending on the biophysical and societal pro-
cesses in operation. Therefore, policies that target both restoration
and conservation of natural ecosystems, as well as enhancement of
agricultural productivity are recommended for environmental
sustainability and socio-economic well-being in the area. Our
outputs would provide a good base of geospatial information for
such policy formulation. Future research needs to assess the im-
pacts of the land cover changes on ecosystem services (e.g. carbon
storage) and to project the patterns of future land cover changes.
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Abstract Understanding the linkages between the

biogeophysical and socio-economic processes that

operate at different spatial and temporal scales is

important for land cover change mitigation. This study

analysed several factors that explained the forest-

shrubland conversions, grassland conversions and

cropland expansions in Lake Nakuru drainage basin

and Eastern Mau forest reserve in Kenya from 1985 to

2011. Logistic regression models were developed

using a combination of remote sensing-based land

cover data, and geographical information systems-

based geophysical and socio-economic data (i.e.,

temperature, rainfall, elevation, slope, aspect, topo-

graphic wetness, curvature, soil pH, soil cation

exchange capacity (CEC), population density and

distance to road, river and town). The results were

varied; for example, in the period 1985–2000, forest-

shrubland conversions were linked to distance to road),

distance to town, soil pH, soil CEC, rainfall, topo-

graphic wetness, curvature and aspect. The same

factors, in addition to slope and distance to river,

also determined the likelihood of forest-shrubland

conversions in the period 2000–2011. Overall, signif-

icance of the determining factors varied depending on

time and nature of land cover change. For example,

topographical factors influenced grassland conver-

sions in the period 1985–2000, while soil-related

factors did not. But in the period 2000–2011, the

converse was true. Therefore, policies for restoration,

conservation and sustainable management of critical

ecosystems (e.g., forests) should be spatially targeted

and time-specific. These results broaden our knowl-

edge of land cover dynamics in this locality, and

provide a base for effective environmental policy

formulation, planning and management.

Keywords Land cover change � Driving

factors � Spatio-temporal analysis � Logistic

regression � GIS � Eastern Mau � Lake Nakuru

Introduction

Land cover change has become the focus of geo-

graphical research and discourse due to the unprece-

dented rates and magnitude of human alterations of the

Earth’s surface (Odada et al. 2009). The rising human

population and the associated demand for food, fuel,

water and shelter has been the key driver of these

changes. Global extents of croplands, pastures, plan-

tations and urban areas have expanded at the expense
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of natural vegetation over the years. For instance, FAO

(2011) reported that the world’s forests shrunk by an

average of 16 million ha per year in 1990s, but this

reduced to 13 million ha per year in the last decade. In

Africa, the net forest loss was estimated at 4 million ha

per year between 1990 and 2000, but this reduced to

3.4 million ha per year between 2000 and 2010. Such

land cover changes have significantly impacted on

food security, climate, biodiversity, biogeochemical

cycles, water availability, soil quality and human

welfare (Foody 2002; Overmars and Verburg 2005;

Heistermann et al. 2006; Potter et al. 2007). To

mitigate these impacts through effective policies, it is

important to understand the interactions between the

biogeophysical and socio-economic processes, which

operate at various spatial and temporal scales, leading

to the land cover changes and land degradation

(Overmars and Verburg 2005).

Theories, observations and models are the essential

tools for enhancing our understanding of land cover

change processes. Thus, modelling and prediction

have been mainstreamed in land cover change

research. The different modelling techniques that

have been applied to analyse the processes, drivers

and consequences of land cover changes can be

grouped into: (1) empirical–statistical models, where

the observed land cover changes and explanatory

variables are analysed using multivariate statistics

(e.g., logistic regression); (2) stochastic models, where

the processes that move in a sequence of steps, through

a set of states, are described (e.g., Markov chain

models); (3) optimisation models, where economic

techniques of optimal allocation of resources are

applied (e.g., linear programming and general equi-

librium models); (4) dynamic, process-based simula-

tion models, where the biophysical and socio-

economic processes are simulated and run systemat-

ically using some differential equations (e.g., cellular

automata models), and; (5) integrated models where

existing models are coupled with existing tools for

spatially explicit evaluation and allocation of land

resources (Lambin et al. 2000; Aspinall 2004; Heis-

termann et al. 2006; van Dessel et al. 2011).

Regression-based empirical models have been the

most widely used in land cover change research for

explanation of different processes of change and

prediction of future changes (Millington et al. 2007).

In particular, logistic regression has been used to

explain the driving mechanisms of urban growth

(Braimoh and Onishi 2007; Hu and Lo 2007; Huang

et al. 2009; Wu et al. 2009; Li et al. 2013); defores-

tation, forest regrowth, expansion and fires (Chomitz

and Gray 1996; Schneider and Pontius 2001; Munroe

et al. 2004; Chowdhury 2006; Mertens et al. 2008; Crk

et al. 2009; Wyman and Stein 2010; Badia et al. 2011;

Müller et al. 2011, 2012; Muriuki et al. 2011; Schmitt-

Harsh 2013); cropland abandonment, degradation and

expansion (Jasinski et al. 2005; Overmars and Verburg

2005; Gellrich et al. 2007a, b; Rutherford et al. 2008;

Serra et al. 2008; Lakes et al. 2009; López and Sierra

2010; Dubovyk et al. 2013; Prishchepov et al. 2013);

and, grassland conversions and degradation (Li et al.

2012; Monteiro et al. 2011). Logistic regression has

been popular because it: (1) can model binary and non-

normally distributed response variables (e.g. land

cover change); (2) does not assume linear relationships

between the response and explanatory variables; (3)

incorporates both categorical and continuous explan-

atory variables, and; (4) can be used directly for spatial

prediction of future land cover changes (Millington

et al. 2007; Serra et al. 2008; Martinez et al. 2011; Li

et al. 2013). Regression-based land cover change

modelling has also been stimulated by the improved

availability of geographical information systems (GIS)

and remotely sensed data, through government agen-

cies, private enterprises, non-governmental organisa-

tions and communities.

In Kenya, the major watersheds have experienced

rapid land cover changes for long periods. Lake

Nakuru drainage basin, including Eastern Mau forest

reserve in the Rift Valley system, is one of the hotspots

that has been in a state of flux over the last three

decades (Daniels and Bassett 2002; Baldyga et al.

2007). It is an important study area because Eastern

Mau forest forms part of the largest closed-canopy

montane forest ecosystem in Eastern Africa. The

forest is also among the five important water catch-

ment areas in Kenya and offers various ecosystem

services. For instance, it is a major sink of CO2, which

is the major driver of global warming and climate

change; hence, its role in the implementation of

REDD1 programme in Kenya is incontestable. Lake

Nakuru drainage basin has been transformed from a

sparsely populated and densely vegetated area to a

highly populated, rapidly urbanizing and extensively

1 Reduction of Emissions from Deforestation and forest

Degradation.
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cultivated area. Were et al. (2013) studied the

dynamics of land cover patterns in this area from

1973 to 2011 and found that forests-shrublands and

grasslands had decreased by about 428 and 258 km2,

respectively, at the annual average rates of 1 % each,

while croplands and built-up lands had expanded by

660 and 24 km2, at the annual rates of 6 and 16 %,

respectively. Other studies in the area also revealed

that these land cover changes had affected the water

quality (Shivoga et al. 2007), hydrological regime

(Mwetu et al. 2009), temperature distribution (Hes-

slerová and Pokorný 2010) and biodiversity (Kibichii

et al. 2007; Raini 2009). However, no studies have

been designed to analyse the linkage between the land

cover change processes and the surrounding socio-

economic and biogeophysical conditions. This is

largely attributed to shortage of appropriate spatial

data and analytical tools. Such analyses are of great

importance for the development of effective strategies

to alleviate the impacts of the on-going land cover

changes, restore and sustainably manage land

resources in the area.

This study built on the work of Were et al. (2013) by

applying binary logistic regression and geographic

information techniques in a spatially explicit frame-

work to analyse the geophysical and socio-economic

factors that related to and explained the variations in

the three major land cover change processes (i.e.,

forest-shrubland conversions, grassland conversions

and cropland expansions) observed in Lake Nakuru

drainage basin between 1985 and 2011. It was

hypothesized that different geophysical and socio-

economic factors with complex relationships could

explain the variations in the foregoing land cover

conversions.

Materials and methods

Study area

The study area is Lake Nakuru drainage basin and

Eastern Mau forest reserve, which covers about

2,000 km2. It lies along the Kenyan Rift Valley

system, between latitudes 0�100–0�450S and longi-

tudes 35�400–36�50E (Fig. 1), with the altitude ranging

from 1,750 to 3,090 m above sea level. Makalia,

Enjoro, Naishi, Lamuriak, Enderit and Ngosorr river

systems drain down the area into Lake Nakuru,

whereas Nessuiet and Rongai rivers flow into Lake

Bogoria and Baringo, respectively. The landforms

include mountains and major scarps, hills and minor

scarps, plateaus, volcanic footridges, uplands, volca-

nic and lacustrine plains and bottomlands. The major

soils are Andosols, Planosols, Vertisols, Nitisols,

Regosols, Calcisols, Solonetz and Phaeozems (Wan-

jogu et al. 2010), of which the parent materials

originated from volcanic rocks (e.g., basalts, trachyte,

phonolites, pumice tuff and lavas) and associated

sediments of tertiary–quaternary age (McCall 1967).

The climate varies from cool and humid to hot and

humid depending on the altitude and topography.

Higher areas at Mau escarpment receive substantial

rainfall (*1,200 mm), which decreases notably

(*700 mm) on the lower areas around Lake Nakuru.

The rainfall pattern is bimodal with the long rains

falling between March and May and short rains

between November and December due to the seasonal

north–south movement of the inter-tropical conver-

gence zone (Odada et al. 2006). The vegetation

comprises grasslands and scrublands in the lower

parts, acacia trees along the lakeshore, riverine

vegetation along the river courses, and forests in the

higher areas. The major land use systems, which also

contribute to the human and national economy, are

agriculture, ranching, pastoralism, forestry, urban and

industrial centres, and tourism and wildlife conserva-

tion. Land ownership is varied with the government

mainly owning the national park and forest reserves,

subsistence farmers owning the small-scale farms, and

commercial farmers/ranchers leasing the large-scale

farms/ranches. Lake Nakuru drainage basin is also an

important centre for a constantly growing human

population. Currently, it has over 1.5 million inhab-

itants with over 300,000 living in the rapidly expand-

ing Nakuru Municipality (www.opendata.go.ke/). The

rest live in small towns, market centres and rural

settlements.

Data sources, geoprocessing and geodatabase

development

The data used in this study are summarized in Table 1,

while details of data preparation and creation of a

geodatabase are provided in the following sub-

sections.
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Response variables

The land cover change maps of the study area formerly

produced by Were et al. (2013) for the periods

1985–2000 and 2000–2011 were used. These maps

were produced through classification of multi-tempo-

ral Landsat TM (1985 and 2011) and ETM? (2000)

imagery using partitioning, hybrid classification and

spatial reclassification methods. These yielded three

land cover maps (i.e., for 1985, 2000 and 2011) each

showing the six main land cover types; namely,

forests-shrublands (i.e., woody vegetation), grasslands

(i.e., herbaceous vegetation), croplands, built-up

lands, bare lands and water bodies. The land cover

maps were validated and overlaid in post-classifica-

tion comparison to detect the land cover changes

between 1985–2000 and 2000–2011. The accuracies

of the maps for 1985, 2000 and 2011 were 95, 80 and

89 %, respectively; hence, the accuracies of the

resultant land cover change maps were 76 % for

1985–2000 and 71 % for 2000–2011 (i.e., products of

overall accuracies of the respective land cover maps).

The three important processes of land cover changes

that were detected are: (1) forest-shrubland conver-

sions to other land cover types; (2) grassland conver-

sions to other land cover types, and; (3) cropland

expansions from other land cover types. These formed

the basis for preparing the maps of response variables

(i.e., the presence or absence of land cover change).

Since the land cover change information was dichot-

omous (i.e., change vs no-change), binary maps for the

three significant land cover change processes at each

period were produced. The maps highlighted areas of:

(1) forest conversions versus stable forests; (2)

grassland conversions versus stable grasslands, and;

(3) conversions to croplands versus stable croplands.

The map pixels that represented areas of change were

coded 1, while those that represented areas of no-

change were coded 0. Overall, six binary maps of

response variables were created.

Fig. 1 Geographical location of the study area
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Explanatory variables

A suite of thirteen potential explanatory variables

(Table 1) were selected a priori based on existing

theories of land use, fieldwork experience, data

availability and literature review (Chomitz and Gray

1996; Geist and Lambin 2002; Lambin et al. 2003;

Braimoh and Vlek 2005; Aguiar et al. 2007). These

were categorized as either geophysical or socio-

economic variables according to the natural or acces-

sibility conditions of the environment. Policy, gover-

nance and institutional factors (e.g. land tenure,

political actions, etc.) had also influenced processes

(e.g., deforestation) that drive land cover changes in

the area. But, they were not included in the analyses

due to lack of spatial dataset that represented them.

The geophysical variables were rainfall, temperature,

soil cation exchange capacity (CEC), soil pH, eleva-

tion, slope, aspect, topographic wetness index (TWI)

and curvature. Climate data were obtained from www.

worldclim.org, soil data from Kenya Soil Survey and

digital elevation model (DEM) from CGIAR consor-

tium for spatial information (http://srtm.csi.cgiar.org/).

Primary and secondary terrain attributes (i.e., slope and

aspect, TWI and curvature) were extracted from the

DEM.

The socio-economic variables comprised distance

to road, distance to river, distance to town and

population density. Feature datasets including rivers,

roads and towns were obtained from the International

Livestock Research Institute database (www.ilri.org/

gis), while population density data for 1989 and 2009

census were from the Kenya open database (www.

opendata.go.ke/). Additional towns, rivers and roads

were also digitized on-screen from digital topograph-

ical maps. Proximity to the road, river or town was

calculated as Euclidean distance.

Each feature dataset was rasterized; thereafter, all

the raster maps were clipped according the extents of

the study area, and transformed to the Universal

Transverse Mercator projection system, Zone 37S,

WGS 84 ellipsoid and datum (Fig. 2). Lastly, the data

Table 1 Summary of the data used for logistic regression modelling

Variable Unit Data type Proxy for Source

Response

Forest-shrub conversions 0–1 Binary Classification of multi-temporal

Landsat imagery (Were et al. 2013)Grassland conversions 0–1 Binary

Cropland expansions 0–1 Binary

Geophysical

1. Rainfall mm Continuous Water availability www.worldclim.org

2. Temperature �C Continuous Warmth www.worldclim.org

3. Elevation m Continuous Climatic elements, land form DEM (http://srtm.csi.cgiar.org)

4. Slope � Continuous Drainage, erosion hazard DEM

5. Aspect � Continuous Exposure to the Sun DEM

6. Curvature – Continuous Drainage DEM

7. Topographic wetness

index

– Continuous Drainage, soil moisture DEM

8. Soil pH 0–14 Continuous Soil quality Kenya Soil Survey

9. Soil CEC cmol/kg Continuous Soil quality Kenya Soil Survey

Socio-economic

10. Distance to road km Continuous Land accessibility www.ilri.org/gis; Survey of Kenya

11. Distance to town km Continuous Market accessibility www.ilri.org/gis; Survey of Kenya

12. Distance to river km Continuous Water accessibility www.ilri.org/gis; Survey of Kenya

13. Population density (1989

and 2009)

Persons/sq. km Continuous Population pressure Kenya National Bureau of statistics

via www.opendata.go.ke
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Fig. 2 Maps showing the spatial distribution of some of the explanatory variables
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were resampled to 100 m, and a geodatabase built.

The geoprocessing tasks were performed using Arc-

GIS� 10.1, SAGA and ERDAS imagine� 2011

software.

Statistical modelling framework

Sampling design

Spatially balanced random points were sampled from

the six binary maps of response variables; thus, six sets

of sample points were created. The total sample points

per set were equivalent to 0.5 % of the pixels

constituting the respective binary map. Thereafter,

the sample points, coupled with the maps of explan-

atory and response variables, were overlaid in order to

extract attribute values from the map pixels to the

corresponding sample points. The attributes also

included the X and Y coordinates for each sample

point to ensure that the subsequent analyses were

spatially explicit, and also to facilitate the testing for

spatial autocorrelation in the model residuals. Each set

of sample points was cleaned (e.g., by deleting

spurious values) and, subsequently, used for model

training.

Exploratory data analysis

Once the dataset for model training were prepared,

pairwise Pearson’s product-moment correlation ana-

lysis was conducted to detect potential multi-collin-

earity. Multi-collinearity can cause inefficient

parameter estimates and inaccurate measures of sta-

tistical significance. If the Pearson’s correlation coef-

ficient between two explanatory variables exceeded

0.8, only one of them was retained for model building

(Menard 2002). An explanatory variable was also

excluded from a model if its variance inflation factor

(VIF) exceeded 10 (Montgomery et al. 2006).

Descriptive statistics, i.e., the means and standard

deviations of the explanatory variables, were also

estimated prior to model building.

Multiple logistic regression modelling

The response variable was categorical and dichoto-

mous; so, binary logistic regression was the most

suited method to model the probability of occurrence

of each land cover change process given the set of

explanatory variables in Table 1 (Müller et al. 2011).

The formula for logistic regression model is:

log
pðxÞ

1� pðxÞ
� �

¼/ þ
Xn

i¼1

bixi þ e ð1Þ

where p(x) is the probability that the response variable

(y) equals 1, � is the constant (or intercept), b is the

vector of estimated coefficients of the explanatory

variables xi, and e is the error term. The ratio
pðxÞ

1�pðxÞ is

called the odds, while log
pðxÞ

1�pðxÞ
� �

is called the log-

odds or logit transformation of p(x). After back-

transformation, the response variables are expressed

as conditional probabilities, in the interval [0, 1], as

follows:

bpðxÞ ¼ e/þ
Pn

i¼1
bixi

1þ e/þ
Pn

i¼1
bixi

ð2Þ

Full models were fitted using the maximum likelihood

estimator and later reduced by step-wise backward

elimination method of variable selection. Several full

models were tested in the process. The significance of

the model parameters and logistic regression models

were determined by Wald statistic and likelihood ratio

statistic respectively, while the six simplest models

with adequate fit to the data were selected based on

Akaike information criterion (AIC) (Agresti 2007).

The simplest model was the one that minimized:

AIC ¼ �2ðloglikelihood � number of parameters

in the modelÞ ð3Þ
Model adequacy was also checked using residual

plots, measures of influence and leverage (e.g., Cook’s

D), Pearson v2 statistic and pseudo-R2 (i.e., Nage-

lkerke-R2). Spatial autocorrelation in the residuals of

the models was measured using the Global Moran’s

I (Overmars et al. 2003). The Moran’s I values ranged

between -1 and ?1 with positive values indicating

positive autocorrelation and vice versa, and values

close to 0 signifying low spatial autocorrelation (i.e.,

low clustering of similar residuals). Lastly, the

discriminatory power of the models was summarized

by the area under the receiver operating characteristic

(ROC) curve (AUC), based on predicted conditional

probabilities from tenfold cross-validation procedure.

Using this unbiased procedure, the sample points were
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split into 10 equal-sized folds; thereafter, each fold

was randomly selected for testing the models fitted to

the other ninefolds of the data. This way, each

observation was predicted once (as an out-of-sample

prediction), and the prediction errors calculated. The

ROC curve plotted the sensitivity (or true positive

rate) against 1-specificity (or false positive rate) for a

range of cut-offs that could be applied to interpret bpðxÞ
as actual land cover change. The AUC showed the

probability of the models ranking a randomly chosen

positive instance (i.e., change) higher than a randomly

chosen negative instance (i.e., no-change). A measure

of 0.5 indicated random performance, while a measure

of 1 indicated perfect performance. Detailed explana-

tions of ROC curves have been provided elsewhere

(Fawcett 2006; Pontius and Schneider 2001). The

statistical procedures were conducted using R version

2.15.0 (R Development Core Team 2012) and Mini-

tab� 16.

Results

Exploratory data analysis

Correlation between the explanatory variables was

generally low and never exceeded 0.7, except for

rainfall and temperature (-0.75), elevation and

rainfall (0.79), and elevation and temperature

(-0.98) (Table 2). The highly correlated variables

were not used simultaneously in model parameter-

ization, in order to avoid multi-collinearity prob-

lems. Absence of multi-collinearity is also

evidenced by the low VIFs (\10) of the variables

that were used to estimate the parameters of the

models (Tables 3, 4).

Models of land cover changes between 1985

and 2000

Table 3 presents the logit models of forest-shrubland

conversions, grassland conversions and cropland

expansions for the period 1985–2000. It provides the

parameter estimates, odds ratios and VIF of the

explanatory variables in each model. The table also

gives the strength of spatial autocorrelation, goodness-

of-fit, significance and discriminatory power of the

models. Figure 3 illustrates the performance of the

three models. T
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Forest-shrubland conversions model

According to Table 3, the effects of rainfall, soil pH,

soil CEC, TWI, aspect, curvature and distance to road

and town on forest-shrubland conversions were sig-

nificant, while the effects of slope, population density

and distance to river were not. An increase in TWI,

curvature and soil CEC by 1 unit multiplied the odds of

forest-shrubland conversions by 1.43, 1.07 and 1.06,

respectively, while an increase in distance to road,

distance to town and soil pH by 1 unit multiplied the

odds by 0.71, 0.83 and 0.75, respectively. Even though

the effects of rainfall and aspect were significant, the

magnitude of their effects was negligible. Their odds

ratios (i.e., 1 each) also indicate that increasing them by

1 unit neither increased nor decreased the likelihood of

forest-shrubland conversions. The P value for the

likelihood ratio statistic is small (0.00) and the P value

for the Pearson v2 statistic is large (0.52); thus, there is

evidence that the forest-shrubland conversions model

was significant and an adequate fit to the data. The high

AUC value (0.81) indicates very good discrimination

between the presence and absence of forest-shrubland

conversions by the model, while the low Moran’s I

(0.16) indicates very weak positive spatial autocorre-

lation in the response. The Nagelkerke-R2 shows that

the model explained 38 % of variability in the presence

of forest-shrubland conversions.

Grassland conversions model

The results reveal that grassland conversions were

explained largely by factors related to climate, drain-

age and accessibility; soil and demographic factors

were not important (Table 3). The probability of

grassland conversions decreased by 27 %, 15 %, 18 %

and 11 % for every 1 unit increase in distance to river,

distance to road, TWI and curvature, respectively, and

increased by 4 % and 2 % for every 1 unit increase in

distance to town and slope, respectively. Just like in

Table 3 Summary statistics of the logistic regression models for 1985–2000

Explanatory variable Forest-shrubland conversions Grassland conversions Cropland expansions

Coeff. Odds ratio VIF Coeff. Odds ratio VIF Coeff. Odds ratio VIF

(Intercept) -4.216*** – – 6.362*** – – 10.938*** – –

Rainfall 0.002*** 1.00 1.37 -0.003*** 1.00 1.61 ni – –

Temperature ni – – ni – – -0.851*** 0.43 1.95

Elevation ni – – ni – – ni – –

Slope ns – – 0.021. 1.02 2.65 ns – –

Aspect -0.002*** 1.00 1.02 -0.002*** 1.00 1.06 0.002*** 1.00 1.05

Curvature 0.069*** 1.07 1.08 -0.121** 0.89 1.74 ns – –

TWI 0.355*** 1.43 1.14 -0.203*** 0.82 1.95 -0.075* 0.93 1.28

Soil pH -0.287*** 0.75 1.90 ns – – 0.497*** 1.64 1.43

Soil CEC 0.061*** 1.06 1.87 ns – – -0.034*** 0.97 1.33

DIST_road -0.342*** 0.71 1.09 20.161*** 0.85 1.32 0.505*** 1.66 1.27

DIST_town 20.183*** 0.83 1.23 0.039 ** 1.04 1.17 0.036* 1.04 1.48

DIST_river ns – – 20.317*** 0.73 1.42 0.362*** 1.44 1.36

POP_89 ns – – ns – – 0.001*** 1.00 1.26

N 3,870 1,890 2,902

Pr [ LR v2 0.00 0.00 0.00

Pr [ Pearson v2 0.52 0.41 0.71

Nagelkerke R2 0.38 0.20 0.36

AUC 0.81 0.72 0.80

Moran’s I 0.16 0.18 0.19

Significance level 0 = ***, 0.001 = **, 0.01 = * and 0.05 = .; ni = not included due to high correlation with either elevation,

temperature or rainfall; ns = not significant; VIF = variance inflation factor; N = number of observations; LR = likelihood ratio,

and; AUC = area under curve
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the forest-shrubland conversions model, rainfall and

aspect were significant, but the magnitude of their

effects was rather small. The grassland conversions

model was highly significant as shown by the likeli-

hood ratio statistic (P value = 0.00), and fitted the

data well as shown by the Pearson v2 statistic

(P value = 0.41). It was also successful in discrimi-

nating the actual grassland conversions given the high

value of AUC (0.72), and exhibited positive spatial

autocorrelation with low intensity given the low value

of Moran’s statistic (0.18). The Nagelkerke-R2 indi-

cates that the model accounted for 20 % of variability

in the presence of grassland conversions.

Cropland expansions model

Climatic, demographic, accessibility, drainage and

soil factors were significant determinants of the
Fig. 3 ROC curves illustrating the performance of the models

for 1985–2000

Table 4 Summary statistics of the logistic regression models for 2000–2011

Explanatory variable Forest-shrubland conversions Grassland conversions Cropland expansions

Coeff. Odds ratio VIF Coeff. Odds ratio VIF Coeff. Odds ratio VIF

(Intercept) 4.714*** – – 9.461*** – – 27.558*** – –

Rainfall 20.002*** 1.00 1.54 ni – – 0.008*** 1.01 1.30

Temperature ni – – 20.471*** 0.62 1.86 ni – –

Elevation ni – – ni – – ni – –

Slope 20.020** 0.98 1.55 ns – – ns – –

Aspect 20.002*** 1.00 1.05 ns – – 0.002*** 1.00 1.05

Curvature 0.039* 1.04 1.49 ns – – 20.097*** 0.91 1.08

TWI ns – – ns – – 20.297*** 0.74 1.35

Soil pH 20.391*** 0.68 2.61 20.306* 0.74 3.12 0.827*** 2.29 2.05

Soil CEC 0.054*** 1.06 2.71 0.061*** 1.06 3.70 20.009*** 0.99 1.80

DIST_road 20.278*** 0.76 1.22 20.528*** 0.59 1.40 20.119*** 0.89 1.53

DIST_town -0.086*** 0.92 1.34 -0.041* 0.96 1.44 0.060*** 1.06 1.72

DIST_river 0.077** 1.08 1.26 -0.244*** 0.78 1.48 0.217*** 1.24 1.29

POP_09 ns – – ns – – -0.003*** 1.00 1.13

N 3,408 1,618 3,898

Pr [ LR v2 0.00 0.00 0.00

Pr [ Pearson v2 0.13 0.08 0.76

Nagelkerke R2 0.21 0.49 0.43

AUC 0.74 0.86 0.84

Moran’s I 0.19 0.13 0.14

Significance level 0 = ***, 0.001 = **, 0.01 = * and 0.05 = .; ni = not included due to high correlation with either elevation,

temperature or rainfall; ns = not significant; VIF = variance inflation factor; N = number of observations; LR = likelihood ratio,

and; AUC = area under curve
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presence of cropland expansions (Table 3). For 1 unit

increase in distance to road, distance to river, distance

to town and soil pH, the croplands had 1.66, 1.44, 1.04

and 1.64 more chance of expansion, respectively. By

contrast, the chance was only 0.43, 0.93 and 0.97 for

each additional unit of temperature, TWI and soil CEC

respectively. Despite their significance, the magnitude

of the effects of population density and aspect was

very small; their odds ratios also attest to this. The

P values of the likelihood ratio statistic (0.00) and

Pearson v2 statistic (0.71) show that the cropland

conversions model was highly significant with a good

fit to the data. Its power to discriminate the presence of

cropland expansions was very good (AUC = 0.80),

while the strength of residual spatial autocorrelation

was very weak (Moran’s I = 0.19). The Nagelkerke-

R2 shows that the model explained 36 % of variability

in the presence of cropland expansions.

Models of land cover changes between 2000

and 2011

Table 4 provides the resultant models of the three

major land cover processes for the period 2000–2011,

while Fig. 4 displays the results of their performance.

Forest-shrubland conversions model

Table 4 shows that rainfall, soil pH, soil CEC, slope,

aspect, curvature and distance to road, town and river

were important in determining the occurrence of

forest-shrubland conversions in the second period.

Contrary to the previous period, distance to river and

slope were also significant determinants, while TWI

was not. The signs of the effects of the factors that

were significant in both periods (i.e., rainfall, soil

properties, aspect, curvature, and distance to road and

town) did not change except for rainfall (Tables 3, 4).

However, the magnitudes of the effects of soil CEC,

curvature and distance to road and town decreased,

while for soil pH increased over time. Distance to

river, soil CEC and curvature had an increasing effect

on the odds of forest-shrubland conversions; that is,

they multiplied the odds by 1.08, 1.06 and 1.04,

respectively, for every 1 unit increase. On the con-

trary, soil pH, slope, distance to road and distance to

town had a decreasing effect on the odds; that is, they

multiplied the odds by 0.68, 0.98, 0.76 and 0.92,

respectively, for every 1 unit increase. Rainfall and

aspect were significant, but like in the previous period,

the likelihood of forest-cropland conversions was not

affected by their increases as evidenced by the small

coefficients and odds ratios of 1 each. The P values of

the likelihood ratio statistic and Pearson v2 statistic

were 0.00 and 0.13, respectively; hence, there was no

evidence to question the significance and adequacy of

the model. The AUC value of 0.74 indicated that its

power to discriminate the actual cropland expansions

was satisfactory, while Moran’s statistic of 0.19

indicated that spatial autocorrelation was positive

but very weak. The Nagelkerke-R2 shows that the

model accounted for 21 % of variability in the

presence of forest-shrubland conversions.

Grassland conversions model

The significant factors for explaining grassland con-

versions in the second period included: temperature,

soil pH, soil CEC and distance to road, river and town

(Table 4). Unlike before, soil properties were signif-

icant, whereas curvature, aspect and slope were not

significant. The signs of the effects of the factors that

were significant in both periods (i.e., accessibility

factors) remained the same except for distance to town

(Tables 3, 4). However, the magnitudes of the effects

Fig. 4 ROC curves illustrating the performance of the models

for 2000–2011
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of distance to river decreased, while for distance to

road increased over time. Soil CEC increased the

likelihood of grassland conversions by 6 % for every

1 unit increase, while temperature, soil pH, distance to

road, distance to town and distance to river decreased

the likelihood by 38 %, 26 %, 41 %, 4 % and 22 %,

respectively, for every 1 unit increase. The P values of

the likelihood ratio statistic and Pearson v2 statistic

were 0.00 and 0.08, respectively; hence, the model

was significant and a good fit to the data. The high

AUC value (0.86) also implied that its discriminatory

power was very good, while the low Moran’s I (0.13)

indicated positive spatial autocorrelation with low

intensity. The Nagelkerke-R2 shows that the model

explained 49 % of variability in the presence of

grassland conversions.

Cropland expansions model

Rainfall, soil pH, soil CEC, aspect, curvature, TWI,

population density and distance to road, river and town

were the important variables for explaining cropland

expansions in the second period (Table 4). Curvature

also became an important factor during this period.

The signs of the effects of TWI, aspect, soil pH, soil

CEC and, distance to town and river were the same as

in the first period, while for population density and

distance to road changed (Tables 3, 4). Further, the

magnitudes of the effects of soil CEC and distance to

river decreased, while for TWI, soil pH and distance to

town increased over time. Soil pH, rainfall, distance to

town and distance to river increased the odds of

cropland expansions 2.29, 1.01, 1.06 and 1.24 times,

respectively, for every 1 unit increase. Conversely,

TWI, curvature, soil CEC and distance to road

decreased the probability by 26 %, 9 %, 1 % and

11 %, respectively, for every 1 unit increase. Though

population density and aspect were significant, the

odds ratios and coefficients show that their effects

were small. The small P value of the likelihood ratio

statistic (0.00) shows that the model of cropland

expansion was highly significant, while the large

P value of the Pearson v2 statistic (0.76) shows that it

fitted the data well. Its discriminatory power was also

very good given the high value of AUC value (0.84),

and the strength of spatial structuring was very weak

given the low Moran’s coefficient (0.14). The Nage-

lkerke-R2 reveals that the model explained about 43 %

of variability in the presence of cropland expansions.

Discussion

The results revealed that forest-shrubland conver-

sions, grassland conversions and cropland expansions

in Lake Nakuru drainage basin and Eastern Mau forest

reserve stemmed from a combination of geophysical

and socio-economic factors. The logit model of forest-

shrubland conversions between 1985 and 2000 indi-

cated that as rainfall and soil CEC increased, the

probability of forest-shrubland conversions increased,

but as distance to road and town increased, the

converse was true (Table 3). This was because most of

the forest-shrubland conversions that occurred at this

time were on higher areas on the western side (Were

et al. 2013), which were characterized by high rainfall,

low temperatures and fertile soils. The areas included:

Baraget, Mariashoni, Sokoro, Gichage, Nessuiet,

Logoman, Likia and Sururu. The good road network,

especially on the western side, provided access to

inputs and markets for charcoal, logs, fuel wood and

timber in Nakuru, Njoro and Elburgon towns. As

pointed out by Chomitz and Gray (1996), proximity to

roads also lowered the cost of migration, land access

and land clearance for subsistence farming. In the

second period, the signs of the effects of the explan-

atory variables on probability of forest-shrubland

conversions were maintained except for rainfall

(Table 4). The change in the direction of rainfall

effect was expected because the forest-shrubland

conversions had diffused to the southern parts (e.g.,

Kiambogo) and around Lake Nakuru National park

where rainfall was relatively lower. These findings are

comparable to those of Müller and Mburu (2009) who

modelled the hotspots of forest clearance in Kakamega

forest, Kenya using artificial neural networks.

In theory, many factors could potentially explain

the forest-shrubland conversions, but in practice, only

a few factors could be captured by the models due to

lack of spatial data (especially of socio-economic

nature) and inability to quantify some variables (e.g.,

political interference). This might partly explain the

low Nagelkerke-R2 of the models. But again, Hosmer

and Lemeshow (2000, in Gellrich et al. 2007a)

maintained that low R2 values are the norm for logistic

regression models; hence, they should be interpreted

with caution and not strictly by the standards of

goodness-of-fit in linear regression analysis. Some of

the socio-economic and political processes that influ-

enced the forest-shrubland conversions, but lacked
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proxies in the models include: (a) government actions

(e.g., excision of about 353 km2 of Eastern Mau

forests in 2001 for human settlement); (b) patronage

politics where votes from certain communities and

political patrons were rewarded with allocation of

forest resources, especially with the advent of multi-

partyism in 1990s (Klopp 2012); (c) fluctuations of

prices at the international oil markets leading to high

costs of alternative energy (e.g., liquefied petroleum

gas); (d) poverty (e) shortage of human and financial

resources for sustainable management and monitoring

of forests; (f) technological advancements (e.g., use of

power saws, tractors and lorries for logging and

transportation); (g) poor environmental governance

manifested through abuse of power, impunity and

corruption (h) weak policy, legal and regulatory

framework (e.g., the forest excisions and resettlement

schemes in 1990s were not subjected to environmental

impact assessments until the enactment of the Envi-

ronmental Management and Co-ordination Act 1999),

and; (i) Individual behaviour (i.e., some people

practiced or abetted illegal logging and charcoal

burning because of greed and ignorance (or uncon-

cern) about the problems of deforestation). It was

assumed that omission of these factors did not

compromise the validity of the models; however, their

inclusion in further work as the data become available

is encouraged in order to gain a holistic understanding

of the land cover change processes.

Moreover, grassland conversions model for the

period 1985–2000 (Table 3) showed that soil quality

factors were not significant determinants of the

probability of grassland conversions. This is because,

though the largest share of grasslands were converted

to croplands (Were et al. 2013), most of the conver-

sions occurred in the lower areas with lower soil CEC.

This implies that soil fertility was more dependent on

fertilization than natural soil richness in these areas. In

the second period, soil quality factors became signif-

icant since the grassland conversions were mostly

present in the higher areas with higher soil CEC.

Accessibility factors were also important in determin-

ing the likelihood of grassland conversions in both

periods. Between 1985 and 2000, the likelihood of

grassland conversions decreased with increasing dis-

tance to road and river, but increased with increasing

distance to town. This suggests that water and land

accessibility were more important in agricultural land

use decision-making than market accessibility at that

time. The small-scale farmers did not attach potential

land rents to most of the agricultural land uses as

theorized by von Thünen (see Chomitz and Gray

1996). This is quite common in developing countries

where subsistence is the overriding goal of agricultural

production. In case of surpluses, the middlemen often

collect and transport the produce from the farm-gates

to the market. By contrast, between 2000 and 2011,

market accessibility also played an important role in

agricultural land use decision-making according to the

model. This is because the bulk of grasslands at this

time were formerly part of Eastern Mau forest on the

western side (i.e., Mariashoni, Gichage, Nessuiet and

Sokoro), which had been converted partly due to their

proximity to road and town (Table 3). Their proximity

to Elburgon, Njoro and Nakuru towns, among other

factors, attracted enterprising individuals who hired

these parcels of land and cultivated food crops (e.g.,

potatoes and maize) for sale. Few studies have

analyzed the determinants of grassland conversions

in the region. Serneels and Lambin (2001) who

conducted a similar study found that soil quality and

market accessibility explained rangeland conversions

between 1985 and 1995 in Narok district, Kenya. This

deviates from the findings here for the period

1985–2000. But, such deviations can be attributed to

the different contexts and spatial scales of analyses.

Additionally, distance to road was among the

significant factors that explained cropland expansions

for the periods 1985–2000 and 2000–2011. However,

the direction of the effect during the first period

was unexpected. A negative estimate was expected

because the total gains from forest-shrubland and

grassland conversions were highest for croplands, and

increasing distance to road decreased the chances of

occurrence of these conversions (Table 3). The same

applies to the effects of soil properties during both

periods. It is acknowledged that such unexpected signs

in the model parameters may have emanated from the

omission of other important explanatory variables as

mentioned earlier, data errors (e.g., classification and

measurement errors) and data inconsistencies (i.e.,

data of different types, sources and scale). For

instance, van Dessel et al. (2011) found that the

significance and signs of parameters in the logistic

regression models they calibrated varied with the

accuracy level of the land cover classifications. These

limitations may have also caused the weak spatial

autocorrelation detected in the residuals (Dormann
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2007a). Though spatial autocorrelation also affects

coefficients and inference in geographical modelling

(Overmars et al. 2003; Dormann 2007b), it was neither

filtered nor incorporated because the quantitative

evidence (Tables 3, 4) was considered too weak to

bias the results. Generally, it is important to control

these uncertainties when modelling in order to achieve

realistic results.

The revealed relationships between the three land

cover change processes and the geophysical and socio-

economic factors extend our knowledge of land cover

dynamics in Lake Nakuru drainage basin and Eastern

Mau forest reserve where empirical evidence of the

underlying causal factors is scarce. This knowledge

can be applied, for instance, in spatial predictions of

possible future trends of land cover changes. Such

predictions, in addition to the knowledge, are benefi-

cial for environmental policy makers, planners and

managers since they can: (1) inform selection of

priority areas for targeted policies or detailed analyses

in an effective and efficient manner; and, (2) be linked

with biophysical data, e.g., species distribution or

carbon storage data, to identify hotspots of biodiver-

sity or carbon losses following land cover conversions.

In future, this modelling approach can be improved

through incorporation of spatial non-stationarity and

other important environmental factors, as they become

available, for detailed modelling of land cover

changes in other parts of Kenya.

Conclusions and recommendations

Using logistic regression, remote sensing and GIS-

based data, this study analysed the geophysical and

socio-economic factors that related to and explained

the variations in the three major land cover change

processes (i.e., forest-shrubland conversions, grass-

land conversions and cropland expansions) in Lake

Nakuru basin and Eastern Mau forest reserve between

1985 and 2011. The analysis revealed that a combi-

nation of climatic, topographic, soil quality, demo-

graphic and accessibility factors determined the

likelihood of these land cover change processes as

hypothesized. It also highlighted that the relationships

among these factors varied depending on the land

cover change process and time. This calls for spatially

targeted and time-specific policies for conservation

and sustainable management of critical ecosystems

(e.g., forests). The findings improve our understanding

of land cover dynamics in this locale and provide a

basis for spatial prediction of land cover change risks,

as well as effective environmental policy formulation,

planning and management. This is also critical in

climate change mitigation, especially in the context of

REDD and carbon sequestration. Such analysis may

further assist planning and management efforts in

other areas experiencing dramatic land cover changes.

In future, studies should incorporate other important

environmental data as they become available, for

holistic appreciation of the drivers and refinement of

the current models. The effects of the drivers per se

may be spatially non-stationary; thus, application

of local regression methods (e.g., geographically

weighted logistic regression) to analyse the spatially

varying relationships would also be interesting.

Finally, future studies should also go further and

analyse the impacts of land cover change on ecosys-

tems services by linking the model outputs with

pertinent biophysical data, e.g., species distribution or

carbon stocks data to identify the hotspots of biodi-

versity or carbon sequestration, respectively.
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EFFECTS OF LAND COVER CHANGES ON SOIL ORGANIC CARBON AND TOTAL NITROGEN 

STOCKS IN THE EASTERN MAU FOREST RESERVE, KENYA 
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1,2

, B.R. Singh
3
, Ø.B. Dick

1
 

 

Abstract  

This study analysed the variations of soil organic carbon (SOC) and total nitrogen (TN) stocks under 

natural forests (NF), plantation forests (PF), bamboo forests (BF), and croplands that had been 

converted from such forests (i.e., NF2C, PF2C and BF2C) in the Eastern Mau Forest Reserve using 

field, laboratory, spatial, and statistical techniques. The results displayed significant differences in 

SOC and TN stocks between NF and NF2C (p<0.0001), and between PF and PF2C (p<0.0001). For 

instance, the surface soils (0-15cm) of NF had the highest SOC and TN stocks (71.6 and 7.1 Mg ha
-

1
, respectively), while NF2C had the lowest (35.4 and 3.5 Mg ha

-1
). Similarly, the subsurface soils 

(15-30cm) of NF had the highest stocks (55.7 and 5.6 Mg ha
-1

), while NF2C had the lowest (32.5 

and 3.2 Mg ha
-1

). This reflects a decline in both SOC and TN stocks by about 51% in the surface and 

about 42% in the subsurface soils after NF conversion. There were also significant differences in 

SOC and TN stocks (p<0.05) between the surface and subsurface soils of different land cover types. 

The stocks decreased as soil depth increased. This trend suggests that (i) forest-to-cropland 

conversions are undermining the ecosystem’s capacity for carbon sequestration, and (ii) subsurface 

soils have potential for carbon sequestration. SOC and TN losses in the croplands may be mitigated 

by adopting best management practices (BMPs), especially agro-forestry. These findings are useful 

for designing sustainable land management (SLM) and carbon sequestration projects.  

 

Keywords: Land cover changes • soil organic carbon • total nitrogen • soil carbon sequestration • 

Eastern Mau • Kenya    

 

1.0 Introduction    

Soil organic carbon (SOC) comprises organic compounds (i.e., plant, animal and microbial 

residues at all stages of decay) that are highly enriched in carbon (Lal 2008; Post and Kwon 

2000; Solomon et al. 2000). SOC is a major determinant of the physical, chemical, and 

biological properties that are necessary for soil’s proper functioning. For example, SOC 

ensures soil quality by supplying nutrients, enhancing cation exchange capacity (CEC), 

supporting biodiversity, and improving soil aggregation and water-holding capacity 

(Bationo et al. 2007). The quantity of SOC varies spatially and temporally because of 

multiple climatic, edaphic, biotic (flora, fauna and humans), topographical, and lithological 
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factors, which influence the balance between the gains and losses of soil carbon. However, 

the greatest carbon fluxes between the atmosphere and the Earth surface are attributed to 

anthropogenic factors, including land use and land cover changes (IPCC 2013). 

Consequently, land cover change is a core theme of climate change research, which 

emphasizes the understanding of SOC responses to land cover dynamics. This is because the 

world’s soils contain about 1500 Pg C to 1m depth, while the atmosphere contains about 

750 Pg C, and the vegetation contains about 610 Pg C (Smith 2004, 2008; Lal 2004). 

Therefore, even slight changes in the SOC pool can significantly affect the global carbon 

cycle, climate, and soil properties (Powlson et al. 2011). This indicates that soil carbon 

sequestration is a potential strategy to mitigate climate change through reduction of CO2 

emissions as required by the United Nation Framework Convention for Climate Change. 

Many studies have reported that converting natural vegetation such as forests or 

grasslands to arable land impinges on soil carbon storage and fluxes (Demessie et al. 2013; 

Jafarian and Kavian 2013; Muñoz-Rojas et al. 2012; Biro et al. 2011; Don et al. 2011; Jiao 

et al. 2009; Awiti et al. 2008; Wang et al. 2008; Yimer et al. 2007; Evrendilek et al. 2004; 

Jing-Cheng et al. 2004; Powers 2004; Osher et al. 2003; Murty et al. 2002; Islam and Weil 

2000; Solomon et al. 2000; Brown and Lugo 1990). Such conversions invariably result in 

SOC losses and CO2 emissions because of the attendant changes in quality and quantity of 

biomass carbon inputs, accelerated decomposition of soil organic matter (SOM), leaching of 

dissolved organic carbon (DOC), and loss of particulates through mechanical clearing, 

water, and wind (Powlson et al. 2011; Detwiler 1986). However, the ultimate direction, 

magnitude, and rate of changes in SOC after land cover conversions depend on the initial 

carbon content of the soil, method of land clearance, terrain, soil type, climate, time since 

conversion, changes in the microbial community and nitrogen cycling, chemical properties 

of the litter, and land management practices (Vågen et al. 2005; Murty et al. 2002; Brown 

and Lugo 1990).      

In Kenya, human actions have brought dramatic changes to many crucial 

ecosystems; for example, the Eastern Mau Forest Reserve. It has experienced wanton 

destruction and degradation since the 1990s thanks to illegal logging, encroachments, and 

charcoal burning (Fig. 1), as well as ill-advised political decisions, particularly the excision 

of ~61,023ha for human settlement in 2001 (Government of Kenya 2009; UNEP 2009). The 

Eastern Mau Forest Reserve is an important study site because it constitutes part of the 

largest closed-canopy indigenous montane forest in Eastern Africa, and is also one of 

Kenya’s five key water catchment areas, which offers various ecosystem services, such as 
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carbon sequestration, micro-climate regulation, ground water recharge, water storage, flood 

mitigation, etc. (UNEP 2009). Previous studies of land cover change in the area employed 

satellite remote sensing and GIS techniques (Were et al. 2013; Baldyga et al. 2007) to map 

the hotspots; that is, places where forests and shrublands had been converted to croplands. 

Although studies on the impacts on soil properties at such hotspots have been conducted 

globally, little attention has been paid to Eastern Africa. In particular, there is insufficient 

knowledge of how SOC has responded to deforestation and forest degradation in the Eastern 

Mau Forest Reserve. This study was designed to address these issues. The results will 

improve our understanding of SOC dynamics, the ecosystem’s productivity and its role in 

climate change, as well as our capacity to monitor and predict carbon fluxes. This is 

essential to formulate realistic and effective policies for sustainable land management 

(SLM) and climate change mitigation.  

 

Fig. 1: Human activities in the Eastern Mau Forest Reserve: (a, b, and c) illegal felling of trees; (d) charcoal 

burning; and (e) agricultural expansion and human settlement (Source: Author).  

 

In this study, we analysed the effects of forest to cropland conversions on SOC, total 

nitrogen (TN), and bulk density (BD) in the Eastern Mau Forest Reserve. We then 

recommended the best management practices (BMPs) for SOC sequestration based on our 

results. We included TN in the study because of the intricate linkage between soil C and N 

cycles. The study’s guiding hypothesis was that SOC, TN, and BD varied significantly 

between (i) forests and cropland establishments, and (ii) surface (0-15cm) and subsurface 

soils (15-30cm) of the land cover types.  
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2.0 Materials and methods  

2.1 Study area  

 
Fig. 2: Geographical location of the study area and sampling points. The sampling points are superimposed 

on the land cover maps of 1985 and 2011 (on the right) that were derived from digital classification of 

Landsat TM imagery 

 

The study area covered Nessuiet, Teret, Kapkembu, and Mauche locations in the Eastern 

Mau Forest Reserve defined by the latitudes 0º 15´- 0º 40´S and longitudes 35º 40´- 36º 

10´E (Fig. 2), and the altitudes ranging from 2210 to 3070m above sea level. The climate is 

cool and humid, with the mean annual rainfall varying between 935 and 1287 mm, and the 

mean annual temperature ranging from 9.8 to 17.5 °C (Jaetzold et al. 2010). The rainfall 

pattern is tri-modal with peaks in April, August, and November. The Njoro, Naishi, and 

Larmudiac Rivers drain the eastern slopes into Lake Nakuru, while the Nessuiet flows into 

Lake Bogoria, and the Rongai River into the Baringo. The area’s physiography and 

lithology are characterized by major scarps and uplands comprising pyroclastic rocks, such 

as Pumice tuffs, of tertiary-quaternary volcanic age. These soft, light brown rocks have 
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insets of yellow pumice and angular trachyte, which decompose into deep to very deep, dark 

reddish brown clayey soil aggregates (McCall 1967). The soils, classified as Mollic 

Andosols, are friable and smeary with humic topsoils (Jaetzold et al. 2010). The vegetation 

comprises indigenous trees, such as red stinkwood (Prunus Africana), bamboo (Arundinaria 

alpina), red cedar (Juniperus procera), African wild olive (Olea europaea ssp. Africana), 

East African olive (Olea capensis ssp. hochstetteri), broad-leaved yellowwood (Podocarpus 

latifolius), brittlewood (Nuxia congesta), clematis (Clematis hirsuta), schefflera (Schefflera 

volkensii), and forest dombeya (Dombeya torrida), exotic trees, such as pine (Pinus patula) 

and cypress (Cupressus lusitanica), as well as grasses like kikuyu grass (Pennisetum 

clandestinum). The major crops grown are maize (Zea mays), beans (Phaseolus vulgaris), 

wheat (Triticum aestivum), and potatoes (Solanum tuberosum).  

 

2.2 Data sources, processing and analyses 

Figure 3 summarizes the data and methods applied in this study, while the following sub-

sections give the details: 

 

Fig. 3: Schematic representation of the data and methods used in the study 

 

2.2.1 Field and laboratory methods 

2.2.1.1  Sampling design and soil sampling 

Fieldwork was conducted between June and August 2012. The sites were selected to 

minimize the variations in climate, soil type, and slope. Four to thirteen sampling plots 
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(30×30m) were laid out in a completely randomized design within the natural forests (NF), 

plantation forests (PF), bamboo forests (BF), and croplands that had been established on 

natural forests (NF2C), plantation forests (PF2C) and bamboo forests (BF2C) (Fig. 4). In 

each plot, an auger was used to collect soil samples from the centre and four corners of the 

plot at two depths, one at 0-15cm and the other at 15-30cm. The samples taken from 

corresponding depths were thoroughly mixed and bulked into one composite sample of 

about 500g. To determine BD, a core sampler (5 cm in diameter and 5cm in height) was 

used to collect one undisturbed sample per depth from each plot centre. Geographical 

position, elevation, vegetation, and land management practices at each plot were also 

recorded. A total of 120 soil samples were collected and transported to the National 

Agricultural Research Laboratories for chemical and physical analyses.  

 

 
Fig. 4: Illustrations of the land cover types: (a) mixed natural forest; (b) pine and cypress plantation forest; 

(c) bamboo forest; and (d) croplands (Source: Author). 

 

2.2.1.2 Physical and chemical soil analysis  

At the laboratory, the soil samples were air-dried, ground and passed through a 2 mm mesh. 

SOC concentration was determined using Walkley-Black wet oxidation method (Nelson and 

Sommers 1982), while TN concentration was determined using Kjeldahl digestion method 

(Bremner and Mulvaney 1982). BD was estimated using the core method after oven-drying 

a specific volume of soil at 105 °C for 48 hours (Blake 1965). Particle size distribution was 

analysed using the hydrometer method after dispersing soil and eliminating organic matter 
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(Day 1965). Potassium (K) was measured using a flame-photometer, calcium (Ca) and 

magnesium (Mg) using an atomic absorption spectrophotometer, and pH (1:2.5 soil-water) 

using a pH meter (Okalebo et al. 2002). Phosphorous (P) was analysed using the Mehlich 

method (Okalebo et al. 2002). The data on soil properties are found in Table 1.  

 

2.2.1.3 Estimation of soil organic carbon and total nitrogen stocks 

Stocks of SOC (Mg C ha
-1

) for each depth were calculated using Eq. 1: 

 

       
   

   
                                        

 

where: SOCst is the soil organic carbon stock (Mg C ha
-1

); SOC is the soil organic carbon 

concentration (%), which is then converted to g C g
-1

 soil; BD is the bulk density (g cm
-3

); D 

is the depth (cm); 100 is the multiplication factor to convert the SOC per unit area from g C 

cm
-2

 to Mg C ha
-1

. Coarse particles were negligible due to the softness of the volcanic rocks; 

hence, Eq. 1 does not account for them. Similarly, TN mass per unit area (TNst; Mg N ha
-1

) 

for each depth was computed by substituting TN for SOC in Eq. 1. The percentage changes 

(∆) in SOCst (or TNst) following NF, PF or BF conversions were then estimated using Eq. 2: 

 

       
                                          –                                     

                                   
            

 

SOC and TN stocks in the surface (0-15cm) and subsurface soils (15-30cm) were summed 

up to obtain the total stocks in the soil from the surface to a depth 30cm.   

 

2.2.2 Remote sensing and GIS methods 

Land cover maps (Fig. 2) produced through classification of terrain-corrected Landsat 5 TM 

images acquired in 1985 and 2011 were taken from Were et al. (2013). The images were 

atmospherically corrected, geometrically co-registered, and subsets made for classification 

using partitioning, hybrid classification, and spatial reclassification techniques. The subset 

for each date was further subdivided into spectrally distinct segments for separate 

classification. Depending on the degree of spatial heterogeneity, 15-30 spectral clusters 

were defined for each segment using an unsupervised classification procedure involving the 

ISODATA algorithm. The resultant clusters were assigned land cover labels (grassland, 

forest, or cropland) based on the analyst’s knowledge of the area, as well as the ancillary 
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and field data. In case of errors, supplementary spectral signatures were extracted, merged 

with the signatures of ISODATA clusters, and classified using the maximum likelihood 

algorithm. The land cover classes in each classified segment were recoded and, 

subsequently, the segments for each date were mosaicked. Finally, a majority filter was 

applied to reduce noise on the resultant seamless land cover maps. The quality of these 

maps was assessed using ancillary, temporally-invariant, and ground data. The overall 

accuracy of the 1985 and 2011 land cover maps were 95% and 89%, respectively.  

 Existing databases provided the auxiliary spatial data used to describe the 

topographical, climatic, agro-ecological, and pedological attributes of the area. Climate data 

(mean annual temperature and rainfall) were obtained from www.worldclim.org, soil data 

(soil type) from the Kenya Soil Survey, data on agro-ecological zonation from 

www.ilri.org/gis, and the digital elevation model (DEM) from http://srtm.csi.cgiar.org. 

Slope and aspect were extracted from the DEM. All these data were transformed to the 

Universal Transverse Mercator coordinate system (UTM WGS84 Zone 36S). The area of 

interest was clipped from each thematic layer, and all layers in vector format were 

rasterized. The datasets were then resampled to 100m and a geodatabase was built. The field 

and laboratory data were also integrated into the geodatabase as points using the 

geographical coordinates that were recorded at each sampling plot. The attribute values 

from each raster dataset (e.g., slope, rainfall, soil type) were extracted to these points. This 

facilitated querying of the geodatabase to only select those points that met the criteria for 

statistical analyses. All geoprocessing and analyses were performed using ArcGIS
®
 10.1 and 

ERDAS IMAGINE
®
 2011.    

    

2.2.3 Statistical methods  

Soil attributes of the point data in the geodatabase were summarized by land cover types and 

soil depths. Descriptive and correlation statistics were used to explore the distributions and 

relationships among various soil characteristics. Subsequently, linear mixed models were 

fitted to test the effects of land cover, soil depth, and sampling plot on SOC, SOCst, TN, 

TNst, and BD for each category of forest to cropland conversion: NF vs. NF2C; PF vs. 

PF2C; and, BF vs. BF2C. Equation 3 shows the form of the statistical model (Montgomery 

2006): 

 

                                                                    

 

http://www.worldclim.org/
http://www.ilri.org/gis
http://srtm.csi.cgiar.org/
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where:   is the overall mean,    is the fixed effect of the ith land cover treatment,    is the 

fixed effect of the jth soil depth treatment,    is the random effect of sampling plot, and 

      is the normally and independently distributed random error with zero mean and 

constant variance. Pairwise comparisons between the types of land cover and soil depths 

were based on post hoc t-tests at a 5% significance level. The p-values were adjusted by 

single-step method. Homoscedasticity was checked using residual plots and normality using 

normal probability plots. All analyses were carried out using package "nlme" and "lme4" in 

R version 3.0.1 (R Core Team 2013) and Microsoft Excel
®
 2010. 

 

3.0 Results  

3.1 Basic soil properties under different land cover types and soil depths 

 
Table 2: Pearson’s correlation coefficients of the soil properties  

 Soil 

properties 

Soil depth (0 - 15 cm) 

 

Soil depth (15 – 30 cm) 

TN SOC BD Clay Silt Sand   TN SOC BD Clay Silt Sand 

TN 1.00 

      

1.00 

     SOC 0.99 1.00 

     

0.99 1.00 

    BD -0.19 -0.19 1.00 

    

-0.06 -0.05 1.00 

   Clay 0.66 0.66 -0.14 1.00 

   

0.23 0.21 -0.31 1.00 

  Silt -0.69 -0.69 0.26 -0.61 1.00 

  

-0.50 -0.49 0.32 -0.53 1.00 

 Sand -0.09 -0.10 -0.10 -0.58 -0.29 1.00   0.35 0.35 -0.08 -0.32 -0.64 1.00 

 

The means and standard deviations of select physical and chemical soil properties of 

different land cover types are presented in Table 1. In the surface soils (0-15cm), the highest 

BD was in PF and the lowest in NF2C, while in the subsurface soils (15-30cm), the highest 

BD was in PF and the lowest in BF. At all sites, BD never exceeded 1.0 g cm
-3

 and was 

higher in the subsurface soils. Conversely, SOC and TN concentrations ranged from 

moderate to high and diminished as soil depth increased. In the surface soils, the highest 

SOC and TN concentrations were in NF (6.1% and 0.6%, respectively) and the lowest in 

NF2C (3.1% and 0.3%), while in the subsurface soils, the highest SOC and TN 

concentrations were in NF (4.2% and 0.4%) and the lowest in PF2C (2.3% and 0.2%). The 

proportions of soil separates ranged from 32 to 40% for sand, 31 to 45% for silt, and 21 to 

32% for clay. Sand content was generally higher in the surface soils, while silt content was 

higher in the subsurface soils. The soils were moderately acidic with the pH levels varying 

between 5.0 and 6.1. NF2C had the highest pH values, while PF had the lowest pH values in 

both soil depths. The lowest available phosphorus and potassium were both in the surface 
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and subsurface soils of PF, while the highest was in the surface soils of BF2C. Correlation 

patterns in the matrix show that SOC concentration was positively correlated with TN 

concentration and clay content, but negatively with BD, silt, and sand content, both in the 

surface and subsurface soils (Table 2). The correlations of TN concentration with other soil 

properties showed similar trends to SOC concentration.  

 

3.2 Estimated SOC and TN stocks under different land cover types and soil depths 

According to Table 3, in the surface soils (0-15cm), the highest SOC and TN stocks were in 

NF (71.6 and 7.1 Mg ha
-1

, respectively) and the lowest in NF2C (35.4 and 3.5 Mg ha
-1

). In 

the subsurface soils (15-30cm), the highest stocks were still in NF (55.7 and 5.6 Mg ha
-1

), 

but the lowest were in PF2C (32.3 and 3.2 Mg ha
-1

). Both SOC and TN stocks decreased as 

depth increased at all sites as shown in Figs. 5 and 6. The highest proportions of change in 

the stocks followed conversions from NF, while the lowest followed conversions from BF. 

In particular, cultivation of NF reduced both SOC and TN stocks by about 51% in the 

surface soils, and about 42% in the subsurface soils (Table 3; Figs. 7 and 8). Further, 

cultivation of PF reduced SOC and TN stocks by about 28% each in the surface soils, and 

about 36% each in the subsurface soils. However, cultivation of BF presented mixed results. 

In the surface soils, SOC stocks increased by 1%, while TN stocks decreased by 0.6%. In 

the subsurface soils, SOC and TN stocks were about 13% lower than at the surface. The 

same patterns were observed even when the entire topsoil (0-30cm) was considered. The 

highest stocks of SOC amounting to 127 Mg ha
-1 

were in NF, which cropland conversion 

reduced by 46.8%. The lowest stocks of 101.5 Mg ha
-1 

were in BF, which cropland 

conversion reduced by 4.4%. Similarly, the highest stocks of TN were in NF (12.7 Mg ha
-1

), 

which cropland conversion reduced by 47%. The lowest stocks were in BF (10.3 Mg ha
-1

), 

which reduced by 5.4% when converted to croplands. 

 

3.3 Effects of land cover and soil depth on SOC, SOCst, TN, TNst and BD 

Table 4a shows a statistically significant land-cover effect on all the soil properties 

(p<0.0001) except for BD (p=0.6648) in the NF vs. NF2C category. SOC (p<0.0001), 

SOCst (p<0.001), TN (p<0.0001), and TNst (p<0.001) in NF differed from NF2C. However, 

BD were equal (p=0.9450). There was also a highly significant soil-depth effect on SOC 

(p<0.0001), SOCst (p=0.0002), TN (p<0.0001), TNst (p=0.0002), and BD (p<0.0001). SOC 

(p<0.0001), SOCst (p<0.001), TN (p<0.0001), TNst (p<0.001), and BD (p<0.0001) between 

soil depth 0-15cm and 15-30cm were significantly different. 
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Fig. 5:  Soil organic carbon stocks under different land cover types and soil depths. NF = natural forest; 

NF2C = natural forest converted to cropland; PF= plantation forest; PF2C = plantation forest 

converted to cropland; BF = bamboo forest; and BF2C = bamboo forest converted to cropland 

 

 

Fig. 6: Total nitrogen stocks under different land cover types and soil depths. NF = natural forest; NF2C = 

natural forest converted to cropland; PF= plantation forest; PF2C = plantation forest converted to 

cropland; BF = bamboo forest; and BF2C = bamboo forest converted to cropland 
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Fig. 7: Percentage change in SOC stocks following forest conversions. NF2C = natural forest converted to 

cropland; PF2C = plantation forest converted to cropland; and BF2C = bamboo forest converted to 

cropland 

 

 
Fig. 8: Percentage change in TN stocks following forest conversion. NF2C = natural forest converted to 

cropland; PF2C = plantation forest converted to cropland; and BF2C = bamboo forest converted to 

cropland 

 

 Similarly, land cover had a highly significant effect on SOC (p=0.0001), SOCst 

(p=0.0001), TN (p=0.0002), TNst (p<0.0001), and BD (p=0.0191) in the PF vs. PF2C 
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category (Table 4b). There were significant differences in SOC (p<0.0001), SOCst 

(p<0.001), TN (p<0.0001), TNst (p<0.001), and BD (p=0.0320) between PF and PF2C. Soil 

depth also had a highly significant effect on SOC (p<0.0001), SOCst (p=0.0038), TN 

(p<0.0001), TNst (p=0.0026), and BD (p=0.0153). SOC (p<0.0001), SOCst (p=0.0041), TN 

(p<0.0001), TNst (p=0.0026), and BD (p=0.0255) in soil depth 0-15cm differed from soil 

depth 15-30cm. 

 In contrast, land cover had no significant effect on SOC (p=0.7894), SOCst 

(p=0.8217), TN (p=0.7460), TNst (p=0.7749), and BD (p=0.6992) in the BF vs. BF2C 

category (Table 4c). SOC (p=0.9825), SOCst (p=0.990), TN (p=0.9699), TNst (p=0.9794), 

and BD (p=0.9540) in BF were similar to BF2C. However, soil depth had a significant 

effect on all the soil properties (SOC (p=0.0284), SOCst (p=0.0206), TN (p=0.0279), and 

TNst (p=0.0204)) except for BD (p=0.4545). Pairwise comparisons revealed differences in 

SOC (p=0.0157), SOCst (p=0.008), TN (p=0.0158), and TNst (p=0.008), but similarities in 

BD (p=0.7610), between soil depths 0-15cm and 15-30cm. 

 

 

 

4.0 Discussion   

The empirical results suggest that forest-to-cropland conversions have reduced SOC and TN 

concentrations and stocks in the Eastern Mau Forest Reserve. The mean SOC and TN 

concentrations and stocks between forests and cropland establishments differed significantly 

as hypothesized (Table 4), and sometimes the difference was by as much as half (Table 3). 

This is consistent with the findings of previous studies in the tropics (Enanga et al. 2011; 

Walker and Desanker 2004; Lemenih et al. 2005; Bewketa and Stroosnidjer 2003; Solomon 

et al. 2000; Detwiler 1986). In these studies, the rates and magnitude of decrease in SOC 



15 
 

and TN stocks varied with soil type and time since conversion to cropland. The declining 

trend mostly persists until new steady states of carbon and nitrogen are reached after years 

of continuous cultivation (Eaton et al. 2008; Lemenih et al. 2005; Evrendilek et al. 2004).  

 The decrease in SOC and TN stocks per se can be explained by the subsequent 

disruption of the balance between inputs and outputs of carbon and nitrogen in the soil 

system after forest conversion. Forest ecosystems usually have a higher net primary 

productivity (NPP) than agro-ecosystems; thus, their inputs of detritus to the soils are also 

higher (Eclesia et al. 2012; Smith 2008). In Eastern Mau, the NPP of forests and inputs of 

carbon and nitrogen to their soils is even higher because of the extremely fertile Andosols 

and high rainfall amounts. Despite the lower NPP of agro-ecosystems, the bulk of their 

biomass is usually removed from the crop fields after harvest for use as food or fuel. Only a 

small amount of readily decomposable residues remain on the fields to accumulate SOM. 

Removal of crop biomass after harvest also aggravates the erosion processes, which were 

initiated by forest clearance, in the predominant uplands leading to SOC and TN losses. 

Additionally, frequent tillage and other perturbations disintegrate soil aggregates, 

redistribute crop residues, and alter soil aeration, moisture, and temperature. This 

accelerates microbial decomposition and oxidation of the soil’s organic matter to CO2, 

which is ultimately emitted to the atmosphere (Wiesmeier et al. 2012; Batlle-Aguilar et al., 

2011; Lal 2004; Powers 2004; Murty et al. 2002; Follett 2001). The reduction of SOC and 

TN stocks after forest conversions occurred regardless of the application of inorganic 

fertilizers in most croplands. This implies that supplementing fertilization by agro-forestry 

techniques, such as planting fast-growing, highly productive, deep-rooted, and nitrogen-

fixing tree species within NF2C and PF2C, may be the optimal option to restore and 

enhance SOC and TN stocks.  

 In contrast, the mean SOC and TN concentrations and stocks between BF and BF2C 

were similar (Table 4c). This can be attributed to the establishment of croplands within BF 

less than ten years ago. The sample sizes for BF and BF2C were also small (n=4); hence, the 

data may not have fully represented the variations within these land cover treatments. Future 

studies should increase the sample sizes in these two land cover groups to reduce the 

relatively large standard deviations from the mean SOC and TN stocks. 

 Further, the results revealed that BD in the croplands had not significantly changed 

(Table 4) except for PF2C. This was unexpected because BD tends to increase as tillage 

breaks down soil aggregates. But as Walker and Desanker (2004) argued, the tillage of most 

croplands by hand may have only caused minimal disturbances to substantially increase the 
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BD. This may have obviated the confounding influence of BD changes on estimating the 

changes in SOC and TN stocks after deforestation, as well as on analysing land-cover effect 

on these stocks. There was no confounding either in the PF vs. PF2C category because 

comparable results were obtained even when BD was included as a covariate in the 

statistical analyses.    

 Finally, SOC and TN concentrations and stocks decreased significantly as soil depth 

increased under all land cover treatments, which is in accordance with previous studies 

(Demessie et al. 2013; Li et al. 2013; Zhang et al. 2013; Fang et al. 2012; Girmay and Singh 

2012; Zhang et al. 2012; Han et al. 2010; Wang et al. 2010; Chen et al. 2009; Birch-

Thomsen et al. 2007; Yimer et al. 2007; Brown and Lugo 1990). The cause of this decline is 

that organic material inputs to forest soils (litter fall, exudates, leachates, dead roots, etc.) 

and agricultural soils (crop residues, manures, fertilizers, etc.) mostly reside in the upper 

layers, with only small amounts penetrating much deeper. High precipitation in the area may 

also instigate leaching of dissolved organic carbon and nitrogen compounds from the 

subsurface soils (15-30cm) to deeper soils that were not sampled. The lower concentrations 

and stocks of SOC in the subsurface soils also help to explain the corresponding higher BD 

values. Other factors that may account for higher BD in the subsurface soils include reduced 

aggregation, root penetration, and soil micro-organism populations, as well as the 

compacting weight of surface soils (USDA 2008).  

 

5.0 Conclusions and recommendations   

This study assessed the effects of forest to cropland conversions on SOC, TN, and BD in the 

Eastern Mau Forest Reserve. Based on the results, we conclude that (i) conversion of 

forests, particularly NF and PF, to croplands has led to a significant decline in the 

concentrations and stocks of SOC and TN, but no significant BD changes, and (ii) the 

surface soils contain significantly more concentrations and stocks of SOC and TN, while 

BD is significantly higher in the subsurface soils. This indicates that (i) transformation from 

natural to human-dominated landscape is increases the risk of soil degradation and restricts 

the ecosystem’s capacity to store carbon and nitrogen, and (ii) the subsurface soils have 

potential for carbon and nitrogen storage. Thus, intervention measures to enhance carbon 

and nitrogen storage should focus not only on surface soils, but also on subsurface soils. 

BMPs may reduce carbon and nitrogen losses in the croplands, especially agro-forestry 

practices that introduce fast-growing, highly productive, deep-rooted, and nitrogen-fixing 

trees. Long-term carbon and nitrogen storage in the forest soils depends on proper 
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management and protection of the forests from further deforestation and degradation. 

Appropriate land use and land use change policies are needed to protect the soils.  

The findings of this study improve our knowledge of the impacts of human activities 

on soil properties in the area. They also provide a basis to design sustainable land 

management and carbon sequestration strategies. In view of the ongoing soil degradation 

and requirements for sequestration of atmospheric CO2, future research should also employ 

remote sensing and GIS approaches to model and map the spatial patterns of carbon and 

nitrogen stocks. These approaches can afford holistic information and deeper understanding 

of carbon and nitrogen storage and fluxes throughout East Africa.   
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SPATIALLY-DISTRIBUTED MODELLING AND MAPPING OF SOIL ORGANIC CARBON AND TOTAL 

NITROGEN STOCKS IN THE EASTERN MAU FOREST RESERVE, KENYA 

    

K.O. Were
a,b

, B.R. Singh
c
, Ø.B. Dick

a
 

 

Abstract  

Detailed knowledge about the spatial distribution of soil organic carbon (SOC) and total nitrogen 

(TN) stocks is fundamental for sustainable land management and climate change mitigation. This 

study aimed at: (i) modelling and mapping the spatial patterns, and (ii) estimating SOC and TN 

stocks to 30cm depth in the Eastern Mau Forest Reserve using field sampling, remote sensing, 

geographical information systems (GIS), and statistical modelling approaches. This is a critical 

ecosystem that offers essential goods and services, but the sustainability is threatened by 

deforestation and degradation. Results revealed that elevation, silt content, TN concentration and 

Landsat 8 Operational Land Imager band 11 explained 72% of the variability in SOC stocks, while 

the same factors (excluding silt content) explained 71% of the variability in TN stocks. The results 

further showed that the observed patterns of SOC and TN stocks were controlled more by TN and 

SOC concentrations, respectively, than the other factors. Forests stored the highest amounts of SOC 

and TN (3.78 Tg C and 0.38 Tg N) followed by croplands (2.46 Tg C and 0.25 Tg N) and grasslands 

(0.57 Tg C and 0.06 Tg N). Overall, the Eastern Mau Forest Reserve stored approximately 6.81 Tg 

C and 0.69 Tg N. The highest estimates of SOC and TN stocks (hotspots) occurred on the western 

and north-western parts where forests dominated, while the lowest estimates (coldspots) occurred on 

the eastern side where croplands had been established. Therefore, the hotspots calls for policies that 

promote conservation, while the coldspots those that support accumulation of SOC and TN stocks.   

 

Keywords: Soil organic carbon • total nitrogen • digital soil mapping • remote sensing • GIS • Eastern 

Mau • Kenya 

 

1.0 Introduction   

Soil organic carbon (SOC) and total nitrogen (TN) are key determinants of biogeochemical 

cycling, soil quality, and various physical, chemical, and biological soil properties (Obade 

and Lal, 2013; Wang et al., 2013). They vary spatially and temporally in response to 

different climatic, edaphic, biotic, topographical, and lithological factors. Such dynamics 

also affect their contribution to the atmospheric greenhouse gases, particularly CO2 and 

N2O. Therefore, mapping the spatial patterns of SOC and TN stocks over time is important 
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to understand climate change, as well as land degradation at different scales. Unfortunately, 

the traditional soil mapping techniques are expensive, time-consuming, and yield coarse 

qualitative information (Mora-Vallejo et al., 2008; Mehrjardi et al., 2014). As a result, there 

is increasing effort to develop and apply new techniques for spatial prediction of soil 

properties, especially SOC stocks. The spotlight is on SOC stocks because the world’s soils 

contain about 1500 Pg C to 1m depth, which is twice the amount of C in the atmospheric, 

and three times in the biotic pool (Lal, 2004; Smith, 2004, 2008). Hence, even slight 

changes in SOC pool can significantly affect the global C cycle and climate.   

The existing techniques for spatial prediction of target soil variables have been 

classified as: (i) measure and multiply (MM), and (ii) soil-landscape modelling (SLM) 

techniques (Mishra et al., 2010; Cambule et al., 2014). In MM approach, the area is 

stratified and the point estimates of the target soil property in a stratum are averaged and 

multiplied by the area of the stratum. Whereas in SLM approach, the variability of target 

soil property is explained by its relationships with soil-forming factors such as topography, 

climate, land use, vegetation, or soil type. Field observations of the target soil variables and 

environmental data are used to calibrate models, which are then applied to generate 

prediction surfaces of the target soil variable for a given area (Mishra et al., 2010; Li et al., 

2013a; Cambule et al., 2014). The SLM approaches have been boosted by availability of 

inexpensive and spatially explicit environmental data from remote sensors and existing 

geodatabases. Although, MM approach is simple, it ignores the complex interactions of the 

environmental factors with the target soil variables, which lead to spatial variability. Thus, 

MM approach is more likely to yield predictions with lesser accuracy than SLM approach. 

McKenzie and Ryan (1999), McBratney et al. (2003), and Scull et al. (2003) have provided 

thorough reviews of spatial prediction of soil properties using environmental data, also 

known as digital soil mapping.           

Literature abounds with examples of the SLM techniques that have been applied so 

far to model and map the spatial patterns of SOC and TN stocks. The techniques range from 

multiple linear regression (Lesch and Corwin, 2008; Meersmans et al., 2008) to partial least 

square regression (Selige et al., 2006; Amare et al., 2013), generalized linear models (Yang 

et al., 2008), classification and regression trees (Kheir et al., 2010; Martin et al., 2011; 

Razakamanarivo et al., 2011), kriging (Wu et al., 2009; Zhang et al., 2010; Liu et al., 2011; 

Li et al., 2013b; Cambule et al., 2014), regression-kriging (Hengl et al., 2004, 2007; Lamsal 

et al., 2006; Mora-Vallejo et al., 2008; Sumfleth and Duttmann, 2008; Li, 2010; Vasques et 

al., 2010a, 2010b; Dorji et al., 2014; Martin et al., 2014), geographically weighted 
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regression (Mishra et al., 2010; Zhang et al., 2011; Mishra and Riley, 2012; Kumar et al., 

2013; Wang et al., 2013), geographically weighted regression-kriging (Kumar et al., 2012), 

neural networks (Malone et al., 2009; Jaber and Al-Qinna, 2011; Li et al., 2013a), random 

forests (Grimm et al., 2008; Vågen and Winowiecki, 2013a, 2013b), rule-based models 

(Lacoste et al., 2014), and linear mixed models (Doetterl et al., 2013; Karunaratne et al., 

2014). Of these methods, multiple linear regression (MLR) is the most popular because of 

its simplicity, computational efficiency, and straightforward interpretation (Li et al., 2013a). 

However, its assumptions of spatial stationarity in the effects of environmental variables and 

spatial independence in the target soil properties are rarely met leading to misspecification 

of prediction models. Hybrid methods, particularly regression-kriging (MLRK), which 

combines ordinary kriging with MLR are also gaining currency in digital soil mapping 

because of their detailed results and lower prediction errors compared to pure geostatistical, 

or statistical methods (Hengl et al., 2004). Geographically weighted regression (GWR) is 

the most recent technique, which has drawn the attention of environmental scientists. GWR 

was designed to deal with the spatially varying relationships between the target and 

environmental variables (spatial non-stationarity); thus, the estimated parameters also vary 

spatially (Wang et al., 2013). Although some comparative studies have shown that it 

outperforms MLRK in the spatial prediction of SOC stocks (Mishra et al., 2010), its 

application is still limited. Few studies have also satisfactorily attempted to couple GWR 

with kriging (geographically weighted regression-kriging; GWRK) to predict the spatial 

distribution of environmental phenomena. For example, urban heat island in Wrocław, 

Poland (Syzomanoski and Kryza, 2012) and SOC stocks in Pennsylvania State, USA 

(Kumar and Lal, 2011; Kumar et al., 2012).  

  The objective of this study was to estimate and map the spatial distribution of SOC 

and TN stocks to 30cm depth in the Eastern Mau Forest Reserve using an integrated field 

sampling, remote sensing, geographical information systems (GIS), and statistical modelling 

approach. The 30cm depth was consistent with the Intergovernmental Panel on Climate 

Change (IPCC) guidelines (IPCC, 2006). The Eastern Mau Forest Reserve was appropriate 

for this study because it had undergone wanton deforestation and degradation since the mid-

1990s thanks to ill-advised forest excisions and illegal logging, encroachments, and charcoal 

burning (Government of Kenya 2009; UNEP 2009). Despite this, no complete studies had 

been undertaken to quantify the storage and spatial patterns of SOC and TN. This study 

aimed to fill this gap; hence, contribute knowledge to formulate site-specific and effective 
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measures for ecosystem restoration, sustainable land management and climate change 

mitigation.   

 

2.0 Materials and methods  

2.1 Study area  

 

 

Fig. 1: Geographical location of the study area 

 

The Eastern Mau Forest Reserve, which is bounded by the latitudes 0º 15´- 0º 40´S and 

longitudes 35º 40´- 36º 10´E (Fig. 1), is part of East Africa’s largest closed-canopy 

indigenous montane forest, and Kenya’s key water catchment area. It covers approximately 

650 km
2
, with the altitudes ranging from 2210 to 3070m above sea level. The climate is cool 

and humid, with the mean annual rainfall varying between 935 and 1287 mm, and the mean 

annual temperature ranging from 9.8 to 17.5 °C (Jaetzold et al., 2010). The rainfall pattern is 

tri-modal with peaks in April, August, and November. The Njoro, Naishi, and Larmudiac 

Rivers drain the eastern slopes into Lake Nakuru, while the Nessuiet flow northwards into 

Lake Bogoria, and the Rongai River into Lake Baringo. The area’s physiography and 

lithology are characterized by major scarps and uplands comprising pyroclastic rocks, such 
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as pumice tuffs, of tertiary-quaternary volcanic age. These soft, light brown rocks have 

insets of yellow pumice and angular trachyte, which decompose into deep to very deep, dark 

reddish brown clayey soil aggregates (McCall, 1967). The soils, classified as Mollic 

Andosols, are friable and smeary with humic topsoils (Jaetzold et al., 2010). The major land 

cover types are forests, grasslands, and croplands. The floristic composition of forests and 

grasslands include: indigenous tree species, such as Prunus africana, Arundinaria alpina, 

Juniperus procera, Olea europaea ssp. africana, Olea capensis ssp. hochstetteri, 

Podocarpus latifolius, Nuxia congesta, Clematis hirsuta, Schefflera volkensii, and Dombeya 

torrida, exotic tree species, such as Pinus patula and Cupressus lusitanica, and grass 

species, such as Pennisetum clandestinum. The major crops grown are maize (Zea mays), 

beans (Phaseolus vulgaris), wheat (Triticum aestivum), and potatoes (Solanum tuberosum).  

 

2.2 Data sources and pre-processing 

 

 

Fig. 2: Illustration of the data sources and modelling framework 

 

Figure 2 summarizes the data sources and spatial modelling framework of the study. The 

overall methodology involved seven major steps: (i) soil sampling and analysis, (ii) pre-

processing the environmental predictors and target soil variables, (iii) calibrating the 
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regression-based models, (iv) applying the models, (v) interpolating the regression-based 

residuals and adding them to the fitted trend surfaces, (vi) validating, and (vii) producing 

thematic maps of SOC and TN stocks.  

 

2.2.1 Soil sampling and analysis 

The soil sampling campaign was conducted between June and August 2012. Before the 

campaign, sampling points were generated in a completely randomized design using agro-

ecological zone map as the base in a GIS. A map showing the distribution of these sampling 

points guided the field visit. In each sampling point, a 30 × 30m plot was laid, and an auger 

used to collect samples from the centre and four corners of the plot, at 0-15cm and 15-30cm 

depths. The samples taken from corresponding depths were mixed thoroughly and bulked 

into one composite sample of about 500g. To determine bulk density (BD), a core sampler 

(5 cm in diameter and 5cm in height) was used to collect one undisturbed sample at the 

centre of each plot and each depth. The geographical coordinates, elevation, vegetation, and 

land management practices were also recorded at each plot. A total of 320 soil samples were 

collected from 160 sampling plots to analyse the chemical and physical properties, and a 

similar number to determine BD at the National Agricultural Research Laboratories. 

Supplementary soil data that had been collected similarly from 60 other sampling plots to 

evaluate the impact of land cover changes on SOC and TN stocks (Were et al., 2014) were 

also used. Overall, soil data from 220 sampling plots (Fig. 1) were used to model the spatial 

distribution of SOC and TN stocks.   

 The soil samples were air-dried, ground and sieved through a 2mm mesh. The 

Walkley-Black wet oxidation method (Nelson and Sommers, 1982), Kjeldahl digestion 

method (Bremner and Mulvaney, 1982), and core method (Blake, 1965) then determined 

SOC concentrations, TN concentrations, and BD, respectively. These properties were used 

to calculate SOC and TN stocks (target variables) at each depth. Additional soil properties 

were also analysed. The hydrometer method (Day, 1965) determined particle size 

distribution, while the Mehlich method (Okalebo et al., 2002) estimated phosphorous (P) 

content. A flame-photometer measured the content of potassium (K), an atomic absorption 

spectrophotometer the contents of calcium (Ca) and magnesium (Mg), and a pH meter 

measured pH (1:2.5 soil-water) (Okalebo et al., 2002).  

 Eq. (1) was used to calculate SOC stocks (Mg C ha
-1

) for each depth: 
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where: SOCst is the soil organic carbon stock (Mg C ha
-1

), SOC is the soil organic carbon 

concentration (%, which is then converted to g C g
-1

 soil), BD is the bulk density (g cm
-3

), D 

is the depth (cm), and 100 is the multiplication factor to convert the SOC per unit area from 

g C cm
2
 to Mg C ha

-1
. Stone contents were negligible due to the softness of the volcanic 

rocks; hence, Eq. (1) does not account for them. Similarly, TN stocks (TNst; Mg N ha
-1

) for 

each depth were computed by substituting TN for SOC in Eq. (1). The SOC and TN stocks 

in the surface (0-15cm) and subsurface soils (15-30cm) were summed up to obtain the total 

stocks to 30cm depth.   

 

2.2.2 Remote sensing and GIS analysis   

Existing spatial databases provided the twenty candidate environmental predictors that had 

been selected a priori based on scorpan conceptual model (McBratney et al., 2003). This 

conceptual model captures the key soil-forming factors; namely, soil properties (s), climate 

(c), organisms (o), topography (r), parent material (p), age (a), and space (n). Table 1 

provides the sources of climate (mean annual temperature and rainfall), land cover, 

elevation (digital elevation model; DEM), and Landsat 8 Operational Land Imager (OLI) 

data. Slope, curvature, aspect, and compound topographic index (CTI) were extracted from 

the DEM. Eq. (2) extracted the CTI grid:  

 

                                                                  
  

    
                                                             (2) 

 

where:    is the upslope area and   is the slope (McKenzie and Ryan, 1999).  

 The Normalized Difference Vegetation Index (NDVI) (Eq. (3)) was derived after the 

digital numbers of OLI band 4 (red; R) and 5 (near infra-red; NIR) were converted to top-

of-atmosphere reflectance ( ) (http://landsat.usgs.gov/Landsat8_Using_Product.php).   

 

                                                               
       

       
                                                          (3) 

 

http://landsat.usgs.gov/Landsat8_Using_Product.php
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Moreover, principal component analysis was performed to reduce the dimensionality, while 

maximizing the variability of OLI band 2, 3, 4, 5, 6, and 7. The first principal component 

(PC1), which explained 98% of the variability, was chosen for spatial modelling. All the 

raster grids were transformed to Universal Transverse Mercator coordinate system (UTM 

WGS84 Zone 36S) prior to extracting the area of interest from each. The 1km climatic grids 

were resampled to 30m to synchronize them with the rest. Soil data from the laboratory, 

including sand content, silt content, clay content, TN concentrations, C concentrations, pH, 

Mg, Ca, P, and K were also integrated into the geodatabase both as points in vector format 

and raster surfaces after interpolation by ordinary kriging. Ordinary kriging is a spatial 

interpolation technique, which has been widely used to optimize the prediction of soil 

properties at unsampled locations in pedological studies (Chaplot et al., 2010; Pachomphon 

et al., 2010; Kumar and Lal, 2011; Tesfahunegn et al., 2011; Marchetti et al., 2012; 

Elbasiouny et al., 2014). Finally, the attribute values of all the other raster grids (e.g., slope, 

rainfall, temperature) were extracted to the points to allow the analysis of relationships 

between the target variables and predictors.  
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2.3 Spatial modelling   

2.3.1 Exploratory data analysis  

Descriptive statistics of the target variables were first estimated. This was followed by 

pairwise Pearson’s product-moment correlation analysis to detect collinearity between the 

predictors, as well as their correlation with the target variables. Predictors entered the model 

if their correlation with the target variable was, or exceeded 0.2. Also, two highly correlated 

predictors (r   0.8) were retained in a model only if their variance inflation factors (VIFs) 

did not exceed 10; otherwise, one was removed.  

 

2.3.2. Model development  

The processed point data from the geodatabase (n=220) was randomly split into two: (i) 

training data (n=176) to calibrate the models of SOC and TN stocks, and create prediction 

surfaces, and (ii) test data (n=44) to validate the surfaces. Multiple linear regression (MLR), 

multiple linear regression-kriging (MLRK), geographically weighted regression (GWR), 

and geographically weighted regression-kriging (GWRK) techniques were used to calibrate 

the models.   

 

2.3.2.1 MLR and MLRK 

Eq. (4) gives the form of MLR model used to define the relationship between the target 

variables and predictors at the sampled locations (Montgomery et al., 2006):  

 

                                                                  ∑                                                      (4) 

 

where:    is the value of the target variable at ith location,   are the regression coefficients, 

   is the value of the predictor variable at ith location, k is the number of predictors, and    is 

the error term.  

 The ordinary least square estimator fitted the full MLR models, and then all possible 

regressions variable selection method ranked the best subset models based on Mallow’s Cp. 

The final reduced model was selected from the three best subset models after scrutiny for 

physical correctness. T-tests determined the significance of the model parameters, while 

analysis of variance F tests determined the significance of the regression at a level of 5%. 

Residual plots, normal probability plots, measures of influence and leverage (e.g., Cook’s 



10 
 

D), VIFs, and coefficients of determination (R
2
) checked the adequacy of the models. 

Adequate models were applied to create prediction surfaces of the target variables.  

To develop MLRK models and prediction surfaces, the deterministic component of 

the target variable modelled by MLR (Eq. (4)), and the spatially correlated stochastic 

component modelled by kriging the residuals were summed up. Eq. (5) summarizes the 

MLRK model (Hengl et al., 2004; Vasques et al., 2010a):  

 

                                             
            

                                                      

(5) 

 

where:         is the target variable at location       ,        are the coordinates of the ith 

location,      
       is the deterministic component,   

   
       is the spatially correlated 

random component, and           is the spatially independent residuals error (noise).  

 

2.3.2.2 GWR and GWRK  

Similar predictors were used to build the GWR models to allow comparison with the MLR 

models. Unlike MLR that assumes spatial stationarity and locational independence, GWR 

takes into account the spatial location of samples. This allows the estimated parameters to 

vary locally, which better represent the spatially varying relationships between the target 

and predictor variables (Zhang et al., 2011). Eq. (6) expresses the form of GWR model 

(Fotheringham et al., 2002):  

 

                                                           ∑                                                      (6) 

 

where:    is the value of the target variable at ith location,        are the coordinates of the 

ith location,         are the regression coefficients,    is the value of the predictor variable 

at ith location, k is the number of predictors, and    is the error term.  

 The GWR parameters were estimated using adaptive (bi-square) spatial kernel 

functions, where the bandwidth of the samples included for estimation varied with sample 

density (Fotheringham et al., 2002; Wang et al., 2013). The Akaike Information Criterion 

(AICc) determined the optimal bandwidth. The estimated parameters were applied to create 

spatially distributed maps of the target variables.   
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To develop GWRK models, the deterministic component of the target variable 

explained by GWR (Eq. (6)), and the spatially correlated stochastic component represented 

by kriged residuals were added. Eq. (7) provides the form of GWRK model (Kumar et al., 

2012):  

 

                                                                                                            (7) 

 

where:         is the target variable at location       ,            is the deterministic 

component,   
          is the spatially correlated random component, and           is the 

spatially independent residuals error.  

Additionally, Moran’s I measured spatial autocorrelation in the residuals. The 

Moran’s I values range from -1 to +1, with 0 indicating absence of spatial autocorrelation, 

and positive values indicating positive autocorrelation and vice versa.   

 

2.3.3 Model evaluation 

A ten-fold validation procedure was employed to evaluate the prediction surfaces produced 

by the fitted models. In this procedure, the original dataset (n=220) was randomly split into 

training (n=176) and testing (n=44) datasets ten times. The training data were used to 

calibrate models and generate prediction surfaces, while the testing data were used to 

validate them. Root mean squared error (RMSE) and mean error (ME) were computed from 

the differences between the predicted and measured values to determine the precision and 

bias of the predictions, respectively (Eq. (8 and 9)):  

 

                                                 √∑    
 
   ̂  

                                                (8) 

 

                                                             ∑    
 
   ̂                                                       (9) 

 

where:   ̂ is the estimated value,    is the measured value, and n is the number of measured 

values in the testing data. The ME should be close to zero, while RMSE should be as small 

as possible. Average ME and RMSE values of the ten-fold validation are reported in this 

paper. Visual inspection of the spatial patterns of the target variables supplemented 

statistical validation.  
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The method with the lowest prediction error indices provided the final estimates of 

SOC and TN stocks for the study area. To estimate the stocks under different land cover 

types, the prediction maps were overlaid with the land cover maps. ArcGIS
®
 10.1, ERDAS 

IMAGINE
®
 2013, GWR4, Microsoft Excel

®
 2010, and R version 3.0.1 (R Core Team, 

2013), with add-in packages "sp" (Pebesma et al., 2013) and "automap" (Hiemstra, 2013) 

performed all the data management, analyses, and geovisualization tasks.  

 

3.0 Results  

3.1 Exploratory data analysis  

Table 2 presents the numerical summaries of SOC and TN stocks at the sampled locations. 

Soil organic carbon stocks range from 42.0 to 193.4 Mg C ha
-1

, with a mean of 102.7 Mg C 

ha
-1

. The standard deviation is 24.6 Mg C ha
-1 

and coefficient of variation is 23.9%, which 

suggests moderate variability. The skewness is 0.39 indicating an approximately normal 

distribution of the data, whereas kurtosis is 0.97 implying less peaked values in the 

distribution of the data. Similarly, TN stocks vary from 4.2 to 19.1 Mg N ha
-1

, with a mean 

of 10.3 Mg C ha
-1

. The standard deviation is 2.4 Mg C ha
-1

 and coefficient of variation is 

23.8%, while skewness and kurtosis are 0.28 and 0.76, respectively. Again, this shows 

moderate variability and minimal departure from normality. Hence, spatial modelling of 

both SOC and TN stocks was performed using the raw, non-transformed data. Pearson’s 

correlation analysis shows that some of the predictors were highly correlated (r   0.80), and 

that only 13 met the threshold correlation (r   0.20) with the target variables (Table 3). 

Thus, the predictors used to develop full models reduced from 20 to 13; namely, elevation, 

aspect, rainfall, temperature, TN, Mg, silt, clay, land cover, PC1, NDVI, and OLI band 10 

and 11 (Table 3). The predictors that were highly correlated include: temperature and 

elevation, temperature and land cover, elevation and land cover, elevation and OLI band 11, 

land cover and OLI band 11, and PC1 and OLI band 11. Therefore, VIFs of the predictors in 

the reduced models were also checked for multi-collinearity.  
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3.2 Spatial models  

3.2.1 MLR 

The subset SOC and TN stock models selected by all possible regressions method had lower 

Mallow’s Cp values (3.8 and 10.3, respectively) than the number of model parameters. Table 

4 provides the summaries of the models. Elevation, silt content, TN concentration, and OLI 

band 11 have significant effects on SOC stocks explaining 72% of its variability (adjusted 

R
2
=0.72), whereas OLI band 11, elevation, and SOC concentration have significant effects 

on TN stocks explaining 71% of its variability (adjusted R
2
=0.71). Total nitrogen 

concentrations have the largest magnitude of effect on SOC stocks, while SOC 

concentrations have the largest magnitude of effect on TN stocks. OLI band 11 has the 

smallest magnitude of effect on both TN and SOC stocks. Visual analysis of the residual 

and normal probability plots indicated equality of variance and normality in the distribution 

of error terms, as well as linearity in the model parameters. The few outliers that were 

evident on these plots were not sufficiently influential to warrant their removal from the 

data because Cook’s D indices were less than 1. Despite the high correlation between 

elevation and OLI band 11 (R
2
=0.84), the associated VIFs do not exceed 10 in the models. 

Moran’s indices are very low, yet statistically significant; that is, 0.11 (p=0.0141) and 0.08 

(p=0.0550) for SOC and TN stocks models, respectively. This shows very weak tendency 

for clustering of similar residuals. The high nugget-to-sill ratios (NSRs) of 78.6% for the 

residuals of SOC stock model, and 73.7% for the residuals of TN stock model to a range of 

4km (Table 6; Fig. 3) also demonstrate this weak spatial structure. However, the spatial 

dependency of SOC and TN stocks data are moderate (NSRs of 58.1% and 45.6%, 

respectively) to a range of 4.8km. Total sills for the residuals are 182 Mg C ha
-1

 and 1.9 Mg 

N ha
-1

, which are close to the variance (σ
2
) estimates of the respective MLR models (170.6 

Mg C ha
-1

 and 1.7 Mg N ha
-1

).   
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Fig. 3: (a) Experimental variograms (points) and fitted models (lines) of SOC stocks (b) MLRsoc residuals (c) 

GWRsoc residuals (d) TN stocks (e) MLRtn residuals, and (f) GWRtn residuals. MLRsoc and MLRtn refer 

to the multiple linear regression models for SOC and TN stocks, respectively. While GWRsoc and 

GWRtn refer to the geographically weighted regression models for SOC and TN stocks, respectively. 
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3.2.2 GWR 

Table 5 shows the summaries of parameter estimates of the GWR models for SOC and TN 

stocks. Once more, TN concentrations have the highest magnitude of effect on SOC stocks, 

while SOC concentrations have the highest magnitude of effect on TN stocks. OLI band 11 

has the lowest magnitude of effect on both TN and SOC stocks. Unlike the MLR models, 

the GWR models show that the magnitude of the effects of predictors varies with sampling 

location. This means that the interactions between the target variables and environmental 

factors are spatially non-stationary. Hence, the summaries of GWR estimates are given in 

ranges instead of mean values. Although the magnitudes vary spatially, the directions of the 

effects are constant. The Moran’s indices are lower than for MLR models; that is, 0.06 

(p=0.1798) and 0.02 (p=0.1620) for SOC and TN stocks models, respectively. This 

indicates that the GWR residuals are approximately uncorrelated, and that the models are 

better specified than the MLR models. The high NSRs of 84.4% for the GWR residuals of 

SOC stocks, and 87.5% for the GWR residuals of TN stocks to a range of 6km and 3km, 

respectively (Table 6; Fig. 3), also reveal this weak spatial dependency. Total sills for the 

residuals are 167 Mg C ha
-1

 and 1.6 Mg N ha
-1

, which are lower than for the MLR residuals. 

However, the range is shorter for the GWR residuals than for the MLR residuals only in the 

case of TN stocks.   
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3.3 Spatial distribution and estimates of SOC and TN stocks 

Figures 4 and 5 display the different prediction surfaces of SOC and TN stocks produced by 

MLR, MLRK, GWR, and GWRK models. The maps reveal similar spatial patterns of SOC 

and TN stocks meaning that SOC and TN stocks respond similarly to the environmental 

factors. There is a general decrease of SOC and TN stocks from the west to east. The 

highest estimates of SOC and TN stocks occur on the western and north-western parts, 

which according to the environmental data, have higher forest cover, elevations, and SOC 

and TN concentrations, but lower silt contents and surface temperatures. These hotspots are 

parts of the Logoman, Nessuiet, Kiptunga, and Baraget forests that have not undergone 

deforestation. The lowest estimates, on the other hand, occur on the eastern side where 

croplands have been established, including Teret, Nessuiet, Kapkembu, Tuiyotich, and 

Sururu locations. These coldspots are areas with higher crop cover, silt contents, and surface 

temperatures, but lower elevations, and SOC and TN concentrations. In the northern and 

south-eastern parts where crop cover is also high, the SOC and TN stocks are moderate to 

high. The GWR and GWRK prediction surfaces give more realistic pictures of the moderate 

to high SOC and TN stocks at Sururu forest on the south-eastern most part, which is more 

degraded than the forests on the western and north-western parts.   

The models generated minimum and maximum values that approximate the 

measured values (cf. Table 3). The MLR and MLRK estimates of TN stocks range from 5.8 

to 15.1 Mg N ha
-1

, whereas the GWR and GWRK estimates vary from 5.3 to 15.8 Mg N ha
-

1
. Similarly, the MLR and MLRK estimates of SOC stocks range from 56.7 to 146 Mg C ha

-

1
, while the GWR and GWRK estimates vary from 55.6 to 146 Mg C ha

-1
.  

 

 

 

Table 7 gives the magnitude of SOC and TN stocks under different land cover categories 

based on GWR method, which has lower prediction error indices compared to other 

methods. Forests stores the highest amounts of SOC and TN (3.78 Tg C and 0.38 Tg N) 

followed by croplands (2.46 Tg C and 0.25 Tg N), and grasslands (0.57 Tg C and 0.06 Tg 

N) (1 Tg = 10
12 

g = 1 million tons). This is because forests cover the largest area (32,228 
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ha), while grasslands cover the smallest area (5,509 ha). Overall, the Eastern Mau Forest 

Reserve stores about 6.81 Tg and 0.69 Tg of SOC and TN, respectively.  

 

 

Fig. 4: Maps showing the spatial patterns of the predicted SOC stocks using MLR, MLRK, GWR, and GWRK 
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Fig. 5: Maps showing the spatial patterns of the predicted TN stocks using MLR, MLRK, GWR, and GWRK 
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3.4 Model evaluation  

Table 8 presents the results of ten-fold validation procedure used to quantify the errors 

attached to the prediction maps of SOC and TN stocks. The average MEs for all prediction 

models are close to 0, which indicates a small tendency for over- or underestimation. The 

average RMSEs of the validation range from 16.7 to 19.9 Mg C ha
-1

, and from 1.5 to 1.9 Mg 

N ha
-1

, which are slightly higher than the RMSEs of the fitted models (13.07 Mg C ha
-1

 and 

1.33 Mg N ha
-1

 for MLR models, and 12.86 Mg C ha
-1

 and 1.29 Mg N ha
-1

 for GWR 

models). This suggests that the models do not predict new data as precise as they fit the 

original ones. However, the differences in RMSEs are slight, and it should also be noted that 

the proportions of observations used for calibration and validation were different. The GWR 

models show better performance in predicting SOC and TN stocks at new locations than 

MLR models given their lower average RMSEs and MEs. The average RMSEs are also 

slightly lower than the standard deviations of the measured values (cf. Table 3), which 

means that incorporation of the predictors and spatial correlation gives better estimations 

than what would be achieved by just using the measured values for predictions. However, 

addition of the stochastic part (kriged residuals) to the GWR and MLR outputs does not 

reduce the prediction errors. The RMSEs of the GWRK and GWR models are similar, and 

so are the RMSEs of the MLRK and MLR models.  

 

 
 

4.0 Discussion    

4.1 Spatial models  

The significant effects of elevation, silt content, TN concentration, and OLI band 11 in the 

SOC models, and elevation, SOC concentration, and OLI band 11 in the TN models implies 

that topographical, edaphic and climatic factors control the spatial patterns of SOC and TN 

stocks in the Eastern Mau Forest Reserve. Pachomphon et al. (2010) reported similar 

combination of controlling factors in Laos, and Li and Shao (2014) in north-western China. 

The magnitudes of the effects of these predictors indicates that soil properties, particularly 
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TN and SOC concentrations, are more important than the other factors in determining the 

observed variability of SOC and TN stocks, respectively. This was expected because of the 

high statistical correlation between them, and the theoretical tight coupling between C and 

N cycles. Nitrogen supply increases the net uptake of C in terrestrial ecosystems, which in 

turn leads to higher inputs of C and N to the soils (Zaehle et al., 2011). The high coefficient 

of determination (i.e., R
2
>0.70) obtained for the fitted MLR and GWR models further 

confirms the explanatory power of these soil properties. In a similar study at four 

contrasting East African landscapes, Vågen and Winowiecki (2013a) also concluded that 

intrinsic soil properties determined more the SOC dynamics than other environmental 

factors alone. The significant effects of OLI band 11 (proxy for surface temperature) and 

elevation on SOC and TN stocks suggests that: (i) some solutions to the problem of up-

scaling soil survey data to landscape level in the region exist in the freely available remotely 

sensed and DEM data, and (ii) computationally intensive remote sensing- and DEM-derived 

parameters (e.g., CTI, NDVI) do not always improve the spatial prediction of soil 

properties. Generally, poor prediction performance (R
2
<0.50) has been the norm in the 

region. For instance, Mora-Vallejo et al. (2008) developed MLR and MLRK models using 

topographical and geomorphological variables that explained less than 25% of SOC 

variability in south-eastern Kenya. But recently, Vågen et al. (2013b) reported good 

prediction performance of SOC and pH (i.e., R
2
>0.70) using Landsat 7 ETM+ imagery and 

random forest models in Ethiopia.  

  In terms of spatial structure, the NSRs of raw SOC and TN stocks data revealed 

moderate spatial dependency (Table 6), which compare with the findings of Sumfleth and 

Duttmann (2008). This suggests that in the short-range, random and structural processes are 

equally influential in explaining the spatial variability of SOC and TN stocks. The structural 

processes that determine the variability of SOC and TN stocks in the Eastern Mau Forest 

Reserve are the natural soil-forming factors, including topography, soil properties, and 

climate, while the random processes that explain the remaining variability are human 

activities, such as illegal logging, encroachments, and charcoal burning, as well as land 

management practices. In contrast, the residuals obtained from the GWR and MLR models 

exhibited weaker patterning as evidenced by the low Moran’s indices and high NSRs. This 

means that the global trend models partly explained the variability and spatial correlation of 

SOC and TN stocks leaving a small, less structured, short-range variation unexplained 

(Vasques et al., 2010a, 2010b). The unexplained short-range spatial variation reflects the 

inherent data errors and spatial sources of variations at distances smaller than the shortest 
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sampling interval. Theoretically, this can be resolved by increasing the sampling intensity, 

but practically, this may be difficult to implement due to resource constraints. The NSRs 

also hint at the proportion of variation that can be explained by the spatial models. As 

expected, the NSRs for the MLR models of SOC and TN stocks (79% and 74%) were close 

to the proportions of variation that the models explained (adjusted R
2
=72% and 71%).  

 

4.2 Spatial distribution and estimates of SOC and TN stocks  

The prediction maps revealed spatial patterns of SOC and TN stocks that were similar, and a 

reflection of the environmental predictors. The given characteristics of the hotspots of SOC 

and TN stocks on the western and north-western parts, in addition to the highly fertile 

Andosols of the area, favours accumulation of SOC and TN stocks. For instance, the high 

rainfall and low temperatures associated with higher altitudes increase net primary 

productivity of the forests and decrease SOC turnover. The lower silt content relative to clay 

content in the forest soils is also an indication of the presence of organo-complexes, or 

allophane, imogolite, and ferrihydrite clay minerals, which stabilize organic matter and 

plant nutrients (Lemenih et al., 2005; Chaplot et al., 2010). The smaller pore spaces of clay 

particles also promote aggregation and physical protection of SOC. In contrast, the 

characteristics of the coldspots of SOC and TN stocks on the eastern side are unfavourable 

for accumulation of SOC and TN stocks. For example, the higher crop cover is attributed to 

the conversion of forests to croplands, which began in the mid-1990s. In these croplands, 

biomass removal after harvesting, erosive processes, and frequent tillage, which breaks up 

the soil aggregates and alters aeration, can explain the lower SOC and TN stocks (Murty et 

al., 2002; Smith 2008; Eclesia et al., 2012; Wiesmeier et al., 2012). Thus, the coldspots of 

SOC and TN stocks also highlight the human-induced soil degradation, and sources of C 

and N emissions. The altitudinal gradient in SOC stocks mentioned above corresponds with 

previous studies in the Tana River basin, Kenya (Tamooh et al., 2012), while the highest 

SOC and TN stocks under forests coincide with other studies in the region (Bewketa and 

Stroosnidjer, 2003; Lemenih et al., 2005; Girmay and Singh, 2012; Demessie et al., 2013). 

The hotspots and coldspots on the prediction maps are the locations to target the best 

management practices for climate change mitigation and sustainable land management. For 

example, the western and north-western parts need practices that promote retention, whereas 

the eastern part requires those that enhance accumulation of SOC and TN stocks.  

The SOC and TN stocks in the Eastern Mau Forest Reserve to 30cm depth were 

estimated at 6.81 Tg and 0.69 Tg, respectively. This accounts for 0.36% of the total SOC 
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stock to 30cm depth reported for Kenya (Batjes, 2004). Batjes (2004) also reported that 

Andosols of the humid and semi-humid regions in Kenya stored an average of 9.1 Kg C m
-2

 

(91 Mg C ha
-1

) to 30cm depth, which slightly differs from the present findings (i.e., 10.3 Kg 

C m
-2

 or 102.7 Mg C ha
-1

). This difference can be attributed to the properties of data in the 

two studies. Batjes (2004) used coarse resolution legacy data from SOil and TERrain 

(SOTER) database and Africa Land Cover Characteristics (ALCC) database, while the 

present study used newly collected, fine resolution data to estimate SOC stocks.  

 

4.3 Model evaluation 

The GWR-based models were better than MLR-based models in predicting new data (Table 

8); so, GWR models were chosen to quantify the total stocks of SOC and TN in the area and 

different land cover types (Table 8). Mishra et al. (2010), Zhang et al. (2011), and 

Syzomanoski and Kryza (2012) also obtained similar results. Basically, the MLR approach 

assumed that the environmental factors, which affected the variability of SOC and TN 

stocks, were spatially stationary. Hence, it represented their relationships using a global 

statistic. However, such global values can lead to large errors and be very misleading since 

most of the variability in SOC and TN stocks result from the local interaction of processes 

(Kumar et al., 2012). In contrast, the GWR approach applied regressions locally, which 

accounted for both the spatial trends and local variations resulting in superior estimation of 

SOC and TN stocks. Despite this, the GWR approach also has its own weaknesses; for 

example, the variation of regression coefficients locally did not lead to selection of different 

predictors at different locations (Zhang et al., 2011; Kumar et al., 2013). This means that 

some predictors may have been redundant at some locations. Unlike other studies that 

reported better performance with regression-kriging methods (Mishra et al., 2010; Kumar et 

al., 2012; Syzomanoski and Kryza, 2012; Zhang et al., 2012), addition of stochastic 

component (kriged residuals) to the MLR and GWR outputs did not yield lower prediction 

errors here. The small proportion of spatially correlated random component in the residuals 

as indicated by the low Moran’s indices and NSRs (Table 6) explains this. Mora-Vallejo et 

al. (2008) and Li et al. (2013a) also found that MLRK did not outperform MLR. 

 

4.4 Limitations of the study  

We acknowledge some limitations of the study. Firstly, the soil properties used as predictors 

were themselves products of interpolation by ordinary kriging. Thus, interpolation errors 

may have been propagated to the subsequent prediction of SOC and TN stocks. These 
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predictors would have enhanced the prediction accuracy more had they been sampled more 

intensely than the target variables. Similarly, estimation of SOC and TN stocks under 

different land cover types was based on land cover maps that had been produced through 

classification of Landsat 5 TM satellite imagery. Thus, the inherent classification errors may 

have influenced the estimates of SOC and TN stocks in the different land cover classes. In 

addition, the auxiliary spatial data (e.g., DEM, Landsat imagery, and climate) were sourced 

from different databases; hence, they were of different quality. Poor coverage of samples in 

the south-eastern most and middle parts dominated by thick impenetrable bamboo forests 

may have also affected prediction accuracy in these areas. Lastly, some soil-forming factors 

(e.g., parent material and age) were omitted owing to lack of suitable data. Their inclusion, 

if significant, may improve the predictive power of future models. The foregoing factors 

introduced uncertainties, the quantification of which was beyond the scope of the study. 

Future work will assess the implications of error propagation through sensitivity analysis of 

model parameters estimated using multi-source auxiliary spatial data of different accuracy 

levels.  

  

5.0 Conclusions and recommendations  

This study has demonstrated an integrated approach of field sampling, GIS, remote sensing, 

and statistical analysis to quantify and map the spatial patterns of SOC and TN stocks to 

30cm depth in the Eastern Mau Forest Reserve. Based on the results, the conclusions drawn 

are: (i) forests have the largest SOC and TN pools followed by croplands and grasslands. 

Overall, the Eastern Mau Forest Reserve stores about 6.81 Tg of C and 0.69 Tg of N, (ii) the 

hotspots of SOC and TN stocks are the native systems on the western and north-western 

parts, including Logoman, Nessuiet, Kiptunga, and Baraget forests, while the coldspots are 

the human-dominated landscapes on the eastern part covering Teret, Nessuiet, Kapkembu, 

Tuiyotich, and Sururu locations. Thus, conversion of forests to croplands is a causal factor 

of soil degradation in this area, and (iii) a mixture of climatic, edaphic, and topographic 

factors control the observed spatial patterns of SOC and TN stocks; however, soil 

properties, particularly TN and SOC concentrations are the most important determinants. 

Despite the limitations, this study provides the first spatially exhaustive soil information for 

Eastern Mau forest reserve at a finer scale. The resultant outputs will assist to monitor SOC 

and TN stocks, as well as to formulate spatially targeted climate change mitigation and 

sustainable land management policies. Also, the approach used offers a cost-effective 
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framework to derive knowledge of soil processes and multi-purpose soil information in 

other data-poor environments in Eastern Africa.  
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