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Summary

The aim of the study was to characterize and coenftee Bangladeshi buffalo, Holstein cross,
Indigenous cattle and Red Chittagong Cattle milkeldaon milk’s principal components, and
further to investigate the proteolysis and lipasysf the milk with a focus on the degradation of
the allergenic milk proteinsgs;-casein andB-lactoglobulin. Proteolysis was monitored by
protein degradation and peptide generation andykmby the generation of free fatty acids.
Most of the principal milk components showed coesatble variation. Higher protein, casein,
whey protein-casein, lactose, total mineral and P were detent&ed Chittagong Cattle and

Indigenous cattle milk. Most of the other composenmére almost similar in these two types of
milk. The casein number, content @f-, and k-casein,a-lactalbumin, fat, unsaturated fatty

acids, Ca and Ca:P were higher in buffalo milk ttia cow’s milk. Casein micelles and milk

fat globules were also found larger in the buffaldk. Lower casein to whey protein ratio,

higher B-lactoglobulin content and richness in naturallycucing peptides were found in

Holstein cross milk.

Buffalo milk showed rapid and complete digestiorcaseins anfl-lactoglobulin during thex
vivo digestion. Milk fat, or added cod liver oil, had mffect on the buffalo milk protein
degradation. Whereas, full fat Red Chittagong E€attilk still showed intacp-lactoglobulin
after 120 min duodenal digestion, but it was natvahin the full fat milk of Holstein cross and
Indigenous cattle. Probably the genotype ffdctoglobulin concentration in milk contribute
to this variation. Considering the number of idkedi peptides, the descending order of the
protein wasp-, os1-, k- and asxcasein and3-lactoglobulin. The presence of proline and/or
hydrophobic amino acids in the identified peptides remarkable.

A sharp increase in the lipolysis (ca. 30%) waseoked during the first 30 min duodenal
digestion, thereafter, leveled off in buffalo mili and cod liver oil; while cow milk continued
the lipolysis up to 60 min duodenal digestion. Tipelysis of total saturated fatty acids and
unsaturated fatty acids were almost similar in eoilk and cod liver oil. However, 9% more
lipolysis was observed in the saturated fatty #doah the unsaturated fatty acid of buffalo milk

fat. More lipolysis was observed in short chainyfaicids followed by long chain and medium



chain fatty acids. In the cod liver oil, monounsated fatty acids hydrolyzed more (7%) than
the polyunsaturated fatty acids. The eicosapentaeamd (C20:5n-3) and docosahexaenoic
acid (C22:6n-3), both the omega-3 fatty acids stib2&o lipolysis.

The conclusion of the study is that the buffaloknml preferable for individuals with cow milk

allergy. Nevertheless, cow milk from/of certain ggmpe could also be useful in this regard.
Enrichment of milk with cod liver oil could provide good nutritional source of omega-3 fatty
acids. Red Chittagong Cattle milk had a higher g@groand casein content than buffalo and

other cows’ milk. So, it may be the best choicedairy product development.



Sammendrag

Formalet med dette studiet var & karakterisereaogrgenlikne melk og melke komponenter fra
ulike ku- og bgffelraser i Bangladesh og undersaiegeolyse og lipolyse i denne type melk
med fokus pa nedbryting av de allergene melkeprets, as-kasein andp-Laktoglobulin.
Rasene som ble benyttet var Bangladesh Bgffel,télnlgross (krysning av Holstein og lokal
rase), Indigenous (lokal rase) og Red Chittagongest Proteolyse ble undersgkt ved protein
degraderingsprofiler og peptidsekvenser, og lipolyged frigivelse av frie fettsyrer.
Melkekomponentene i nevnte raser varierte betydetigyere innhold av protein, kasein, myse
protein, B-kasein, laktose, total mineral og fosfat ble obseri melk fra Red Chittagong og i
den lokale rase, Indigenous. Innholdet av andregaranter var omtrent likt mellom raser.
Kasein tallet, innhold aus>, andk-kasein,a-laktalbumin, fett, umettede fettsyrer, Ca og Ca:P
var hgyere i bgffel melk enn i ku melk. Kasein iareog starrelser av fettglobuler ble ogsa
funnet a veere hayere i bgffel-melk. En lavere ratidkasein:myseprotein, samt hgyere innhold
av p-Laktoglobulin og naturlig forekommende peptides bbservert i melk fra Holstein cross.
Med hensyn til proteolyse og lipolyseex vivo fordgyelse viste bgffel-melk en rask og
fullstendig fordgyelse av alle kaseinenefoegaktoglobulin, videre ble det ikke observert noen
effekt fra melkefett eller tilsatt torskelever ofjem kilde til omega-3 fettsyrer, pa nedbryting av
proteinene. | motsetning til H-melk fra bgffel, d@din cross og Indigenous cattle \&ar
Laktoglobulin fremdeles intakt etter 120 min. dunalfordgyelse i H-melk fra Red Chittagong
Cattle. Det antas at genotypen og konsentrasjomglactoglobulin i melken bidrar til denne
variasjonen. En rask gkning i lipolyse ble obsdrvégpet av de fgrste 30 min av duodenal
fordgyelse, deretter var det ingen/liten gkninigollyse. Lipolyse av de totale mettede fettsyrer
0og de umettede fettsyrer var omtrent likt i H-mé&i& ku og i melk tilsatt torskelever olje.
Derimot ble det funnet 9% hgyere lipolyse i de eut fettsyrer og de umettede fettsyrer fra
baffel melk. Hayere grad av lipolyse ble ogsa obetrav kortkjedede fettsyrer etterfulgt av
langkjedede og medium kjedede fettsyrer. | bafielk med tilsatt torskelever olje ble
monoumettede fettsyrer hydrolysert i stgrre gr&d)(@nn polyumettede fettsyrer. Eicosapenten
syre (C20:5n-3) og docosaheksen syre (C22:6n-8yjéhbegge 23% lipolyse.

Konklusjonen av dette studiet viser at bgffelmelk & foretrekke pa grunn av sine

erngeringsmessige fordeler nar det gjelder immuregenteiner og som kilde for berikning



med omega-3 fettsyrer. Melk fra Red Chittagongevisg a ha et hgyere innhold av proteiner

og kasein enn fra ku, og kan derved veere et bedgefor produktutvikling.
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1. General Introduction

Milk is a complex biological fluid with diverse cguosition of nutrients. It contains all the
components required for the newborn and adds gualithe diet of growing children and of
adults/elderly. The composition of milk is influesttby the genetics, breeding, feeding, season,
number and stage of lactation, number of milkinggsey, health status and even by a period of
time (Schonfeldt et al., 2012; Abd El-Salam andSElbiny, 2011; Medhammar et al., 2011;
Heck et al., 2009a, b). The nutritional propertsésnilk and suitability of milk processing to
different products largely depends on milk compositfHeck et al., 2009b). In the history of
mankind, a wide variety of animal species and abemof cattle breeds have been utilized for
their milking capacity. To improve the milk compi@n and to develop more consumer
friendly products, knowledge on the variation ire throductivity and milk components of
different species is important (Medhammar et &112 Glantz et al., 2009). All over the world,

a number of dairy animals including cow, buffaloag sheep, camel, donkey, horse and other
region specific minor dairy animals have been usethe milk production (Medhammar et al.,
2011). Recently, Schonfeldt et al. (2012) compalredbovine milk from different countries
and highlighted that the “international data forlkmtannot be used at national level” and

suggested that — the country-specific milk compasitiata should be used.

Health effects of isolated food components havenbswidied for many years without
considering the inherent complexities of the dilyesprocesses and hence, the fates of the most
of the bioactive components are still not clearlkMind milk products cover only 9% of the
total digestion model studies on food (Hur et aD11) reflecting ample opportunities to
contribute in this area of study. One of the pugsosf using model digestion is to monitor the
degradation pattern of the food components, likelfallergen. The release of other degradation
products is important to monitor as well. The blaffanilk is still missing to be tested in model
digestion studies. Though cow, human, sheep, gloatey, horse and camel milk have been
reported (Tidona et al., 2014; Salami et al., 20bgjingstad et al., 2010). Buffalo milk is
different in its composition from those milk (Abd-&alam and EI-Shibiny, 2011; Medhammar
et al., 2011) and interestingly children who haw enilk allergy can tolerate the buffalo milk

(Sheehan and Phipatanakul, 2009), however, fustiuelies have been suggested.

13



Often the consumers blame milk and milk productstiohigh content of saturated fatty acids
and low content of polyunsaturated fatty acidseeglly the omega-3 fatty acids. Now a day,
industries are processing milk and milk producthveinhanced omega-3 fatty acids content by
adding omega-3 fatty acids to the milk from nonknaitigin. Influence of such inclusion on the
digestion of other milk components, especially e tilk allergenp-lactoglobulin is the

interesting one.

If not specify, milk means the cow milk. It is th@st abundant milk available to consume in
the form of liquid milk or milk products. So in regiing any milk particularly in model
digestion study, inclusion of cow milk will provid®ore common baseline to compare. The
wide variability in the used digestion models makedifficult to compare with the previous
data unless the model conditions are consideradniyes Nevertheless, the model digestion
study provides useful information on the nutritibgaality of milk and milk products or any

other food products.

14



2. Aims of the study

The present study was aimed at characterizing uffalb, Holstein cross, Indigenous cattle and
Red Chittagong Cattle milk from Bangladesh in teohgheir principal components. Further to
investigate proteolysis and lipolysis of whole,rskied and omega-3 fatty acids enriched milk
to monitor the hydrolysis of protein (especiallyetmilk allergen likeas;-casein andp-
lactoglobulin) and lipids. These parameters areomgmt for nutritional and technological

aspects of the milk as a part of the future breggmogramme.

The study was divided into the following sub-goals:

* Study of the physical and chemical parameters iotgral components in milk from
Bangladeshi buffalo, Holstein cross, Indigenoutieand Red Chittagong Cattle.

* To investigate the influence of milk fat on the oetption of caseins and whey
proteins in buffalo milk mainly focusing on theeiyjenic milk proteins.

* To assess the effect of enriching skimmed buffaik mith omega-3 fatty acid by
adding cod liver oil on the proteolysis of milk pems.

« Study the lipolysis and proteolysis of Red Chittagi&attle milk inex vivodigestion

model with particular attention tq;-casein ang-lactoglobulin.

15
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3. Theory

3.1 Dairy animals, milk production and dairy products of Bangladesh

Bangladesh is one of the top countries of the watgarding the density of the livestock (GED,
2010). The dairy animal population is shown in Eall and the distribution of the cattle
throughout the country is depicted in Figure 1. §baotypes available are low productive and
the average milk yield per cow is 1-2 kg/day. Paamal feed resources and lack of preventive
veterinary practices are also responsible forltwsproductivity. However, the productivity of
the native cattle has increased by 5% during 198B22which was 4-8% in crossbred cows
and buffaloes and the total milk production inceshby 3% (Hemme et al., 2004). Bangladesh
has 80% deficiency in their milk production (Taregand Chowdhury, 2010). The available
market milk mainly comes from cattle (99%: BLRI,()) and buffalo (frequently mixed with
and sold as cow milk). In the total milk productiamossbred cows contribute 56.6%. It was
35.9%, 5.6% and 1.89% from the Indigenous cow,dafand others, respectively (Tareque
and Chowdhury, 2010).

Table 1. Number of dairy animals in Bangladesh.

Animal species Population (million)
Cattle 23.15

Buffalo 1.44

Goat 55.00

Sheep 1.89

Source: FAOSTAT (2012a).

Cattles are comprised of Indigenous, exotic andstied. In Indigenous, the types of cattle are
— non-descriptive, Red Chittagong Cattle (RCC),r2alNorth Bengal Gray, Madaripur, and
Munshiganj. The available exotic breeds are Jetdelstein-Friesian, Sahiwal, and Australian
Friesian Sahiwal (AFS) that are used mainly forsslweeding purposes. Crossbreeding of the
native poor producer with a high yielding animalinspractice and some happen because of

unavoidable breeding. The most common crossbreds Hiolstein x Local, Sahiwal x

17
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Figure 1. Cattle distribution throughout the Bangladesh (igan, 2007).
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Red Sindhi, Sahiwal x Holstein-Friesian, HolsteinSahiwal, Friesian x Indigenous and
Sahiwal-Sindhi x Jersey. The available buffaloes-amdigenous (non-descriptive), River type
(Nili-Ravi), Swamp type (Surti) and Crossbred (Riwvgpe x Swamp type). Geographically,
buffaloes are mainly concentrated in the sugar-tsatie hilly region, coastal area and marshy
land of the Bangladesh. These areas mainly belotiget Brahmaputra-Jamuna flood plain area
and Meghna-Padma tidal flood plain area agro-edcdbgone. Buffalo and the types of cattle

used in the present study are shown in Figure 2.

S

Figure 2. Buffalo (upper left), Holstein cross (upper righitydigenous cattle (lower left) and
Red Chittagong Cattle (lower right) of Bangladesh.

The consumption of milk products is a part of Bawlgishi tradition and culture. Milk is
processed to a wide variety of milk products. Cegsmeer, yoghurt/doi, rasogolla, rasomalai,

sandesh, kalojam, chomchom, ice cream, butter,,dh#éermilk/mattha are the main dairy

19



products available almost all through the counffpe production of butter, cheese and
ghee/butter oil from cow milk was 1180, 1000 and @3 tonnes, respectively in 2012 and in
the same year the ghee produced from buffalo mé& 840 tonnes (FAOSTAT, 2012b).

3.2 Buffalo milk production — global context

The name of the domesticated buffal®ighalus bubalisFactors that favor the buffalo farming
are — ability to utilize efficiently the low qualithigh roughage diet, resistance to parasites,
yielding good quality meat, rich milk and milk practs (Abd El-Salam and El-Shibiny, 2011).
In 2012, the world buffalo population was approxiema 199 million (FAOSTAT, 2012b).
They are widely distributed throughout the Asiardpe, South America and Caribbean. India
and Pakistan have the largest buffalo populati@¥% %and 16%, respectively of the world
population and Bangladesh has less than 1% (FAOSTA2b). Buffaloes are mainly
considered as multipurpose animal, but their daiojlity has been improved considerably
through selection programme. Now a day, there 2r@a2y breeds of buffalo available all over
the world and buffalo is the second largest milkducing dairy animal in the world. The
buffalo milk production was 13% of the total wonhailk production in 2012 and India and
Pakistan produced 67% and 24% of the total worldfabu milk, respectively. While,
Bangladesh has produced only 4% of the world baffallk (FAOSTAT, 2012b). The annual
growth rate of buffalo milk production is almost 2%ere than the cow milk production (IDF,
2010).

3.3 Milk components

Milk contains all the required nutrients for thewm®rn, nutritionally regarded as one of the
most complete food. It is an excellent source otnmaand micro-nutrients and plays an
important role in mitigating individual’s nutriti@h requirement. This highly diversified and
complex biological fluid contain a balance of piogg lipids, carbohydrates, vitamins, minerals
and other minor components. An overview of grosk komponents from different species is
given in Table 2. The composition of the milk isrwamportant for its nutritional and

technological properties (Heck et al., 2009b). Gkegeld is strongly positively correlated with

20



the fat, protein and casein content of the milke{fr et al., 2013). Milk proteins have high
biological value because of their essential amiidsacontent and are regarded as a rich source
of bioactive peptides (Medhammar et al., 2012;dhtd-Leppala et al., 1998).

Table 2. Average composition of milk components (%) fromieas mammalian species.

Animal Species | Total-solids| Protein Fat Sugar Ash

Cow 13.1 3.5 4.4 4.5 0.7
Buffalo 16.7 3.8 7.3 4.8 0.7
Goat 12.8 3.2 4.5 4.3 0.8
Sheep 17.5 4.6 7.2 4.8 0.9
Donkey 11.3 2.0 14 7.4 0.5
Horse 111 2.5 1.9 6.2 0.5
Human 12.1 1.9 3.5 6.5 0.2

Source: Heck et al., 2009a; Islam et al., 2008;rKéizal., 2007; Pandya and Khan, 2006;
Belitz and Grotz, 1999.

3.3.1 Milk proteins

The protein content of milk is different in differespecies (Table 2). They are also different in
their composition (Table 3). The milk proteins aenerally classified into two — caseins
(precipitates at pH ~4.6) and whey proteins (s@uwdilpH ~4.6). There are four major caseins
present in milk, namely es1-, asr, B- andk-casein. The-lactoglobulin andx-lactalbumin are
the major whey proteins. There are some other npnoteins present in the milk like serum
albumin, lactoferrin, immunoglobulins, transferrifgrritin, proteose peptone, prolactin and
folate binding protein.

3.3.1.1Caseins

The ag-casein constitutes up to 40% of the casein fractio bovine milk. The reference
protein consists of 199 amino acids, with 8 phosylated serine and no cysteinyl residues.

The protein exists in several genetic variants &fmA to H. This protein does not form
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crystals, so its 3-D structures cannot be detemharel because of the intrinsic aggregation of
the protein, the nuclear magnetic resonance ssi@so problematic (Farrell Jr. et al., 2004).
The buffaloas;-casein has 97.2% similarity with boving-casein (9 substitutions) and showed
reduced phosphorylation (D’Ambrosio et al., 200B)e as;-casein BB genotype is related with
higher milk yield, fat yield, protein yield, high&actation cheese yield but with reduced protein
concentration, however, BC genotype gives highesem concentration (Aleandri et al., 1990;
Ng-Kwai-Hang et al., 1984, 1986).

Table 3. Major milk protein concentration (g/L) and the pestive Molecular weight (Mw) in

cow and buffalo milk.

Content Molecular weight (Da)
Milk protein type
Cow Buffalo Cow Buffalo
as1-casein 12-15 8.9 23,615 22,773
asx-casein 3-4 51 25,226 24,700
B-casein 9-11 21 23,983 23,582
K-casein 2-4 4.1 19,037 19,247
B-lactoglobulin 2-4 - 18,277 -
a-lactalbumin 0.6-1.7 - 14,178 -

Source: Feligini et al. (2009); D’Ambrosat al. (2008); Farrell Jr. et al. (2004).

The asy-casein contributes 10% of the casein in bovind iaild shows different levels of post-
translational phosphorylation. It consists of 2@7re acids with 11 phosphorylated serine and
is a single chain polypeptide with an internal tide bond. There are four genetic variants of
asycasein available (A to D). According to D’Ambrosab al. (2008), ten substitutions were
found between cow and buffale,-casein resulting in ca. 98% homology. It is thesmo

hydrophilic casein.

The most prevalent casein in the millBisasein (45% of the casein). The reference pragegn
single polypeptide chain of 209 amino acids, withpBosphorylated serine and without
cysteine. So far, 12 genetic variantletasein have been identified. Higher homology (§5%

exists between cow and buffafacasein (six substitutions) and the peptides rekbaster
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enzymatic treatments are different (Di Luccia et 2009; D’Ambrosion et al., 2008; Abd EI-
Salam and El-Shibiny, 1975). Plasmin activity fpoasein leads to the formation of (f29-
209),v2- (106-209) ands-casein (108-209). Moreover, proteose peptone caems 5, 8-fast
and 8-slow have been identified as f1-105/107,81&nhd f29-105 of-casein, respectively.
The B-casein genetic variants and haplotypes are asedowth the protein composition and
technological properties of the milk. Compared tovAriant,3-casein A is related with the
higher concentration di- andosr-casein and protein yield which is reverse in aafse;;- and
k-casein. TheB-k-casein haplotype is favorable for cheese prodactideck et al., 2009a).
According to Glantz et al. (2012)p-casein variant has influence on vyields of milkptpm,
casein, lactose, total Ca and BXA;). Homozygoug$-casein A cows produce less milk with
higher fat content compared to, Aiomozygous cows and;B cow milk has a higher
concentration of fat and protein (Ng-Kwai-Hang et 4986; Ng-Kwai-Hang et al., 1990)-

casein is the most hydrophobic casein.

Casein with a carbohydrate moiety and allfhacetylneuraminic acid of the casein micelles is
thek-casein. The referengecasein (major part is carbohydrate free) is corapad 169 amino
acids with 1 phosphorylated serine. In milk, it ca@so be found as a mixture of disulfide
bonded dimer to octamers or more. Thirteen sulbistitsl between cow and buffalo mike
casein resulting intec 93% homology (D’Ambrosion et al., 2008). Buffalasha lower
proportion ofk-casein fraction with carbohydrate and contains &slic acid than the cowis
casein (Addeo et al., 1977). Low concentratiomk-gfsein is a risk factor for non-coagulation
of milk (Hallen et al., 2010). Chymosin hydrolyzée bond between Phe 105 and Met 106
resulting in the formation of pasacasein (f1-105) and caseinomacropeptide (f106-169)
Eleven different genetic variants have already bmlmtified. According to Heck et al.
(2009a), the different variant @fcasein is associated with the protein percentBg@) and
relative concentrations afs- (B>A), k- (B>E>A) andasi-casein andi-lactalbumin (A>B).
Glantz et al. (2012) concluded that theasein (A>B>E) influences the milk, protein, casei
lactose, total Ca and P yield-casein genotype BB and AB have influence ondhenovo
synthesis of the fatty acids in the mammary glaBdnotype BB is related with the higher

concentration of milk protein and fat. And milk fnothis cow is advantageous for cheese
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production because of superior coagulation progertMelia et al., 2009; Macheboeuf et al.,
1993; Aleandri et al., 1990; Ng-Kwai-Hang et ab86).

Caseins after enzymatic hydrolysis produce a gaodber of bioactive peptides that can exert
numerous physiological responses. Some of thedgpeave been identified and sequenced,
and their release conditions have been determim@ahénen and Pihlanto, 2006). The
bioactive peptides from milk are mainly ACE-inhixy peptides, antithrombotic peptides,
opioid peptides, casein phosphopeptides, immunotatmty peptides, antimicrobial peptides,
cytomodulatory peptides (Mills et al., 2011). Epidelogical studies revealed that low milk
consumption has link with increased risk of str@aghsoudi et al., 2013). Human milk does
not containosi-casein. According to Lara-Villoslada et al. (2008hildren with cow milk
protein allergy synthesize antibodies agaisasein. Consumption @gtcasein (variant Aand
A;B) was found related with the incidence of typddbetes (Elliott et al., 1999) bftcasein
A, was found to exert an opposite effect and was atsmciated with a lower incidence of

cardiovascular disease (Bell et al., 2006).

3.3.1.2Whey proteins

The major whey protein ig-lactoglobulin. It consists of 162 amino acids. ld and bovine
B-lactoglobulin differ only by two substitutions -n@® at C- and another at N-terminal acid.
They have greater similarities in structure andutsmh conformation and shares similar
epitopes (D’Ambrosio et al., 2008; Li et al., 2008hosh et al., 2004 )p-lactoglobulin is
synthesized in the mammary gland and has one niagsteine and two moles of cystine per
monomer (Fox and McSweeney, 1998). In the natiatepr, the disulfide bonds are between
Cys 66 and Cys 160 and between Cys 106 and Cyswith9Cys 121 as a free thiol. The
compact globular structure of ttelactoglobulin consists of one majarhelix, 8-stranded
antiparallelp-barrel and a nintB-strand on the outside (Sakurai et al., 2009; Kpidis et al.,
2004). A 3-D structure of boving-lactoglobulin is given in Figure 3. All boving-
lactoglobulin genetic variants form dimers at ptb-3.5 and octamers at pH 3.5-5.5 but
dissociated to monomers at pH <3.5 and >7.5 (FakMoSweeney, 2003; Perez and Calvo,

1995). Thep-lactoglobulin B is associated with higher relatisencentration ofiss-, sz, B-
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and k-casein anda-lactaloumin compared to the variant A but varigtgives more 3-
lactoglobulin than B does (Heck et al., 2009a). n&daet al. (2012) also found th@t
lactoglobulin A is associated with higher whey pintyield. Melia et al. (2009) showed the
influence off}-lactoglobulin genotypes (AA, AB and BB) on the krfitty acid compositior-

lactoglobulin BB is related with high cheese yididgher fat and casein percentage and a lower

percentage of total and whey protein. Milk fromsthgenotype is preferable for cheese
production (Aleandri et al., 1990; Ng-Kwai-Hangaét 1986).

Bovine f-Lactoglobulin

Cf-Helix \

.|::-JI

-:'1r:|ruIE

Figure 3. Amino acid sequence and 3D structure of boii@ctoglobulin. (A)p-lactoglobulin
monomer. TheB-strands are labelled and tryptophan (Trp) residuespresented as balls and
sticks. (B) Schematic representation Bfactoglobulin amino acid sequence. Red hexagon,
residues inu-helix; blue square, residues firsheet; grey circles, residues in loop; green Jines
disulfide bonds. B-D and " onep-sheet; E-H and A the othei-sheet (Sakurai et al., 2009).
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The bovinea-lactalbumin is also synthesized in the mammaryndgjlaepresents 20% of the
whey protein. It contains 123 amino acids, andedsffwith buffaloa-lactalbumin by only one
substitution at position 17. Three genetic vasg#t, B and C) have been identified. An X-ray
structure ofa-lactaloumin is given in Figure 4. Its globularustture is stabilized by four
intramolecular disulfide bonds and has 63% sintifatd bovine lysozyme (Farrell Jr. et al.,
2004; Fox and McSweeney, 1998} actalbumin is important in lactose synthesisfotms
lactose synthase complex by interacting wWith, 4-galactosyltransferase which inhibits the
binding of N-acetyl-glucosamine t@-1, 4-galactosyltransferase aatlows the formation of

lactose from glucose and UDP-galactose.

Figure 4. X-ray a-lactalbumin structure derived from native buffalod recombinant bovine
protein.a-domain is shown in blue whilgdomain is shown in green. Trp residues are shown
in blue and S-S bridges are shown in yellow. Ths&dtees which take part in coordination of

Zn** ions are shown in red (Permyakov & Berliner, 2000)

Whey proteins are considered as an important safreenino acids and peptides and 63% of
the amino acid in the-lactalbumin is essential for human nutrition. Teptides released after

hydrolysis by digestive enzymes have ACE-inhibiforgpioid, immunomodulatory,
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antimicrobial and antiviral effects (Furlund et, &012; Almaas et al., 2011; Mills et al., 2011,
Pihlanto-Leppala, 2001; Pihlanto-Leppala et alQ@Meisel, 1998).

The major issue among the whey proteins is the ook allergenicity because of-

lactoglobulin. Human milk does not contafalactoglobulin and childrens with cow milk
allergy synthesize antibodies predominantly agafalstctoglobulin (Barlowska et al., 2011,
Lara-Villoslada et al., 2005). Howevep;lactoglobulin is a lipocalin protein that can bind
hydrophobic to amphiphilic molecules, e.g. palméaid, oleic acid, hexane, vitamin D, retinol,
etc. Thea-lactalbumin can bind Ca, Mg, Mn, Na, K and Zn gpartic acid pocket (Permyakov
and Berliner, 2000; Ren et al., 1993; Hiraoka et E380) but at pH below 5.0 such binding

cannot take place because of the protonation @fras@cid.

3.3.1.3Casein Micelle and coagulation of milk

The majority of the milk protein is contained inlloadal structures/particles known as casein
micelles. In normal milk, approximately 80% of ttwtal milk protein (Dalgleish and Corredig,
2012) and 95% of caseins (Dalgleish, 1993) areeptes that micelle. The aggregation of
caseins to form micelles takes place in the célte®@mammary gland; in the secretory vesicles
that pass between the Golgi apparatus and thel aparabrane (Dalgleish, 2011). The major
function of such aggregated micelles is to fluidize casein molecules and solubilize calcium
and phosphate (Farrell Jr et al., 2006). Citrat@omions, lipase, plasmin, and entrapped milk
serums are also present in the casein micellegitCaan aggregate and form micelles because
of the amphiphilic nature of the casein peptideirchahigh proline content and phosphate
content. The phosphorylation of the caseins takesepat the hydroxyl group of the serine.
Calcium binds to these phosphoserine residues ithaurn bind the colloidal calcium
phosphate. In the formation of micelles, these Borwhtribute to linking the caseins, arnd
casein interacts withuis;-, asy and B-casein and stabilizes them, initiate the formatadin

micelles and a stable colloidal state.

Several theories have been proposed on the stalicttganization and stabilization of casein

micelles in the milk and it has been a long deb&tepredict better the internal structure of the
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micelles and how the casein aggregates to fornalalesstructure, several models have been
proposed but none has ever been satisfactory @sihgl2011). However, so far, it ends up
with some generally established properties thatamemonly accepted. The core of it is — the
hydrophobic aggregation of the- andp-casein, calcium phosphate bridging andasein to
stabilize the surface. Dalgleish (2011) concluthed the calcium phosphate nanocluster model
is more relevant from the electron microscopic aodttering experiments and proposed a
modified nanocluster model including many of thewn structural properties of the micelles
(Figure 5). In brief, the noncovalent interactioofs calcium phosphate/protein nanocluster
between them and with other calcium sensitive-caseause their aggregation and formation
of micelles. Among the calcium sensitive-casefiasasein is mainly found in the interior of the
micelles and provides the internal stabilizatioftti@ecause of the amphiphilic natupegasein
can also bind to some of the hydrophobic partshefdalcium phosphate nanoclustersigf
andasy-casein and as a surfactant, stabilizes the whternels inside the micelles. The calcium
insensitivek-casein acts as a mono-functional chain terminagent, and because of lacks of
phosphate centers (only one phosphoserine residuednnot participate in the nanocluster
formation (Dalgleish and Corredig, 2012; Horne, 200998). Thex-casein via noncovalent
interactions, associates with the aggregating pret® form a surface layer and prevents the
micelle aggregation. The glycosylated caseinomapbge (f106-169 ofk-casein) is
hydrophilic, forms a hairy layer by extending fraitme micelle surface to the serum. The
electrostatic repulsion of this hairy layer of th@celles prevents them to aggregate and
flocculate and provides steric stabilization of thecelles (Figure 6) and keeps them in
suspension. Destabilization can be achieved enzgafigt (e.g. chymosin, removes the hairy
part of thek-casein) and chemically (e.g. acids, neutralizerntbgative charges and helps the

drainage of calcium phosphate).

According to Abd El-Salam et al. (1978), the buwfednd cow milk casein micelles are
assembled in the same way. However, the compos#iah size of the casein micelles are
dependent on the species, breed, feeding, seastkncamposition and the genetic variants
(Ren et al., 2013; Glantz et al., 2010; Ahmad et2009; Devold et al., 2000; Walsh et al.,
1998; Abd El-Salam et al., 1978). From the partgie analyzer results, buffalo and cow milk

showed normal distribution curve for their caseiitatte size ranging from 30-400 nm and
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similar average of about 180 nm (Ahmad et al., 2@08nad et al., 2008). However, compared
to cow’s milk, buffalo milk has a greater percemay larger casein micelles (Abd El-Salam et
al., 1978; Ooman and Ganguli, 1973). The buffalsega micelles also contain more ‘Ga
inorganic P, M§', and citric acid than the cow casein micelles (AdSalam et al., 1978).
Bovine casein micelles are more hydrated than tifalo casein micelles and the dissociation
of casein micelles take place at pH 8.6 and 9speetively (Ahmad et al., 2009).

Figure 5. lllustration of casein micelle organization inclug water regions within the
structure. Thens-casein ang-casein (orange) are attached to and link the walghosphate
nanoclusters (grey spheres). Sopreasein (blue) hydrophobically binds to other caseind
can be removed by cooling. The paraasein (green) and the caseinomacropeptide chains

(black) are on the outermost parts of the surf@dgalgleish & Corredig, 2012).
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At normal pH of milk, the negative charge and tlgdrbphilic character of C terminal endwof
casein determines the ability of the casein misdltestay in solution. Enzymatic action (rennet
and microbial) and/or acidification can affect thesvo key factors, resulted in the casein
aggregation and finally milk coagulation. In thezgmatic action, Chymosin (major and most
active component of rennet) cleaves the;Rdet;os peptide bond ok-casein, yielding para-
k-casein (f1-105) and caseinomacropeptide (f106-16B¢ hydrophilic caseinomacropeptide
released into the whey and results in decreaseit stabilization and the loss of negatively
charged group. The spontaneous secondary aggmegpliase starts due to the enough
reduction of micelles colloidal stability resulté@m approximately 70% hydrolysis of the
casein. The decreased steric repulsion allows tcelles to approach each other to be close,
the particles aggregate because of hydrophobicaictien and solidify further by the calcium
cross linking and finally whey is drained out frotme casein network by syneresis. The

enzymatic destabilization is shown in Figure 7a.
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During the acidification, with the reduction of pfrom 6.7 to 5.3), calcium phosphate,
magnesium and citrates are released progressingaty the micelles interior. The acidification
of milk also causes the neutralization of the niegatharges of the caseinomacropeptide, leads
to the collapse of th&-casein hairy layer (Figure 7b). This causes theredsed steric
stabilization of the micelles, allows them to d#éucloser to each other and finally sol-gel
transition occurs due to a short range attractiveels. When the pH reached 4.6 (Ip of caseins),
aggregation occurs; however, the progress of tbeegss is influenced by the physiochemical

properties of the milk.
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Figure 7. Green, para-casein; orangeys andp-casein; blue, som@-casein hydrophobically
binds to other caseins; grey spheres, calcium pfaiepnanocluster. a) Renneted micelles
where the hairs have been removed by chymosinwialip close approach of the micellar
surfaces. b) Micelles after acidification where tiadcium phosphate has been dissolved and the

hairs have been collapsed (Dalgleish & Corredig,220

Generally the coagulation properties of milk isidel by — RCT/r (min): rennet coagulation
time, when the coagulation starts after addingrémnet to the milk; K (min): curd firming
rate, how long does it take to reach the tail distato 20 mm and # (mm): gel strength/curd
firmness, tail distance after 30 min. The coagafaroperties of the milk is influenced by the

milk composition and its physicochemical charasters (Bonfatti et al., 2013; Pretto et al.,
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2013; Bonfatti et al., 2012; Cecchinato et al., 20&lantz et al., 2010; Cassandro et al., 2008;
Ariota et al., 2007; Napolano et al., 2007). Hertbe factors like breed, stage of lactation,
parity, season, feeding and nutrition, somatic cellnt and cow health that has impact on the
milk components are also important in determiniing tcoagulation properties of milk.
Nevertheless, the most obvious important factoespdt, calcium content and temperature. A
decreased coagulation time can be obtained by asoge the pH and increasing the

temperature. The increased level of bound calcindicx C4" favors the coagulation reaction.

Protein composition is also imperative in influergithe milk coagulation properties. Changes
in the allelic frequency of the casein and wheytgirogenes and milk protein composition
affect the milk coagulation properties (Bonfattiadt, 2010). In water buffalo, the A allele of
as;-casein is associated with decreased RGp,akd firm curd compared to B allele. Tke
casein (variant X} also follows the same trend and the effect oflIBle (as;-casein) and X
allele (c-casein) compensate each other. Moreover, the caitepgenotype odis;-casein anat-
casein also has an influence on milk coagulati@mp@rties (Bonfatti et al., 2012). In another
study, Bonfatti et al. (2013) concluded that ther@ased content of;-casein causes increased
RCT and kg while it was reverse foB-casein, buk-casein followedys-casein regarding the
RCT. In cow’s milk, poor or non-coagulation of milis associated with lowk-casein
concentration and its low proportion relative ttatacasein (Bonfatti et al., 2010; Wedholm et
al., 2006). The composite genotypepoetasein anck-casein both with at least one B allele
showed best data on RCT andpABonfatti et al., 2010; Comin et al., 2008; lkonenal.,
1999).

Buffalo milk coagulates faster than the bovine miklution with an equal volume of water
does not affect the buffalo milk rennet coagulattone but does increase the cow’s milk
coagulation time. The rennet coagulation time of’'samilk is less sensitive to the addition of
NaCl, HO, and NaCQO; and the effect of heat treatment is more pronadirtican the buffalo
milk. Differences in the colloidal phase of buffadad cow milk may explain the differences
between the coagulation properties of buffalo aod milk (Abd El-Salam and EIl-Shibiny,
2011).
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3.3.2 Milk lipids

Milk lipids contain 95-98% triglycerides, 0.3-1.68iglycerides, 0.1-0.4% free fatty acids, 0.5-
1.0% phospholipids and 0.2-0.5% sterols (Jensah,et991; Belitz and Grotz, 1999; Walstra
et al., 2006). The content of milk lipid is diffetein milk from different species (Table 2) and
usually varies from 2-8%. It dispersed in the foomspherical droplets or globules in milk
plasma. The globule is known as milk fat globuld #me protective layer is known as milk fat
globule membrane (MFGM) that mainly consists ofggtwlipids.

The triglycerides are composed of one molecule gglyic esterified with three molecules of
fatty acids. The distribution of fatty acids on thlgcerol backbone is not random, however,
report to report variation exists (Blasi et al.,080 Mansson, 2008; Angers et al., 1998;
Kaylegian and Lindsay, 1995; Parodi, 1975). Theesraported 400-500 fatty acids present in
the milk (Reklewska et al., 2002) but only 12 faityds are present in an amount more than 1%
(Kaylegian and Lindsay, 1995). The major pathway®ive with the fatty acids in milk are —
directly from the dietde novosynthesis in the mammary gland, biohydrogenatiomigrobial
degradation in the rumen and release from the bedgrve fat (Stoop et al., 2009). Among
thesede novosynthesis contributes 40-50% of the fatty acicsdusr fat synthesis in the udder

of most domestic animals (Sjaastad et al., 2003).

In general the bovine milk fat contains 70% saeddatty acids, 25% monounsaturated fatty
acids and 5% polyunsaturated fatty acids (Gruma®9]; Lock and Shingfield, 2004). Among

all the fatty acids, lauric (C12:0), myristic (COQ#and palmitic (C16:0) acid constitutes 44% of
the total milk fatty acids (Qureshi et al., 201Bpr the better health effect, milk fat should

contain 60% monounsaturated fatty acids, 30% datriatty acids and 10% polyunsaturated
fatty acids (Pascal, 1996; Hayes and Khosla, 19Bi2¢re are a number of factors that could
influence the fatty acid composition of the milkg.especies, breed, stage of lactation, mastitis,
feeding and nutrition, body condition, season, smppnting fats and oils (Devle et al., 2012;

Nogalski et al., 2012; Abd El-Salam and EI-Shibig§11; da Silva-Kazama et al., 2011; Gross
et al., 2011; Falchero et al., 2010; Menard et2810; Qureshi et al., 2010; Kathirvelan and
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Tyagi, 2009; Talpur et al., 2008; Jensen, 2002;dehh and Erwin, 1974). The fatty acid
composition of cow and buffalo milk is given in Tald.

Table 4Cow and buffalo milk fatty acid composition (%6).

Fatty acid Cow Buffalo
C4:0 2.5+£0.5 2.8+£0.5
C6:0 2.1+0.4 1.9+0.3
cs8:.0 1.4+0.2 1.1+0.2
C10:0 2.5+0.3 1.8+0.2
C12:0 2.910.2 2.310.2
C14:0 11.1+0.4 11.840.2
C15:0 1.2+0.0 1.7+0.1
C16:0 33.8+0.9 36.0+1.2
C17:0 0.6+0.0 0.8+0.0
C18:0 11.1+0.9 9.9+0.2
C20:0 0.2+0.0 0.2+0.0

C14:1n-5 1.1+0.2 0.7+0.0

C15:1n-5 0.3+0.0 0.4+0.0

C16:1n-7 1.6+0.0 1.9+0.0

C17:1n-7t 0.2+0.0 0.3+0.0

C18:1n-9 22.1+£1.7 20.3+0.7

C18:2n-6 1.3+0.1 0.9+0.1

C18:3n-3 0.6+0.0 0.7+0.2

C18:1n-7t 1.4+0.1 2.0+£0.1

C18:2 c9, t11; CLA 0.7+0.0 0.9+0.0

Source: Menard et al. (2010).

As mentioned earlier that the triglyceride alonghwather lipid fractions, secreted in a globular
form covered by a tri-layer (thickness 10-50 nmgldgical membrane known as milk fat
globule membrane (MFGM). The pathways involvedhia origin, growth and secretion and the
structural overview is depicted in Figure 8. Noripdhe milk fat globule size ranges from 0.2-
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20 um with an average of gm. Buffalo milk fat globule size is larger than tbew’s one and

the buffalo milk showed more range of variabilityan that of cow (Menard et al., 2010). Itis
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Figure 8. Schematic representation of (A) the structurehefmilk fat globule membrane and
(B) the pathways for the intracellular origin, grinwand secretion of milk fat globules (Lopez
et al., 2008).

associated with the enhanced cell metabolism imtsmary gland of buffalo and its ability to
produce milk fat globule (Schafberg et al.,, 200fhe MFGM is composed of a complex

mixture of glycoproteins, triglycerides, glycerogpbolipids, sphingolipids (mainly
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sphingomyelin), glycolipids, cholesterol, enzymasd other minor components (Keenan and
Patton, 1995). Phosphatidylcholine, phosphatidglethamine, phosphatidylinositol and
phosphatidylserine are the main milk phospholipidad the main sphingolipid is
sphingomyelin. The variation between cow and baffailk in the amount and composition of
MFGM were reported by Menard et al. (2010) and Bsrial. (1984). The MFGM has
importance in the digestion of lipids in human gaistestinal tract (Gallier et al., 2012; Ye et
al., 2011) and also has value in processing teogyo{Corredig et al., 2003) and in human
nutrition (Spitsberg, 2005; Parodi, 1997).

A number of fatty acids of milk fat are reportedhave specific function in human nutrition
and health. Butyrate, the most abundant short cfaty acid in milk is known to provide
energy to the colonic epithelial cells and reg@iate number of genes related with cell
differentiation, proliferation and apoptosis (Hangral., 2008; Scheppach et al., 1992). The
medium chain fatty acids (C8:0 - C12:0) may helpeaduce the risk of developing features of
metabolic syndrome (Pfeuffer and Schrezenmeir, Rd@7another study, Petrone et al. (1998)
reported the bactericidal effect of lauric (C121)pleic (C18:2n-6) and linolenic (C18:3n-3)
acids and found reduced invasion laf monocytogeneg¢food-borne pathogen) in a caco-2
enterocyte-like cell line. However, in additionnoyristic and palmitic acid, lauric acid is also
considered as hypercholesterolemic fatty acid (&ils, 2000) leading to cardiovascular
disease. However, the presence of linolenic agippasses the negative effect of palmitic acid
(Clandinin et al., 2000). Stearic (C18:0) acidamsidered as neutral while linoleiglinolenic
and oleic (C18:1n-9) acid are reported to be capdatective (Djousse et al., 2001; Bemelmans
et al.,, 2002). Dairy products are the major diewource £75%) of conjugated linoleic acid
(CLA: C18:2 ¢9, t11). CLA and its isomers have eattinogenic, anti-lipogenic and anti-
atherogenic effects, prevents heart diseases, waprammune function and bone health.
However, most of the results were obtained in ahimadel research (Dilzer and Park, 2012;
Bauman et al., 2006; McGuire and McGuire, 2000; $fiaim et al., 2000; Williams, 2000). The
long chain omega-3 polyunsaturated fatty acidspssipentaenoic acid (EPA: C20:5n-3) and
docosahexaenoic acid (DHA: C22:6n-3) have benéfeaediovascular and anti-inflammatory
effects (Bauman et al., 2006; Williams, 2000), the bovine and human milk contains a little

of this two fatty acids.
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3.4 Omega-3 enriched milk and milk products

The long chain omega-3 polyunsaturated fatty a@ri$FA) are considered as essential fatty
acids for human because of their beneficial heeffects. The omega-3 fatty acids have
curative and preventive effects on cardiovasculeeates, participates in the infant’'s
neurodevelopment, control cancers and fat glycenféworably affects atherosclerosis,
inflammatory diseases and even the behavioral déssrand depression (Garg et al., 2006;
Connor, 2000, 1997; Kinsella et al., 1990).

The omega-3 family mainly consists aflinolenic acid (C18:3n-3), eicosapentaenoic acid
(C20:5n-3) and docosahexaenoicacid (C22:6n-3). Artbiem,a-linolenic acid is present in
plants and eicosapentaenoic and docosahexaenaicnagnly comes from marine sources,
primarily from fish and microalgae (Guil-GuerremodaBelarbi, 2001). In general, fish and fish
oil provides the main dietary source of omega-3/pa$aturated fatty acids in human nutrition
(Kolanowski and Laufenberg, 2006). In particularddiver oil (CLO) provides an inexpensive
source of omega-3 PUFA and has long been knownnasdteuticals,” widely consumed
especially in Nordic countries (Mondello et al.,08Q Brustad et al., 2004; Guil-Guerrero and
Belarbi, 2001). One dose (5 mL) CLO contains 1&f gmega-3 fatty acids and it also served
as an excellent source of fat-soluble vitaminsanain A (500pug), vitamin D (10ug) and
vitamin E (10 mg) (Rimestad et. al, 2001). The lydarecommendations for
eicosapentaenoic+docosahexaenoic acid intake rdrgas200 mg to 1000 mg or even 3000
mg, depending on the physiological condition (Getrgl., 2006; WHO, 2003).

Milk and dairy products are well known for theiropgins with high biological value and the
bioavailable calcium. But they are criticized fdretr high content of saturated fatty acids,
especially lauric (C12:0), myristic (C14:0) andrdic (C16:0) acid content and low content of
PUFA. Now a day, some international dairy comparass producing “healthier” milk and
some milk products by substituting the milk fatlwRUFA. It exerts positive effect on health
by reducing the intake of total saturated fattyda@and favorable effects from PUFA. Because
of the omega-3 PUFA, the market of the fish oiligmed food products are expanding. Some of

the milk and milk products that are enriched fagittomega-3 PUFA content are — Omega-3
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milk (Parmalat, USA), Dairy Farmers (Farmers besik (Australia), Lactel omega-3 milk
(Lactalis Besnier Bridel, France), Omi-3 processpiirk (OSM Ostrolka, Poland), Lauki
omega + skim milk (Candia, Spain), Brownes (HedusPmilk (Australia), Especial omega-3
milk (Mimosa, Portugal), Plus omega-3-latte and ga8 yoghurt (Parmalat, Italy) and omi-3
yoghurt (SM Siedlce, Poland) (Kolanowski and Labkeny, 2006; Garg et al., 2006).

3.5 Lipid analysis

There are three steps involved in analyzing they gatids from biological or food samples. The
steps are — extraction of total lipids, conversibrextracted lipids into volatile derivatives like
fatty acid methyl esters (FAMEs) and gas chromaplgy of the FAMEs for the
identification/quantification (Ratnayake and Ga#lD09). Depending on the objective (s), the
extracted lipid may be fractionated into differdigid classes by employing appropriate
methods corresponded to the lipid class.

The choice of the method to be used for the extnadf lipid depends on the sample matrix. A
variety of polar and non-polar lipids together wiloteins and polysaccharides are present in
animal tissue. Hence, a common approach is to ns&tare of polar and non-polar solvents to
obtain the quantitative recovery of the complexdliimixture. A chloroform-methanol based
extraction method was published by Folch et all987 and a modified method by Bligh and
Dyer in 1959. The use of polar solvent (preferadyalcohol) in combination with a non-polar
solvent is advantageous. According to Rombaut aeaditinck (2006) use of such solvent is
important for the complete release of polar lipiasn a complex matrix like milk fat globule
membrane. This solvent system degrades the hydrhgenls within milk lipid-protein
complexes and it also denatures and dehydratesnilkeproteins. Milk lipids can also be
extracted by hexane-isopropanol (Hara and Radi@8Y1%nd by diethyl-ether and pentane
system after treating the milk with ammonium hyddex (ISO-IDF, 2001). Microwave
extraction of lipids is another technique (Paralet1996; Ganzler et al., 1986). Non-solvent
extraction methods are also available, using tin¢ritegal force (Luna et al., 2005; Feng et al.,
2004).

38



Lipids can be separated in different classes bygukguid-liquid or liquid-solid extractions or
by thin layer chromatography (Ruiz-Gutierrez andeReCamino, 2000). In liquid-liquid
system, chloroform, diethyl ether or ethyl acetatevarious proportions is used. Thin layer
chromatography is another widely used method. Bey tare time consuming, requires large
volume of solvents and loss of some lipidic fractis evident (Striby et al., 1999; Ruiz-
Gutierrez and Perez-Camino, 2000). Liquid-solidramtion for lipid fractionation has been
extensively developed and widely used. In the sglichse extraction, the lipids become
entrapped by the solid phase and solvents pass. &enging the solvent environment (pH,
polarity, etc.) around the solid phase or by intimdg delicate changes in the solid phase, lipid
classes can be separated selectively with highypand good recovery (Kaluzny et al., 1985).
Different solvents and column materials were alseduto improve the solid phase extraction of
lipids (Laffargue et al., 2007; Pernet et al., 20R6iz et al., 2004).

Fatty acids need to be derivatized to overcomehiadlenges set by their polarity and limited
volatility. It helps to avoid complication duringag chromatography analysis and improves the
peak shape. Depending on the fatty acids and chiogmaphic technique, methyl, isopropyl or
butyl esters can be used as derivatives to haw®d sglective and accurate analysis. However,
methyl esters are most widely used for biologicues and food samples as they require less
temperature to change their volatility (Carrapisal &arcia, 2000). In general, derivatization
method should be simple, fast, quantitative, causesunwanted changes or side chain
reactions. There are two main reactions involvedderivitization — esterification and
transesterification. Esterification reaction taldgce in free fatty acids (in acidic media) and
so for triglycerides, phospholipids (in acidic @sic media) or N-acyl complex lipids (in acidic
media) is transesterification. In biological sanspldatty acids are mostly included in
triglycerides and phospholipids. Hence, the deizasibn to form FAMESs is commonly termed
as transesterification. For the synthesis of FAMES| or H,SO, or BF; in CHzOH or sodium

methoxide is used.

After the formation of FAMEs, samples are applied ihstrumental analysis for the
identification and/or quantification of the fattgids. For the analysis of complex fatty acid

mixtures, gas chromatography (GC) coupled with Edanization Detector (FID) is the most
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widely used traditional method (Carrapiso and @Gar2i000; Ratnayake and Galli, 2009). In

FID (Figure 9), the sample gas is combusted byhydrogen/air flame; organic molecules

oxidized and produce electrically charged parti¢iess). On a high voltage ion collector, the

ions are detected by measuring the current achessdilector that is proportional to the rate of

ionization. The rate of ionization depends on tlacentration of the hydrocarbons in the

sample gas. The detection gives peak/chromatograichwby comparing with the retention

time of a known standard, the FAMESs are identifieelative concentration can be measured

by using the area under the peaks taking the adildor factor in consideration and inclusion of

internal standard makes possible the absolute ifjecatibon. However, compared to a typical

mass spectrometer (MS), FID’s sensitivity and delig are significantly low (Thurnhofer and

Vetter, 2005). For example, the co-elution of déf@ compound is very common in GC-FID

that can be solved using MS instead of FID. Moreovarious fatty acids can be differentiated

by the information on molecular mass or other $tnmad characteristics that MS provides. The

MS also provides excellent quantitative data far lipidomics study (Ratnayake and Galli,

2009). Therefore, GC-MS has got diverse applicatiorbiological and industrial research
(Quehenberger et al., 2011; Thurnhofer and Ve2(@0p).
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Figure 9. Flame ionization detector (left) and magnetic @eatass spectrometer (right) used
with gas chromatography (Chasteen, 2009; Gate$)200
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In an MS — various molecules are ionized, ions separated according to their mass and
masses of each ion are detected within a predefamegk. Use of a magnetic field is one of the
earliest ideas in MS to separate ions and detengithieir mass. The working flow of magnetic
sector MS is given in Figure 9. In the magnet sedtaver mass ions deflected more than the
higher mass ions. That makes possible the focusirigns with different masses on to the
monitor slit, results in the separation of ions ading to their masses. To obtain a good
spectral resolution (i.e. all ions with sam®@z in one peak), ions are filtered through an

electrostatic sector and then focused at the ddablesing point on the detector slit.

There are several acquisition modes that can bé ms&C-MS in addition to a number of
chromatographic methods and ionization techniquéthin a predefined mass range, complete
mass spectra can be obtained in full scan modan®each scan cycle, all the ions reaching
the detector are counted. By choosing the compeumtiaracteristic fragments, known
compounds can be detected in selected ion modés) (Rt the analyzer need to switch
quickly from one mass to another. Thus, the setfityittan be improved and limits of detection
(LOD) and potential matrix interference can be il In reconstructed ion chromatogram
(RIC), only the desirable masses are included engantification though it allows to record
complete mass spectra, others being excludedsEall and RIC is advantageous over SIM to
identify unknown compounds because they provideemfiormation than SIM does. For the
confirmation, ion ratios of the mass fragments #ihdne compared with those from a known

reference standard.

3.6 Protein and peptide identification

Protein identification is a four step process cosgubof protein separation, protein digestion,
MS analysis of peptides and comparison of obsepegdides with the database (O’Donnell et
al., 2004). Separation can be done either by gelkrephoresis or liquid chromatography (LC)
depending on the focus of interest. Tryptic digeéspeptides of the protein are used most
widely for the protein identification purpose. Thbvious choice is MS, for the analysis of
resulted (separated) peptides to identify the prstdecause of their higher sensitivity,

sequencing speed and resolution. At present, ther S separation principles in proteomics

41



are — quadrupole mass filters, time of flight (TO#Rass analyzers, linear ion traps and orbitrap

analyzers (Michalski et al., 2011). Generally thaseecombined to make hybrid configurations.
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Figure 10. Schematic diagram of Q-exactive mass spectrongetestruction (Michalski et al.,

2011).

In Q-exactive MS, a quadrupole mass filter combiwéh an orbitrap mass analyzer (Figure
10). Because of the S-lens and parallel filling detkction modes, the Q-exactive instrument
features high ion currents and fast high-energyistmh-induced dissociation of peptide
fragments. It has improved resolution and multipxoperations are possible at MS and
MS/MS level. Often simply the peptide mass fingemp(PMF) is used to identify protein.
However, a high number of peptides from multipletpins obscure PMF based identification.

To solve this issue, MS/MS needed which provides dbguence information and can detect

modification in any individual residue.

One of the applications of MS into the food reskascto study the protein hydrolysate, i.e.
peptides (Panchaud et al., 2012; Alomirah et @002 Leonil et al., 2000). Both the matrix-
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assisted laser desorption ionization (MALDI) MS amedctrospray ionization (ESI) MS can be
used in peptide study (Mamone et al., 2009; Canmdi Mangia, 2003). However, the ESI-MS
is more desirable with online liquid chromatogrametection system because it can analyze

compounds directly from aqueous/organic soluti@er¢ri and Mangia, 2003).
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Figure 11. The electrospray ionization source (Ashcroft, 1997

The ESI is the atmospheric pressure ionization YA€thnique, which is an ion evaporation

process that enables emission of ions from draptetthe gas phase. At the tip of the sample
emitting capillary, a high voltage (3-4 kV) is amol. Nitrogen is used as a nebulizing gas,
flows around the capillary. It helps to carry themple spray towards the MS. Then passing
through the warm drying gas (nitrogen), it passessdampling cone or orifice and finally the

solvent free charged sample ions are directedtimt@nalyzer (Figure 11) (Ashcroft, 1997).

Like Q-exactive MS, Q-TOF MS is also a hybrid MSmmning quadrupole mass filters and
time of flight mass analyzer. There is a collisioell in between, with injected inert gas
(argon/helium/xenon) for the fragmentation of sasphto ions of certain masses (Ashcroft,
1997). In MS, quadrupole does not work as an aealgat focus the ion beam into the TOF,
where the ions separated as per their mass toehatig. In tandem MS (MS/MS), in addition
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to TOF, quadrupole acts as a second analyzer. Qp@algr transmits only the ions of interest
into the collision cell, where ions are bombardetb ithe fragments and are analyzed by the
TOF (Figure 12).

quadrupole collision time-of-flight
ESI analyser cell analyser detector
MSs =%:|* 0® c:@ {3_‘ v e,

sequence

Figure 12. Schematic presentation of the working principléQeTOF in MS and MS/MS

mode (source: http://www.astbury.leeds.ac.uk/fatSifut/mstutorial.htm).

3.7 Human digestion

The digestive system involves food processing agtatiation, extraction of nutrients from it,
and elimination of the residual part. Five dynarsiages take place: i) ingestion, selective
intake of food; ii) digestion, converts the foodara usable form for the body; iii) absorption,
uptake of nutrients through the epithelial cel®ithe blood or lymph; iv) compaction, water
absorption and accumulation of indigestible resithte feces; and finally v) defecation, feces
elimination (Saladin, 2010). The digestion of fandludes mechanical digestion and chemical
digestion. In mechanical digestion, cutting andnding action in the oral cavity and the
churning contractions of the stomach and smalktitie breaks the food into smaller particles
to provide higher surface area for the digestiveysre activity. In chemical digestion, a series
of hydrolytic reactions takes place to break thetaty macromolecules into their monomers:
proteins into amino acids, fats into monoglycerigesl fatty acids, polysaccharides into
monosaccharides and nucleic acids into nucleotid®s.overview of the digestive system is

shown in Figure 13.
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Figure 13. The human digestive system — an overview (Sal&fihQ).

In the oral cavity, food is transformed into bol{(saliva lubricated agglomeration of food
particles), and then food is transferred to thensith through the oesophagus by the peristaltic
movement, where food stays for a certain time amthér to the upper part of the duodenum
through the pylorus. Then absorption of nutriemtd ¢ghe expulsion of the residual part take

place. The whole digestion process takes ca. 6el2shdepending upon the food matrix as

liquid or solid food.
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The digestion and absorption of lipids are more giarated than the protein and carbohydrate
mainly because of its hydrophobic character. Lipasfedifferent origin digest lipids (Saladin,
2010). The dietary lipids mainly consist of triaglyicerol (Mu and Porsgaard, 2005). It must to
be broken down into smaller pieces (fatty acidspogbyceride, and glycerol) to enables the
absorption by the gut wall cell lining, the enteras. The digestion is very efficient and allows
the small intestine to absorb approximately 95-98%4he ingested triglycerides (Armand,
2007; Carey et al., 1983). Lipid emulsificatioririgortant during the digestion. Emulsification
affects the lipid/water interface area directlyyghaffect the lipase binding onto the surface of
the lipid droplet. The available surface area of tlpid droplet to the lipase is directly
proportionally influence the rate of lipolysis (Baet al., 2005). Gastrointestinal lipid digestion
takes place mainly in two steps — gastric and doaldeHowever, Lipid digestion (a minor
extent) may starts from the mouth by the linguphsie from the tongue’s intrinsic salivary
glands. Lingual lipase showed even more activityhie acidic pH of the stomach and exerts
lipolytic effect along with the gastric lipase (&din, 2010). However, the existence of lingual
lipase has been questioned. Moreau et al. (198&bleshed the cellular and tissue origin of the
preduodenal lipases in human and concluded thenedsd lingual lipase in the human mouth.

Fernandez et al. (2007) also defy the presendagidl lipase in human’s preduodenal lipase.

3.7.1 Gastric digestion of proteins and lipids

Protein digestionAs soon as the food arrives into the stomach,usea stimulation of gastric
secretion by inducing stomach stretching and nhpifa (1.5 to 2) of the stomach contents
increase depending on the buffering capacity ofetfitered food (Kaye, 2011). The chief cells
of the gastric gland secrets pepsinogen, the waagkpsin. The HCL secreted from the parietal
cells, remove an N-terminal pro-peptide from thpgdeogen, exposed the active site cleft and
pepsin is activated. When pepsin has been fornedgerts autocatalytic effect by activating its
zymogen (Figure 14). It has broad specificity anefgrentially attacks the protein at sites with
hydrophobic and aromatic residues (phenylalanipesine, leucine, valine or methionine),
either in combination or at close proximity of tbkeaved bond (Roberts and Taylor, 1979).
Pepsin breaks the proteins into polypeptides ([igi# and 15) and is supposed to hydrolyze
10-15% of the dietary proteins (Saladin, 2010). &bielic environment of the stomach helps to
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denature some of the proteins and thereby faeilita protein digestion. Mucus, secreted from
the mucous neck cells of the gastric glands previtie protection to the stomach against the
acid and digestive enzymes. The rich content adrbiznate and surface-active phospholipids in
the mucus are the key player. The mucus preveatadid attack (Campbell, 2012). The pepsin
activity is highly pH dependent and up to pH 4.0mian gastric juice is highly effective for
proteolysis (Roberts, 2006).
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Figure 14. Schematic presentation of production, activatiod action of pepsin (Saladin,
2010).

Lipid digestion The digestion of the triglycerides starts in gtemach by the action of gastric
lipase. Chief cells in the fundic region of therswh secrets the gastric lipase. A pepsinogen
secretion stimulator, pentagastrin also stimuldteggastric lipase secretion. It is an acid lipase,
acid-stable (pH 3-6) and active at acidic pH betaptimum pH is 5-6 (Armand, 2007; Carriere
et al., 1993; Gargouri et al., 1986a; Gargourilet1086b). Gastric lipase can hydrolyze all
three ester bonds on the triglyceride (Carrier@algt1991) but has more preferenceste3
(Carriere et al., 1994; Carriere et al., 1993). Blracture of the lipid substrate also has an
influence on gastric lipase preference which waglyteride followed by di- and
monoglyceride (Fernandez et al., 2008; Fernandea.e®007). It also has a preference to
attack the short and medium chain fatty acidraB (Bauer et al., 2005). It can also hydrolyze

the long chain fatty acids and its specificity epdndent on the pH of the incubation medium
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and presence of amphiphilic components in it (Gariget al., 1989). The lipolytic action of
gastric lipase mainly yields one free fatty acid ame diglyceride (Hayes et al., 1994; Carriere
et al., 1993; Carey et al., 1983; Patton et aB2)9Approximately 10-40% of the dietary lipids
undergo lipolysis in the stomach but the exact roution of the preduodenal lipase to the
overall lipolysis and their site of action are asue of ongoing debate (Goodman, 2010; Mu
and Hoy, 2004; Armand et al., 1999; Carriere et1&193).

3.7.2 Intestinal digestion of proteins and lipids

Protein digestion Periodic contractions occur to deliver the gastasidue into the small
intestine (upper duodenum part). The rate of patistcontractions of the distal part of the
stomach is 3 per min. The passage of the largéiclesris slower than the smaller ones and so
for solids than the liquids. Stomach emptying slawegn if the lipids are present in the chyme
(Campbell, 2012). The pepsin is inactivated dueniwing with alkaline pancreatic juice with
pH 8 and bicarbonate-rich mucus from the duodenahdy neutralizes the stomach acid
(Saladin, 2010). Duodenal digestion normally taplese at pH 6.2-6.7 (Kalantzi et al., 2006;
Ekmekcioglu, 2002), however, pH 7-8 are also reedrth bothin vivo andin vitro studies
(Russel et al., 1993; McCloy et al., 1984). Duodigmae is composed of duodenal epithelial
cells, bile and pancreatic juices. Enzymes funatigrin the small intestinal digestion are
mostly found in the pancreatic juice and brush bordll the pancreatic proteases are secreted
as zymogens to avoid pancreatitis. Enteropeptidaseling on the duodenal brush border
cleaved the trypsinogen to form the active enzymypsin. The trypsin activates other
zymogens, e.g. chymotrypsinogen to chymotrypsin apdocarboxypeptidase to
carboxypeptidase. Trypsin and chymotrypsin (panireszymes) hydrolyze the proteins and
polypeptides. The entered (from stomach) hydrolgsigluct consists of 30% free amino acids
and 70% oligopeptides (Goodman, 2010) but it iseddpnt on the type of food. Trypsin has
preference to cleaves at the —.COOH side of lysirerginine whereas chymotrypsin cleaves at

the —COOH side of tyrosine, tryptophan, phenylalarand leucine.
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Another pancreatic enzyme, carboxypeptidase, actligopeptides and removes amino acids
from the —COOH end of the peptide chain. Two brbshder enzymes, aminopeptidase and
dipeptidase are involved in the removal of aminmsadrom the —NH end of the chain and

splitting dipeptides in middle to yield the lastavamino acids, respectively (Figure 15). The
absorption of amino acids and small peptides takase across the enterocytes brush-border

membrane and further released into the bloodstream.

Lipid digestion The complete overview of lipid digestion and alpsion is shown in Figure 16.
Through the action of the pancreatic lipase, méghe fat digestion takes place in the small
intestine. The bile (produced by liver, stored andcentrated in the gallbladder) components —
lecithin and bile acids emulsify the larger fatlgies into a smaller one that provides more
surface area for the lipase activity. Pancreatiade removes the fatty acid fram1l andsn-3

of the triglyceride, thus producing two free fadiyids and one monoglyceride. However, this is
also dependent on the fatty acid type. The absorpékes place through the incorporation into
the micelles and chylomicron formation (Saladin1@0 The released short chain and medium
chain fatty acids are soluble in agueous medias Wil help to solubilize the lipid droplets
efficiently into the mixed micelles and will increathe lipid droplets emulsification. But as the
long chain fatty acids are more hydrophobic, thél eause somewhat inhibition of the lipase
action by accumulating at oil-water interphase (Mefents et al., 2008). For the optimum
activity of the pancreatic lipase, in addition itepcolipase is important. It binds the lipase and

anchors to the substrate.

3.8In vitro, ex vivo and in vivo digestion models

The most widely used digestion model is ih&itro digestion models. The purpose is to study
the digestibility, structural changes, releaseashponents, production of bioactive components
and survival of drugs under conditions mimicking th vivo gastrointestinal tract (Hur et al.,
2011; Escudero et al., 2010; Jantratid et al., 286@8honen and Pihlanto, 2006; Dressman et
al., 1998). However, the results obtained from $ated in vitro digestion model are often
different from those obtained usimg vivo models because of the inherent complexity of the

process results in difficulties in accurate simolaiHur et al., 2011). The best approach to
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monitor such phenomena is to use vivo digestion. Howeverjn vivo study has some
limitations from practical application point of weinvolving mainly ethical, technical, time
and cost related issues. In addition, a large numbsubjects are needed to obtain standardized
and comparable results due to the higher exterihdif¥idual variation. Considering these
issues, compromise has made between accuracy aadeatilization, andn vitro model is

used most extensively.

There are two types ah vitro digestion model available — static and dynamic edStatic
model is a closed system and less sophisticatesl.nffdvement of the gastrointestinal tract is
simulated by using magnetic stirrer or shaker. €ffeciency of such model is commonly
measured by the loss of or release of macromoldgudeolysis products. In a dynamic model,
the simulation of the gastrointestinal tract is pomer controlled, mechanical forces being
simulated by churning and movement. Digestion pctelare removed after each step by
dialysis and followed by analysis.

To date, in all the developed models, simulatianfé@dback mechanisms, resident microbiota,
immune responses and hormonal control are absémt.nfost widely used model is static
model (Guerra et al., 2012). The models are dedigmnesimulate only one/two/four stages of
the in vivo digestion process (Hur et al., 2011; Boison andyugg 1991). During the
simulation, a number of variables including pHnsi& time, and enzymatic conditions must be
considered to make the model useful (Guerra et28l12). Enzyme activity is the most
important factors which depend on the concentratf, temperature, stability, activators,
inhibitors and incubation time (Boisen and Eggu®91). Coles et al. (2005) suggest to use
single purified enzyme fan vitro digestion. Now a day, most of the model digesstrdy is
conducted using the highly pure commercial non-humazymes, like porcine or bovine. In
protein digestion, commercial enzymes seem morieiaft than the human gastrointestinal
enzymes (Eriksen et al., 2010; Almaas et al., 2D@6d according to these studies commercial
enzymes give different peptide profile. The prog&olenzymes with their various isoforms are
present in the human digestive juice (Jones etl@B3) and these isoforms could be different
from those present in other species. DependindnempH and substrate in digestion, this could
have different catalytic pattern (Fujinaga et &l995). Other components (e.g. bile,
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phospholipids, enzyme inhibitor etc.) that are ratynpresent in the digestive juices may also
play a role in digestion and contribution of suabmponents is neglected when purified
enzymes are used. Use of human digestive juicaadspiis the best known alternative to
address this issue and from this perspective, Detvéd. (2014) used the ter vivoinstead of

in vitro.

3.9 Model digestion of milk and milk products and nilk allergens

Milk and milk products have been digested in modigestion, however, wide variability
prevails regarding the model used, digestion sitrmria milk components interest, source of
enzyme etcln vivo digestion of milk and yogurt in adult human wasdstd to monitor the
release of peptides from caseins and lactoferrstamach and duodenum and their absorption
into the blood (Chabance et al., 1998). Whereas|urd et al. (2013) digested bovine
lactoferrin bothin vivo andin vitro involving gastric and duodenal digestion steps &tiect of
fast and slow gastric reduction in pH on lactoferigestion was studied. Inglingstad et al.
(2010) compared thex vivodigestion of caseins and whey proteins of milkrfrdifferent
species, while Eriksen et al. (2010) focused orctyine whey proteins and used both human
and non-human enzymes. Gallier et al. (2013), &adii al. (2012) and Ye et al. (2011) studied
the milk fat and fat globule membrane and structluieng digestion, but Almaas et al. (2006a)
focused only on milk proteins digestion. Devle le{2014) used human enzymes, while Kopf-
Bolanz et al. (2012) used non-human enzyme on caw pnoteins and lipids. Because of
different digestion protocols and models used,rdsalts are difficult to compare. However,
staticin vitro models have opportunities with simulated or humastric and duodenal fluids to

achieve the digestion.

The milk protein breakdown in the gastrointestitratt is of considerable interest because of
their allergenic properties. In a general poputatib-3% people suffer from cow’s milk allergy
and children are more prone to it than the ad@esographical location and ethnicity are the
two key determinants of its prevalence in a popata¢Bahna, 2002). The-, -, andk-casein,
a-lactalboumin andg-lactoglobulin have been identified as major covikrallergens (Downs et
al., 2013; Chatterton et al., 2006; Kitabatake Kimkawa, 1998; Adams et al., 1991).
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In the milk of most mammals except hum@ractoglobulin is present. Most of the patients
(13-76%) were found to react gractoglobulin (Caira et al., 2012). The major Iggitopes in
B-lactoglobulin are f41-60, 102-124 and 149-162.gRrant 1-8, 25-40 and 92-100 are
intermediate while f9-14, f84-91, f125-135 and #3-are considered as minor epitopes (Selo
et al., 1999). It is a globular protein presenthia whey portion of milk and show resistance to
digestion, particularly to the peptic digestion. Vga al. (2001) suggested that the absence of
this protein in human milk is partially responsibier its allergenicity in humans. The
hydrophobic amino acids (preferential cleavagesfepepsin) irg-lactoglobulin are present in
the core of the tertiary structure that makes thatip digestion more challenging (El-Zahar et
al., 2005; Pintado and Malcata, 2000; Kitabatakel #inekawa, 1998). The oving-
lactoglobulin’s peptic hydrolysis is faster tharetbovine p-lactoglobulin (El-Zahar et al.,
2005). In another study using human digestive gjiédmaas et al. (2006a) found more rapid
hydrolysis of capring-lactoglobulin compared to the bovine one and hyggiad et al. (2010)
reported higher digestion of equifidactoglobulin than bovine and caprifidactoglobulin.
Within the same species, the genetic variang-tfctoglobulin may also show differences in
their digestibility. The oving3-lactoglobulin variant B was digested more rapitian the
variant A (El-Zahar et al., 2005). Moreover, Tidoe& al. (2014) reported that the
lactoglobulin in donkey’'s milk degraded rapidly whi consisted of onl\B-lactoglobulin 1.
The replacement of amino acids that could change tdrtiary structure and surface
hydrophobicity of thep-lactoglobulin may cause alteration in the rate itsf hydrolysis
(Ulleberg, 2011; El-Zahar et al., 2005). Howe\glactoglobulin can be hydrolyzed by trypsin
and chymotrypsin even though the rate of protesligsslow (Kopf-Bolanz et al., 2012; Mota et
al., 2006; Perez and Calvo, 1995).

Another whey proteing-lactaloumin showed less resistance to commer@ptip hydrolysis
than thef-lactoglobulin and a complete hydrolysis was olgdionly by the non-human pepsin
(Kopf-Bolanz et al., 2012). Natale et al. (2008urid no evidence od-lactalbumin to be
allergenic and no consensus was found among tltkestuegarding the allergenicity of
lactalbumin (Chatterton et al., 2006).
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Even though caseins coagulate in the stomach,nsadejest rapidly and completely than the
whey proteins (Devle et al., 2014; Kopf-Bolanz ket 2012; Inglingstad et al., 2010; Almaas et
al., 2006a). However, the individual casein hyds@ymay vary from one to another (Devle et
al., 2014; Gallier et al., 2012). Because of thigid and complete hydrolytic feature along with

non-compact, flexible structure, caseins are oftamsidered poorly immunogenic (Wal, 2001).
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4. Summary of papers

Paper |

Principal milk components in buffalo, Holstein cros, Indigenous cattle and Red
Chittagong Cattle from Bangladesh (2014)

In this paper milk from buffalo, Holstein crossdigenous cattle and Red Chittagong Cattle
were analyzed for protein and casein compositiod Bme, casein micelle size, naturally
occurring peptides, free amino acids, fat, fat glebsize, fatty acids, carbohydrates and
minerals. This was done to obtain a total charateon of those milk and to compare them.
Most of the components varied considerably amoreg rttilk types. However, the milk of
Indigenous cattle and Red Chittagong Cattle weseadamore or less similar. The buffalo milk
contained higheunsr andk-casein andi-lactalbumin, free amino acids, fat, unsaturatdty fa
acids, Ca and Ca:P but had lowgdactoglobulin, almost half of the cow milk. Theseén
number was also higher in buffalo milk and it alsms largest casein micelle and milk fat
globule. Higher content of protein, casdircasein, whey protein, lactose, total mineral and P
were found in the milk of Indigenous cattle and R&udttagong Cattle. The milk of Holstein
cross was found rich ifi-lactoglobulin and naturally occurring peptides bwas lowest in
casein to whey protein ratio. From nutritional aedhnological point of view, the milk of

buffalo and Red Chittagong Cattle should be preterr

Paper 11

Ex vivo digestion of proteins and fat in buffalo milk (2038)

In this paper buffalo whole milk and skimmed milkasvdigested in aex vivo model to
investigate the effect of lipids on proteolysisgaifically the more allergenic proteins -
lactoglobulin andas;-casein. The lipolysis and release of fatty acitdsdifferent stage of

digestion and the generation of peptides were @ported. Some intact caseins were found
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after gastric digestion, however, digested compleafter 5 min duodenal digestion. At the
same timea-lactalboumin andp-lactoglobulin were readily and mostly completelgeasted
though they were resistant to gastric hydrolysise Effect of fat was not profound and only
small variation in the proteolysis of whole andmskied milk was observed. The milk types
were also found more or less similar in the numblerdentified peptides, localization of
proteolytic site and sequence alignment of the geed peptides. A rapid lipolysis (30%) was
observed during 30 min duodenal digestion and tieemained static until the end, 120 min
duodenal digestion. The total unsaturated fattyl @rid medium chain fatty acid (C10:0 -
C16:0) showed 8-10% less lipolysis than the tosdliated fatty acid and short (C4:0 - C8:0)
and long chainXC17:0) fatty acid, respectively. The rapid digestad buffalo milkog-casein
andp-lactoglobulin may be of nutritional importancepesially for those who suffer from cow

milk allergy.

Paper |11

Ex vivo digestion of omega-3 enriched buffalo skimmed milk2014)

This study investigated whether the addition of teer oil, as a source of omega-3 fatty acids
to the buffalo skimmed milk influence the proteadyduringex vivomodel digestion or not.
The protein degradation and generation of peptwde® compared with that of the skimmed
buffalo milk. The addition of omega-3 fatty acididiot affect the protein degradation pattern
and the peptides generation. The cod liver oil stba lipolysis pattern similar to milk fat,
28% lipolysis after 30 min duodenal digestion amtdme more or less static till 120 min
duodenal digestion. The recorded lipolysis of bibid omega-3 fatty acids, eicosapentaenoic
(EPA; C20:5n-3) and docosahexaenoic(DHA; C22:6ra8Q were 23%. Skimmed buffalo
milk fortified by adding cod liver oil may be regked as a good source of omega-3 fatty acids.
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Paper 1V

Ex vivo digestion of milk from Red Chittagong Cattle focushg proteolysis and lipolysis
(2014)

This work describes thex vivodigestion of Red Chittagong Cattle milk to obtaiore insight
into the degradation of milk from this breed/typecomparison to other bovine breeds reported
worldwide. The proteolysis (with a focus on theeadenicos-casein ang-lactoglobulin) and
lipolysis with subsequent generation of peptides fatty acids were monitored. All the caseins
were digested after 40 min gastric digestion wkibene -lactoglobulin still remained intact
after 120 min duodenal digestion. Maximum numbepetides identified was generated from
B-casein followed by, k-, andasz-casein andg-lactoglobulin. All the peptides were rich in
hydrophobic amino acids and proline was preserlnmost all of the peptides. The milk fat
showed 48% lipolysis after 120 min duodenal digestiShort chain fatty acids underwent
more lipolysis than the medium and long chain faityds and the lipolysis of saturated and
unsaturated fatty acids were found more or lesdainConsidering the overall proteolysis and
lipolysis pattern, milk from this Bangladeshi brégde was found to stay close with the Nordic

cattle (Norwegian Red Cattle).
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5. Key results and general discussion

The milk of Bangladesh has only been evaluatedt$ogross content of the milk components
(Khan et al., 2007; Islam et al., 2008) and regelistam et al. (2013) reported the concentration
of metabolites in Bangladeshi milk. In this milket protein composition and type, fatty acid
composition, casein micelle and fat globule sizel amineral composition have not been
characterized yet. In the previous studies, proteimtent was estimated as crude protein and
lactose content by subtracting the sum of protieinand ash from the total solids. Naturally
occurring peptides from raw dairy milk is also avrerea of interest. Therefore, Raper | we
characterize the buffalo (B), Holstein cross (HK)ligenous cattle (IC) and Red Chittagong
Cattle (RCC) milk from Bangladesh on the basisfofementioned components and attributes
to obtain a more country and species/breed spdaifbwviedge on this milk as suggested by
Schonfeldt et al. (2012) and Medhammar et al. (20&Epectively.

The true protein content of buffalo milk was 35@fkilk. Khan et al. (2007) found 37.67 g/kg
milk crude protein in the milk of water buffalo vdhi is comparable with the present study. The
reported crude protein content of the HX and RCGkmias 31.10 and 40.60 g/kg milk,
respectively (Islam et al., 2008) which is also panable with the present result of HX and
RCC milk true protein content, 27.15 and 37.80 gtklk, respectively. Coagulation properties
and cheese production of milk is mainly dependenthe protein, casein content and type and
casein micelle size. The casein number of Banghadesk was 5-15% less than the European
milk (Dutch dairy milk; Heck et al., 2009b). Caseinmber is positively related with the cheese
yield. The B and RCC milk had a casein number a7 76which was higher than HX and IC.
Content ofk-, andp-casein were highest in B and RCC milk, respegfivBICC milk also
contained higher proportionate amountagf, p- andk-casein compared to other milk. The
genotype of the animals is a key factor in theatayn of the casein composition (Farrell Jr et
al. 2004). Milk production trait, milk compositiorprotein composition and technological
properties are significantly different in differeginetic variants. Thes-:osz:B-:x-casein of all
milk in the present study also differed from thengel 4:1:4:1 ratio; which is related to the
genetic polymorphism, post translational modifioat(s), stage of lactation and feeding regime

(Barlowska et al., 2011). Higher proportion @f-casein in RCC milk may cause to increase
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coagulation and curd firming time which may be na&li#zed by the higher proportion @
casein (Bonfatti et al., 2013). Instead of casentent only, the proportion efs- andp-casein

is important in milk coagulation properties and knmilith a higher proportion of-casein
showed poor coagulation properties (St-Gelais aachd, 2005). Though in genekatasein is
positively related to improved coagulation propestof milk, Bonfatti et al. (2013) showed the
reverse and concluded that the extent of glycasylaif thek-casein is the determinant of its
effect in coagulation properties. Buffalo milk hée advantage over cow milk as they have
40% of k-casein without carbohydrate, which is 20% in covkrfAddeo et al., 1977). The
presence of more-casein is associated with smaller casein micétle which was not shown
in the present study. The buffalo milk had the éstgcasein micelle of 188.73 nm and smallest
was 157.1 nm in IC milk and HX differed non-sigoéntly from IC. Glantz et al. (2010)
reported that smaller casein micelles are mordylike give stronger gels. This was partially
reflected in a preliminary study using Formagrappgdendix 1). That preliminary study was
also ended with better coagulation properties ofik followed by RCC, IC and HX which is

more or less consistent with the results on prgie#sented above.

The milk protein is also known for its nutritionahportance. Higher proportion of whey
protein is immunogenically unfavorable, particwawith regard top-lactoglobulin, however,
whey proteins are nutritionally favorable. Persaith milk allergy can prefer the B milk as it
hasp-lactoglobulin, almost half of the cow’s milk anédhighera-lactalbumin content than
the cow milk. Buffalo milk was also rich in free am acids. The present study has identified
45, 79, 19 and 12 naturally occurring peptides fidymHX, IC and RCC milk, respectively.
Maximum number of peptides has angiotensin comgrénzyme inhibitory activity while
some has opioid and immunomodulatory effects artd/igcin mineral nutrition. All the
bioactive peptides appeared as a part of largetigeepnd according to Hayes et al. (2007) it
will improve the availability of the bioactive fragent after the gastrointestinal digestion of the

larger peptides.

The fat content varied significantly among the aasn In the fatty acid composition of
saturated fatty acid in neutral lipid, only C20i@owed non-significant variation among the
milk types. Buffalo milk was rich in C4:0, C15:0,1Z.0 and C18:0 while IC and RCC milk
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were higher in C12:0, C14:0 and C16:0 content. ifrgedyenotype, rumen microbial activity
and health status of the animal are the main darttiis in the variation of fatty acid
composition. The concentration of C4:0 to C10:0aoted in all milk of the present study
reveals that all the animals were not at positivergy balance (Van Knegsel et al., 2005). The
variation in the C15:0 and C17:0 is mainly becanfstihe variation in the ruminal activity and
feeding and health status may also contribute. tbhié quality of the feed and body condition
score is also important in C16:0 and C18:0. Buffiditk was rich in total unsaturated fatty
acids and had lowest saturated fatty acids comparedw’s milk and all the cow’s milk were

found similar in this respect.

Except C10:1n-6 cis and C14:1n-5 cis, all the umsé¢d fatty acids including conjugated
linoleic acid isomer (C18:2n-7 trans) and precwsq@18:1n-7 trans and C18:2n-6 cis) were
found significantly higher in the buffalo milk thahe cow’s milk. The C18:3n-3 cis was only
detected in the B milk. Being of different genotyp@ and RCC showed greater similarities in
their fatty acid composition, reflecting the importe of feeding in this regard as they received
the same diet. However, HX cattle were fed diffdsgerbut showed similarities with IC and
RCC (e.g. C4:0 - C8:0) and Menard et al. (2005ntbdifferences in the fatty acid composition
of cow and buffalo maintained under same feedind) management. So the genotype of the
animal seems to affect fatty acid composition aredI® et al. (2012) also reported the species
variation of fatty acid composition. Though RCC d&dnimals belonged to different genotype
and fed differently, the milk showed similarities€16:1n-7 cis and C18:2n-7 trans content and
HX milk was found similar to B milk in C17:0 contien

Generally the milk fat globule size ranges from-BQum in diameter. The milk fat globule
size is corresponding well to the total fat conteinB, HX, IC and RCC milk. Supporting that,
the fat globule size need to grow larger with theréased fat content as the mammary gland
has a limited capacity to synthesize the globul¢enals. The higher range of variability in
buffalo milk fat globule size compared to the cowlknis in agreement with Menard et al.
(2005) and Akhundov (1959).
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The significantly higher lactose content was 528& milk in RCC milk followed by IC, B
and HX milk. Total mineral content varied signifitly among the different milk and RCC and
IC had the highest content, 8.5 and 8.4 g/kg mékpectively. The Ca content was higher in B
milk (1.48 g/kg milk). The highest P content wa$4lg/kg milk in RCC milk. Genotype has an
influence on the Ca and P content of milk. Preasein A variant is associated with more Ca
and P in milk than the milk witR-casein A variant and the effect af-casein is like A>B>E.

In the present study, Ca in all milk was more thia®m P which is in line with Ariota et al.
(2007). Patino et al. (2007) reported higher P tBann different buffalo breeds. Ariota et al.
(2007) also reported a positive relationship betw€a and P content and fresh cheese yield,
between gel strength ¢4 and soluble Ca and P content and a negativdaetdtip between

rennet coagulation time and ratio of Ca and P.

In addition to the results obtainedRaper I, increased interest for alternative milk due tavco
milk allergy; possible variability of milk digesilily because of their differences in
composition and structure (Almaas et al., 2006a)t species differences in the milk protein
digestibility (Inglingstad et al., 2010); set thaffalo milk in focus for further nutritional detail
regarding their digestibility especially the maiwot milk allergen, os-casein andp-
lactoglobulin. With this respecRaper Il investigated the effect of milk fat on milk pratei
hydrolysis and peptides generation ineenvivomodel. Considering the results obtained there,
Paper Il describes the effect of adding the external |{pmt liver oil) as a source of omega-3
fatty acid to overcome the limitations of long ah@iolyunsaturated fatty acids (mainly omega-
3) content of milk on the milk protein degradatidlhile Paper IV describes the proteolysis
and lipolysis of whole Red Chittagong Cattle mhiat provides a basis to compare the buffalo
milk results with the cow’s milk and also a compan with other regional breeds (Asia and
Europe). The Norwegian full fat cow milkAppendix 2), omega-3 enriched Norwegian
skimmed cow milk Appendix 3), Full fat milk of Bangladeshi Holstein cros&ppendix 4)
and Indigenous cattleAppendix 5) were also digested in the same model to furnisinem
conclusive data.

The protein degradation pattern was visualized Dg-£AGE. Majority of the caseins in whole

buffalo and skimmed buffalo milkP@per 11), omega-3 enriched buffalo skimmed miRkafper
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[ll') and in whole cow milkFaper 1V) were digested after 20 min of gastric digestisiter 40
min gastric digestion, a tiny trace of casein wassent in whole, skimmed and omega-3
enriched buffalo milk though it was more prominenthe whole and skimmed buffalo milk.
However, in cow’s milk it was digested completdly.buffalo milk, as-caseins appeared to be
more resistant than thg- and k-casein which is consistent with Gallier et al. 2 In
digesting bovine milk by using non-human enzymespfkBolanz et al. (2012) reported a
complete digestion of all the bovine caseins a®@rmin gastric digestion and Gallier et al.
(2012) reported 45 min gastric digestion in théudy. Devle et al. (2014) showed a complete
digestion of caseins after 40 min gastric digestisimg human digestive juices. So the caseins
digestion obtained in Red Chittagong CattRager 1V), Holstein cross Appendix 4) and
Indigenous cattle Appendix 5) milk are in line with those studies. The residaakeins in
whole, skimmed Raper II) and omega-3 enrichedPdper 111 ) buffalo milk were digested
completely after 5 min duodenal digestion. The girotomposition of buffalo and cow milk is
different Paper 1) and according to Almaas et al. (2006a) this coeddl to differences in their
digestion pattern. Inglingstad et al. (2010) repora rapid digestion of caseins in equine milk
after 30 min gastric digestion compared to humawjrie and caprine milk. So the differences
observed between the buffalo and cow’s milk regayaiaseins digestion pattern is attributed to

the species variation.

Among the whey proteins serum albumin was digestechpletely after 40 min gastric
digestion in whole, skimmedPéper I1) and omega-3 enriche@4per Il ) buffalo milk and in
full fat cow milk (Paper 1V, Appendix 4 and5). However,a-lactalbumin and-lactoglobulin
were resistant to gastric digestion. In buffalo knilhey were digested readily during the
duodenal digestion after 5 min. By UPLC-MS, traocé$-lactoglobulin as a single band was
identified in whole buffalo milk but was not obsedvin the skimmed buffalo milkP@per II)
and omega-3 enriched skimmed buffalo miBlaper 111). After 5 min duodenal digestion in
whole, skimmed and omega-3 enriched buffalo mi&cés ofa-lactalboumin and degradation
product off-lactoglobulin was also observed by UPLC-MS, howeaad degraded completely
during duodenal digestion for 30 min. In the fullt fRed Chittagong Cattle milk digestion
(Paper 1V), B-lactoglobulin remained intact after 120 min duaalesigestion and the results of
UPLC-MS indicate the degradation eflactalbumin. Devel et al. (2014) reported that fhe
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lactoglobulin digestion was affected by milk fatdaobtained more or less complete digestion
of B-lactoglobulin in skimmed bovine milk after 30 mof duodenal digestion while it

remained intact in full fat milk after 120 min ofiddenal digestion.

Gass et al. (2007) reported that the presenceedf atid and monoolein reduced the positive
effect of bile salts in the digestion pflactoglobulin. But, Le Maux et al. (2013) showdrhit
the addition of linoleic acid increased the digastwf purifiedp-lactoglobulin and Kopf-Bolanz
et al. (2012) observed a complete digestiofi-tictoglobulin after 30 min duodenal digestion
using commercial gastric and duodenal enzymes. billeesalt concentration in the present
study was 2.4 mM while it was 1.0 mM in the studyDevle et al. (2014). The Norwegian full
fat cow milk was digested with the same digestiviegs and bile salt concentration as in the
present studyAppendix 2) and this also resulted in intaftlactoglobulin after 120 min
duodenal digestion. A digestion study on the Notesegow skimmed milk with added cod
liver oil was also conducted\ppendix 3) and showed a complete digestiordactoglobulin
after 5 min of duodenal digestion. Bile salts castdbilize thep-lactoglobulin and thereby
enhance its digestibility (Gass et al. 2007). KBptanz et al. (2012) also showed the effect of
bile acids on the digestion pflactoglobulin. Gass et al. (2007) reported thatr8M bile salts
can improve thé-lactoglobulin digestion, but the effect is moremounced above the critical

micelle concentration (3.5 mM).

The other two Bangladeshi cow milk, Holstein cres&l Indigenous cattle milk showed no
intact B-lactoglobulin after 120 min duodenal digestigkppendix 4 and5). The genotypic
variation of the animal may cause changes in the@acid sequence and thereby the structure
of B-lactoglobulin leading to the differences in thgeftibility. Because, Tidona et al. (2014)
found more rapid degradation @flactoglobulin in donkey's milk wheif-lactoglobulin I
fraction was absent. In addition, El-Zahar et 2005) reported more rapid hydrolysis of ovine
B-lactoglobulin than that of bovine milk and alsoosled the variation in the digestibility
between the genetic variants Pflactoglobulin. Inglingstad et al. (2010) showedyher
digestibility of equineB-lactoglobulin compared to that of bovine and aagriln the present
study, the used bile salt concentration was sinidabuffalo and cows’ milk. So, the genotype

of the animal seems to exert more prominent effecthe variation in the-lactoglobulin
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digestion between buffalo and cow milk and withie tows’ milk. Along with genotype and
bile salts, the concentration pflactoglobulin in milk may also contribute to thariation inf-
lactoglobulin digestion. The concentrationfeliactoglobulin was different in buffalo and cows’
milk (Paper 1).

After digestion, the identified peptides were aéigrwith the complete sequence of the protein
for determining the site of proteolysis. In all &/pf buffalo and cow milk, extensive proteolysis
was observed ifi-casein followed byis-, k- andaszycasein ang-lactoglobulin. The number
of identified peptides also followed the same ordére buffalo whole, skimmed and omega-3
enriched milk showed very little variation in theptide pattern regarding the proteolytic
cutting site — same site with different residuevery few new cutting site$*@per Il and Il ).

In Paper 11, lll and IV , almost all thec-casein peptides were identified from the gasthage
andp-lactoglobulin peptides from duodenal phase. Thisasponded well with the degradation
pattern visualized by SDS-PAGE. However, the nundfgreptides identified was not in line
with the extent of protein degradation observed IIDS-PAGE. The detection limit of
UPLC/Q-TOF MS might be a factor as this instrumesm detect peptide size of 0.80 kDa to
4.5 kDa. The low molecular size peptides (e.g. wi-,and tetra-peptides) and the generated
free amino acids were not detected. In digestiodehdalf of the milk proteins degraded into
di- and tripeptides and as much as 10% of the proteould be degraded to their component
residues as free amino acid (Kopf-Bolanz et al]l220 They also reported that the size
distribution of the proteins and peptides rangirant 5 kDa to tripeptide remains unclear due

to the detection limits.

Almost all the identified peptides contained preliand/or hydrophobic amino acids like

leucine, isoleucine, valine, phenylalanine, alanglgcine. Proline is a helix breaker and the
proteolytic enzymes may have less access to theplydbic sequence for further proteolysis.
From the digested caprine milk, Almaas et al. (30idve also identified peptides with these
type of residues fromi- andk-casein, pB-lactoglobulin and glycomacropeptide. Proline could
restrict proteases like trypsin for further protgial processing (Jornvall and Persson, 1983).
Some peptides showed to be fully resistant to &urthegradation (e.g. f84-108 and f96-108

from B-casein inPaper III).
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Milk fat mainly contains triglyceride (95%) (Haug &., 2007) and according to Mu and Hoy
(2004), 95% of the milk fat can be absorbed. There consensus about the exact contribution
of pre-duodenal lipase (gastric and lingual). le gresent study, there was no gastric lipolysis
of milk fat observed Raper IlI, 1ll and IV ). Devle et al. (2014) reported the same on
Norwegian bovine milk digested under simikx vivo condition like the present study and
speculated that the pH 2.5 is far from the optimpHinof gastric lipase activity which is 5 to 6
(Carriere et al., 1993). Another speculation id tha volunteers were not stimulated for lipid
digestion and leads to insufficient secretion o$tge lipase. The effect of the second issue
seems more prominent because milk was digested &tfpr 20 min before it set for digestion
at pH 2.5. However, gastric digestion is reportetd¢ important for further duodenal digestion
(Gallier et al., 2012 and Ye et al., 2011).

A rapid rise in free fatty acids after 30 min dupdledigestion was observed, which was 30% in
buffalo milk fat Paper II), 28% in cod liver oil enriched buffalo mille&per 111) and 33% in
cow milk fat Paper 1V). Then after, till 120 min duodenal digestion, fald milk fat and cod
liver oil's lipolysis remained more or less statind ended up with 35% and 32% lipolysis,
respectively. Whereas, the cow milk fat lipolysiscame static first after 60 min duodenal
digestion and finally resulted in 48% lipolysisaftl20 min duodenal digestion. The static
conditions were mainly because of product inhibiti@evle et al. 2014 and Gallier et al.,
2012). The differences between the buffalo milk #d cow milk fat lipolysis may be
attributed to the differences in their fat globsiee. The mean diameter of buffalo milk fat
globule was almost four times of Red Chittagongtl€amilk fat globule and buffalo milk also
had a greater percentage of larger fat globuRegpé€r I). The catalytic efficiency of human
pancreatic lipase is higher on small fat globubmttarge globule (Berton et al., 2012).

The average lipolysis of short chain (C4:0 - C&fyl long chain (>C17:0) fatty acid in Red
Chittagong Cattle milk fat were 11% and 4% higheamt that of buffalo milk fat, respectively.

The average lipolysis of medium chain (C10:0 - ©)l6atty acids was low and similar in

buffalo milk fat, cod liver oil and cow milk fat.ipase has preference to attack shel andsn

3 position of the triglyceride (Armand, 2007 andri@@zae et al., 1993). Short and long chain
fatty acids prevail atn1 andsn-3 position of the triglyceride (Blasi et al., 2088d Angers et

68



al., 1998) as compared to the medium chain fatiysaand this could explain the low lipolysis.
Total saturated fatty acid in cow milk fat and doekr oil showed 1-2% higher lipolysis than
the total unsaturated fatty acid while it was 9%hlerr in buffalo milk fat. Devle et al. (2014)
reported 10% more lipolysis of unsaturated fattydecthan the saturated fatty acids in
Norwegian bovine milk. The omega-3 fatty acids aal diver oil, C20:5 n-Zis and C22:6 n-3
cis showed 23% lipolysis though their presence it in lipase preferred position (Zeng et
al., 2010). The phospholipid fraction was not cdased as Devle et al. (2014) found non-
significant digestion of phospholipids. Howeverisitdifficult to be conclusive on the lipolytic
variation observed both at group or individual leg&fatty acid because the distribution of
fatty acids in the triglyceride shows consideraldeiation (Blasi et al.,, 2008, Maanson et al.,
2008, Angers et al., 1998 and Parodi, 1979).
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6. Conclusions and future perspectives

Milk of buffalo, Holstein cross, Indigenous catided Red Chittagong Cattle were characterized
and compared based on their principal componerits Was followed by the monitoring of
proteolysis and lipolysis in aex vivodigestion model to gather further nutritional dstan
aforementioned milk. Particular attention was p#&idthe two major milk allergens-
lactoglobulin andxs;-casein. Protein degradation pattern, peptidesrgesteand release of fatty

acids were also recorded.

Considering the protein composition and caseingypat content, Ca and P; buffalo and Red
Chittagong Cattle milk should be preferred from tieehnological stand-point. From the
nutritional perspective, milk from these two tyg#sanimal also showed better data than others
with regards to protein content and type, peptales amino acids, fat content and unsaturated
fatty acids including conjugated linoleic acid presors and isomers, lactose, minerals, Ca, P,
Mg, Mn and Zn and the two major milk allergens;-casein ang-lactoglobulin. However,
additional data on large population with controlfedding, genotype and lactation would be an

advantage.

The ex vivodigestion showed a rapid and complete degradaficaseins. Th@-lactoglobulin

in buffalo milk also underwent more rapid and coatgldigestion and showed no effect of milk
fat compared to that of cow. Within the cow, Hoisteross and Indigenous cattle milk showed
advantageous digestion pattern flactoglobulin. Therefore, buffalo milk could be an
alternative to the cow milk for individuals with womilk allergy. However, cow milk from
specific genotype still could have opportunitieghiis regard. It seems that the genotype and/or
B-lactoglobulin concentration in milk is involved this variation off-lactoglobulin digestion.
Further studies on the allergenic epitopes of baffailk caseins and whey proteins are needed
and their presence/state after the digestion neelle monitored. Another interesting study to
perform in the future is genotyping of these coWse addition of cod liver oil as a source of
omega-3 fatty acids to the milk did not affect thigk protein digestion including the allergens
and the generation of peptides. It could be a guddtional way to supply the omega-3 fatty

acids. However, rheological study along with preoeg effect (s) is needed. The identified
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peptides were rich in hydrophobic residues andasoad proline. For tracing well the path and
final fate of protein digestion products, smalleppdes and free amino acids need to be

analyzed.

Medium chain fatty acids showed lowest lipolysisl &o were the omega-3 fatty acids. The
lipolysis pattern of buffalo milk fat and cod liveil in buffalo skimmed milk were similar.
However, continuous removal of lipid digestion protdduring the digestion process is needed.
Use of dynamiex vivomodel orin vivo study could provide that provision. To monitortbet

in addition to phospholipids, mono-, di- and tricgyide should be separated and their fatty acid
composition should be investigated. All the datéamted duringex vivo study need to be
validated byin vivo studies including a considerable number of indigid to minimize the

effect of individual variation.
The data obtained on Bangladeshi cow and buffale miimportant for the future breeding

programme and to select milk for product developmimlso reflects the nutritional quality of

those milk as well.
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7. Appendices

Appendix 1: Rennet coagulation time (r), curd firming rate;kand gel strength (#) of

buffalo (B), Holstein cross (HX), Indigenous catfl€) and Red Chittagong Cattle (RCC) milk

from Bangladesh

B HX IC RCC
r (min) 9:25 17:55 17:25 15:00
K20 (Min) 7:20 28:15 10:55 10:25
Azo (Mmm) 24.21 12.10 22.11 24.06
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Appendix 2: Protein hydrolysis during thex vivodigestion of full fat Norwegian cow milk.

From left: Lane 1, low molecular weight marker; keaB, undigested milk sample, Lane 3,
gastric digested samples for 20 min at pH 5.0; Lé&ngastric digested samples for 20 min at
pH 2.5; Lane 5-8, duodenal digested samples f80560 and 120 min, respectively at pH 7.0.
Digestive enzymes are present only in the duodsaalples (Devle et al., 2014). SA, Serum

albumin;p-lg, B-lactoglobulin;a-LA, a-lactaloumin.

SA— "=
- Digestive
CaseinH\' enzymes

prlg————>

o-LA—mMmMm>

L
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Appendix 3: Pattern of protein degradation during ghevivodigestion of skimmed Norwegian
cow milk with added cod liver oil. From left: Larie low molecular weight marker; Lane 2,
undigested milk sample, Lane 3, gastric digesteapsss for 20 min at pH 5.0; Lane 4, gastric
digested samples for 20 min at pH 2.5; Lane 5-8ddual digested samples for 5, 30, 60 and
120 min, respectively at pH 7.0. Digestive enzynas present only in the duodenal samples

(Devle et al., 2014). SA, Serum albumfiatg, B-lactoglobulin;a-LA, a-lactalbumin.

—
SA———— | — oy W ¥ .
Digestive
enzymes

—
CaseinH‘ a_—
—

B-Ig%.

o-LA—S— -
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Appendix 4: Degradation pattern of Holstein cross milk pratedringex vivodigestion. From

left: Lane 1, low molecular weight marker; Laneuddigested milk sample, Lane 3, gastric
digested samples for 20 min at pH 5.0; Lane 4 rgadigested samples for 20 min at pH 2.5;
Lane 5-8, duodenal digested samples for 5, 30, r@D 20 min, respectively at pH 7.0.
Digestive enzymes are present only in the duodsaalples (Devle et al., 2014). SA, Serum

albumin;p-lg, B-lactoglobulin;a-LA, a-lactaloumin.

Digestive

Caselnsﬂ- enzymes

76



Appendix 5: The Bangladeshi Indigenous cattle milk during eéxevivodigestion featuring the
degradation pattern of milk proteins. From leftnkeal, low molecular weight marker; Lane 2,
undigested milk sample, Lane 3, gastric digesteapsss for 20 min at pH 5.0; Lane 4, gastric
digested samples for 20 min at pH 2.5; Lane 5-8ddual digested samples for 5, 30, 60 and
120 min, respectively at pH 7.0. Digestive enzyraes present only in the duodenal samples

(Devle et al., 2014). SA, Serum albumfalg, B-lactoglobulin;a-LA, a-lactaloumin.

Digestive
enzymes
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ABSTRACT: The aim of the present study was to get a total physical and chemical characterization and comparison of the principal
components in Bangladeshi buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle (RCC) milk. Protein and
casein (CN) composition and type, casein micellar size (CMS), naturally occurring peptides, free amino acids, fat, milk fat globule size
(MFGS), fatty acid composition, carbohydrates, total and individual minerals were analyzed. These components are related to
technological and nutritional properties of milk. Consequently, they are important for the dairy industry and in the animal feeding and
breeding strategies. Considerable variation in most of the principal components of milk were observed among the animals. The milk of
RCC and IC contained higher protein, CN, 3-CN, whey protein, lactose, total mineral and P. They were more or less similar in most of
the all other components. The B milk was found higher in CN number, in the content of a.;,-, k-CN and a-lactalbumin, free amino acids,
unsaturated fatty acids, Ca and Ca:P. The B milk was also lower in -lactoglobulin content and had the largest CMS and MFGS.
Proportion of CN to whey protein was lower in HX milk and this milk was found higher in B-lactoglobulin and naturally occuring
peptides. Considering the results obtained including the ratio of oy;-, o-, B- and k-CN, B and RCC milk showed best data both from
nutritional and technological aspects. (Key Words: oy;-, a-, - and k-casein, o-lactalbumin, -lactoglobulin, Casein Micellar Size,
Naturally Occurring Peptides, Free Amino Acids, Milk Fat Globule Size, Fatty Acids, Minerals, Carbohydrates)

INTRODUCTION

Milk has a diverse composition of nutrients. The milk
composition is subjected to change in response of genetics,
breeding, feeding, number and stage of lactation and health
status of the animal. Misra et al. (2008) compared four
breeds of buffalo and showed breed variation in fat, total
solids and solids-not-fat content. Islam et al. (2008)
reported significantly more fat, protein and total solids in
Red Chittagong Cattle (RCC) milk compared to crossbred
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(Holstein cross [HX], Jersey cross and Sahiwal cross) cow’s
milk.

The composition of milk may also change over a period
of time and may vary from country to country as a result of
interaction effects of several factors like breeding program
and feeding strategy. Lindmark-Mansson et al. (2003)
reported that casein (CN) content in raw milk decreased
from 2.61% (in the year 1970) to 2.56% (in the year 1995
through 1996) and whey protein (WP) content increased
from 0.73% to 0.81% during the same period of time.
Similar results in buffalo milk were also reported by
Zicarelli (2004). Furthermore, Schonfeldt et al. (2012)
called for more country specific milk composition data.
Therefore, a more detailed overview of milk composition in
terms of principal components is needed to set a standard
on technological properties for processing the milk. The
dairy industry in each country has challenges regarding
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breeding and nutritional strategy to produce milk with
optimum quality for different purposes.

The composition of milk largely indicates its nutritional
value and technological properties (Heck et al., 2009). The
individual CNs, especially oy-CN, a-lactalbumin (o-LA)
and B-lactoglobulin (B-Lg) are considered as major milk
allergens (El-Agamy, 2007; Downs et al., 2013). And more
controversially, B-CN (variant A;, A;+B) is claimed to be
more associated with type-I diabetes (Elliott et al., 1999),
whereas, Bell et al. (2006) reported a lower incidence of
type-1 diabetes and cardiovascular diseases in a population
consuming milk with high levels of B-CN variant A,. Butter
from the milk with more unsaturated fatty acid (USFA) is
suggested to have atherogenic index. In a
technological perspective, such butter will be more
spreadable, softer and less adhesive (Bobe et al., 2003).
Milk protein, CN and fat content were found strongly
positively correlated with the cheese yield (Pretto et al.,
2013). Hallen et al. (2010) concluded that low concentration
of kK-CN in milk is a risk factor for non-coagulation of milk.
In addition to the individual CNs and casein micellar size
(CMS) that influence the milk coagulation properties, milk
fat globule size (MFGS) may also be important in cheese
manufacturing. Michalski et al. (2004) found more firm and
flexible ripened Emmental cheese from milk with larger
MFGS than the milk with smaller ones.

The breeding strategy presently followed in Bangladesh
takes into account only the volume of milk. Though milk fat
and cchana (mainly protein curd) based milk pricing are
also in practice. The information on milk composition can
also be used to adjust the breeding practices to optimize
milk quality (Glantz et al., 2009). Therefore, details on milk
composition are important.

Buffalo milk is less studied than the cow’s milk. To our
knowledge, naturally occurring peptides (NOP) from raw
dairy milk has not been reported yet. Details on the true
protein (TP), individual CN types and content, CN number,
WP content and composition, non-protein nitrogen (NPN),
CMS, free amino acids (FAA), fatty acid (FA) composition,
MFGS, lactose, glucose, galactose, and individual minerals
are important for technological and nutritional properties of
milk. Some of this information can also be used to select
animals in a breeding program to produce desirable quality
milk.

The aim of the present study was to characterize and
compare the principal components in buffalo (B), HX,
Indigenous cattle (IC) and RCC milk from Bangladesh
according to the protein content and types, CMS, naturally
occurring peptides, free amino acids, fat content, FA
composition and type, MFGS, carbohydrate and mineral
content.
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MATERIALS AND METHODS

Milk samples

Raw milk from B, IC and RCC were collected from the
Bangladesh Livestock Research Institute and HX milk was
collected from Central Cattle Breeding Station and Dairy
Farm, Savar, Dhaka-1341, Bangladesh. The B cows were
fed on ca. 4 kg straw with 0.250 kg of molasses/head/d, ca.
4 kg of concentrate mixture (wheat bran:khesari bran:wheat
crust:oilcake:fishmeal:salt:premix = 3:0.75:0.30:0.20:0.04:
0.125:0.075)/head/d. The RCC and IC were supplied with
ca. 3 kg of concentrate mixture (wheat bran:khesari
bran:sesame oil cake:soybean oil cake:oyster shell
crust:corn crust:common salt = 140:25:15:20:5:7.5:1)/head/d.
The B, RCC, and IC were also supplied with german
(Echinochloa  crus-galliy and napier (Pennisetum
purpureum) grass. They were also allowed grazing on road
side grass (of various types, non-descriptive). The HX cows
were fed on german (Echinochloa crus-galli), napier
(Pennisetum purpureum), oat (Avena sativa) and para
(Brachiaria mutica) grass. In addition, they were supplied
with ca. 2.75 kg concentrate mixture (wheat bran:broken
maize:khesari:soyabean:DCP:salt = 50:15:15:17:2:1)/head/d
for first 3 L of milk. The HX cows also got additional 0.5
kg of that concentrate mixture for the production of every
additional liter of milk. The milk production during the
sampling time was 1.5 to 3.0 L, 2.5 to 8.5 L, 2.5 t0o 5.8 L
and 1.3 to 5.0 L in B, HX, IC, and RCC, respectively.
Different individuals of each group of animals were at
different number and stage of lactation. All the milk
samples were taken from the morning milking. Pooled milk
sample of B was obtained from nine buffalo cows and for
HX, IC and RCC, milk from twenty five, fifteen and
nineteen cows, respectively were obtained. The collected
pooled milk was then divided into several cellstar tubes
(Greiner  Bio-One, Maybachstrasse,  Frickenhausen,
Germany), approximately 40 mL/tube. The content of each
tube was preserved with 1 bronopol tablet (D & F control
systems, Inc. Boston, MA, USA). Samples for protein,
CMS and MFGS analyses were kept at 4°C and samples for
other analyses were frozen at —20°C.

Protein composition and types, casein micelle size,
naturally occurring peptides and free amino acids

The TP, CN, WP, and NPN analyses of the milk were
done by micro-Kjeldahl method according to Devold et al.
(2011). In brief, the samples were digested by one digestion
tablet (Kjeltabs Auto, Thompson and Capper Ltd., Runcorn
WA7 1PH, UK) and 3 mL H,SO4 (96 to 97%; Merck,
Darmstadt, Germany) in a Kjeldahl tube on an auto-digester
(Foss Teactor, Foss analytical lab, Hoganas, Sweden) for 80
to 90 min at 420°C. Distillation and titration was carried-
out on a Foss Kjeltec 8400 analyzer unit (Software version
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1.5.18, Foss analytical lab, Hoganas, Sweden). The ratio of
CN and WP was calculated and so was the CN number (CN
x100/true protein).

The individual CNs (ay-, 04-, B- and k-CN) and WPs
(a-LA and B-Lg) were quantified by capillary zone
electrophoresis (Agilent Technologies No. DE01603565,
Santa Clara, CA, USA) and Agilent Chemstation software
(Rev. B.03.02 [341]). A method described by Mestawet et al.
(2013) was used. Briefly, skimmed milk was mixed with the
sample buffer at a ratio of 1:1.5. Then it was vortexed,
incubated for an hour at room temperature and centrifuged
at 5,000 rpm at room temperature for 5 min. Both the
samples and run buffer were filtered through 0.45 um filter
unit (Millipore Corp. Carrigtwohill, County Cork, Ireland).
For the separation, a positive polarity at 45°C with a linear
voltage gradient from 0 to 25 kV in 3 min, followed by a
constant voltage of 25 kV for 45 min with 20 mM sodium
acetate (Merck, Darmstadt, Germany) buffer at pH (3+0.1)
were employed. The individual CN ratio (o:00:3:x) was
calculated from their relative concentration.

The CMS was measured by Zeta Sizer 3000 HS
(Malvern Instruments Ltd. Malvern, Worcestershire, UK), a
method according to Devold et al. (2011). Ten microliter
milk was diluted into 8 mL simulated milk ultrafiltrate
filtered through a 0.22 pm filter (Millipore Corp.
Carrigtwohill, County Cork, Ireland). Then the diluted
samples were filtered through a 0.8 um filter (Millipore
Corp. Carrigtwohill, County Cork, Ireland) and the
temperature was adjusted to 25°C before measurement.

For the NOP analysis, a method by Qureshi et al. (2012)
with some modifications was used. The molecular weight
cut-off spin column membrane (Molecular weight 10 kDa,
regenerated cellulose, VWR, Cork, Ireland) was prepared
by loading 400 pL milli-Q water and centrifuged at 1,000
rpm, at room temperature for 30 min. Then 330 pL of
skimmed milk was loaded onto the column and centrifuged
at 13,000 rpm, at 4°C for 45 min. The milk filtrate was then
desalted. Desalted samples were kept at —20°C until
analyzed. Before analysis, 10 pL of 0.5% formic acid was
added to the samples and loaded on a nano-ACQUITY
Ultra Performance Liquid Chromatograph (UPLC, Waters,
Milford, USA). The UPLC was coupled with a Quadrapole-
Time of Flight (Q-TOF) Ultima Mass Spectrometer (MS;
Micromass, Manchester, UK). The resulted peak list files
were searched against the National Center for
Biotechnology Information (NCBI) protein sequence
databases. An in-house Mascot server (version 2.3; Matrix
Sciences, London, UK) was used. Analyses were done for
both single and multiple charged peptides.

A modified method described by Qureshi et al. (2012)
was used to measure the content of FAA in milk. Milk was
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mixed at a ratio of 1:1 with 0.1 M HCL (Merck, Darmstadt,
Germany). One milliliter of this HCL contained 0.4 pmol
L-norvalin (Sigma, St. Louis, USA) and 0.4 pmol
piperidine-4-carboxylic acid (Fluka, St. Louis, USA) as
internal standards.

Fat, milk fat globule size and fatty acid composition in
neutral lipids, free fatty acids and polar lipids

Milk fat content was estimated by using an auto milk
analyzer (Lactostar, Funke-Gerber, Berlin, Germany). The
MFGS was measured by the method of Jones (2003), using
Master Sizer 2000 (Malvern Instrument, Uppsala, Sweden).
Milk was diluted by 35 mM EDTA (VWR International,
Radnor, PA, USA) at a ratio of 1:1 and incubated for 30 min
at room temperature followed by vortex. the
measurement, ca. 1.5 mL sample was used.

For the FA composition, total lipid was extracted by a
modified method according to Folch et al. (1957). Twenty
milliliter of chloroform (VWR International, Radnor, PA,
USA) and methanol (Merck, Darmstadt, Germany) mixture
(2:1) was added to 1 mL milk followed by adding internal
standards (IS). Tri-nonadecanoin (10 mg/mL in chloroform)
and nonadecanoic acid (1 mg/mL in chloroform) were used
as IS, both from Larodan AB, Malmo, Sweden. The content
was then incubated on a shaker at 150 rpm, at room
temperature for 15 min. After incubation, 4 mL NaCl (0.9%
in water) was added. Then it was vortexed and centrifuged
at 2,000 rpm, at room temperature, for 10 min. The organic
phase was collected and dried under N, gas. The dried
lipids were dissolved in 1 mL chloroform and were
fractionated into neutral lipid (NL), free fatty acids (FFA)
and polar lipid (PL) by a modified method according to
Ruiz et al. (2004). To elute the PL, only methanol was used.
These fractions were also dried under the N, gas. Two
milliliter hexane (Merck, Darmstadt, Germany) was added
to the tubes containing dried NL and PL. Methylation of
FFA was done by adding 1 mL boron tri-fluoride —
methanol complex (14% BF; in CH;0H, Sigma Aldrich,
Seelze, Germany) and incubated at 70°C for 5 min. Two
milliliter hexane was added to it and the upper phase was
transferred in to GC-vials. Methylation of NL and PL and
analysis of NL, FFA, and PL were performed according to
Devle et al. (2012). In brief, metallic sodium (Merck,
Darmstadt, Germany) was dissolved in methanol (3
mg/mL) to make the sodium methanolate solution. For the
methylation of NL and PL, sodium methanolate (1.5
mL/sample) was added and the content was incubated on a
horizontal shaker set at 350 rpm, at room temperature for 30
min. Then the sample tubes were left at a vertical position
for 10 min and hexane phase was transferred in to GC-vials.
An Agilent 6890 Series gas chromatograph (GC; Agilent
Technology, Wilmington, DE, USA) coupled with an

For



Islam et al. (2014) Asian Australas. J. Anim. Sci. 27:886-897 889

Autospec Ultima MS (Micromass Ltd., Manchester,
England) was used for the FA composition analysis.

Content of carbohydrates

The carbohydrate analysis was done by a modified
method according to Narvhus et al. (1998) using High
Performance Liquid Chromatography technique. One gram
milk was diluted by 2.5 mL milli-Q water. The analysis was
carried out with an Aminex HPX-87H column (Bio-Rad
laboratories, Hercules, CA, USA) at 30°C connected to a —
Perkin Elmer Series 200 pump (Perkin Elmer, Waltham,
MA, USA), Perkin Elmer series 200 auto sampler (Perkin
Elmer, Shelton, USA) and Perkin Elmer LC oven 101
(Perkin Elmer, Shelton, USA). Five milli molar H,SO,
(Merck, Darmstadt, Germany) was used as the mobile phase
with a flow rate of 0.4 mL/min. Lactose, glucose and
galactose were identified according to the standards (lactose,
glucose and galactose, all from Merck, Darmstadt,
Germany) using Perkin Elmer series 200 refractive index
detector (Perkin Elmer, Norwalk, USA).

Minerals content

Total mineral content was measured by using the
Lactostar auto milk analyzer (Funke-Gerber, Berlin,
Germany). The quantity of the individual minerals was
measured by inductively coupled plasma optical emission
spectroscopy (ICP-OES; Optima 5300DV, Perkin Elmer,
Shelton, USA). Five milliliter sub-boiled HNO; (65 to 70%;
VWR International, Radnor, PA, USA) were added to 1 to
2.5 mL of milk. Then it was heated at 250°C for 15 min in
an Ultraclave (Milestone microwave Ultraclave III, Sorisole,
Italy). After heating, milli-Q water was added to make a
final volume of 50 mL, and analyzed. A standard curve of

each mineral was used for quantification.

Statistical analysis

All the analyses were run in triplicate. The one way
analysis of variance (ANOVA) and mean separation
(Tukey’s test) were done by Minitab 16 (Minitab Ltd.,
Brandon Court, Coventry, UK).

RESULTS

Protein composition and types, casein micelle size,
naturally occurring peptides and free amino acids

The results on protein composition and types and CMS
are given in Table 1. The content of TP and CN were 37.80
and 28.83 g/kg milk, respectively in RCC milk and this was
higher than others milk. The highest CN number was 77.12
in B milk and in RCC milk it was 76.28. The lowest
CN:WP ratio was 2.1 in HX and highest in B milk was 3.37.
The o,-CN content did not vary among the different milk.
However, the content of a,,-CN in B milk was 2.3 times of
RCC milk. And the k-CN content in B milk was very high,
— almost double of the cow’s milk. Milk of IC and RCC
were found much higher in B-CN content compared to B
and HX milk. Proportionate amount of oy -, B- and k-CN
were found higher in RCC milk. In WP, highest content of
o-LA was found in B milk but the B-Lg content was almost
half of all the cow’s milk. The largest CMS was 188.73 nm
and smallest was 157.07 nm, found in B and IC milk,
respectively.

The present study has identified many NOP — 45, 79, 19
and 12 in B, HX, IC and RCC milk, respectively. Four
peptides — FPIIV, GPVRGPFPII, EPVLGPVRGPFP and

Table 1. Protein composition and casein micelle size (CMS) of buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red

Chittagong Cattle (RCC) milk

B HX IC RCC p-value
TP (g/kg milk) 35.01°40.63 27.15%+0.47 36.40°+0.33 37.80°+0.38 <0.001
CN (g/kg milk) 27.00°+0.67 18.38°+0.50 27.14°+0.43 28.83°+0.30 <0.001
CN number' 77.12°40.54 67.70°40.65 74.55°+0.50 76.28°+0.04 <0.001
WP (g/kg milk) 8.01+0.06 8.77°+0.03 9.26*+0.10 8.96°+0.08 <0.001
CN:WP 3.37:1 2.1:1 2.94:1 3.22:1 -
NPN (g/kg milk) 0.35+0.00 0.36+0.00 0.35+0.00 0.36+0.00 >0.05
0t4-CN (g/kg milk protein) 315.28+14.35 348.4149.21 312.31429.66 321.90+17.02 >0.05
0t-CN (g/kg milk protein) 112.33*+13.78 90.20%°+7.48 714413421 48.75"+1.41 <0.05
B-CN (g/kg milk protein) 351.82°+26.07 366.57°+11.91 432.69°+38.34 457.14°+14.12 <0.01
1-CN (g/kg milk protein) 138.97°+2.06 65.49°+1.77 76.50°+9.20 69.54°+3.57 <0.001
04110t Bik-CN 2.80:1:3.13:1.24 3.86:1:4.06:0.73 4.37:1:6.06:1.07 6.61:1:9.4:1.43 -
a-LA (g/kg milk protein) 38.27°+2.68 31.37°+1.60 27.48™+0.61 24.20°+1.21 <0.001
B-Lg (g/kg milk protein) 43.35°45.18 97.94+5 .48 80.78"+7.04 79.67°+6.71 <0.001
CMS (nanometer) 188.73%+1.25 159.37°+1.60 157.07°+3.04 164.57°+1.20 <0.001

TP, true protein; CN, casein; WP, whey protein; NPN, non protein nitrogen; LA, lactalbumin; Lg, lactoglobulin.

" CN number = (CN/true protein)x100. > Mean with different superscript(s) in a row differs significantly.
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EPVLGPVRGPEFPII from $-CN were identified in common
to all the four types of milk. Only those peptides that have
been previously reported bioactive sequence (s) (matched
with peptides reviewed by Meisel,
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1998; Clare and

Swaisgood, 2000; Silva and Malcata, 2005) are listed in
Table 2. Some of the bioactive fragments like TTMPLW,
GPVRGPFPIIV, KVLPVPQ, and YQEPVL were detected
as a part of several different larger peptides.

Table 2. Naturally occurring peptides (NOP) from buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle

(RCC) milk

EMW Peptide Reported bioactivity' Protein B HX IC RCC
1379.80 YLGYLEQLLRL Opoid activity ag-CN +  + - -
1740.00 FFVAPFPEVFGKEKV ACE inhibitory og-CN -+ - -
1896.12 RFFVAPFPEVFGKEKV ACE inhibitory og-CN -+ - -
1957.06 IPNPIGSENSGKTTMPLW ACE inhibitory and Inmunomodulating o,-CN - + - -
2012.98 IPNPIGSENSEKTTMPLW ACE inhibitory and Immunomodulating  a,-CN -+ - -
2048.03 VPQLEIVPNSAEERLHSM CPP; Mineral nutrition og-CN -+ - -
2055.99 DIPNPIGSENSGKTTMPLW ACE inhibitory and Immunomodulating oy,-CN - + - -
2064.09 VPQLEIVPNSAEERLHSM CPP; Mineral nutrition og-CN - -+ -
2143.12 SDIPNPIGSENSGKTTMPLW ACE inhibitory and Immunomodulating  a,-CN - + - -
2215.04 SDIPNPIGSENSEKTTMPLW ACE inhibitory and Immunomodulating  a,-CN - + - -
2826.64 HIQKEDVPSERYLGYLEQLLRLK Opoid activity og-CN -+ - -
1250.74 TKVIPYVRYL ACE inhibitory oo-CN -+ - -
1385.67 TVDMESTEVFTK CPP; Mineral nutrition ap-CN -+ -+
2064.10 VPQLEIVPNSAEERLHSM CPP; Mineral nutrition ap-CN -+ - -
2159.03 SDIPNPIGSENSGKTTMPLW ACE inhibitory and Immunomodulating a,-CN -+ - -
2231.04 SDIPNPIGSENSEKTTMPLW ACE inhibitory and Immunomodulating o,-CN - + - -
1313.74 SLVYPFPGPIPK? Opoid activity B-CN  + - - -
1362.82 VLGPVRGPFPIIV ACE inhibitory B-CN  + - - -
1378.83 PVPQKAVPYPQR ACE inhibitory B-CN -+ - -
1409.90 SLSQSKVLPVPQK Antihypertensive B-CN -+ - -
144179 QSLVYPFPGPIPK? Opoid activity B-CN + - - -
1484.75 AVPYPQRDMPIQA ACE inhibitory B-CN + - - -
1493.96 VLSLSQSKVLPVPQ Antihypertensive B-CN -t - -
1542.83 TQSLVYPFPGPIPK? Opoid activity p-CN  + - - -
1554.87 YQEPVLGPVRGPFP ACE inhibitory B-CN -+ - -
1588.92 EPVLGPVRGPFPIIV ACE inhibitory B-CN  + - + +
1716.93 QEPVLGPVRGPFPIIV ACE inhibitory pBCN  + - - +
1717.00 EQPVLGPVRGPFPIIV ACE inhibitory B-CN -+ ++
1719.10 KVLPVPQKAVPYPQR ACE inhibitory B-CN -+ - -
1741.98 AQTQSLVYPFPGPIPK> Opoid activity B-CN  + - - -
1780.95 YQEPVLGPVRGPFEPII ACE inhibitory B-CN  + + - -
1880.00 YQEPVL*GPVRGPFEPIIV* ACE inhibitory B-CN  + - - -
1888.98 FAQTQSLVYPFPGPIPK? Opoid activity B-CN  + - - -
1993.14 LYQEPVL*GPVRGPFPIIV* ACE inhibitory B-CN + - - -
2125.08 EMPFPKYPVEPFTESQSL ACE inhibitory B-CN -+ - -
2141.04 EMPFPKYPVEPFTESQSL ACE inhibitory B-CN -+ - -
223620 IHPFAQTQSLVYPFPGPIPK? Opoid activity B-CN  + - - -
237440 KVLPVPQKAVPYPQRDMPIQA ACE inhibitory B-CN -+ - -
2406.28 HKEMPFPKYPVEPFTESQSL ACE inhibitory B-CN -+ - -
2537.50 KVLPVPQKAVPYPQRDMPIQAF ACE inhibitory B-CN -+ - -
3720.21 AVPYPQRDMPIQAFLLYEQPVLGPVRGPFPIIV ACE inhibitory and Immunomodulating ~ 3-CN -+ - -

! Clare and Swaisgood, 2000; Meisel, 1998; Silva and Malcata, 2005.

? Marked fragment in these peptides are also known as B-Casomorphin-5; EMW, experimental molecular weight; +, present; -, absent; ACE, angiotensin
converting enzyme; CPP, caseinophospho peptide; CN, casein; Grey/italic and underlined/* marked segments are the reported bioactive fragments.
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Table 3 summarizes the content of FAA in the milk. All
the amino acids varied significantly except glutamic acid
and asparagine. Highest concentration of all the amino acids
was found in B milk. The milk of HX did not differ from B
in leucine, valine, lysine, methionine, phenylalanine,
arginine, and tyrosine content. The IC milk shared the
higher content of threonine, alanine and aspartic acid with B
milk, whereas, RCC and B milk contained approximately
the same amount of valine, threonine, alanine, aspartic, and
serine.

Fat, milk fat globule size and fatty acid composition in
neutral lipids, free fatty acids and polar lipids

The results on fat (g/kg milk) and FA composition (% of
total FA in each lipid class) are presented in Table 4. The fat
content varied significantly among all the milk. The highest
fat content was 58.40 g/kg in B and lowest was 37.13 g/kg
in HX milk.

In NL, among all the saturated FA (SFA) only C20:0
showed non-significant variation. The B milk had the
highest C4:0 (1.43%), C15:0 (2.04%), C17:0 (1.54%), and
C18:0 (16.72%) content. All the cow’s milk was found
similar in their C6:0 and C8:0 content and more than in B
milk. The HX and B milk did not differ in their C17:0
content. Milk of IC had the highest C12:0, C14:0, and
C16:0. In respect of all the SFA, IC, and RCC milk were
found similar. In addition to C6:0 and C8:0, HX milk was
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also found similar to RCC milk in C4:0, C14:0 and C16:0
content. And finally all the cow’s milk was found similar in
their total SFA content, more than the B milk. In USFA,
only C10:1n-6 cis did not differ significantly. Milk from B
showed the maximum content of all USFA (except C14:1n-
5 cis) and of total USFA. The content of C18:1n-9 cis,
C18:2n-6 cis, C18:1n-7 trans, C18:2n-7 trans, and total
USFA in B milk was 31.52%, 0.90%, 1.22%, 0.48%, and
36.48%, respectively. Similarities in all the cow’s milk were
found in their C18:1n-9 cis, C18:2n-6 cis, C18:1n-7 trans
and total USFA content.

All three cow’s milk FFA fraction did not vary in C10:0,
C12:0 and C14:0 content, however, higher than B milk. The
content of Cl4:1n-5 cis was low in B and HX milk
compared to IC and RCC.

In the PL fraction, B milk had the lowest C14:0 and
C16:0 and the highest C18:0. As compared to the cows’
milk, B milk also had lower total SFA (40.86%) and higher
total USFA (59.13%).

The results on MFGS (um) are summarized in Table 5.
The mean MFGS (ds3) was largest in B (12.29 pum) and
smallest in RCC ( 3.41 um) milk. Compared to the cows’
milk, all through the distribution (dy;. 9), B milk had
significantly larger MFGS (except at dg ).

Content of carbohydrates and minerals
Table 6 represents the results of the carbohydrates and

Table 3. Free amino acids (FAA) in buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle (RCC) milk;

concentration (mg/kg milk)

B HX IC RCC p-value
Leucine 6.12°42.59 3.56"°+0.843 1.57°+0.53 1.31°+0.45 <0.05
Isoleucine 3.32°+1.29 1.31°40.00 0.78°+0.26 0.78"+0.26 <0.01
Valine 8.28°+2.50 4.69°+0.62 3.59°10.75 4.22"+1.69 <0.05
Lysine 9.84™+4 26 123874339 3.90"+1.22 4.19°+1.95 <0.05
Methionine 1.99*+0.96 1.49%40.52 0.70°+0.17 0.60°+0.00 <0.05
Phenylalanine 3.97°42.01 2.09%+0.38 0.44°+0.19 0.33°+0.00 <0.01
Threonine 1.99°40.50 0.87°+0.14 1.27%40.14 1.91°+0.48 <0.05
Tryptophan 1.2340.41 Trace n.d. n.d. -
Arginine 6.85"+2.32 6.50"+1.12 3.25°40.80 3.7241.22 <0.05
Tyrosine 3.26*+0.96 3.02+0.75 1.21°40.21 1.33%+0.55 <0.05
Alanine 6.47°+1.15 3.98°+0.37 4.28%+0.71 5.17%+1.17 <0.05
Aspartic 2.93+0.27 1.95°+0.15 2.40+0.53 2.13%+0.27 <0.05
Glutamic 64.44+9 68 43.55+1.77 62.29+11.74 55.71+12.75 >0.05
Glutamine 0.49+0.17 Trace Trace n.d. -
Glycine 20.32%42.48 9.51°+0.38 6.01°+0.84 8.41°+1.67 <0.001
Serine 5.89°+1.09 2.38°40.24 3.50%40.44 4344074 <0.01
GABA 25.78°43.32 3.85°+0.24 2.41°40.52 6.60°+1.49 <0.001
Citrulline 1.29°+0.20 0.70°+0.00 0.47°+0.20 0.58"+0.20 <0.01
Asparagine 0.44+0.15 0.2640.00 0.444+0.30 0.6240.15 >0.05

Trace, not quantified in all replications; n.d., not detected; GABA, y-amino butyric acid.

2b¢ Mean with different superscript(s) in a row differs significantly.
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Table 4. Fat content (g/kg milk) and fatty acid composition (% of total fatty acid in each class of lipid) in neutral lipid (NL), free fatty
acids (FFA) and polar lipid (PL) of milk from buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle
(RCC)

Fatty acid B HX IC RCC p-value
Fat 58.40°+0.35 37.13+0.06 43.40°+0 35 42.33°40.23 <0.001
NL
C4:0 1.43°40.12 1.14°+0.02 1.03°+0.04 1.04°+0.08 <0.01
C6:0 0.87°+0.10 1.07°+0.05 1.14°+0.03 1.18%+0.06 <0.01
C8:0 0.37°+0.06 0.78*+0.05 0.84°+0.02 0.91°+0.07 <0.001
C10:0 0.85°40.03 1.95°+0.08 2.30°+0.05 2.47°40.18 <0.001
C12:0 1.36°40.05 2.56°+0.03 3.02°+0.07 3.13*+0.19 <0.001
C14:0 8.75°40.27 10.75°+0.14 11.76°+0.43 11.24"10.33 <0.001
C15:0 2.04*+0.02 1.85°+0.06 1.51°40.00 1.49°40.03 <0.001
C16:0 29.46°+0.66 33.19°+0.57 35.45"+1.08 34.75%+0.08 <0.001
C17:0 1.54°+0.08 1.32°40.06 1.03°+0.14 1.03°+0.09 <0.001
C18:0 16.72°+0.49 15.09°+0.26 11.60°+0.45 10.70°+0.21 <0.001
C20:0 0.11+0.01 0.10+0.02 n.d. n.d. >0.05
Total SFA 63.52°+0.66 69.81°+0.36 69.68°+1.07 67.95*+0.70 <0.001
C10:1n-6 cis n.d. n.d. 0.30+0.02 0.33+0.04 >0.05
C14:1n-5 cis 0.50%+0.03 0.70°+0.01 1.24°40.01 1.50°+0.07 <0.001
C16:1n-7 cis 1.80°+0.05 1.00°+0.03 1.44°40.08 1.85°40.05 <0.001
C18:1n-9 cis 31.52%+0.53 26.78°+0.36 25.47°4+0.82 26.46°+0.60 <0.001
C18:1n-7 trans 1.22°40.05 0.84°+0.04 0.76°+0.10 0.73°+0.01 <0.001
C18:2n-6 cis 0.90°+0.10 0.65°+0.05 0.70°+0.05 0.67°+0.04 <0.01
C18:2n-7 trans 0.48°+0.03 0.22°40.06 0.33°+0.01 0.38%+0.01 <0.001
C18:3n-3 cis 0.05+0.00 n.d. n.d. n.d. -
Total USFA 36.48°+0.66 30.19°40.36 30.24°+1.07 31.91°40.58 <0.001
FFA
C6:0 0.58+0.17 0.66+0.25 0.69+0.10 0.66+0.10 >0.05
C8:0 0.38+0.08 n.d. n.d. n.d. -
C10:0 0.56°+0.13 1.73°+0.22 1.87°+0.29 1.75°40.22 <0.001
C12:0 1.25°+0.17 3.10°+1.22 3.13°40.19 3.09°+0.16 <0.05
C14:0 7.00°+1.14 10.67°+2.53 10.67°+0.57 9.25"+0.13 <0.05
C15:0 1.46+0.26 1.60+0.58 1.39+0.06 1.2940.06 >0.05
C16:0 38.60+0.25 37.52+5.03 41.75+0.45 41.70+0.77 >0.05
C17:0 0.71+0.13 0.7140.08 0.65+0.10 0.5940.02 >0.05
C18:0 19.47+0.62 13.54+5.82 13.44+1.80 14.88+0.74 >0.05
Total SFA 70.00+1.34 69.51+6.08 73.57+1.18 73.21+0.35 >0.05
Cl4:1n-5 cis 0.28°+0.01 0.41°+0.05 0.86°+0.02 0.85°+0.12 <0.001
C16:1n-7 cis 1.23+0.37 0.77+0.12 1.2640.08 1.2640.22 >0.05
C18:1n-9 cis 18.08+2.68 15.90+0.89 17.17+1.07 14.96 4233 >0.05
Total USFA 30.00+1.34 30.4946.08 26.69+0.86 26.79+0.35 >0.05
PL
Cl4 3.00°+0.22 4.97°+0.69 6.14°+2.17 4.15%+0.43 <0.05
Cl6 23.60°+1.38 28.97°+0.21 31.41°+1.60 30.39°+0.37 <0.001
C18 14.27°+1.45 12.43%+1.92 10.12°+1.90 10.55"+0.78 <0.05
Total SFA 40.86"+2.89 46.37°+2.73 47.68°+1.23 45.08%+0.02 <0.05
C18:1 1n-9 cis 52.77+3 .81 49.0443.10 48.3042.43 50.07+0.31 >0.05
C18:2n-6 cis 6.36+0.92 4.5940.43 4.03+1.50 4.85+0.28 >0.05
Total USFA 59.13°+2.89 53.63°+2.73 52.32°+1.23 54.92%°40.02 <0.05

SFA, saturated fatty acid; n.d., not detected; USFA, unsaturated fatty acid.
“b¢ Mean with different superscript(s) in a row differs significantly.
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Table 5. Milk fat globule size (MFGS; um) distribution in buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong

Cattle (RCC) milk

B HX IC RCC p-value
dys 12.29°40.32 3.76™+0.08 4.20°+0.16 3.41°40.00 <0.001
d oy 1.84+0.12 1.71+40.03 1.73+40.03 1.7740.00 >0.05
dos 3.04°+0.14 2.15°40.13 1.86°+0.60 2.17°4+0.00 <0.01
dos 8.10°+0.09 3.47°+0.05 3.35°40.06 3.16°+0.00 <0.001
dog 20.91°+0.63 5.15°+0.16 5.10°+0.09 4.53°+0.00 <0.001
d oo 28.66°+1.22 6.22°+0.23 5.42°41.82 5.40°+0.00 <0.001

ds3= Volume weighted mean diameter; do .09 = 10% ... 90% fat globules are less than meantstandard deviation um in diameter.

2b¢ Mean with different superscript(s) in a row differs significantly.

mineral composition. All the four different milk types
showed significant difference in their lactose content. The
order of lactose content was RCC>IC>B>HX. Glucose
content was found similar in B, IC, and RCC milk and
significantly more than in HX milk. The IC and RCC milk
were found similar and intermediate in their galactose
content while B had the maximum galactose and minimum
was in HX milk.

Total mineral and all individual mineral content also
varied significantly. The highest total mineral content was
8.53 g/kg milk found in RCC milk and IC milk was similar
to it. The B milk was found rich in Ca content (1.48 g/kg
milk) and RCC in P content (1.14 g/kg milk). But the Ca:P
ratio was higher in B milk followed by HX>RCC>IC.
Compared to others, B milk was also found rich in Mg and
Mn content.

DISCUSSION

Protein composition and types, casein micelle size,
naturally occurring peptides and free amino acids
The proteins, CN content and type and CMS in milk are

very important for coagulation properties and cheese
production. The TP content in B milk was comparable to
the observation of Khan et al. (2007) who reported 37.67
g/kg crude protein in water buffalo milk. Islam et al. (2008)
studied the quality of milk from different genotypes and
reported 3.11% and 4.06% crude protein in HX and RCC
milk, respectively, which is comparabale with the present
study. The CN number in the present study is about 5 to
15% less than the results on Dutch dairy milk obtained by
Heck et al. (2009). Higher CN number is favorable for
cheese yield. Milk of B and RCC had higher CN number
than HX and IC, where HX was exceptional low.

The content of individual CNs was also varied, except
a51-CN. The differences in CN composition is mainly due
to the genotypic differences of the animals as described by
Farrell Jr et al. (2004). Different genetic variants showed
significant differences in milk production trait, milk
composition, protein technological
properties. The average o4:0:B:x-CN is generally
recorded as 4:1:4:1 and according to Barlowska et al.
(2011), this ratio is diverse. The diversity is related to
genetic polymorphism, post translational modification,

composition and

Table 6. Content of carbohydrates and minerals in buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle

(RCC) milk
B HX IC RCC p-value

Lactose (g/kg milk) 47.48°+1.01 45.9540.31 50.55°+0.31 52.65°+0.06 <0.001
Glucose (mg/kg milk) 16.25"+4.80 7.55"+1.30 20.45°+3.37 20.62°+0.63 <0.01
Galactose (mg/kg milk) 74.24%+9 46 42.69°+0.63 58.43°+4.63 57.35°42.51 <0.01
Total mineral 7.90°+0.26 7.17°40.06 8.43%40.15 8.53°10.11 <0.001

(g/kg milk)
Ca (g/kg milk) 1.48°+0.01 1.09°+0.01 1.32°40.01 1.40°+0.01 <0.001
P (g/kg milk) 1.07°+0.00 0.81+0.00 1.08°+0.00 1.14°+0.00 <0.001
Ca:P 1.38 1.35 1.22 1.23 -
Mg (g/kg milk) 0.14*+0.00 0.09°+0.00 0.12°+0.00 0.12°40.00 <0.001
Na (g/kg milk) 0.37°+0.00 0.48°+0.00 0.40°+0.00 0.40°+0.00 <0.001
K (g/kg milk) 0.86°+0.01 1.52°+0.00 1.61°+0.00 1.52°40.01 <0.001
Mn (mg/kg milk) 0.07°+0.00 0.06°+0.00 0.06°+0.00 0.06°+0.00 <0.01
Zn (mg/kg milk) 4.58°40.03 3.49°+0.02 4.78°+0.06 5.03"+0.00 <0.001
Cu (mg/kg milk) <0.05 <0.05 <0.05 0.0740.01 -

2b¢ Mean with different superscript(s) in a row differs significantly.
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stage of lactation and feeding regime. The ratio reveals that
RCC milk is exceptionally high in oy - and B-CN content.
Higher o4 -CN is related with delayed milk coagulation
time and increased curd firming time. Whereas, increased
B-CN content decreases the milk coagulation time and curd
firming time (Bonfatti et al., 2013). However, according to
St-Gelais and Hache (2005), rennet coagulation properties
are related not only to CN content but also to the proportion
of B-CN and o,-CN present in milk. They conclude that
milk with relatively high proportion of B-CN showed poorer
coagulation properties. On the other hand, the presence of
more K-CN is generally related with improved coagulation
properties. But Bonfatti et al. (2013) found low rennet
coagulation time (RCT) in milk with low k-CN and the
glycosylated k-CN had unfavorable effects on RCT.
According to Addeo et al. (1977), 40% of B milk «-CN is
carbohydrate free while it is only 25% in cow’s milk. So,
considering all the CNs, B milk should have better
coagulation properties than the cows’ milk. And this was
confirmed in a preliminary study using formagraph (results
not shown).

In our study the CMS was smallest in IC milk and
largest in B milk. According to Glantz et al. (2010) smaller
CMS gives stronger gels. Milk that contains more k-CN is
reported to have smaller CMS, however, this was not shown
in our study.

Milk protein is also well known for its nutritional
importance. In the context of TP and CN content, RCC and
IC milk were higher than B and HX milk. The general ratio
of CN and WP in cow’s milk is 4:1 (Lara-Villoslada et al.,
2005). In our results the CN:WP ratio varied greatly,
showing the highest ratio in B and lowest in HX milk. As
compared to Heck et al. (2009) and Farrell Jr et al. (2004),
it seems to be a genotypic variation. A higher proportion of
WP is nutritionally favorable, however, immunogenically
unfavorable, especially with regard to B-Lg. The lowest
content of B-Lg in B milk, almost half of the others milk,
could makes it more preferable for the individuals with milk
allergy. In addition, HX milk is preferable for those who
needs a proportionately low CN milk, like babies, since the
content is more human like.

The present study has identified many NOP with
previously reported bioactive sequence (s) for ACE-
inhibitory, opoid, immunomodulatory and mineral binding
effects from in vitro studies. Milk from HX was high in
ACE-inhibitory peptides that prevent the formation of
angiotensin-II  (vasoconstrictor) and hydrolysis  of
bradykinin (vasodilator). Opoid peptide has similarities to
opium and acts as opoid receptor ligands with agonistic
activity. We found B milk rich in opoid peptide sequences.
Immunomodulatory peptides stimulate the immunity and
HX contained more of these peptides than others. Mineral

Islam et al. (2014) Asian Australas. J. Anim. Sci. 27:886-897

binding peptides are caseinophospho-peptides that act as the
biocarriers of divalent cations; in this study HX milk was
rich in this. The peptide chain of identified NOP is longer
compared to previously reported bioactive fragments. It
may enhance the delivery of bioactive peptides to the target
organs, suggested by Hayes et al. (2007). Accordingly
larger peptides may be digested in the gastrointestinal tract
and release a smaller part that may act as a bioactive
peptide.

The concentration of all of the FAA, which can easily
be absorbed, was higher in B milk than others milk. Beside
participating in the protein syntheis, they also exert some
important physiological roles e.g. y-amino butyric acid
(GABA) acts in neurotransmission. Moreover, they may
also have importance in the sensory quality of milk as
Drake et al. (2007) reported the contribution of glutamic
acid to the umami taste in cheese.

Fat, milk fat globule size and fatty acid composition in
neutral lipids, free fatty acids and polar lipids

Even though the B milk fat content was less than 72.67
g/kg as reported by Khan et al. (2007) in the water buffalo,
our results are within the range of 3.37 to 14.42% reported
by Meena et al. (2007). And compared to others milk, HX
had 5 to 21 g less fat in milk. It’s higher milk production
than B, IC, and RCC may contribute to this variation.

Feed and the microbial activity are two main sources of
the milk FA variation. In addition, there are a number of
factors like — animal status, feeding regime etc. that may
influence the FA composition. The animals under the
present study are of different genotype and only RCC and
IC received the same feeding. In the NL, FFA, and PL
fractions of all the milk of present study, C16:0 was the
dominating FA followed by C18:0 and C14:0. We observed
a lower concentration of C4:0 in all milk. Timmen and
Patton (1988) reported that the underfeeding of animals
depressed the production of C4:0 and C16:0 compensated
by increased C18:1n-9 cis. Compared to Menard et al.
(2010), our results showed lower amounts of C4:0 and
C16:0 (only in B milk) and higher C18:1n-9 cis. Lower
concentration of C4:0-C10:0 indicates the animals were
underfed or in negative energy balance (Van Knegsel et al.,
2005). However, Devle et al. (2012) and Menard et al.
(2010) also reported a lower concentration of C4:0-C8:0 in
Norwegian cow and Mediterranean buffalo milk,
respectively.

The variation in C15:0 and C17:0 indicates the variation
in ruminal activity of buffalo and cow as they are
synthesized by the rumen bacterial flora. But Heck et al.
(2012) suggested that a part of these two FAs derives from
the blood, meaning that the influence of animal’s diet also is
of importance. Similarities between IC and RCC also agree
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with this as they were on the same diet. But HX milk had
similarities with B milk in C17:0 though on different diets.
Half of the C16:0 derives from de novo synthesis in the
mammary gland and the rest half along with CI18:0
originates from dietary lipids and mobilization of adipose
tissue. So, the quality of the feed and the body condition
score of the lactating animal is important regarding these
two FAs.

Both the conjugated linoleic acid (CLA) isomer
(C18:2n-7 trans) and precursor (Cl18:1n-7 trans) were
higher in B milk. Similarly the wg (C18:2n-6 cis, also a
precursor of CLA) FA was also higher in B and we were
able to detect m; (C18:3#-3 cis) only in B milk. In FFA
content, B was found poorer than the cow’s milk. And to
best of our knowledge, we did not find any published article
that describes the individual FFA of buffalo and cow’s milk.
Unlike Menard et al. (2010), B milk contained more total
USFA and less total SFA in NL and PL compared to cow’s
milk and no such differences were observed in FFA. All
through the FA composition, the similarities between IC and
RCC indicate the importance of feed in FA composition as
they are of different genotype. And their similarities with
HX might be indicative for the genotypic importance in FA
composition. Menard et al. (2010) maintained cow and
buffalo on same diet and management. But they found
significant differences in fatty acid composition (except
C4:0, C6:0, C18:1 t10 and CI18:1 tI2); revealing the
importance of genotype and ruminal activity in fatty acid
composition. Being of different genotype and fed differently,
RCC milk was found similar to B milk in C16:1n-7 cis and
C18:2n-7 trans content in NL fraction and few others in
FFA and PL fractions.

In general the MFGS varies from 1 to 20 um in diameter.
Along with the fat content, season, number and stage of
lactation are the main factors influencing the MFGS. The B
milk showed the largest MFGS in the present study. This
may be because of higher fat content as the mammary gland
has a limited capacity of producing fat globule membrane
material. So the fat droplets seem to grow and become
larger before they are covered with the membrane in the
secretory apical membrane. However, Menard et al. (2010)
observed a smaller diameter (5.18 pm d43) in buffalo milk
with 73.4 g/kg fat compared to our results — 12.29 pm dg3
in milk with 58.40 g/kg fat. Schafberg et al. (2007)
suggested a difference between buffalo and Bos Taurus with
respect to the milk fat globule synthesis in their mammary
gland. The MFGS of B milk also showed more variation
throughout the size distribution and this is in agreement
with Akhundov (1959). Menard et al. (2010) also reported
more variation in buffalo MFGS than in the cow’s milk.
And the cows” MFGS d, ; obtained from the present study is
comparable with their results.
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Carbohydrates and minerals content

The lactose content was 47.48 g/kg in B milk. This is
similar to the report of Khan et al. (2007) who found 47.55
g/kg lactose in water buffalo milk. Hossain and Dev (2013)
found 4.59% lactose in cow’s milk which is comparable
with IC and HX milk in our study. However, RCC was a bit
higher — containing 52.65 g/kg lactose. It is interesting to
observe the differences between the concentration of
glucose and galactose within the milk type. Because, to
synthesize lactose, 1:1 glucose and galactose is required.
The source of galactose is glucose and part of the galactose
also participates in the biosynthesis of glycoproteins and
glycolipids (Fox, 2009). This may be one of the possible
reason of the presence of more galactose compared to
glucose. In addition, a-LA is important in the regulation of
the lactose synthesis; RCC was lowest in a-LA but highest
in lactose content. The positive correlation between a-LA
and lactose is at the end of the lactation (Farrell Jr et al.,
2004). We used pooled samples having milk from animals
of different stage of lactation. Among the sampled nineteen
RCC cows, most of the cows were at early or mid lactation.
There might be a threshhold of a-LA to influence the
lactose synthesis and RCC may have above of the threshold.

The minerals content in all milk from the different
animals is comparable with the report of Medhammar et al.
(2012). In B milk, the amount of Ca was higher than the P
content. However, Patino et al. (2007) reported more P than
Ca in different buffalo breeds. Genotypic variation may be a
matter of concern as Glantz et al. (2012) found more Ca and
P in milk with B-CN A, than B-CN Aj, and the influence of
k-CN was A>B>E. Ariota et al. (2007) observed a strong
correlation between fresh cheese yield and Ca and P content.
They also found a negative relationship between Ca:P and
rennet coagulation time and positive relationship between
Ajo and soluble Ca and P content. So, the B milk seems to
have advantages in this respect compared to others. In B
milk, Mg, Na, and K are comparabale with Patino et al.
(2007) but Zn content was higher while Cu and Mn were
lower. In HX milk, all the individual minerals were
comparable with Medhammar et al. (2012). And IC and
RCC milk were also found similar to that report except for
Ca and P that were higher. Feeding and nutritional status of
the animals may also strongly contribute to the variation
among the animals. The variation can also be explained by
breed differences and the differences in stage of lactation as
reported by Patino et al. (2007).

CONCLUSIONS
All the animals showed considerable variation regarding

the principal components in milk. In earlier studies, buffalo
milk showed advantages compared to cow’s milk with
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regard to milk components. However, this study showed
that Red Chittagong Cattle and Indigenous cattle milk were
more favorable because of their higher true protein, casein,
[B-casein, lactose and total mineral content. Nevertheless, to
select quality milk for curd based milk products (cheese and
sweetmeats) depending on highest protein, casein, casein
number, casein:whey protein, ratio of oy-, o- B- and k-
casein and fat content, Red Chittagong Cattle and buffalo
milk showed the best data. All the cow’s milk contained
small casein micelles. But they had lower k- casein and
Ca:P than the buffalo milk, meaning that other factors may
play a role in the micellar formation as well.

Buffalo and Red Chittagong Cattle milk should also be
preferred from a nutritional point of view because of their
high protein content and type, free amino acids, naturally
occurring peptides, fat content, conjugated linoleic acid
precursors and isomers, total unsaturated fatty acid, lactose,
minerals, Ca, P, Mg, Mn and Zn. They were also low in ;-
casein and -lactoglobulin, the two major milk allergen.

The Indigenous cattle milk was more or less similar to
Red Chittagong Cattle milk regarding all most all the milk
components. Milk of Holstein cross cows was found high in
B-lactoglobulin, naturally occuring peptides and total
saturated fatty acid.

This work may be regarded as a benchmark for future
work on the Bangladeshi dairy cattle for milk and milk
products. And the animal breeder should take into
consideration the information on milk components before
desgining a breeding policy to get higher milk production
with desirable quality.
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Abstract
Ex vivodigestion of proteins and fat in whole and skimrbeéfalo milk was studied. The aim
of the study was to investigate whether the liprdsilk could have an effect on the digestion
of the caseins and whey proteins, more specifitalyimmunogenic proteings;-casein ang-
lactoglobulin $-Lg). Human digestion was simulated using humartrigagnd duodenal juices
in a two phase model. All the caseins were faséstied during gastric digestion (20 and 40
min), while a-lactalbumin ¢-LA) and (3-Lg) were resistant. However, a residual trace.of
casein was detected but completely digested aftenirdb duodenal digestion. During the
duodenal digestiory-LA and B-Lg were readily digested and after 5 min mosthaf proteins
were hydrolyzed. Very little differences in the dadption profile was shown between whole
and skimmed milk, however, in whole buffalo milk alhrests of intacti-LA and p-Lg were
identified. Only small variation between whole akimmed buffalo milk was found regarding
number of peptides identified, localization of mgliytic site and alignment of the generated
peptides. Maximum number of peptides was identifreth p-casein ands;-casein followed
by k-casein,as>casein and3-Lg. Lipid digestion was also fast and after 30 ndwmodenal
digestion, 30% total lipolysis was observed in nautpids. Total saturated fatty acids showed
9% more lipolysis than the total unsaturated faityds. The short (C4:0 to C8:0) and long
chain £C17:0) fatty acid showed 8-10% higher lipolysisrtithe medium chain (C10:0 to
C16:0) fatty acids. With regard to the fast digastof the immunogenic proteings;-casein
andp-Lg, the results obtained in buffalo milk may benokritional importance.
1. Introduction

Milk is regarded as nutritionally the most compléed for the offspring. The milk
constituents - water, protein, lipids, carbohydrateinerals, vitamins and other minor
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components are present proportionately in milkuregl for the neonate of the respective

mammals. The composition of milk varies in respoofsgpecies, breed/type, number and stage
of lactation, nutrition and other animal producti@ctors. Medhammar et al. (2012) reviewed

the milk composition of several different milk prering animals and considerable variation

among the species and even within the speciesepasted.

Cow, buffalo, sheep and goat holds the major sladravorld milk production.
According to FAOSTAT (2011), buffalo produced 128®f the total world milk production,
placed next to the cow’s milk. But buffalo milklsss studied compare to cow’s milk (Abd EI-
Salam & EI-Shibiny, 2011).

Buffalo milk is reported to contain between 2.74t6% proteins (Medhammar et al.,
2012). Caseins (CNsi1-, osz, - andk-CN) and whey proteinsiflactalbumin:a-LA and B-
lactoglobulin:B-Lg) are the major protein types in buffalo milkdacomparable to cow milk.
However, the CNs ratio in buffalo and bovine millkyrbe somewhat different, with a ratio of
2.8:1.0:3.1:1.2 obis-, asz, p- andk-CN in buffalo milk (Islam et al., 2014) and 2.02.7:0.9
in bovine milk (Miranda, Mahe, Leroux & Martin, 28D The most prominent result was found
in the B-Lg content of buffalo milk, which was almost half the cow’s milk (Islam et al.,
2014). The differences in protein content may afthe digestibility of the proteins (Almaas et
al., 2006). The four CNs exist as micelles, thatehan average pl of 4.6, coagulates at low pH
like the stomach pH (Dalgleish & Corredig, 2012)hereas the whey proteins remain in
solution under physiologic condition. The homoldybaffalo and cow CNs ranges from ~93%
to ~98% (Abd El-Salam & EI-Shibiny, 2011). This dion may also lead to the variability in

the formation and content of peptides after protsl(Ulleberg, 2011).
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Milk is a natural emulsion where the lipids areegent in the form of colloidal
assemblies, the milk fat globule. Meena, Ram & R&$82007) reported that, the total fat
content of buffalo milk ranges from 3.37 t014.42¢tlk fat contains mainly triglyceride (98%)
with small fractions of 0.3% di-, and 0.03% monagsides, 0.1% free fatty acids (FFA) ,
0.8% phospholipids and 0.32% sterols (Walstra, \&isu& Geurts, 2006). The understanding
of the fate and kinetics of dietary lipid digestisnimportant because of lipid’s implication on
the human health and in the development of newymtsd Gastrointestinal (Gl) digestion of
dietary lipid is influenced by the characteristoddipid droplet — size, fatty acids distributiof o
the triglyceride and the surface organization amumosition (Berton et al. 2012). The milk fat
globule size of buffalo is larger than the cow’dkmBuffalo milk fat globule has been reported
to have less membrane materials than that of tescmilk (Abd El-Salam & EI-Shibiny,
2011). The fatty acid (FA) composition of bovinelkrfat is highly complex (Reklewska et al.
2002), however, C4-C24 FAs are more common and remiin the form of saturated (S) or
unsaturated (US) FA. Considerable variations in FAecomposition of buffalo milk fat and
cow milk fat have been reported (Abd El-Salam & SHlibiny 2011; Islam et al. 2014;
Medhammar et al. 2012; Menard et al., 2010). Theatran in the cow and buffalo milk fatty
acid composition may results in variation in théyfaacid distribution in the triglyceride and
thus, also contributes to the variation of the rooller size of the triglycerides. Arumughan
&Narayanan (1982) found all most all the C4:0 offélo milk fat in the low molecular weight
triacylglycerol. Buffalo milk fat had a higher pertage of medium chain triglycerides than the
cow’s milk (EI-Shibiny, Fontecha, Juarez & Abd Rap@005). All these are related with the
physiological fate of the dietary lipids includindigestion, absorption and subsequent

metabolism.
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A complex combination of mechanical, physiochemaral physiological processes are
involved in the GI digestion of proteins and lipislshuman. A number of factors like food
composition, buffering capacity of the food, pHncentration and activities of the enzyme
secreted, peristaltic movements, emptying of tleenath and duration of the digestion may
influence the digestion. To understand better, Howad is being digestedn vivo studies
provide the most accurate data but are time comsyntostly and have ethical aspects.
Compromising between accuracy and ease of utiimatnterests irex vivodigestion model is
increasing. However, still simulation of human digen is challenging because of the inherent
complexity of the process.

In a review, Hur, Lim, Decker & McClements (201Hshshown wide variability in the
existingin vitro andex vivomodels, especially regarding enzyme used, pH, idaraime and
steps of digestion. They also emphasize the impoetaof using physiologically relevant
enzymes and other gut-relevant components (bildsaeic.) while designing digestive fluids.
So, by using aspirates and Gl juices from humanntekrs in thex vivomodel digestion may
be considered as a good approach to mimiantheso physiological condition.

There are two main phases during protein and ldaggstion in the GI tractirstly,
gastric digestion at pH 1.5 to 5.0 together witpgie and gastric and lingual lipas8econdly
duodenal digestion at pH 6.5-8.0 by pancreatic anash border enzymes. Among the
pancreatic enzymes, trypsin and chymotrypsin aoagly proteolytic; while lipase along with
bile acids (from gall bladder) is strongly lipolytiCarboxypeptidase and aminopeptidase of
brush border origin acts on smaller peptides.

Almaas et al. (2006) developed a model digestiomgufiuman Gl enzymes and
observed that caprine milk proteins were digesestef than the bovine milk proteins. In
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another study, Inglingstad et al. (2010) reporteelcges variability in then vitro digestion of
equine, bovine, caprine and human milk protein bingi human Gl enzymes. Devle et al.
(2014) have showed the reciprocal interacting &fexf proteins and lipids duringx vivo
digestion of bovine milk. To best of our knowledg®, suchex vivostudy has been done on
buffalo milk proteins and lipids digestion. In atidn, the data on milk peptides derived from
whole and skimmed buffalo milk by using human Gtynes are also very scanty.

The aim of the present study was to investigatefale of digestion of buffalo milk
proteins and lipids by using human gastric and dunadjuices related to the degradation of the
immunogenic proteinsys;-casein and3-Lactoglobulin, generation of peptides and freayfat
acids and the effect of lipids on the proteolysis.

2. Materials and Methods
2.1 Milk samples

Pooled, whole, raw fluid milk was collected frormailactating buffaloes of Bangladesh
Livestock Research Institute (BLRI) buffalo farm, Savar, D&dl341, Bangladesh. The
sampling was done from the morning milk. The mikmples were preserved by adding
bronopol tablet (1 tablet/40 mL milk; D & F contrelystems, Inc. USA) immediately after
milking of the animals, followed by freezing (-2C); transported to the Department of
Chemistry, Biotechnology and Food Science, Norwedikiversity of Life Sciences, P. O.
Box 5003, N-1432 Aas, Norway. The milk was kept2ft °C until used. The milk was thawed
in ice water overnight, and then tempered to 37irfG water bath. Skimmed milk was
prepared by removing lipids by centrifugation aD86g, at 04 °C for 20 min (Beckman
Coulter, Allegra 25R Centrifuge, TS-5.1-500 roteal, Brea, CA, USA). The true protein
(3.5%) and fat (5.84) content were measured agtegpearlier (Islam et al. 2014).
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2.2 Human gastric and duodenal juices

The human gastric juice (HGJ) and duodenal juicBJHwere collected by following
the methods described by Holm, Hanssen, KrogdaRlatholmen (1988) and Ulleberg et al.
(2011). The aspiration of juices were performedsonadults (20 to 37 years old), healthy,
fasted (for>8 hrs) volunteers at Lovisenberg Diakonale Hospitaslo, Norway. Aspiration
was approved by the Norwegian Research Ethics Ctsemiln brief, the aspirates were
collected in a tube placed on ice by using a tripleen tube (Maxters catheters, Marceille,
France). After collection, the cell debris and maieeere removed by centrifugation and then
aspirates were stored at -20 °C until used. Thame| pH, and enzyme activities of HGJ and
HDJ were measured. Then a pooled batch of HGJ dbd Were made to use ex Vivo
digestion model. A method described by Ulleberglet(2011) was used to assay the pepsin
activity in HGJ, lipase and total proteolytic adyvand total bile salts in HDJ. The pooled
batch of HGJ and HDJ were stored at -80 °C ungdu8efore use, the juices were thawed by
keeping them overnight in ice (at 4-6 °C) and threice water at room temperature.
2.3 Ex vivadigestion

A method described by Devle et al. (2014) with samaifications was used for the
digestion of whole and skimmed buffalo milk. A cowbus two phase digestion was
performed; first a gastric phase (by HGJ), them@dénal phase (by HDJ). In the gastric phase,
1 mL milk sample — pH was first reduced to 5.0 by BICL and digested for 20 min (G20)
then pH was further reduced to 2.5 and digestionticoed for another 20 min (G40).
Thereafter, pH was adjusted to 7.0 by 2M NaOH, MbBded and sampling was performed at
05 min (D05), 30 min (D30), 60 min (D60) and 12hn(D120). The volume of HGJ and HDJ
added to 1 mL of milk was 8Q@L (711 unit pepsin activity/g milk protein) and 1pL (558
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unit total proteolytic activity/g milk protein), spectively. The HDJ contained 889 unit lipase
activity and 2.4 mM bile acids as well. For protaimd peptide analyses, samples (1 mL) were
placed on ice immediately after digestion and sta@te-20 °C with minimum delay. The lipid
samples (1 mL), 20 mL chloroform:methanol (2:1) veasled immediately after the digestion
and stored at -20 °C. The digestion was performtchés.

2.4 Protein and peptide analysis

2.4.1 Milk protein degradation profiles by SDS-PAGE

To visualize the protein degradation in whole akonmed buffalo milk at different
gastric and duodenal steps of digestion, SDS-PA@E performed by a method according to
Devle et al. (2014) with some modifications. Thetga samples (1 mL) were homogenized by
using Ultra Turrax (Yellow Line DI 18 basic, IKAWerke GmbH & Co. KG, staufen,
Germany)at speed 3 for few seconds. The sample was mixddSIDS-PAGE sample buffer at
a ratio of 1:2. Ten microliter of prepared samphese apllied to the respective wells of Any
kD™ polyacrylamide separating gels (6.5 — 200 kDa;i RIROTEAN® TGX™ precast gels,
Tris Glycine extended, Bio-Rad laboratories, Incadd in United States). A low molecular
weight marker (LMW-SDS Marker Kit; GE Healthcaraitle Chalfont, Bucks, UK) was used.
The gel was run for 35 min at 200 V. Then the gedse fixed, Comassie Briliant Blue stained

and destained according to original procedure.

2.4.2 In gel digestion of protein band and idenéifion by Ultra Performance Liquid
Chromatography (UPLC) and Q-Exactive Mass Spectton{#1S)

For protein identity, the bands on the SDS-PAGEs,gelere cut and in-gel digested
according Devle et al. (2014). Loading solutiorDB%TFA, 2% ACN in water) was added to
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the dried peptides and the samples were loaded or#o nano-UPLC
(RSLC3000, Dionex/Thermo Fisher Scientific, Brem&bermany) equipped with a trap
column (Acclaim PepMap100, C18, 5 um, 100 A, 300 jen x 5 mm, Thermo Fisher
Scientific, Bremen, Germany), back flushed ont@ai x 75 pm analytical column (Acclaim
PepMap RSLC C18, 2 um, 100 A, 75 um i.d. x 50 camaViper, Bremen, Germany). For the
separation of the peptides, a 45 min gradient fdoto 40 % solution B (80 % ACN, 0.1%
formic acid) at a flow rate of 300 nL mtrwas used. The set up of the Q-Exactive MS (Thermo
Fisher Scientific, Bremen, Germany) was — full s¢200-1600 m/z) at R=70.000, followed by
(up to) 5 MS2 scans at R=35000, using a NCE setting8. For MS/MS, singly charged
precursors were excluded as were precursors wih ZArd dynamic exclusion was set to 30
seconds. The Masconvert module of ProteoWizarg:(fatoteowizard.sourceforge.net/) was
used to convert the raw files to mgf format. Andrmitted to database search (Swissprot,
taxonomy - other mammals) on an in-house Masc@t4yserver. Mass tolerance was 10 ppm
and 20 mamu for MS and MS/MS, respectively andnaafig for up to 2 missed cleavages. The
selected fixed and variable modifications were aaridlomethylated cysteine and oxidized
methionine, respectively.
2.4.3 Peptide identification by UPLC and Quadrap®lme Of Flight (Q-TOF) MS

Peptides from the G20, G40, D05 and D120 sampére wesalted and concentrated
accroding to a method described by Furlund et28118). Identification of peptides were done
by the method of Qureshi, Vegarud, Abrahamsen &eSg012) with some modifications. In
brief, peptide mixtures (containing 0.5% formic djcivere applied to a nanoACQUITY
UPLC® (Waters, Milford, USA), equiped with Bm symmetry C18 trap column (1§@n x 20
mm; Waters, Milford, USA) in front of a 1.@dm BEH C18 analytical column (7pm x 100
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mm; Waters, Milford, USA). Each sample was run i8 Bhd data dependent tandem MS mode
into a Q-TOF Ultima MS (Micromass Ltd., ManchestdK). The used non-redundant protein
sequence database version was NCBInr 20130131 98284 sequences; 7819872540
residues).
2.4.4 Multiple sequence alignment (MSA) of peptides

A method described by Furlund et al. (2013) wittmeomodifications was used to
perform the sequence alignment of peptides. Faptiges were selected with minimal operlap
for every samples. Then a pool of G peptides fra20 @xd G40 samples and so for D peptides
from D05 and D120 samples were made. The wholeskimimed buffalo milk were compared
for their G and D peptides by using Clustal omegargion: CLUSTAL O (1.2.0);
http://www.ebi.ac.uk/Tools/msa/clustalo/) and fansensus sequence, MS editor Jalview 2.8
(http://www.jalview.org/) was used. The whole semgee of ass-, asr, p- andk-CN andp-Lg
and other relevant information were obtained frortp:Awww.ncbi.nlm.nih.gov/ and
http://www.uniprot.org/. The MSA technique was alsed to localize the proteolytic sites of a
particular protein by aligning the peptides frora #pecific protein on its whole sequence.
2.5 Lipid analysis

Total lipid extraction, solid phase extraction ($PEneutral lipids (NL) and free fatty
acids (FFA), formation of fatty acid methy esteFAKES) and Gass Chromatography-Mass
Spectrometry (GC-MS) analysis of FAMEs were donddipwing the method described by
Devle et al. (2014) with few modifications.

Briefly, for total lipid extraction, 20 mL chlorof:methanol (2:1, added immediately
after digestion) and internal standards in chlamofevere added. Then the tubes were allowed
for horizontal shaking for 20 min at 350 rpm. Fauitliliter NaCl (0.9% in water) was added

10



225 to it and vortexed followed by centrifugation at086g for 10 min at 20 °C. The organic phase
226  was collected, dried under,ldas at 37 °C and re-dissolved in 2 mL chloroform.

227 A liquid handling robot (Gilson, GX-274 ASPEC, Midtbn, USA) was used for SPE
228 of 1 mL re-dissolved lipids. The NL and FFA fractiovere eluted with 5 mL chloroform and 5
229  mL diethyl ether:acetic acid (98:2), respectivé®pnth the fraction were again dried under N
230 gas at 37 °C. The NL fraction was re-dissolved Oglimag 2 mL hexane and methylated by
231 adding 1.5 mL sodium methanolate (3.3 mgfollowed by horizontal shaking for 30 min at
232 350 rpm. Then it was left for 10 min in a vertigaisition and the hexane phase was transferred
233 in to the GC-vials. The FFA fraction were addedhwit mL boron trifluoride-methanol
234  complex (14% BEin CH;OH, Sigma-Aldrich, steinheim, Germany), heated(tC for 5 min.
235  Then 1 mL hexane was added and the hexane phadeawsterred in to the GC-vials. Both the
236 NL and FFA FAMEs were then stored at -20 °C untdlgised by GC-MS.

237 An Autospec Ultima MS (Micromass Ltd. Manchestengt&nd) equiped with electron
238 ionization ion source (mass ranréz 40-600), coupled with gas chromatograph (AgileB@®
239  series, Agilent Technology, Wilmington, DE, USA) svased for FAMEs analysis. The type of
240  column used was 50 m CP-Sil 88 capillary columnthwD 0.25 and 0.2Qum thickness
241 (Varian, Middelburgh, The Netherlands).

242 3. Results and discussion

243 3.1 Protein digestion

244 The protein degradation profiles of buffalo wholedaskimmed milk are presented in
245  Figure 1. In both milk, most of the CNB; andk-CN, were degraded after 20 min gastric
246  digestion at pH 5.0 and further degraded after #) m-CNs. The pattern of CNs degradation
247  appeared similar in both whole and skimmed milk.
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266
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270

The o-LA and B-Lg were resistant to gastric digestion, while se@ibumin (SA) was
degraded. However, after 5 min duodenal digeselioth a-LA and pB-Lg were readily
digested. In whole milk, traces ffLg as a single band was identified by UPLC-MS tivas
not observed in skimmed milk (Figure 1A, D05, bdndTraces ofi-LA with the degradation
product ofp-Lg was also observed both in whole milk (Figure, D®5, band 2) and skimmed
milk (Figure 1B, D05, band 1 and 2) after 5Smin detoal digesstion, however, and completely
degraded after 30 min (D30). ThelLA was of bovine origin as per database suggesfitie
buffalo and cow milka-LA differs only by a single amino acid, buffalo §517) — cow
(Gly17) (D’Ambrosio et al., 2008) reflecting theegiter homology between them.

The clear protein bands observed in the region®RER after duodenal digestion were
identified as the digestive enzymes in the HDJ (Bet al., 2014). Some differences in the
gastric digestion after 40 min was observed betwadifalo and cow’s milk (Devle et al.,
2014). TheosCNs appeared more resistant than fhend k-CN in buffalo milk and these
results seems to be more consistent with the sestilGallier, Ye & Singh (2012). Almaas et
al. (2006) reported that the protein compositiomiiferent species may have an influence on
the protein digestibility, as higher dgradationcaprine milk CN than the bovine milk CN was
observed. Theese results were confirmed by Ingtgst al. (2010) who reported high CN
degradation variability among the milk from bovimaprine, equine and human. Buffalo milk
CN degradability seems to differ from other speciresespect to differences in the relative
ratios ofogr-, osr, - andx-CN (Islam et al., 2014; Miranda, Mahe, Leroux & itita, 2004).

Devle et al. (2014) reported complete resistandglaf in full fat cow’s milk after 120
min duodenal digestion. In whole buffalo mifklLg was readily digested after 5 min duodenal
digestion and fully digested after 120 min (Fig Q5 and D120). The fat in buffalo milk did
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not affect the digestion @Lg as it did in cow’s milk. In the present studietconcentration of
bile acid was 2.4 mM in the HDJ aspirate used whiléhe study reported by Devle et al.
(2014) the concentration of bile acid was 1.0 mMtcording to Gass, Vora, Hofmann, Gray &
Khosla (2007), a concentration of 2 mM bile acidynacelerate th@-Lg digestion. The
variation in the bile acid concentration may explaome of the variation between the present
study and the results obtained by Devle et al. 420Another explanation may be that flxeg
in buffalo milk was almost half of the cow’s milloecentration (Islam et al. 2014). However,
the genetic variant may also be a factop-ing degradation variability as reported by Tidona e
al. (2014).
3.2 Site of proteolysis and peptides

The peptides identified were matched with the wiselguence of the protein to localize
the proteolytic cutting sites (Figure 2). Among titeteinsas;-CN andB-CN showed extensive
proteolysis. The whole and skimmed buffalo milk wed minimum variability in the peptide
pattern only by a few residues at the same regiqroteolysis or by very few new regions of
proteolysis. All most all th&-CN peptides were identified from the gastric diges while
most peptides fronB-Lg were observed from the duodenal digestion. &hessults are
consistent with the results observed by the pradeigradation visualized by SDS-PAGE. The
variability of peptide regions among different phaand steps of digestion reveals the
subsequent degradation of peptides and releasmiobaacids or cleaves at a new site due to
different specificity of the GI enzymes. The relatiow amount of peptides observed may be
due the limitations of the UPLC/Q-TOF MS with aremdification range of peptides of 800-

4500 Da and the amount of amino acids was not sedly
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Maximum number of peptides were identified fr¢fa€CN andas;-CN followed by«x-
CN, as>CN andp-Lg (Table 1). Some peptides were identified batlhie gastric and duodenal
phase. The multiple sequence alignments of theideesptgenerated from the gastric and
duodenal digestion showed very little variationwssn buffalo whole and skimmed milk
(Figure 3). Most of the the peptides containedipeoheighbouring hydrophobic residue (s) —
leucine, isoleucine, valine, phenylalanine, alaniglcine that could provide a motif for
prefered uncleaved peptide bonds. The consensugerssg obtained from Jalview 2.8 also
reflects so. This is in agreement with results uksed by Almaas et al. (2011) on peptides
generated fronB-CN, «-CN, B-Lg and glycomacropeptide by the digestion of gaaikk.
Jornvall & Persson (1983) reported that prolinetries further proteolytic processing
especially toward protease with trypsin type speityt
3.3 lipid analysis

The pattern of lipolysis of neutral lipids duringggric and duodenal digestion of whole
buffalo milk is shown in Figure 4. No lipolysis wabserved after 40 min gastric digestion
(G40). A fast lipolysis was shown during the fiB& min duodenal digestion. Thereafter, only
very little lipolysis was observed. These results ia agreement with Devle et al. (2014) on
cow’s milk. According to Pafumi et al. (2002), 1098 triacylglycerol can be hydrolyzed by
the gastric lipase in the stomach. The lack oflyipis in our study may be due to the low pH
2.5 that is far from gastric lipase activity (optim pH 5 to 6, Carriere, Barrowman, Verger &
Laugier, 1993) or insufficient secretion during igafoon of the fasted volunteers. Gastric
digestion is reported to be important for furtheodenal lipolysis (Gallier, Ye & Singh, 2012;

Ye, Cui & Singh, 2011).
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The concentration of FFAs during the digestion susimerized in Table 2 including
the lipolysis. The amount of each fatty acid in Bt increased sharply after 30 min duodenal
digestion and thenafter showed very little changsesshown in Figure 4. The average lipolysis
of saturated short (C4:0 to C8:0), medium (C10:@1®:0) and longXC17) chain FA were
41%, 33% and 43%, respectiviey. Among the individ8&A, C4:0 showed the highest
lipolysis which was 48% and C6:0 was only 1.5% bdhof it. In the USFA, only C18:1
Yothers and C16:1 n-@Gis showed more than 30% lipolysis. The lowest lipslysas observed
in C12:0 (27%) and C8:0 (28%) among the SFAs anibisC18:2 n-&is (14%) and C18:2 n-

7 trans (17%) among the USFAs. The lipolysis of total Stwas 9% higher than the total
USFA.

The pancreatic lipase has a preference to attaelsrii and sn3 position of the
triglyceride (Armand, 2007; Rogalska, Ransac & \éerdl990). This could explain the low
digestibility of C8:0 and C12:0 as reported to havyareference isn2 position in bovine milk
(Angers, Tousignant, Boudreau & Arul, 1998; Maamss2008). However, Blasi et al. (2008)
reported that C8:0 is isn3 position in buffalo milk and C12:0 &nl1l and 3 position.
Compared to medium chain FA, the prevalence oftsdrat long chain fatty acids sm1 and 3
positions are reported (Angers, Tousignant, Boudi&aArul, 1998; Blasi et al., 2008). This
explains why the average lipolysis of medium chHafwas less than the long and short chain
FA.

The overall results showed some variability wittwomilk (Devle et al., 2014). The
possible reasons arefirstly, the buffalo milk fat globule is larger than thewés milk and
moreover, in the cow’s milk study homogenized whoiék was used. Human pancreatic
lipase’s catalytic efficiency is 4.6-fold higher emaller than the larger native milk fat globule
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(Berton et al., 2012)Secondly the reported variability in the FA distributiom ithe
triacylglycerol of cow’s milk and buffalo milk (Aregs, Tousignant, Boudreau & Arul, 1998;
Blasi et al., 2008 & Maansson, 2008).

Conclusions

Ex vivo digestion of whole and skimmed buffalo milk wererformed to study —
protein and lipid degradation and the effect ofdlin protein digestion, specifically the
immunogenicog;-casein and3-Lactoglobulin . Except fowscaseins, all the caseins were
digested fast during the gastric phase and contplateer 40 min. During the duodenal phase,
as-caseins were digested completely after 5 min. dditeon, pB-lactoglobulin was readily
digested after 5 min duodenal digestion in bothmsked and whole buffalo milk. Minimal
variations in the peptide pattern was observed é&tvihe whole and skimmed milk.

A rapid lipolysis of neutral lipids was observedeaf30 min duodenal digestion and the
lipolysis was 30%. The short (C4:0-C8:0) and lorG17:0) chain fatty acids showed 8-10%
more lipolysis than the medium (C10:0-C16:0) chéatty acids. The lipolysis of total
unsaturated fatty acids was 9% less than the datakated fatty acids.
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464  Table 1. Number of peptides identified from whoW)(and skimmed (S) buffalo milk after
465 gastric (G) and duodenal (D) digestion.

G20 G 40 D 05 D 120
Protein
W S W S W S W S
0s1-CN 18 18 17 19 11 10 02 03
0s>CN - 03 03 04 03 04 04 -
B-CN 28 29 25 26 37 39 37 21
k-CN 09 11 05 08 02 - - -
B-Lg - - 01 - 02 05 04 02

466  The pH of all the duodenal digestion was 7.0. Abitateons: CN, caseirfi-Lg, p-lactoglobulin;
467 G20, gastric digestion at pH 5.0 for 20 min; G4&stgc digestion at pH 2.5 for 20 min after 20

468  min gastric digestion at pH 5.005 and D120, duodenal digestion for 05 and 12Q reispectively.

469
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470  Table 2. Fatty acid (FA) concentrationad mL™* milk + standard deviation) in the free fatty
471  acid fraction of whole buffalo milk during digestiavith human gastric (G) and duodenal (D)

472  juices. It also includes the lipolysis (%) of indiual FA in neutral lipids (NL) fraction after

473 120 min duodenal digestion.

FA G40 D30 D60 D120 Lipolysis (%)
C4:0 nd nd nd nd 48.0
C6:0 1.7+0.0 32.6£3.3 20.7£1.3 21.6+4.9 46.5
Cc8:0 1.4+0.5 44.7+6.4 34.91+4.0 29.7+9.2 28.4
C10:0 2.4+0.4 110.4+10.1 118.3+5.0 114.3+3.5 34.1
C12:0 17.1+10.8 176.8+17.0 191.2+5.6 186.14+6.2 527.
C14.0 28.8+2.5 1111.0+68.0 1258.2+30.3 1226.9453.1 33.6
C15:.0 3.6+0.7 258.90+11.4 332.616.4 335.84£7.7 33.0
C16:0 159.2+2.8 3999.04268.0  4709.7+138.8  4660.8£16 36.5
C17:0 3.3£0.7 110.2+5.3 152.0+£3.9 162.3+2.7 43.3
C18:0 163.2+4.3 2012.9+131.5  2804.9+120.5 2899.72482 42.8
C20:0 nd 22.9+4.0 34.0£2.4 35.0£2.0 42.2
XSFA 380.8+7.1 7879.0#¢501.0 9656.0+315.0 9672.0#286. 37.6
C14:1 n-5cis 2.240.4 66.4+3.5 82.5+0.9 78.4+2.6 24.8
C16:1 n-Tcis 4.310.9 312.1+13.0 392.646.1 382.1+8.5 31.9
C18:1 n-cis 79.1+10.8 3167.0£287.0  4269.0+191.0  4037.0+226.0 927
C18:1Xothers nd 236.8+18.8 351.8+6.0 359.3+5.2 38.3
C18:2 n-6cis 7.612.1 186.0+12.3 225.2+1.2 215.7+6.8 14.1
C18:2 n-Ttrans nd 38.9+3.9 54.61£2.0 49.8+2.0 17.0
C18:3 n-3cis nd 11.3+1.4 15.3+3.1 15.4+3.1 -
C20:4 n-6cis nd 15.9+3.1 15.9+2.1 16.4+1.6 -
YUSFA 93.1+11.3 4034.0+£329.0 5407.0+198.0 5154.04£243 28.3

474  Lipolysis: {(FA in undigested NL — FA in D120 NL)A=in undigested NL} x 100. The pH of
475  all the duodenal digestion was 7.0. Abbreviatidgd40, gastric digestion at pH 2.5 for 20 min
476  after 20 min gastric digestion at pH 5.0; D30, R&@ D120, duodenal digestion for 30, 60 and
477 120 min, respectively; nd, not detectexXiSFA, total saturated fatty acidEZUSFA, total
478  unsaturated fatty acids.
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Figure 2

as;-Casein (Accession number: 062823)
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YVPLGTQYPDAPSFSDI PNPI GSENSGKTTMPLW 214
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YVPLGTQYPDAPSFSDI PNPI GSENSGKTTMPLW 214
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B-Casein (Accession numbep9TSIO)
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B-Lactoglobulin (Accession numbeZ3W95E)
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L LFCMVENSAEPEQSL ACQCLVRTPEVDDEAL EKFDKAL KALPVHI RLSFNPTQLEEQCHV
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Fiqure 3

A) Peptides fromus;-casein (gastric phase)

BWG- 05

BSG 01
BWG 02
BSG 02
BWG 08
BSG 05
BWG 09
BSG- 06
BWG 06
BSG- 03
BWG 07
BSG 04
BWG 01
BSG 07
BSG- 08
BSG- 09
BWG 03
BSG 11
BWG 04
BSG 10
BSG 12
Consensus

---------------------------- RPKQPI - KHQGLPQGVLNENL 20
---------------------------- RPKQPI - KHQGLPQGVLNENL 20
------------- FVAPFPEVFGKEKVNELS- - = = - - - === =------- 18
------------- FVAPFPEVFGKEKVNELS- - = = - - - === =------- 18
---------------------- AEEQLHSMKEG HAQQKEPM GVNQEL 27
---------------------- AEEQLHSMKEG HAQQKEPM GVNQEL 27
--------------- El VP- NLAEEQLHSMKE- - < <= === === ==---- 16
--------------- El VP- NLAEEQLHSMKE- - < === == === =----- 16
--------------------------- LRLKKYNV- - - - - PQL- - - --- 11
----------------------- LEQLLRLKKYNV- - - - - PQL------ 15
----------------------- =210 =0 I

----------------------- =110 =\'(o I

--------------- SDI PNPI GSENSGKTTM - - === === === ===~ 17
--------------- SDI PNPI GSENSGKTTM - === === ===« ===~ 17
------------ | QKEDVPSERY- - = = = = == s s e mmmmmeeeeeeeen 11
- - - PLGTQYPDAPLFSDI PN- - = = = = = = == s e oo meee oo 17
YYVPLGTQYPDAPLF- - - - - =« == oo oo mmeee oo 15
YYVPLGTQYPDAPLF- - - - - <« s e oo mcee oo 15
YYVPLGTQYPDAPSFE- - - - - = ==« o oo msee oo 15
YYVPLGTQYPDAPSF- - - - - - <« =2« oo omsee oo 15
------ DAYPSGAW - - = = = = = == s oo o meee oo 8

YYVPLGTQYPDAPLFEDI PNNFAEEQLHRLKEG HAHQGEPQGGLNEEL

B) Peptides fronus;-casein (duodenal phase)

BWD- 03
BSD- 01

BWD- 07
BSD- 04
BWD- 01
BWD- 05
BWD- 02
BSD- 03
BSD- 06
BSD- 02
BWD- 04
BSD- 05
BWD- 06
Consensus

- - - - SDI PNPI GSENSCK:- - - - - - 14
- - - - SDI PNPI GSENSCK:- - - - - - 14
------------ El VPNLAEEQLH 12
------------ El VPNLAEEQLH 12
--------- YLGYLEQLL------ 9

------ YYVPLGTQYPDAPL---- 14
QP! K- HQGLPQGVLNENL- - - - - - 17
QP! K- HQGLPQGVLNENL- - - - - - 17
QPI K- HQGLPQGVLNENL- - - - - - 17
------ YFYPQ ------------ 5

EG HAQQKEPM GVNQEL- - - - - - 18
EG HAQQKEPM GVNQEL- - - - - - 18
- -H QKED- VP- - - SE- - - - - - - 10

QP HAHOQGLPQGVLNENLAEEQLH

28
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C) Peptides fromscasein (gastric phase)

BSG- 01 VYQYQKANKPWIQPKTNVI PYVRYL 25

BSG 02 LYQGPI VLNPVWDQVKRNAVPI TPTL 25

BWG 01 LYQGPI VLNPVWDQVKRNAVPI TPTL 25
-k k *

LR S R R

Consensus LYQGPI VLNPV\DQ/KRNAVPI :I'PTL
D) Peptides fronasz-casein (duodenal phase)

BWD-02 ------ ALNEI NQFYQKFPQ 14
BWD- 03 LYQGPI VLNPWDQVKRN- - - 17
BWD-01 «  ------- LTEEDKNRLN- - - 10
BsD-02  ----- TKLTEEDKNRLNFL- 14
Bsb-01 = @ ------- | TVDDKHYQ - - - 9
Consensus: ------- L TEEDKNRL NF-

29
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530

531

532

533

534

535

536

537

538

539

540

541

542

E) Peptides fronf-casein (gastric phase)

BWG 08
BSG 01
BWG 04
BSG 02
BWG 06
BWG 05
BSG 03
BWG 02
BSG- 06
BWG 03
BSG- 05
BWG 07
BSG 04
BWG- 09
BSG- 08
BWG 01
BSG- 09
BWG 10
BSG 07
BWG 11
BSG 11
BSG 10
Consensus:

------- GVSKVKE- - AVAPKHKEMPFPK- - YPVEPFTESQ - - - - - == == === =------ 30
------- GVSKVKE- - AVAPKHKEMPFPK- - YPVEPFTESQSLTL- - <<= ---=------- 34
-------------------------------- PVEPFTESQSLTLTDVENLHLPLPLL--- 26
---------------- AVAPKHKENMPFPK- - YPVEPFTESQSLTLTDVENLHLPLPLL- - - 40
--------------------------------------------- TDVENLHLPLPLLQSW 15
------------------------------------------ LTLTDVENLHLPLPLLQS- 18
------------------------------------------ LTLTDVENLHLPLPLLQSW 18
----- QOWHQPPQ- - - - === = === PLPPTVM = = = == == = e e e e e eee e o= 16
----- QSWWHQPPQ- - - = === = === PLPPTVM = = = === = cc e mmcce e e eca o= 16
-------- MHQPPQ- - - - - - = - - - - PLPPTVMFPPQ - - - SVL- - - === = == === === === 20
-------- MHQPPQ- - - - = = = - - - = PLPPTVMFPPQ - - - SVL= = - === === === == =- == 20
FLLYQEPVLGPVRGPFP | V- - = - -« = = e e et e e e 20
<= LYQEPVLGPVRGPFPI | V- - - < - o x s o et e e 18
------------------- LQDKI HPFAQTQS- - - == = == == === == -mceoceamoon 13
------------------- LQDKI HPFAQTQS- - - == = = == === === = ==ceoceam-on 13
- - SLSQSKVLPVP- - - - - - - - QKAVPYPQRDIMP| QA - - = = = < <<= - mmce o mea oo e 26
- - SLSQSKVLPVP- - - - - - - - QKAVPYPQRDMP| QAFL- - = = = =« == < c e o mmeaomc e 28
------------------------------ PVWVPPFLQPEI MGVSKVKE- - - - - - - - - - - 20
------------------------------ PVWVPPFLQPEI MGVSKVKE- - - - - - - - - - 20
------- LVYPFPGPI PNSLPQNI PPLTQTPVWVPPFLQPEI M - - - <= - === == === - -~ 36
------- LVYPFPGPI PNSLPQNI PPLTQT- - - = = = =« === =s e e mmeammeeeeeaa oo 23
----- QSLVYPFPGPI PK- - - - - = = = =« s m = em oo ee e iee a2 13

- - LLQQSLVHPVPGPI PMALKQKI MPLPQTVVPVPPFLESQ LTLTDVENLHLPLPLLQSW

F) Peptides fronfi-casein (duodenal phase)

BWD- 01
BWD- 03
BWD- 04
BSD- 04
BWD- 05
BSD- 05
BWD- 06
BSD- 01
BWD- 07
BSD- 02
BWD- 10
BSD- 06
BWD- 11
BSD- 08
BWD- 12
BSD- 07
BWD- 08
BSD- 09
BWD- 02
BSD- 03
BWD- 09
BSD- 10
Consensus

- - RELEELNVPGEI VE- - - = = = =« == o e e o mmee e ee oo
S - - - HQPPQPLPPTV- - - -« = - = s oo mee e mee e
- Wk - - - HQPPQPLPPTVM - FPPQS- - - - - - = = - - - - V- -
- Wk - - - HQPPQPLPPTVM - FPPQS- - - = - - = = - - - - V- -
<=M - - - HQPPQPLPPTVM - FPPQS- - - == - == = - - - - VL---
- - M - - - HQPPQPLPPTVM - FPPQS- - - - - - == = - - - - VLS -
SLTLTDVENLHLPLPL- < = - = <« == < s oo mcco o mce e
SLTLTDVENLHLPLPL- - - - -« = = = = s e o ee oo me e e o
< LTLTDVENLHLPLPLL- -« = = <« == o c e o mee e

AQTQBLVYPFPGP PK- - - = = = = == mmmm i mm e o
----- LVYPFPGPI PNSLPQNI PPL TQTPVWVPPFLQPEI M - -
----- LVYPFPGPI PNSLPQNI PPL TQTPVWVPPFLQPEI M - -
---------------------------- PVWVPPFLQPEI MG -
---------------- SLPQNI PPL TQTPVWVPPFLQPEI MGVS
LYQEPVLGPVRGPFPI | V- - - -« = - e o e ome e e o

SLMVETDVHPPPGPL PPTVMQNFPPQSQT PVWVPPFL QPEI MG-
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14
14
20
20
20
21

16
16
16
16
16
36
36
14
28
18
18
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G) Peptides frome-casein (gastric phase)

BWG 01
BSG- 02
BWG 06
BSG- 07
BWG- 07
BSG- 06
BWG- 02
BSG 01
BWG- 03
BSG- 03
BWG- 04
BSG- 05
BWG- 05
BSG 04
Consensus:

-------------------- MAI PPKKNQDKTEI PTI NT
-------------------- MAI PPKKNQDKTEI PTI NT

FNDKI AKY] Pl QY- - - <« = = e e e mee e e oo
FNDKI AKY] Pl QYVL- -« = - -« m e o meeemee e e
---------- TRHPHPHLSF- - - - == - = c oo o e e - -
---------- TRHPHPHLSF- - - - <= == c e oo oca oo -
------- YVLSRYPSY- - - - <=« ccee e
------- YVLSRYPSY- - - - <=« cccmmmcee e
-------- VLSRYPSYGLN- - - - === = c e e mee o
-------- VLSRYPSYGLNY- - -« == <<z oo occa oo
FNDKI AKYVLI RYPSYGLNYYAI KPAALQDKAEI LQI NT

H) Peptides fronfi-lactoglobulin (duodenal phase)

BWD- 02
BSD- 01
BWD- 01
BWD- 03
BSD- 03
BSD- 04
BWD- 04
BSD- 02
BWD- 05
Consensus

- - - - KI DALNENK- - VL- - - - - - 11
- - - - KI DALNENK- - VLV- - - - - 12
LYQGPl --------- VLNPWDQV 14
VYVEELKPTPEGDLEI LLQ - - - 19
VYVEELKPTPEGDLEI LLQ - - - 19
VYVEELKPTPEGDLE- - - - - - - - 15

-------- TPEVDDEALEKFDK- 14
-------- TPEVDDEALEKFDKA 15
-------- LTEEDKNRLN----- 10
VYVEEI KPTPEGDL EVL EKFDK-
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Figure Legend

Figure 1. Protein degradation profile in whole buffalo m{i) and skimmed buffalo milk (B)
after human gastric (G) and duodenal (D) digestidme pH at G20 and G40 was 5.0 and 2.5,
respectively and at D05, D30, D60 and D120 was ABbreviations: MW, molecular weight; kDa,
kilo dalton; SA, serum albumin; CN, caseifi;Lg, B-lactoglobulin;o-LA, a-lactaloumin. STD, low
molecular weight marker; 0, undigested sample; @26 G40, gastric digestion for 20 and 40 min,
respectively; D05, D30, D60 and D120, duodenalstiga for 05, 30, 60 and 120 min, respectively; A)
DO05: 1, p-lactoglobulin; 2,a-lactalbumin (?) with-lactoglobulin; B) DO5: 1and 2y-lactalbumin (?)
with B-lactoglobulin; ?, database search suggests, thuteip is of bovine origin; a, amylase; b,
carboxypeptidase, chymotrypsin , elastase, lipgastricsin and amylase; ¢, carboxypeptidase, sksta

lipase, trypsin and amylase; d, elastase, carb@tig@se, chymotrypsin, amylase, lipase and trypsin.

Figure 2. Comparative peptide regions derived from the o#ffe milk proteins of buffalo
whole (grey) and skimmed milk (underlined) afex vivo gastric (G) and duodenal (D)
digestion. Single letter amino acid code used. bold Italic residues, signal peptide. Tdteat
G20 and G40 was 5.0 and 2.5, respectively and &t @@ D120 was 7.0Abbreviations:G20 and

G40, gastric digestion for 20 and 40 min, respetyivD05 and D120, duodenal digestion for 05and 120

min, respectively.

Figure 3. Multiple sequence alignment (software: CLUSTAL D2(0)) of peptides generated
from different proteins of whole (BW) and skimme8S) buffalo milk by gastric (G) and

duodenal (D) digestion. Numbers on the left is $keial number of the minimal overlapped
peptides. Numbers on the right indicates the nunatbeamino acid residues in that peptide.

Consensus obtained from Jalview 2.8. Abbreviationgsidues with weakly similar properties
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569

570

571
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573

574

and conserved; :, residues with strongly similapprties and conserved; *, residue which is

fully conserved.

Figure 4. Proportion (%) of lipolysis of neutral lipids (NL)f whole buffalo milk and

subsequent formation of free fatty acids (FFA) dgrdigestion with human gastric (G) and
duodenal (D) juices. Abbreviations: G40, gastrigedtion at pH 2.5 for 20 min after 20 min
gastric digestion at pH 5.0; D30, D60 and D120,ddunal digestion for 30, 60 and 120 min,

respectively at pH 7.0.
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Abstract

The aim of the present study was to investigatethérethe protein digestion in skimmed
buffalo milk was affected by adding cod liver od a source of omega-3 fatty acid to the milk.
Human gastrointestinal enzymes, gastric and duddicas were used in a two phase model
digestion. After gastric and duodenal digestiorf3@f the neutral lipid underwent lipolysis.
Both the omega-3 fatty acids, eicosapentanoic (EP2Q:5 n-3) and docosahexanoic (DHA;
C22:6 n-3) acid showed 23% lipolysis. Tdractalbumin ang-lactoglobulin were resistant to
gastric digestion, however, readily digested atenin duodenal digestion. The addition of cod
liver oil as a source of omega-3 fatty acids did affect the milk protein digestion and
subsequent peptide generation after digestion efdftified skimmed buffalo milk. Thereby,
enrichment of skimmed milk by cod liver oil coul@ la good nutritional source of omega-3

fatty acids.

Key words. Omega-3 fatty acids, FortificatiorEx vivo digestion, Caseinf-lactoglobulin,

Peptides

1. Introduction

Milk is regarded as the nutritionally most compléied but is criticized for its low content of
unsaturated fatty acids, especially polyunsaturdédty acids (PUFA). The fat content in
bovine milk varies from 3.0-6.0% (MacGibbon & Tayl@006) and in buffalo milk it is 3.37 to
14.42% (Meena, Ram & Rasool, 2007). In general, fiai cow’s milk fat contains 70%
saturated fatty acids (SFA), 25% mono-unsaturaatty ficids (MUFA) and 5% PUFA (Lock
& Shingfield, 2004; Grummer, 1991). Related to aipee health effect, milk fat should

contain 60% MUFA (Pascal, 1996), 30% SFA and 10%-R\(Hayes & Khosla, 1992), even
2
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though according to O’Donnell (1989) milk fat shealontain 82%, 8% and 10% MUFA, SFA
and PUFA, respectively.

Among the saturated fatty acids, C12:0, C14:0 ab@:@constitutes 44% of the total milk fatty
acids (Qureshi, Mushtaq, Khan, Habib & Swati, 2010)hey are considered as
hypercholesterolemic fatty acids leading to cardsmoular diseases (Williams, 2000). However,
sufficient availability of C18:2 n-6 seems to intiithe negative effect of C16:0 (Clandinin,
Cook, Konard & French, 2000). Connor (2000) repbrpotential health benefits from the
omega-6 and particularly from the omega-3 fattydscbothin vitro and in vivo. These
polyunsaturated fatty acids reduce the risk of icaabcular diseases, hypertension and type-2
diabetes (Siddiqui, Harvey & Zaloga, 2008; Wijend& Hayes, 2004; Bemelmans et al.,
2002). Intake of eicosapentaenoic (EPA; 20:5 af}) docosahexaenoic (DHA; 22:6 n-3) acid
may reduce the risk of prostate cancer (Leitzmahnale 2004), improves the brain
development and function (Kolanowski & Laufenber§0@) and prevent inflammatory
diseases, dyslexia and depression (Garg, WoodhSifgoughan, 2006).

Fish is generally considered as an important sowfcessentials fatty acids (Mondello,
Tranchida, Dugo & Dugo, 2006), more specificallye timain dietary source of omega-3
polyunsaturated fatty acids (Kolanowski & Lauferdge2006). Among this source, cod liver oil
(CLO) contains a balance of saturated fatty aciodgynounsaturated fatty acids and
polyunsaturated fatty acids (includesinolenic; ALA, EPA and DHA) in a ratio of 1.0:254
(Zeng et al., 2010). Because of higher EPA and DA% and 35% of the total PUFA,
respectively; Zeng et al., 2010), cod liver oil Hasen used as a nutritional supplement and
recommended for the relief of arthritis, depressiod high blood pressure (Ayorinde, Keith Jr,
& Wan, 1999). As a source of PUFA and vitamin-D,@&has a long historical tradition as an

3
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nutritional supplement in Nordic countries (MondgllTranchida, Dugo & Dugo, 2006). In
Norway, dietary supplement of vitamin-D is recomuheth from the infancy and CLO is
specifically recommended for that purpose becafigs bigher EPA and DHA content (Stene,
Ulriksen, Magnus & Joner, 2000). According to Ritaeset al. (2001), one dose (5 mL) CLO
contains 1.2 g of omega-3 fatty acids. The Europ@aademy of Nutritional Science
recommended a daily dose of 200 mg of omega-3 fattgls but it can be more, upto 3 g
depending on the physiological condition (Garg, \Wdsingh & Moughan, 2006).

A complex physico-chemical and enzymatic processesinvolved in the digestion of lipids
and proteins and the subsequent bioavailabilitythefse components. Lipid and protein
digestion comprise mainly two phase, gastric andddnal digestion. In the first phase,
digestion takes place in the stomach at pH 1-5haydction of pepsin and gastric lipase.
Followed by digestion in the small intestine (mgiat duodenum) at pH 6-7.5 by pancreatic
and brush border enzymes in the presence of bitks éiom the gall bladder (Guerra et al.,
2012). Trypsin, chymotrypsin and carboxypeptidagetlhe main proteases attacks the proteins
and peptides and pancreatic lipases acts on tlis.lip

To predict the nutritional quality of food produ@sd their constituents, bettter knowledge on
the digestibility of the individual components neddDevle et al., 2014)n vitro or ex vivo
model digestion is widely used for this purposeisidering the accuracy, ease of utilization,
time and cost involvement. During vitro digestion, food characteristics, type and contetra
of the enzymes are the key controlling factors (Hum, Decker & McClements, 2011). The
simulation of the human physiological conditioningportant to correlate better the vitro

studies with then vivo data. For better simulation, use of physiologicadlevant enzymes and
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other gut-relevant components like HCL, bile salts important. This can be better achieved
by using the human gastrointestinal aspirates.

Studies showed the influence of milk fat on &xevivodigestion of milk protein, especialpt
lactoglobulin. The presence of milk fat consideyahfluence the hydrolysis ¢f-lactoglobulin

in cow milk (Devle et al., 2014) and such effecswauch less in buffalo milk (Islam, Ekeberg,
Rukke & Vegarud, 2014b). Binding of fatty acids felactoglobulin and phospholipids
(especially phosphotidylcholine) to bottrlactaloumin and p-lactoglobulin alters their
hydrolysis (Mandalari, Mackie, Rigby, Wickham & N&] 2009; Moreno, Mackie & Mills,
2005; Puyol, Perez, Mata, Ena & Calvo, 1993). BaitMaux et al. (2013) reported the positive
effect of linoleate on thp-lactoglobulin digestibility.

The aim of the present study was to investigateetfexts of fortifying skimmed buffalo milk
with cod liver oil on the protein degradation dgriex vivodigestion. The protein profile and
generation of peptides in the milk were assessedgddition to lipolysis and release of fatty
acids from cod liver. Especially, the digestiontlodé immunogenic proteinag;-casein ang-

lactoglobulin and the peptides generated were decbr

2. Materials and Methods

2.1 Milk samples and cod liver oil

Pooled, whole, raw fluid buffalo milk was obtainétm Bangladesh LivestocResearch
Institute (BLRI) buffalo farm, Savar, Dhaka-1341arigladesh. The sampling was done from
the pooled morning milk of nine buffaloes. Immedlgtafter milking of the animals, the well
mixed pooled milk samples were divided into 40 mdlwne in cellstét tubes (Greiner Bio-
One, Maybachstrasse, Frickenhausen, Germany) asgmed by adding bronopol tablet (1

tablet/40 mL milk; D & F control systems, Inc. USAAfter freezing (-20 °C), the samples
5
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were transported to the Department of Chemistrgidghnology and Food Science, Norwegian
University of Life Sciences, P. O. Box 5003, NO-248as, Norway. Skimming of the milk
was done after thawing of the milk. Thawing wasalby keeping the milk tubes in ice water
for overnight and tempered gradually to 37 °C imader bath. Skimming of the milk was done
by removing the milk lipids by centrifugation at@4y, at 4 °C for 20 min (Beckman Coulter,
Allegra 25R Centrifuge, TS-5.1-500 rotor head, Bi@a, USA). The true protein content of
the milk was 3.5% (Islam, Ekeberg, Rukke & Vegarzf@il4a).

The cod liver oil (Mdller’s tran, 500 mL, AxellussA Oslo) was purchased from the local super
market. It was kept in the refrigerator (4-6 °CheTCLO was mixed with the milk at 37 °C by
magnetic stirring (500 rpm). The concentration dfQCin the fortified milk was 2%,

considering the daily requirement of milk for aruad250 mL).

2.2 Human gastrointestinal juices

The human gastrointestinal (Gl) juices, human gagiice (HGJ) and human duodenal juice
(HDJ) were collected from six healthy, fasted (f& hrs), 20 to 37 years old volunteers at
Lovisenberg Diakonale Hospital, Oslo, Norway. A hust according to Holm, Hansen,
Krogdahl & Florholmen (1988) and Ulleberg et al012) was used. The complete protocol
used was approved by the Norwegian Ethical Comejittand all the volunteers were well
briefed about what is going to happen with them &ad to sign an agreement before
participating in the aspiration. Simultaneousillagion of a stimulating solution and aspiration
of HGJ and HDJ were done by a three-lumen silicaree (Maxter Catheters, Marseille,
France) especially developed for this purpose. Bathaspirates, from stomach and duodenum,
were collected in tubes and placed on ice. Cegiation was done at 45080%or 10 min at 4 °C

to remove the mucus and cell debris, aliquots Wey at -20 °C. Pooled batches of HGJ and

6
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of HDJ from six donors were used in tee vivodigestion study. The pepsin activity in HGJ,
total proteolytic and lipase activity and totalebsalts in HDJ were measured according to a

method narated by Ulleberg et al. (2011).

2.3 Ex vivo digestion

To simulate the gastric and intestinal digestiotwa-phaseex vivostatic digestion model was
used using HGJ and HDJ. A method according to Detlal. (2014) was used with some
modifications. In Brief, the protein samples (1 foktified milk) were digested at gastric phase
by HGJ for 20 minutes (G20) at pH 5.0 and 20 misatepH 2.5 (G40; it also pass G20 step).
Following the gastric phase, the duodenal sampkse wigested at pH 7.0 for 5 min (D5), 30
min (D30), 60 min (D60) and 120 min (D120). Theatited lipid samples (1 mL fortified milk)
were G40, D30, D60 and D120. The gastric and dualded was adjusted by using 2M HCL
and 2M NaOH, respectively. In the gastric phasd, @lpepsin activity/g milk protein was
used. Total proteolytic and lipase activity andakdtile salts used in the duodenal phase were
558 U/g milk protein, 1022 U/mL milk and 2.4 mM/nHIDJ, respectively. The digestion was
carried out in a water bath at 37 °C with contirsionagnetic stirring at 200-300 rpm. After
digestion, samples were placed in -20 °C with murmdelay. In case of lipid samples, 20 mL
chloroform and methanol (2:1) mixture was addedtgethey placed in -20 °C. Each step of

the digestion in every phase was repeated for 8stim

2.4 Milk protein degradation profiles by SDS-PAGE

Protein dgradation in fortified buffalo milk at tBfent stages of digestion was visualized by
SDS-PAGE by following the method of Devle et al012) with some modifications. Ultra
Turrax (Yellow Line DI 18 basic, IKR-Werke GmbH & Co. KG, staufen, Germany) at speed

3 for few seconds was used to homogenize the gastmples. The mixing ratio of sample and
7
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sample buffer was 1:2. From this mixture, D was apllied to the respective wells of
polyacrylamide separating gels (Any Kf 6.5 — 200 kDa, mini PROTEANTGX™ precast
gels, Tris Glycine extended, Bio-Rad laboratorias, Made in United States). Fiye& of low
molecular weight marker (LMW-SDS Marker Kit; GE Hibaare, Little Chalfont, Bucks, UK)
and undigested milk samples were also applied todiler different wells. The gel was run at
200 V for 35 min. According to the original protdcd was followed by fixation, comassie
briliant blue staining and destaining and finatlyas placed into the preservation solution. The

gels were run five times.

2.5 In gel digestion and Ultra Performance Liquid Gromatography (UPLC) and Q-
Exactive Mass Spectrometry (MS) for protein banddentification

For the identification of the proteins on the SDSJE gels, a method described by Devle et al.
(2014) was used for cutting the bands, in-gel cddn, alkylation, and trypsin digestion and
elution of peptides. Dried peptides were dissolveldading solution (0.05 %TFA, 2% ACN in
water) before it was loaded onto a nano-UPLC (R10D3 -Dionex/Thermo Fisher Scientific,
Bremen, Germany) equipped with a trap column (AotlBepMap100, C18, 5 um, 100 A, 300
pm i.d. x 5 mm, Thermo Fisher Scientific, Bremeryi@any); followed by back flushing onto
a 50 cm x 75 pm analytical column (Acclaim PepM&LR C18, 2 um, 100 A, 75 pumi.d. x
50 cm, nanoViper, Bremen, Germany). The separatidhe peptides was attained by a 45 min
gradient from 4 to 40 % solution B (80 % ACN, O0.X&mic acid) at a flow rate of 300
nL/min. The Q-Exactive MS (Thermo Fisher Scientifdremen, Germany) was adjusted to
scan (300-1600 m/z) mode at resolution (R) 70.@0@ subsequent (up to) 5 MS2 scans at
R=35000 and 28 neutral collision energy. In MS/Miagly charged precursors and precursors

with z>5 were excluded with a dynamic exclusion3@t seconds. The raw data files were
8
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converted to mg format by using the masconvert ndeodwf ProteoWizard
(http://proteowizard.sourceforge.net/). An in-holdascot (v.2.4) server was used for database
search (Swissprot, taxonomy - other mammals). Malesance for MS and MS/MS was 10
ppm and 20 mamu, respectively and 2 missed cleavagee allowed. Carbamidomethylated
cysteine and oxidized methionine were the seledigdd and variable modifications,

respectively.

2.6 Peptide identification by UPLC and Quadrapole-Tme Of Flight (Q-TOF) MS

A method described by Furlund et al. (2013) wasiusedesalt and concentrate the peptides
from the G20, G40, D5 and D120 samples. The metihestribed by Qureshi, Vegarud,
Abrahamsen & Skeie (2012) with some modificatiorasviollowed for the identification of
peptides. In brief, a nanoACQUITY UPLC® (Waters, Milford, USA) coupled with a Q-TOF
Ultima MS (Micromass Ltd., Manchester, UK) was uded this purpose. The UPLC was
equiped with 5am symmetry C18 trap column (18®n x 20 mm; Waters, Milford, USA) and
1.7um BEH C18 analytical column (7pm x 100 mm; Waters, Milford, USA). Peptide
mixtures (containing 0.5% formic acid) were appltedhe UPLC and each sample was run in
MS and data dependent tandem MS mode. Non-redupdatgin sequence database version
NCBInr 20130131 (22749596 sequences; 781987254fures was used to search the resulted

peak list.

2.7 Multiple sequence alignment (MSA) of peptides

Minimal overlap peptides of every samples weretstbcThen the pool of gastric (G) and
duodenal (D) peptides were made from G20 and G4Dfieom D5 and D120, respectively.
Clustal omega (version: CLUSTAL O (1.2.0); httpww.ebi.ac.uk/Tools/msa/clustalo/) was

used to compare the fortifed buffalo milk with fald skimmed milk (data obtained from
9



201 Islam, Ekeberg, Rukke & Vegarud, 2014b) for theiai@ D peptides. The consensus sequence
202 was obtained from MS editor Jalview 2.8 (http://wyalview.org/). The amino acid sequence
203  of asr, 0sr, B- and k-casein and3-Lg were taken from http://www.nchi.nlm.nih.gov/ dan
204  http://www.uniprot.org/. The minimal overlapped fidps were also aligned on to the
205 respective protein’s sequence to localize the pigtie site and a comparison with skimmed
206 buffalo milk (data obtained from Islam, Ekeberg,kRel & Vegarud, 2014b) was also made.

207  This was done by a modified method according tdufRgret al. (2013).

208 2.8 Lipid analysis

209 The fatty acid composition of neutral lipid (NL) cariree fatty acid (FFA) was done by a
210 method described by Devle et al. (2014) with sonodifications. The procedure involves total
211 lipid extraction, solid phase extraction (SPE) df &hd FFA, formation of fatty acid methyl
212 esters (FAMEs) and finally the Gass Chromatogradags Spectrometry (GC-MS) analysis of
213 FAMEs to obtain the fatty acid composition of tlespective fraction. The extracted total lipids
214  were dried under nitrogen gas at 37 °C. Two mL rdftom was used to redissolve the dried
215  total lipids and 1 mL of it was applied on to tiguid handling robot (Gilson, GX-274 ASPEC,
216  Middleton, USA) for the SPE purpose. Again the NhdaFFA in chloroform and diethyl
217  ether:acetic acid (98:2), respectively were drie@7a°C under the stream of nitrogen gas. All

218 the samples were run in triplicate.

219 3. Results
220 3.1 Protein digestion
221  The degradation pattern of the milk proteins imskied and cod liver oil fortified buffalo milk

222 are shown in Figure 1A and 1B, respectively. Theets showed considerable gastric
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degradation after 20 min and were completely deggtaadter 40 min gastric digestion, leaving
behind only traces of casein bands.

Both the a-lactalbumin andp-lactoglobulin seemed to be resistant to gastrigestion.
However, in the duodenal phase, they were degradeg fast and completely after 5 min.
Protein bands (D5) in the SDS-gels were identibgdJPLC-MS. The results revealed that the
origin of this bands were bovinelactalbumin. No difference in the protein degrasiapattern

of skimmed and omega-3 enriched buffalo milk waseobed (Figure 1A and B).

3.2 Site of proteolysis and peptides

Localization of the identified peptides in the whiglequence of the respective protein is shown
in Figure 2. The fortified buffalo milk showed vetitle difference in peptide pattern as
compared to the skimmed buffalo milk. Some protgolsegions vary, however, only by a few
residues. The major differences detected (>4 residwere in the following fragments: f165-
180, f159-163 and f181-193 of;-casein, f114-120, f101-109, f86-94, f121-138, £16® and
f189-193 ofasrcasein. Variations in the fragments of other pnstevere f60-95, f109-115,
f172-178, f185-190 and f192-197 fpicasein; f39-51, f63-71 and f127-145w€tasein and f19-
29, f50-75 and f143-155 ¢F-Lg. Theas;- andp-casein were degraded more extensively than
the other proteins and-casein andB-Lg were degraded mostly in gastric and duodenal
digestion, respectively.

Total numbers of identified peptides from each @roare given in Table 1. The peptides f84-
108 and f96-108 fronfi-casein were identified in all the gastric and dereal samples. Few
other peptides from all the proteins also showeistance in one or two subsequent steps of
digestion. The comparison between fortified anansked buffalo milk regarding the individual

minimal overlapped peptides ends up with greateilaiities (Figure 3).
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3.3 Lipolysis of neutral lipid and fatty acid compgition of free fatty acids

The lipolysis of neutral lipid and subsequent re¢eaf free fatty acids at different phase and
steps of digestion are given in Figure 4. Lipolyses very low during gastric phase. However,
a rapid lipolysis was shown within the first 30 nof duodenal digestion, thereafter lipid
digestion seemed to level off. In gastric 40 mim @aluodenal 30, 60 and 120 min digested
samples, the proportion of the neutral lipid (%)sv88.13, 72.32, 72.38 and 68.08, respectively.
Changes in the free fatty acid concentration whthltpolysis of respective individual fatty acid
are given in Table 2. The concentration in the @wmadl digested samples showed a little
variation among them corresponded to Figure 4. Agribre saturated fatty acids, the highest
lipolysis was observed in C18:0 and lowest was14:G. The observed lipolysis of C16:0 was
4% more than the C14:0 and C12:0 showed highelyBgothan both of them.

In monounsaturated fatty acids, C20:1 o¥®showed 12% and 5% more lipolysis than C16:1
n-7 cis and C18:1 n-is, respectively. The observed lipolysis of C22:1 ai®was 7% more
than C18:1 n-@is. Nevertheless, they showed 1-15% higher lipolisas the C16:1 n-is and
C18:1 n-9cis. In omega-6 polyunsaturated fatty acids, C18:2cs8howed 17% less lipolysis
than C20:4 n-&is. Both the omega-3 polyunsaturated fatty acids,.:&£263 cis and C22:6 n-3
cis showed similar amount of lipolysis. Total amouhtrmnounsaturated fatty acids showed 2
and 7% higher lipolysis than the total saturateitl facids and polyunsaturated fatty acids,

respectively.

4. Discussion
4.1 Protein digestion and generation of peptides
Pepsin is the main proteolytic enzyme in the gastampartment. In the upper part of the

duodenum, trypsin, chymotrypsin, lipase and amytgethe main enzymes. In the duodenal
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digested samples, many bands appeared in 60-30dddan (Figure 1A & B. a, b, ¢ and d),
that have been identified as digestive enzymebenHDJ (Devle et al., 2014). All the caseins
were more or less completely digested in the gagihase, whilea-lactalbumin andp-
lactoglobulin were resistant. The denser appearahbands in the region eflactalbumin and
B-lactoglobulin may be because of accumulation obtgn degradation products with

overlapping molecular weight.

During early (5 min) duodenal digestion, botfactalbumin ang-lactoglobulin were digested.
No differences in the digestion pattern of casemdactalbumin orp-lactoglobulin were
observed between skimmed and fortified milk wittd diver oil. This is in line with another
study where no interference of milk fat in the detation of the proteins in full fat buffalo milk
was observed (Islam, Ekeberg, Rukke & Vegarud, BRldowever, this is contrary to a study
on bovine milk whereB-lactoglobulin was found resistant to duodenal sliga in full fat
cow’s milk (Devle et al., 2014). In another stughyrified p-lactoglobulin showed increased
digestion when adding linoleic acid (Le Maux et @013). However, the negative effect of
fatty acids was also evident in a study where tlesgnce of oleic acid and monoolein reduced
the positive effect of bile acid ifi-lactoglobulin digestion (Gass, Vora, Hofmann, Gé&y
Khosla, 2007). The possible reasons for the comtt@y results may be the differences in the
amino acid sequence and thereby structure or ircdheentration of-lactoglobulin. Buffalo
milk contains les$-lactoglobulin (4.3% of total protein) than cow’silkn(8-10% of total
protein) (Islam, Ekeberg, Rukke & Vegarud, 2014ajd may thereby be more easily
degradable. Nativg-lactoglobulin has a 3-dimensional structure thaims a hydrophobic
barrel, which could bind lipids that may affect tdegradation of the molecule. Bile salt

concentration in the duodenal juice may be andtheting factor affecting the degradation of
13
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313

B-lactoglobulin (Devle et al.,, 2014 and Gass, Vdiafmann, Gray & Khosla, 2007). The
binding of fatty acid could stabiliz@-lactoglobulin during digestion, but if the bilei@c
concentration is higher than 2.0 mM, as it wasun study, it should be enough to bindfto

lactoglobulin leading to destabilization and furtdeodenal digestion.

With regard to the peptide pattern, relatively fpeptides from the proteins were observed,
even though all the proteins were highly digestéds may be due to the fact that amino acids
were not analyzed in this study. In addition, aedgon of di-, tri-, and tetra-peptides (<500-800
Da) was not possible due to the limitation of tHeLIC-Q-TOF/MS, that only detect peptides in
the range of 800-4500 Da. Low variation in the pobjtic site preference between the fortified
buffalo milk and skimmed buffalo milk was obseneattl consistent with the findings of Islam,
Ekeberg, Rukke & Vegarud, (2014b). The presengaafne in all most all the peptides along
with leucine and/or isoleucine and/or valine arelime with other reports (Islam, Ekeberg,
Rukke & Vegarud, 2014b; Furlund et al., 2013 andlézimce et al., 1998). Proline residues in
the amino acid sequence seems to be very resigiafurther proteolysis. Only peptides
identified as fragments, f64-71 from;-casein during gastric digestion, f86-94 fragcasein
during duodenal digestion and f101-112 fr@rAactoglobulin during duodenal digestion did not
contain any proline residue but still contain eitleicine or isoleucine or valine. Chabance et
al. (1998) identified similar peptide frofrcasein (f29-41 and f30-41) ang;-casein (f35-49
and f120-131) during digestion of milk in the starhaf infants; and further from lactoferrin
(f382-389; f442-447) ands;-casein (f14-18) during duodenal digestion. Seegms that some
hydrophobic amino acids in a protein sequence @sdribute to its resistance towards further

proteolysis.
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4.2 Lipolysis

Lipases are enzymes that hydrolyze triacylglycetolgee fatty acids and monoacylglycerols.
There are two main lipases in the gastrointestiredt, gastric lipase and pancreatic lipase.
Gastric lipase is reported to hydrolyze up to 3@dietary lipids (Pafumi et al., 2002; Armand
et al., 1999), though the exact contribution ofdoi@enal lipases to the hydrolysis of lipids is
still debated (Gallier et al., 2013; Mu & Hoy, 200&mand et al., 1999; Carriere, Barrowman,
Verger & Laugier, 1993). The optimum pH for the tgaslipase is 5.0 - 6.0 and highly stereo-
specific tosnl and sn3 position of the triacylglycerol (Carriere et,all994; Carriere,
Barrowman, Verger & Laugier, 1993; Tiruppathi & Balbramania, 1982). According to
Armand (2007), pancreatic lipase attacks the dsteds atsn-l andsn3 position of the
triacylglycerol.

The minor extent of gastric lipolysis observedtiwe present study can be explained with
insufficient secretion of gastric lipases, sinces tholunteers were in fasted/semi-fasted
condition (Devle et al., 2014). They were not stised for lipid digestion and had a low pH
2.5, far away from the optimum for the activitytbe gastric lipase. In both cow’s milk (Devle
et al., 2014) and buffalo milk (Islam, Ekeberg, Rel& Vegarud, 2014b), only minor lipolysis
during gastric digestion was observed. Howeveasaihcreases in the lipolysis of the milk fat
during the first 30 min of the duodenal digestioasvobserved. Thereafter the lipolysis leveled
off (60-120 min). The results in the present stgtgwed the similar trend of lipolysis of the
cod liver oil. A maximum of about 30-35% free fatégid was released in all the studies
indicating a product inhibition due to the statiodsl used (Devle et al., 2014; Gallier, Ye &

Singh, 2012). Little variation in the fatty acidnmentration of the free fatty acids among the
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duodenal digested samples is also in agreementDeathe et al. (2014) and Islam, Ekeberg,
Rukke & Vegarud, (2014b).

Zeng et al. (2010) reported a stereo-specific rst distribution of fatty acids in the
triglycerides of the cod liver oil. This distribah is important in lipid digestion as the
pancreatic lipase attacks the1 andsn3 ester bond of the triglycerides. Approximate8g®

of the C18:0 in cod liver oil was found in that fiim, while only ~69% of C14:0 was shown,
and this supports the variation observed betweefifghlysis of C18:0 and C14:0 in the present
study. The higher lipolysis in C16:0 than the Cl4dh also be explained by ~10% more
presence of C16:0 atr1l andsn-3 than the C14:0. Zeng et al. (2010) did not idel€12:0 in
their study, but the present results suggest thatpancreatic lipase preferred position have
more C12:0 than C14:0 and C16:0.

The stereo-specific distribution of fatty acids add liver oil (Zeng et al., 2010) partially
supports the lipolysis of individual monounsatudatatty acid. The presence of C20:1 @i
atsnl andsn3 is 2 and 9% less than C16:1 migand C18:1 n-Zis, respectively but showed
more lipolysis than them. Being present in sam@a@ntton (~89%) at lipase preferred position,
lipolysis of C22:1 n-Scis and C18:1 n-tis was different. But higher lipolysis in these two
fatty acids compared to C16:1 nefs and C18:1 n-is can be explained by their more
presence a&nl andsn3 (3 to 10 %).

The lipolysis of individual polyunsaturated fattgich was not in line with the stereo-specific
distribution of the fatty acids of cod liver. Apptimmately 81% of the C18:2 n@isis present at
sn1l andsn3 position, which is 51% more than C20:4 rci€ but not reflected so in the
observed lipolysis. Both the C20:5 ne® and C22:6 n-Zis showed similar lipolysis though
their presence a&n1 andsn3 is different. Zeng et al. (2010) reported thigyfacid distribution
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in total lipids, without considering the fractiohlgids (like neutral lipid, polar lipid etc.). Bu
here we only discussed about the lipolysis in rauipid and fish oil phospholipids contain a
considerable part of the polyunsaturated fatty ¢gruger, 1967). This may be the reason of
inconsistency between the present results andejherted fatty acid distribution of cod liver
oil. Phospholipid fraction was not included in {resent study as Devle et al. (2014) observed
non-significant digestion of phospholipids iex vivo condition because of lack of
phospholipase in human duodenal juices or insefficactivation of the enzymes during the
digestion.

However, higher lipolysis in total monounsaturatattly acids followed by total saturated fatty
acids and total polyunsaturated fatty acids, iagreement with their proportionate presence at
lipase preferred positiosnt1 andsn-3. It may be noteworthy that, from the molecukansture
point, the fatty acid distribution pattern of fiskis are very complex at any given time for each
species (Gruger, 1967). But literature on steresi$ip distribution of cod liver oil fatty acid is
very scanty and only found the report of Zeng e{(2010). So the variation in the distribution
pattern is not conclusively evident yet which igortant in interpreting the digestibility data.
For example, variation in the stereo-specific asition of the milk fatty acid in the
triacylglycerol is evident from different reportsBlasi et al. (2008), Maansson (2008), Angers,
Tousignant, Boudreau & Arul (1998) & Jensen and bleng (1995).

5. Conclusions

Fortification of cod liver oil as a source of omae§ fatty acids to skimmed buffalo milk did
not affect the milk protein digestion and subseqysgptide generation. No lipolysis was
observed in the gastric phase, thereafter faslyBmoccurred during the first 30 min duodenal
digestion and remained more or less stable forri20digestion. Higher lipolysis of the total
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monounsaturated fatty acid was observed compartetttmtal saturated fatty acid and the total

polyunsaturated fatty acid. Among all the unsatdditty acid, eicosapentanoic acid (EPA)

and docosahexanoic acid (DHA) showed lowest lipslyShe results showed that, skimmed
buffalo milk fortified with cod liver oil may be aeffective carrier of omega-3 fatty acids and
the oil enrichment did not affect the degradatibthe immunogenic proteing;lactoglobulin
andasi-casein.
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534 Table 1: Number of peptides identified from omegai®iched buffalo skimmed milk at

535 different phases and stepsesfvivodigestion from different milk protein.

Protein G20 G40 D5 D120
as-CN 18 19 08 02
aszCN 03 - 03 05
B-CN 25 21 39 27
k-CN 14 03 01 01
B-Lg - - 05 04

536 All the identified peptides counted excluding theppdes from the undigested control milk
537 samples. G20, gastric digestion at pH 5.0 for 26; @40, gastric digestion at pH 2.5 for 20
538 min after 20 min gastric digestion at pH 5.0; Disld@120, duodenal digestion for 5 and 120
539 min at pH 7.0, respectively.

540
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541 Table 2. Fatty acid (FA) concentrations (mean+SI@® mL* milk) in the free fatty acid
542  fraction of omega-3 enriched buffalo skimmed miNumbers given during digestion with

543 human gastric (G) and duodenal (D) juices whicle a€ludes the lipolysis (%) of individual

544  FA in the neutral lipid (NL) fraction.

FA G40 min D30 min D60 min D120 min Lipolysis (%)
C12:0 6.81+4.5 61.33+17.0 47.2+21.7 54.6+7.3 43.7
C14:0 9.9+1.2 513.1+59.5 432.5+104.1 550.7+60.9 224.
C16:0 50.3£3.2 1683.0+219 1404.0+351.0 1669+155.6 852
C18:0 47.612.7 635.9+£142.5 524.0+£167.4 603.5+91.3 7.64
YSFA 107.949.0 2832.0+420.0  2361.0+623.0 2823.0+308 30.4
C14:1 n-5cis nd 22.745.1 17.746.2 21.97+2.8 100.0
C16:1 n-7cis nd 345.8455.1 327.7+28.1 606.2+98.5 24.7
C18:1 n-Scis 13.7+#1.1 1539.0+145.2  1249.0+342.0  1782.0+264.0 6 31.
C18:1 n-Tcis nd 132.7+24.7 123.6+9.9 258.7+49.4 32.4
C20:1 n-Scis nd 185.7+54.8 191.8+30.5 458.4492.3 36.5
C22:1 n-Scis nd 77.2£19.0 81.28+11.6 190.3+50.2 39.2
~MUFA 13.74+1.1 2303.2+70.0 1991.0+341.0  3318.0+B857. 324
C18:2 n-6cis nd 166.7+16.8 140.2+29.0 192.3+34.2 24.5
C20:4 n-6cis nd 22.4+2.5 25.47+3.7 64.69+11.63 41.4
Yomega-6 - 189.2+15.6 165.6+25.6 256.9+45.8 33.3
C20:5 n-3cis nd 56.62+6.3 64.16+7.9 180.1+33.8 23.1
C22:6 n-3cis nd 60.22+11.1 83.8+13.5 228.3+48.2 23.1
Yomega-3 - 116.849.2 147.9421.4 408.4+82.0 23.1
YPUFA - 306.0+23.8 313.6+7.2 665.3+127.8 25.2

545  Lipolysis: {(FA in undigested NL - FA in D120 minly/ FA in undigested NL} x100. nd: not

546 detected;XSFA: total saturated fatty acidgEMUFA: total monounsaturated fatty acids;

547  XPUFA: total polyunsaturated fatty acids.

548
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549  Figure 1
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Figure 2

asi-Casein (Accession number: 062823)

&0
&40
D5
D120

&0
40
D5
D120

G20
40
D5
D120

G20
&40
D5
D120

1
1
1
1

61
61
61
61

121
121
121
121

181
181
181
181

MKLLI LTCLVAVALARPKOPI KHQGL POQGVLNENL L RFFVAPFPEVFGKEKVNELSTDI G 6
MKLLI LTCLVAVALARPKQPI KHQGL PQGVLNENLL RFFVAPFPEVEGKEKVNELSTDI G 6
MKLLI LTCLVAVALARPKOPI KHQGL POQGVLNENL L RFFVAPFPEVFGKEKVNELSTDI G 6
MKLLI LTCLVAVALARPKQPI KHQGLPQGVLNENLLRFFVAPFPEVFGKEKVNELSTDI G 6

SESTEDQAMEDI KQVEAESI SSSEEI VPI SVEQKHI QKEDVPSERYLGYLEQLLRLKKYN
SESTEDQAMEDI KQVEAESI SSSEEI VPI SVEQKHI QKEDVPSERYL GYLEQLLRLKKYN
SESTEDQAMEDI KQVEAESI SSSEEI VPI SVEQKHI QKEDVPSERYLGYLEQLLRLKKYN
SESTEDQAMEDI KQVEAESI SSSEEI VPI SVEQKHI QKEDVPSERYLGYLEQLLRLKKYN

VPQLEI VPNLAEEQL HSNKEGI HAQQKEPM GVNQELAYFYPQL FRQFYQL DAYPSGAW
VPQLEI VPNLAEEQLHSVKEG HAQQKEPM GVNQELAYFYPQLFRQFYQL DAYPSGAWY
VPQLEI VPNLAEEQL HSNKEG HAQQKEPM GVNQELAYFYPQL FRQFYQL DAYPSGAW
VPQLEI VPNLAEEQLHSMKEG HAQQKEPM GVNQELAYFYPQL FRQFYQL DAYPSGAWY

YVPLGTQYPDAPSFSDI PNPI GSENSGKTTIMPLW 214
YVPLGTQYPDAPSFSDI PNPI GSENSGKTTMPLW 214
YVPLGTQYPDAPSFSDI PNPI GSENSGKTTMPLW 214
YVPLGTQYPDAPSFSDI PNPI GSENSGKTTMPLW 214

asrCasein (Accession numbep3Y443)

&0
40
D5
D120

&0
&40
D5
D120

G20
40
D5
D120

&0
40
(€3]
D120

e

121
121
121
121

181
181
181
181

MKFFI FTCLLAVALAKHTMEHVSSSEESI | SQETYKQEKNVAI HPSKENLCSTFCKEVI R 60
MKFFI FTCLLAVALAKHTMEHVSSSEESI | SQETYKQEKNVAI HPSKENLCSTFCKEVI R 60
MKFFI FTCLLAVALAKHTMEHVSSSEESI | SQETYKQEKNVAI HPSKENLCSTFCKEVI R 60
MKFFI FTCLLAVALAKHTMEHVSSSEESI | SQETYKQEKNVAI HPSKENLCSTFCKEVI R 60

0
0

0

120
120
120
120

180
180
180
180

NANEEEYS| GSSSEESAEVATEEVKI TVDDKHYQKALNEI NQFYQKFPQYLQYLYQGPI V 120
NANEEEYS| GSSSEESAEVATEEVKI TVDDKHYQKALNEI NQFYQKFPQYLQYLYQGPI V 120
NANEEEYS| GSSSEESAEVATEEVKI TVDDKHYQKALNEI NQFYQKFPQYLQYLYQGP! V 120
NANEEEYS| GSSSEESAEVATEEVKI TVDDKHYQKALNEI NQFYQKFPQYLQYLYQGPI V 120

LNPWDQVKRNAVPI TPTLNREQL STSEENSKKTVDMVESTEVI TKKTKLTEEDKNRLNFLK
LNPWDQVKRNAVPI TPTLNREQL STSEENSKKTVDMVESTEVI TKKTKLTEEDKNRLNFLK
LNPWDQVKRNAVPI TPTLNREQL STSEENSKKTVDMVESTEVI TKKTKLTEEDKNRLNFLK
LNPWDQVKRNAVPI TPTLNREQL STSEENSKKTVDMVESTEVI TKKTKLTEEDKNRLNFLK

Kl SQHYQKFTWPQYLKTVYQYQKAMKPWI QPKTKVI PYVRYL 222
Kl SQHYQKFTWPQYLKTVYQYCQKAMKPWI QPKTKVI PYVRYL 222
Kl SQHYQKFTWPQYLKTVYQYCQKAMKPWI QPKTKVI PYVRYL 222
Kl SQHYQKFTWPQYLKTVYQYQKAMKPWI QPKTKVI PYVRYL 222
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611

612
613
614
615

616
617
618
619

620
621
622
623

624
625
626
627
628
629

630

631
632
633
634
635

636
637
638
639

640
641
642
643

644
645
646
647
648

649

B-Casein (Accession numbe&p9TSIO)

&0
&40
D5
D120

&0
40
D5
D120

G20
40
D5
D120

G20
&40
D5
D120

1
1
1
1

61
61
61
61

121
121
121
121

181
181
181
181

MKVLI LACLVALAL AREL EELNVPGEI VESLSSSEESI THI NKKI EKFQSEEQQQVEDEL
MKVLI LACLVALALAREL EELNVPGEI VESLSSSEESI TH NKKI EKFQSEEQQQVEDEL
MKVLI LACLVALALAREL EELNVPGEI VESLSSSEESI TH NKKI EKFQSEEQQQVEDEL
MKVLI LACLVALALAREL EELNVPGEI VESLSSSEESI TH NKKI EKFQSEEQQQVEDEL

QDKI HPFAQTQSLVYPFPGPI PKSLPONI PPLTQTPVVWPPEL QPEI MGVSKVKEANVAPK
QDKI HPFAQTQSLVYPFPGPI PKSL PONI PPLTQTPVVWPPEL QPEI MGVSKVKEAVAPK
QDKI HPFAQT QSL VYPFPGPI PKSL PONI PPLTQTPVVWPPEL QPEI MGVSKVKEAMAPK
QDKI HPFAQT QSLVYPEPGPI PKSL PONI PPLTQTPVVVPPFL QPEI MGVSKVKEANVAPK

HKEMPFPKYPVEPFTESQSL TL TDVENL HL PL PL L QSVWWHQPPQPL PPTVMFPPQSVL SL
HKEMPFPKYPVEPFTESQSL TL TDVENL HL PL PL L QSWWHOPPQPL PPTVM-PPOSVL SL
HKEMPFPKYPVEPFTESQSLTL TDVENLHL PLPL L QSWWHQPPQPL PPTVMFPPQSVL SL
HKEMPFPKYPVEPFTESQSLTL TDVENLHL PL PL L QSWHOPPOPL PPTVMFPPOSVL SL

SQSKVL PVPQKAVPYPQRDVPI QAFLLYQEPVLGPVRGPFPI | V 224
SQSKVL PVPQKAVPYPQRDVPI QAFLLYQEPVLGPVRGPFPI | V 224
SQSKVLPVPQKAVPYPQRDVPI QAFLLYQEPVLGPVRGPFPI | V 224
SQSKVLPVPQKAVPYPQRDVPI QAFLLYQEPVLGPVRGPFPI | V 224

k-Casein (Accession numbek8KRP5)

&0
40
D5
D120

&0
40
D5
D120

G20
&40
D5
D120

G20
40
D5
D120

12
12
12
12

18
18
18
18

MWKSFFLWTI LALTLPFLGAQEQNQEQPI RCEKEERFENDKI AKYI Pl QYVLSRYPSYG
MWKSFFLWTI LALTLPFLGAQEQNQEQPI RCEKEERFFNDKI AKYI Pl QYVLSRYPSYG
MVKSFFLWTI LALTL PFLGAQEQONQEQPI RCEKEERFFNDKI AKYI Pl QYVLSRYPSYG
MWKSFFLWTI LALTLPFLGAQEQNQEQPI RCEKEERFFNDKI AKYI1 Pl QYVLSRYPSYG

60
60
60
60

120
120
120
120

180
180
180
180

60
60
60
60

LNYYQQKPVAL | NNQFLPYPYYAKPAAVRSPAQ LQAQVLPNTVPAKSCQAQPTTMIRHP 120
LNYYQQKPVAL | NNQFLPYPYYAKPAAVRSPAQ LQAQVLPNTVPAKSCQAQPTTMIRHP 120
LNYYQQKPVAL | NNQFLPYPYYAKPAAVRSPAQ LQAQVLPNTVPAKSCQAQPTTMIRHP 120
LNYYQQKPVAL | NNQFLPYPYYAKPAAVRSPAQ LQAQVLPNTVPAKSCQAQPTTMIRHP 120

1 HPHLSFNVAI PPKKNQDKTEI PTI NTI VSVEPTSTPI TEAI ENTVATLEASSEVI ESVPET 180
1 HPHLSFNVAI PPKKNQDKTEI PTI NTI VSVEPTSTPI TEAI ENTVATLEASSEVI ESVPET 180
1 HPHLSFMAI PPKKNQDKTEI PTI NTI VSVEPTSTPI TEAI ENTVATLEASSEVI ESVPET 180
1 HPHLSFMAI PPKKNQDKTEI PTI NTI VSVEPTSTPI TEAI ENTVATLEASSEVI ESVPET 180

1 NTAQVTSTW 190
1 NTAQVTSTW 190
1 NTAQVTSTW 190
1 NTAQVTSTW 190
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651
652
653
654
655

656
657
658
659

660
661
662
663
664

665

B-Lactoglobulin (Accession numbeZ3W955)

&0
&40
D5
D120

G20
40
D5
D120

&0
40
D5
D120

121
121
121
121

MKCLLLALGLALACGAAI | VTOTMKGLDI QKVAGTWYSL AMAASDI SLLDAQSAPLRVY 60
MKCLLLALGLALACGAQAI | VTOTVKGLDI QKVAGTWYSLAMAASDI SLLDAQSAPLRVY 60
MKCLLLALGLALACGAQAI I VTQTVKGLDI QKVAGTWYSLAMAASDI SLLDAQSAPLRVY 60
MKCLLLALGLALACGAQAI | VTQTVKGLDI QKVAGTWYSLAMAASDI SLLDAQSAPLRVY 60

VEELKPTPEGDLEI LLQKVENGECAQKKI | AEKTKI PAVFKI DALNENKVLVLDTDYKKY 120
VEELKPTPEGDLEl LLQKVWENGECACKKI | AEKTKI PAVFKI DALNENKVLVLDTDYKKY 120
VEELKPTPEGDLEI LLOKWENGECAQKKI | AEKTKI PAVFKI DALNENKVLVLDTDYKKY 120
VEELKPTPEGDLEI LLOQKWENGECACKKI | AEKTKI PAVFKI DALNENKVLVLDTDYKKY 120

LL FCMENSAEPEQSL ACQCL VRTPEVDDEAL EKFDKAL KALPVHI RLSFNPTQLEEQCHV 180
LL FCMENSAEPEQSL ACQCL VRTPEVDDEAL EKFDKAL KALPVHI RLSFNPTQLEEQCHV 180
LL FCMENSAEPEQSL ACQCL VRT PEVDDEAL EKFDKAL KALPVHI RLSFNPTQLEEQCHV 180
LLFCMVENSAEPEQSL ACQCL VRT PEVDDEAL EKFDKAL KALPVHI RLSFNPTQLEEQCHV 180

30



666

667

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

693

694
695
696
697
698
699
700
701
702
703
704
705
706
707

708

Figure 3

A) Peptides fromus-casein (gastric phase)

BFG 03~ ce--meemmeemmeoooae SDI PNPI GSENSGKTTM
BSG 07 ~  se-mmemmemmeeoae SDI PNP| GSENSGKTTM
BFG 07 ----- R QKEDVPSERY- - - - - - - - -
BSG 08 ------ |eemeeeem e QKEDVPSERY- - - - - - - - -
BSG- 09 ---PLGT----- QYPD- APLFSDI PN- - - - = - - - = - - -
BFG- 05 YYVPLGT- - - - - QYPD- APSF- - -« == - < e e oo e oo -
BSG- 10 YYVPLGT- - - - - QYPD- APSF- - -« == - < c e oo e e o -
BFG- 06 YYVPLGT- - - - - QYPD- APLF- - -« == - cm e eea o -
BSG 11 YYVPLGT- - - - - QYPD- APLF- - -« == - em e eea o -
BFG 02~  ce---ee--eeaooa- G HAQQKEPM GVNQEL- - - - -
BSG 05 ~  ------ AEEQLHSMKEGH HAQQKEPM GVNQEL- - - - -
BFG- 08 El VPNLAEEQLHSM - - < = = <« =< o oo o ccea o
BFG- 09 El VPNLAEEQUHSMKE- - - - - = = = = =« == = c e oo e
BSG- 06 El VPNLAEEQUHSMKE- - - - < == < === oo oo
BFG- 04 N - S P- KQ Pl KHQGLPQGVLNENL- - - - -
BSG 01 N - S P- KQ Pl KHQGLPQGVLNENL- - - - -
BFG 01 “FVA--- - - PFPE- VFGKEKVNEL- - - - - - - - - - -
BSG- 02 “FVA-------- PFPE- VFGKEKVNELS- - - - - - - - - -
BFG 10 ce--mee--eee- LEQ LLRLKKYNVPQL- - - - - - - - -
BSG 03 ~  ce--mee--eee- LEQ LLRLKKYNVPQL- - - - - - - - -
BFG 11 ~  ce-mmee-meen- FRQ FYQL-- == mmmmmmmm- -
BSG 04 ~  ce---ee--eee- FRQ FYQL-- == mmmmmmmm- -
BFG 12~ ceemmeemmeemee- YQLDAYPSGAW - - - - - - - -
BSG 12 =~ seemeemmeemeeaooas DAYPSGAW - - - - - - - -

Consensus:  YYVPLGIEEQLHQYPEGAPQFQKVPNPGLNENLGKTTM

B) Peptides fromus;-casein (duodenal phase)

BSD- 01 - - - - SDI PNP| GSENSCK:- - - - - - 14
BFD- 05 - - - - SDI PNP| GSENSCK:- - - - - - 14
BSD- 05 EG HAQQKEPM GVNQEL- - - - - - 18
BFD- 03 EG HAQQKEPM GV- - - - - - - - - - 14
BSD-04 ~  cee--meeeo-- El VPNLAEEQLH 12
BFD-07 ~  cee---eeee-- El VPNLAEEQLH 12
BFD- 02 QP! - KHQGLPQGV- - = = = - - - - - - 12
BSD- 03 QP! - KHQGLPQGVLNENL- - - - - - 17
BSD- 06 QP! - KHQGLPQGVLNENL- - - - - - 17
BFD-01 ----- HQGLPQGVLNENL- - - - - - 13
BFD-06 ~  ----------- H QKEDVPSE--- 10
BFD-04 ------ YYVPLGTQYPDAPS- - - - 14
BSD-02 ~  ------ YFYPQ -« c-cmmmn- 5

Consensus: QP HKHQGALPQGVLNENLPEEQLH
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C) Peptides fromas-casein (gastric phase)

BSG 01
BSG 02
BFG 01

Consensus:

VYQYQKAMKPWIQPKTNVI PYVRYL 25
LYQGPI VLNPVDQVKRNAVPI TPTL 25
LYQGPI VLNPVDQVKRNAVPI TPTL 25
-k x *

RS O S S S R

LYQGPI VLNPVDQVKRNAVPI TPTL

D) Peptides fromus-casein (duodenal phase)

BFD- 03
BFD- 01
BFD- 02
BSD- 01
BFD- 05
BSD- 02
BFD- 04
Consensus:

------ NOFYQKFPQ 9
--LYQGPI VLNPWDQV 14
---------- FAWQ 5
-~ TVDDKHYQ- ---- 9
- TVDDKHYQ- ---- 9
TKLTEEDKNRLNFL-- 14
--LTEEDKNRLN---- 10
- - LTEDDKHYQNFPQ

E) Peptides fronf-casein (gastric phase)

BSG 06
BFG 04
BSG 05
BFG 05
BSG 01
BFG 06
BSG 02
BFG 03
BFG 01
BSG 03
BFG 02
BSG 04
BFG 07
BSG- 08
BSG 09
BFG 08
BSG 07
BFG 11
BSG 10
BFG 09
BSG 11
BFG 10
BFG 12
Consensus:

----- QSWWE - - - - - = - = = - HQPPQPLPPTV- -« - Mk -« -« e e oe e e eee e
----- QSWWE - - - - = = = = - HQPPQPLPPTV- -« - Vb ==« == o s oo mcm oo
-------- M === - HQPPQPLPPTV- - - - MFPPQBVL- - - - == === == === == - -
-------- M === - HQPPQPLPPTV- - - - MFPPQEVL- - = - == === == == === - -

------- GVSKVK- - EAMAPKHKENPFPK- - YPVEPFTESQSLTL- - - < = = < <= === == - -
------- GVSKVK- - EAMAPKHKENPFPK- - YPVEPFTESQS- - - - = - = = = === === == - -
---------------- AMAPKHKENPFPK- - YPVEPFTESQSLTL TDVENLHLPLPLL- - -
-------------------------------- PVEPFTESQSLTLTDVENLHLPLPLL- - -
--------------------------------------------- TDVENLHLPLPLLQSW
------------------------------------------ LTLTDVENLHLPLPLLQSW
------------------------------------------- TLTDVENLHLPLPLLGS-
<= LYQEPVLGPVRGPFPI | V- - - - -« = m e e et e i
FLLYQEPVLGPVRGPFPI | V- - = - < = - - s o e ot e e e oo

------------------- LQDKI HPFAQTQS- - - - = == = == === msmmmmmmmecame
- - SLSQSKVLPVP- - - - - - - - QKAVPYPQRDMPI QAFL- - - = =« = =« o cm e em e e e
- - SLSQSKVLPVP- - - - - - - - QKAVPYPQRDMPI QAFL- - - = =« = =« < c e e om e e e

------------------------------ PVWVPPFLQPEl MOVSKVKE- - - - - - = = - - -
------------------------------ PVWVPPFLQPEl MBVSKVKE- - - - - - < = - - -
----- QSLVYPFPGPI PK- - - - = = = = === = = s oot e oo e e
----- QSLVYPFPGPI PK- - - - = = = = =« = = = s oot e e e e e
------- LVYPFPGPI PNSLPQNI PPLTQT- - < = <« == = s e s mm e e mmee o ee e
------- LVYPFPGPI PKSLPQNI PPLTQT- - = = = = === == s == me e e mee e meee e
------- LVYPFPGPI PKSLPQNI PPLTQTPVWVPPFLQPEI M - < < = - < ===« <= =< - -
FLLLQQSLVYPVPGP| PKALHQKI QPLPQTVWPVEPFLESQ LTLTDVENLHLPLPLLQSW
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F) Peptides fronf-casein (duodenal phase)

BFD-08 ~  -e---ee--eea-- SWWHQPPQPLPPTV- - - - - = - - c e oo ee - -
BSD-04 ce--mee-eeao- VWHQPPQPLPPTV- - - - MFPPQ- - - SV- - - -
BFD-09 ce---ee-mmeao-- VWHQPPQPLPPTV- - - - MFPPQ- - - SV- - - -
BSD-05 ~  ce--eee-meeao-e- MHQPPQPLPPTV- - - - MFPPQ- - - SVLS- -
BFD-10 se--mee-meeao-e- MHQPPQPLPPTV- - - - MFPPQ- - - SVL- - -
BFD-14 -------- AVPYPQ- - - - <= = sm e o e eea oo
BSD- 06 - - AQTQSLVYPFPGPI PK- - - - < <= = < c s o mmemmmcee e
BFD- 04 - - AQTQSLVYPFPGPI PK- - - - < <= = s« 2o mmemmmeae e
BSD-07 s SLPQNI PPLTQTPVWVPPFLQPEI MGVS
BFD-06 ~  -----emmmmemee- SLPQNI PPLTQTPVWVPPFLQPEI MGVS
BFD-07 ~  -------- VYPFPGPI PNSLPQNI PPLTQTPVWVPPFLQPEI M - -
BSD-08 ------- LVYPFPGPI PNSLPQNI PPLTQTPVWVPPFLQPEI M - -
BFD-05 ~  ------- LVYPFPGPI PNSLPQNI PPLTQT- - - = - -« === === - - -
BSD- 01 SLTLTDVENLHLPLPL- - <« = < -« oo cc e o oce o e
BFD- 11 SLTLTDVENLHLPLPL- - - - - -« == - e e mee e eee e oo
BSD- 02 = LTLTDVENLHLPLPLL- - - - -« == = s e e mee e ee e e o
BFD- 12 = LTLTDVENLHLPLPLL- = - - -« == = e e e mee e eee e oo
BFD-13 ~  -------- VLPVPQ - - - = = s s mem e mee oo
BSD- 09 - - LYQEPVLGPVRGPFPI | V- - - = - e e mee e
BFD- 02 - - LYQEPVLGPVRGPFPI | V- -« < - e e mee e eee e
BSD- 03 < - - QVEDELQDKI HPF- - = = = <<« oo cc e o oce o cea oo
BFD- 01 - - - QVEDELQDKI HPF- - = - - - <« e e mee o eee e
BSD-10 ce----e--- HKEMPFPK- - - < < = < <« 2o ce e o e e eea o
BFD-03 ~  ---------- HKEMPFPK- - - - = = = =« = = o me e e e

Consensus:  SLTLTEVEVLPFPGPFPHQPPQPLPPTVQTPVMFPPFLQPEI MGVS

G) Peptides fromr-casein (gastric phase)

BSG 02 ceee-mmeeeeemmeoao- MAI PPKKNQDKTEI PTINT 19
BFG 01 =~ cee-mmeeaooaao- MAI PPKKNQDKTEI PTINT 19
BSG 07 ~  se-mmmeeemmmeeao- YYQQKPVAL- - - - === - - 9

BFG 03 ~  ce----eeeo--oa- GLNYYQQKPVAL- - == = - - - - - - 12
BSG 06 --------- LI NNQFLPYPYYA- KPAAVRSPAQ LQ -- 26
BFG 04 ~  --------- LI NNQFLPYPYYA- KPAAVRSPAQ LQ -- 26
BSG 03 cee------- TRHPHPHLSF- - - - === 2o - o e e em- - 10
BFG 05 ~  ---------- TRHPHPHLSF- - - - === == oo o mmeem o - 10
BSG 01 FNDKI AKY! Pl QYVL- - = === oo mmmmee oo mee o 15
BFG 02 FNDKI AKY! Pl QYVL- - === == o mmmeme oo emee o 15
BSG 05 ~  ------- YVLSRYPSY- - - - -« = 2o o mmmeeee oo 9

BFG 06 ------- YVLSRYPSY- - - - -« = 2o o mmeeee o 9

BSG 04 -------- VLSRYPSYGLNY- - - <« === - ccccaammoe 12

Consensus: FNDKI AKYVLI RYPSYGLNYYAI KPAALQDKAEI LQI NT

H) Peptides fronfi-lactoglobulin (duodenal phase)

BSD- 01 - - - - KI DALNENK- - VLV- - - - - 12
BFD- 01 - - - - KI DALNENK- - VLV- - - - - 12
BSD- 03 VYVEELKPTPEGDLEI LLQ- - - - 19
BSD- 04 VYVEELKPTPEGDLE- - - - - - - - 15
BFD- 03 VYVEELKPTPEGDLEI LLQ- - - - 19
BsD-02 -------- TPEVDDEAL EKFDKA 15
BFD-02  -------- TPEVDDEAL EKFDK- 14

Consensus:  VYVEElI KPTPEGDLEVLEKFDK-
33
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Figure Legend

Figure 1. Protein degradation profile of A) skimmed buffahilk and B) skimmed buffalo milk
fortified with cod liver oil after human gastric J@nd duodenal (D) digestion. Lane 1, Low
molecular weight marker. Lane 2, undigested mil&né 3-6, follow up gastric 20 min (G20)
and 40 min (G40) and duodenal 5 min (D5), 30 miBQR 60 min (D60) and 120 min (D120).
MW, molecular weight; kDa, kilo dalton; SA, serunib@min; CN, casein;p-Lg, p-
lactoglobulin; a-LA, a-lactalbumin; D5: 1 and 2g-lactalbumin with B-lactoglobulin; a,
amylase; b, carboxypeptidase, chymotrypsin , eastéipase, gastricsin and amylase; c,
carboxypeptidase, elastase, lipase, trypsin andlasety d, elastase, carboxypeptidase,

chymotrypsin, amylase, lipase and trypsin.

Figure 2. Comparative peptide regions derived from the diffieé milk proteins of buffalo
skimmed (grey) and omega-3 enriched buffalo skimmék (underlined) afteex vivogastric
(G) and duodenal (D) digestion. Single letter amawad code used. bold and Italic residues,
signal peptide. TheH at G20 and G40 was 5.0 and 2.5, respectivelyaariogb and D120 was 7.0.

G20 and G40, gastric digestion for 20 and 40 maspectively; D5 and D120, duodenal digestion for

05and 120 min, respectively.

Figure 3 (A-H). Multiple sequence alignment (software: CLUSTAL ©2(0)) of peptides
generated from different proteins of omega-3 emdchbuffalo skimmed milk (BF) and
skimmed (BS) buffalo milk by gastric (G) and duodke(D) digestion. Numbers on the left is
the serial number of the minimal overlapped pegtiddumbers on the right indicates the

number of amino acid residues in that peptide. €osiss obtained from Jalview 2.8. ., residues
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828

829

830

831

832

833

with weakly similar properties and conserved; esidues with strongly similar properties and

conserved; *, residue which is fully conserved.

Figure 4. Proportion (%) of lipolysis of neutral lipids (NL)f omega-3 enriched buffalo
skimmed milk and subsequent formation of free fattids (FFA) during digestion with human
gastric (G) and duodenal (D) juices. G40, gastigestion at pH 2.5 for 20 min after 20 min
gastric digestion at pH 5.0; D30, D60 and D120,ddunal digestion for 30, 60 and 120 min,

respectively at pH 7.0.
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ABSTRACT: Ex vivo digestion of proteins and fat in Red Chittagongtl€amilk from
Bangladesh was carried out using human gastroindéginzymes. This was done to investigate
the milk protein digestion in this bovine breedtwd special focus on the degradation of the
allergenic milk proteinsps;-casein and3-lactoglobulin and also to record the generation of
peptides. Lipolysis of the milk fat and releasefatty acids were also under consideration.
After 40 min gastric digestion all the-caseins were digested completely wiiHactoglobulin
remained intact. During 120 min duodenal digesfidactoglobulin was reduced, however, still
some intacB-lactoglobulin was observed. The highest numbepegitide was identified from
B-casein and all most all the peptides framasein ang-lactoglobulin were identified from
the gastric and duodenal samples, respectivelipetysis was observed in the gastric phase
of digestion. After 120 min duodenal digestion, krfiit showed 48% lipolysis. Medium and
long chain fatty acid showed 6-19% less lipolysian the short chain fatty acids. Among the
unsaturated fatty acids C1&dthers showed highest lipolysis (81%) which was enthran
three times of C182all and all other unsaturated fatty acids showpdlysis ranging from
32% to 38%. The overall digestion of Bangladeshi Rattle milk was more or less similar to
the digestion of Nordic bovine milk (Norwegian RE€dttle). Key Words: Gastric digestion,

Duodenal digestiorus;-caseinB-lactoglobulin, Peptide, Fatty acid).
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INTRODUCTION
The use okx vivodigestion model is important for understanding riechanisms involved in
food digestion and to mimic the human digestioner€hare some other purposes as well for
using such models are - e.g. investigation of Bivaccomponents, study the survivability of
drugs through the gastrointestinal (Gl) tract, stigation of the digestibility of food allergens,
to design food-based delivery system in the Gltteaw to study the structural changes of
ingested components.
According to Ekmekcioglu (2002) and Kalantzi et gR006), the most challenging
physiological parameters are the individual vaoiatin enzymes, acid and bile salt secretion,
substrate availability and retention time in thetga and intestine. The commercial enzyme (s)
preparations are purified from different animal @ps. Generally, the same enzymes purified
from different animal species are likely to varysipecificity, functional enzymatic parameters
and stability (Furlund et al., 2013). But, to datest of thein vitro studies regarding protein
degradation and peptide generation have been donsithg the commercial proteases, mainly
of porcine or bovine origin. Whereas, human Glggics a complex mixture of enzymes, with
their isoforms and inhibitors, and bile salts. Hanple characteristics, enzyme activity, ionic
composition, used mechanical stresses and thetidigeturation profoundly affect the results
of in vitro digestion (Hur et al., 2011) and simulation iof vivo condition will never be
complete (Boisen and Eggum, 1991; Coles et al.5R08owever, making the compromise
between accuracy and ease of utilizationyitro model digestion could be used as a rapid
screening tool for foods with different compositiamd structures (Hur et al., 2011). Coles et al.
(2005) suggest the use of single enzymeis imitro model digestion but according to Boisen
and Eggum (1991), use of a mixture of enzymes isemealistic and Eriksen et al. (2010)

concluded that human digestive juices are preferred
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The milk protein digestion and peptides framvitro digested milk has been done by several
authors (Almaas et al., 2006; Inglingstad et &11® Almaas et al., 2011; Furlund et al., 2013;
Devle et al., 2014; Tidona et al., 2014; Islamlgt2014b). But still more knowledge is needed
because of high variability in milk composition Wween breeds (Miranda et al., 2004; Abd El-
Salam and EI-Shibiny 2011; Medhammar et al., 203&m et al., 2014a) and im vitro
digestion protocol used (Hur et al., 2011; Kopf-&d et al., 2012; Furlund et al., 2013; Islam
et al., 2014b). The structure of milk and milk iatcomposition may have an influence on its
digestibility (Almaas et al., 2006). Tidona et &014) found more rapid degradation [Bf
lactoglobulin ¢-Lg)-I whenf-Lg-Il is absent in donkey’s milk. The heterogépén the amino
acid composition of milk may results in variation peptides formation and content after
proteolysis (Ulleberg, 2011). The rapid degradapattern of allergenic milk protein$;Lg
andasi-casein, in Bangladeshi buffalo milk (Islam et @D,14b) also put some more interest to
check other bovine milk from Bangladesh. In a pvasistudy, Islam et al. (2014a) concluded
that buffalo and Red Chittagong Cattle (RCC) milkowed the highest compositional
characteristics for nutritional and technologicaigerties.

Very few studies have been conducted regardingnthlie lipid digestion and according to
Miled et al. (2000), in general, few studies hawer reported on lipid digestion. Lipid
digestion is more complex than the protein digestegarding the enzymes and physiological
conditions in the gut. Factors like food matrix abdffering capacity, emulsion type (oil
based/water based), individual secretion of bgploljytic enzymes and bile salts affect the
hydrolysis of dietary lipids. According to BoisendakEggum (1991), digestion of one nutrient
may affect the digestion of others. Devle et a801@) and Islam et al. (2014b) showed different
effect of milk lipids on the protein digestion iow (Norwegian Red Cattle) and buffalo milk.

The objective of the present study was to invetitfae digestion of milk from Red Chittagong

4
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Cattle with the special focus on lipolysis and patysis of the allergenic proteings;-casein
andp-lactoglobulin.

MATERIALS AND METHODS
Milk sample
Mixed whole milk from nineteen Red Chittagong Ga(fRCC) was collected from Bangladesh
Livestock Research Institute (BLRI) dairy farm. Sampling wime from the morning milk.
The animals were at different number and stagaaation and the milk production during the
sampling time varied between 1.3 to 5.0 L. The dampvere preserved by bronopol (1
tablet/40 mL milk; D & F control systems, Inc. USAjth minimum delay after they were
milked. All milk samples were kept at -20 °C anansferred to the Norwegian University of
Life Sciences and stored at -20 °C until used. iRetacomposition of RCC milk was reported
by Islam et al. (2014a) and according to them the protein and fat content of the RCC milk
used herein were 38 and 42 g/kg milk, respectively.
Gastrointestinal (Gl) enzymes
Human Gl enzymes as human gastric juices (HGJ)hamdan duodenal juices (HDJ) was
collected and prepared according to the methodlleberg et al. (2011). In brief, aspiration of
juices was done on six healthy, fasted (for attl8dsrs), adult (20-37 years old) volunteers at
Lovisenberg Diakonale Hospital, Oslo, Norway. Aplkei lumen tube (Maxters catheters,
Marceille, France) was used for this purpose. Thetogol used was approved by the
Norwegian Ethical Committee.
Ex vivo digestion
A two phase digestion, gastric and duodenal wasechout according to the method described
by Devle et al. (2014) and Islam et al. (2014b)e Betails of theex vivodigestion model are

given in Table 1. The digestion was carried ouB&afC in a water bath for a total of 120 min
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then the reaction was stopped by placing them-280°C (protein samples) or adding 20 mL
choloroform:methanol (2:1) and then placing int@ 9Z (lipid samples). The digestion was
done in triplicate.

Milk protein degradation profile

The proteins were separated by SDS-PAGE using afieddnethod described by Islam et al.
(2014b). The digested samples were mixed with saipifer and applied on a precast gel (6.5
— 200 kDa; mini PROTEAR TGX™ precast gels, Tris Glycine extended, Bio-Rad
laboratories, Inc. Made in United States) and car86 min at 200 V. Then it was fixed, stained
with Commassie Brilliant Blue, destained and kepprieservation solution.

Protein identification

A method described by Devle et al. (2014) and Isédmal. (2014b) were used to identify the
protein bands in the SDS-PAGE. In brief, the idedtion of each band was done by nano-
UPLC/Q-Exactive MS both from Thermo Fisher ScieatiBremen, Germany. The UPLC was
equipped with a trap column (Acclaim PepMap100, G3@m, 100 A, 300 um i.d. x 5 mm,
Thermo Fisher Scientific, Bremen, Germany) and arBx 75 pum analytical column (Acclaim
PepMap RSLC C18, 2 um, 100 A, 75 um i.d. x 50 camaViper, Bremen, Germany). The Q-
Exactive MS (Thermo Fisher Scientific, Bremen, Gany) was in full scan (300-1600 m/z)
followed by (up to) 5 MS2 scans at resolution (R)ODO and 35000, respectively and the used
neutral collision energy (NCE) was 28. For MS/MSz>5 (‘z’ is the charge) precursors were
excluded. An in-house Mascot (v.2.4) server wagl dse the database search. The data base
was National Center for Biotechnology InformatiddQBI), number: 20130131 (22749596
sequences; 7819872540 residues).

Identification of peptides
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Peptides were identified by using the method dbsedrby Islam et al. (2014b) according to the
methods of Furlund et al. (2013) and Qureshi et(2012). A nanoACQUITY" UPLC®
(Waters, Milford, USA) and Q-TOF Ultima MS (Micromss Ltd., Manchester, UK) was used
for this purpose. The columns in the UPLC werenbsymmetry C18 trap column (18®n x

20 mm; Waters, Milford, USA) and 1y BEH C18 analytical column (7bm x 100 mm;
Waters, Milford, USA).

Multiple sequence alignment (MSA) of the peptides

The MSA was done to identify the minimal overlappeeptides and their position in the
protein sequence. A method described by Islam €2@14b) was used with modifications. The
software used was Clustal omega (version: CLUSTAL (Q1.2.1);
http://www.ebi.ac.uk/Tools/msa/clustalo/) and Jaivi2.8.0b1.

Lipid analysis

The total lipid was first extracted and then sefgaleby solid phase extraction (SPE) into
neutral lipid (NL) and free fatty acid (FFA). Thatfy acid methyl esters (FAMES) were
identified by Gas Chromatography-Mass Spectromd®C-MS). A modified method
according to Devle et al. (2014) as described lgmiset al. (2014b) was followed in lipid
analysis. In brief, total lipid was extracted by@Q of chloroform and methanol mixture (2:1)
added immediately after the digestion. The SPE gased-out on a liquid handling robot
(Gilson, GX-274 ASPEC, Middleton, USA). Elution biL and FFA were done with 5 mL
chloroform and diethyl ether:acetic acid (98:25pectively. The FAMEs of NL and FFA were
prepared by using sodium-methanolate and bordoridé-methanol complex, respectively. In
GC (Agilent 6890 series, Agilent Technology, Wilmion, DE, USA), 50 m CP-Sil 88

capillary column with ID 0.25 and 0.20n thickness (Varian, Middelburgh, The Netherlands)
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was used. The coupling Autospec Ultima MS was fiMioromass Ltd. Manchester, England
using electron ionization ion source (mass ranzz40-600).

RESULTS AND DISCUSSION
Protein degradation
The protein degradation pattern during éxevivodigestion is shown in Figure 1. The majority
of the caseins were digested after initial 20 mastgc digestion and appeared completely
digested after 40 min gastric phase.
The whey protein serum albumin was degraded duhegyastric digestion for 40 min whife
lactoglobulin and some of thelactalbumin were resistant. After duodenal digesstill some
B-lactoglobulin was intact after 120 min and idaetifin band 1 (lane D5) in Figure 1 together
with with fragments of serum albumin. The otherdsr2, 3 and 4 (lane D5) in Figure 1 were
the blend ofB-lactoglobulin, a-lactalbumin and serum albumin. In the duodenalestied
samples, some bands that appear at approximated® ¥®@a (Figure 1; a, b, ¢ and d) are the
digestive enzymes present in the duodenal juicesléet al., 2014).
In all model digestion studies, the type, amoumt activity of the enzymes, as well as pH used
appear to influence the caseins digestion durieggtstric phase (Almass et al., 2006). Kopf-
Bolanz et al. (2012) reported a complete digestioall the caseins after 30 miim vitro gastric
digestion, while Gallier et al. (2012) showed altakegradation of caseins after 45 min using
commercial enzymes of animal origin. When humarrgedestinal enzymes were used, Devle
et al. (2014) reported a complete casein digestitar 40 min. The results of the present study
on bovine milk are in agreement with these resutiswever, Islam et al. (2014b) showed
traces ofascaseins in buffalo milk after 40 min gastric digest and not total casein
degradation. Tidona et al. (2014) reported very ttagradation of the caseins in donkey’s milk

after 30 min gastric digestion. These two repantficate the importance of species variation
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and are in agreement with Inglingstad et al. (20b0a study on human, equine, goat and
bovine milk digestion.

The present study showed some infakdctoglobulin after 120 min duodenal digestion émd

is in line with the report on bovine milk by Devét al. (2014), Gallier et al. (2012) and
Inglingstad (2010). However, Kopf-Bolanz et al. 120 obtained almost complete digestion of
bovine B-lactoglobulin by commercial gastric (120 min) apancreatic enzymes (30, 60, 90
and 120 min). However, another important resulamtgd by, Islam et al. (2014b) showed all
most complete hydrolysis di-lactoglobulin in full fat buffalo milk after 5 mirduodenal
digestion. So, genetic factors for the degradatibfi-lactoglobulin may be of importance as
also being reported by Tidona et al. (2014) in aynkAnother factor important for the
digestion offf-lactoglobulin seems to be the bile salts wher&ghdr concentration than ca. 2-3
mM is required (Gass et al., 2007). The preserficelactalbumin in band 2, 3 and 4 (D5,
Figure 1) confirmed by UPLC-MS, indicate the hygri$ ofa-lactalbumin as Kopf-Bolanz et
al. (2012) reported on the complete digestion-tdctalbumin after 30 min duodenal digestion
using commercial enzymes.

Peptides

The total number of identified peptides from th&edent milk proteins during the different
phases okx vivodigestion is shown in Table 2. The minimal ovepleg peptides from the
different milk proteins after gastric and duodepahkse digestion with their corresponding
position in the protein sequence are given in TableMaximum number of peptides was
identified from thep-casein followed byus;-casein,k-casein,as-casein and3-lactoglobulin.
Most of the peptides fronk-casein andp-lactoglobulin were identified from gastric and
duodenal phase of digestion, respectively (TableTB)s is in agreement with the results

obtained on buffalo milk by Islam et al. (2014bheTsequence coverage of the identified
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minimal overlapped peptides (Table 3) correspondell with the number of total identified
peptides (Table 2)3-casein showed more extensive hydrolysis, next ayasasein followed

by k-caseinasx-casein ang-lactoglobulin. The presence of proline in all maBtthe peptides
and the hydrophobicity of all the peptides are blgtaThese results are also in agreement with
the results showed by Islam et al. (2014b) andrigtaal. (2014c). Proline is known as a helix
breaker in the protein structure and may be, tlmeplytic enzymes have less access to the
hydrophobic sequence for further proteolysis. Ther of hydrolysis of the proteins,
especially the caseins (Figure 1) was not evidefther by the number of identified peptides
(Table 2) nor by the protein sequence coveragénbyrtinimal overlapped peptides (Table 3).
This may be explained by the detection limit of hfeLC/Q-TOF MS that can identify peptides
with the lowest molecular weight of 0.80 kDa. Pdes with lower molecular size as di-, tri-
and tetra-peptides and free amino acids were netctdel in this study. According to Kopf-
Bolanz et al. (2012) 50% of the total milk proteimere degraded into di- and tri-peptides and
10% of the proteins were degraded to the free amits. They also mentioned that absence of
bile salts may reduce the degradability and corelindt the size distribution of the proteins
and peptides in the range of 5 kDa and tripeptisiesclear. However, the digestion condition
used in the present study and in the study of Kegg&nz et al. (2012) is different.

Lipolysis and generation of free fatty acids duringex vivo digestion

Milk fat consists of 95% triacylglycerol (Haug dt,&007) and more than 95% of the milk fat
can be absorbed (Mu and Hoy, 2004). But beforerakisa, the fat needs to be digested. The
pre-duodenal (lingual and gastric) lipase and doabldpancreatic) lipase hydrolyze the
triacylglycerol to free fatty acids and monoacytigyol. These lipases attack ester bondsrat
andsn3 position of the triacylglycerol (Tiruppathi amB&lasubramania, 1982; Rogalska et al.,

1990; Carriere et al., 1994; Miled et al. 2000; and, 2007). Different reports are prevailed
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regarding the exact contribution of the pre-duotiépases (Carriere et al. 1993; Armand et al.,
1999; Pafumi et al., 2002; Mu and Hoy, 2004; Galéé al., 2013) to the total lipolysis of
triacylglycerol and according to Jensen (2002piild be 25 to 40% of the triacylglycerol.

The lipolysis of neutral lipid of Red Chittagongt@a milk fat during the gastric and duodenal
ex vivodigestion and subsequent release of free fattysael given in Figure 2. There was no
lipolysis observed after 40 min gastric digestidhis is in agreement with the reported gastric
lipolysis of full fat bovine milk, full fat buffalamilk, and for 2% cod liver oil enriched buffalo
skimmed milk (Devele et al., 2014; Islam et al.120 and Islam et al., 2014c). The possible
reasons are as mentioned earlier by different asit{idevele et al., 2014, Islam et al., 2014b
and Islam et al., 2014c) firstly, the optimum pH for the gastric lipase activitySsto 6
(Carriere et al.,, 1993) andecondly insufficient secretion of gastric lipases becatise
volunteers were in a semi-fasting condition and stwhulated for lipid digestion. However, it
has been reported that gastric digestion of mitkddamportant for further duodenal lipolysis
(Jensen 2002; Ye et al., 2011; Gallier et al., 20A2sharp rise of free fatty acids (33%) were
shown after 30 min duodenal digestion. The proportf free fatty acid after 60 min duodenal
digestion was 15.6% higher than at 30 min and tbhpgtion after 60 and 120 min were more
or less similar. The sharp increase in free fatigsafter 30 min duodenal digestion is in line
with the results reported by Devle et al. (2014¢amvs milk and Islam et al. (2014b) in buffalo
milk. The bile salts concentration was 2.4 mM ia #spirates in the present study whereas, the
aspirates used by Devle et al. (2014) has onlyri\Dbile salts. Moreover, the milk fat globule
size of the Red Chittagong Cattle milk (3uh) was smaller than in the buffalo milk (12.81)

as reported by Islam et al. (2014a). Bile saltsimg@rtant for accelarated lipolysis by creating
small lipid micelles. The present study ends uphw8% lipolysis of the neutral lipid after 120

min duodenal digestion. Final lipolysis after 12fhrduodenal digestion observed in cow and
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buffalo milk were 40 and 35%, respectively (Devteak, 2014; Islam et al., 2014b). In the
present study few inconsistent fatty acids (C1&€20:0, C17:1 n-7, C18:3 n-3, C20:4 n-6)
were also observed that are included in the repodtsented in Figure 2 but not shown in Table
4. Part of this inconsistency may arise from thegpfolipids. However, we did not take
phospholipids in consideration as Devle et al. @0&ported a non-significant digestion of the
phospholipids.

The changes in the concentration of free fatty a@ddring the different steps @x vivo
digestion are given in Table 4 which also incluttes lipolysis (%) of individual fatty acids.
The changes in the free fatty acid concentratiay stose to the lipolysis reported in Figure 2
when the standard deviations were taken into cenaitn. The standard deviation of
undigested, G40, D30, D60 and D120 were 0.10, ®H0, 2.10 and 6.77, respectively (for
Figure 2). The average lipolysis (%) of short chaitty acids (C6:0-C8:0), medium chain fatty
acids (C10:0-C16:0) and long chain fatty acid (>Q©)7%vas 52, 33.3 and 46.5, respectively.
This is in agreement with the lipase preferred gmss; sn1 andsn3, where short chain fatty
acids are more abundant at that position follomgdbhg chain and medium chain fatty acids
(Angers et al., 1998; Blasi et al., 2008 and Maans2008). The unsaturated fatty acids, C14:1
n-5, C16:1 n-7 and C18:1 n-9 showed almost sintifaiysis, ranging from 31.9 to 33.7%
though their presence at lipase preferred posdfahe triacylglycerol is different (Blasi et al.,
2008) and mainly depends on the size of the trigdggerol (Angers et al., 1998). The lipolysis
of total saturated fatty acids and total unsaturéaéty acids showed little variation, 2.3% more
in total saturated fatty acids. This is in contraryhe results of cow’s milk (Devle et al., 2014),
however, Islam et al. (2014b) reported more lipslys total saturated fatty acids than the total
unsaturated fatty acids in buffalo milk. AccorditgyBlasi et al. (2008) “saturated fatty acids

were prevalently esterified sn-3 position, while monounsaturated fatty acidsm® position,
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288

with some exceptions”. The stereospecific distidyutof the fatty acids in the triacylglycerol
comes out with considerable variability (Parodi729Angers et al., 1998; Blasi et al., 2008;
Maansson et al., 2008).

CONCLUSIONS
In full fat milk from Red Chittagong Cattle, alhé as-caseins were digested after 40 min
gastric digestion, while sonfelactoglobulin was still intact after 120 min duodé digestion.
The B-casein was degraded more extensively and gavieighest number of peptides. All the
peptides identified from the different proteins weich in proline along with other hydrophobic
amino acids like Alanine, leucine, isoleucine, naji phenylalanie, methionine and tryptophan.
The milk fat showed 48% lipolysis. Short chain ya#icid showed higher lipolysis than the
medium and long chain fatty acids and so was tted saturated fatty acids compared to total
unsaturated fatty acids. The digestion of the Rédt&jong Cattle milk from Bangladesh

showed similar digestion pattern like the Nordigvsamilk (Norwegian Red Cattle).
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399 Table 1.Details on thex vivodigestion model
Sample (1 mL Duration pH adjusted
Steps pH Added enzymes and others
milk) (min) by
G20 5.0 20 711 unit pepsin activity/g milk
Gastric phase 2M HCL
G40 25 20 protein.
D5 5 558 unit proteolytic activity/g
D30 30 milk protein. The added
Duodenal phase D60 7.0 60 2M NaOH duodenal juice also contained
889 unit lipase activity/mL and
D120 120

2.4 mM bile salts.

400

401

402

403

404

405

406

Table 2. Number of peptides identified from Red Chittag@agtle milk at different stage of

ex vivodigestion from different milk protein.

Protein G20 G40 D5 D120
s-CN 15 12 13 02
tszCN 04 04 07 01
B-CN 36 35 40 31
k-CN 10 08 03 -
B-Lg 01 01 03 05

All the identified peptides counted. CN, Casein;, Ugctoglobulin; G20, Gastric

digestion for 20 min at pH 5; G40, Gastric digestior 20 min at pH 2.5; D5 and D120,

Duodenal digestion for 5 and 120 min, respectiatlpH 7.

19



407 Table 3.Minimal overlapped gastric and duodenal peptides fdifferent milk protein oéx vivodigested Red Chittagong Cattle milk

EMW (Da) Position Peptide Richin ...... residues

Gastric peptides fronas;-Casein (accession number: BSB3R8)

1000.452 165-171 FRQFYQL Hydrophobic and side chain containing
1384.794 114-124 LRLKKYKVPQL Hydrophobic and basic

1499.726 95-106 HIQKEDVPSERY Side chain containmgjrophobic and acidic
1890.858 141-157 GIHAQQKEPMIGVNQEL Hydrophobic aside chain containing
1948.838 39-55 FVAPFPEVFGKEKVNEL Hydrophobic

2214.998 195-214  SDIPNPIGSENSEKTTMPLW Hydropholsd aide chain containing
2346.169 16-35 RPKHPIKHQGLPQEVLNENL Hydrophobic aide chain containing
Consensus RPPPIGKEKVPQLNL Hydrophobic, side chaima&ining and basic

Duodenal peptides from;-Casein (accession number: BSB3R8)

1236.623 40-50 FVAPFPEVFGK Hydrophobic

1298.677 119-129 YKVPQLEIVPN Hydrophobic and side chain containing
1336.628 95-105 HIQKEDVPSER Side chain containing, hydrophobic and acidic
1956.862 195-213 SDIPNPIGSENSGKTTMPL Side chain@omg and hydrophobic

20



1965.025 19-35 HPIKHQGLPQEVLNENL
2019.977 140-157 EGIHAQQKEPMIGVNQEL

Consensus IPQPEGVPNEGVEL

Hydrophobic andeschain containing
Hydrophobic aide chain containing

Side chain containingrdpftbbic and acidic

Gastric peptides fromas-Casein (accession number: P02663)
1196.68 181-189 KISQRYQKF

1221.59 58-67 VVRNANEEEY

2831.49 114-138 LYQGPIVLNPWDQVKRNAVPITPTL
2924.65 111-135 LQYLYQGPIVLNPWDQVKRNAVPIT

Consensus LYQGPIVLNPWDQVKRNAVPIT

Hydrophobic and side chain containing

Hydrophobic, side chain containing and acidic
Hydrophiahband side chain containing
Hydropha@band side chain containing

Hydrophobic andsichain containing

Duodenal peptides from-Casein (accession number: P02663)
1245.61 85-94 KITVDDKHYQ

1733.88 166-179 TKLTEEEKNRLNFL

1738.81 96-109 ALNEINQFYQKFPQ

2039.03 114-130 LYQGPIVLNPWDQVKRN

2044.98 111-127 LQYLYQGPIVLNPWDQV

Consensus LYQGPIKLNEWDQVYQNF

Side chain containing, hydrophobic and acidic

Hydrophobic and sitha@in containing
Hydrophobic andeschain containing
Hydrophobic andeschain containing

Hydrophobic and sith@ia containing

21



Gastric peptides frori-Casein (accession number: P02666)

1243.66

1511.716

1624.78

1873.978

2015.03

2178.17

2253.22

2876.36

2881.476

2901.51

3935.19

Consensus

109-120

60-72

16-29

143-158

140-157

96-115

205-224

179-204

156-180

129-154

73-108

GVSKVKEAMAPK

LQDKIHPFAQTQS
RELEELNVPGEIVE
TDVENLHLPLPLLQSW
LTLTDVENLHLPLPLLQS
PVVVPPFLQPEVMGVSKVKE
FLLYEQPVLGPVRGPFPIIV
SLSQSKVLPVPQKAVPYPQRDMPIQA
QSWMHQPHQPLPPTVMFPPQSVLSL

PVEPFTESQSLTLTDVENLHLPLPLL

Hydrophobic and basic

Hydrophobic and sitlain containing
Hydrophobic and acidic
Hydrophobic andeschain containing
Hydrophobic asidle chain containing
Hydrophobic

Hydrophobic

Hydroplmand side chain containing

Hydrdphand side chain containing

Hydroihmand side chain containing

LVYPFPGPIPNSLPQNIPPLTQTPVVVPPFLQPEVM Hydrophobic and side chain containing

LLYEQPVPGPIVPLPQKIPQTPVPVPPFLQPEVLGLTHydrophobic and side chain containing

DVENLHLPLPLLQS

Duodenal peptides froffrCasein (accession number: PO2666)

1470.67

56-67

TEDELQDKIHPF

22

Hydrophobic, acidic and side chain containing



1624.78

1887.01

1893.94

1993.08

2004.98

2277.06

2681.28

3935.10

Consensus

16-29

139-155

206-222

207-224

143-159

121-139

156-178

73-108

RELEELNVPGEIVE
SLTLTDVENLHLPLPLL
LLYQEPVLGPVRGPFPI
LYQEPVLGPVRGPFPIIV
TDVENLHLPLPLLQSWM
HKEMPFPKYPVEPFTESQS

QSWMHQPHQPLPPTVMFPPQSVL

Hydrophobic and acidic

Hydrophobic ande chain containing
Hydrophobic aitte shain containing
Hydrophobic amdke chain containing

Hydrophobic arideschain containing
Hydrophobic sidd chain containing

Hydrophalnid side chain containing

LVYPFPGPIPNSLPQNIPPLTQTPVVVPPFLQPEVM Hydrophobic and side chain containing

LLDQENLHGPVRGPFPILIEMPQPPVEPFLQEQS

HyHodgic and side chain containing

Gastric peptides from-Casein (accession number: P02668)

1796.97

1267.59

1197.58

1108.51

1536.84

2861.30

39-53

52-60

117-126

63-71

88-100

72-96

FSDKIAKYIPIQYVL
VLSRYPSYGLN
ARHPHPHLSF
YYQQKPVAL
VRSPAQILQWQVL

INNQFLPYPYYAKPAAVRSPAQILQ

23

Hydrophobic and sidhain containing

Side chain containing, hydrophobic
Hydrophobic and side chain containing

Hydrophobic and side chain containing

Hydrophobic and sith@io containing

Hydrophoband side chain containing



Consensus PYKPVAVRSPAQILQ Hydrophobic and side rcltaintaining

Duodenal peptides frofrlactoglobulin (accession number: P02754)

1942.94 57-73 VYVEELKPTPEGDLEIL Hydrophobic and d@ici
1634.71 141-154 TPEVDDEALEKFDK Acidic and hydropihob
1064.53 108-116 VLVLDTDYK Hydrophobic
Consensus VKTPEDEL Acidic and hydrophobic

408 EMW, Experimental molecular weight; Position, ie tithole protein sequence; Consensus was generatedélview 2.8.0b1.

409 Residues properties were obtained from CLUSTAL Q.(.

410
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411

412

413

414

415

Table 4. Fatty acid (FA) concentrations (meanzST@mL milk) in the free fatty acid fraction
of Red Chittagong Cattle milk during digestion withman gastric (G) and duodenal (D) juices.

Lipolysis (%) of individual FA in neutral lipid (NLfraction is also presented herein

Fatty acids G40 D30 D60 D120 Lipolysis (%)
C6:0 2.4+0.7 70.0+8.3 82.9+3.8 120.8+3.8 54.8
C8:0 2.2+0.8 135.2+27.1 191.2+14.3 227.9+7.3 49.1
C10:0 8.8+0.7 374.8+24.7 449.1+26.1 503.2+16.9 31.2
C12:0 14.8+1.4 499.1+36.8 578.9+£38.7 650.7+24.7 7 30.
C14:0 40.5+5.3 1627.0£107.0 1900.2+74.1 2143.7+55.433.0
C15:0 nd 278.9+28.5 349.6+13.3 385.6+11.3 35.6
C16:0 150.6+20.6 5161.0+472.0 6164.0+304.0 7114.0+278.0 36.1
C17:0 nd 151.0+20.1 304.2+176.9 223.4+10.4 49.2
C18:0 84.9+7.7 1786.0+218 2302.1+107.3  2687.8+135.23.88
XSFA 304.1+36.7 10083.1+927.3 12321.9+396.2 14057.3+506.2 36.6
C10:1 n-6 2.2+0.2 60.5+7.4 80.4+7.8 82.5+4.2 37.6
C14:1 n-5 4.9+2.6 249.5+20.7 308.3+15.1 332.0+10.1 31.9
C16:1 n-7 nd 348.4+30.7 443.0+21.9 475.6+12.0 33.7
C18:1 n-9 45.4+8.0 3990.0+480.0 5072.0+244.0 5AR16.0 32.7
C18:1Xothers nd 103.8+4.1 137.0+12.4 157.945.8 80.8
ci8:2xall nd 244.1+8.9 317.0+12.4 323.7£9.5 24.4
YUSFA 52.5%£10.8 4996.3+546.6 6357.3+307.7 7115.6%251 34.3

nd, not detected,SFA, total saturated fatty acids{JSFA, total unsaturated fatty acids
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Figure Legend

Figure 1. Protein degradation profile of Red Chittagong I@attilk afterex vivogastric (G) and
duodenal (D) digestion. MW, molecular weight; kDd@lp dalton; SA, serum albumin; CN,
casein; p-Lg, B-lactoglobulin; a-LA, a-lactalbumin; STD, low molecular weight marker; O,
undigested sample; G20, Gastric digestion for 20 atipH 5.0; G40, gastric digestion for 20
min at pH 2.5; D5, D30, D60 and D120, duodenal stiga for 5, 30, 60 and 120 min,
respectively at pH 7.0; D5:13-lactoglobulin and serum albumin; DO05:2, 3 and 4,
lactoglobulin,a-lactalbumin and serum albumin; a, amylase; b, @arpeptidase, chymotrypsin,
elastase, lipase, gastricsin and amylase; c, cypepxidase, elastase, lipase, trypsin and

amylase; d, elastase, carboxypeptidase, chymotryasiylase, lipase and trypsin.

Figure 2. Proportion (%) of neutral lipid and free fatty @during theex vivodigestion of Red
Chittagong Cattle milk. G40, gastric digestion Ht5 for 20 min after 20 min gastric digestion
at pH 5.0; D30, D60 and D120, duodenal digestion3f 60 and 120 min, respectively at pH

7.0. Undigested and D120 are from duplicate datarg/bthers are from triplicate data.
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