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Abstract

Dielectric nanostructures, such as spherical nanoimprints, have emerged as a promising
alternative for efficiency enhancement by light-trapping in thin solar cells. Some of the
effectivity increase can be explained by resonant modes called Whispering gallery modes.
The rationale of this increase is not fully understood and the hypothesis is that nanostructure
parameters and coupled modes can be directly related to the absorption resonance. In order to
study Whispering gallery modes and coupled modes in nanostructures in addition to the
parameters of the nanostructures, a numerical algorithm was developed. The numerical
algorithm was based on the Lippmann-Schwinger equation for the scattering of a two-
dimensional plane wave at multiple coupled disk arrays. The aim of this thesis was to verify
the numerical algorithm using two analytical solutions, namely the scattering of a plane wave
at a single disk and the scattering of a spherical wave at a single disk. All three solutions were
solved for a simple and comparable problem, i.e. scattering at a single disk. The comparison
between the analytical plane wave scattering solution and the numerical solution based on the
Lippmann-Schwinger equation showed agreement. The appearance and type of resonance
found in the numerical solution was highly dependent on the grid ressolution. Based on results
of this thesis it is obvious that the numerical solution based on the Lippmann-Schwinger
equation is a stable program converging to the exact result, when the grid resolution is
increased. We further expected to find the resonance wavenumbers that were detected in the
analytical plane wave scattering program, by considering the S-matrix of the analytical
spherical wave scattering. However, a comparison between these solutions revealed no
similarities. In order to study the analytical solution for the spherical wave in this thesis we
considered only the real part of the S-matrix. An analysis of the real and imaginary part of the
S-matrix seems to be required to study the resonances in the analytical spherical wave
scattering.






Sammendrag

Nanostrukturer med dielektriske egenskaper, slik som sfaeriske nanoavtrykk, har vist seg som
et lovende alternativ for effektivisering av lys-fangst i tynne solceller. Noe av den gkte
effektiviteten kan forklares med resonanser kalt Whispering gallery moder. Begrunnelsen for
denne gkningen er ikke fullt forstatt, og hypotesen er at nanostrukturens parametere og
koblede moder kan vare direkte relatert til absorpsjon. En numerisk algoritme basert pa
Lippmann-Schwinger ligningen for spredning av en to-dimensjonal planbglge pa flere
koblede disksett, ble utviklet for & studere Whispering gallery moder og koblede moder i
nanostrukturer samt parameterne av nanostrukturene. Malet for denne oppgaven var a
verifisere den numeriske algoritmen ved hjelp av to analytiske lgsninger, nemlig spredningen
av en planbglge pa en enkel disk og spredningen av en sfarisk bglge pa en enkel disk. Alle tre
program ble lgst for et enkelt og sammenlignbart problem, dvs. spredning ved en enkelt disk.
En sammenligning mellom den analytiske planbglge lIgsningen og den numeriske Igsningen
basert pa Lippmann-Schwinger ligningen viste Whispering gallery resonanser pa omtrent
samme bglgenummer. Plasseringen av bglgenummer og type resonans som oppstar med den
numeriske lgsningen er sterkt avhengig av gitter opplgsningen. Basert pa resultatene i denne
oppgaven er det apenbart at den numeriske lgsningen basert pa Lippmann-Schwinger
ligningen er et stabil program som konvergerer til det ngyaktige resultatet, nar gitteret
opplgsningen gkes. Det var ogsa ventet noen likheter mellom den analytiske
planbglgelasningen og den analytiske sfeeriske balgelgsningen. En sammenligning mellom
disse lgsningene viste ingen likheter. For a studere den analytiske lgsningen for den sfeeriske
balgen i denne avhandling er det bare sett pa den reelle delen av S-matrisen. En analyse av
den reelle og imaginzre delen av S-matrisen er ngdvendig for & studere resonanser i den

analytiske sfeeriske bglgelgsningen.
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1 Introduction

Warming of the climate system is unequivocal, and since the 1950s, many of the
observed changes are unprecedented over decades to millennia. The atmosphere and
ocean have warmed, the amounts of snow and ice have diminished, and sea level has
risen. (Pachauri et al. 2014)

The expanding global population and subsequent increasing demand for energy is aggravating
the challenges related to climate change. According to the IPCC’s Fifth Assessment Report,
burning fossil fuel is the primary driving factor in global warming. Thus, fossil fuels need to

be replaced by green renewable energy. A very promising green energy is solar energy.

Bells Labs presented in 1954 the first practical silicon solar cells with an efficiency of 5.7%.
The cost to produce solar cells was high and therefore primary used in space applications to
provide power to satellites (Chen 2011). In recent years, falling costs along with increased
efficiency made solar cells one of the most common renewable energy systems. For
commercial and private use, the market offers cost-effective solar cells with an efficiency of
around 10-20%. The solar cell industry is striving to meet the demand in the market and to
come below grid parity. Because raw materials are in short supply, and production costs are
high, researchers started to investigate how to reduce materials of solar cells, for example by

manufacturing thinner solar cells.

Solar cells convert incoming sunlight into electrical energy. To achieve this, the cells need to
absorb light. The thickness, that varies from around 150-300 um, is usually proportional to
light absorption inside the solar cell (Grandidier et al. 2011). Longer optical path length, i.e.
the distance an unabsorbed photon travels inside the solar cell, enhances the light absorption.
One of the most common methods used to increase the optical path length, is light-trapping in
the photovoltaic material. By adding front and rear surface texturing, the probability for
internal reflection is increased and light is trapped by multiple passes inside the solar cell.
Another more advanced type of light-trapping is effective photon management. Light-trapping
(spheres(Eisenlohr et al. 2014), cylinders(Wallentin et al. 2013), domes(Zhu et al. 2009)) are
coated at the top of the absorbing layer of the solar cell to improve the efficiency
enhancement. The idea is to achieve thinner and cheaper solar cells without reducing their

effectiveness.



Grandidier et. al.’s experimental study (2013) created a promising platform for the potential
of effective photon management. The results showed an efficiency increase from 11 %, using
wavelength-scale resonant dielectric nanospheres. This increase can be explained by resonant
modes called Whispering gallery modes, described by Mie electrical and magnetic modes.
Grandidier et. al. verified the efficiency increase numerically by using a Finite Difference
Time Domain (FDTD) technique. However, while the efficiency increase of light-trapping
nanostructures has been demonstrated, the rationale behind is not understood. It is not clear,
how nanostructure parameters such as refractive indices, sizes and forms of nanostructures are
directly related to the absorption resonances and thus to increase in efficiency. It is unclear if
WGMs or coupled modes, i.e. resonances in the near-field between the spheres, are mainly
responsible for the enhanced absorption.

In order to study WGMs and coupled modes in nanostructures, R. Blimel and A. Kohler
developed a numerical algorithm based on the Lippmann-Schwinger equation for the
scattering of a two-dimensional plane wave at multiple coupled disk arrays, and implemented
itin MATLAB (Brandsrud 2015). With this method, different parameters such as sizes,
refractive indices and geometrical arrangements of the disks can be investigated. The aim of
this thesis was to verify the numerical scattering algorithm based on the Lippmann Schwinger
equation by using analytical solutions of the scattering of a plane wave and a spherical wave
at one disk. For this thesis, both analytical solutions were implemented numerically in order
to compare absorption efficiency of a single disk and wave functions of a single disk for the

analytical solutions and the numerical algorithm based on the Lippmann Schwinger equation.

The numerical plane wave scattering algorithm based on the Lippmann-Schwinger equation is
presented in section 3.2 and the results from simulations are presented in section 4.2. In
section 3.1, an analytical solution for a plane wave impinging at a disk is given. In section 4.1
results of the numerical simulations are presented. The comparison of the analytical solution
for a plane wave scatter solution with the numerical algorithm based on the Lippmann
Schwinger algorithm is presented in 4.1. The analytical solutions for a spherical wave
scattering at a disk are described in section 3.3. Numerical results are presented in section 4.3.
The comparison of the analytical solution for a plane wave scatter solution with the analytical

solution for a spherical wave scatter solution is presented in section 4.3.



2 Theory

2.1 Spherical waves

When light propagates from a point source into free space, the wave’s cross section expands
with increasing distance from the source, as seen in figure 2.1. Therefore, further away from
the source the intensity of the radiation decreases (Oraevsky 2002). This type of waves are

called spherical waves. The waves create a wave front at the surface of maximum amplitude.

Far away from the point source, the wave can be considered as a plane wave.
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Figure 2.1: Cross section view for spherical waves coming from a point source. One ray can be described with a sinus curve,
acting like a plane wave. The waves create a wave front at the surface of maximum amplitude.

Because of spherical symmetry, when a spherical wave impinges a disk, the outgoing
scattered wave is also a spherical wave. In this case, the momentum and potential energy are

preserved.



2.2 Plane wave

Light is an electromagnetic plane wave that consists of a collection of electric and magnetic

fields (Tipler & Mosca 2004; Townsend 2010). The vector product, E x B, of the electric and
magnetic field points into the direction in which the EM-wave propagates with a constant
speed, i.e. the speed of light. For a plane wave, propagating in an arbitrary direction, the wave

function is given as

A(x, t) = Agcos(k - 7 — wt) (2.1)
where 4, is the amplitude, k is the wave vector, which is the angular wavenumber with a

direction and magnitude, therefore |E| = k. The positions vector 7 gives the propagation
direction in a two-dimensional space. The time t is a given point in time and w is the angular

wave frequency.
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Figure 2.2: Plane wave propagating in x-direction with speed v. A, is the amplitude and A4 is the wavelength.
In figure 2.2 a wave moves up and down along the x-axis with a repeated pattern every period

T. After one period T the wave has moved one wavelength A. The speed of light c is given by

c<A_ (2.2)
T

where the frequency is related to the period via f = % The angular wavenumber k is

connected to the wavelength A by

_2m (2.3)
= A

Notice that k has the unit rad /m. The wavenumber v can be calculated by the relationship

(2.4)

where v has the unit m™1.



As only two-dimensional problems are treated in this thesis, the algorithms are only solved for

two-dimensional space (x- and y-direction) therefore it is only interesting to look at the
electric field. For convenience, /T(F, t) can be written as a complex function
E@ t) = Eyelkm-00 = 4 cos(k - # — wt) + idysin(k - 7 — wt) (2.5)

Any physical quantity described by A, is then given by the real part of E(# t). The wave

function can be separated into a product of two functions, E(#) and T(t), dependent on 7 and

t, respectively.

E(#t) = E()T(t) (2.6)
where
T(t) = e~i0t 2.7)
and
E(@) = Eyet (2.8)

Equation (2.8) represent a time independent plane wave, with amplitude EO.



2.3 Maxwell wave equation to Helmholtz equation

According to Maxwell’s equation, the electric field satisfies the wave equation, which is a
second-order partial differential equation (PDE) that describes the propagation of

electromagnetic scalar wave in space given by

1 02

(\72 - ——) E@#t) =0 (29)

c2 ot?

where c is the speed of light, V2 is the Laplacian operator and E(# t) is the wave function.
When light propagates in a transparent medium with a refractive index n, the speed of light in
the medium becomes c¢/n. The Maxwell wave equation then becomes
n? 9%\ . | (2.10)
<|72 - C—2ﬁ> E(T, t) =0
Further, we use the ansatz of separated variables E (7, t) = E(#)T(t) of the wave function

into the wave equation (2.10) and after some simplification this equation can be rewritten

VE@ 1 d*T() (2.11)
n2E#)  c2T(t) dt?

where the left side is dependent of 7 alone and the right side of ¢ alone. We can set the two
sides equal to the same constant, —k?, called the separation constant and obtain two wave
equations, one solely for the 7 dependent wave function E (#) and the other solely for the time

dependent part of the wave function T(t), given as

VZE(7) _ 2 (2.12)
n2E(#)
and
1 d* T _ iy (2.13)
c2T(t) dt?

where k now is the angular wavenumber, V2 is the Laplacian operator.



From equation (2.12) we obtain the Helmholtz equation

(V2 +k2)EF) =0 (2.14)
that represents the time-independent form of the wave equation, where k is the angular

wavenumber in the medium given as k = kn. Note that for a wave propagating in free space,

n = 1. As an approximation we replace the plane vector wave E(?), by the single component
Y (7#) and use it as a wave function of a two-dimensional system. We will in the following
examine the scalar wave function W () as an approximation for full 3-dimensional
electromagnetic theory (Kirsch & Hettlich 2009). The Helmholtz equation becomes

(V2 +x)Y(F) =0 (2.15)

where W(#) is the wave function and 7 is the position vector in the x- and y-plane.

2.4 Whispering gallery modes

In 1878 Lord Rayleigh visited St Paul’s Cathedral in London. Here Rayleigh experienced the
phenomena that he later called “whispering-gallery waves”(Oraevsky 2002). At the bottom of
the dome in the Cathedral lies an interior gallery, called the whispering gallery. The gallery is
a concave cylinder shaped room. If a person whispers on one side of the room, another person
can hear the whisper loud and clear on the other side of the room, 34 m away. Because of the
concave surface of the gallery, the wave travels along the surface of the walls. As a result, the
sound intensity remains high. This is explained by the fact that the wave cross-section
expands much slower than it would in free space. The physical explanation of the phenomena
was given analytically by Rayleigh. Later it was discovered that electromagnetic waves inside

dielectric and highly symmetric structures also exhibit “Whispering galley modes”.

When light is scattered by a homogenous and highly symmetric structure, e.g. a sphere,
resonances in the interior of the sphere may be generated, which appear at distinct
wavelengths. For simplicity, we consider scattering of an electromagnetic wave in two
dimensions, i.e. at a disk. These resonances typically appear when the size of the disk, is
approximately at the same scale as the wavelength of the electromagnetic radiation. The exact
wavelength that exhibits the resonance and the type of the resonance, depends on the
refractive index ratio between the disk and the surrounding medium and the geometry/size of
the disk. Whispering gallery modes (WGM) are resonances, that appear when light is trapped
inside the disk and the disk is lightening brightly. In whispering gallery mode resonances, the



trapped wave travels around the inside of the disk. Bright nodes arranged in a regular order
inside the disk are visible as illustrated in figure 2.3. The nodes are areas of high intensities
and correspond to maxima of the absolute value of the electric field. Thus, the number of
nodes is twice the number of wavelengths that fits into the inside of the disk denoted as the
mode number of the Whispering gallery mode. The mode number is given by

_ nodes (2.16)
2

where the nodes is displayed in the plotted images.

We can set up a quantization rule (Brandsrud 2015; Kokhanovsky 2011) that shows relates
the refractive index of the disk, the resonance wavelength, the mode number and the length of
the ray trapped inside the disk. It is given by

lgeo M (2.17)

N = , NEeN
Ar

where A, is the wavelength of the trapped mode, n the refractive index of the disk, N the mode
number and [,, the geometrical length of the ray, i.e. the actual length of the ray that travels
along the surface of the disk. When N becomes very high, the geometrical length approaches

the circumferences of the disk, given as Al]im lgeo = 2mr.

Figure 2.3: Whispering gallery modes occurs at specific wavelengths. Inside the disk bright nodes arranged in a regular order
appears which corresponds to maxima of the absolute value of the electric field. In the disk to the left 6 nodes appear, which
corresponds to 3 wavelengths inside the disk (N=3). The disk to the left contains 12 nodes and therefore 6 wavelengths (N=6)
is trapped inside the disk.



In order to find a geometrical length for smaller values of N. The length of the ray that
bounces inside the disk can be compared with the circumference of a N-sided polygon

inscribed in a circle, showed in figure 2.4 and given by

TT
lyoty = 2N sin (N) r (2.18)

where N is the mode number and r is the radius to the disk. Notice that for this thesis the

Figure 2.4: A 5-sided polygon inscribed in a circle.

polygon length is approximated for a N-sided polygon and not a polygon with sides equal to

the number of nodes.

Solving equations (2.17) and (2.18) for the radius we obtain the radius of a circle that frame
the polygonal whispering gallery ray, given as

Ar (2.19)
2 sin (%) n

where is the resonant wavelength, 4, with the corresponding mode number N and n is the

R =

refractive index to the disk.



2.5 Grid resolution

In this thesis, we refer to the grid resolution as the number of lattice points used in x- and y-
direction for the square framing the disk. This is illustrated in figure 2.5, where a grid
resolution of 8x8 lattice points is shown.

Figure 2.5: The disk with a square framing the disk. The square is discretize into a lattice structure with grid resolution
of 8x8 lattice points.

— 2,
Later we will show plots where the squared absolute value of the wave function |¥;| is

calculated at every lattice point.
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3 Methods

3.1 Analytical plane wave scattering method

We consider a plane wave that impinges at a “soft disk”. As shown in figure 3.1, the soft disk

is characterized by a constant potential V = 1/, inside the disk and the potential outside the
disk is zero. In order to calculate solutions of the wave function for the problem of a plane
wave scattering at a soft disk in two dimensions, we used the analytical solutions for the

problem described in lecture notes of Reinhold Blimel from June 26, 2012.

Figure 3.1: The plane wave is moving in the positive x-direction against the disk with a constant potential inside.
In order to solve the problem analytically, we have to solve the Helmholtz equation in
equation (2.15). Since n = 1 outside the disk and n > 1 inside the disk, we define the
wavenumber inside the disk as

K =kn (3.1)

where n is the refractive index to the disk.

11



The radial distance from origin is denoted by r and for the radius of the disk is expressed by a.
Outside the disk i.e. r > a, the potential is zero. The ansatz for the wave function outside the

disk is as follows

too , +oo _ (3.2)
Y. (r,0) = z it J,(kr)et® + z AlHl(”(kr)e”@
l[=—c0 l=—c0

where the first term represents the incoming plane wave in the plane wave expansion with

Bessel functions of first kind J; of order [ and the second term is presented as a superposition

of outgoing wave spherical waves represented by Hankel functions Hl(” of first kind of order

[ with expansion parameters A;. The polar angle is denoted by 6.

Inside the disk, i.e. r < a, the wave function is given by

o | (33)

WUn(r,0) = Y ByJy(cr) e

l=—0
where the functions J; are the Bessel function of first kind of order . The parameters A; and
B, are determined by boundary conditions. Since the Helmholtz equation is a second-order
differential equation, the wave function its first derivative have to be continuous everywhere,
including at the boundary between the region outside the disk and inside the disk. Therefore it

follow:
i, (ka) + AHP (ka) = B, J,(ka) (3.4)

itk (ka) + AkH® (ka) = Bix J) (ka) (35)

where equation (3.4) represent the condition for continuity of the wave function at the
boundary of the disk, while equation (3.5) represented the condition for continuity at the first

derivative of the wave function.

12



Solving equations (3.4) and (3.5) for the parameters A; and B; we obtain

4 = _1itka) J(xa) —nJi(xa) Ji(ka)] (3.6)
" i) (k) — HE (k) Jy(ca)

and

_ il (ka) Jika) = Ji (k) B (ka) (3.7)
HY (ka) J,(xa) = n Jj(xa) HED (ka)

For the calculation of derivatives of Bessel and Hankel functions we used recurrence relations

as given in (Abramowitz & Stegun 1972).

The method described in this section is implemented as an algorithm in MATLAB by the
author of this thesis. This program is presented as Programlll.m in Appendix A. From now

on, this script is called program IlI.

3.1.1 Program III
For each wavenumber, the following parameters can be changed in program III.

- Radius of the disk.

- Refractive index of the disk.
- Pixel resolution.

- The frame outside the disk.

- The minimum and the maximum order in the plane wave expansion.

13



3.2 Numerical plane wave scatter algorithm

To solve the problem of the scattering of a two dimensional plane wave at one or more disks,
the Green’s function method was used (Green 1828). Achim Kohler and Reinhold Blimel
developed the method, called the plane wave scatter algorithm (Brandsrud 2015). The
algorithm uses the Lippmann-Schwinger equation and solves it numerically by discretizing

the equation in a lattice structure.

We consider a system with multiple disks. The time-independent wave equation in equation
(2.15) needs to be fulfilled for the area outside the disks and the area inside the disks
Outside: (A + k> )P([#) =0 (3.8)
Inside: (A + x*)¥W(7) = 0 (3.9)
where W(7) is the wave function and # is the position vector. In the area surrounding the disk
we assume that the plane wave travels in free space, therefore the refractive index is equal to

one and the angular wavenumber is k. As n is the refractive index of the disks the angular

wavenumber inside the disk is k = kn.

This type of problem can be solved with the Lippmann-Schwinger equation (Sharma &

Sommerford 2006), given as

Y@ = o) — f GF 7, kVEYE)d2 (3.10)

where W(7) is the solution to the wave function in the potential V ("), ¢ (#") is the incoming
wave, thus representing a solution of the free Schrédinger equation, 7’ is the position vector

of the source point and G (#,7', k) is Green’s function.

In order to prove that W(#) is a solution for the wave function in the potential V (#"), we apply
the Helmholtz operator, (A + k?) on the Lippmann-Schwinger in equation (3.10). We use that

Helmholtz operator applied on Green’s function gives
A+ k2)GH 7, k)= —=6(F —7") (3.11)

where 6 (7 — 7*') is the delta Dirac function.

14



We use further that ¢ (7) is a solution for the free Helmholtz equation:

(A+k*)p@F) =0 (3.12)
thus we obtain from (3.10) becomes

A+ kYT = f S(F = FYWVEW(E )27 (3.13)

Solving the integral and rearranging equation (3.13) and after some rearranging, we obtain

[—A+ V(] Y@ = k29 () (3.14)
where the potential of the system, V(#) is given by
V(#) = k*v(7) (3.15)
with v(7)
() = {1 —n, insid.e the dis.k (3.16)
0, outside the disk

Thus, we have shown that equation (3.10) is equivalent to equation (3.14). Notice that the disk

referred to above is homogenous with a constant refractive index.

The solution for the Green’s equation defined by equation (3.11) is given as

G 7 k) = iHéﬂ("'F' —#) (3.17)
where Héﬂ is the Hankel function of the first kind of zero order, given by
HSY (o) = Jo () + iY (%) (3.18)

where J,(x) and Y, (x) is the Bessel function of respectively the first and the second kind of
zero order. We use equation (3.17) together with the expression for the plane wave from

equation (2.8), which leads to the equation

PR 3.19
Y(P) = etk — iZfHé”(kIF’ — 7)) vEWFE)d2 (3.19)

To implement equation (3.19) numerically, the two-dimensional plane with the disks can be

discretised into a lattice structure with N number of squares and square area AA.

15



The equation (3.19) is discretized on this lattice according to

W(H) = e®i— iy HEP (ki ) v P04 .
m=1

where the continuous position vectors are replaced with discrete position vectors, i.e. 7' —» 7,
and 7 — 7;. We denote by N, the number of squares in x-direction, and by N,, the number of
squares in y-direction. The total number of squares is then given by N = N, - N,,. We write

the identity matrix as I; ,, and obtain

- k2 3.21
%=gm%n=wW—iIAA@M%%n (3:21)

We write this in matrix notation

MV = R (3.22)
where R is defined as
R = :
Ry
The matrix M is given by
Ck2AA (3.24)
M=I+1{ 2 G

where every element in the matrix G is given by

G = GjmVnm (3.25)

The algorithm was implemented in MATLAB by Achim Kohler and Reinhold Blimel, as the
script Disk_Scattering20082015.m, which can be found in M.A Brandsrud master thesis.
Rozalia Lucaks vectorised the program as Disk_Scattering20082015vec.m presented in
Appendix B. From now on, this script is called program I.

16



3.2.1 Program I

For each wavenumber, the following parameters can be change in program I.

- The amount of disks in x- and y-direction.

- Radius of the disks.

- Refractive index of the disks.

- Grid resolution, i.e. the number of squares in the lattice structure in x- and y-direction.

- Angle of incidence for the incoming plane wave.

Greens function has a singularity at the zero argument. A simplification that were done in the

program is that the Greens function were set to zero at a zero argument.
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3.3 Analytical spherical wave scattering method

For a spherical wave that impinges on a disk with constant potential, an exact analytical
solution can be found. For the derivation of the exact solutions, lecture notes of Reinhold
Blumel were used. For this special the radially symmetric and constant potential is given by

. (vo ifr<R 3.26
”(r):{oo ifr =R 829

where R is the radius of the disk and r is the radial distance from the origin of the disk. The
constant potential inside the disk, v, can be written as
vy =1—n? (3.27)

where n is the refractive index of the disk. The angular wavenumber outside the disk is k and

the angular wavenumber inside the disk is defined as

B=+k*—v,=kn (3.28)
A solution for the Helmholtz equation in equation (2.15) inside the disk is given by

Yin(r) = A ()] (Br)e™° (3.29)

where A,,, (k) is not yet specified constant, /,,, is the Bessel function of first kind of order

m and @ is the polar angle. In the space outside the disk, the potential is equal to zero. We
write the solution to equation (2.15) in the form of a superposition of an incoming wave and a
scattered, outgoing wave according to

Your ) = HS (kr)e™® + S, (k) HSY (ker)eim? (3.30)

where and S,,,(k) defines the diagonal elements of the scatter matrix, which is a diagonal

matrix. H,(;) and H,(n‘) are the Hankel functions of the first and second kind of m order,

respectively and are given by
HSE = Jo(kr) £ 1Yy (kr) (3.31)

where Y,,, is the Bessel function of the second kind of order m. The elements S,,,(k) can be

found by the use of boundary conditions.

18



We require that the wave functions vy;,, and ¥,,,; and their derivatives are continuous at the

boundary of the disk boundary. Thus, we obtain the following two conditions

An ()] (BR) = H (kR) + Sp(K)HY (KR) (3.32)
A (ORI (BR) = k [HS (KR) + Sn(OHS (kR)] (3.33)

Solving equations (3.32) and (3.33) for S,,,(k), we obtain

n Jp(BRYHS (kR) — HS, (kR) ] (BR) (3.34)
JmBRYHSY (kR) — 1 [y (BRYHSY (kR)

Two properties of (3.34) are immediately apparent:

Sm(k) =

i) Since the numerator is the complex conjugate of the denominator, S, (k) is a
pure phase with absolute magnitude equal to 1.

i) For v, = 0, which implies g = k, we see immediately that S,, (k) = 1. This is
the expected results since it follows that

Your(r) = [Hy Ger) + HP (k) |e™. Thus, in(r) = Poue (), since

Jm(er) = [HG () + Hy Ger) /2.

Since S, (k) is a pure phase, we define the scattering phase shift §,,, (k) according to

S (k) = e210m() (3.35)
The parameter A,,,(k) can be obtained by solving equations (3.32) and (3.33) for 4,,,(k). We

obtain

HP KRHS (kR) + HO (kRYHS (kR)
n ! (BROHSY (eR) = HS (kR)Jn (BR)

Am(k) = (3.36)

For the calculation of derivatives of Bessel and Hankel functions we used recurrence relations

for Bessel functions (Abramowitz & Stegun 1972).

The algorithm was implemented in MATLAB by the author of this thesis. This program is
presented as SpericalWave_Scattering.m in Appendix C. From now on, this script is called

program II.
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3.3.1 Program II

In order to test program, the two properties described under section 3.3 as i) and ii) were
checked to hold.

For each wavenumber, the following parameters can be change in program I1.

- Radius of the disk.
- Refractive index of the disk.

- Pixel resolution.
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4 Results and discussion

4.1 Program based on analytical solution for plane wave scattering

(program lll)

In the following we evaluate the analytical program of the scattering of a plane wave at a
single disk (MATLAB script Programlll.m, called program I11), described in section 3.1. In

. . . — 2
figure 4.1 the integral of the squared absolute value of the wave function || over a square
covering the disk is plotted for the wavenumber region from 500 cm™* to 1400 cm™? for the
analytical plane wave scattering at a disk (program I1l). The integration was done by

discretizing a square that just covers the disk into 200 grid point in both x- and y- direction

and calculating the intensity at every element |¢;|2 As radius of the disk and as refractive
index R=10 um and n=1.9 were chosen, respectively. In figure 4.1, nine distinct peaks appear
at nine different wavenumbers. The nine images corresponding to the nine peak wavenumber
are displayed in the same figure. As long as not stated otherwise, the color intensity scale for
the wave function plots was autoscaled in MATLAB. Because the solution is analytical, the

simulations were not very time consuming, and could be done on the author’s computer.
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The peak in the graph figure 4.1 correspond to maxima in the total intensity of the wave
function and represent resonances at the nine wavelengths. The images of the resonance
wavenumbers show the typical pattern of Whispering galley modes. The displayed pattern
shows a ring of nodes. The number of nodes is approximately twice the number of

wavelengths that fit along the inside of the boundary of the disk as illustrated below. At the

first peak, v = 596 cm™1, 10 nodes appear as shown in the wave function plot in figure 4.2.

These correspond to five wavelengths that fit into the inside of the disk as a standing wave
that is located at the inside of the boundary. We defined the number of wavenumbers fitting
into the disk as the mode number of the Whispering gallery mode. The mode number of the

Whispering gallery mode in figure 4.2 is N = 5 from equation (2.16).

Program lll: =596¢cm"!

200

180

160

140

120

100

80

40

20

20 40 60 80 100 120 140 160 180 200

Figure 4.2: The squared absolute value of the wave function is plotted. The wave function corresponds to a Whispering
gallery mode displaying 10 nodes that correspond to five wavelengths inside the disk. The plotted region covers the disk
exactly. At the axes, the grid pixel number used for the plotting is shown.
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At the following peaks, e.g. higher wavenumber, the nodes increased with two nodes for
every peak. At the last peak v = 1375 cm ™! 26 nodes were counted. This corresponds to
mode numbers ranging from N=5to N = 13, as shown in table 4.1. This result shows that the

program 111 is highly stable and therefore a good confirmation that the method was
successfully implemented as an algorithm.

Table 4.1: The table shows the wavenumber positions and the wave function plots for the resonances in figure 4.1. The nodes

in the wave function is counted and displayed in the second column and the mode number in third column is calculated with
equation.(2.16).

Wavenumber Nodes N
596 Cm_l 10 5 Program Il v =596cm”’!
20 40 60 80 100 120 140 160 180 200
701 Cm_l 12 6 Program |ll: »=701cm’
20 40 60 80 100 120 140 160 180 200
801 Cl"n_1 14 7 - Program Ill: »=801cm’!
180
160
140
120
100
80
80
40
20
20 40 60 80 100 120 140 160 180 200
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899 cm™1

16

Program lll: »»=899cm™!

20 40 60 80 100 120 140 160 180 200

996 cm™1

18

Program IlI: » =996cm”’

20 40 60 80 100 120 140 160 180 200

1092 cm™!

20

10

Program IlI: »=1 092cm’™

200

180

140

120

20 40 60 80 100 120 140 160 180 200

1187 cm™!

22

11

Program Ill: »=1187cm’’

200

180

160

140

120

20 40 60 80 100 120 140 160 180 200
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26

1282 cm™?!

24

12

200
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Program lI: v=1282cm™

60 80 100 120 140 160 180 200

1375 cm™?!

26

13

140

120

100

80

40
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20 40

Program Ill: »=1375cm™

60 80 100 120 140 160 180 200




The quantization rule of equation (2.17) shows the mathematical relationship between the
refractive index of the disk, the resonance wavelength, the mode number and the geometrical
length of the ray that corresponds with Whispering gallery resonances. In order to test the
quantization rule of equation (2.17), we calculated the length of corresponding polygonal

whispering gallery rays as illustrated in figure 2.4 for each Whispering gallery mode shown in

table 4.1. At each resonance, the resonance wavelength was calculated as A, = Vl Equation

(2.19) was used to calculate R, which is the radius of a circle that frame the corresponding
polygonal whispering gallery ray. The result is shown in table 4.2. The calculated radius R is
further compared to the actual radius of the disk R by calculating the difference between R
and R. In addition, the geometrical length of the polygonal ray, [ calculated according to
equation (2.18) is presented. Notice that the mode number, N is equivalent to the mode

number calculated by the quantization rule of equation (2.17) using the geometrical length 1.

Table 4.2: The table shows the wavenumber and mode number for the Whispering gallery resonances from table 4.1. Notice
that the mode number, N is equivalent to the mode number calculated by the quantization rule of equation (2.17) using the
geometrical length [. The calculated radius R is the radius of a circle that frame the polygon whispering gallery ray,
calculated according to equation (2.19). The calculated radius R is compared to the actual radius of the disk R by R — R
where R = 10 um . The geometrical length [ is the length of polygonal ray inside the disk, calculated according to equation
(2.18). The geometrical length of the polygonal ray [ is compare to the circumference of the disk 2R, where 2nR =

62,8 um.

Wavenumber,v, | N | R R—-R 1 2R — 1
[ecm™1] [um] | R=10.0um | [um] | 2nR = 62.8 um
596 5| 751 2.49 44.2 18.7
701 6 | 751 2.49 45.0 17.8
801 7 | 7.57 2.43 46.0 16.8
899 8 | 7.65 2.35 46.8 16.0
996 9 | 7.73 2.27 47.6 15.3
1092 10| 7.80 2.20 48.2 14.6
1187 11| 7.87 2.13 48.8 14.1
1282 12| 7.93 2.07 49.3 13.6
1375 13| 8.00 2.00 49.8 13.1

Another way to test the quantization rule in equation (2.17) is to use the approximation that
for a high mode number the geometrical length of the polygonal ray is approximately the
circumference of the disk. The geometrical length calculated as circumference of a N-sided

polygon inscribed in the disk, ,,;, according to equation (2.18) is presented in table 4.3. In
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addition, the table presents the mode number N, calculated from quantization rule in

equation (2.17) with L,,,;,, as the geometrical length.

Table 4.3: The table shows the wavenumber and mode number for the Whispering gallery modes from table 4.1. The
geometrical length, 1,5, is calculated according to equation. (2.18) as the circumference of a polygon inscribed inside the
disk. The geometrical length L, is compare to the circumference of the disk 2R, where 2nR = 62.8 um. The mode
number N, is calculated from quantization rule in equation. (2.17) with [,,,;, as the geometrical length.

Wavenumber | oty | 2R = Loty Nyoty
[em™1] [um] | 2mR = 62.8 um
596 5 | 58.8 4.05 6.70
701 6 | 60.0 2.83 8.00
801 7 | 60.7 2.09 9.20
899 8 | 61.2 1.60 10.5
996 9 | 61.6 1.27 11.7
1092 10 | 61.7 1.03 12.8
1187 11| 62.0 0.85 14.0
1282 12 | 62.1 0.72 15.1
1375 13 | 62.2 0.61 16.3

From table 4.2 it is obvious that the geometrical length of the polygonal ray, [ is getting closer
to the circumference of the disk when the mode number increases. We can further see in table

4.3 that the geometrical length of the inscribed polygon [ also is getting closer to the disk

poly
circumference as the wavenumber increases. A comparison between the geometrical length of
the polygonal ray I from table 4.2 and the circumference of a polygon inscribed in the disk

Lo, from table 4.3 shows a large degree of difference. The mode number calculated with the
quantization rule in equation (2.17) using the geometrical length of the polygonal ray [ from
table 4.2 gives the mode number N. A comparison between the mode number N in table 4.2

and the mode number N,,,,,, from table 4.3 calculated with the quantization rule in equation

oly
(2.17) with circumference of a polygon inscribed in the disk [,,;, (table 4.3), also shows a
large degree of disagreement. Hence, the circumference of an inscribed polygon ,,,,,,, is not a

good approximation for the geometrical length for a mode number up to N = 13.

Furthermore, it is interesting to see if the pixel resolution changes the characteristics of the

wave function plots. Figure 4.3 show plots of the absolute value of the wave function for the
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whispering gallery mode corresponding to the peak at 801 um in figure 4.1c using a grid pixel

resolution of 50x50 and 200x200, in (a) and (b), respectively.

Program llI: »=801cm™! Program lll: »» =801cm™

. H
5 10 15 20 25 30 35 40 45 50

Figure 4.3: Two wave function plots for the Whispering gallery mode corresponding to the peak found at 801 cm™1 in figure
4.1. At right side of the plots, a colorbar with the range of intensity values 0 to 20 is displayed. At the axes, the grid point
number used for the plotting is shown. a) shows the wave function plot with pixel resolution 50x50 and b) shows the wave
function plot with pixel resolution 200x200.

50

a b2
' 180
160
140
120
100
80
60

40

20

3

20 40 60 80 100 120 140 160 180 200

Visually the two wave function plots are very similar, except dark spots that appear in the plot
with the lower pixel resolution of 50x50. The colorbars, had similar color intensity scales (0-
20) for both wave function plots (a) and (b) in figure 4.3. We further investigated the
wavenumber position of the resonances in the plot of the integral over the absolute value of
the wave function in the square area framing the disk (graphs corresponding to the graph of
figure 4.1). It turned out that the resonances appeared at the same position v = 801 cm™* for
both pixel resolutions. Thus, the pixel resolution does not seem to have a big effect on the

wavenumber position where the resonance appears.
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4.2 Evaluation of program based on Lippmann-Schwinger equation

(program 1)

In the following we evaluate the program based on the Lippmann Schwinger equation for the
scattering of a plane wave at a single disk (MATLAB script Disk_Scattering20082015vec.m
called program I) described in section 3.1. We also compare the results from the numerical
algorithm based on the Lippmann Schwinger equation with the results from the plane wave
scatter solution (section 4.1). The parameters chosen in this thesis is based on earlier results
for a two-disk and one-disk system from M.A. Brandsrud thesis (Brandsrud 2015). The
comparisons in this thesis are based on calculations done for the scattering at one disk. The
disk radius is set to R = 10 um and the refractive index of the disk to n = 1.9. Program | was
used to calculate the wave function for every wavenumber in the interval 500 cm™! to

1400 cm™? for a plane wave impinging on the disk from the left. For the obtained wave

functions, we calculated the integral of the squared absolute value of the wave function, |$|2,
over the area of the square framing the disk. The results are plotted for grid resolutions of
50x50, 75x75 and 100x100 as described in section 2.5 in figure 4.4, figure 4.5 and figure 4.6,
respectively. As previously, peaks with increased total intensities appear. Plots of the absolute
value of the wave functions for the peak wavenumbers are plotted in the same figure. Since
the numerical calculations were very time consuming, program | was vectorised by Rozalia
Lukacs which increased the speed from four hours to about 2,5 minutes for a grid resolution
of 100x100. Most of the simulations were done at the compute cluster at UiT — The Arctic

University, the Linux Cluster Stallo, one of the Notur hardware resources, located in Tromsg.
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As we can see from the results in figure 4.4, figure 4.5 and figure 4.6, the numerical method
used in this thesis is stable. In each of the graphs, eight distinct peaks appear and they are
located in the same distance from each other. Each peak corresponds to an increase in the
intensity caused by a resonance. In some of the wave function plots belonging to the first
peaks with the lowest wavenumber, we can observe the typical pattern of Whispering gallery
modes resonances. The nodes are areas of high intensity and as explained in section 2.4, the
number of nodes is twice the number of wavelengths that fit into the inside of the disk, i.e.
mode number. As the wavenumber increases, the ring of nodes that is characteristic for
Whispering gallery modes cannot be observed in every wave function plot and we can
therefore not conclude that the intensity increase was due to Whispering gallery resonances.
As previously, we denote the modes of all resonances in figure 4.4, figure 4.5 and figure 4.6
with a mode number which is twice the number of nodes visible in the wave function plots.
The wave function plots without visible nodes is given one mode number higher than the
previous resonance with lower wavenumber. In table 4.4 the modes are listed according to
their mode number and the wavenumber position of the resonances is given for the three grid
resolutions used. The table shows that the resonances appear at almost the same wavenumbers
for the three grid resolutions, while the discrepancy between the three grid resolutions
increases with increasing wave numbers. For each resonance we can observe, that the
resonances moves to smaller wavenumbers as the grid resolution increases. It is interesting to
note that the resonances appear at almost the same distance from each other, with a

displacement of 100 wavenumbers.

Table 4.4 Modes are listed according to their mode number and the wavenumber position of the
resonances is given for the three grid resolutions used in program .

Wavenumber [cm™1]
Mode number | Grid res. 50x50 | Grid res. 75x75 | Grid res. 100x100
5 606 604 603
6 710 707 704
7 812 808 805
8 913 909 904
9 1019 1008 1003
10 1132 1113 1102
11 1241 1225 1215
12 1339 1331 1320
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For comparison, the wave function plots (a) to (f) in figure 4.4, figure 4.5 and figure 4.6 with
the corresponding mode number are plotted in table 4.5. As we can see for mode number 5, 6
and 7 the images of the wave function plots shows the typically Whispering gallery mode
pattern. For mode number 8, the WGM pattern cannot be seen in the image from grid
resolution of 50x50, but in the images for the two higher resolutions. This is also the case for
mode number 9, where the WGM pattern appears for the grid resolution 100x100, but is not
visible when a grid resolution of 50x50 and 75x75 is used. For mode number 10 and higher,
the WGM pattern has disappeared for all three grid resolutions. This can be seen in figure 4.4,
figure 4.5 and figure 4.6. Thus, we expect that by applying a higher grid resolution, the WGM
pattern will appear for mode number 10 and higher. This shows clearly that the program |
becomes more stable at a higher grid resolution.
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Table 4.5: Wave function plots with corresponding mode number of the first five resonances from program I with grid
resolution 50x50, 75x75 and 100x100 from figure 4.4, figure 4.5 and figure 4.6, respectively.

N Grid res. 50x50 Grid res. 75x75 Grid res. 100x100
Program I: » =606cm"'
5
Program I »=707cm™
6
Prug{:nl:u=812nn"
7
8
Program I »=1019cm™ - Program I: »=1003cm™
9 -
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The program and the simulations of grid resolution of 50x50 and 75x75 were done with
success, while the simulations were initially, i.e. before the MATLAB program was
vectorised, quite problematic for a grid resolution of 100x100. For each of the wavenumbers,
the calculations took four hours at Stallo. Stallo has a limited walltime. Therefore, the interval
containing 900 wavenumbers was divided into 20 wavenumbers intervals. The jobs with 20
wavenumbers were expected to give results after four days. A bug in the shell script made the
jobs swap and used up the CPU hours given to the project at Stallo. Because of these
obstacles and the limited time for a master thesis, a higher grid resolution then 100x100 could
not be checked. Finally, the project was given more CPU hours and the remaining results

were done with the modified vectorised program.

In figure 4.7, the integral of the squared absolute value of the wave function, |$|2, over the
area of the square framing the disk for the analytical solution (program Ill, figure 4.1) is
compared to the integral of the squared absolute value of the wave function of the numerical
solution (program I, figure 4.4). As grid resolution of 50x50 was used for program I. The
wave function for the analytical program was plotted with a pixel resolution of 200x200. It is
important to remember that the grid resolution defines the numerical accuracy of program |,
while for program 111, the pixel resolution only defines the resolution of the plot, since the
solution is analytical. The wave function plots that correspond to the peaks of both graphs in
figure 4.7 are plotted for comparison including their corresponding mode number in table 4.6.
The difference between the wavenumber positions where the resonances appear for program |
and program |11, respectively are given as Av = v, — v;;;, Where v, is the wavenumber
position of the respective peaks in the graph obtained by program I, while v;;; is the
wavenumber position for the peaks in the graph obtaned by program I1l. As we can see from
the table, the discrepancy Av increase as the wavenumber increases. Figure 4.8 and figure 4.9
show the same graphs as figure 4.7 but with grid resolution 75x75 and 100x100, respectively.
For comparison, the graph of the numerical solution (program 1) was scaled. Table 4.7 and
table 4.8 show the same wave function plots as table 4.6, but for grid resolution 75x75 and

100x100, respectivetly.
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Table 4.6: The wave function plots for the wavenumber positions of the resonances obtained by program | and 11 in figure
4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column
together with the discrepancy Av = v; — v;;; of the wavenumber positon at which the resonances appear for the two
programs. For the numerical program (program I) a grid resolution of 50x50 was used.

Mode number

Av = Vi — V1

Program I — Numerical plane wave

scatter solution with grid 50x50

Program Il — Analytical plane

wave scatter solution

10 Program I: »» =606cm™! Program Ill: »=596cm™
Av=10cm™
5 10 15 20 25 30 35 40 45 50 20 40 60 80 100 120 140 160 180 200
12 Program I: v =710cm™! Program I »=701cm™!
50 200
Av=9cm™ 45 180
40 160
35 140
30 120
2 100
20 80
15 o0
10 40
5 20
5 10 15 20 25 30 35 40 45 50 20 40 60 80 100 120 140 160 180 200
14 Program I: v=812cm™ Program llI: »=801cm™!
Av=11cm™?
5 10 15 20 25 30 35 40 45 50 20 40 60 80 100 120 140 160 180 200
16 Program I: »=913cm™ Program Ill: v =899¢m™!
Av=14cm™

20 40 60 80

g

120 140

g

180 200
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Av=23cm™?

Program I: v =1019¢cm™
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Program IlI: » =996cm”’!

20 40 60 80 100 120 140 160 180 200

20

Av=40cm™?

Program I: » =11 32cm?

Program ll: »=1092cm™

20 40 60 80 100 120 140 160 180 200

22

Av =54cm™t

Program I: =1241cm™

5 10 15 20 25 30 35 40 45

@
3

Program Ill: »=1187cm’’
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24

Av=57cm™?
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Table 4.7: The wave function plots for the wavenumber positions of the resonances obtained by program | and 11 in figure
4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column
together with the discrepancy Av = v; — v;;; of the wavenumber positon at which the resonances appear for the two
programs. For the numerical program (program I) a grid resolution of 75x75 was used.

Mode number | Program | — Numerical plane wave | Program Il - Analytical
Av = v; — v | scatter solution with grid 75x75
5 Program I: v =604cm™! Program lll: » =596cm’!
Av=8cm™? N
60
50
40
30
20
10
10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200
6 Program I: v=107cm™! Program lll: » =701cm’!
Av=6cm™!
10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200
7 Brogram v e Program llI: » =801cm’’!
Av=7cm™?
20 40 60 80 100 120 140 160 180 200
10 20 30 40 50 60 70
8 Program I: »=909cm”’ Program llI: »» =899cm"!
Av=10cm™? 70
60
50
40
30
20
10
10 20 120 40 50 50 70 20 40 60 80 100 120 140 160 180 200
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Program I: »=1008cm’’ Program IlI: » =996cm’!

Av=12cm™?

10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200

10

Av=21cm™? L

Program I: »=1113cm’™ Program III: » =1092cm™

i N ¥ & @ &
2 % 8 & 8 8
8

10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200

11

Av=38cm™?

Program I: »=1225cm’" Program Ill: »=1187cm’!

10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200

12

Av =49 cm™?

Program I: v =1331cm’" Program Ill: »=1282cm™

10 20 30 40 50 60 70 20 40 60 80 100 120 140 160 180 200
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Table 4.8: The wave function plots for the wavenumber positions of the resonances obtained by program | and 11 in figure
4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column
together with the discrepancy Av = v; — v;;; of the wavenumber positon at which the resonances appear for the two
programs. For the numerical program (program I) a grid resolution of 100x100 was used.

Mode number

Av = Vi — Vi1

Program | —Numerical plane wave
scatter solution with grid 100x100

Program I11 - Analytical

5 Program I: v =603cm™ Program Ill: »=596cm™
100 200
Av=7cm™? 180
160
140
120
100
80
60
40
20
10 20 30 40 5 6 70 80 9 100 20 40 60 80 100 120 140 160 180 200
6 Program I: v=704cm™ Program I »=701cm™!
100 200
Av=3cm™? 180
160
140
120
100
80
60
40
20
10 20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 140 160 180 200
7 - Program I: »» =805cm"! 56 Program I »=801cm™!
Av=4cm™t 180
160
140
120
100
80
60
40
20
10 20 30 40 5 60 70 8 9 100 20 40 60 80 100 120 140 160 180 200
8 Program I: v =904cm™ Program Ill: »=899cm™
100 200
Av=5cm™? 180

160

140

120

80

40

20

20 40

60 80 100 120 140 160 180 200
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100

Program I: v =1003cm™

Program IlI: » =996cm’’!

Av=7cm™?
G 20 4 60 8 100 120 140 160 180 200
10 Program I: v =1102cm™ Program Ill: »=1092cm™
100 200
Av=10cm™? % 180
80 160
70 140
120
100
40 80
30 60
20 40
10 20
10 20 30 40 5 6 70 80 9 100 20 40 60 80 100 120 140 160 180 200
11 Program I: v=1215cm™ Program I »=1187cm™
100 200
Av = 28cm™? 180
160
140
120
100
40 80
60
40
20

20 40 60 80 100 120 140

g

180 200

12

Av =38cm™?

100

Program I: v =1320cm’

Program IlI: » =1282cm?

200

180

160

140

120

80

40

20

20 40 60 80 100 120 140

g

180 200
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In table 4.9, the wavenumber positions for the resonances obtained by the numerical solution
based on the Lippmann Schwinger (program I) are compared to the wavenumber positions of
the resonances obtained by the analytical solutions (program Il1). In the first column, the
Mode number of the respective resonance is given, the second column shows the wavenumber
position obtained according to the analytical solution, while column 3-5 show the
displacement of the respective resonance wavenumber obtained by program Il for a grid
resolution of 50x50, 75x75 and 100x100, respectively.

Table 4.9: The wave number position for the resonances obtained by the numerical solution based on the Lippmann
Schwinger (program I) are compared to the wavenumber positions of the resonances obtain by the analytical solutions
(program I1). The first column the mode number to the respective resonances is given, the second column shows the
wavenumber position obtained according to the analytical solution. Column 3-5 shows the displacement of the respective
resonance wave numbers obtained by program Il for a grid resolution of 50x50, 75x75 and 100x100, respectively.

Wavenumber displacement for program |
Mode Program Il | (relative to wavenumbers from program I11)
number | wavenumber
50x50 75X75 100x100

5 596 cm™! +10cm™? +8cm™1 +7cm™t
6 701 cm™! +9cm™?! +6cm™! +3cm™1
7 801 cm™?! +11cm™? +7 cm™1 +4cm™t
8 899 cm™1 +14cm™ | +10cm™t +5cm™1
9 996 cm™1 +23cm™ | +12cm™t +7cm™1
10 1092 cm™! +40cm™ | +21cem™ | +10cm™?
11 1187 cm™1 +54cm™ | +38cm™ | +28cm™?
12 1282 cm™t +57cm™ | +49cm™ | +38cm™?

As we can see in table 4.9, the displacement of the wavenumbers from program | decrease as
the grid resolution increases. Hence, the grid resolution for 100x100 seems to be closer to the
exact solution then the lower grid resolution. This indicates that if the grid resolution is
further increased, the resonances move closer to the exact result. A visual inspection of the
wave function plots in shows that for low wavenumber resonances (mode numbers 5,6 and
7), WGMs are revealed independently of the grid resolution used, while for high wavenumber
resonances, a high resolution is required for revealing WGMSs. This is due to the fact that for
higher wavenumber resonances, the mode number and thus the number of nodes increases.
With increasing mode number, the nodes become smaller and thus a higher grid resolution is
needed. The size of each pixel depends on the grid resolution. Hence, for a grid resolution of
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50x50 of a 10 micron radius disk, the pixel size is equal to (0.4x0.4)um, while for a grid
resolution of 100x100 for the same disk the pixel size becomes (0.2x0.2)um. Since the area
covered by one single node, decreases with increasing mode number, the pixel size need to
decrease and the grid resolution needs to increase if one wants to achieve the same accuracy.
This is obvious for the mode number 9 in table 4.5 where the grid resolution 50x50 and 75x75
resulted in a wavelength displacement for the resonances of 23 cm~tand 12 cm™2,
respectively (table 4.9) compared to the exact solution. For the grid resolution 100x100
though, the respective wave function plots (mode number 9 in table 4.5) shows the typical
WGM pattern and the displacement was reduced to 7 cm™1 shown in table 4.9. In figures 4.7,
4.8, 4.9 and tables 4.6, 4.7, 4.8 we compared the wavenumber positions of resonances in the
integral of the absolute value of the wave function over the square framing the disk. High
discrepancies were found for resonance positions referring to high mode numbers and grid
resolutions. In addition, wave function plots for the respective resonance positions were
compared with each other. Another way to compare results is to consider the wavenumber
positions for the resonances obtained by the analytical solution and plot the wave functions
obtained by the numerical solution based on the Lippmann Schwinger equation for these exact
wavenumber positions of the resonances. From the analytical scattering algorithm, program
I11, a Whispering gallery resonance with mode number N = 7 and 14 nodes at wavenumber
801 cm™! was found (figure 4.1). The same resonance was found in program |

at 812 cm™1, 808 cm™~1 and 805 cm ™! with grid resolution 50x50, 75x75 and 100x100
(figure 4.4, figure 4.5, figure 4.6) respectably. We observed that the corresponding wave
function plots deviated considerably for low grid resolutions. In order to study if the
numerical program based on the Lippmann Schwinger equation can reveal WGMs at the exact
resonance positions, program | was run with different grid resolutions (50x50, 70x70, 90x90,
110x110, 130x130 and 150x150) for the resonance wavenumber 801 cm™1. As seen table
4.10 in the resolution is stepwise changed from 50x50 to 150x150.
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Table 4.10: Wave function plots for wavenumber 801 cm™! obtained by the numerical program based on the Lippmann

Schwinger equation, program I, was run with six different grid resolutions, 50x50, 70x70, 90x90, 110x110, 130x130 and

150x150. The wavenumber position v = 801 cm™! with mode number N=7 and 14 nodes corresponds to a Whispering
gallery resonance obtained by the analytical plane wave solution, program III.

50x50

Program I: » =801cm™’

45

40

35

25

20

70x70

Program I: » =801cm™!

70

40

30

20

90x90

Program I: v =801cm™’

90

80
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40

30

20

110x110

Program I: »=801cm"’

110

80
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20
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40
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In table 4.10 we can observe that the wave inside the disk starts to form a Whispering gallery
pattern as the grid resolution increases. For the grid resolution 90x90 and higher grid
resolutions the typical WGM pattern can be observed.

The wave function plot obtained by program I with a grid resolution of 100x100 was
autoscaled in MATLAB with color intensity scale 0-14, shown in figure 4.10.

Program I: »=801cm™!

100

14

12

10 20 30 40 50 60 70 80 90 100

Figure 4.10: Wave function plot of v = 801 cm™! obtained by program I with a grid resolution of 100x100. At right side of
the plot, a colorbar with the range of intensity values 0 to 14 is displayed.

The wave function plot obtained by the analytical solution (program I11) with a pixel
resolution of 100x100 was autoscaled in MATLAB with color intensity scale 0-20, shown in
figure 4.11b. In order to visually compare the wave function plot obtained by program | with
a grid resolution of 100x100 in with the wave function plot obtained by program I11 with a
grid solution of 100x100 the color intensity for the wave function plot for program | was
rescaled from 0-14 to 0-20. Figure 4.11 shows the wave function plot (a) for program | and
the wave function plot (b) for program 111 with the same colour scale of 0-20. In figure 4.11
we can see that the wave function plots displays the same type of pattern with 14 nodes inside
the disk, while the absolute value of the brightest node to the right is slightly higher in the
wave function obtained by program I1l. Comparing the wave function plot for program | with
color scale 0-14 in figure 4.10 with wave function plot for program Il with color scale 0-20
in figure 4.11b, the absolute value of the brightest node to the right appears to have the same
brightness. As mentioned earlier the same resonance (mode number N = 7) found in program
| with grid resolution 100x100 appeared at the wavenumber position v = 805 cm ™1 (figure
4.6). If program I is run with a higher grid resolution then 100x100 the resonance with N = 7
may move to a wavenumber position of v = 801 cm™1, equal to the resonance wavenumber

position of program I1l. Further investigation is necessary to analyse the color intensity scale
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of the wave function plots of the resonances for program | with a higher grid resolution then

done in this thesis.

Program I: v =801cm™! Program lll: » =801cm™!

100
a. 20
%0
18
80
16
70
14
60 i
: 12
|
50 L
0 "
30 6
20 4
10 2
0

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 4.11: a) Wave function plot obtained by program | with a grid resolution of 100x100 and color scale intensity 0-20. b)
Wave function plots obtained by program 111 with a pixel resolution of 100x100 and color scale intensity 0-20.

In order to estimate the error in the wave function plots obtained by program | which is based
on the Lippmann Schwinger equation, we calculated the mean error of the absolute value of
the wave function obtained by program I. This is done by subtracting in each pixel the
squared absolute value of the wave function obtained by program I from the corresponding
pixel value obtained by program Il resulting in the discrepancy for each pixel. We calculate
then for each pixel the absolute value of the discrepancy (error) and sum the error over all
pixels. We divide this sum by the mean of the squared absolute value of the wave function
obtained by the analytical solution (program I11). The result we call relative pixel error. This

is summarized in the two formula:

L 100 100 ||1P””'j|2_ |lp”'j|2| (41)
g ZZ mean
=1 j=1

where |'P, l-,j|2is squared absolute value of the wave function in element i,j obtained by

program | and |¥;;; ; j|2is squared absolute value of the wave function in element i,j obtained

100 v1100 2
YAeONA LN ER]

Nx Ny

by program Il and mean = . The relative pixel error is given by

Ayj (4.2)

where N, is number of pixels in x-direction and N,, is the number of pixels in y-direction. The

relative pixel error is shown in figure 4.12 for different grid resolutions.
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Relative error in the images: Program | vs. Program lll
0.6 T T T T T T T

Relative errorin %

50 60 70 80 90 100 110 120 130
Grid resolution

Figure 4.12: The relative pixel error gives in percent the difference in wave function plot from program | and the wave
function plot for the wavenumber v = 801 cm ™1 for different grid resolutions.

The relative pixel error troops from grid resolution 50x50 to 90x90. From grid resolution
90x90 to 130x130 the relative pixel error is quite stable around 0,5%. This indicates that the
images for program | appearing from grid resolution 90x90 is relative alike the exact solution

of the WGM pattern from Program III.
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4.3 Program based on the analytical solution for the spherical wave

scattering (program II)

In the following we evaluate the S-matrix for the scattering of a spherical wave at a disk
(MATLARB script SpericalWave_Scattering.m, called program 1) as described in section 3.3
is shown in Appendix C. From earlier results, we observed that the resonances from the
numerical solution based on the Lippmann-Schwinger equation (program I) approaches the
resonances from the analytical plane wave scattering solution (program I1I). Therefore, it
made sense to compare the resonances of the S-matrix for the scattering of a spherical wave
(program I1) with the analytical solution for the scattering of a plane wave at a disk (program
I11). Program Il was evaluated using a disk with a radius of 10 um and a refractive index of
1.9. In figure 4.13a to figure 4.20a the real part of the denominator of the S-matrix is plotted
in the region from 500 cm™1 to 1400 cm ™1 for the orders m = 0 tom = 9. Resonances of
the S-matrix are expected to appear when the real part of the denominator of the S-matrix is
zero. For order number 0 to 7, the real part of the denominator of the S-matrix became zero
twice. The corresponding wave functions at the zero-crossings are plotted in figure 4.13b,c-
figure 4.18b,c. For order number 8 and 9 the real part of the denominator becomes zero once.
The corresponding wave functions at the zero-crossings are plotted in figures 4.19b-4.20b.

The wave functions are plotted by discretizing the disk into 200 grid cells in both x- and y-

N . : . — 2 . .
direction and calculating the intensity at every element |1P}| . All simulations were done on

the author’s computer.
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The resonances are summarized in table 4.11 and compared with the resonances in the
analytical plane wave scatter solution (program I11). The resonance wavenumbers of the first
zero crossings for order number 0 to 9 are marked with red text and placed at the nearest
wavenumber from the analytical solution of the scattering of a plane wave at a disk (program
I11). The resonance wavenumber of the second zero crossings for order number 0 to7 are
marked with blue text and compared to the nearest wavenumber from the plane wave scatter

solution.

Table 4.11: The resonance wavenumbers from the analytical plane wave scattering resonances (program Il1) are displayed
in the first column. The first row shows the resonance wavenumbers obtained by the spherical wave scattering solutions, i.e.
where the denominator to the S-matrix is equal to zero. This is done for every order number separately. The red
wavenumbers denote the first zero crossings, while the blue wavenumbers denote the second zero-crossings.

Spherical wave

Order no. 0 1 2 3 4 5 6 7 8 9

Waveno. [em™'] | 579 | 1116 | 507 | 1092 | 580 | 1116 [ 672 | 1202 | 766 | 1157 | 861 [ 1202 | 956 | 1202 | 1050 | 1387 1143 | 1236

396 579 307 380 672

701 672 766
801 166 261
892 361 965
296 956 1050
1092 1116 1092 1116 1157 1030 1143
1187 1116 1116 1202 1157 1202 1143 | 1236
1282 1202 1202 1292 1236
1373 1292 1387

Plane wave

Table 4.11 shows that the resonances obtained by the zero-crossings of the real part of the S-
matrix are not in accordance with the resonances obtained by the program based on the
analytical solution of the plane wave scattering at the disk (program Il1). For program Il the
resonances appears at nine different wavelengths while at for the spherical wave scatter
solution (program Il), the resonances appear once or twice depending on the order number.
We can also observe that the resonance wavenumbers from program Il appear at different
numbers depending on the order number and resonance wavenumbers increase with

increasing order.

Program Il was checked to satisfy the properties i) and ii) from section 3.3. These properties
hold. This indicates that the method was successfully implemented. Since the resonances
obtained by the zero-crossings of the real part of the denominator of the S-matrix do not agree
with the resonances obtained by the program based on the analytical solutions for the
scattering of a plane wave at a disk, we assume that the imaginary part of the denominator

also needs to be considered. This was unfortunately not possible in the frame of this thesis.
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Figure 4.13: a) The graph shows the real
part of the denominator of the S-matrix for
order number 0 as a function of the
wavenumber.

b) Wave function plot of the first zero
crossing of the denominator of the real
part of the S-matrix in a).

¢) Wave function plot of the second zero
crossing of the denominator or the real
part of the S-matrix in a).
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Figure 4.14: a) The graph shows the real
part of the denominator of the S-matrix
for order number 1 as a function of the
wavenumber.

b) Wave function plot of the first zero
crossing of the denominator of the real
part of the S-matrix in a).

c) Wave function plot of the second zero
crossing of the denominator or the real
part of the S-matrix in a).
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Second order
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of the S-matrix in a).
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Figure 4.17: a) The graph shows the real
part of the denominator of the S-matrix for
order number 4 as a function of the
wavenumber.

b) Wave function plot of the first zero
crossing of the denominator of the real part
of the S-matrix in a).
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crossing of the denominator or the real part
of the S-matrix in a).
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Figure 4.18: a) The graph shows the real
part of the denominator of the S-matrix
for order number 5 as a function of the
wavenumber.

b) Wave function plot of the first zero
crossing of the denominator of the real
part of the S-matrix in a).

¢) Wave function plot of the second zero
crossing of the denominator or the real
part of the S-matrix in a).
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Sixth order
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a. ] Figure 4.19: a) The graph shows the real
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005 order number 6 as a function of the
wavenumber.
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Figure 4.21: a) The graph shows the real part of the denominator of the S-matrix for order number 7 as a function of the
wavenumber. b) Wave function plot of the first zero crossing of the denominator of the real part of the S-matrix in a).
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Figure 4.22: a) The graph shows the real part of the denominator of the S-matrix for order number 9 as a function of the
wavenumber. b) Wave function plot of the first zero crossing of the denominator of the real part of the S-matrix in a).
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4.4 Summary of the results and discussion

The results from section 4.1 shows that the analytical plane wave scatter algorithm was
successfully implemented in MATLAB. The MATLAB program, called program |11 was
referred to as the exact solution. Nine distinct resonances were observed in the wavenumber
region from 500 cm™* to 1400 cm™? for a disk with a 10 micron radius and a refractive
index of 1.9. These resonances could be explained by Whispering gallery modes. WGMs
resonances are characterized by a pattern of bright nodes arranged in a regular order inside the
disk. This characteristic pattern could be observed in the wave functions plots for the nine
resonance wavenumbers. A quantization rule was set up relating the refractive index of the
disk, the resonance wavelength, the mode number and the length of the ray trapped inside the
disk, i.e. geometrical length. A comparison of the mode number calculated with the
quantization rule using the geometrical length for polygonal whispering gallery ray and the
circumference of an inscribed polygon in the disk showed a large degree of disagreement.
Hence, the circumference of an inscribed polygon is not a good approximation for the
geometrical length for a mode number up to N = 13. We further investigated if the pixel
resolution effected the characteristics of the resonances in program 1. The results showed that

the pixel resolution did not influence the appearance of the resonances.

Section 4.2 shows the results from the numerical plane wave scatter algorithm (program 1) for
three different grid resolutions, 50x50, 75x75 and 100x100. Eight distinct resonances were
observed in a disk with a 10 micron radius and refractive index of 1.9 in the wavenumber
region from 500 cm™?! to 1400 cm™!. At the resonance wavenumbers, the wave function
plots revealed the characteristic WGM patterns: in mode number 5,6 and 7 for grid resolution
50x50; in mode number 5,6,7 and 8 for grid resolution 75x75; and in mode number 5,6,7,8
and 9 for grid resolution 100x100. It is expected, that for a higher grid resolution the WGM
pattern appears at higher mode numbers. This indicates that the increase of the grid resolution

also increase the accuracy of program 1.

The numerical results of program I based on the Lippmann Schwinger Equation were
compared with the analytical solution for the scattering of a plane wave at a disk (program
I11). The results show that the resonances obtained by program | appear at higher
wavenumbers than the corresponding resonances obtained by program Ill. As the grid
resolution in program | increases, the discrepancy between the resonance positions for both

programs decreases. As a result, the wavenumber positions of the resonances obtained by

60



program | become closer to the wavenumber positions of the resonances obtained by program
I11. We further notice that wave function plots with grid resolution 100x100 obtained by
program 111 are in complete agreement with wave function plots obtained by program | for the

first five resonances and all of them show the characteristic WGM pattern.

Further, we compared the wave function plots for mode number 7 at wavenumber 801 cm™?
obtained by program I and program I11. The resonance wavenumber of mode number 7 shows
discrepancy between the resonance positions of 11 cm™ to 4 cm™1 for a grid resolution of
50x50 to 100x100, when comparing program | to program I1l. Nevertheless, already at 90x90
we can observe by visual inspection that the characteristic WGM pattern appears in the wave
function plot obtained by program I. The increasing accuracy obtained when increasing the
grid resolution is further confirmed by calculating the relative pixel error and plot this in a
graph. From the graph we can see that the relative pixel error in the wave function plot is
about 0.5% when the grid resolution is higher than 90x90.

The tests of the properties of the S-matrix in section 4.3 show that the analytical spherical
wave scatter method was successfully implemented in MATLAB. The MATLAB program
was called program Il. The real part of the denominator of the S-matrix for a disk with 10
micron radius and refractive index of 1.9 was calculated and plotted against wavenumbers
from 500 cm™! to 1400 ¢m™?. This was done for orders 0 to 9. The S-matrix describes the
intensity. When the denominator of the S-matrix is equal to zero, the intensity has a
maximum. Hence, the zero crossing of the denominator is expected to correspond to
resonances. For order number 0 to 7 two of these resonances appeared and for order number 8
and 9 one resonance appeared. These resonance wavenumbers were compared to the
resonance wavenumbers obtained by program I1l. The comparison revealed no similarities. As
both compared programs are analytical solutions, the resonance wavenumbers should agree
for both programs. We assume that the discrepancy is due to the fact that only the real part of

denominator of the S-matrix was considered in program II.
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5 Conclusion and outlook

In this thesis, the focus was on the comparison of the numerical results of program | based on
the Lippmann Schwinger Equation with the analytical solution for the scattering of a plane
wave at a disk (program Il1). In addition, the S-matrix for the scattering of a spherical wave at
a disk (program I1) was considered and resonances of the S-matrix were compared with the
program based on the Lippmann-Schwinger equation and the analytical solution for the
scattering of a plane wave at a disk. The analytical plane wave scatter solution was
successfully implemented as an algorithm (program I11) and the results showed high stability.
The results displayed distinct resonances in the disk that could be explained by Whispering
gallery modes. We found a good agreement between the numerical solution (program I) and
the analytical plane wave scattering solution (program I11). First, we observed that the
wavenumber positions of the resonances obtained by program 111 were systematically higher
and that the discrepancy decreased with increasing grid resolution. We further observed that
the discrepancy was larger for higher mode numbers. The wave function plots of the
resonances for program | showed the appearance of Whispering gallery mode patterns in the
first five of eight plots of the wavenumbers positions for resonances for a grid resolution of
100x100. For the two lower grid resolutions 50x50 and75x75, WGMs pattern appeared in 3 of
8 and 4 of 8 plots, respectively. These results indicated that the numerical program (program
I) becomes more and more stable when the grid resolution increases. This shows that the
wavenumber position for the resonances obtained by program | converges to the wavenumber
positions for the resonances obtained by program 111 with increasing grid resolution and that
the WGM pattern at higher wavenumber positions could also be revealed when the grid
resolution is further increased. The simplification done for Green’s function in program I,
namely that the pole of the Green’s function at zero was approximated by zero, seems to have
little influence on the results. As further investigation, program | should be simulated with
higher grid resolution then 100x100 for single disk, and check if the resonances appears at
exactly the same position as the resonances in program Ill. A higher grid resolution should
also be checked in program 11 with nanodisks and other refractive index. There are also other
numerical methods suggested to solve scattering of a two-dimensional plane wave at multiple
coupling disks. One is the finite difference time domain (FDTD) technique (Grandidier et al.

2011). The FDTD technique is very time consuming and requires extensive computation. It
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would be interesting to compare the analytical results from program 111 with the FDTD

technique and check the quality of this approach.

We compared the results from program Il and program 111 and found no clear connection
between the wavenumbers where the resonances appeared. The results from program Il
indicated that important information with respect to the resonances is lacking when only the
real part of the denominator of the S-matrix was considered. Thus, both real and imaginary
part of the denominator of the S-matrix needs to be considered.
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Appendix A

The MATLAB scripts for program 111 is enclosed in Appendix A:

e Programlil.m
The analytical plane wave method is implemented as an algorithm in this script.
Calculates the squared absolute value of the wave function for series of wavenumbers.
When the input is only one wavenumber a plotted image is displayed.

e constant_planewave.m

A function that gives the parameters A; and B,.

DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO©OOOOOD©
% ProgramIII.m %
< o
] o
o . o
% Frida H.M Torgersen %
o o
] ]
% Program III based on the analytical plane wave scattering method %
o [
© o

clear all
close all

%% properties that can be changed
% disk
n=1.9; Refractive index

a = power (10,-5); % Radius

1 =-20:1:20; % Interval of order

h = length(l);

%% Light

nu = 801; % Wavenumber

kArr = nu*100*2*pi; % angular wavenumber outside the disk
betaArr = kArr*n; % angular wavenumber inside the disk



Sum_psiArr = zeros(l,length(nu));
aa=1l; %Change the frame, aa=1l the frame goes around the disk
X0=-aa*a;
YO0=-aa*a;
Nstep=200; % Grid size
step=2*aa*a/Nstep;

for jnu = 1l:length(nu);

Psii = zeros (Nstep,Nstep);
Psi=zeros (Nstep,Nstep) ;
absPsii = zeros (Nstep,Nstep) ;

k = kArr (jnu) ;
beta = betaArr (jnu);
[A 1,B 1]= constants planewave (l,a, k,beta,n);

for i=1:Nstep
x=X0+step*double (1) ;
for j=1:Nstep
y=Y0+step*double (7) ;
thetal=atan2(y,x);
rl=sqrt (x*x+y*vy) ;
for jk = 1l:1length(1l)
if (rl<a)
psi=bessel]j (1l (jk),beta*rl) *exp(1li*1l(jk) *thetal);
Psi(j,i)= B_1(jk) *psi;
Psii(j,1i) = Psii(j,1i)+ Psi(j,1i):
elseif (rl>a)
hl=(1i"~1(jk)) *besselj (1(jk),k*rl) *exp (1i*1 (jk) *thetal);
h2=A 1(jk)*besselh (1l (jk),1,k*rl)*exp(1i*1(jk)*thetal);
Psi(j,1)=hl+h2;

Psii(j,1i) = Psii(j,i)+ Psi(j,1i):
end
end
absPsii(j,1i) = abs(Psii(j, 1)) .*abs(Psii(j,1));
end
end
B(jnu, :) = sum(absPsii);
A(jnu) = sum(B(jnu));
if length(nu) > 1
filename =
strcat ('program3 nl.9 ',numZ2str(nu(l)),' ',num2str(nu(end)),’' lOmicron.txt'

)i
g=fopen (filename, 'a'");
fprintf (g, '$f ',nu(jnu));

fprintf (g, '$f\n', A(jnu));



fclose(qg);

else
filename=['Psii peak nl.9 ',numZ2str(nu),'.mat'];

save (filename) ;
end
end

o\

Plotting the figure

nu = k./(2*pi*100);
ZAbsWaveFunction.d=abs (Psii) .*abs (Psii) ;

if (1)
figure;
set (gcf, 'Color',[1 1 17);
pcolor (ZAbsWaveFunction.d) ;
shading interp;
colorbar;

string = strcat('Program III: \nu =',int2str(nu),'cm™-1");

title(string);
end



function

[A 1,B 1] = constants planewave(l,a, k,beta,n)

for i= 1l:length (1)
for j = l:length (k)

Jk = besselj (1(i),k(j)*a);
JK = besselj(1(i),beta(j)*a);

if 1(i) == 0
dJk = -besselj(1,k(3)*a); $dJ 0 = -J 1
dJK = -n*besselj(l,beta(j) *a);

else
dJdk = 0.5* (besselj (1(

i
dJK = 0.5*n* (besselj (1(i)-1,beta(j)*a)-

besselj (1(i)+1,beta(]j)*a));

end

end

end

end

H1 = besselh(1(i),1,k(3)*a);
if 1(i) == 0

dHl = -besselh(l,1,k(j)*a); % dHl 0 = -HI 1
else

)-1,k(J)*a)-besselj (1(i)+1,k(])*a));
i)-1

dH1 = 0.5* (besselh(1(i)-1,1,k(j)*a)-besselh(l(i)+1,1,k(j)*a));

end

NominatorA 1(i,3j) = (1i71(i))* (dJk*JK-Jk*dJK) ;
DenominatorA 1(i,j) = HI1*dJK-dH1*JK;

A 1(i,j) = NominatorA 1(i,Jj)./DenominatorA 1(i,j);

NominatorB 1(i,J) = (1i71(i))*(dH1*Jk-dJk*H1);
DenominatorB 1(i,j) = JK*dHl -dJK*H1;

B 1(i,j) = NominatorB 1(i,Jj)./DenominatorB 1(i,J);



Appendix B

The MATLAB scripts for program 1 is enclosed in Appendix B:

e Disk Scattering20082015vec.m
The numerical plane wave method is implemented as an algorithm in this script.
Calculates the squared absolute value of the wave function for series of wavenumbers.

When the input is only one wavenumber a image is displayed.

990000000000 000000000000000000000000000009000000000000000000000000000000000
OO0OO0OO0OO0OO0OOOOODOOODODOODODOOODOOODODOOODOOODODOOODOOODODOOOOOODODOODODOOODODOOODOOODODOODODOOODOOODO©OO™DO
% Disk Scattering20082015vec.m %
o3 o3
] ]
% Achim Kohler %
% Modified by: Rozalia Lukacs %
o o
] ]
o o o
% Program I based on the numerical plane wave scattering solution %
00 00000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000

o\°

Light 3
Chose the first nu array if you want a series of wavenumbers, the second
nu array 1f you want for one wave number. Remember to comment out the one
you do not use.

o° oo

oe

nu_array = [500 1400]; $ Series of wavenumbers
% nu_array = (596); $ One wavenumber
NX=50; %$Grid resolution

NY=NX;

for nu= nu array(l):1:nu array(end)
close all;

ArrayOfCircles=1;
Zebra=0;

nu= nu * 100.0; % at 1000cm” (-1)

phi = pi; % angle of incident plane wave. For phi=0, the plane wave
%is coming from the right. phi=pi/2, the plane wave is coming from the
%$top. phi = pi, plane wave coming from the left and so on..

k=2*pi*nu;
kx=k*cos (phi) ;
ky=k*sin (phi);
clear phi;

NCx=1;
NCy=1;



R= power (10,-5); % Radius of the disk
Nx=NX;

Ny=NY;

N=Nx*Ny;

a=2*NCx*R;

b=2*NCy*R;

n_index=1.9;

dx=a/Nx; % spacing in x-direction
dy=b/Ny; % spacing in y-direction

x0=0;

y0=0;

% x0=0.1*R; % Can be used if you want to increase the frame
% y0=0.1*R;

Nxadd = (2*x0)./dx;

Nyadd = (2*y0)./dy;
Nx = Nx + Nxadd;

Ny = Ny + Nyadd;

N = Nx*Ny;

x=zeros (1,N);
y=zeros (1l,N);

indexi=reshape (((1:1:Nx) '*ones(1l,Ny))"',1,N);
indexl=reshape(((1l:1:Nx) '*ones(1,Ny)),1,N);

indexj=(index1l-1) .*Nx+indexi;

x (indexj)=((indexi-0.5) .*dx); % the Descartes coordiante x
y (indexj)=((index1-0.5) .*dy); % the Descartes coordinate vy

33 = reshape(((l:1:N)'*ones(1,N))"',1,N*N);
mm reshape(((1:1:N) "*ones(1,N)),1,N*N);

Z = k*sqrt ((x(Jj)-x(mm)).*(x(3J)-x(mm))+(y(3J)-y(mm)).*(y(JJ)-y(mm)));
G = reshape (besselh(0,%),N,N);
G(isnan(G)) = 0 ;

% Establish the potential
v=zeros (1l,N, "double"');

for m=1:N
for nx=1:NCx
for ny=1:NCy

if (ArrayOfCircles)
% Array of circles
xcircle=(2*nx-1) *R+x0;

ycircle=(2*ny-1) *R+y0;

rn=sqgrt ((x (m) -xcircle) * (x (m) -xcircle) + (y (m) -
ycircle) * (y(m) -ycircle));
if (rn<R)
v(m)=1.0-n_index*n_index;
end
end

end

Vi



end
end
Gtilde(1:N, :)=G(1l:N, :).*reshape (reshape((v'*ones(1,N))',1,N*N),N,N);

clear G;
clear v;

eikr=exp (1i* (kx*x+ky*y)) ;
clear x y;

IdentityMat=eye (N,N) ;
M=IdentityMat+1li* (k*k*dx*dy*0.25) *Gtilde;

clear Gtilde;
clear IdentityMat;

%% Solve Linear Equation by Matlab routine

psi complex = linsolve(M,eikr'");
psi complex reshaped=reshape (psi_ complex,Nx,Ny) ;

Xplot=abs (psi complex reshaped) .*abs(psi complex reshaped);

linearIndexXplot=sub2ind(size (Xplot) ,h Nx,Ny) ;
IntegralPsi=sum (Xplot (l:linearIndexXplot));

o\°

% Display a image %%
When calculating one wavenumber an image can be displayed if the
following is uncommented

oe

oe

oe

figure;
pcolor (Xplot');
set (gcft, 'Color',[1 1 1]);

oe

oe

% string = strcat ('Program I: \nu =',int2str(nu./100), 'cm” (Eisenlohr et
al.)");
% title(string);
% shading interp;

phi=angle (psi complex reshaped); % gives angles in the range -pi:pi

if length(nu array) == 1

filename =

strcat ('psi peak programl vec nl.9 ',num2str(Nx), 'x',num2str (Ny),' ',num2st

r(nu array(l)),"' 10Omicron.mat');

save (filename, 'Xplot', 'nu'");
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g=fopen (['programl vec ',numZstr(nu array(l)),' ',numZ2str(NX), 'x',num2str (N
Y),' '",'" nl.9 10micron.txt'],'a');

fprintf (g, 'S ',nu) ;

fprintf (g, '$f\n', IntegralPsi) ;

fclose(qg);

else
g=fopen (['programl vec ',num2str(nu_array(l)),' ',num2str(nu_array(end)),’'
',num2str (NX), 'x',num2str (NY),"' ',"' nl.9 1lOmicron.txt'],'a'");
fprintf (g, '%Ef ',nu);

fprintf (g, '$f\n',IntegralPsi);
fclose(qg);

end
end
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Appendix C

The MATLAB scripts for program 11 is enclosed in Appendix C:

e SpericalWave_Scattering.m
The analytical spherical wave scatter method is implemented as an algorithm in this
script. Calculates the S matrix and finds the maximum points, and the zero points to
the denominator of the S matrix, which gives the same point. An plot the images at
this points.

e constants.m (function)

A function that gives the constants A4, S and the denominator of S.

% SpericalWave Scattering.m %
% Frida H.M Torgersen %
% Program II based on the analytical spherical wave scattering solution %
%% properties that can be changed

n=1.9; % Refractive index

a = power (10,-5); % radius of the disk

M = 0; % order number

nu = (500:1:1400)*100; S%Swavenumber in cm”-1

lambda = 1./nu;

K = length (nu);

k=2*pi./lambda; % angular wavenumber outside the disk

beta = k*n; % angular wavenumber inside the disk

[A,S,DenominatorS] = constants(M,a,k,beta,n); % Constants from a function
f = real (DenominatorS) ;

%% Plotting S m

y = strcat('s ' ,int2str(M)); % Write S m(k) for m = 0,1,2 or 3

figure ()

plot (nu*0.01,real(S),'lineWidth',1.5)

grid on

legend(y, 'Location', "Best")

title(y)



xlabel('nu'")
ylabel (y)
%% Plott denominator of S m

y = strcat('denominator of S ' ,int2str(M)); % Write S m(k)
or 3

figure ()

plot (nu*0.01,f, '"lineWwidth',1.5)

grid on

legend(y, "Location', 'Best')

title(y)

xlabel('nu')

ylabel (y)

%% find zeros to the denominator of S m

[indx] = cross points(f); % function cross points.m finds the index to the

point before cross point y=0

k a = k(indx); % gives the x-point before the cross point
k b = k(indx+1l); % gives the x-point after the cross point
for i = 1l:length(k _a)

x 1 =k a(i);

x 2 =k b(i);

k zeros (i) = find zeros(x 1,x 2,n,a,M);
end

%% Plot of the den S = 0

o

Plot the wave functions
= l:length(k zeros)

= k zeros(p);

beta = k*n;

for

~ O

[A, S, DenominatorS] = constants (M, a, k,beta,n);
X0=-2*a;
Y0=-2*a;

Nstep=200; % Choose a even number for section plot!
Psi=zeros (Nstep,Nstep) ;
step=4*a/Nstep;

for i=1:Nstep
x=X0+step*double (1) ;
for j=1:Nstep
y=Y0+step*double (J);
thetal=atan2 (y, x);
rl=sqrt (x*x+y*y);
if (rl<a)
psi=besselj (M,beta*rl) *exp (1li*M*thetal) ;
Psi(j,1i)= A*psi;
elseif (rl>a)
hl=besselh (M, 2, k*rl) *exp (1i*M*thetal) ;
h2=S*besselh(M,1,k*rl) *exp (1i*M*thetal);
Psi(j,1i)=hl+h2;

end
end
end



nu = k./(2*pi*100);
ZAbsWaveFunction.d=abs (Psi)

if (1)
figure;

.*abs (Psi) ;

set (gcf, "Color', [1 1 17);
pcolor (ZAbsWaveFunction.d) ;

shading interp;

% colorbar;
k string = strcat('s ', int2str(M),':
int2str (nu), 'cm” (Eisenlohr et al.)"');

title(k _string);
end

end
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S and the DenominatorS.

A function that gives three constants A,
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constants (M, a, k,beta, n)

[A,S,DenominatorS]

function

l:length (k)

for j

besselj (M, beta (j) *a);

J =

0
dJ = -n*bessel]j (l,beta(j) *a);

if M

else

dJ = 0.5*n* (besselj (M-1,beta(]j) *a) -bessel]j (Mt+t1l,beta(j) *a));

end

besselh (M, 1,k (3) *a);
H2 = besselh(M,2,k(]j)*a);

if M

H1

0
dHl1 = -besselh(1l,1,k(J)*a);

dH2 = -besselh(l,2,k(Jj)*a);

else

dHl = 0.5*% (besselh(M-1,1,k(]j) *a)-besselh (M+1,1,k(j)*a));
dH2 = 0.5* (besselh (M-1,2,k(J)*a)-besselh (M+1,2,k(])*a));

end

= H1*dH2-H2*dHI1;

NominatorA(j)

= dJ*H1-J*dH1;

DenominatorA (J)

./DenominatorA(j) ;

NominatorA (j)

:Ij) =

(

A

J*dH2;

H2*dJ -

NominatorS (j)

-dJ*H1;

J*dH1

DenominatorS (J)

./DenominatorS(j) ;

NominatorS (j)

:Ij) =

(

S

end

end
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