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Abstract

In this thesis, a four dimensional autonomous dynamical system, proposed as a model
for biological control of a parasite on citrus plantations, is studied. The model is the
same as that studied by Sotomayor et. al. in [1], where the system is found to have four
equilibrium points, of which one exhibits a Hopf bifurcation, and a bifurcation curve is
found.

In this thesis, we review and complement the work of Sotomayor et. al. [1], by proving
the existence of an invariant set (volume) in the first orthant, though not for proposed
parameter values. Furthermore the set is shown to be dissipative, that is, the phase fluids
inside the invariant set is contracted to one of measure zero.

Then the dynamics of the normal form is compared numerically to those of the full
system near the bifurcation point, for fixed parameter values.
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Introduction

The citrus leafminer parasite (Phyllocnistis Citrella),
gets its name from the tunnelling work its larvae do on
the foliage of the trees it infests. Though not an imme-
diate threat to the life of the plant, the larvae eat away
parts of the leaves, reducing crop value and yield.

The female lays the eggs on the back of young leaves,
and only rarely, under heavy infestation, on older fo-
liage. Older plants will then be less affected, and an
infestation can result in little to no change in growth or
fruit yield. On younger plants an infestation can cause
stagnated growth, and reduced crop yield, but is rarely
fatal to the plant [17].

Insectisides are not generally recommended when managing a leafminer infestation,
since the larvae resides inside the leaves where it is protected from the chemical, and
can even have the adverse affect of removing its natural enemies, like the parasitic wasps
Cirrospilus and Pnigalio and the predator Galeopsomyia fausta. As in the article [1], we
assume the latter species as a biological control agent.

The use of parasitoids and predators (or entomopathogenic fungi) for biological control
is nothing new, but only one out of six attempts at introducing an exotic agent for
biological control, results in full control of the pest infestation [18].

For a concise introduction to the use of and history of biological control agents in
Brasil, see for instance [19]. The article also confirms the issues we faced with regards to
the language barrier.

This thesis sets out to prove that in the model put forth in [1], there exists an invari-
ant set where the system is dissipative, though not for the proposed parameter values.
Secondly, we study how well the truncated normal form approximates the the full system
near a bifurcation point in phase space.

In section 1, entitled The Model, we introduces the model, and to some extent justify
the system of equations as a model for biological control. The presentation is by no means
complete, but is intended to give a feel for what the model is all about.

Section 2 (Analysis) is devided into four subsections;
In section 2.1 (Preliminary Observations) we mention the well-posedness of the sys-

tem, and present some of the findings of [1] relevant to the next sections.
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Section 2.2 (Invariant set)1, we define the set in phase space invariant to the flow of
the model system.

In section 2.3 ( Normal Form) we derive an expression for the normal form based on
the article of Crawford [15], and try to make the connection with the method presented
in [1].

Finally, in section 2.4 (Numerical Simulations), we compare the result of the normal
form with those of the original system near the bifurcation point. The simulations of this
section (as well as the verification of the results in section 2.1) were conducted with the
use of SageMath [13].

1This section was significantly reduced and hastily reassembled, when a mistake was spotted shortly
before the deadline. Hopefully all mistakes have now been weeded out.
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1 The Model

A study of the citrus leafminer parasite on orange plantations in Brazil has been carried
out with the use of a system of differential equations given by [1]

P ′ = φ1(1− M

c1

)M − (α1 + β1)P − k1PG

M ′ = α1P − µ1M

L′ = φ2(1− G

c2

)G− (α2 + β2)L+ k2PG

G′ = α2L− µ2G.

(1)

The parasite in question is the citrus leafminer (Phyllocnistis Citrella) which, at its
larva stage, is a serious pest in parts of the agricultural industry. Their natural enemy,
the Galeopsomyia fausta, will at its larva stage, consume the pupae of the leafminer.
Adhering to the notation of [1] and using the same assumptions on the parameters, the
list of system variables are:

P measures the pupa population of the leaf miner (the prey)

M measures the adult leaf miners population

L measures the larva of the Galeopsomyia fausta population (the predator)

G measures the adult population of Galeopsomyia fausta.

Suggested parameter values are restated here for convenience. The biological justifi-
cation of these values is beyond the scope of this thesis, and the capabilities of the author,
but can be found in [24] (in Portuguese).

α1 = 0.7 β1 = 0.003 µ1 = 0.6 φ1 = 2.3 c1 = 400000
α2 = 0.3 β2 = 0.00015 µ2 = 0.4 φ2 = 4 c2 = 100

Table 1: Suggested parameter values taken from [1]

The system of equations (1) together with the proposed parameter values of Table
1, models infestations of citrus plantations in Brazil, by the citrus leafminer. This is a
compartmentalized model where each compartment (equation) represents one or more
stages in the evolution of the leafminer parasite and their natural enemy. This particular
system was originally presented in [22, 23, 24]. The equations describe the ”flux” balance
in and out of the compartments. At its simplest form the model equation for such systems
reads,

dxi
dt

= Qi
in −Qi

out

from which some of the assumptions made when the model was formulated, can be
inferred. Table 2 sorts the parameters by their effect on the flux on each compartment.
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Var IN OUT Description
φ1 Birth rate of the species (at pre-adult stage)

c1 Carrying capacity of species.
P α1 Rate at which the species evolves to its adult stage.

β1 Death rate of the pre-adult stage.
k1 Factor measuring the rate at which the species get eaten.

(proportional to number of encounters)
M α1 Rate at which the species evolves to its adult stage.

µ1 Death rate of the species (adult stage).
φ2 Birth rate of the species (at pre-adult stage)
k2 Factor measuring the rate at which the species eats.

(proportional to number of encounters)
L c2 Carrying capacity of species.

α2 Rate at which the species evolves to its adult stage.
β2 Death rate of the pre-adult stage.

G α2 Rate at which the species evolves into its adult stage.
µ2 Death rate of the species (adult stage).

Table 2: Parameter Table, (see [1] for more details)

Remark
Another approach to modeling evolutionary stages is to introduce a delay that could
account for the stages of evolution of little biological interest, which in this scenario
would be the adult stages, where the species are neither parasites, predators nor prey.

The reader familiar with the Lotka-Volterra model,

dX

dt
= X(a− bY )

dY

dt
= Y (cX − d)

(2)

will probably note some clear similarities with (1). In [2] though, it is pointed out that the
Lotka-Volterra model is structurally unstable, that is, small perturbation of the system
have profound effects on the type of phase portrait one gets, which is unfortunate for a
model for biological control. Also issues of the exponential growth of the prey, in absence
of predators is mentioned, and a solution is proposed, namely to incorporate a logistic
growth terms, similar to:

dX

dt
= X(r1(1− X

c1

)− b1Y )

dY

dt
= Y f(X, Y )

(3)

Different candidate function are also proposed for f(X, Y ) in [2], but if one chooses
f(X, Y ) = r2(1− Y

c2
) + b2X, the system reads:
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dX

dt
= X(r1(1− X

c1

)− b1Y )

dY

dt
= Y (r2(1− Y

c2

) + b2X)

(4)

Adding a terms that accounts for the mortality rate of the species, yields;

dX

dt
= X(r1(1− X

c1

)− d1 − b1Y )

dY

dt
= Y (r2(1− Y

c2

)− d2 + b2X)

(5)

Now by separating the stages of evolution of both predator and prey population, one can
deduce model (1). It should be mentioned that more involved models have been proposed
and studied in [23, 24].

The model is formulated such that all the parameters are assumed to be positive.
Furthermore, any equilibrium of the system at negative variable values will be ignored
for obvious reasons.

Remark
From a biological point of view, it makes sense to add the condition k2 ≤ k1. This
is equivalent to assuming the ”cost” of loosing one member of the prey population
is greater than the ”reward” for the predators.

In [1] an analysis of one of the systems four equilibrium points is conducted. There is
only one such point that is not in the region where two or more of the compartments are
empty (extinct), giving it a particular significance. The Hopf bifurcation that occurs as
the parameters (k1 and k2) are varied, is then studied by changing the carrying capacity
parameter c2, which is said to be of biological interest, since it represents multiple factors.
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2 Analysis

2.1 Preliminary Observations

In this section we mostly restates the preliminary results of [1] that are relevant for the
next sections.

The first thing to note is that system (1) has a well defined (total) derivative. The
vector field f of (1) is given by:

dx

dt
=


P ′

M ′

L′

G′

 =


φ1(1− M

c1
)M − (α1 + β1)P − k1PG

α1P − µ1M
φ2(1− G

c2
)G− (α2 + β2)L+ k2PG

α2L− µ2G

 ≡ f(x). (6)

The Jacobian matrix A of the vector field f is given by

A =
∂f

∂x
=


−Gk1 − α1 − β1 φ1 − 2Mφ1

c1
0 −Pk1

α1 −µ1 0 0

Gk2 0 −α2 − β2 Pk2 − (2G−c2)φ2
c2

0 0 α2 −µ2


which elements are defined and continuous for all x ∈ R4. Hence f is continuously

differentiable, and the system of equations is well posed by the Picard’s existence and
uniqueness theorem, which merely requires Lipschitz continuity.

As in [1], the expression for the equilibrium points are simplified by introducing the
dimensionless variables:

R1 =
α1φ1

µ1(α1 + β1)

R2 =
α2φ2

µ2(α2 + β2)

Feeding the system to a computer, and substituting for R1 and R2 yields the following
expressions for the equilibrium solutions (with An = (Pn,Mn, Ln, Gn)):

A1 = [0, 0, 0, 0]

A2 =

[
c1µ1

α1

(
1− 1

R1

)
, c1

(
1− 1

R1

)
, 0, 0

]
A3 =

[
0, 0,

c2µ2

α2

(
1− 1

R2

)
, c2

(
1− 1

R2

)]
These equilibrium points all contain two or more zeros, meaning at least two compart-
ments are empty. Of the three, the points A3 and A1 are clearly the most promising, since
here the leaf miners are extinct. As stated in the article [1], these points are hyperbolic
(saddle points), which means their local behavior is readily deduced by their linearization,
and are of little interest here.
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The fourth equilibrium point (A4), which experiences the Hopf bifurcation, is given
by the lengthy component expressions:

P4 =
c1µ1φ2

α2
1φ1φ2 + µ2

1c1c2k1k2

(
φ1α1

(
1− 1

R1

)
− µ1c2k1

(
1− 1

R2

))
M4 =

c1α1φ2

α2
1φ1φ2 + µ2

1c1c2k1k2

(
α1φ1

(
1− 1

R1

)
− µ1c2k1

(
1− 1

R2

))
L4 =

c2µ2α1φ1

α2α2
1φ1φ2 + α2µ2

1c1c2k1k2

(
c1k2µ1

(
1− 1

R1

)
+ φ2α1

(
1− 1

R2

))
G4 =

c2α1φ1

α2
1φ1φ2 + µ2

1c1c2k1k2

(
c1µ1k2

(
1− 1

R1

)
+ α1φ2

(
1− 1

R2

))
.

(7)

Here, as in [1], sufficient conditions to ensure that all the equilibrium points are located
in the positive orthant are assumed, that is:

R1, R2 ≥ 1

k1 ≤ α1φ1

µ1c2

(
1− 1

R1

)
(

1− 1
R2

) ≡ k1,max

(8)

2.2 Invariant set

The first main goal of this article is to show the existence of an invariant set Σ ⊂ R4 with
only positive coordinate values. The existence assumes some additional conditions on the
parameters, which will be listed in the proposition. If these conditions are biologically
feasible, is unknown to the author.

Since the set Σ should reside in the positive region of R4, a natural place to start
is considering the flux of the system over the boundaries of the first orthant in R4, (ie.
{(i, j, k, l)| i, j, k, l ≥ 0} ), where the flux is given by the vector field f in (6). Introducing
the hyperplanes (P,M,L, 0), (P,M, 0, G), (P, 0, L,G), (0,M,L,G) with outward directed
unit normal vectors nG=0 = (0, 0, 0,−1), nL=0 = (0, 0,−1, 0), nM=0 = (0,−1, 0, 0), nP=0 =
(−1, 0, 0, 0) respectively, one finds the ”outward” flux over these surfaces is given by:

f · nP=0 = φ1

(
M

c1

− 1

)
M

f · nM=0 = −α1P

f · nL=0 = φ2

(
G

c2

− 1

)
G− k2PG

f · nG=0 = −α2L

The set Σ is clearly invariant with respect to the flow (φt) defined by the model, if
there is no outward flux. This imposes the conditions:

P ≥ 0, 0 ≤M ≤ c1, L ≥ 0, 0 ≤ G ≤ c2 (9)
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Remark
Note that the necessary conditions are more relaxed, by allowing 0 ≤ G ≤ c2+ k2P

φ2
c2,

but even though k2P
φ2
c2 could grow large, for simplicity we opt for a box shape here.

Now the goal is to find the other four hyperplanes enclosing the volume element Σ, sat-
isfying these conditions and restricting the flux in positive M and G directions. To
this end introduce the planes (p,M,L,G), (P,m,L,G), (P,M, l, G), (P,M,L, g) where
p,m, l, g ∈ R+ are constants to be determined. The unit normal vectors are given by
nP=p = (1, 0, 0, 0), nM=m = (0, 1, 0, 0), nL=l = (0, 0, 1, 0), nG=g = (0, 0, 0, 1) respectively,
ant the flux over these planes is given by;

f · nP=p = φ1

(
1− M

c1

)
M − (α1 + β1)p− k1pG

f · nM=m = α1P − µ1m

f · nL=l = φ2

(
1− G

c2

)
G− (α2 + β2)l + k2PG

f · nG=g = α2L− µ2g

(10)

From (10), two new conditions can be appended to (9):

α1p

µ1

≤ m ≤ c1,
α2l

µ2

≤ g ≤ c2. (11)

These take care of the flux over the surfaces (P,m,L,G) and (P,M,L, g) respectively.
Checking the flux over the remaining two planes is now unavoidable, since we need to limit
the growth of the variable L and P . From now on, we will assume the above inequality to
be an equality, so as to try to maximize to volume of Σ. This has an effect on the range
of admissible parameter values (see the remark below). Starting with the plane P = p
(first equation in (10)):

f · nP=p = φ1

(
1− M

c1

)
M − (α1 + β1)p− k1pG

≤ φ1c1

4
− (α1 + β1)p− k1pG

≤ φ1c1

4
− (α1 + β1)p

=
φ1c1

4
− (α1 + β1)

µ1m

α1

=
φ1c1

4
− (α1 + β1)

µ1mφ1

αφ1

=
φ1c1

4
− mφ1

R1

≤ 0

which gives a more tangible condition on m and p given by m ≥ R1c1
4

. In the above

expressions the fact that M →M − M2

c
on the interval [0, c], has a maximum at c

2
given

by c
4
, was exploited. G was tacitly assumed to be positive.
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Applying the same procedure on the last hyperplane, accounting for the flux along
the positive L direction, out of Σ, yields:

f · nL=l = φ2

(
1− G

c2

)
G− (α2 + β2)l + k2PG

≤ φ2c2

4
− (α2 + β2)l + k2PG

=
φ2c2

4
− (α2 + β2)

µ2g

α2

+ k2PG

=
φ2c2

4
− φ2g

R2

+ k2PG

≤ φ2c2

4
− φ2g

R2

+ k2
µ1m

α1

g ≤ 0

Since we will choose m = c1 to maximize the volume, and since all parameters and values
are again assumed to be positive, this can be written as a condition on g given by;

φ2c2

4
≤
[
φ2

R2

− k2µ1c1

α1

]
g → R2 ≤

φ2α1

k2µ1c1

}
bracket must be positive

φ2c2

4
[
φ2
R2
− k2µ1c1

α1

] ≤ g ≤ c2

This finally gives an expressions for the values p,m, l, and g and the eight sides of the box
Σ have now been determined. These results are summarized in the following proposition.

Proposition 1
If the parameters of system (1), in addition to conditions (8) also satisfy the con-
ditions:

R1 ≤ 4

R2 ≤
4φ2α1

φ2α1 + 4k2µ1c1

(12)

then there exists a 4-cell Σ, invariant with respect to the flow of system (1) given
by:

Σ = {(P,M,L,G)| 0 ≤ P ≤ c1µ1

α1

, 0 ≤M ≤ c1, 0 ≤ L ≤ c2µ2

α2

, 0 ≤ G ≤ c2}

(13)

The conditions in Proposition 1 arise from the requirement that the interval of valid
m and g values be non-empty (ie. R1c1

4
≤ α1p

µ1
= m ≤ c1 yields the first condition, etc).

Unfortunately these conditions are not satisfied by proposed parameter values presented
in the article [1].
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Remark (1)
Initial values chosen in the interior of Σ will stay in the interior of Σ. This means
that, by this model, species may only approach extinction inside Σ.

Remark (2)
Explicitly the four equations (10) with equations (9) generate the minimum condi-
tions;

R1c1

4
≤ α1p

µ1

≤ m ≤ c1

α2l

µ2

≤ g ≤ c2

φ2c2

4
− φ2α2

µ2R2

l + k2pg ≤ 0.

This shows that the choice of p,m, l and g has an effect on the accepted parameter
values. Unfortunately, with the suggested parameter values, even if one minimizes
p and g, then maximizes l, the parameters still need to satisfy the inequality;

k2 ≤
4φ2α1

R1R2µ1c1

≈ 1.23e−6

which is far from the bifurcation curve. On the bifurcation curve, k2 reaches a
minimum at around k2 ≈ 3e−3 [1].

The bottleneck is finding a hyperplane restricting the flow in the positive L direc-
tion, that is, in the direction of increasing density of larvae of Galeopsomyia fausta
(the predator).

Proposition 2
Any volume of initial conditions Ω0 ⊂ Σ is contracted to to a set of measure zero
at a rate given by −(α1 + α2 + β1 + β2 + µ1 + µ2)− k1G

Proof The proposition follows directly from corollary 2.1 in appendix F, which gives
the change in volume with respect to time;

dV
dt

=
∫

Ω(t)
∇ · (f)dx

Here f is given by (6). �
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2.3 Normal Form

The process for deriving the normal form employed in the article of Sotomayor et. al. [1],
adds several layers of abstractions to the basic approach (some of which are presented in
the appendices) by means of what is called the Poincare’s method. This has the benefit of
simplifying the notation. In addition the algorithms derived in [11] are easily incorporated
into the approach. For our purposes, though, it is more convenient to derive the normal
form without these added complexities. The goal being to emphasize traits of the process
relevant to the next section, where the reduced system is compared with the original.

There are several approaches to constructing normal forms with or without bifurcation
parameters in the mix. In [3], center manifold reduction, and the method of multiple scales
is used, while in [15, 20, 21, 9] all use different, but somewhat overlapping approaches,
though the latter of which deals specifically with hypernormal forms (see remark below).

In the next section, in addition to using the parameters of Table 2, we fix the parameter
vector α =

(
k1
k2

)
, and deduce a simpler expression for the system in phase space. The

system behavior near the bifurcation point, where a limit cycle is generated, will then not
be visible, since this cycle can be thought of as having a zero radius at the bifurcation
curve [15]. The justification for using the center manifold theory close to (but not on)
the bifurcation curve, follows form the study of the suspended system;

P ′ = φ1(1− M

c1

)M − (α1 + β1)P − k1PG

M ′ = α1P − µ1M

L′ = φ2(1− G

c2

)G− (α2 + β2)L+ k2PG

G′ = α2L− µ2G

k′1 = 0

k′2 = 0

(14)

(with a center manifold now parameterized by h = h(k1, k2, xc)). Here a topological
normal form exhibiting a limit cycle appears, for parameter values close to the bifurcation
curve. In practice this is the system one would want to study, since the parameter values
are estimates, and probably won’t be precisely on the bifurcation curve.

Remark ([8])
Hypernormal forms (or simplest normal forms) are normal forms where the coeffi-
cients of the normal form are chosen such that the initial series becomes finite, as
opposed to truncating the series. These normal forms are harder to calculate, and
are outside the scope of this thesis.

Starting with the system,

ẋ = f(x, α) (15)

experiencing a Hopf-bifurcation at some point (xc, αc), then (see. appendix B) the
Jacobian matrix of f evaluated at (xc, αc) has a pair of purely imaginary eigenvalues, and
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associated eigenvectors {q, q} spanning the center eigen space Ec. Since the eigenvalues
are known to be non-zero complex conjugate pairs, they are clearly distinct, and the
eigenspace Ec is two dimensional.

The process outlined in appendix C assumes the system is transformed to its eigen-
basis:

ẋc = Acxc + f
1
(xc, xs)

ẋs = Asxs + f
2
(xc, xs).

(16)

By the center manifold theory (app. C), there exists an attractive center manifold
given by the graph of some smooth function xs = h(xc). Restricting the system to this
manifold, (as opposed to projecting directly to the center eigenspace) has been shown to
preserve asymptotic behavior [5]. Orbits close to A4 now share asymptotic traits with
the first equation in (16) (see app C; attractivity), giving rise to the description of the
stable eigenspace as ”enslaved” by the center.

It is often convenient to reparameterize the center eigenspace Ec with (z, z) where,
z ∈ C, that is xc = zq + zq, where q and q are the eigenvectors of Ac assosiated with

the eigenvalues λ and λ respectively. An explicit expression for the parameter is given
by z = 〈p, x〉, which can be found in [11].

Remark
The coordinate transformation

[
x
y

]
7→
[
z
z

]
is well defined since it can be ex-

pressed by the invertible map:[
z
z

]
=

[
1 i
1 −i

] [
x
y

]
Here ∂

∂z
, ∂
∂z

are the Wirtinger differential operators, which (with z = x + iy) arise
naturally as the transformation of ∂

∂x
, ∂
∂y

to this new coordinate system. They are
given by:

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
It is the properties of these derivatives that make z, z appear independent.

Now the center manifold can be approximated by a power series expansion in the two
coordinates z, z (see appendix C):

h(z, z) = b20z
2 + b11zz + b02z

2 +O(|z|3) (17)

Here bjk ∈ C2 are usually chosen such that bjk = bkj to ensure that h(z, z) be real.
As previously mentioned, on the center manifold (or near the critical point (xc, αc)),

system (16) is governed by solutions of the equation of ẋc. By substituting (17) into the
first equation of (16) one gets:
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ξ̇ = V (ξ) = Bξ + f1(ξ)) = V 1(ξ) + V 2(ξ) + V 3(ξ) + ...

The functions V i are all the terms in the Taylor expansion homogeneous of degree i.
The 2 × 2 matrix B, representing the linear part of the Taylor expansion in ξ (that is

V 1(ξ) = Bξ), is similar to Ac. As pointed out in [15], it is now a diagonal matrix with
complex entries equal to the eigenvalues of Ac.

In what follows terms in the above equation are removed by a near-identity change
of coordinate transformation. The general approach for removing the k’th homogeneous
function V k of a Taylor expansion is presented below. It is based heavily on [15]. Other
references are [21, 20]. First introducing the coordinate transformation;

ξ̃ = ξ + P k(ξ) (18)

with P k a homogeneous function of degree k considered unknown for the time being.
The transformation (18) is close to the identity map in small neighborhoods of the origin,
and hence one would expect it to have an inverse. This inverse is given by [15]:

ξ = ξ̃ − P k(ξ̃) +O(ξ̃
2k−1

). (19)

By substituting this into the original equation one eventually gets:

˙̃ξ = V (ξ̃) +
[
DP k(ξ̃)V 1(ξ̃)−D(V 1(ξ̃))P k(ξ)

]
+O(|ξ|k+1) (20)

or alternatively;

˙̃ξ = V (ξ̃) +
[
DP k(ξ)Bξ̃ −BP k(ξ)

]
+O(|ξ|k+1). (21)

In (20) the square bracket is the Lie bracket [P k, V 1].

If one substitutes V (ξ̃) by its Taylor expansion, it is clear that the vector field of ˜̇ξ

is unchanged up to degrees less than k. The goal is to choose P k such that it removes
the term of order k of the expansion of V (ξ̃). To this end the operator LB : Hk → Hk is

introduced in [15, 20], Hk being the vector space of homogeneous polynomials of degree
k. It is given by;

LBP
k = DP kB −BP k. (22)

showing that it is modeled on the square brackets of equations (20)-(21), and is linear.
The condition that it removes the k’th order term can be written as [20],

LBP
k = V k. (23)

This is called the homological equation assosiated with the operator B in [20], a term
from homological algebra explained well in in [10, p.4-5]. V k is the terms in the Taylor
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expansion of V , homogeneous of degree k. The question now is that of finding an inverse
of a linear map from a finite vector space into itself, to determine P k uniquely. Even in
the case when LB is not invertible, V k might still be in its range. Note also that there
is a freedom in the choice of P k when Null(LB) 6= {0} since clearly the transformation
ξ̃ = ξ + P k + P̃ k, with P̃ k ∈ Null(LB) is equivalent to ξ̃ = ξ + P k up to (and including)
order k, but is likely to affects higher orders.

Remark
Even if one neglects the arbitrary choice of complement to the the image of LB in
Hk (called the normal form style), the normal form is still not unique. An example
of this can be found in [6], for normal forms of the Hopf-bifurcation without the
bifurcation parameters.

As is shown in [15], for a Hopf-bifurcation this linear map is given by:

LBP =

[
λ 0

0 λ

] [
P k
z

P k
z

]
−
[
∂Pz

∂z
∂Pz

∂z
∂Pz

∂z
∂Pz

∂z

] [
λz

λz

]
(24)

P k
z and P k

z are the component functions of P k, and λ = γ+ iω is the eigenvector of B
(and Ac since these are invariant under similarity transformation). The eigenfunctions in
the above equation coincide with the natural choice of basis elements for Hk, that is the
set of all

[
pk

0

]
and

[
0
pk

]
, where pk are all homogeneous monomials in z and z of degree

k (that is zlzk−l for a fixed k and 0 ≤ l ≤ k). By inserting these back into the equation
one can get an expression for the eigenvalues in terms of l and k, and it is shown in [15]
that the resonant terms of a general Hopf-bifurcation, which are terms in homogeneous
spaces Hj where Null(LB) 6= {0}, are those associated with the eigenfunctions

[
z|z|k−1

0

]
(when l = k+1

2
) and

[ 0
z|z|k−1

]
(when l = k−1

2
) and in both cases only when k ≥ 3 and k is

an odd number.
This finally yields the equation for the normal form of the hopf bifurcation [15]

[
ż
ż

]
=

[
γ + iω 0

0 γ − iω

] [
z
z

]
+
∞∑
j=1

[
ajz|z|2j
ajz|z|2j

]
(25)

Forgetting about ż since it is completely determined by ż, truncating the series at
z|z|2 and labeling a2 = l1 as the first Lyapunov coefficient, the equation now reads:

ż = (γ + iω)z + l1z|z|2 (26)

This is usually what is refered to as the normal form of the Hopf-bifurcation, and has
been shown to be a topological normal form (see App. B).

The series (25) is constructed by recursive near-identity change of coordinates, so one
could express the entire process of composition of many transformations, by the series
ξ̃ = ξ+P 1 +P 2 + .... Embedding the center manifold (17) into the four dimensional space
of the original system, one can determine the coefficient vectors bjk of (17) such that the
center manifold approximation incorporates these recursive coordinate transformations
(see Appendix E). Presumably this is what has been done in [1].
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2.4 Numerical Simulations

There are obvious issues when using this normal form for a quantitative analysis, rather
than qualitative traits like (asymptotic) stability or instability, since by the center mani-
fold theory employed in the preceding section, the normal form approximation approaches
the system solutions asymptotically in a neighborhood of the bifurcation point, and hence
improves by an increase of time, while the Taylor expansions of the velocity field (6), and
power series approximation of the center manifold are both local in nature. This might
significantly reduce the region of validity of the normal form approximation.

This section aims to investigate these effects through numerical simulations. The first
step would be to construct the analytic continuation of our eigenvalue as found in the
normal form above, that is finding λ = λ(k1, k2). The good news is that the characteristic
polynomial of the Jacobian matrix of the velocity field (6) is a quartic polynomial, and can
be solved symbolically on a computer, so we can create our Taylor series approximation in
control-phase space of λ. Unfortunately any attempt to find this closed form of λ(k1, k2)
by means of a symbolic engine, results in memory depletion. The expression is likely too
large for practical use, and one is left with the numerical approximations.

However, due to time limitations, an analysis of the normal form in control-phase
space will not be conducted here. In stead the parameters k1 and k2 are held fixed close
to suggested values in [1], that place the equilibrium on the bifurcation curve, and the
normal form approximation is studied in phase space. This is unfortunate, since the limit
cycle that is created at the bifurcation point, is not visible while A4 is on the bifurcation
curve.

More precisely, the question is whether the flow φtµz0 7→ zµ(t) defined by system (26),

where µ are the (fixed) parameters, approximates the original system behavior near the
bifurcation point, when it is projected to the center eigen space.

The calculations were done using Sage, and following the same procedure as the article
[1]. The algorithm for computing the coefficient of the resonant term in the normal form
was derived in [11]. Adhering to the notation in [1, 11], the reduced system in question
reads;

ż = iωz +
G21

2
z|z|2. (27)

This was found studying the system on the bifurcation curve, where λ = iω is purely
imaginary, so it is in compliance with the normal form (26). The parameter vector

µ = [α1, β1, µ1, φ1, c1, k1, α2, β2, µ2, φ2, c2, k2]

is given by the the values in Table 1, and k1 = 0.00331, k2 = 0.00099. These parameter
values where found to place the equilibrium point A4 on the bifurcation curve.

The steps of the process are:

1. expand the original systems vector field (6) by a Taylor series. For multivariate
vector valued function this has the form:

ẋ = x0 + Ax+
B(x, x)

2
+
C(x, x, x)

6
+O(|x|4)
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where B and C are symmetric multilinear maps given componentwise by

Bi(x, y) =
∞∑

j,k=1

∂2f
i
(ξ)

∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk = xTH iy

Ci(x, y, z) =
∞∑

j,k,l=1

∂3f
i
(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykzl.

H i is the Hessian matrix of the i’th component function of the vector field f , given
by (6).

2. Introduce the left and right eigenvectors of A, assosiated with the imaginary eigen-
values:

Aq = λq, ATp = λp

and specify vectors completely by 〈p, q〉 = pT q = 1 and 〈q, q〉 = 1.

3. Calculate the coefficient G21 by the formula derived in [11]:

G21 = 〈p, C(q, q, q) +B(q, (2iω0I − A)−1B(q, q))− 2B(q, A−1B(q, q))〉

The eigenvectors q and p of A where found to be:

q =


0.825726599668
0.0409585004546− i0.194369952495
0.376604900585− i0.365903682592
−0.0323398297072− i0.0442231245385



p =


0.115059031566 + i0.0190316935593
0.0035909076202 + i0.0820028393699
0.627668624917− i0.615309266395
−5.20913500013− i6.57563129065


The eigenvalue λ is given by:

λ = iω = i2.84732034139

With these choices of eigenvectors, G21 has the value:

G21 = 1.75924020875e−08 + i6.07754066356e−08

Now all the coefficients of system (27) have been determined. To get an idea of the
phase portrait of the normal form, note that G21 is significantly smaller than λ, hence
one would expect this to be similar (but topologically distinct from) the system

ż = iωz
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10−5

(a) Re(Err) (b) Im(Err)

10−4

(c) Re(Err) (d) Im(Err)

10−3

(e) Re(Err) (f) Im(Err)

10−3

(g) Re(Err) (h) Im(Err)

10−2

(i) Re(Err) (j) Im(Err)

10−1

(k) Re(Err) (l) Im(Err)

10−1

(m) Re(Err) (n) Im(Err)

100

(o) Re(Err) (p) Im(Err)

Figure 1: Figure plotting of Im(Err) and Re(Err) for different initial values for times
t ∈ [0, 200]. The initial value deviation from A4 are given by:

(a)-(b) (0.1, 0.1, 0.1, 0.1)

(c)-(d) (0.3, 0.3, 0.3, 0.3)

(e)-(f) (0.6, 0.6, 0.6, 0.6)

(g)-(h) (0.8, 0.8, 0.8, 0.8)

(i)-(j) (1.1, 1.1, 1.1, 1.1)

(k)-(l) (2.0, 2.0, 2.0, 2.0)

(m)-(n) (5.0, 5.0, 5.0, 5.0)

(o)-(p) (10, 10, 10, 10)

20



which can readily be seen to have concentric periodic obits. One would then expect
the orbits of (27) to be ”almost” closed for most of the phase space. The initial value of
the original system (IV x), and the normal form (IVz) are related by:

IVz = 〈p, IV x − A4〉 (28)

Running the numerical simulation on both systems, translating (x − A4) then pro-
jecting (〈p, x〉) the solutions to the original system onto the center eigenspace, we define
the error Err as the complex vector given by the difference:

Err = 〈p, x− A4〉 − z (29)

Different initial values are plotted in the graphs of Figure 1. The error is cyclic, but does
not seem to grow much at first for initial values k(1, 1, 1, 1) where k ≤ 0.8. From this one
can see a sketch of the basin of attraction of the center manifold.

Studying the graphs, one can also see that there is a tendency to worsen, improve,
then worsen again as an approximation. This gives some justification to the problems
mentioned earlier. At the start of the simulation, the solution of the original system
tends exponentially to that of the center system, so the error might be substantial, and
accounts for the initial increase. As time goes on, the solutions approach each other and
the error is due to the Taylor expansion and center manifold approximation.

Why there is a period in the error is not clear. It could be due to actual displacements,
or a difference in the speed traveled between the solutions. Alternatively it could be that
the ”period” of the cycle is not well approximated by the normal form, and that half a
period of the error function represents a 2π phase shift between the two solutions. This,
though is not seen when comparing the graphs of the solutions.

Concluding Remarks

The main goal of this thesis, was to show the existence of an invariant set Σ, in the model
for biological control presented in [1]. For parameter values proposed in [1], one needs a
k2 of order 10−6 for the set to exist. This may not be biologically feasible. There might
be other invariant regions of interest in R4 where volumes contract, that could be less
restrictive on the parameter values.

The comparison of the normal form approximation with that of the full system looks
promising, but the deviation exhibits a period that has not been accounted for. The
simulations are not sufficient to draw any general conclusion on the error array Err,
and could be improved by packing initial values on a hypersphere around the point A4.
Another natural improvement would be to extend the simulation to control phase space
by a numerical continuation of λ near a bifurcation point.
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Appendices

Appendix A: Linearization

Most of the theory presented in this section can be found in [3], p. 36-39, with some
linear algebra added.

A non-linear system

ẋ = f(x) (30)

can be linearized near a point xc by means of the Jacobian matrix of f if it is defined.
This is usually the first step when evaluating and classifying fixed points.

By Taylor expanding f , usually assuming it is C2 in some neighborhood of xc, one
gets the the equation

ẏ =
d(x− xc)

dt
= f(x(t)) = Axcy +O(|y|2) ≈ Ay

where y(t) = x(t) − xc is a sufficiently small deviation from xc to neglect the higher
order terms in the expansion, and A is the jacobian matrix of f evaluated at xc. When
x ≈ y the original equation can be restated as a linear approximation near xc as

ẏ = Ay,

which has a general solution y = eAtc where c is a vector of initial values.

Remark
Solutions to similar matrices of A are determined by the identity eT

−1ATt = T−1eAtT .
Similar matrices have common eigenvalues, and since the eigenvalues determine the
type of point, they can be regarded as equivalent. Hence if A is diagonalizable, it
can be transformed to D, where the elements of D are the eigenvalues of A

Dij =

{
0, i 6= j
λi, i = j

This greatly simplifies the exponent function:

(eDt)ij =

{
0, i 6= j
eλit, i = j

If A is not diagonalizable, or equivalently, if A is an n × n matrix, and does not
have n linearly independent eigenvectors, there exists an invertible matrix P such that
P−1AP = J , where J is the Jordan normal form of A. This matrix can be used in much
the same way as above, but the diagonal blocks become upper triangular matrices and
the components of the solution take the form of:

dotyi = y0
i e
λit + y0

i+1te
λit + ...+ y0

i+m

t(m−1)

(m− 1)!
eλit. (31)
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Here m is less than or equal to the size of the diagonal block matrix corresponding to
eigenvalue λi, and y0

i is the i’th component of the initial vector. The thing to note here is
that the convergence of this linear combination as t→ ±∞ is still governed by the value
of λ alone since

lim
x→∞

tmeλt =

{
0, Re(λ) < 0
∞, Re(λ) > 0

So in conclusion, stable (unstable) hyperbolic fixed points, stay stable (unstable) hy-
perbolic fixed points, after ”normalization”, even though the matrix is not diagonalizable.

h

x0 y0h

φt ψT

Figure 2: ’Commutative diagram.’

Remark
As a side note, the similarity transformation
of the linear map (represented by matrix A)
is nothing but a change of basis transforma-
tion in both the domain and co-domain of the
map. So what is done is representing solu-
tions of (and input to) the linearized system
by means of coordinates in the basis of (gen-
eralized) eigenvectors of A.

Definition 2.1 (Topological equivalence and conjugacy)
Two systems are topologically equivalent, if
there is a homeomorphism h, such that:

h ◦ φt(x0) = ψT ◦ h(x0)

if t = T then the systems are topologically conjugate.

Theorem 2.1 (Hartman-Grobmans Theorem)
Locally, hyerbolic points of a dynamical system

dx
dt

= f(x), where f(xeq) = 0, are topologically conjugate to their linearisation
dy

dt
= Ay.

This theorem alludes to the dificulties when studying fixed points that are not hyper-
bolic (Re(λi) = 0 for some i) (See Appendix C on center manifold reduction).
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Appendix B; Hopf bifurcation and its normal form

Some terminology is introduced here concerning the classification of bifurcation points.
There is only one bifurcation point studied in this paper, which is a Hopf bifurcation.
The three other fixed points are hyperbolic (saddle) points, which have a topological
conjugate local linearization (by the Hartman-Grobmans theorem).

A bifurcation is a change in the topological structure of the systems phase portrait
by means of a change in one or more of the systems parameters.

The codimension of the bifurcation is usually defined as the smallest number of param-
eters that need to be changed for the bifurcation to occur. In this thesis, the bifurcation
is of codimension-1.

Definition 2.2 (Hopf Bifurcation [3, p.76])
The (non-degenerate) Hopf bifurcation occurs when a dynamical system ẋ = F (x;α),
satisfies the three conditions:

1. F (x0;αc) = 0, where αc is the parameter vector at the bifurcation point, and
F is the vector field governing the change of x.

2. TheJacobian dF
dx

has two purely imaginary eigenvalues, and no other eigen-
values with real part equal to zero.

3. dRe(λ)
dα
6= 0 called the transversality condition.

It should be stressed that there is no generation or destruction of fixed point solutions
near a Hopf bifurcation. This can be seen by looking at the continuation of the vector field
F (x) to the extended phase space. Label this continuation by F̃ (x, α), where α ∈ R1 is
the parameter vector. Now the map F̃ : Rn+1 7→ Rn defines a unique curve by the implicit
function theorem, traversed by the fixed point as the parameter value varies, since the
Jacobian matrix of the vector field F , never looses full rank during the bifurcation (ie.
0 is not an eigenvalue of the matrix) and hence cannot branch out into different curves
or disappear. Even in our case where α =

(
k1
k2

)
∈ R2, the unique curve on the surface

defined implicitly by g; xc = g(k1, k2) ≡ g̃(k1), since k2 = k2(k1).

Definition 2.3 (Normal Form)
The normal form of a bifurcation is a simplification of the system near the bifurca-
tion point, retaining the asymptotic behavior of the full system. For a general Hopf
bifurcation, it takes the form [3]

ẋ = µx− ωy + (αx− βy)(x2 + y2)

ẏ = ωx+ µy + (βx+ αy)(x2 + y2)

A topological normal form, is a normal form whose phase portrait is topologically
equivalent to the original system in some neighbourhood of the point.

Remark
The normal form employed in this article is [14]

ẋ = βx− y + σx(x2 + y2)

ẏ = x+ βy + σy(x2 + y2)
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which has (with z = x+ iy) the alternative representation:

ż = (β + i)z + σz|z|2 (32)

which scales to:

ẇ = (γ + iω)w + l1w|w|2 (33)

The value of σ is given by σ = sign(l1). l1 is the first Lyapunov coefficient, and is
used to determine the type of Hopf bifurcation, which can be either sub- or super-
critical;

Definition 2.4 (Subcritical / Supercritical Hopf bifurcation [4])
A subcritical Hopf bifurcation is characterized by an unstable limit cycle, about
a (asymptotically) stable fixed point. This occurs when the normal form (32) has
σ = sign(l1) < 0. The limit cycle merges with the fixed point at the bifurcation
point and produce an unstable fixed point.

A supercritical Hopf bifurcation is characterized by a stable limit cycle about an
unstable fixed point. This occurs when the normal form (32) has σ = sign(l1) > 0.
The limit cycle merges with the fixed point at the bifurcation point and produce a
(asymptotically) stable fixed point.

The Hopf bifurcation in this thesis is a supercritical Hopf bifurcation. Some authors
(see [11, p.89]) use different definitions of sub- and super-critical Hopf bifurcation, but
the above seems to be the clearest.
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Appendix C; Center manifold reduction

When dealing with non-hyperbolic fixed points, the system is not guaranteed to be equiv-
alent (homeomorphic) to its linearization in a neighborhood of the point. Here one needs
to take into account the non-linear terms of the Taylor expansion.

Looking back at appendix A one sees that even for generalized eigenvectors the systems
Taylor expansion can be linearly decoupled:

ẋc = Acxc + f1(xc, xh)

ẋh = Ahxh + f2(xc, xh) ẋc(0) = ẋh(0) = 0
(34)

since the center eigenvectors are either of distinct eigenvalues, or reside in a purely
”non-hyperbolic” Jordan diagonal block. Completely analogous to what is called the sta-
ble manifold theorem, in which the existence of stable (W s) and unstable (W u) invariant
manifolds tangent to their respective eigenspaces (Es and Eu ) at the fixed point, is
proved, there also is a center manifold theorem, which asserts the existence of a center
manifold (tangent to the center eigenspace). But first a definition:

Definition 2.5 (local invariance [5])
The local invariant manifold M of system (30) is a manifold comprised of the set of
points S, where,

φtS ∈ S ∀|t| < T ∈ R+

if T =∞, then M is called an invariant manifold

Theorem 2.2 (Center Manifold Theorem [5])
Let F ∈ Cr, with F (0) = 0 and r ≥ 3, then there exists a (locally) invariant manifold
M , which can be defined as the graph of some nonlinear map h ∈ Cr−1(Ec, Eh).

The center manifold is comprised of the set

M = {(xc, h(xc))|h(0) = 0,
dh

dx
(0) = 0}

Remark
Two useful properties of the center manifold are:

1. local invariance of M (with respect to the flow of the system).

2. Attractivity ; if xh = xs (ie Eu = {0}), then, solutions of system (34), tend
exponentially to be governed by the solution to ẋc.

More explicitly, the Atractivity of the manifold M means that if a solution of ẋc is
stable, unstable, or asymptotically stable on the manifold, then the same holds for the
original system (30).

By inserting H into the original equation, one finds that it must satisfy the equation
[5, 3]:

Dxc
h(xc)[A

cxc + f
1
(xc, h(xc))] = Ash(xc) + f

2
(xc, h(xc))
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or alternativly:

N(h(xc)) = Dxc
h(xc)[A

cxc + f
1
(xc, h(xc))]− Ash(xc)− f 2

(xc, h(xc)) = 0

Solving for h is not always possible, but by the next theorem, it can be approximated
to any arbitrary degree of accuracy [5, 7]:

Theorem 2.3
Given any φ(xc) defined on some neighbourhood of xc = 0 such that φ(0) = Dφ(xc) =
0.

If N(φ(xc)) = O(|x|q), as xc → 0 then
|h(xc)− φ(xc)| = O(|xc|q)

Usually this amounts to finding a power series and solving for the coefficient (setting
the constant, and linear terms of the expansion to zero by the conditions imposed on φ).

This entire process is called the center manifold reduction method. In the analysis
of the Hopf bifurcation, a process outlined in [11] will be employed in the simulations,
where (for efficiency) the system is not transformed to its eigenbasis, but uses the Fred-
holms alternative to decompose a vector into a sum of its hyperbolic and critical/center
components. For convenience the process is restated in appendix D.
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Appendix D; Projection Method[11]

This method is completely analogous to the center manifold reduction method, but does
not require the system to be transformed to its eigenbasis (see appendix A). It does
however requires some additional linear algebra:

Introducing the eigenvector q and the left eigenvector p of the Jacobian matrix of the

vector field (30) (A =
df

dx
), given by:

Aq = iω0q Aq = −iω0q

ATp = −iωp
〈p, q〉 = 1

with p, q ∈ Cn.

Theorem 2.4 (Fredholm Alternative)
For any vector y one and only one of these two alternatives hold:

1. Ax = y (such and x exists)

2. A∗z = 0, such that 〈z, y〉 = 0 (such and z exists)

where A∗ = AT for real matrices, and 〈·, ·〉 denotes the usual inner product (ie. 〈p, q〉 =

pT q).
By the Fredholm alternative theorem it can be shown that by removing the diagonal

blocks in the Jordan normal form of the Jacobian matrix A representing the center
eigenvectors, the condition that a vector be in the hyperbolic eigen space reads

〈p, x〉 = 0, ∀p ∈ Ec

ie. has no components in the center eigenspace. One can now decompose any vector x
into its hyperbolic and critical/center component:

x = wq + wq + y

where w,w ∈ C, {q, q} spans Ec, and y ∈ Eh. These new ”coordinates” ( w, w and y)
are given by:

w = 〈p, x〉
y = y − 〈p, x〉q − 〈p, x〉q

Remark
[11] This equation holds since 〈p, q〉 = 1

λ
〈p,Aq〉 = 1

λ
〈ATp, q〉 = λ

λ
〈p, q〉, when λ 6= λ

one gets 〈p, q〉 = 0

From this point on, what is left to do is Taylor expanding the vector field (again using
〈p, F (wq + wq + y)〉 to decompose the result) and finding the center manifold expressed
as:
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y = V (w,w) =
1

2
c02w

2 + c11ww +
1

2
c20w

2 + ...

Where ij ∈ Es (ie. 〈p, cij〉 = 0).
This method is employed when finding the first Lyapunov coefficient [14] given by:

l1 =
1

2ω
Re[〈p, C(q, q, q)〉−2〈p,B(q, A−1B(q, q))〉+〈p,B(q, (2iωIn−A)−1B(q, q))〉] (35)

Appendix E; Imbedding of the Center manifold

With this method the center manifold is imbedded into the full system dimensions, insted
of just the dimension of the hyperbolic eigenspace. For more details consult [12].

Given the system;

ẋ = F (x), F ∈ Cr(Rn,Rn)

experiencing a Hopf bifurcation. The (locally) invariant manifold is expressed as a surface
in Rn by:

H(p1, p2) = vc(p1, p2) +
n∑

2≤j+k

1

j!k!
hijp

j
1p
k
2

where hij ∈ Rn are coefficients to be determined, and (p1, p2) parameterize xc

Remark
1. Note that the power series expansion of the two variables lacks constant and

linear terms. It has the same form as the usual center manifold approximation.

The vc addition accounts for the the movement of critical component of the
resulting vector. (formerly this critical component was itself the parameter of
the center manifold y = h(x))

2. The vectors hij are sometimes chosen to have no critical component, that is,
to be orthogonal to the center eigenspace, but this is not necessary, and this
freedom of choice can be exploited to simplify the expression.
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Appendix F; General Theorems and equations

In this appendix some useful theorems are stated.
The flow φt of system (30) is a map taking x0 7→ x(t) and, by assumption, is con-

tinuously differentiable, and traces out integral curves of the vector field f . With limit
cycles and fixed points as exceptions, this function is injective and one would expect it to
have an inverse. This inverse function is given by φ−t since, φ−t(x) = x0. This innocuous
observation, shows that it is safe to assume a map between the Euler and Lagrangian
flow representation, an observation that will be used in the proof of the next theorem.

The first theorem addressed here, can be viewed as a generalization of the Leibniz
rule. Its usefulness is evidenced by the plethora of different formulations in which it is
stated. One of which is the following:

Theorem 2.5 (Reynolds Transport Theorem)
Given system (30), with velocity field f and scalar valued function ρ(x, t).
d
dt

[∫
Ω(t)

ρdx
]

=
∫

Ω(t)
∂ρ
∂t

+∇ · (ρf)dx

Remark
More general statements of the theorem exists, where the boundary is not determined
by the flow, and where the function ρ is vector valued, but these generalizations are
not needed in this thesis.

At the center of the proof is the change of variable theorem from multivariable calculus.
The esoteric jargon of continuum mechanics is intentionally left out. A proof can be found
in [16].

Note
Since t is both a variable and parameter, the following notation is adopted:

dρ
dt

(x(x0, t), t) = ∂ρ
∂t

+ ∂ρ
∂x

∂x
∂t

Dx0
φt(x0) is the Jacobian matrix of φt at x0

Proof As was assumed, the flow of system (30) given by: φt(x0) = x(t) is invertible,

(with inverse φ−t(x) = x0 ) hence it has an associated non-zero Jacobi determinant.
When evaluating the integral

d

dt

[∫
Ω(t)

ρ(x, t)dx

]
introducing the change in coordinates, given by the inverse of the flow, results in an
integral:

d

dt

[∫
Ω0

ρ(φt(x0), t)dx

]
=

d

dt

[∫
Ω0

ρ(φt(x0), t)|det(Dx0
φt)(x0)|dx0

]
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The volume of integration is now independent of time (it is compensated for by the
integrand) hence it is now possible to move the derivative inside the integral;

=

∫
Ω0

d

dt

[
ρ(φt(x0), t)|det(Dx0

φt)(x0)|
]
dx0

=

∫
Ω0

[
dρ

dt
|det(Dx0

φt)(x0)|+ ρ
d

dt
|det(Dx0

φt)(x0)|
]
dx0

Using the Jacobi formula for derivative of a determinant (for invertible matrices)
given by:

d

dt
det (F (t)) = det (F (t)) tr

(
F (t)−1 d

dt
F (t)

)
yields;

d

dt
|det(Dx0

φt)|

=
d

dt
det(Dx0

φt)

= det(Dx0
φt)tr

[(
Dx0

φt
)−1 d

dt
Dx0

φt
]

= det(Dx0
φt)tr

[(
Dx0

φt
)−1

Dx0
(
d

dt
φt)

]
= det(Dx0

φt)tr
[(
Dx0

φt
)−1

Dx0
(f)
]

= det(Dx0
φt)tr

[
Dx0

(f)
(
Dx0

φt
)−1
]

= det(Dx0
φt)tr

[
Dx(f)Dx0

(φt)
(
Dx0

φt
)−1
]

= det(Dx0
φt)tr

[
Dx(f)

]
Where f is the vector field in (30). Absolute value was dropped, since, firstly, at

φ0(x0) det
(
Dx0

φ0
)

= det(I) = 1 and secondly, here the determinant is continuous,
and hence cannot become negative without crossing zero, which breaks with prelimi-
nary observations on the flow φt. The matrix multiplication was interchanged, since
it does not alter the value of the trace of the matrix product.

Now noting that.

tr
[
Dx(f)

]
=

n∑
i

dfi
dxi

= ∇ · f

Substituted all this back into the original expression yields:
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∫
Ω0

[
dρ

dt
|det(Dx0

φt)(x0)|+ ρ
d

dt
|det(Dx0

φt)(x0)|
]
dx0

=

∫
Ω0

[
dρ

dt
+ ρ∇ · f

]
|det(Dx0

φt)(x0)|dx0

=

∫
Ωt

[
dρ

dt
+ ρ∇ · f

]
dx

Expanding the derivative of ρ with respect to the ”parameter” t gives:

=

∫
Ωt

[
dρ

dt
+ ρ∇ · f

]
dx

=

∫
Ωt

[
∂ρ

∂t
+∇ρ · f + ρ∇ · f

]
dx

=

∫
Ωt

[
∂ρ

∂t
+∇ · (fρ)

]
dx

�

Corollary 2.1
The change in volume element V with respect to time can be written as the integral

dV
dt

=
∫

Ω(t)
∇ · (f)dx

Proof This follows by setting ρ(x, t) = 1 in the preceding theorem. �

The next theorem is stated here for convenience, and will not be proved.

Theorem 2.6
[1] the polynomial P (λ) = λ4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 with strictly positive real

coefficients, satisfying the equation:

a2
3 − a1a2a3 > a2

1a4 (36)

has a negative real part in all its roots.

Next is a short corollary to the preceding theorem that appears in [1] as an consequence
of the theorem. Its validity however, is not obvious to the author, so a proof is presented.
It is of importance, since in the article the fact that the Lyapunov coefficient does not
change sign is used to disprove a codimension-2 bifurcation on the bifurcation curve
(called generalized Hopf Bifurcation). This assumes there are no fold-Hopf bifurcations
(one zero eigenvalue created) or double-Hopf bifurcations (a new pair of purely imaginary
eigenvalues appears).
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Theorem 2.7
The polynomial equation P (λ) = λ4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 with real (strictly)

positive coefficients has precisely one pair of purely imaginary roots if and only if:

a2
3 − a1a2a3 = a2

1a4 (*)

Proof First noting that since a4 6= 0, λ = 0 is not a viable root. Hence roots must
come in complex conjugate pairs.

Assuming the that (*) holds, the equation can be factored as:
P (λ) = λ4 + a1λ

3 + a2λ
2 + a3λ+ a4 = (λ2 − a3

a1
)(λ2 + a1λ+ a4a1

a3
)

which has precisely one pair of imaginary roots if a3
a1
> 0. (since a1 6= 0) this

proves one direction.
Now assume a2

3 − a1a2a3 6= a2
1a4 has at least one pair of imaginary roots, by

theorem 2.6 this leaves a2
3 − a1a2a3 < a2

1a4 as the sole candidate. But if P (λ) has
has root λ = ib for some b > 0 it follows that:

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4

= (λ2 − b)(λ2 + a1λ−
a4

b
)

= λ4 + a1λ
3 + (−a4

b
− b)λ2 + a3λ+ a4 = 0

but then

a2 = (−a4

b
− b) < 0

contradicting the assumption of positive coefficients. This concludes the proof.�
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controle biológico de pragas, Revista de Biomatemática 9, 58-72 (1999).
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