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Research in mucosal vaccination in finfish has gained prominence in the last decade 
in pursuit of mucosal vaccines that would lengthen the duration of protective immunity 
in vaccinated fish. However, injectable vaccines have continued to dominate in the 
vaccination of finfish because they are perceived to be more protective than mucosal 
vaccines. Therefore, it has become important to identify the factors that limit developing 
protective mucosal vaccines in finfish as an overture to identifying key areas that require 
optimization in mucosal vaccine design. Some of the factors that limit the success for 
designing protective mucosal vaccines for finfish identified in this review include the lack 
optimized protective antigen doses for mucosal vaccines, absence of immunostimu-
lants able to enhance the performance of non-replicative mucosal vaccines, reduction 
of systemic antibodies due to prolonged exposure to oral vaccination and the lack of 
predefined correlates of protective immunity for use in the optimization of newly devel-
oped mucosal vaccines. This review also points out the need to develop prime-boost 
vaccination regimes able to induce long-term protective immunity in vaccinated fish. By 
overcoming some of the obstacles identified herein, it is anticipated that future mucosal 
vaccines shall be designed to induce long-term protective immunity in finfish.
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iNTRODUCTiON

Mucosal vaccination has emerged to be one of the major areas in fish vaccinology that has attracted 
a lot of research in recent years. This has been exacerbated by the increasing demand for less labor-
intensive vaccination strategies as an alternative to the strenuous injectable vaccines that require 
individual handling of fish that may result in stress-related immunosuppression and handling 
mortalities. Mucosal vaccination is less labor-intensive given that mucosal vaccines are administered 
by immersion, oral, or bath without individual handling of fish. Mucosal vaccination is of particular 
value where prime-boost vaccination strategies are preferred typically with a combination of primary 
injection followed by mucosal boost administration. Mucosal vaccines outweigh injectable vaccines 
from a practical viewpoint in fish, this far, there are no licensed mucosal vaccines shown to produce 
superior protection over injectable vaccines except for the live-attenuated Cyprinid herpesvirus 3 
(CyHV-3) vaccine administered by immersion in carp (Cyprinus carpio) in Israel (1, 2). There is a 
need to better understand factors that limit the efficacy of mucosal vaccines for finfish and in this 
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review, we bring into perspective some of the major challenges 
hindering the design of protective mucosal vaccines for finfish.

CHOiCe OF ANTiGeN DeLiveRY 
SYSTeMS FOR MUCOSAL vACCiNeS  
iN FiNFiSH

One of the major challenges hindering our progress in developing 
highly protective mucosal vaccines for fish is the choice of antigen 
delivery system. Table 1 shows a comparison of different antigen 
delivery systems for mucosal vaccines in finfish. The major factors 
that influence the choice of antigen delivery system include (i) 
safety (for live reversion to virulence), (ii) ability to evoke a strong 
innate and adaptive immune response in vaccinated fish, (iii) for 
oral vaccines, the ability to deliver vaccines to the second gut seg-
ment without denaturation in the acidic stomach environment, 
(iv) ability of antigens to cross mucosal barriers in order to gain 
access to antigen presenting cells (APCs) for induction of local 
and/or systemic responses, (v) and to correlate the administered 
antigen dose with protective immunity. These elements constitute 
some of the major factors that influence the optimization of anti-
gen delivery system used for fish mucosal vaccines.

Antigens for fish mucosal vaccines can be replicative or 
non-replicative antigens (14). The replicative antigens comprise 
of live-attenuated pathogens and in the broadest sense, DNA 
vaccines. The only live mucosal vaccine licensed for fish is the 
CyHV-3 vaccine used for the vaccination of carp (1, 2, 15). Some 
of the factors that hinder the use of live vaccines in fish include 
the fear of reversion to virulence as shown in the case of infec-
tious pancreatic necrosis virus (IPNV) where avirulent strains 
can revert to virulence under stress conditions (16). Another 
important factor is the fear of introducing live pathogens in the 
aquatic environment, which could become pathogenic to other 
species. Unlike live vaccines that replicate in infected cells, DNA 
vaccines use the host cell machinery to transcribe their antigenic 
proteins in vivo. The major concern with DNA vaccines is the fear 
of the vaccine’s DNA being integrated into host cellular genome, 
which could alter the cells’ replication mechanisms. To date, a 

DNA vaccine against infectious hematopoietic necrosis (IHN) 
has been licensed in Canada (17). Both live and DNA vaccines 
evoke humoral and cellular-mediated immune (CMI) responses 
in vaccinated fish, less so for DNA vaccines. They induce long-
term protection and adjuvants are not needed for induction of 
immunity.

Non-replicative vaccines include killed pathogens, their 
protective antigens/epitopes in native or synthetic form, or less 
well-defined structural components of the pathogen (18). They 
will usually not evoke CMI responses, and elicited responses 
are biased toward humoral immunity (18). They require the 
help of adjuvants to enhance their immunogenicity and boost 
vaccination to maintain long-term protective immunity. Despite 
so, non-replicative vaccines constitute the biggest bulk of vac-
cines currently used in aquaculture because of their safety (18). 
Therefore, there is need to optimize the performance of these 
antigens in order to develop highly protective mucosal vaccines 
for finfish.

As shown in Table 1, live and DNA vaccines are classified as 
more immunogenic than the non-replicative vaccines (14). This 
is mainly because these vaccines replicate at the site of antigen 
deposition inducing prolonged inflammatory responses that 
attract APCs resulting in presentation to immune cells of the 
adaptive immune system. On the other hand, vaccine-induced 
activation of APCs is limited in the absence of antigen replica-
tion for non-replicative vaccines. Hence, the replicative vaccines 
have a higher capacity to induce innate and adaptive immune 
responses than the non-replicative vaccines (14).

CHOiCe OF ADJUvANTS FOR  
MUCOSAL vACCiNeS

In order to enhance the immunogenicity of non-replicative 
vaccines, there is a need to develop mucosal adjuvants for 
incorporation in vaccine formulations. Adjuvants have a dual 
function serving as (i) antigen delivery vehicles and (ii) immu-
nostimulants (19, 20). As antigen delivery vehicles, adjuvants are 
designed to serve as a depot to allow for slow release of antigens 

TABLe 1 | Comparison of different antigen delivery systems for mucosal vaccines for finfish.

Antigen delivery system Safety immunogenicity induction of innate immunity induction of adaptive immunity Reference

(A) Live vaccines
Attenuated CyH-3 vaccine Low +++ +++ +++ (2)

Attenuated VHSV vaccine Low +++ +++ +++ (3)

Recombinant live virus protein High +++ +++ +++ (4)

(B) inactivated vaccines

Inactivated whole pathogen High ++ ++ ++
Subviral particle vaccines High + + + (5)

Subunit vaccines High + + + (6)

(C) encapsulations/top dressing

PLGA nanoparticle vaccine High + + + (7, 8)

Chitosan nanoparticle vaccine High + + + (9)

PLGA microparticle vaccine High + + + (10)

Chitosan microparticle vaccine High + + + (11)

Alginate vaccines High + + + (12)

Micromatrix vaccines High + + + (13)
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so as to generate long-term protective immunity. Developing 
adjuvants that would form depots on mucosal surfaces might 
not be feasible in fish. Hence, there is a need to devise vaccina-
tion strategies with an optimal duration of exposure to allow for 
adequate antigen uptake in mucosal organs. Immunostimulants 
activate APCs to carry out antigen uptake, processing, and 
presentation to cell of the adaptive immune system. In a recent 
review (21), we have shown that all mucosal organs in finfish 
are endowed with APCs, such as monocytes, macrophages, and 
dendritic-like cells. We have also reviewed the mechanisms of 
antigen uptake and presentation in finfish and showed that fish 
APCs have similar ligands that bind to B- and T-lymphocytes 
with mammalian APCs (14). In addition, fish APCs are respon-
sive to different cytokines and chemokines based on mechanism 
similar to mammalian APCs suggesting that fish APCs can be 
activated by immunostimulants to enhance antigen uptake and 
presentation in a similar way (14, 21).

Immunostimulants explored for mucosal vaccine delivery in 
finfish include poly(lactic-co-glycolic acid) (PLGA) nanoparticles 
(7, 8), microparticles (10), micromatrix-particles (13), and algi-
nates (12, 22) that also serve as antigen delivery vehicles. Other 
immunostimulants explored include TNFα (23), IFNα (24), 
CpG (25), β-glucan (26, 27), and lipolysacharride (LPS) (26, 27). 
However, the extent to which these immunostimulants enhance 
antigen uptake in mucosal organs has not been investigated in 
detail in finfish. In mammals, different mucosal adjuvants have 
been developed of which the most promising are those made 
from heat-labile enterotoxin bacteria. The cholera toxin subunit 
B (CTB) adjuvant is one of the most potent and only mucosal 
adjuvant incorporated in licensed vaccines in humans (28). It 
has been shown to increase the level of mucosal IgA responses 
by four to sixfold and systemic IgG levels by 250-fold for intra-
nasal mucosal vaccines (29–31). Although mucosal vaccines are 
designed to increase IgT and IgM levels in finfish (32), there are 
no studies shown to increase the levels of mucosal antibodies 
based on inclusion of adjuvants in mucosal vaccine formulations. 
There is need to develop immunostimulants able to enhance the 
immunogenicity of non-replicative mucosal vaccines in finfish.

OPTiMiZATiON OF ANTiGeN DOSe iN 
MUCOSAL vACCiNe DeSiGN FOR 
FiNFiSH

As pointed out by Neutra and Kozlowski (33), vaccine antigens 
deposited on mucosal surfaces face the same gauntlet of host 
defensins as microbial pathogens. They are diluted or washed away 
in mucus, degraded by antimicrobial compounds or excluded by 
epithelial barriers. For oral vaccines, antigens can be denatured by 
the acidic environment in the stomach or digested in the foregut 
such that they might not reach the mid-intestine/hindgut in an 
immunogenic form. As a result, it is difficult to determine the 
exact dose that reaches the compartments believed to play in 
important role in immune induction locally or to what extent anti-
gens cross the mucosa barriers, which makes it difficult correlate 
the antigen dose with immune protection for mucosal vaccines. 
For the antigens to cross mucosal barriers, it is anticipated that 

they should mimic the native pathogens and thus retain the ability 
to translocate/penetrate mucosal surfaces (33). These attributes 
entail that live-attenuated vaccines that use similar strategies as 
the target pathogen to induce local responses and/or penetrate 
mucosal barriers are the best candidates for mucosal vaccination. 
As pointed out above (see Choice of Antigen Delivery Systems 
for Mucosal Vaccines in Finfish), live vaccines are less used in 
aquaculture because of safety reasons. Therefore, the challenge is 
to develop antigen delivery systems able to increase the antigen 
dose that crosses mucosal barriers for non-replicative vaccines.

To enhance antigen uptake through mucosal surfaces, differ-
ent immunization strategies have been explored in mammals. For 
example, Chen et al. (34) developed a nanoparticle vaccine deliv-
ery system by incorporating anionic liposomes into chitosan/
DNA complexes, which enhanced antigen uptake by increasing 
the residence time of antigens on nasal mucosal surfaces resulting 
in high absorption efficiency. In addition, these particles had a 
high DNA-antigen loading efficiency and effective protection 
against nucleases. Srinivasan and Burgess (35) have pointed 
out that the use of anionic lipids, which are natural component 
of eukaryotic cells, in micro- and nanoparticle formulations 
increases the adsorption capacity of antigens through mucosal 
surfaces resulting in high transfection efficiency in host cells. 
Another approach being explored is the use of replicon vectors 
of which the most commonly explored are alphavirus replicon 
vectors (36, 37). Alphavirus-based replicon vectors lack the viral 
structural protein genes, which render them replication incom-
petent and non-lethal. However, they maintain the replicative 
elements necessary for amplification of the inserted heterologous 
immunogenic protein via an active alphavirus promoter (38). 
The advantage of using such delivery systems is that the replicon 
harboring the RNA vector has a tropism for different cell types 
enabling the exploitation of in vivo targeting of APCs to enhance 
antigen uptake (39). It is possible to use some of the strategies 
used to enhance antigen uptake through mucosal barriers in 
mammals in the design of mucosal vaccines for finfish. These 
avenues have only been explored to a very limited extent so far.

ROUTe OF MUCOSAL vACCiNe 
DeLiveRY iN FiNFiSH

In fish, there are three routes by which vaccines are administered 
namely the immersion, oral, and injection routes. As shown 
in Table  2, the injection route is labor intensive as it requires 
individual handling of fish, which can lead to stress-related 
mortalities. On the other hand, the immersion route is less labor-
intensive and mimics natural exposure to infection. Although 
the immersion route is easy to apply in small fish reared in tanks, 
it is not easily applicable for large fish in open cages at sea. The 
oral route is less labor-intensive and is, in principle, applicable 
at all stages of fish production. However, the advantage for the 
injection route is that it is possible to quantify the antigen dose 
that correlates with protective immunity (40), which is not easy 
to quantify for the oral and immersion routes. Nakanishi et al. 
(41) have pointed out that for immersion vaccination, antigen 
uptake was highly influenced by the duration of exposure to the 
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TABLe 2 | Comparison of different routes of mucosal vaccine delivery  
in finfish.

Parameter Oral delivery immersion delivery injection 
delivery

Efficacy Low Low/moderate High

Labor input Low labor  
input

Low labor  
input

Intensive 
labor input

Size of fish Unlimited Unlimited Limited

Individual handling 
of fish

No No Yes

Open cages in 
seawater

Highly  
applicable

Not easily  
applicable

Not easily 
applicable

Closed system/cages 
in freshwater

Highly  
applicable

Highly  
applicable

Applicable

Stress Low Low High

Route of exposure Gut/intestine Natural portals of entry Parenteral
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vaccine, total biomass, age, pH, and salinity of the water used 
for immersion. In the case of oral vaccination, antigen uptake 
is influenced by the pH in the gut, appetite of the fish, absorp-
tion through mucosal barriers, and several other undetermined 
factors. These elements suggest that antigen dose optimization 
for the oral and immersion vaccination routes might not be 
easily attainable. The injection route is the only route that has 
been shown to easily correlate the antigen dose administered 
in fish with protective immunity (40). This would account for 
the reasons why the largest bulk of vaccines currently used in 
aquaculture are injectable (14).

MeASUReS OF eFFiCACY AND 
CORReLATeS OF PROTeCTive 
iMMUNiTY FOR MUCOSAL vACCiNeS

In mammals, the licensing of most vaccines is based on established 
correlates of protective immunity (42–44). A commonly used 
correlate of protection in mammals is antibody levels expressed 
in response to vaccination (44). Predetermined antibody titers 
serve as correlates of protective immunity for which once a 
vaccine dose attains the established cutoff limit, it is considered 
potent. Although vaccine development has been going on in fish 
vaccinology for a long time, data on the correlates of protection 
for licensed vaccines are not available in published journals. 
Hence, the cutoff limit of antibody responses at which mucosal 
antibodies can be considered protective in vaccinated fish are 
not established for mucosal vaccines in finfish. Studies carried 
in finfish show that mucosal vaccines induce both mucosal and 
systemic antibody responses in vaccinated fish (4, 21). The role 
of mucosal antibodies is to protect mucosal sites and prevent the 
pathogen from entering systemic distribution through mucosal 
linings. Moreover, it has been shown that there is compartmen-
talization in the functional roles of mucosal antibodies with IgT 
being predominantly found on mucosal surfaces, while IgM is 
found in circulation and likely plays a more important role in 
preventing systemic pathogen dissemination (21). Therefore, to 
correctly ascertain the protective ability of mucosal vaccines, 
protection should be measured in the context of determining the 

protective role of (i) mucosal antibodies at mucosal surfaces, (ii) 
systemic antibodies in the systemic environment, and (iii) their 
individual and/or combined function in reducing or preventing 
post challenge mortality in vaccinated fish.

Protection Against Pathogen entry  
at Mucosal Surfaces
This component of protective immunity is mostly centered on 
preventing the establishment of infection in vaccinated fish. 
Studies in mammals have shown that the expression of secreted 
IgA correlates with resistance to infection (45–47). It has been 
shown that secreted IgA in mucus has the capacity to neutralize 
viruses and prevent their adherence to epithelial surfaces (45–48). 
Given that IgT is the most predominant Ig isotype found on 
mucosal surfaces in finfish (49–52), it plays a role in preventing 
pathogen attachment and localization possibly using mechanisms 
similar to those seen for IgA in mammals. In finfish, there are no 
established quantitative assays for measuring IgT titers in mucus. 
Thus, it is difficult to determine the threshold level of IgT able to 
deter pathogen attachment, colonization, and entry at mucosal 
surfaces. And as such, it is difficult to determine the antigen dose 
of mucosal vaccines able to induce IgT titers that would serve 
as correlates of protection against infection and/or prevention of 
pathogen entry through mucosal surfaces. No doubt, there is a 
need to develop a quantitative assay for IgT in mucus in order to 
pave way into establishing correlates of protection.

Protection Against Pathogen 
Dissemination to Systemic Organs
This component of protective immunity is centered on prevent-
ing disease establishment by blocking pathogen dissemination 
to internal organs that include target organs that are prone to 
pathogen-induced pathology (40, 53). Although mucosal vac-
cines have been shown to produce systemic antibody responses 
(4, 54, 55), there are no studies shown to generate systemic 
antibody titers that would serve as correlates of protection for 
mucosal vaccines in finfish. Thus, it is difficult to define the 
antigen dose of mucosal vaccines that would induce protective 
antibodies against disease establishment. In our previous studies 
(40), we showed that antibody levels ≥1.2 OD490 (1:50 dilution) 
prevented the establishment of pathology in target organs in 
Atlantic salmon vaccinated against IPN. In another study (53), 
an antibody titer ≥1.4 OD490 (1:50 dilution) prevented against 
IPNV-induced pathology indicating that a threshold antibody 
titer can be established for vaccines against IPNV infection to 
serve as a cutoff limit at which protection can be defined. It is 
likely that similar approaches can be used to develop correlates of 
protective immunity for mucosal vaccines in finfish.

Protection Against Mortality
Although it has been shown that mucosal vaccines have the 
capacity to reduce post-challenge mortality in vaccinated fish (4, 
56–60), there are no studies that correlate the antibody responses 
induced by mucosal vaccines with post-challenge protection. 
In our previous studies, we showed that antibody titers ≥1.2 
OD490 (1:50 dilution) corresponded with post-challenge survival 
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proportions (PCSP) >92.0% in Atlantic salmon vaccinated against 
IPNV using injectable vaccines (40). In another study (53), anti-
body levels ≥1.4 OD490 (1:50 dilution) corresponded with PCSP 
>94.0%, again indicating that antibody titer that can serve as a 
correlate of protection for IPN vaccines in Atlantic salmon. Efforts 
should be made to determine similar correlates of protection for 
mucosal vaccines.

ORAL TOLeRANCe TO MUCOSAL 
vACCiNATiON iN FiNFiSH

In mammals, studies on oral tolerance date as far back as the 1940s 
when Chase (61) showed that feeding a single chemical, such as 
picryl chloride, resulted in significant loss of systemic immune 
responses to subsequent exposure to the same protein due to a 
systemic delayed hypersensitivity reaction. This phenomenon of 
prolonged exposure to the same substance resulting in failure to 
induce systemic immune responses has become a gold standard 
test for oral tolerance (62, 63). In finfish, it has been demon-
strated in Atlantic salmon (Salmo salar L.) (64, 65), rainbow trout 
(Oncorhynchus mykiss) (66), common carp (C. carpio) (67, 68), 
and gold fish (Carassius auratus) (69). In carp, it was shown that 
prolonged oral vaccination led to suppression of systemic anti-
body responses after administering the same antigen by injection 
(67, 68). Maurice et al. (69) exposed goldfish to prolonged oral 
vaccination against Aeromonas salmonicida A-layer recombinant 
protein and showed a decline in antibody levels after 1 month, 
while fish subjected to 5 days of oral vaccination had high anti-
bodies. When fish in both groups were intraperitoneally injected 
with the same vaccine, only the group vaccinated for 5 days had 
an increase in systemic antibody levels that corresponded with 
high post challenge protection. In contrast, the group subjected 
to prolonged oral vaccination had insignificantly low systemic 
antibody levels linked to high post-challenge mortality. These 
studies suggest that prolonged oral vaccination in finfish could 
lead to decrease in systemic antibody responses likely caused by 
oral tolerance. The challenge is to find an optimal duration of oral 
vaccination that does not cause a reduction of systemic antibody 
responses in orally vaccinated fish.

In mammals, factors linked to immunotolerance include 
direct inactivation of antigen-sensitized lymphocytes via deple-
tion or anergy, regulatory T-cells (T-regs), hepatic processing of 
antigens, and several other factors that include anti-idiotypes (47, 
62, 70, 71). Tolerance can also be initiated by use of tolerogenic 
protein molecules in mucosal organs (62) of which none of the 
feed carriers, such as PLGA nanoparticles and alginates, used for 
oral vaccination in finfish have been tested for their tolerogenic 
properties. It has been shown that the expression patterns of some 
cytokines are prone to induction of tolerance, while others are 
not (62, 70). Factors that favor Th1 responses abrogate mucosal 
tolerance, while factors that favor Th2 and T-regs expression 
favor mucosal tolerance (62, 70), suggesting that the Th1/Th2 
dichotomy can be used to monitor the progression of oral vac-
cination toward oral tolerance. Recently, Chen et al. (12) showed 
up regulation of GATA-3 a transcription factor for Th2 specifi-
cation and FoxP3 a transcription factor for T-reg activation in 

Atlantic salmon orally vaccinated with inactivated, IPNV, which 
was suggestive of oral tolerance. Rombout et al. (72) reviewed the 
mechanisms of oral tolerance in fish and pointed out that most of 
the genes and cell types that regulate oral tolerance in mammals 
are present in fish. It is likely that the reduction of systemic anti-
bodies linked to prolonged oral vaccination in finfish could be 
due to oral tolerance. There is a need to elucidate the underlying 
mechanisms linked to reduction of systemic antibody responses 
after prolonged oral vaccination in finfish.

iMPACT OF SPeCieS vARiATiONS  
ON MUCOSAL vACCiNe DeSiGN  
FOR FiNFiSH

Fish can be clustered into different groups based on their physi-
ological and immunological differences. They can also be classified 
into omnivores, carnivores, or herbivorous based on their feeding 
habits and anatomical layout of the digestive system. Rombout 
et  al. (73) pointed out that 85% of the bony fish develop their 
stomach during the larvae stage, while cyprinids never develop 
a stomach rendering them lack a low pH environment in their 
digestive system. Stomached species degrade the vaccine antigens 
in the low pH of the gut unlike stomach-less species that lack a 
low pH environment in their digestive systems. For stomach-less 
species, the first segment of the gut is absorptive unlike stomached 
species that have a less absorptive first segment (73). Both stom-
ach-less and stomached species have a high absorptive capacity 
in the second segment (73). These differences have a significant 
influence on the delivery of vaccines to the most absorptive parts 
of the gut. In stomached species, the target is to design vaccines 
able to survive the low pH in the stomach in order to reach the 
second segment of the gut. This implies that oral vaccines have to 
be tailor made for different species of which the use of encapsu-
lated oral vaccines for stomached species would be ideal, while 
encapsulation might not be necessary for stomach-less species.

Another important factor that affects the design of protective 
vaccination strategies is the differences between cold and warm-
water species. As pointed out by different scientists (74, 75), fish 
growth rate increases proportionally with increase in water tem-
perature. Cold-water species, such as Atlantic salmon reared at 
10–12°C, have a slow growth rate that require a long production 
period (~2 years, ≥7,300 degree days). On the contrary, warm-
water species, like the Nile tilapia (Oreochromis niloticus), reared 
at 28°C have a shorter production period lasting about 6 months 
(≤6,000 degree days). It is likely that cold-water species could 
require multiple boost vaccinations to maintain high levels of 
protective antibodies during the long production periods, which 
might not be needed for fish species having short production 
periods. The difference between migratory and non-migratory 
species is another important factor that has a significant influence 
on the design of protective vaccination strategies. For example, 
Atlantic salmon undergo smoltification and changes in water 
salinity after transfer from freshwater to seawater making them 
vulnerable to stress-related disease outbreaks, such as IPNV 
outbreak (16, 76). Therefore, vaccination strategies should ensure 
that fish have protective antibodies at the stage when they are 
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most vulnerable to outbreaks. Moreover, the transfer of fish from 
fresh to seawater calls for adjustments in vaccination strategies 
given that vaccination by injection is not practical for fish reared 
in open cages in seawater of which oral vaccination through feed 
is the most applicable strategy.

Difference on skin surface structures, such as the presence or 
absence of scales, is another important factor that could affect 
the efficacy of mucosal vaccines in different fish species. Scaled 
fish species are likely to have a low vaccine absorption capacity 
than scaleless species suggesting that optimization of the antigen 
dose required to induce protective immunity could be a greater 
challenge for scaled fish than scaleless fish. Another important 
factor influenced by species variations is the differences in immu-
nological properties between different fish species. For example, 
Atlantic cod (Gadus morhua) lack genes that code for the MHC-II 
loci found in other fish species (77). Although it is not known 
how Atlantic cod compensate for the lack of MHC-II, it is likely 
that this accounts for differences in immune responses between 
Atlantic cod and other fish species that have the MHC-II genes. 
These differences indicate that it might not be practical to use a 
single vaccine for a disease that cuts across different fish species 
even when they are reared in the same ecosystem. Instead, dif-
ferent vaccines for the same disease should be tailor made for 
individual fish species requirements rendering vaccine produc-
tion and optimization to be an expensive venture.

FUNCTiONAL GeNOMiCS iN MUCOSAL 
vACCiNOLOGY iN FiNFiSH

Recent advances in fish genomics have led to cloning and charac-
terization of different genes that regulate different components of 
the innate and adaptive immune system in finfish. Genes of the 
innate immune system characterized in finfish include pattern 
recognition receptors (PRRs) that bind to pathogen-associated 
molecular patterns (PAMPs) on pathogens, surface mark-
ers of activated APCs and different regulatory cytokines and 
chemokines (14, 56, 57). Genes of the adaptive immune system 
characterized in fish include transcription factors that activate 
naïve T-cells into effector cells, T-cell receptors, CD3 receptors, 
and different regulatory cytokines of various T-cell responses (56, 
57). Recently, we used RNA-seq to gain insight of the profile of 
genes expressed by macrophage/dendritic-like cells derived from 
Atlantic salmon head kidney leukocytes and showed that the rep-
ertoire of genes expressed by these cells were comparable to genes 
expressed by mammalian APCs (78). Therefore, the upcoming of 
high throughput genome mining techniques, such as RNA-seq, is 
expected to help identify more novel genes expressed in response 
to vaccination in finfish.

Given the lack of knock-out (KO) models and limited number 
of surface marker monoclonal antibodies (mAbs) characterized in 
finfish, a large proportion of immune response studies are depend-
ent on gene expression. To a large extent, the interpretation of gene 
expression data in finfish is by inference to mammalian studies 
(53, 78, 79), where KO-models and abundance of surface marker 
mAbs have paved way to better understanding of immunological 
mechanisms of vaccine protection (80–84). In  situations where 
no mammalian orthologs of genes identified in finfish exists, it is 

difficult to determine the functional roles of genes unique to fish in 
vaccine protection. In such situations, it is difficult to optimize vac-
cine performance based on gene expression when the functional 
roles of the target genes have not been characterized in vaccinated 
fish. Future studies should seek to use novel strategies, such as 
the morpholino oligonucleotide (85), transcription activator-
like effector nuclease (TALEN) (86), and the clustered regularly 
interspaced short palindromic repeats (CRISPR) KO systems, to 
identify the functional roles of genes expressed in response to vac-
cination in finfish. By so doing, functional genomics could help 
identify genes that correlate with protective immunity for use in 
the optimization of mucosal vaccines for finfish.

PRiMe-BOOST vACCiNATiON 
STRATeGieS iN FiNFiSH

Prime-boost vaccination strategies can be classified into the 
homologous and heterologous vaccination strategies as shown 
below.

Homologous Prime-Boost vaccination 
Strategies
In situations where a single dose is insufficient to induce protec-
tive immunity, the same antigen can be administered repeatedly 
to increase and prolong the duration of protective immunity. 
This vaccination strategy has been widely used against different 
diseases in mammals (87), where the additive effect of repeated 
vaccinations increases immune responses to protective levels. In 
finfish, it has also been shown to increase antibody levels linked 
to reduction of post challenge mortality (Tables  3 and 4). In 
order to cope with different fish production strategies, homolo-
gous prime-boost vaccinations in finfish are in some cases 
carried out by administering the same antigens using different 
vaccine delivery routes. For example, in the case of Atlantic 
salmon primed by injection during the freshwater stage, oral 
boost after transfer to seawater in open cages is the most appli-
cable strategy. In Table 3, the general trend is that homologous 
prime-boost vaccination regimes for the live vaccines are more 
protective than regimes for the inactivated vaccines irrespec-
tive of the route of vaccine delivery. For inactivated vaccines, 
the anal prime/anal boost vaccination strategy showed higher 
protection than the oral prime/oral boost regimes. Table  4 
shows that the prime-boost regime for the viral hemorrhagic 
septicemia virus (VHSV) live vaccine had higher protection 
than the homologous prime-boost regimes using DNA vaccines. 
Another important factor shown to have a significant impact 
on the outcome of homologous prime-boost regimes is the 
antigen dose used in vaccination. For example, Kim et  al. (4) 
showed a dose-dependent antibody response that corresponded 
with post-challenge protection in Olive flounder (Paralichthys 
olivaceus) vaccinated against VHSV using a homologous prime-
boost vaccination strategy. Put together, these factors show that 
the efficacy of homologous prime-boost vaccination strategies is 
dependent on the route of vaccine delivery, type of antigen (live 
or inactivated), and antigen dose. In order to design protective 
homologous prime-boost vaccination protocols, it is important 
to find the most protective antigen delivery system, whether live 
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or inactivated, antigen dose, and route of vaccination into fish 
for each disease and fish species.

Heterologous Prime-Boost vaccination 
Strategies
In the heterologous prime-boost strategies, the vector encoding 
the antigen used in the primary vaccine is different from the vector 
encoding the same antigen used in the booster vaccine. DNA vac-
cines combined with attenuated viral vectors, particularly those 
not able to cause disease in the target host species, have proved 
to be an effective combination for heterologous prime-boost vac-
cinations in mammals (108). The common viral vectors used in 
mammals are fowlpox virus (FPV) (109) and modified vaccinia 
virus Ankara strain (MVA) (108, 110). The DNA prime/FPV boost 
strategy was first demonstrated in influenza vaccinations using 
the hemagglutinin (HA) antigen, which resulted in high levels of 

TABLe 4 | Prime-boost vaccination strategies for viral diseases explored under experimental conditions in finfish.

Disease Prime 
delivery

Boost 
delivery

Fish species immunogenic protein Antigen Protection Reference

Viral hemorrhagic septicemia Oral Oral Olive flounder Recombinant protein Live High (4)

Infectious pancreatic necrosis Injection Oral Atlantic salmon Inactivated whole virus Inactivated ND* (103)

Infectious salmon anemia virus Injection Oral Atlantic salmon Inactivated whole virus Inactivated ND* (104)

Grouper iridovirus Injection Injection Asian grouper ORF-DNA recombinants Plasmid DNA Low (105)

Spring virus of carp virus Oral Oral Carp Recombinant G-protein Plasmid DNA Moderate (106)

Koi herpesvirus Oral Oral Carp ORF81 protein Plasmid DNA Moderate (106)

Herpesviral hematopoietic necrosis virus Injection Immersion Ryukin gold fish Virus-CyHV-2 Inactivated Moderate (107)

*ND = Not done

TABLe 3 | Prime-boost vaccination strategies for bacterial diseases explored under experimental conditions in finfish.

Disease Prime delivery Boost delivery Fish species Antigen Protection Reference

Yersinia ruckei Immersion Immersion Rainbow trout Live attenuated Moderate (54)

Immersion Injection Rainbow trout Live attenuated High (54)

Immersion Oral Rainbow trout Live attenuated High (55)

Immersion Bath Rainbow trout Live attenuated Low (54)

Oral Oral Rainbow trout Inactivated Moderate (88)

Anal Anal Rainbow trout Inactivated High (88)

Aeromonas salmonicida Bath Bath Rainbow trout Inactivated Moderate (89)

Anal intubation Anal intubation Rainbow trout Inactivated High (89)

Injection Oral Turbot Inactivated Low (90)

Immersion Immersion Turbot Inactivated Low (90)

Aeromonas hydrophila Injection Injection Common carp Inactivated Moderate (91)

Streptococcus agalactiae Spray Spray Red tilapia Inactivated Moderate (92)

Vibrio anguillarum Immersion Immersion Sea bass Live attenuated Moderate (93)

Immersion Injection Sea bass Live attenuated High (93)

Oral Immersion Japanese flounder Live attenuated High (94)

Immersion Immersion Sea bass Live attenuated High (95)

Vibrio anguillarum Bath Injection Atlantic cod Inactivated High (96)

Edwardsiella tarda Oral Immersion Japanese flounder Live attenuated High (97)

Injection Injection Japanese flounder Live attenuated High (98)

Edwardsiella ictaluri Immersion Oral Vietnamese catfish Inactivated Moderate (60)

Flavobacterium columnare Immersion Immersion Nile tilapia Inactivated Antibody (99)

Immersion Immersion Channel catfish Live attenuated Moderate (100)

Lactococcus garvieae Injection Oral Trout Inactivated Moderate (101)

Lactococcus garvieae Oral Oral Trout Inactivated Moderate (102)

anti-HA antibodies, IFNγ, and Th1 responses (108, 111). Similarly, 
a DNA prime/FPV boost regime using the HIV antigen produced 
high CD4+ and CD8+ levels that significantly reduced the HIV viral 
loads in macaque monkeys. Jia et al. (112) primed mice with an 
attenuated Franciella tularensis live vaccine strain capB mutant fol-
lowed by a recombinant attenuated Listeria monocytogenes vector 
expressing the same F. tularensis antigen resulting in high levels of 
IFNγ, TNFα, IL-2, CD4+, and CD8+ cells. These studies show that 
heterologous prime-boost vaccination strategies enhance CMI 
responses, apart from increasing the antibody responses (87, 108, 
113, 114). This is supported by observations made by Woodberry 
et al. (114) who showed that the ability of DNA prime/MVA boost 
regimes to increase CD8+ responses in an influenza challenge 
model was a sum of responses induced by the DNA prime vaccine 
alone plus the MVA boost. As pointed out by Woodland (87), 
increased CD8+ responses induced by heterologous prime-boost 
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regimes increase CMI levels to protective thresholds in vaccinated 
animals. Although DNA vaccines have been studied in finfish 
(Table 4), there are no studies based on DNA prime/viral vector 
boost regimes shown to enhance CMI responses in finfish. Table 4 
shows that most prime-boost vaccination regimes using DNA vac-
cines alone, without the boost of heterologous vectors expressing 
the same antigen encoded in DNA vaccines, are not highly protec-
tive in finfish. Therefore, there is a need to design heterologous 
prime-boost vaccination regimes able to enhance both CMI and 
humoral immune responses in finfish.

GeNeRAL DiSCUSSiON AND 
CONCLUSiON

In this review, we have shown that challenges that limit our 
success for designing highly protective mucosal vaccines are 
centered on optimizing mucosal vaccine design and host immune 
response factors. Factors that pose a challenge in optimizing 
mucosal vaccine design for finfish include (i) optimization of 
antigen doses in order to pave way for identifying the correlates of 
protective immunity on mucosal surfaces and protection against 
systemic pathogen dissemination; (ii) choice of antigen delivery 
systems (modalities) in which mucosal vaccines can be delivered 
as replicative or non-replicative antigens; (iii) protecting oral 
vaccines against degradation in the acidic environment of the 
gut; (iv) identifying the most potent adjuvants having highly 
effective immunostimulants able to enhance antigen uptake, 
processing, and presentation to cells of the adaptive immune 
system; (v) identifying the most effective vaccine delivery route 
able to produce highly protective mucosal and systemic antibody 
responses in vaccinated fish; and (vi) designing highly protective 

prime-boost vaccination strategies able to produce long-term 
protective immunity in vaccinated fish.

Host immune response factors that pose a challenge in design-
ing protective mucosal vaccines for finfish include (i) oral toler-
ance – although the underlying mechanisms causing this condition 
in finfish have not been studied in detail, based on the limited studies 
carried out this far indications are that prolonged exposure to oral 
vaccination reduces the induction of systemic antibody responses 
in vaccinated fish; (ii) species variations need tailor-made vaccines 
to cope with individual species requirements; (iii) lack of established 
correlates of protective immunity required to determine the antigen 
dose able to prevent pathogen entry on mucosal surfaces and to 
prevent systemic pathogen dissemination for mucosal vaccines; and 
(iv) a complex host genomic response to mucosal vaccination whose 
network pathways can be difficult in identifying the most relevant 
genes required for optimization of vaccine performance in finfish.

Although there might be several other factors that limit the 
design of protective mucosal vaccines for finfish, this review 
highlights some of the most significant challenges currently hin-
dering our ability to develop highly efficacious mucosal vaccines 
for finfish. Therefore, future studies should seek to overcome 
some of the challenges put forth in this review in order to pave 
way for the design of protective mucosal vaccines for finfish.
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